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ABSTRACT

We investigate the high-energy limits of the moments of Eisenstein series, when these

functions are considered as real random variables over a compact subset of a convex co-

compact hyperbolic manifold. In the first part, under a restriction on the Hausdorff dimen-

sion of the limit set of the fundamental group of the manifold, we prove a general formula

describing all the moments of the Eisenstein series at high-energy. In particular, we show

that all the odd-order moments vanish. In the second part, we study the rate of convergence

of the moments in the high-energy limit. In the case of the odd-order moments, we prove

that the rate of convergence is at least polynomial. As for the even-order moments, following

an approach based on the work of Guillarmou and Naud [16] concerning the equidistribu-

tion of Eisenstein series, we find a polynomial error term for the fourth moment under the

additional hypothesis that the manifold in question is a surface.
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RÉSUMÉ

Nous étudions les moments des séries d’Eisenstein dans la limite des hautes énergies,

lorsque ces fonctions sont considérées en tant que variables aléatoires sur un sous-ensemble

compact d’une variété hyperbolique convexe co-compacte. Dans un premier temps, en im-

posant une condition sur la dimension de Hausdorff de l’ensemble limite du groupe fonda-

mental de la variété, nous obtenons une formule générale décrivant tous les moments des

séries d’Eisenstein à hautes énergies. Dans un second temps, nous étudions la vitesse de con-

vergence des moments dans la limite des hautes énergies. Dans le cas des moments d’ordre

impair, nous démontrons que la vitesse de convergence est au moins polynomiale. En ce

qui concerne les moments d’ordre pair, en suivant une approche basée sur les travaux de

Guillarmou et Naud [16] concernant l’équidistribution des séries d’Eisenstein, nous trouvons

un terme d’erreur d’ordre polynomial pour le quatrième moment en ajoutant l’hypothèse

que la variété en question est une surface.
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CHAPTER 1
Introduction

For n ≥ 1, let Hn+1 be the (n + 1)-dimensional hyperbolic space and let Isom+(Hn+1)

denote the group of orientation-preserving isometries of Hn+1. Let Γ be a torsion-free discrete

subgroup of Isom+(Hn+1). The set of limit points of all the orbits of the action of Γ on Hn+1,

i.e., Γz for z ∈ Hn+1, consists of a subset ΛΓ of ∂Hn+1, which will be referred to as the limit

set of Γ.

In this thesis, we are interested in quotients of the form X := Γ\Hn+1 giving rise to

infinite volume hyperbolic manifolds without cusps. More precisely, the group Γ has to

satisfy the additional hypothesis that it admits a finite-sided convex polygonal fundamental

domain whose closure does not intersect the limit set of Γ. The resulting quotient X is then

said to be convex co-compact.

Endowed with the hyperbolic metric inherited from Hn+1, the Riemannian manifold X

is not compact. However, it is conformally compact, in the sense that it can be compactified

to a smooth manifold X with boundary ∂X through the multiplication of its metric by

some conformal factor. For precise definitions and for further explanation of the concepts

introduced above, see §2.1.

Since the work of Lax and Phillips [22, 23], it is a well-known fact that the spectrum

of the Laplacian on geometrically finite hyperbolic manifolds of infinite volume decomposes

into an absolutely continuous part [n2/4,∞) and a (possibly empty) finite set of eigenvalues

in the interval (0, n2/4). The absolutely continuous part of the spectrum is represented by

the Eisenstein series E(sλ;m, ξ) with sλ := n
2

+ iλ, m ∈ X and ξ ∈ ∂X. These functions

are generalized eigenfunctions of the Laplacian in the sense that they are non-L2 functions
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which satisfy the usual eigenvalue equation:

∆XE(s;m, ξ) = s(n− s)E(s;m, ξ).

The reader who is not familiar with the spectral theory of infinite-volume hyperbolic mani-

folds is encouraged to read §2.2 in which a brief exposition of some important results in this

field can be found. See also §2.2.4 for a precise definition of the Eisenstein series.

1.1 Motivation

Using the fact that E(s;m, ξ) enjoys a representation as an absolutely convergent series

when the real part of the spectral parameter s ∈ C is large enough (see Lemma 2.20 below),

Guillarmou and Naud [16] showed the equidistribution of Eisenstein series on convex co-

compact manifolds X when the Hausdorff dimension of the limit set, δΓ := dimHaus(ΛΓ), is

small enough. More precisely, they proved that if δΓ < n/2, then for any smooth compactly

supported function a on X, i.e., a ∈ C∞0 (X), we have∫
X

a(m)|E(sλ;m, ξ)|2dvX(m) =

∫
X

a(m)E(n;m, ξ)dvX(m) +O(λ2δΓ−n), (1.1)

as λ→∞, where dvX(m) is the hyperbolic volume measure.

Inspired by this result, we have set as an objective to study the “high-energy” limit of all

the moments of the real and imaginary parts of Eisenstein series, when seen as real random

variables over a compact subset of a convex co-compact manifold. To be more precise, fix a

nice compact set K ⊂ X with non-empty interior and let a ∈ C∞0 (X) be such that a(m) ≥ 0

for all m ∈ supp(a) ⊂ K and ∫
X

a(m)dvX(m) = 1.

If we define Fλ(m, ξ) to be either Re(E(sλ;m, ξ)) or Im(E(sλ;m, ξ)), then (Fλ)λ∈R+ can be

seen as a family of real-valued random variables with respect to the probability measure
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a(m)dvX(m) on X. By definition, the p-th moment of the random variable Fλ is given by

E(F p
λ (·, ξ)) =

∫
X

(Fλ(m, ξ))
p a(m)dvX(m).

Our goal is to gain a better understanding of the high-energy limit, i.e., the limit λ → ∞,

of E(F p
λ (·, ξ)). With a complete description of the high-energy limit of all the moments, one

could expect to find a probability law whose p-th moment corresponds to limλ→∞ E(F p
λ (·, ξ)),

which could eventually lead to a solution of the Hamburger moment problem. In other

words, one could find a random variable F (with respect to a(m)dvX(m) on X) such that

Fλ converges in distribution to F as λ→∞. Such information would provide deep insights

into the high-energy behaviour of those generalized eigenfunctions of the Laplacian.

The question of studying real eigenfunctions of the Laplacian in the limit λ → ∞ has

already been raised in the past. The famous Random Wave Conjecture of Berry [6] predicts

that the real and imaginary parts of high-energy eigenfunctions should resemble random

waves in classically chaotic systems. In the case of hyperbolic surfaces, many numerical

tests were conducted to confirm the validity of such a model; see, e.g., [18]. However, only

little progress was made towards this conjecture. Among the noteworthy results for the

odd-order moments is the vanishing limit of the third moment of Maass-Hecke eigenforms on

the modular surface PSL(2,Z)\H2 proved by Watson [42]. As for the even-order moments,

Spinu [39] showed that the fourth moment of the L2 normalized Eisenstein series on the

modular surface is bounded. This last result is also remarkable in that it establishes for

the continuous spectrum a special case of a still wide open conjecture originally formulated

by Iwaniec and Sarnak [21] about the Lp-norm of the Laplace eigenfunctions: for any “nice

enough” compact subset K of a hyperbolic surface, 2 < p ≤ ∞ and ε > 0, the L2-normalized

eigenfunction φλ corresponding to the eigenvalue λ should satisfy ‖φλ‖Lp(K) = Op,ε,K(λε); see

§4 in [36] and references therein for more details and for other related results and conjectures.

In the general setting of compact Riemannian manifolds, one can mention the work of

Canzani et al. [10] in which the authors study the distribution of the real part of perturbed
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eigenfunctions of the Schrödinger operator. In particular, they show that the odd-order

moments vanish when the geodesic flow is ergodic, as predicted by Berry’s conjecture.

On the other hand, the random wave model is known not to apply universally. For

example, a consequence of such a model for the eigenfunctions φλ (of eigenvalues λ) would

be that they satisfy

‖φλ‖∞ ≈
√

log λ (1.2)

in the high-energy limit; see, e.g., §1 in [35]. However, Milićević showed in [28] that the

high-energy Hecke-Maass eigenforms on arithmetic hyperbolic surfaces take values larger

than what would be predicted by (1.2) if the Random Wave Conjecture were valid.

In the case at hand, one can easily check that the L∞-norm of E(sλ;m, ξ) is bounded

uniformly in the parameter λ; see §2.2.4 and, in particular, Lemma 2.20 below. Consequently,

it is not expected that the moments of the real and imaginary parts of the Eisenstein series

on convex co-compact hyperbolic manifolds reflect the ones of the normal distribution.

1.2 Presentation of the results

Since

Fλ(m, ξ) =
i

3
2
± 1

2

2
(E(sλ;m, ξ)± E(sλ;m, ξ)), (1.3)

it follows from the binomial expansion that calculating the p-th moment of the real and

imaginary parts of E(sλ;m, ξ) at high-energy boils down to finding the limit as λ → ∞ of

the integrals

Ipk(λ, ξ) :=

∫
X

a(m) (E(sλ;m, ξ))
k
(
E(sλ;m, ξ)

)p−k
dv(m), (1.4)

for all integers 0 ≤ k ≤ p. This thesis is then dedicated to studying the limit λ → ∞ of

integrals of the form (1.4). Notice that (1.1) corresponds to the special case where p = 2

and k = 1. In this sense, our objective can be seen as extending the result of Guillarmou

and Naud stated above.
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The main result of this work is the following theorem, which describes the limit at high-

energy of all the moments of the Eisenstein series when the dimension of the limit set is small

enough. For more details about the notation introduced in the statement of this theorem

as well as for definitions and elementary facts about integer and set partitions, the reader is

urged to consult §3.1.

Theorem 1.1. Let X = Γ\Hn+1 be a convex co-compact hyperbolic manifold and assume

that δΓ < n/2. Let a ∈ C∞0 (X), ξ ∈ ∂X and Ipk be defined by (1.4). Then for all integers

0 ≤ k ≤ p,

Ipk(λ, ξ) −→

 0, if k 6= p
2
;∫

X
a(m)fp(m, ξ)dvX(m), if k = p

2
.

(1.5)

as λ→∞, where

fp(m, ξ) :=

p/2∑
l=1

∑
θ∈Θl

(
Cθ

l∏
r=1

E(θrn;m, ξ)

)
, (1.6)

with Θl the set of all length l integer partitions θ = (θ1, . . . , θl) of p
2

and

Cθ =
∑

π∈Lp/2,
θ(π)=θ

(
k

θ(π)

)
+

∑
π(s)<···<π(1)<π,

θ(π)=θ

(−1)s
(

k

θ(π(s))

)
, (1.7)

where Lp/2 is the set of all partitions of a set of p/2 elements and the second sum is over all

chains (if any) of set partitions π(s) < · · · < π(1) < π of any length s+ 1 satisfying the only

condition that their underlying integer partition θ(π) is equal to θ.

Remark 1.1. More explicit expressions of fp are given for p = 2, 4, 6 and 8 in Chapter 3.

(See (3.9), (3.12), (3.19) and (3.20) respectively.)

Remark 1.2. The moments of Fλ at high-energy is a direct corollary of Theorem 1.1. See

§3.3 below for a precise statement.

In the rest of the thesis, we are interested in the question of the rate of convergence of

Ipk(λ, ξ) to the limits given by (1.5) as λ→∞. In the case where p is odd, a general argument

allowed us to find an error term for any k and on manifolds of any dimension.
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Theorem 1.2. Let X = Γ\Hn+1 be a convex co-compact hyperbolic manifold and assume

that δΓ < n/2. Let p ≥ 1 be odd. Let a ∈ C∞0 (X), ξ ∈ ∂X and Ipk be defined by (1.4). Then

for all 0 ≤ k ≤ p,

Ipk(λ, ξ) = O(λ−
1
d ).

as λ → ∞, where d = 4p if k = 0 or p and d = 4p + 2 if 1 ≤ k ≤ p − 1. Moreover, the

implied constant in the bound O(λ−
1
d ) is independent of ξ ∈ ∂X.

Remark 1.3. The bounds given by this theorem are not sharp in general. As attests

Proposition 4.1 below, a faster convergence can be achieved on surfaces when p = 3. The

arguments leading to Theorem 1.2 do not essentially depend on the power p (as long as it is

odd) or on the dimension of the manifold. The cost of such a general proof is that it relies

on fairly rough estimates. For this reason, we believe that sharper bounds can be obtained

for any value of p and n.

For p even, the “middle term”, i.e., Ipp/2(λ, ξ), corresponds to a restricted Lp-norm of the

Eisenstein series to compact subsets of the manifold. Therefore, this quantity is non-negative

for any λ. Moreover, since the Eisenstein series do not vanish almost everywhere in the limit

λ → ∞, the limit of Ipp/2(λ, ξ) as λ → ∞ should always be positive. It follows in particular

that the functions fp(m, ξ) defined by (1.6) and (1.7) in the statement of Theorem 1.1 are

non-negative.

The restricted L2-norm (1.1) calculated by Guillarmou and Naud gives also an indication

of the rate of convergence. For higher values of p even, we were not able to obtain a general

result like Theorem 1.2. The technique employed to approach the odd powers turned out to

be ineffective to estimate the rate of convergence in the case where p is even. Restricting

ourselves to surfaces, we managed to determine an error term for the restricted L4-norm.
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Theorem 1.3. Let X = Γ\H2 be a convex co-compact hyperbolic surface and assume that

δΓ < 1/2. Let a ∈ C∞0 (X), ξ ∈ ∂X and Ipk be defined by (1.4). Then

I4
2 (λ, ξ) =

∫
X

a(m)f4(m, ξ)dvX(m) +O(λδΓ−
1
2 )

as λ→∞, where f4(m, ξ) := 2 (E(1;m, ξ))2−E(2;m, ξ). Moreover, the implied constant in

the bound O(λδΓ−
1
2 ) is independent of ξ ∈ ∂X.

Using the right-hand side of (1.1) as a L2-normalization factor, this theorem can be seen

as a special case of the L4-norm problem on hyperbolic surface as well as an analogue of

Spinu’s result described above.

Theorem 1.2 gives us readily a remainder for all the odd-order moments of the real and

imaginary parts of E.

Corollary 1.4. Under the hypotheses of Theorem 1.2,∫
X

a(m) (Fλ(m, ξ))
p dvX(m) = O(λ−

1
4p+2 ).

as λ→∞, where the implied constant is independent of ξ ∈ ∂X.

The error terms for the second and the fourth moments of Fλ are essentially given by

(1.1) and by Theorem 1.3 respectively. However, it remains to find the rate of convergence

of the “cross terms” in the binomial expansion of Fλ, i.e., all the terms of the form (1.4)

with k 6= p/2, which, as we already know from Theorem 1.1, vanish as λ → ∞. For p = 2,

this is done at the end of §5.3:∫
X

a(m) (Fλ(sλ;m, ξ))
2 dvX(m) =

1

2

∫
X

a(m)E(n;m, ξ)dvX(m) +O(λ−min{n−2δΓ,
1
8}). (1.8)

as λ→∞. The fourth moment of Fλ is the content of the following corollary.

Corollary 1.5. Under the hypotheses of Theorem 1.3,∫
X

a(m) (Fλ(m, ξ))
4 dvX(m) =

3

8

∫
X

a(m)f4(m, ξ)dvX(m) +O(λ−min{ 1
2
−δΓ, 1

18})

as λ→∞, where the implied constant is independent of ξ ∈ ∂X.
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Remark 1.4. The fact that the cross terms vanish polynomially for p = 2 in general and for

p = 4 when X is a surface (see Proposition 5.3 below and the discussion following it) leads

us to believe that Theorem 1.2 could remain valid for any p even, when k 6= p/2. However,

as will be seen in Chapter 4 below, the proof of this theorem does not allow us to draw such

a conclusion.

Although the random wave model cannot be expected to describe the behaviour of Fλ

at high-energy, the vanishing of the odd-order moments exhibited by Corollary 1.4 is in

agreement with the vanishing of the odd-order moments of the normal distribution predicted

by Berry. In particular, a probability law corresponding to the moments of Fλ would have

to be symmetric.

1.3 Organization of the thesis

Chapter 2 constitutes a brief account of the background material on which the rest of the

thesis is based. Among other things, precise definitions of the less common mathematical

concepts mentioned in the introduction are given there. Our treatment in this chapter is

essentially expository, though some (elementary) non-standard results will be proved as well.

Our presentation of the proofs of the main theorems, stated in §1.2, begins in Chapter 3.

The proof of Theorem 1.1 is contained entirely in §3.1. In §3.2, we explain how to evaluate

explicitly the coefficients Cθ’s (see (1.7) above) appearing in the limits provided by this

theorem. Moreover, a statement similar to the ones of Corollary 1.4 and Corollary 1.5 about

the high-energy moments of the real and imaginary parts of Eisenstein series is stated in

§3.3.

The next two chapters revolve around studying the rate of convergence of the limits

found previously. Chapter 4 is devoted to the odd-order moments. In addition to the proof

of Theorem 1.2, the reader will find there a treatment of the special case where p = 3 and

n = 1, for which an improved remainder term can be obtained. Besides providing a sharper

bound for the third moment, the proof of this result introduces the basis of a method which

will prove useful for studying the fourth moment on surfaces in the following chapter.
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In Chapter 5, we are concerned with the special case where n = 1 and p = 4. For the

sake of completeness and as a preliminary for the proof of Theorem 1.3, the argument of

Guillarmou and Naud which led to (1.1) will be recalled at the beginning of this chapter.

We prove Theorem 1.3 in §5.2. Finally, Corollary 1.5 and equation (1.8) are dealt with in

§5.3.

We conclude this thesis in Chapter 6 with a brief discussion about the limits of our

approach in determining the high-energy asymptotics of the moments of Eisenstein series.

Moreover, we suggest there some directions for further research.

Contributions of the author

Unless explicitly stated otherwise, all the results proved in this thesis are the work of

the author alone. In particular, to the best of the author’s knowledge, all the theorems and

corollaries stated in §1.2 and proved in Chapter 3, Chapter 4, §5.2 and §5.3 are original

contributions to knowledge.
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CHAPTER 2
Preliminaries

The objective of this chapter is twofold. Firstly, it serves as an exposition of important

concepts originating from the geometry and spectral theory of hyperbolic manifolds. Our

treatment is, however, by no means exhaustive, nor should it be considered as a complete

introduction to these topics. We made an effort to restrict the presentation to the defini-

tions and facts that are, in our opinion, essential for understanding the rest of the thesis.

The reader interested in a thorough treatment of hyperbolic manifolds should consult, for

example, [34]. For a unified exposition of the spectral theory of infinite-area surfaces, the

reader is referred to [7].

Secondly, this chapter presents some preliminary results which, though elementary, will

play an important role in the proof of the main theorems. They are spread throughout the

different sections, according to their content. Proofs are generally given for facts that are

not standard.

2.1 Hyperbolic manifolds

For the rest of this thesis, the term hyperbolic manifold will refer to a complete connected

orientable Riemannian manifold of constant sectional curvature −1. It is a basic fact of

Riemannian geometry that there exists up to isometry a unique (n+ 1)-dimensional simply-

connected hyperbolic manifold, the hyperbolic (n+1)-space Hn+1. In order to do calculations

on this space, one has to choose a model of hyperbolic space, i.e., an isometric copy of Hn+1.

The model that is the best suited for our purposes is defined as follows. Let

Bn+1 := Bn+1
0 (1) =

{
x = (x1, x2, . . . , xn+1) ∈ Rn+1 : |x|2 =

n+1∑
i=1

x2
i < 1

}
.
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One can check that endowed with the metric tensor

ds2 =
4
∑n+1

1 dx2
i

(1− |x|2)2
, (2.1)

the open unit ball Bn+1 becomes a hyperbolic manifold, which usually takes the name of the

Poincaré ball model. Since this model is the only one that will be used in this text, the term

hyperbolic space and the symbol Hn+1 will also refer to the manifold Bn+1. It is important

to notice that under the Poincaré ball model, the geodesics correspond to the arcs of circles

which intersect perpendicularly the spherical boundary Sn := ∂Bn+1 of Bn+1.

The Riemannian metric (2.1) induces a distance function d(·, ·) on Bn+1, which is given

(see, e.g., Theorem 4.5.1 in [34]) by

cosh d(x, y) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
, (2.2)

for any x, y ∈ Bn+1.

Let Isom+(Hn+1) be the group of orientation-preserving isometries of Hn+1 and let Γ be

a torsion-free discrete subgroup of Isom+(Hn+1). It follows from elementary Riemannian

geometry that the quotient Γ\Hn+1 is a complete Riemannian manifold with the natural

hyperbolic metric inherited from Hn+1. On the other hand, it is known since the time of

Hopf that any hyperbolic manifold is of this form. (See, e.g., Theorem 8.5.9 in [34] for a

proof of this classic result.) Therefore, in what follows, any hyperbolic manifold M will

be associated with a discrete group Γ of orientation-preserving isometries of Hn+1 and the

symbols M and Γ\Hn+1 will be used interchangeably to refer to this hyperbolic manifold.

2.1.1 Möbius transformations

As noted above, the group Isom+(Hn+1) plays a fundamental role in the theory of hyper-

bolic manifolds. In this subsection, we will describe the structure of this group by giving a

characterization of it in terms of Möbius transformations.

11



Let S(a, r) := Sn(a, r) be the sphere of radius r centered at a in Rn+1, i.e.,

S(a, r) :=
{
x ∈ Rn+1 : |x− a| = r

}
.

We define the reflection in the sphere S(a, r) as the function

σ(x) := a+

(
r

|x− a|

)2

(x− a), x ∈ Rn+1 − {a} . (2.3)

The definition of this function can be extended to Rn+1 by adding the point ∞ and by

defining σ(a) := ∞. On the other hand, by defining σ(∞) := a, the function σ is now

defined in all of Rn+1 ∪ {∞}.

Similarly, for any (extended) plane

P (a, t) :=
{
x ∈ Rn+1 : a · x = t

}
∪ {∞} , a ∈ Rn+1 − {0} , t ∈ R,

we can define the reflection in the plane P (a, t) for all x ∈ Rn+1 ∪ {∞} by

σ(x) :=

 x− 2(x · a− t) a
|a|2 , if x ∈ Rn;

∞, if x =∞.

A function γ : Rn+1 ∪{∞} → Rn+1 ∪{∞} is said to be a Möbius transformation of Bn+1

if it is a finite composition of reflections (in spheres or planes) that leaves Bn+1 invariant.

We will write M(Bn+1) for the set of all Möbius transformations of Bn+1 which are also

orientation-preserving.

The following theorem, in conjunction with the remarks made at the beginning of this

section, establishes the connection between Möbius transformations and hyperbolic mani-

folds.

Theorem 2.1. The groups Isom+(Hn+1) and M(Bn+1) are isomorphic.

For a proof of this proposition, the reader is referred to §4.5 in [34]. (See, in particular,

Theorem 4.5.2 and Corollary 1 of this section.) In view of Theorem 2.1, from now on, we will

make no difference between the elements of Isom+(Hn+1) and orientation-preserving Möbius

12



transformations of Bn+1. The following proposition gives a characterization of the Möbius

transformations which will prove useful in the calculations to come.

Proposition 2.2. Let γ be a Möbius transformation of Bn+1.

• If γ(∞) =∞, then γ is an orthogonal transformation.

• If γ(∞) 6=∞, then there exists an orthogonal transformation ψ such that

γ(x) = ψ ◦ σ(x), x ∈ Rn+1 ∪ {∞} ,

where σ is the reflection in the sphere S(a, r) with

a = γ−1(∞) and r =
1

sinh(1
2
d(0, γ0))

.

Proof. See the proof of Theorem 4.4.7 in [34] and also §3.5 in [4].

Any Möbius transformation other than the identity can fix precisely zero, one or two

points in Sn. (See §4.7 in [34] for more details about this fact.) This justifies the use of the

following classification. We will say that a Möbius transformation is

• elliptic if it fixes no point of Sn;

• parabolic if it fixes exactly one point of Sn;

• hyperbolic (or loxodromic) if it fixes exactly two points of Sn.

Moreover, it is a well-known fact that elliptic transformations fix exactly one point of Bn+1

whereas parabolic and hyperbolic transformations do not fix any point of Bn+1. It follows

then from the remarks at the beginning of this section that in order for Γ\Hn+1 to be a

manifold, the group Γ must not contain any elliptic element.

The fixed point ξ ∈ Sn of a parabolic transformation γ is always attractive, in the sense

that for any x ∈ Bn+1, we have γjx → ξ as j → ∞. On the other hand, if γ is hyperbolic,

then one (and, of course, only one) of its two fixed points is attractive. The other one is

then said to be repulsive. It is clear, in this case, that the fixed points of γ−1 are the same

as the ones of γ, with the only difference that the attractive point of γ is the repulsive point

of γ−1, and vice versa. (See §4.7 in [34] for more details.)
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We conclude this subsection with the statement and the proof of some elementary facts

about isometries of Hn+1 which will be used in the proofs presented in the subsequent

chapters. The first of these results consists of two elementary and well-known formulae, the

proof of which can be found in §3.4 and §3.5 of [4].

Proposition 2.3. Let γ ∈ Isom+(Hn+1) and suppose that aγ := γ−1(∞) 6=∞. Then

sinh2(
1

2
d(0, γ0)) =

1

|m− aγ||γm− aγ|
, (2.4)

and

|γm− γm′| = |m−m′|
sinh2(1

2
d(0, γ0))|m− aγ||m′ − aγ|

, (2.5)

for all m,m′ ∈ Bn+1.

The next two results are elementary as well. However, since they do not appear in any

reference known to the author, they will be stated with a proof.

Lemma 2.4. Let γ ∈ Isom+(Hn+1) and suppose that aγ := γ−1(∞) 6= ∞. Let Dmγ(m)

denote the differential of γ at the point m ∈ Hn+1. If λ is an eigenvalue of Dmγ(m), then

|λ| = | det (Dmγ(m)) |
1

n+1 =
1− |γm|2

1− |m|2
=

1

sinh2(1
2
d(0, γ0))|aγ −m|2

= |Dmγ(m)|.

Moreover,

|(Dmγ(m))v| = |λ||v|

for all v ∈ TmHn+1 ∼= Rn+1.

Proof. Let γ ∈ Isom+(Hn+1). Let 〈·, ·〉 denote the standard dot product in Rn+1. By (2.1),

the inner product 〈·, ·〉m on TmHn+1 induced by the hyperbolic metric satisfies

〈·, ·〉m =
4

(1− |m|2)2
〈·, ·〉.
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Since γ is an isometry, for all m ∈ Hn+1 and all v ∈ TmHn+1 ∼= Rn+1, we have

4

(1− |γm|2)2
〈(Dmγ(m))v, (Dmγ(m))v〉 = 〈(Dmγ(m))v, (Dmγ(m))v〉γ(m),

= 〈v, v〉m =
4

(1− |m|2)2
〈v, v〉.

or, equivalently, 〈
1− |m|2

1− |γm|2
(Dmγ(m))v,

1− |m|2

1− |γm|2
(Dmγ(m))v

〉
= 〈v, v〉. (2.6)

It follows that for any m ∈ Hn+1,

1− |m|2

1− |γm|2
(Dmγ(m))

is an orthogonal transformation of Rn+1, from which we conclude that if λ is an eigenvalue

of Dmγ(m), then

|λ| = 1− |γm|2

1− |m|2
, and | det (Dmγ(m)) |

1
n+1 =

(∏
λ e.v.

|λ|

) 1
n+1

=
1− |γm|2

1− |m|2
.

The remaining equalities are standard elementary facts; see, e.g., §3.4 and §3.5 in [4]. The

last part of the statement is a direct consequence of (2.6).

Here, and in the rest of the text, we will use the following notation for the partial

derivatives of a function. If α ∈ Nn+1
0 and |α| =

∑n+1
k=1 αk, then

∂αf(x) =
∂|α|f(x)

∂xα1
1 · · · ∂x

αn+1

n+1

, (2.7)

for any f ∈ C |α|(Rn+1).

Lemma 2.5. Let F ∈ C∞(Hn+1) and K be a compact subset of Bn+1. Then for any γ ∈

Isom+(Hn+1), we have

∣∣∂αF (γ−1m)
∣∣ ≤ Cα max|β|≤|α|maxm0∈K ∂βF (m0).

(1− |m|2)|α|
, α ∈ Nn+1

0 , m ∈ γK,

for some Cα > 0 depending only on F , K and α.
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Proof. By the higher chain formula proved in [26], we know that ∂αF (γ−1m) is a sum of

terms of the form

Cβ
∂|β|F (m)

∂xβ1

1 · · · ∂x
βn+1

n+1

∣∣∣∣∣
m=γ−1m0

·
s∏

k=1

∂|rk|(γ−1m)j

∂xrk1
1 · · · ∂x

rk(n+1)

n+1

∣∣∣∣∣
m=m0

, (2.8)

for some index β such that |β| ≤ |α| and for some s and indices rk’s satisfying
∑s

k=1 |rk| = |α|.

Observe that under this notation, the rk’s are not necessarily distinct. For m0 = γm ∈ γK,

the point γ−1m0 varies over a compact subset of Bn+1. Hence,∣∣∣∣∣ ∂|β|F (m)

∂xβ1

1 · · · ∂x
βn+1

n+1

∣∣∣∣∣
m=γ−1m0

≤ C ′β max
m∈K

∂βF (m), (2.9)

uniformly in γ. If γ−1(∞) =∞, then γ is a rotation and the product term in (2.8) can also

be bounded by a constant. Since, moreover, γK is contained in a compact subset of Hn+1

uniformly for any rotation γ, the statement of the lemma follows trivially, granted that the

constant Cα is chosen large enough.

So, from now on, we suppose that γ−1(∞) 6=∞. By (2.3) and Proposition 2.2, we have

ψ(γ−1m) = aγ−1 +
m− aγ−1

sinh2(1
2
d(0, γ−10))|m− aγ−1|2

,

for some orthogonal transformation ψ. It follows that

|∂rk(γ−1m)| ≤ Crk
sinh2(1

2
d(0, γ−10))|m− aγ−1 ||rk|+1

.

Moreover, by equation (2.4) of Proposition 2.3,

sinh2(
1

2
d(0, γ−10)) =

1

|m− aγ−1||γ−1m− aγ−1|
.

Therefore, combining the last two equations and Lemma 2.4, and using again the compact-

ness of K, we get

|∂rk(γ−1m)| ≤
Crk |γ−1m− aγ−1|
|m− aγ−1||rk|

=
Crk(1− |γ−1m|2)|rk|

|γ−1m− aγ−1 |rk−1(1− |m|2)|rk|
≤

C ′rk
(1− |m|2)|rk|

. (2.10)

The conclusion of the lemma follows then from (2.8), (2.9) and (2.10).
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2.1.2 Limit set

Let Γ ≤ Isom+(Hn+1). A point ξ ∈ Sn is said to be a limit point of Γ if there exists a

sequence {γj}∞j=1 ⊂ Γ such that γjx → ξ as j → ∞ for some x ∈ Hn+1. Notice that the

definition above is left unchanged if we replace the words “for some” by “for any”. Indeed, fix

x0 ∈ Hn+1 and suppose that γjx→ ξ. Since γj is an isometry, we have d(γjx, γjx0) = d(x, x0).

It follows from (2.2) that the Euclidean distance in Bn+1 between γjx and γjx0 tends to zero

as j →∞. In other words, we have γjx0 → ξ, as required.

The set ΛΓ := Γx0 (for any x0 ∈ Hn+1) of all limit points of Γ is called the limit set of

Γ. The complement of the limit set of Γ in Sn is called the set of discontinuity of Γ, and we

write ΩΓ := Sn − ΛΓ.

Proposition 2.6. If ξ ∈ ΩΓ, then ξ is not fixed by any element of Γ other than the identity.

Proof. This is a direct consequence of the fact that if ξ is the fixed point of some parabolic

or hyperbolic transformation, then it is the attractive fixed point of some transformation

γ (see the previous section), i.e., for any x ∈ Bn+1, we have γjx → ξ as j → ∞. Hence

ξ /∈ ΩΓ.

We will classify the discrete groups of hyperbolic isometries according to the “number of

points” of their limit set. If ΛΓ = Sn+1, then Γ is said to be of the first kind. Otherwise, the

discrete group Γ is said to be of the second kind. The following theorem imposes restrictions

on the possible types of limit sets for a group of the second kind.

Theorem 2.7. Let Γ ≤ Isom+(Hn+1) be a discrete group of the second kind. If ΛΓ is finite,

then it contains exactly zero, one or two points. Otherwise, ΛΓ is a perfect, nowhere dense

subset of Sn.

Proof. This statement is standard. It follows, for example, from Theorem 12.2.1 and Theo-

rem 12.2.5 in [34].
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This result motivates the further classification of the discrete groups of hyperbolic isome-

tries. The group Γ (resp. the hyperbolic manifold Γ\Hn+1) is said to be elementary if ΛΓ is

finite.

Theorem 2.7 shows us that the limit set of any non-elementary discrete group of the

second kind is a “Cantor type set”. It then makes sense to consider its Hausdorff dimension.

If we define

δΓ := dimHaus(ΛΓ),

then it follows directly from Theorem 2.7 and from the definitions above that

• δΓ = 0 if Γ is elementary;

• 0 < δΓ < n if Γ is non-elementary of the second kind;

• δΓ = n if Γ is of the first kind.

For any discrete subgroup Γ ≤ Isom+(Hn+1), one can consider the intersection of all

convex subsets (in the hyperbolic sense) of Bn+1 that contain ΛΓ. The resulting set will be

called the (hyperbolic) convex hull of ΛΓ and will be denoted by C(Γ). It can be shown that

C(Γ) ∩ Bn+1 is a closed, convex, Γ-invariant subset of Bn+1. Therefore, it makes sense to

consider its quotient by Γ,

C(X) := Γ\(C(Γ) ∩ Bn+1),

which will be referred to as the convex core of X = Γ\Hn+1.

2.1.3 Geometrically finite manifolds

In this subsection, we will introduce a class of hyperbolic manifolds that have a relatively

simple geometry. We will restrict ourselves to these manifolds in the rest of the text. Their

definition depends on the following concept.

Let Γ ≤ Isom+(Hn+1). A connected subset F of Bn+1 is said to be a fundamental domain

for Γ if the three following conditions are satisfied:

1. F is open in Bn+1;
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2. For all γ 6= γ′ ∈ Γ, we have γF ∩ γ′F = ∅;

3. Bn+1 =
⋃
γ∈Γ γF .

It follows from this definition that the action of a group on its fundamental domain gives us

a tessellation of Hn+1.

A discrete subgroup Γ of Isom+(Hn+1) (resp. a hyperbolic manifold Γ\Hn+1) is said to

be geometrically finite if Γ admits as a fundamental domain a finite-sided, convex geodesic

polyhedron F , every side S of which satisfies S = F ∩ γF for some γ ∈ Γ. Here, the term

convex is used in the hyperbolic sense, meaning that for each pair of distinct points x, y ∈ F ,

the geodesic segment joining x and y is contained in F .

With the additional assumption that the discrete group Γ is geometrically finite, we have

the following characterization of the “kind” of Γ according to the volume of its associated

hyperbolic manifold Γ\Hn+1.

Theorem 2.8. Let Γ be a discrete subgroup of Isom+(Hn+1). If Γ is geometrically finite,

then the volume of Γ\Hn+1 is finite if and only if Γ is of the first kind.

Proof. This result is classic and follows, for example, from Theorem 12.2.13 and Theorem

12.4.8 in [34].

If F is the fundamental domain of some geometrically finite group Γ, then the fixed points

of Γ which are in the closure of F , i.e., F ∩ ΛΓ, are all of the same type. More precisely,

they are all fixed by a parabolic transformation of Γ. (See, e.g., Theorem 12.4.4 in [34].)

Moreover, any given fundamental domain has only finitely many such points. (See, e.g.,

Theorem 12.4.1 in [34].) Every point of F ∩ ΛΓ will be called a cusp point of F and the set

F ∩ ΛΓ will be referred to as the set of cusp points of F or a set of inequivalent cusp points

for Γ.

If c is a cusp point, then there exists a horosphere based at c (i.e., an Euclidean sphere

in Bn+1 tangent at c) such that its interior B(c) has the property that

B(c) ∩ γB(c), γ ∈ Γ− Γc,
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where Γc is the stabilizer of c in Γ. If π : Bn+1 → Γ\Bn+1 is the quotient projection map,

then the set π(B(c)) is called a cusp of X := Γ\Hn+1. Moreover, the volume of π(B(c)) is

finite.

In the geometrically finite case, the convex core of a manifold M has the property that

it becomes compact if we “remove” the cusps.

Theorem 2.9. If X = Γ\Hn+1 is a geometrically finite hyperbolic manifold, then X has a

finite number (possibly zero) of cusps V1, . . . , Vk, satisfying Vi ∩ Vj = ∅ whenever i 6= j, such

that C(X)−
⋃k
i=1 Vi is compact.

Proof. See the proof of Theorem 12.4.5 in [34].

For more information about cusps and the geometry of geometrically finite hyperbolic

manifolds in general, the reader is encouraged to consult Chapter 12 in [34].

2.1.4 Convex co-compact manifolds

We conclude this section with the introduction of a class of manifolds which will be of

great interest for us in the subsequent chapters. These geometrically finite manifolds can be

characterized by the property that they don’t have any cusp, which simplifies their analysis.

Let Γ be a geometrically finite discrete subgroup of Isom+(Hn+1). The group Γ is said to

be convex co-compact if it has a finite-sided convex polyhedron F as a fundamental domain

with the property that F ∩ ΛΓ = ∅. In view of the previous section, this is equivalent to

requiring that F has no cusp point. A direct consequence of this definition is that Γ has

no parabolic elements. Moreover, in order for the quotient Γ\Hn+1 to be a Riemannian

manifold, we must add the condition that Γ has no elliptic element (i.e., Γ must be torsion

free). We call the resulting manifold X = Γ\Hn+1 a convex co-compact hyperbolic manifold.

Note that the name “convex co-compact” comes from the fact that in this case the convex

core of X is compact. Indeed, a direct consequence of the definition above is the absence of

cusps in X, which, by Theorem 2.9, implies that C(X) is compact.
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Classical Schottky groups

LetB1, B
′
1, B2, B

′
2, . . . , Bk, B

′
k be 2k Euclidean balls in Bn+1 with pairwise disjoint closures

and such that their boundary spheres intersect ∂Bn+1 perpendicularly. Moreover, let Tj be

the hyperbolic isometry mapping Bn+1 − Bj onto B′j. The set {T1, . . . , Tk} generates a free

discrete subgroup of hyperbolic isometries. (See, e.g., Theorem 12.2.17 in [34].) Furthermore,

Γ is convex co-compact. (This follows, for example, from Theorem 12.2.18 and Theorem

12.2.19 in [34], along with the results of the previous subsections.) Any discrete subgroup of

Isom+(Hn+1) that is constructed this way is said to be a classical Schottky group.

The manifolds generated by the classical Schottky groups represent a large class of ex-

amples of convex co-compact hyperbolic manifolds. (See Remark 2.5 below.) In dimension

2, they even exhaust all examples of such manifolds.

Theorem 2.10 (Button [9]). If X is a convex co-compact hyperbolic surface, then there

exists a classical Schottky group Γ such that X ∼= Γ\H2.

Proof. The theorem proved by Button in [9] is not stated in terms of hyperbolic surfaces.

For a proof of the version of the theorem stated here, see, e.g., Theorem 15.2 in [7].

Remark 2.1. Theorem 2.10 does not hold in higher dimensions. Indeed, it was shown by

Maskit [27] that a finitely generated Kleinian group is Schottky if and only if it is a free group

of hyperbolic elements. However, it is known that there exist examples of geometrically finite

(hence finitely generated, see, e.g., Theorem 12.4.9 in [34]) Kleinian groups of hyperbolic

elements which are not free.

Conformally compact manifolds

When Γ is a group of the second kind, the convex co-compact hyperbolic manifold Γ\Hn+1

is of infinite volume, and thence not compact. However, it can be compactified in the

following way. If F is a fundamental domain for Γ, then its Euclidean closure in Bn+1 gives

rise to a compact manifold with boundary when quotiented by Γ. Since F ∩ ΛΓ = ∅, the
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compactification of a convex co-compact hyperbolic manifold is given by

X := Γ\(Hn+1 ∪ ΩΓ).

with boundary ∂X, which can be identified with Γ\ΩΓ. Moreover, it can be shown that the

hyperbolic metric of a convex co-compact manifold is conformal to a metric which extends to

a smooth metric on X. To be more precise, there exists a non-negative function x ∈ C∞(X)

vanishing precisely on ∂X with the property that h = x2g is a C∞ Riemannian metric on X

and |dx|h = 1 on ∂X. (For the construction of such a function x in dimension 2, see §6.1 in

[7].) The function x is called a smooth boundary defining function and the boundary ∂X will

be referred to as the conformal boundary. In general, any manifold which can be compactified

as above through the use of a boundary defining function is said to be conformally compact.

2.2 Spectral theory of infinite-volume hyperbolic manifolds

In this section, we review important facts from the spectral theory of the Laplacian on

hyperbolic manifolds. For generalities about the Laplace operator on Riemannian manifolds,

the reader is urged to consult introductory texts on this topic, such as [11] or [5]. We begin,

in §2.2.1, with a short account of the spectral theory of finite volume hyperbolic manifolds.

The facts presented there are not required in order to understand any other part of this

work. However, they should help to put into context the problem discussed in this thesis.

Starting from the second subsection, we specialize to the case of interest, namely infinite-

volume hyperbolic manifolds. The reader already familiar with this theory should at least

have a look at §2.2.4, in which the Eisenstein series, our main object of study, are introduced.

Some important lemmas which will be used throughout the rest of the text will be presented

there.

2.2.1 Finite volume

When the quotient X = Γ\H is of finite volume, the spectrum of the Laplacian can take

two essentially distinct forms, depending on whether X is compact or not. We will then

consider the two different cases separately.
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Compact

When X is compact, the Laplacian has a pure discrete spectrum.

Theorem 2.11. Let X be a compact Riemannian manifold. Then the spectrum of the

Laplacian consists of a discrete sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · <∞.

Moreover, each eigenvalue λi has finite multiplicity and the sequence of eigenfunctions {ϕ0}∞i=1

corresponding to {λi}∞i=0 forms an orthogonal basis for L2(X).

The proof of this result is a classic argument involving the spectral theorem for compact

self-adjoint operators. It can be found in many introductory texts about the Laplacian on

Riemannian manifolds. See, e.g., [5]. For an alternative derivation of this result making use

of the heat kernel, see [11, Chapter VI] or [8, Chapter 7].

In the case where the geodesic flow on X is ergodic, i.e., when all subsets of the unit

tangent bundle of X which are invariant under the geodesic flow are either of measure

zero or one (with respect to the Liouville measure), the eigenfunctions are known to be

equidistributed.

Theorem 2.12 (Schnirelman [38], Colin de Verdière [12], Zelditch [45]). If the geodesic flow

on X is ergodic, then for any orthonormal sequence of eigenfunctions {ϕi}∞i=1 there exists a

subsequence
{
ϕij
}∞
j=1

of density 1, i.e.,

# {ij : j ≤ N}
N

−→ 1, as j −→∞,

such that for all a ∈ L2(M),

lim
j→∞

∫
X

a(m)|ϕj(m)|2dvX(m) =

∫
X

a(m)dvX(m),

where dvX is the normalized volume measure on X.

Remark 2.2. Since the work of Hopf [19], it is a well-known fact that the geodesic flow

is ergodic on compact manifolds of negative curvature. In particular, the geodesic flow is
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ergodic on compact hyperbolic manifolds. The equidistribution of Eisenstein series proved

by Guillarmou and Naud and stated in §1.1 (see (1.1)) can then be seen as an analogue of

the theorem above in the setting of convex co-compact hyperbolic manifolds.

Remark 2.3. The theorem of Schnirelman [38], Colin de Verdière [12] and Zelditch [45] was

originally proved in greater generality and actually holds for pseudodifferential operators.

Non-compact

When X is a non-compact manifold, the situation appears to be much more complicated.

For this reason, in what follows, we will restrict ourselves to the hyperbolic case. In other

words, X is now a hyperbolic quotient Γ\Hn+1 of finite volume with finitely-many cusps. In

this setting, the spectrum of the Laplacian is not strictly discrete anymore. We have the

following spectral theorem.

Theorem 2.13. If X is a non-compact finite volume hyperbolic quotient, then the Laplacian

has an absolutely continuous spectrum [n2/4,∞) with a possible set of embedded eigenvalues

and a discrete spectrum which consists of finitely many eigenvalues in the interval [0, n2/2).

This result goes back to the classic work of Selberg [37]. A proof of this theorem can

generally be found in introductory texts on this topic. See, for example, [20] (on surfaces

only). The reader who would be interested in a different proof which avoids the use of

Eisenstein series can consult [24].

The question about the existence and especially the quantity of embedded eigenvalues

has not been settled yet. It was shown that there exists hyperbolic surfaces (for example,

as shown by A. Selberg, the modular surface PSL(2,Z)\H2) with infinitely many embedded

eigenvalues. Moreover, it was conjectured by Roelcke and Selberg that for any Fuchsian

subgroup Γ ≤ PSL(2,R) of the first kind, the continuous spectrum of the Laplacian on

the surface Γ\H2 has infinitely many eigenvalues. (See, e.g., Chapter 8 in [41] for more

information about this conjecture.) On the other hand, Phillips and Sarnak [13, 32] put

forward the conjecture that the generic co-finite subroup Γ ≤ PSL(2,R) gives rise to a

surface on which the Laplacian has only finitely many embedded eigenvalues.
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The continuous spectrum [0, n2/2) is represented by some non-L2 functions defined as

follows. As was seen in the previous section, a co-finite hyperbolic quotient can have finitely

many cusps, which are associated with points on the boundary Rn ∪ {∞} of the hyperbolic

space. Let c1, c2, . . . , ck be a full set of inequivalent such cusp points. Moreover, for each

cusp, let Γj be the stabilizer of the cusp point cj. The Eisenstein series on X associated with

the cusp cj is defined by

EX(s;m, j) =
∑

γ∈Γj\Γ

(
Im(σ−1

j γm)
)s
, m ∈ Hn+1, s ∈ C, Re(s) > n,

where σj is the orientation-preserving isometry of the hyperbolic space which takes the point

at infinity to the cusp point cj, i.e., σj ∈ Isom+(Hn+1) and σj(∞) = cj. The Eisenstein series

EX(s;m, j) can be extended meromorphically in the variable s to the whole complex plane.

Moreover, this function is analytic on the line Re(x) = n
2
. (See, e.g., Chapter 6 of [20] for

a proof of these facts when X = Γ\H2.) One can check that with the definition above,

EX(s;m, j) are smooth and satisfies the usual eigenvalue equation

∆XEX(s;m, j) = s(n− s)EX(s;m, j).

With s := n
2

+ iλ and λ ∈ R, the coefficient s(n − s) on the right-hand side of the last

equation becomes n2

4
+ λ2 ∈ (n

2

4
,∞). Hence the functions EX(n/2 + iλ;m, j) parametrize

the absolutely continuous part of the spectrum.

When X is not compact, the picture concerning the equidistribution of eigenfunctions is

not as clear as the one provided by Theorem 2.12 in the compact case. An analogue of this

theorem (and, at the same time, of (1.1)) was shown by Luo and Sarnak [25] on the modular

surface X = PSL(2,Z)\H2. More precisely, they proved that for any a ∈ C∞0 (X),∫
X

a(m)|EX(n/2 + iλ;m)|2dvX ∼
48

π
log(λ)

∫
X

a(m)dvX(m),

as λ→∞, where EX(n/2+ iλ;m) is the Eisenstein series associated with the unique cusp of

X. For other facts about the behaviour at high-energy of the Laplace eigenfunctions in this
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setting and other related results, the reader is encouraged to consult §1.1 and the references

therein.

2.2.2 Spectral theorem

We now turn to the case of main interest for us, i.e., when X is a hyperbolic manifold of

infinite volume obtained as a quotient of Hn+1 by a discrete group of hyperbolic isometries.

Moreover, we will assume from now on that Γ is geometrically finite.

As with the co-finite case, the spectrum of the Laplacian has been completely described.

Theorem 2.14 (Lax and Phillips [22, 23]). If Γ is a geometrically finite, discrete subgroup

of Isom+(Hn+1), then the Laplacian on X = Γ\Hn+1 has an absolutely continuous spec-

trum [n2/4,∞) of infinite uniform multiplicity and a discrete spectrum consisting of finitely

many eigenvalues in the interval (0, n2/4). Moreover, the Laplacian has no eigenvalue in the

interval [n2/4,∞).

Remark 2.4. The absence of embedded eigenvalues in the co-infinite case is in sharp contrast

with the co-finite case, in which the Laplacian can have infinitely many eigenvalues embedded

in the continuous spectrum.

2.2.3 Poincaré series

Let us now introduce a function which will play a fundamental role in the proofs of the

new results described in this thesis. If Γ is a discrete group of hyperbolic isometries, then

the Poincaré series of Γ is the series

∑
γ∈Γ

e−sd(m,γm′),

for m,m′ ∈ Hn+1 and s ∈ C. It is clear from the definition above that this series does not

converge for all values of s ∈ C. Fix m,m′ ∈ Hn+1 and define

sΓ := inf

{
s ≥ 0 :

∑
γ∈Γ

e−sd(m,γm′) <∞

}
. (2.11)

The elements of Γ being isometries, a simple application of the triangle inequality to d(m, γm′)

and d(γm,m′) is sufficient to draw the conclusion that sΓ does not depend on the points
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m,m′ ∈ Hn+1. The resulting non-negative number sΓ is called the exponent of convergence

of Γ.

It is well-known since Poincaré [33] that sΓ ≤ n. Later, the work of Beardon [2, 3] (in

the case where n = 1) has brought to our knowledge interesting facts about the value of sΓ

for groups Γ of the second kind. Namely, in this case, we have 0 < sΓ < n, and sΓ >
n
2

if Γ

has parabolic elements. Moreover, in this work, Beardon drew a connection between the the

exponent of convergence of a Fuchsian group sΓ and the Hausdorff dimension of its limit set

δΓ. More precisely, he showed that sΓ ≥ δΓ. This relationship between sΓ and δΓ has later

been strengthened by Patterson and Sullivan. The part of their discoveries which will be of

importance for us is summarized in the following theorem.

Theorem 2.15 (Patterson [30, 31] and Sullivan [40]). Let Γ be a discrete subgroup of hy-

perbolic isometries. If Γ is geometrically finite, then

sΓ = δΓ.

Moreover, if δΓ > n
2
, then δΓ(1 − δΓ) is the lowest eigenvalue of the Laplacian ∆X on

X = Γ\Hn+1. On the other hand, if δΓ ≤ 1
2
, then the discrete spectrum of ∆X is empty.

Remark 2.5. In [2], Beardon also showed that for any ε > 0, one can construct a Schottky

group generated by two elements such that 0 < sΓ < ε. In view of the previous theorem,

this provides us with examples of non-elementary manifolds satisfying the assumptions of

the results presented in §1.2.

We conclude this discussion about the Poincaré series with the statement of a theorem

providing a bound for the lattice-point problem in hyperbolic space. This result will reveal

useful when proving Theorem 1.3.

Theorem 2.16 (Patterson [31]). For T ≥ 0, let

N(T ) := # {γ ∈ Γ : d(0, γ0) ≤ T} .
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If Γ is convex co-compact, then

N(T ) = O(eδΓT ).

2.2.4 Eisenstein series

Let X be a geometrically finite hyperbolic manifold. The resolvent of the Laplacian ∆X

on X, is defined by

RX(s) := (∆X − s(n− s))−1,

as a bounded operator on L2(X) for Re(s) > n
2
, when s(n − s) is not an eigenvalue of ∆X .

This family of operators extends to the complex plane in the following way.

Theorem 2.17 (Guillarmou and Mazzeo [15]). If X is a geometrically finite hyperbolic

manifold, then the family of operators RX(s) defined above extends meromorphically to a

family of continuous operators

RX(s) : C∞0 (X) −→ C∞(X), s ∈ C,

with poles of finite rank.

Remark 2.6. This theorem has been first proved for convex co-compact hyperbolic mani-

folds by Mazzeo and Melrose [29]. Their statement was originally in terms of asymptotically

hyperbolic manifolds, but appeared later to be erroneous [14].

From now on, we will make the additional assumption that X is convex co-compact.

Using the same normalization factor as in [16], the Eisenstein series on X associated with

ξ ∈ ∂X is defined for the boundary defining function x by

E(s;m, ξ) :=
2π

n
2 Γ(s− n

2
+ 1)

2−sΓ(s)
lim
m′→ξ

x(m′)−sRX(s;m,m′), s ∈ C, (2.12)

whereRX(s;m,m′) is the resolvent integral kernel and Γ is the usual gamma function. By [17,

29], for any m ∈ X, we have x−s(·)RX(s,m, ·) ∈ C∞(X) and similarly x−s(·)RX(s, ·,m) ∈
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C∞(X). It follows that E(s; ·, ·) ∈ C∞(X×∂X). Notice that the definition of the Eisenstein

series depends on the choice of the boundary defining function; see also Remark 2.8 below.

Here, we dwell briefly on the case whereX = Hn+1 since it will be of particular importance

in what follows. The reader is referred to [16, §2.2] and [17, §2] for more details. The resolvent

kernel is given by

RHn+1(s;m,m′) =
π−

n
2 2−2s−1Γ(s)

Γ(s− n
2

+ 1)
cosh−2s

(
d(m,m′)

2

)
× F

(
s, s− n− 1

2
, 2s− n+ 1; cosh−2

(
d(m,m′)

2

))
, (2.13)

where F is the usual hypergeometric function, i.e.,

F (a, b, c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

Define

x(m) := 2
1− |m|
1 + |m|

, m ∈ Bn+1. (2.14)

It is easy to check from (2.1) that x is a boundary defining function for Bn+1. Moreover,

using the expression of the hyperbolic distance (2.2), one can see that

x(m) = 2e−d(m,0). (2.15)

Combining (2.2), (2.12), (2.13) and (2.15), we obtain the following expression for the Eisen-

stein series on Hn+1 associated with ξ ∈ Sn:

E0(s;m, ξ) :=

(
1− |m|2

|m− ξ|2

)s
= esφξ(m), s ∈ C. (2.16)

where φξ(m) := log
(

1−|m|2
|m−ξ|2

)
will be called the Busemann function.

We now state a lemma proved by Guillarmou and Naud, which describes the action of

isometries on the Eisenstein series. Since the argument is simple and we will make extensive

use of this result later, we reproduce the proof below.
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Lemma 2.18 (Guillarmou and Naud [16]). Let γ ∈ Isom+(Hn+1), then for all m ∈ Bn+1

and ξ ∈ Sn,

E0(s; γm, γξ) = E0(s;m, ξ)|Dγ(ξ)|−s.

where Dmγ(ξ) is the limit as m′ →∞ of the differential of γ at the point m′.

Proof. We follow the argument of the proof of Lemma 4 in [16]. Let ξ ∈ Sn and m ∈ Bn+1.

Since γ is an isometry, for all m′ ∈ Bn+1, we have d(γm, γm′) = d(m,m′). It follows from

(2.2) that

|γm− γm′|
(1− |γm|2)(1− |γm′|2)

=
|m−m′|

(1− |m|2)(1− |m′|2)
,

for all m′ ∈ Bn+1. This equation can be rearranged as(
1− |γm|2

|γm− γm′|2

)
/

(
1− |m|2

|m−m′|2

)
=

1− |m′|2

1− |γm′|2
.

Hence,

E0(s; γm, γξ)

E0(s;m, ξ)
=

limm′→ξ

(
1−|γm|2
|γm−γm′|2

)s
limm′→ξ

(
1−|m|2
|m−m′|2

)s = lim
m′→ξ

(
1− |m′|2

1− |γm′|2

)−s
= |Dγ(ξ)|−s,

which is the statement of the lemma.

It is easily seen (e.g., passing to the half-space model and using the previous lemma)

that the Busemann function φξ(m) is constant on the horospheres tangent to ∂Hn+1 at ξ.

Moreover, the hyperbolic gradient of φξ, denoted by ∇̃mφξ(m), is of Euclidean norm 1 for

all m ∈ Hn+1, and it points in the direction of the unique geodesic joining m to ξ.

The following lemma gives an upper bound on the norm of the derivatives of the Eisenstein

series on Hn+1 when acted on by Γ. The derivatives appearing in the statement of the lemma

are with respect to the variable m. (See (2.7) for an explanation of the notation used.)
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Lemma 2.19. For ξ ∈ ΩΓ, γ ∈ Γ and m in a compact subset K of Bn+1,

|∂αE0(1; γm, ξ)| ≤ Ce−d(0,γ0), α ∈ Nn+1
0 ,

for some C > 0 depending only on K, ξ and α.

Proof. By Lemma 2.18, we have

|Dγ(γ−1ξ)|−1 = E0(1; γm, ξ)(E0(1;m, γ−1ξ))−1 =
1− |γm|2

|γm− ξ|2
|m− γ−1ξ|2

1− |m|2
.

Since ξ is not in the limit set of Γ, we can find ε > 0 uniform in γ, such that |γm − ξ|2 >

ε. Therefore, for any m ∈ K, we have |Dγ(γ−1ξ)|−1 ≤ C1(1 − |γm|2) for some C1 > 0

independent of γ. On the other hand, by Lemma 2.4, we find that 1 − |γm|2 ≤ C2e
−d(0,γ0)

for some C2 > 0 independent of γ. Hence

|Dγ(γ−1ξ)|−1 ≤ Ce−d(0,γ0),

for some constant C independent of γ. Since ∂αE0(1;m, γ−1ξ) is bounded uniformly with

respect to γ for m ∈ K, it follows from the last inequality that

|∂αE0(1; γm, ξ)| =
∣∣(∂αE0(1;m, γ−1ξ)

)
|Dγ(γ−1ξ)|−1

∣∣ ≤ Cαe
−d(0,γ0),

where Cα > 0 depends only on K, ξ and α.

Remark 2.7. Notice that when ξ ∈ F ∩ Sn, since Γ is convex co-compact the Euclidean

distance between γm and ξ can be bounded from below uniformly in ξ. Therefore, in this

case, the constant C appearing in the statement of Lemma 2.19 is independent of ξ.

The terminology Eisenstein “series” stems from the fact that the function defined by

(2.12) proves to lift, under precise circumstances, to an absolutely convergent series on Hn+1.

This is attested by the following lemma, which was proved by Guillarmou and Naud. Since

the implications of this result are fundamental to our purposes, we recall its proof below.

Lemma 2.20 (Guillarmou and Naud [16]). Let X := Γ\Hn+1 be a convex co-compact hyper-

bolic manifold with δΓ < n/2 and let πΓ := Bn+1 → Γ\Bn+1 be the quotient projection map.
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If ξ ∈ ΩΓ and m ∈ Hn+1, then for any complex number s such that Re(s) > δΓ, the series

∑
γ∈Γ

E0(s; γm, ξ) (2.17)

converges absolutely and is invariant under the action of Γ as a function of m ∈ Hn+1.

Moreover, we have

E(s; πΓ(m), πΓ(ξ)) =
∑
γ∈Γ

E0(s; γm, ξ),

where E(s; ·, ·) is defined as in (2.12) with a boundary defining function x so that, in a

neighbourhood of ξ, the non-negative function x(πΓ(·)) on Bn+1 is given by (2.14).

Proof. We follow the argument of the proof of Lemma 5 in [16]. Since ξ /∈ ΛΓ, there exists

εξ,m > 0 independent of γ, such that |γm − ξ| > εξ,m for all γ ∈ Γ. It follows from (2.14),

(2.15) and (2.16) that

|E0(s; γm, ξ)| ≤ Cs,m,ξe
−sd(γm,0),

for some positive constant Cs,m,ξ independent of γ. By (2.11) and Theorem 2.15, the series

(2.17) converges whenever Re(s) > δΓ.

For Re(s) > n
2
, the lift to Hn+1×Hn+1 of the resolvent kernel on Γ\Hn+1 is given by (see,

e.g., [29])

RX(s; πΓ(m), πΓ(m′)) =
∑
γ∈Γ

RHn+1(s; γm, ξ), (2.18)

whenever πΓ(m) 6= πΓ(m′). It follows again from (2.11) and Theorem 2.15, in conjunction

with the expression of RHn+1 given by (2.13), that this series converges absolutely for Re(s) >

δΓ. Moreover, it converges uniformly on compact subsets of the product Hn+1 ×Hn+1\diag.
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Since limm→ξ x(πΓ(m)) = limm→ξ 21−|m|
1+|m| , we have by (2.12), (2.14), (2.16) and (2.18), that

E(s; πΓ(m), πΓ(ξ)) =
2π

n
2 Γ(s− n

2
+ 1)

2−sΓ(s)

∑
γ∈Γ

lim
m′→ξ

(
RHn+1(s; γm,m′)

(
2

1− |m′|
1 + |m′|

)−s)

=
∑
γ∈Γ

E0(s; γm, ξ),

which concludes the proof.

Remark 2.8. If π∗γ(x) is not given by (2.14), one can see from (2.12) that the Eisenstein

series E(s;m, ξ) can be multiplied by the function η−s(ξ), where η(ξ) := 2 limm→ξ
1−|m|

(1+|m|)x̃(m)
,

in order for it to admit a lift to Hn+1 as an absolutely convergent series as in (2.17).
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CHAPTER 3
The moments at high-energy

This chapter is devoted to the determination of the moments of Eisenstein series at high-

energy. As explained in the introduction, this is essentially the content of Theorem 1.1,

which will be proved in §3.1. When p is even, the expression of the limit as λ → ∞ of

Ipp/2(λ, ξ) that we obtain depends on the partition lattice of a p/2-element set. In §3.2, we

explain how to calculate explicitly the coefficients Cθ’s appearing in fp(m, ξ) when p is even,

and we consider in detail the examples p = 6 and p = 8. In the last section, we derive

from Theorem 1.1 the high-energy limit of the moments of the real and imaginary parts of

Eisenstein series.

3.1 Proof of Theorem 1.1

We lift everything to the universal cover of X and we work in a fixed fundamental domain

for Γ. To be more precise, let F be a fundamental domain for Γ in Hn+1. When no confusion

is likely to arise, the restriction to F of the lift to Hn+1 of the function a will also be denoted

by a. Since we will be interested in the value of the integral over F , we can extend this

function to Hn+1 by defining it to be zero everywhere outside of F . Note that with this

notation, supp a is compact in Hn+1. The point ξ in the conformal boundary of X lifts to a

point, which will also be denoted by ξ, in ΩΓ ∩ F . Let x be the boundary-defining function

of X used to define E(sλ;m, ξ) and let x̃ be its lift to Hn+1. Let πΓ := Hn+1 → Γ\Hn+1

be the quotient projection map and define η(ξ) := 2 limm→ξ
1−|m|

(1+|m|)x̃(m)
, as in Remark 2.8, so

that we can apply Lemma 2.20 to write E(s; πΓ(m), πΓ(ξ)) in the form of a series:

E(sλ; πΓ(m), πΓ(ξ)) =
∑
γ∈Γ

E0(sλ; γm, ξ)η(ξ)sλ , m ∈ F .
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We then have

EkE
p−k

= η(ξ)
pn
2

+i(2k−p)λ
k∏
l=1

(∑
γl∈Γ

E0(sλ; γlm, ξ)

)
p∏

l=p−k+1

(∑
γl∈Γ

E0(sλ; γlm, ξ)

)

= η(ξ)
pn
2

+i(2k−p)λ
∑
γ∈S

(
p∏
l=1

E0(
n

2
; γlm, ξ)

)
eiλψγ(m),

where γ = (γ1, . . . , γp) ∈ S := Γ× · · · × Γ︸ ︷︷ ︸
p times

, and

ψγ(m) := log

(
E0(1; γ1m, ξ) · · ·E0(1; γkm, ξ)

E0(1; γk+1m, ξ) · · ·E0(1; γpm, ξ)

)
.

Let us now decompose Γ× · · · × Γ︸ ︷︷ ︸
p times

into two distinct parts:

S = S1 t S2,

where γ ∈ S1 if ψγ(m) = 0 for all m ∈ Hn+1, and γ ∈ S2 otherwise. The sets S1 and S2

will be described more explicitly in §3.1.2. With this notation, we can split Ipk(λ, ξ) into two

parts:

Ipk(λ, ξ) =

∫
X

a(m)η(ξ)
pn
2

+i(2k−p)λ
∑
γ∈S1

(
p∏
l=1

E0(
n

2
; γlm, ξ)

)
dv(m)

+ η(ξ)
pn
2

+i(2k−p)λ
∑
γ∈S2

Iγ(λ). (3.1)

where

Iγ(λ) :=

∫
X

a(m)

(
p∏
l=1

E0(
n

2
; γlm, ξ)

)
eiλψγ(m)dv(m).

Notice that |η(ξ)
pn
2

+i(2k−p)λ| = |η(ξ)| pn2 does not depend on λ.

We will prove the theorem in two steps. First, we show that the sum of oscillatory

integrals in (3.1) converges to 0 as λ → ∞. Then, we show that the first integral in the

expression above is equal to the right-hand side of (1.5).
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3.1.1 The sum over S2

The following lemma shows that each oscillatory integral Iγ(λ) in the series above vanishes

at high-energy.

Lemma 3.1. For all γ ∈ S2,

Iγ(λ) −→ 0,

as λ→∞.

Proof. Let ε > 0. In order to study the behaviour of Iγ(λ) for large values of λ, we need to

know more about the set of points at which the gradient of the phase function ψγ vanishes.

By Lemma 2.18,

ψγ(m) =
k∑
j=1

φξj(m)−
p−k∑
j=1

φξj+k(m) +
k∑
j=1

log |Dγj(ξj)| −
p−k∑
j=1

log |Dγj+k(ξj+k)|, (3.2)

where ξj := γ−1
j ξ ∈ Sn and φξ(m) is the Busemann function defined in §2.2.4. The only

terms depending on m on the right-hand side of this equation are the φξ(m)’s. It follows

that the gradient of the phase function essentially consists in the gradient of the Busemann

functions. Direct calculations show that the Euclidean gradient of φξ(m) is given by

∇mφξ(m) = −2

(
m

1− |m|2
+

m− ξ
|m− ξ|2

)
. (3.3)

By (3.2) and (3.3), the gradient of the phase function ψγ(m) satisfies

|∇mψγ(m)|2 =
Fγ(x1, . . . , xn+1)

Gγ(x1, . . . , xn+1)
,

where Fγ andGγ are polynomials in the n+1 variables x1, . . . , xn+1, wherem = (x1, . . . , xn+1) ∈

Rn+1. Moreover, Fγ is not the zero polynomial, since γ ∈ S2. It follows that the set of sta-

tionary points Kγ of ψγ(m) is contained in the zero set of Fγ. Therefore, Kγ is a subset of

an algebraic variety of codimension at least 1. In particular, the stationary points are all

contained in a closed set of hyperbolic measure 0.
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Let Ωδ
γ be the ε-neighbourhood of Kγ inside of supp a, i.e., Ωδ

γ :=
(
∪m∈KγBn+1(m, δ)

)
∩

supp a, where Bn+1(m, δ) is the Euclidean ball of radius δ centered at m. For δ > 0 small,

the integral Iγ(λ) can be split into two parts with the help of a smooth cut-off function

0 ≤ ρδγ(m) ≤ 1 which vanishes everywhere inside of Ω
δ/2
γ and is equal to 1 everywhere

outside of Ωδ
γ:

Iγ(λ) = Aδγ(λ) +Bδ
γ(λ),

where

Aδγ(λ) :=

∫
Hn+1

a(m)
(
1− ρδγ(m)

)( p∏
l=1

E0(
n

2
; γlm, ξ)

)
eiλψγ(m) 2n+1dm

(1− |m|2)n+1
,

and

Bδ
γ(λ) :=

∫
Hn+1

a(m)ρδγ(m)

(
p∏
l=1

E0(
n

2
; γlm, ξ)

)
eiλψγ(m) 2n+1dm

(1− |m|2)n+1
.

Since the integrand of Aδγ(λ) is bounded uniformly with respect to δ and λ, it is clear from

the definition of Kγ and from the remark following it that |Aδγ(λ)| can be made as small as

we want by taking δ small enough. So, let δ > 0 be small enough so that |Aδγ(λ)| < ε/2 for

all λ > 0.

On the other hand, applying integration by parts to the integral Bδ
γ(λ), we get

Bδ
γ(λ) =

1

iλ

∫
Hn+1

eiλψγ(m)∇∗
(
a(m)ρδγ(m)

(
p∏
l=1

E0(
n

2
; γlm, ξ)

)
∇mψγ(m)

|∇mψγ(m)|2

)
2n+1dm

(1− |m|2)n+1
,

where ∇∗ is the adjoint of ∇ with respect to the volume measure 2n+1dm
(1−|m|2)n+1 . It is then clear

from the expression above that |Bδ
γ(λ)| can be made less than ε/2 by taking λ large enough.

Therefore,

|Iγ(λ)| ≤ |Aδγ(λ)|+ |Bδ
γ(λ)| < ε,

when λ is large enough.
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We are now in a position to treat the sum of Iγ(λ). Using the fact that for any γl ∈ Γ,

|E(n/2, γlm, ξ)| ≤ Ce−
n
2
d(0,γl0),

for some constant C > 0, when m stays in a compact subset of Hn+1 (see Lemma 2.19 above),

it is easy to check that

∑
γ∈S2

|Iγ(λ)| ≤ C ′
p∏
l=1

∑
γl∈Γ

e−
n
2
d(0,γl0) <∞,

for some C ′ > 0. Notice that the last inequality follows from (2.11), Theorem 2.15 and the

hypothesis that δΓ < n
2
. Therefore, Lemma 3.1, along with the Dominated Convergence

Theorem, allows us to conclude that

∑
γ∈S2

Iγ(λ) −→ 0, (3.4)

as λ→∞.

3.1.2 The sum over S1

As a consequence of (3.4), the proof would be complete if we could show that the first

term in (3.1) corresponds to the limit (1.5). Let us first determine a more manageable

characterization of the sets S1 and S2.

Lemma 3.2. Let γ = (γ1, . . . , γk, γ
′
1, . . . , γ

′
p−k) ∈ S. Then γ ∈ S1 if and only if k = p

2
and

there exists a permutation σ of the set {1, . . . , k} such that γl = γ′σ(l) for all 1 ≤ l ≤ k.

Proof. Since the function E0(1; ·, ξ) is C∞ and never vanishes on Hn+1, we have ψγ(m) = 0

for all m ∈ Hn+1 if and only if

E0(1; γ1m, ξ) · · ·E0(1; γkm, ξ) = E0(1; γ′1m, ξ) · · ·E0(1; γ′p−km, ξ), m ∈ Hn+1. (3.5)

This equation is clearly satisfied for all m ∈ Hn+1 when k = p
2
, if for some permutation σ of

the set {1, . . . , k}, we have γl = γ′σ(l) for all 1 ≤ l ≤ k.
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Conversely, assuming that (3.5) holds, it follows from Lemma 2.18 and (2.16) that (3.5)

can be rearranged as

k∏
l=1

|m− γ−1
l ξ| =

|Dγ′1(γ′−1
1 ξ)| · · · |Dγ′p−k(γ′−1

p−kξ)|
|Dγ1(γ−1

1 ξ)| · · · |Dγk(γ−1
k ξ)|

k∏
l=1

|m− γ′−1
l ξ|. (3.6)

If for any l ∈ {1, . . . , k}, we let m → γ−1
l ξ in the equation above, then the left-hand side

vanishes. Since this equation should be satisfied for all m ∈ Hn+1, it follows that for at least

one j ∈ {1, . . . , p− k}, we have |m − γ′−1
j ξ| → 0 on the right-hand side. In other words,

for some l ∈ {1, . . . , k} and some j ∈ {1, . . . , p− k}, we have γ−1
l ξ = γ′−1

j ξ, or, equivalently,

γ′jγ
−1
l ξ = ξ. Since the point ξ ∈ ΩΓ, it follows from Proposition 2.6 that ξ can be fixed by

the element γ′jγ
−1
l of Γ if and only if this element is the identity. Therefore, γ′j = γl. It

follows that (3.6) can be simplified by cancelling |m− γ−1
l ξ| on both sides.

Applying this argument iteratively to all γ−1
l ξ on the left-hand side and to all γ′−1

j ξ on

the right-hand side of (3.6), we conclude that k = p − k and we deduce the existence of a

permutation σ of the set {1, . . . , k} such that γl = γ′σ(l) for all 1 ≤ l ≤ k.

An immediate consequence of Lemma 3.2 is that S1 = ∅ if k 6= p
2
. Therefore, the limit

(1.5) of Theorem 1.1 in the case where k 6= p
2

follows directly from (3.1), (3.4) and Lemma

3.2.

Now, it remains only to show (1.5) in the case where k = p
2
. Therefore, for the rest of

this section, we assume that p is even and that k = p
2
. For γ ∈ S1, we will also make use

of the notation γ = (γ1, . . . , γk, γ
′
1, . . . , γ

′
k) introduced in the statement of Lemma 3.2. Since

for all l, we have γl = γ′j for some j, it follows from (3.1) that the proof would be complete

if we show that

η(ξ)kn
∑
γ∈S1

(
k∏
l=1

E0(n; γlm, ξ)

)
= fp(m, ξ). (3.7)

Notice that we made used of the elementary fact that Et
0(s;m, ξ) = E0(ts;m, ξ) in the last

equation.
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Moreover, if γi = γj for some i 6= j, then E0(n; γim, ξ)E0(n; γjm, ξ) = E2
0(n; γim, ξ).

It follows that according to the “configuration” of (γ1, . . . , γk), the summands in the series

appearing in (3.7) take the form

k∏
l=1

E0(n; γlm, ξ) = E0(θ1n; γ1m, ξ) · · ·E0(θrn; γrm, ξ), (3.8)

for some integer partition θ := (θ1, · · · , θr) of k, i.e., (3.8) holds for some positive integers

θ1, θ2, . . . , θr satisfying θ1 ≥ θ2 ≥ · · · ≥ θr and

k = θ1 + · · ·+ θr.

Let Θl be the set of all integer partitions of k into exactly l parts, and define Θ :=
⋃k
l=1 Θl.

In order to prove (3.7), we will use the following approach. We will split S1 into all the

possible configuration types (θ1, . . . , θr) of (γ1, . . . , γk) and we will count “how many” of each

configuration we have.

Cases k = 1 and k = 2

Before treating the general case, let us first illustrate the idea through some examples

where k is small. For k = 1, there is only one permutation σ, that is, the identity. Therefore,

the right-hand side of (3.7) becomes

f2(m, ξ) = η(ξ)n
∑
γ∈S1

E0(n; γ1m, ξ) =
∑
γ1∈Γ

(η(ξ)nE0(n; γ1m, ξ)) = E(n;m, ξ). (3.9)

For k = 2, we have that γ ∈ S1 if and only if γ takes either the form (γ1, γ2, γ1, γ2) or the

form (γ1, γ2, γ2, γ1). Notice that summing either over all elements which are of the first form

or over all elements which are of the second form gives rise to the same series, namely

η(ξ)2n
∑

γ1,γ2∈Γ

E0(n; γ1m, ξ)E0(n; γ2m, ξ) =

(∑
γ1∈Γ

η(ξ)nE0(n; γ1m, ξ)

)2

= E2(n;m, ξ).

However, we cannot just add this series twice because, by doing so, the “diagonal elements”,

i.e., when γ1 = γ2 = γ′1 = γ′2, which belong to both configurations (γ1, γ2, γ1, γ2) and

(γ1, γ2, γ2, γ1), would be added twice. Let us for a moment consider the sum without the
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diagonal elements, i.e., let us assume that γ1 6= γ2. Then we have

∑
γ∈S1
γ1 6=γ2

E0(n; γ1m, ξ)E0(n; γ2m, ξ) =
∑

γ′1=γ1 6=γ2=γ′2

E0(n; γ1m, ξ)E0(n; γ2m, ξ)

+
∑

γ′2=γ1 6=γ2=γ′1

E0(n; γ1m, ξ)E0(n; γ2m, ξ)

= 2
∑
γ1 6=γ2

E0(n; γ1m, ξ)E0(n; γ2m, ξ).

As for the diagonal elements, the only possibility is γ1 = γ2 = γ′1 = γ′2. Hence

∑
γ∈S1
γ1=γ2

E0(n; γ1m, ξ)E0(n; γ2m, ξ) =
∑

γ1=γ2=γ′1=γ′2

E0(n; γ1m, ξ)E0(n; γ2m, ξ)

=
∑
γ1∈Γ

E0(2n; γ1m, ξ).

Therefore, by splitting the sum over γ1, γ2 as

∑
γ1,γ2∈Γ

E0(n; γ1m, ξ)E0(n; γ2m, ξ) =
∑
γ1 6=γ2

E0(n; γ1m, ξ)E0(n; γ2m, ξ)

+
∑
γ1∈Γ

E0(2n; γ1m, ξ), (3.10)

we get

∑
γ∈S1

E0(n; γ1m, ξ)E0(n; γ2m, ξ)

= 2
∑
γ1 6=γ2

E0(n; γ1m, ξ)E0(n; γ2m, ξ) +
∑
γ1∈Γ

E0(2n; γ1m, ξ) (3.11)

= 2

( ∑
γ1,γ2∈Γ

E0(n; γ1m, ξ)E0(n; γ2m, ξ)−
∑
γ1∈Γ

E0(2n; γ1m, ξ)

)
+
∑
γ1∈Γ

E0(2n; γ1m, ξ)

= 2
∑

γ1,γ2∈Γ

E0(n; γ1m, ξ)E0(n; γ2m, ξ)−
∑
γ1∈Γ

E0(2n; γ1m, ξ).

After multiplying the last equation by η(ξ)2n, we obtain

f4(m, ξ) = η(ξ)2n
∑
γ∈S1

E0(n; γ1m, ξ)E0(n; γ2m, ξ) = 2E2(n;m, ξ)− E(2n;m, ξ), (3.12)
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as required.

General Case

The general case is treated using the same idea. More precisely, we split the sum over

γ1, . . . , γk as a sum of “disjoint” series as in (3.10) and we count how many occurrences of

each of those series appear in the sum over S1, as is done in (3.11).

Before proceeding further, we need to introduce some notation. A collection π :=

{π1, . . . , πr} of subsets πj ⊂ k := {1, . . . , k} is said to be a (set) partition of k if ∪rj=1πj = k

and πi ∩ πj = ∅ whenever i 6= j. Moreover, we will assume (after renaming the indices,

if needed) that the blocks πj’s of π satisfy |π1| ≥ |π2| ≥ · · · ≥ |πr|. It is clear that to

each partition π corresponds a unique integer partition θ(π) = (θ1(π), · · · , θr(π)) satisfying

θj(π) = |πj| for all j = 1, . . . , r.

Let Lk be the set of all set partitions of k. We say that π(1) ≤ π(2) if and only if each

block of π(1) is a subset of a block of π(2). It is straightforward to check that with the binary

relation ≤, the set Lk becomes a lattice. Notice that the least element of Lk is the partition

0k := {{1} , . . . , {k}} and its greatest element is 1k := {{1, . . . , k}}. For more details about

set partitions and their relation to integer partitions, the reader is referred to [1].

Every configuration γ ∈ S1 can be associated with a unique set partition π(γ) ∈ Lk

(depending exclusively on γ1, . . . , γk) defined by the condition that two integers i, j ∈ k are

in the same block if and only if γi = γj. Define

∑
(π)

:=
∑

(π1:···:πr)

:=
∑

γ1,...,γk∈Γ
π(γ)=π

(
k∏
l=1

E0(n; γlm, ξ)

)
,

where the sum on the right-hand side is over all γ1, . . . , γk ∈ Γ for which some configuration

γ = (γ1, . . . , γk, ·, . . . , ·) is associated with the partition π. For example, if k = 7 and

π = {π1 := {1, 2, 3} , π2 := {4, 5, 6} , π3 := {7}}, then

∑
(π)

=
∑

(π1:π2:π3)

=
∑

γ1=γ2=γ3,
γ4=γ5=γ6,γ7
γ1 6=γ4 6=γ7 6=γ1

E0(3n; γ1m, ξ)E0(3n; γ4m, ξ)E0(n; γ7m, ξ).
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With this notation, we can now decompose the sum over the configurations (γ1, . . . , γk)

according to their underlying set partitions:

∑
γ1,...,γk∈Γ

(
k∏
l=1

E0(n; γlm, ξ)

)
=
∑
π∈Lk

∑
(π)

=
∑
(0k)

+

 ∑
0k<π<1k

∑
(π)

+
∑
(1k)

. (3.13)

Notice that this equation is equal to (3.10) when k = 2.

We obtain the sum over S1 by applying the method we used to derive (3.10) above, i.e., by

considering the sums over S1 restricted to the different configuration types (π) of (γ1, . . . , γk)

appearing on the right-hand side of (3.13). More precisely, we are interested in the sums

over the elements of S1 restricted to the elements for which the underlying set partition of

(γ1, . . . , γk) corresponds to some (π), i.e.,

∑
γ∈S1,
π(γ)=π

:=
∑
γ∈S1

π(γ)=π

(
k∏
j=1

E0(n; γjm, ξ)

)
.

Since the summands are independent of (γ′1, . . . , γ
′
k), it is easy to see that

∑
γ∈S1 ; π(γ)=π is

an integer multiple Aπ of
∑

(π). To be more precise, since for all i = 1, . . . , k, there exists

j = 1, . . . , k such that γi = γ′j, this multiplicative constant is equal to the number of ways

one can arrange the elements γ′j’s into the r different blocks π1, . . . , πr of the partition π,

i.e., Aπ = k!
θ1(π)!···θr(π)!

. Hence

∑
γ∈S1,
π(γ)=π

(
k∏
j=1

E0(n; γjm, ξ)

)
=

(
k

θ(π)

)∑
(π)

,

where
(
k
θ

)
:=
(

k
θ1,...,θr

)
= k!

θ1!...θr!
is the multinomial coefficient. It follows that

∑
γ∈S1

=
∑
π∈Lk

(
k

θ(π)

)∑
(π)

= k!
∑
(0k)

+

 ∑
0k<π<1k

(
k

θ(π)

)∑
(π)

+
∑
(1k)

. (3.14)

Notice that the right-hand side of (3.14) is equal to the right-hand side of (3.11) when k = 2.
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It remains now to show that the right-hand side of (3.14) is a sum of terms of the form∏l
r=1E(θrn;m, ξ). Let us write

∑
[π]

:=
∑

[π1:···:πr]

:=
∑

γ1,...,γk∈Γ
π(γ)≥π

(
k∏
l=1

E0(n; γlm, ξ)

)
,

where the sum on the right-hand side is over all γ1, . . . , γk ∈ Γ for which the partition

π(γ) associated with some configuration (γ1, . . . , γk, ·, . . . , ·) satisfies π(γ) ≥ π. In other

words, the sum is over all the elements γ1, . . . , γk ∈ Γ which can be split in the dif-

ferent blocks of π according to the following rule: two γj’s in a same block are equal,

but two γj’s in different block are not necessarily distinct. For example, if k = 7 and

π = {π1 := {1, 2, 3} , π2 := {4, 5, 6} , π3 := {7}}, then

∑
[π]

=
∑

[π1:π2:π3]

=
∑

γ1=γ2=γ3,
γ4=γ5=γ6,γ7

E3
0(n; γ1m, ξ)E

3
0(n; γ4m, ξ)E0(n; γ7m, ξ).

Notice that after multiplying the right-hand side by η(ξ)7n, it becomes

E(3n;m, ξ)E(3n;m, ξ)E(n;m, ξ).

More generally, one always has

η(ξ)kn
∑

[π1:···:πr]

= E(θ1(π)n;m, ξ) · · ·E(θr(π)n;m, ξ). (3.15)

Notice also that
∑

(1k) =
∑

[1k].

The idea is now to “convert” the series on the right-hand side of (3.14), which are of the

form
∑

(π), into series of the form
∑

[π]. This would allow us to take advantage of equation

(3.15) and then to obtain a sum of elements of the form
∏l

r=1E(θrn;m, ξ). Noticing that

the left-hand side of (3.13) is equal to
∑

[0k], we can apply the idea used to derive (3.13)

in order to decompose any sum of the form
∑

[π′] into sums of the form
∑

(π) according to

the different underlying partitions of the configurations (γ1, . . . , γk) appearing in
∑

[π′]. This
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gives us a direct generalization of (3.13):

∑
[π′]

=
∑
π′≤π

∑
(π)

=
∑
(π′)

+

 ∑
π′<π<1k

∑
(π)

+
∑
[1k]

.

The last equation can be reformulated as

∑
(π′)

=
∑
[π′]

−

∑
π′<π

∑
(π)

 . (3.16)

Replacing recursively each
∑

(π′) in (3.14) by the right-hand side of the previous equation, we

can transform the right-hand side of (3.14) into an expression which depends only on sums of

the form
∑

[π]. Moreover, since
∑

[π] depends only on the underlying integer partition of π,

i.e., θ(π), (see, e.g., (3.15)) we can define
∑

[θ] :=
∑

[π], where π ∈ Lk is such that θ = θ(π).

Therefore,

∑
γ∈S1

=
k∑
l=1

∑
θ∈Θl

Cθ∑
[θ]

 ,

for some integer constants Cθ depending only on the integer partition θ. These coefficients

are obtained from the following observation. From (3.16), one can see that the sum
∑

[θ]

appears in the expansion (after applying (3.16) recursively) of the sum
∑

(π′) if and only if

there exists π ∈ Lk with θ(π) = θ such that π′ ≤ π. Moreover, the constant in front of the

occurrence of
∑

[θ] appearing in the expansion of
∑

(π′) after applying (3.16) recursively s

times corresponds to (−1)s times the number of chains of set partitions of length s + 1 of

the form π(s) := π′ < π(s−1) < · · · < π(1) < π. It follows that

Cθ =
∑
π∈Lk,
θ(π)=θ

(
k

θ(π)

)
+

∑
π(s)<···<π(1)<π,

θ(π)=θ

(−1)s
(

k

θ(π(s))

)
. (3.17)

where, the second sum on the right-hand side is over all chains (if any) of partitions π(s) <

· · · < π(1) < π of any length s + 1 satisfying the only condition that θ(π) = θ. For an

explanation of how to calculate the coefficients Cθ explicitly, see §3.2.
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123

1|23 2|13 3|12

1|2|3

Figure 3–1: The lattice of partitions of a set of 3 elements.

Finally, combining the obtained expression with (3.15), we get

fp(m, ξ) := η(ξ)kn
∑
γ∈S1

(
k∏
j=1

E0(n; γjm, ξ)

)
=

k∑
l=1

∑
θ∈Θl

(
Cθ

l∏
r=1

E(θrn;m, ξ)

)
. (3.18)

This concludes the proof of Theorem 1.1.

3.2 Calculation of the Cθ’s

Theorem 1.1 provides a full description of the limits of the moments of the Eisenstein

series at high-energy. However, when p is even, the limits fp given by (3.17) and (3.18) are

not completely explicit in that they depend on a knowledge of the partition lattice (Lp/2,≤).

An algorithm can be used (at least, when p is small) to determine all the chains of (Lp/2,≤).

In this section, we illustrate through the examples of p = 6 and p = 8 how one can compute

fp and the coefficients Cθ from a complete description of (Lp/2,≤).

3.2.1 Example: p = 6

A full description of the required set partition lattice (L3,≤) is given in Figure 3–1. The

partitions can be classified according to their underlying integer partition: (1, 1, 1), (2, 1)

and (3). Therefore, by (3.18),

f6(m) = C(1,1,1)E
3(n;m, ξ) + C(2,1)E(2n;m, ξ)E(n;m, ξ) + C(3)E(3n;m, ξ).
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The coefficients Cθ are obtained as follows. For each θ, we list all the chains of the form

π(s) ≤ · · · ≤ π(1) ≤ π. For θ = (1 : 1 : 1), there is only one chain, namely, 1|2|3. Hence

C(1,1,1) =

(
3

(1, 1, 1)

)
= 6.

For θ = (2 : 1), there are three chains of length 1, namely, 1|23, 2|13 and 3|12. Moreover,

there are three chains of length 2: 1|2|3 ≤ 1|23, 1|2|3 ≤ 2|13 and 1|2|3 ≤ 3|12. Hence

C(2,1) = 3

(
3

(2, 1)

)
− 3

(
3

(1, 1, 1)

)
= −9.

For θ = (3), there is one chain of length 1, i.e., 123, three chains of length 3, namely, the

ones of the form a|b|c ≤ a|bc ≤ abc, and four chains of length 2. The chains of length 2 are of

two different types. Three are of the form a|bc ≤ abc and the remaining one is 1|2|3 ≤ 123.

Hence

C(3) =

(
3

(3)

)
−
(

3

(
3

(2, 1)

)
+

(
3

(1, 1, 1)

))
+ 3

(
3

(1, 1, 1)

)
= 4.

Therefore,

f6(m) = 6E3(n;m, ξ)− 9E(2n;m, ξ)E(n;m, ξ) + 4E(3n;m, ξ). (3.19)

3.2.2 Example: p = 8

This case is treated using the same approach as above. According to (3.18) and the

representation of the lattice (L4,≤) given in Figure 3–2, we have

f8(m) = C(1,1,1,1)E
4(n;m, ξ) + C(2,1,1)E(2n;m, ξ)E2(n;m, ξ) + C(2,2)E

2(2n;m, ξ)

+ C(3,1)E(3n;m, ξ)E(n;m, ξ) + C(4)E(4n;m, ξ).

For each θ, we have the following chains:

• θ = (1, 1, 1, 1):

∗ There is one chain of length 1, namely, 1|2|3|4.

• θ = (2, 1, 1):
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1234

1|234 2|134 3|124 4|123 12|34 13|24 14|23

1|2|34 1|3|24 1|4|23 2|3|14 2|4|13 3|4|12

1|2|3|4

Figure 3–2: The lattice of partitions of a set of 4 elements.

∗ There are six chains of length 1, i.e., the ones of the form a|b|cd;

∗ There are six chains of length 2, i.e., the ones of the form a|b|c|d ≤ a|b|cd.

• θ = (2, 2):

∗ There are three chains of length 1, i.e, the ones of the form ab|cd;

∗ There are six chains of length 2 of the form a|b|cd ≤ ab|cd;

∗ There are three chains of length 2 of the form a|b|c|d ≤ ab|cd;

∗ There are six chains of length 3 of the form a|b|c|d ≤ a|b|cd ≤ ab|cd.

• θ = (3, 1):

∗ There are four chains of length 1, i.e, the ones of the form a|bcd;

∗ There are twelve chains of length 2 of the form a|b|cd ≤ a|bcd;

∗ There are four chains of length 2 of the form a|b|c|d ≤ a|bcd;

∗ There are twelve chains of length 3 of the form a|b|c|d ≤ a|b|cd ≤ a|bcd.

• θ = (4):

∗ There is one chain of length 1, namely, 1234;

∗ There are four chains of length 2 of the form a|bcd ≤ abcd;

∗ There are three chains of length 2 of the form ab|cd ≤ abcd;
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∗ There are six chains of length 2 of the form a|b|cd ≤ abcd;

∗ There is one chain of length 2 of the form a|b|c|d ≤ abcd;

∗ There are twelve chains of length 3 of the form a|b|cd ≤ a|bcd ≤ abcd;

∗ There are six chains of length 3 of the form a|b|cd ≤ ab|cd ≤ abcd;

∗ There are four chains of length 3 of the form a|b|c|d ≤ a|bcd ≤ abcd;

∗ There are three chains of length 3 of the form a|b|c|d ≤ ab|cd ≤ abcd;

∗ There are six chains of length 3 of the form a|b|c|d ≤ a|b|cd ≤ abcd;

∗ There are twelve chains of length 4 of the form a|b|c|d ≤ a|b|cd ≤ a|bcd ≤ abcd;

∗ There are six chains of length 4 of the form a|b|c|d ≤ a|b|cd ≤ ab|cd ≤ abcd.

Therefore, the coefficients Cθ are given by

C(1,1,1,1) =

(
4

(1, 1, 1, 1)

)
= 24,

C(2,1,1) = 6

(
4

(2, 1, 1)

)
− 6

(
4

(1, 1, 1, 1)

)
= −72,

C(2,2) = 3

(
4

(2, 2)

)
−
(

6

(
4

(2, 1, 1)

)
+ 3

(
4

(1, 1, 1, 1)

))
+ 6

(
4

(1, 1, 1, 1)

)
= 18,

C(3,1) = 4

(
4

(3, 1)

)
−
(

12

(
4

(2, 1, 1)

)
+ 4

(
4

(1, 1, 1, 1)

))
+ 12

(
4

(1, 1, 1, 1)

)
= 64,

C(4) =

(
4

(4)

)
−
(

4

(
4

(3, 1)

)
+ 3

(
4

(2, 2)

)
+ 6

(
4

(2, 1, 1)

)
+

(
4

(1, 1, 1, 1)

))
+

(
18

(
4

(2, 1, 1)

)
+ 13

(
4

(1, 1, 1, 1)

))
− 18

(
4

(1, 1, 1, 1)

)
= −33.

Hence

f8(m) = 24E4(n;m, ξ)− 72E(2n;m, ξ)E2(n;m, ξ) + 18E2(2n;m, ξ)

+ 64E(3n;m, ξ)E(n;m, ξ)− 33E(4n;m, ξ). (3.20)
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3.2.3 The hyperbolic space X = Hn+1

When Γ is the trivial group, the manifold X is the (n+ 1)-dimensional hyperbolic space

and

E(sλ;m, ξ) = E0(sλ;m, ξ) = E0(
n

2
;m, ξ)Eiλ

0 (1;m, ξ).

For k = p
2
, the integral Ipk(λ, ξ) then takes the following simple form:

Ipp/2(λ, ξ) =

∫
X

a(m)E(
p

2
n;m, ξ)dv(m),

which is independent of λ. In other words, in the special case where X = Hn+1,

Ipp/2(λ, ξ) −→
∫
X

a(m)E(
p

2
n;m, ξ)dv(m) as λ −→∞. (3.21)

Notice that the coefficients of the terms appearing in the expressions of f2, f4, f6 and f8 given

above (see (3.9), (3.12), (3.19) and (3.20) respectively) all sum up to 1. This observation

is in concordance with the fact that when X = Hn+1, all the terms are the same and the

coefficient of this term should be equal to 1 according to (3.21).

3.3 The moments of Fλ

We conclude this chapter with a calculation of the moments of the real and imaginary

parts of the Eisenstein series, when seen as random variables over a compact subset of X,

as explained in §1.1. In the case where p is odd, since the limits as λ→∞ of Ipk(λ, ξ) given

by Theorem 1.1 are 0 for all 0 ≤ k ≤ p, it is clear from the binomial expansion of F p
λ (see

(1.3) above), that

E(F p
λ (·, ξ)) −→ 0,

as λ → ∞. These limits appeared already in the statement of Corollary 1.4, in which a

remainder is also provided.

On the other hand, when p is even, the integral Ipp/2(λ, ξ), which corresponds to the

“middle-term” in the binomial expansion of F p
λ does not vanish. The high-energy limit
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of E(F p
λ (·, ξ)) is then equal to the limit as λ → ∞ of Ipp/2(λ, ξ) times the coefficient of

|E(sλ;m, ξ)|p in the expansion of F p
λ , namely

1

2p

(
p
p
2

)
.

Therefore, we have the following corollary as a direct consequence of Theorem 1.1.

Corollary 3.3. Under the hypothesis of Theorem 1.1, if p is even, then

E(F p
λ (·, ξ)) −→

∫
X

a(m)

(
1

2p

(
p
p
2

)
fp(m, ξ)

)
dvX(m),

as λ→∞, where fp is given by (3.18). In particular,

1

22

(
2

1

)
f2(m, ξ) =

1

2
E(n;m, ξ),

1

24

(
4

2

)
f4(m, ξ) =

3

4
E2(n;m, ξ)− 3

8
E(2n;m, ξ),

1

26

(
6

3

)
f6(m, ξ) =

15

8
E3(n;m, ξ)− 45

16
E(2n;m, ξ)E(n;m, ξ) +

5

4
E(3n;m, ξ),

and

1

28

(
8

4

)
f8(m, ξ) =

105

16
E4(n;m, ξ)− 315

16
E(2n;m, ξ)E2(n;m, ξ) +

315

64
E2(2n;m, ξ)

+
35

2
E(3n;m, ξ)E(n;m, ξ)− 1155

128
E(4n;m, ξ).
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CHAPTER 4
An error term for the odd-order moments

With this chapter we begin our investigation of the rate of vanishing of the odd-order

moments of Eisenstein series at high-energy. For now, we restrict ourselves to the case

where p is odd. In §4.1, we give the proof of Theorem 1.2, which provides a polynomial

remainder term for the limit as λ → ∞ of integrals of the form Ipk(λ, ξ). The following

section is concerned with improving this error term in the special case where X is a surface

and p = 3. Moreover, the approach introduced there will be exploited again when dealing

with the fourth moment in the next chapter.

4.1 Proof of Theorem 1.2

As in the proof of Theorem 1.1, we work in a fixed fundamental domain F of Γ in Hn+1.

In view of (3.2), the p-fold γ = (γ1, . . . , γp) ∈ Γ× · · · × Γ︸ ︷︷ ︸
p times

will also be seen as a point in the

p-times Cartesian product of Sn = ∂Bn+1 as follows:

γ = (γ−1
1 ξ, . . . , γ−1

p ξ) ∈ Sp := Sn × · · · × Sn︸ ︷︷ ︸
p times

.

Unless explicitly stated otherwise, the remaining non-standard notation used in this section

is the one introduced in §3.1.

Outline of the proof

It is clear from the proof of Theorem 1.1 that it is sufficient to show that

∑
γ∈S

Iγ(λ) = O(λ−
1
d ),

as λ→∞. The proof then amounts to showing that for every fixed γ, the oscillatory integral

Iγ(λ) is Oγ(λ−
1
d ) as λ→∞, and that the implied constant (depending on γ) decreases fast

enough as d(0, γl0) → ∞, l = 1, . . . , p, so that they sum up to a finite limit over all the
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elements of the group. More precisely, we proceed in three steps. We will first show that the

points at which the phase is stationary correspond to the zero set of a polynomial in several

variables that can be contained in a compact hypersurface of Bn+1, the n-dimensional volume

of which will be bounded uniformly with respect to γ. By controlling the rate at which the

gradient of the phase vanishes on this hypersurface, we will then be able to apply tools from

the theory of oscillatory integrals to obtain the desired bound on Iγ. Finally, using classic

results of Patterson and Sullivan about the exponent of convergence of the Poincaré series

and the Hausdorff dimension of the limit set, we will conclude that these bounds sum up to

a finite limit over the elements of the group.

4.1.1 Finding the zero set of ∇mψγ

By the proof of Lemma 3.1, we already know that the stationary points of ψγ are contained

in an algebraic variety of codimension at least 1. However, this information alone appears to

be insufficient to control the growth of |Iγ(λ)| with respect to γ. We will then try to acquire

a more precise knowledge of this zero set by analyzing the phase function in more detail.

By (3.2) and (3.3), we have

∇mψγ(m) =
k∑
j=1

∇mφξj(m)−
p−k∑
j=1

∇mφξj+k(m) =
−2Gγ(m)

(1− |m|2)
∏p

l=1 |m− ξl|2
, (4.1)

where

Gγ(m) := (2k − p)m
p∏
l=1

|m− ξl|2

+ (1− |m|2)

[
k∑
j=1

(m− ξj)
∏
l 6=j

|m− ξl|2 −
p∑

j=k+1

(m− ξj)
∏
l 6=j

|m− ξl|2
]
. (4.2)

Since supp a is compact, the denominator of the fraction on the right-hand side of (4.1)

is bounded from below uniformly for γ ∈ Sp and m ∈ supp a. Therefore, ∇mφξ vanishes

exactly where Gγ does. For m = (x1, . . . , xn+1) ∈ F , it is easy to see that each of the

n + 1 components of the vector-valued function Gγ(m) is a polynomial in the variables

x1, . . . , xn+1 with coefficients depending continuously on γ. One then has that |Gγ(m)|2 is
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a real polynomial of degree d ≤ 4p + 2, in the single variable x := x1, with coefficients

Aj(γ, y)’s that are continuous functions of the variables γ ∈ Sp and y := (x2, . . . , xn+1):

|Gγ(m)|2 = Ad(γ, y)xd + Ad−1(γ, y)xd−1 + · · ·+ A1(γ, y)x+ A0(γ, y). (4.3)

In particular, if k = 0 or p, one can check from (4.2) that the leading term of the polynomial

corresponding to the x-component cancels. Thus d ≤ 4p in these two cases.

As noted in §2.2.4, the hyperbolic gradient of the Busemann function, i.e., ∇̃mφξ(m) :=

1−|m|2
2
∇φξ(m), corresponds to the Euclidean unit vector pointing in the direction of the

geodesic joining m ∈ Bn+1 to ξ. It follows that the vector ∇̃mφξ(m) tends to a unit vector

perpendicular to Sn whenever m → η ∈ Sn. The definition of ∇̃mφξ(m) can then be

extended continuously to Bn+1. Notice that ∇̃mφξ(m) can be defined in Rn+1−Bn+1 as well

by (3.3). Moreover, one can see from (3.3) that, by doing so, we obtain a function ∇̃mφξ(m)

continuous everywhere in Rn+1 and such that |∇̃mφξ(m)| = 1 on Sn.

Therefore, ∇̃mψγ(m) tends to the sum of p parallel unit vectors whenever Rn+1 3 m →

η ∈ Sn. Since p is odd, the modulus of the resulting vector must be a positive integer. It

follows that for any η ∈ Sn, there exists a neighbourhood of η in Rn+1 such that ∇̃mψγ(m) > 0

in this neighbourhood. Since the denominator of the right-hand side of (4.1) does not vanish

outside of Sn, it is impossible for maxj |Aj(γ, y)| to be equal to zero for any γ ∈ Sp and

y ∈ Rn. Indeed, this would imply that ∇̃mψγ(m) vanishes on the line parametrized by

x 7→ (x, y) with (x, y) ∈ Rn+1 − Sn+1, which would be a contradiction to the observation

above. The continuous function maxj=1,...,d |Aj(γ, y)| : Sp × Rn → R can then be minimized

on the compact subset Sp ×Bn
0 (1) by some positive constant Cmin.

For 1 ≤ s ≤ d, define Gs(γ, y, x) :=
∑s

k=0Ak(γ, y)xk. By the Fundamental Theorem of

Algebra, this polynomial can be factored as follows when (γ, y) /∈ A−1
s {0}:

Gs(γ, y, x) = As(γ, y)
s∑

k=0

Ak(γ, y)

As(γ, y)
xk = As(γ, y) (x− C1,s(γ, y)) · · · (x− Cs,s(γ, y)) , (4.4)
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where Cj,s(γ, y)’s are continuous functions of the coefficients Ak−1(γ, y)/As(γ, y) for k =

1, . . . , s. Let (γ0, y0) ∈ A−1
s {0} and let zj(γ0, y0), j = 1, . . . , s, denote the zeros of the poly-

nomial Gs(γ0, y0, x). By Theorem 1 in [44], for all ε > 0, there exists a number δε(γ0, y0) > 0

such that for a fixed j, either |Cj,s(γ, y) − zj(γ0, y0)| < ε or |Cj,s(γ, y)| > 1/ε whenever

|Ak(γ, y)−Ak(γ0, y0)| < δε(γ0, y0) for all k = 1, . . . , s. In other words, when (γ, y)→ (γ0, y0),

either Cj,s(γ, y) converges to some complex numbers, in which case the function Cj,s(γ, y)

can be continually extended at (γ0, y0), or Cj,s(γ, y) diverges to infinity. Extend Cj,s(γ, y)

continually where possible and let Fj,s denote the subset of A−1
s {0}∩ (Sp×Bn

0 (1)) for which

Cj,s(γ, y) diverges to infinity as (γ, y) approaches it.

The proof of Theorem 1 in [44] also shows that δε(γ, y) depends continuously on the

coefficients Ak(γ, y) and, consequently, also on γ and y. Therefore, if we set ε := 1 in

the statement, we can minimize the continuous function δ1(γ, y) over the compact subset

A−1
s {0} ∩ (Sp × Bn

0 (1)) of Rp+n by some positive real number δmin. Since δmin > 0 and the

functions Ak(γ, y) are uniformly continuous on Sp×Bn
0 (1), the existence of a uniform δ0 > 0

such that |Cj(γ, y)| > 1 whenever dist ((γ, y), Fj,s) < δ0 is guaranteed. Therefore,

Ss,γ :=

(
s⋃
j=1

{
(Re(Cj(γ, y)), y) : y ∈ Bn

0 (1), dist ((γ, y), Fj,s) ≥ δ0

})
∩ supp a

contains all zeros of (x, y) 7→ Gs(γ, y, x) in supp a. Moreover, it is constructed as the

intersection with supp a of a finite union of submanifolds of Rn+1 of codimension at least 1.

If m0 = (x0, y0) is a zero of ∇mψγ, then by (4.1), m0 must also be a zero of |Gγ(m)|2.

It follows from the definition of Gs(γ, y, x) that Gs0(γ, y0, x0) = 0 for some 0 < s0 ≤ d with

As0(γ, y0) 6= 0. Therefore, the construction above shows that Sγ :=
⋃d
s=1 Ss,γ contains all

zeros of the map (m0) 7→ ∇mψγ(m0) in supp a. Moreover, Sγ corresponds to the intersection

with supp a of a finite union of submanifolds of Rn+1 of codimension at least 1.

4.1.2 Bounding Iγ

Now that we know where the stationary points of the phase are localized, we can apply

the method of stationary phase to Iγ. More precisely, we will integrate by parts outside of
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the submanifold Sγ that we found in the previous subsection. This will be done through the

use of an appropriate smooth cutoff function.

Let Ωλ
γ :=

{
m ∈ Bn+1 : dist(m,Sγ) <

1
λ

}
. Since Sγ is a compact subset of Bn+1, there

exists a function ρλγ(m) ∈ C∞(Bn+1) satisfying the following properties:

(i) 0 ≤ ρλγ(m) ≤ 1;

(ii) ρλγ(m) = 0 if m ∈ Ω2λ
γ ;

(iii) ρλγ(m) = 1 if m /∈ Ωλ
γ ;

(iv)
∣∣∂jρλγ(m)

∣∣ ≤ Cλχ
Ωλγ\Ω2λ

γ
(m) for a constant C independent of γ and λ.

Indeed, define

ηλ(m) :=

 λn+1 exp
(

1
|2λm|2−1

)
, if |m| < 1

2λ
;

0 if |m| ≥ 1
2λ
.

This function is (up to a multiplicative constant) the standard mollifier for the ball B(0, 1
2λ

).

It is well-known that the function ρλγ := 1−ηλ ∗χΩ2λ
γ

is C∞(Bn+1) and satisfies properties (i),

(ii) and (iii) above. As regards property (iv), since ρλγ is C∞(Bn+1) and constant everywhere

but in Ωλ
γ\Ω2λ

γ , its derivatives can be bounded by a constant Cγ,λ times the characteristic

function χ
Ωλγ\Ω2λ

γ
. Then, it remains only to show that this constant can be written in the

form Cγ,λ = Cλ. Since χΩ2λ
γ

has compact support in Rn+1, we have

∣∣∂jρλγ(m)
∣∣ =

∣∣∣∣∫
Bn+1

∂jηλ(m− w)χΩ2λ
γ

(w)dw

∣∣∣∣
=

∣∣∣∣∣
∫
Bn+1∩{|m−w|< 1

2λ}
λn+1 8λ2(mj − wj)

(|2λ(m− w)|2 − 1)2
exp

(
1

|2λ(m− w)|2 − 1

)
χΩ2λ

γ
(w)dw

∣∣∣∣∣
≤ λ

∫
Bn+1∩{|m−w|< 1

2}
8|mj − wj|

(|2(m− w)|2 − 1)2
exp

(
1

|2(m− w)|2 − 1

)
dw ≤ Cλ,

for all m ∈ supp a. Hence
∣∣∂jρλγ(m)

∣∣ ≤ Cλχ
Ωλγ\Ω2λ

γ
(m).

We can now split the integrand of Iγ(λ) into two parts: one being defined in a neighbour-

hood of the zero set of ∇mψγ and one having its support away from Sγ. In order to simplify
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the notation, we will write Eγ
0 (m) as a shorthand for E0(1; γm, ξ). Let

Iγ(λ) = Aγ(λ) +Bγ(λ),

where

Aγ(λ) :=

∫
Hn+1

a(m)
(

1− ρλβγ (m)
)( p∏

l=1

Eγl
0 (m)

)n
2

eiλψγ(m) 2n+1dm

(1− |m|2)n+1
,

and

Bγ(λ) :=

∫
Hn+1

a(m)ρλ
β

γ (m)

(
p∏
l=1

Eγl
0 (m)

)n
2

eiλψγ(m) 2n+1dm

(1− |m|2)n+1
,

for some positive β ∈ R that will be fixed later and which will only depend on p and n.

Keeping in mind that we will eventually sum the integrals over the elements of the group

Γ, we have to pay particular attention to the way Iγ depends on γ ∈ Sp. A factor which

may affect strongly the value of Iγ is the “quantity” of stationary points. For this reason, it

is important to make sure that the effect of γ on the “size” of the set Sγ can be controlled

in a favorable way.

Let Voln(Ω) denote the n-dimensional Riemannian volume of a measurable subset Ω ⊂ Rn

(with the convention that Voln(Ω) = 0 if dim(Ω) 6= n). Notice that with this notation

Volk(Sγ) is finite for all 0 ≤ k ≤ n. Indeed, this is a direct consequence of our construction

of Sγ as the intersection of a finite union of submanifolds of Rn+1 with the compact subset

supp a.

By Weyl’s results in [43], for any γ, the volume of the tubular region Ωλ
γ is equal to a

polynomial of degree ñ ≤ n + 1 in the variable λ−1, where the coefficients of the terms of

degree less than the codimension of Sγ are 0 and the other coefficients are integral invariants

of the finitely-many submanifolds forming Sγ. In particular, the coefficient of the term of

degree 0 is always zero, and the first non-zero term is the volume of the corresponding sub-

manifold. Moreover, since (Re(Cj,s(γ, y)), y) is a continuous function of γ, those coefficients

vary continuously with respect to γ ∈ Sp. We can then bound them from above by some
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positive constants Ck independent of γ, k = 1, . . . , ñ. Hence, there exists a positive constant

C independent of γ such that

Voln+1(Ωλ
γ) ≤

ñ∑
k=1

Ckλ
−k ≤ Cλ−1, (4.5)

when λ is large.

Lemma 2.19 and Property (i) of the function ρλγ that we constructed above allow us to

bound the integrand of Aγ(λ). We can then use the estimate on the size of the support of

this integrand given by (4.5) to obtain an upper bound for the integral. Namely,

|Aγ(λ)| ≤ Cλ−β
p∏
l=1

e−
n
2
d(0,γl0), (4.6)

when λ is large.

On the other hand, since the zero set of ∇mψγ is outside of the support of ρλ
β

γ for all λ,

we may apply integration by parts to Bγ(λ):

Bγ(λ) =
1

iλ

∫
Hn+1

eiλψγ(m)∇∗
a(m)ρλ

β

γ (m)

(
p∏
l=1

Eγl
0 (m)

)n
2 ∇mψγ(m)

|∇mψγ(m)|2

 2n+1dm

(1− |m|2)n+1
,

where ∇∗ is the adjoint of ∇ with respect to the volume measure 2n+1dm
(1−|m|2)n+1 . We would like

to have a bound of the form (4.6) for Bγ(λ), so that it can be summed over all the elements

of the group. In order to achieve this, we will consider Bγ(λ) as an iterated integral in

Cartesian coordinates, first integrating with respect to the variable x. This inside integral

will be shown to be bounded by a function independent of y. The compactness of supp a

will then allow us to neglect integration with respect to y and to conclude that this function

is essentially the bound that we are looking for. Let

Jγ(y, λ) :=

∫ ∞
−∞

eiλψγ(m)∇∗
a(m)ρλ

β

γ (m)

(
p∏
l=1

Eγl
0 (m)

)n
2 ∇mψγ(m)

|∇mψγ(m)|2

 2n+1dx

(1− |m|2)n+1
.
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Since the integrand of Bγ is C∞c (Bn+1), Fubini’s theorem applies to give

Bγ(λ) =
1

iλ

∫
Bn0 (r)

Jγ(y, λ)dy, (4.7)

where 0 < r < 1 is large enough so that supp a ⊂ Bn+1
0 (r).

Since |∇mψγ(m)| may become very small when m is close to Sγ, we need to control

the rate at which |∇mψγ(m)| decreases as m approaches a zero of ∇mψγ. We claim that

for any (γ, y), there exist 1 ≤ sγ,y ≤ d, a set of not necessarily distinct complex numbers

Zy,γ :=
{
Z1, . . . , Zsγ,y

}
, and a constant C > 0 depending only on p, supp a and Cmin, such

that

|∇mψγ(m)|2 ≥ C |x− Z1| · · ·
∣∣x− Zsγ,y ∣∣ , (4.8)

whenever m ∈ supp a. Moreover, Zj are such that (Zj, y) is a zero of ∇mψγ. Note that the

set Zy,γ is possibly empty. If this is the case, then the inequality above is understood as

|∇mψγ(m)|2 ≥ C. Note also that the complex numbers Zj’s depend on (y, γ). The reference

to (y, γ) was omitted in the name of the variable only to alleviate the notation.

We proceed now with the proof of this claim. Fix (γ, y) and let s ≤ d be the largest

integer such that As(γ, y) in (4.3) is different from 0. If s = 0, then Zy,γ is empty and

the claim follows trivially by setting C := Cmin. Otherwise, the function |Gγ(m)|2 can be

expressed as As(γ, y) times a polynomial in the variable x with coefficients (Aj/As)(γ, y)

and roots Cj,s(γ, y) as in (4.4). It is well-known that those coefficients can be expressed as

symmetric polynomials of the roots Cj,s’s in the following way:

Ak−1

As
= (−1)kes−k+1(C1,s, . . . , Cs,s),

where ei(X1, . . . , Xn) =
∑

1≤j1<j2<···<ji≤nXj1 · · ·Xji . It follows that∣∣∣∣Ak−1

As

∣∣∣∣ ≤ Kp max
1≤j1<j2<···<js−k+1≤s

|Cj1,s| · · · |Cjs−k+1,s|,
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for some positive constant Kp depending only on p. Assuming temporarily that |As| < Cmin

Kp

and combining this with that last inequality gives

Kp <
Cmin

|As|
≤ max

k

∣∣∣∣Ak−1

As

∣∣∣∣ ≤ Kp|Cj1,s| · · · |Cjl,s| (4.9)

for some l and 1 ≤ j1 < · · · < jl ≤ s. Since, by the inequalities above |Cj1,s| · · · |Cjl,s| > 1,

there exists a non-empty subset of 1 ≤ j1 < · · · < jl ≤ s for which |Cji,s| ≥ 1. By relabelling

this subset C1,s, . . . , Cl,s if needed (the new l being less than or equal to the former one), we

can then assume that (4.9) holds with |Ci,s| ≥ 1. Define

αi :=
log

(|As||C1,s|···|Cl,s|)
1
l

|Ci,s|

log |As|
.

A direct consequence of this definition is that α1 + · · ·+ αl = 1 and

|As|αi|Ci,s| = (|As||C1,s| · · · |Cl,s|)
1
l ≥ (Cmin/Kp)

1/l. (4.10)

The last inequality follows from (4.9). Hence, for m ∈ supp a,

|As|αi |Ci,s − x| ≥ |As|αi |Ci,s|(1−
|x|
|Ci,s|

) ≥
(
rlCmin

Kp

) 1
l

(4.11)

where r := dist(∂Bn+1, supp a) > 0 since supp a is compact. The last inequality follows from

(4.10) and the fact that |Ci,s| ≥ 1. By (4.4) and (4.11),

|Gγ(m)|2 = (|As|α1 |x− C1,s|) · · · (|As|αl |x− Cl,s|) |x− Cl+1,s| · · · |x− Cs,s|

≥ rlCmin

Kp

|x− Cl+1,s| · · · |x− Cs,s| ≥
rdCmin

Kp

|x− Cl+1,s| · · · |x− Cs,s| .

The claim (4.8) follows then from (4.1) by setting sγ,y := s− l, Zj := Cl+j,s and C := rdCmin

2p−2Kp
.

Notice that since |r| < 1, our additional assumption that |As| < Cmin

Kp
can automatically

be removed. Indeed, if |As| ≥ Cmin

Kp
, the statement of the claim is trivially satisfied with C

defined as above and Zj := Cj,s(γ0, y).
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We can now use the claim that was just proven to find an appropriate upper bound for

Jγ(y, λ). If Zy,γ is empty, the integrand of Jγ(y, λ) can be bounded from above by a constant

independent of x. Therefore, in this case, applying Lemma 2.19, we obtain

|Jγ(y, λ)| ≤ C

p∏
l=1

e−
n
2
d(0,γl0). (4.12)

On the other hand, if Zy,γ is not empty, the term ∇mψγ(m)

|∇mψγ(m)|2 and its derivatives, which appear

in the integrand of Jγ(y, λ), are not bounded from above uniformly with respect to x. We

have∣∣∣∣∣
n+1∑
j=1

∂j
∂jψγ

|∇mψγ|2

∣∣∣∣∣ ≤
n+1∑
j=1

[ ∣∣∂2
jψγ
∣∣

|∇mψγ|2
+ 2

n+1∑
k=1

|∂jψγ| |∂kψγ| |∂j∂kψγ|
|∇mψγ|4

]
≤ C ′

|∇mψγ|2
, (4.13)

for some constant C ′ depending only on n,p, ξ and supp a. Notice that the last inequality

follows from direct calculations via (3.3) and (4.1) of the derivatives of ∇mψγ. The claim

above can now be applied to bound |∇mψγ| from below by (4.8). By doing this, (4.13) can

be bounded further by an expression which only depends on x. Namely,∣∣∣∣∣
n+1∑
j=1

∂j
∂jψγ

|∇mψγ|2

∣∣∣∣∣ ≤ C(
(x− Z1) · · ·

(
x− Zsγ,y

)) , (4.14)

where C is a positive constant depending only on n,p, ξ and supp a. Therefore,

|Jγ(y, λ)| ≤

(
p∏
l=1

e−
n
2
d(0,γl0)

)[(
C1λ

β + C2

)
Jγ, 1

2
(y, λ) + C3Jγ,1(y, λ)

]
, (4.15)

where

Jγ,α(y, λ) :=

∫ 1

−1

(1− χ
Ω2λβ
γ

(x, y))dx∣∣(x− Z1) · · ·
(
x− Zsγ,y

)∣∣α .
Note that we have made use of Lemma 2.19 and properties (ii) and (iv) of the cut-off function

ρλγ .

The integrals Jγ,α(y, λ)’s appearing on the right-hand side of (4.15) are tractable enough

to derive from them the bound of the form (4.6) that we are looking for. By relabelling and

taking a subset if needed, we may assume that −1 ≤ Re(Z1) ≤ · · · ≤ Re(Zsγ ,y) ≤ 1. If
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Re(Zi) 6= Re(Zi+1) let qi be the midpoint of the interval [Re(Zi),Re(Zi+1)]. Notice that

1∣∣(x− Z1) · · ·
(
x− Zsγ,y

)∣∣ ≤


2d

|x−Re(Z1)|d , if x ∈ (−1, Z1]

2d

|x−Re(Zi)|d , if x ∈ [qi−1, qi], i = 2, . . . , sγ,y − 1,

2d

|x−Re(Zsγ,y )|d . if x ∈ [Zsγ,y , 1).

Therefore, assuming that d is maximal, i.e., either 4p + 2 or 4p depending on whether

0 < k < p, or k = 0, p respectively, there exist K,K ′ > 0 such that

Jγ,α(y, λ)

2d
≤
∫ Re(Z1)

−1

(1− χ
Ω2λβ
γ

(x, y))dx

|x− Re(Z1)|αd
+

sγ,y−1∑
i=2

∫ qi

qi−1

(1− χ
Ω2λβ
γ

(x, y))dx

|x− Re(Zi)|αd

+

∫ 1

Re(Zsγ,y )

(1− χ
Ω2λβ
γ

(x, y))dx

|x− Re(Zsγ,y)|αd

≤ K

∫ 2

(2λ)−β

dx

xαd
= K ′λβ(αd−1),

for large values of λ. Using this estimate in conjunction with (4.7), (4.12) and (4.15), we

can now bound the integral of Bγ(λ):

|Bγ(λ)| ≤ C ′
(
λ−1 + λβ(d/2)−1 + λβ(d/2−1)−1 + λβ(d−1)−1

) p∏
l=1

e−
n
2
d(0,γl0), (4.16)

when λ is large.

It remains only to fix the undetermined positive constant β appearing in the expressions

of the upper bounds of Aγ(λ) and Bγ(λ). We want to choose it so that the exponent of λ be

the optimal one in view of (4.6) and (4.16). One can check that this happens when β := 1
d
.

Using the fact that d− 1 ≥ d
2
≥ d

2
− 1 ≥ 0 when d ≥ 2, we derive the bound

|Bγ(λ)| ≤ Cλ−
1
d

p∏
l=1

e−
n
2
d(0,γl0)

from (4.16). Combining it with (4.6), we obtain

|Iγ(λ)| ≤ Cλ−
1
d

p∏
l=1

e−
n
2
d(0,γl0), (4.17)

when λ is large.
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4.1.3 Summing over the elements of Γ

By (2.11) and Theorem 2.15, since δΓ <
n
2
, we have

∑
γ1,...,γp∈Γ

p∏
l=1

e−
n
2
d(0,γl0) =

p∏
l=1

(∑
γl∈Γ

e−
n
2
d(0,γl0)

)
<∞ (4.18)

It follows from (4.17) that

∑
γ1,...,γp∈Γ

Iγ(λ) = O(λ−
1
d ),

as λ→∞.

The remainder O(λ−
1
d ) depends a priori on the point ξ ∈ ∂X. By looking carefully at

the proof, one notices that the dependence on ξ comes only from the constant introduced

by the application of Lemma 2.19. However, as noted in Remark 2.7, since ξ lifts on the

universal cover to a point in F ∩ Sn, this constant can be chosen to be independent of ξ.

Therefore, the implied constant of O(λ−
1
d ) depends only on k, p and the function a. This

concludes the proof of Theorem 1.2.

4.2 An improved error term for the third moment on surfaces

In this section and in the next chapter, we restrict our attention to convex co-compact

quotients of the hyperbolic plane, i.e., to X = Γ\Hn+1, when n = 1. Working with surfaces

will allow us to perform explicit calculations that would not be possible (or at least, would

not be as easy to carry out) on manifolds of higher dimensions.

As can be seen in the proof of Theorem 1.2, the rate of vanishing of the odd-order

moments depends considerably on the degree of the zeros of ∇mψγ(m); see (4.1) in §4. In

the general case, when no specific information about the roots of ∇mψγ(m) is available, one

has to deal with the worst-case scenario, i.e., when the zeros are of maximal degree, which is

what we do in the proof of Theorem 1.2. On the other hand, if one has an explicit expression

for ∇mψγ(m) at their disposal, then it might be easier to study the roots. One can thus

expect a significantly faster convergence.
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Here we take advantage of the simplicity of the expression of ψγ when n = 1 and p = 3

to obtain the same limit as in Theorem 1.2, but with a faster rate of convergence. Note that

Theorem 1.2 gives a bound of the order of λ−
1
14 in this case.

Proposition 4.1. Let X = Γ\H2 be a convex co-compact hyperbolic surface with δΓ < 1/2.

Let a ∈ C∞0 (X) and E(s; ·, ξ) be an Eisenstein series with ξ ∈ ∂X. Then for any 0 ≤ k ≤ 3,∫
X

a(m) (E(sλ;m, ξ))
k
(
E(sλ;m, ξ)

)3−k
dvX(m) = O(λ−1)

as λ→∞. Moreover, the implied constant in the bound O(λ−1) is independent of ξ ∈ ∂X.

The proof of this proposition follows the general scheme introduced in the previous sec-

tion. More precisely, after writing the integral of the third power of the Eisenstein series as

a series over the elements of the group Γ × Γ × Γ, we find the points at which the phases

of the integrals Iγ in the summation are stationary. We then apply the usual stationary

phase method in a way that allows us to control the growth of the integrals Iγ as γ varies

over S3. Finally, we apply an argument similar to the one described in §4.1.3 to sum those

integrals over Γ × Γ × Γ. However, the proof of Proposition 4.1 differs essentially from the

one described in §4 in the way the integrals Iγ are bounded. Instead of analyzing the zero

set of ∇mψγ(m) for all the possible configurations γ = (γ−1
1 ξ, γ−1

2 ξ, γ−1
3 ξ) ∈ S3, we fix a

point ξ0 := (ξ1, ξ2, ξ3) ∈ S3 for which the calculations involving ∇mψξ0 are convenient, and

we reduce the treatment of the configurations γ to the one of ξ0 via an isometry of H2. Such

a simplified approach is possible only because the specific nature of the problem provides

us with a precise knowledge of the stationary points. The proof of Theorem 1.3 in the next

chapter is also partly based on this idea.

With this procedure in mind, the question of controlling the growth of Iγ with respect to

γ ∈ S3 boils down to understanding how the integral Iγ is affected when the three boundary

points γ−1
1 ξ, γ−1

2 ξ and γ−1
3 ξ associated with γ ∈ S3 are displaced by an isometry γ0 of H2.

The results about Möbius transformations stated and proved in §2.1.1 will reveal useful to

this end.
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4.2.1 Proof of Proposition 4.1

Since we will work on surfaces from now on, we will use the notation D := B2 ⊂ C for

the Poincaré unit disk. Otherwise, we keep using the notation introduced previously. We

treat three cases separately, depending on the value of k.

Case 1: k = 3

We suppose first that γ−1
1 ξ, γ−1

2 ξ and γ−1
3 ξ are all different. In order to apply tools from

the theory of oscillatory integrals, we need first to know for which points m ∈ D the equation

∇mψγ(m) = 0 holds, where ∇m is the Euclidean gradient. Since the hyperbolic gradient ∇̃m

satisfies ∇̃m = 1−|m|2
2
∇m, we have ∇mψ(m) = 0 in D if and only if ∇̃mψ(m) = 0. Moreover,

as noted in §2.2.4, the hyperbolic gradient of the Busemann function φξ(m) is the unit vector

pointing in the direction of the geodesic from m to ξ. Since ∇̃mψγ =
∑3

k=1 ∇̃φγ−1
1 ξ, finding

the zeros of ∇̃mψγ(m) boils down to finding the points m in D for which the sum of the three

unit vectors pointing respectively in the directions of the geodesics joining m to γ−1
1 ξ, γ−1

2 ξ

and γ−1
3 ξ vanishes.

As noted at the beginning of the section, the proof consists mainly in applying isometries

of H2 to reduce the calculations of ∇̃mψγ to the one of ∇̃mψξ0 for a carefully chosen point

ξ0 = (ξ1, ξ2, ξ3) ∈ S3. Define ξ1 := i, ξ2 :=
√

3
2
− 1

2
i and ξ3 := −

√
3

2
− 1

2
i. The three points form

an equilateral ideal triangle. By geometric considerations, it is easy to see that the sum of

the three unit vectors ∇̃mφξ1(m), ∇̃φξ2(m) and ∇̃φξ3(m) vanishes if and only if m = 0. Let

γ ∈ PSL2(R) be such that ξj = γγ−1
j ξ (after a reordering of ξj if needed).

We are interested in the limit as λ→∞ of
∑

γ1,γ2,γ3∈Γ Iγ(λ). Since the hyperbolic measure

is invariant under Isom+(Hn+1) (this follows, e.g., from Lemma 2.4 and the usual formula

for change of variables under integration), we have

Iγ(λ) =

∫
D
a(γ−1m)

(
3∏
l=1

Eγlγ
−1

0 (m)

)n
2

eiλψγ(γ−1m) 4dm

(1− |m|2)2
.

Notice that the integrand is zero outside of γ(supp a).
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We want to apply the method of stationary phase to the integral Iγ. Keeping in mind

that this procedure involves integrating by parts outside of the stationary points, we have

first to determine precisely the zero set of the gradient of the phase function. By Lemma

2.18,

ψγ(γ
−1m) =

3∑
j=1

[
φγ−1

j ξ(γ
−1m) + log |Dγj(γ−1

j ξ)|
]

=
3∑
j=1

[
φγγ−1

j ξ(m) + log |Dγ−1(γγ−1
j ξ)|+ log |Dγj(γ−1

j ξ)|
]
.

The only terms depending on m on the right-hand side of this equation are the functions

φγγ−1
j ξ(m) = φξj(m). Hence

∇mψγ(γ
−1m) =

3∑
j=1

∇mφξj(m). (4.19)

A general formula for the gradient of the Busemann function was already calculated in (3.3).

We can use this expression with ξ1, ξ2 and ξ3 to write ∇mψγ(γ
−1m) via (4.19) as a rational

function in terms of m and its complex conjugate m:

∇mψγ(γ
−1m) = ∇mφξ1(m) +∇mφξ2(m) +∇mφξ3(m) =

6(m2 − im)

(|m|2 − 1)(m3 − i)
, (4.20)

where m denotes the complex conjugate of m. This expression alone is sufficient to conclude

that the unique stationary point of Iγ is 0. However, keeping in mind that our goal is to

carry out an integration by parts around this point, we need an appropriate lower bound for

∇mψγ(γ
−1m). Since m−im/m

m3−i is bounded away from 0 when m ∈ D, we have

∣∣∇mψγ(γ
−1m)

∣∣ ≥ C|m|
1− |m|2

, (4.21)

for some constant C > 0.

Knowing that the phase of the integral above is stationary only at 0, we can apply the

method of stationary phase by decomposing Iγ as the sum of two integrals, one inside and

one outside of a neighbourhood of the origin. Define Sγ := {m = 0} and let ρλγ ∈ C∞(D)
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and Ωλ
γ be as in §4.1.2. Let β be a positive real number that will be fixed later and define

Aγ(λ) :=

∫
D
(1− ρλβγ (m))a(γ−1m)

(
3∏
l=1

Eγlγ
−1

0 (m)

) 1
2

eiλψγ(γ−1m) 4dm

(1− |m|2)2

and

Bγ(λ) :=

∫
D
ρλ

β

γ (m)a(γ−1m)

(
3∏
l=1

Eγlγ
−1

0 (m)

) 1
2

eiλψγ(γ−1m) 4dm

(1− |m|2)2
.

Notice that Iγ(λ) = Aγ(λ) + Bγ(λ). By the Weyl’s tube formula [43] and the discussion

leading to (4.5) above, the Euclidean volume of Ωλ
γ satisfies Voln+1(Ωλ

γ) ≤ Cλ−2, for some

constant C > 0 independent of γ. Therefore, we deduce from Lemma 2.19 that

|Aγ(λ)| ≤ Cλ−2β

3∏
l=1

e−
1
2
d(0,γl0), (4.22)

when λ is large.

On the other hand, the respective upper bound for the integral Bγ(λ) will be obtained

through multiple integrations by parts. By (4.21), the zero set of ∇mψγ(γ
−1m) is contained

outside of the support of ργ. We may then apply integration by parts j times to Bγ(λ):

Bγ(λ) =
4

(iλ)j

∫
D
∇∗
(
∇mψγ(γ

−1m)

|∇mψγ(γ−1m)|2
∇∗
(
· · · ∇∗

(
∇mψγ(γ

−1m)

|∇mψγ(γ−1m)|2

×∇∗
(
ρλ

β

γ (m)uγ(m)
∇mψγ(γ

−1m)

|∇mψγ(γ−1m)|2

))
· · ·

))
eiλψγ(γ−1m)dm, (4.23)

where ∇∗ is the adjoint of ∇ with respect to the measure dm, and

uγ(m) :=
a(γ−1m)

(1− |m|2)2

(
3∏
l=1

Eγlγ
−1

0 (m)

) 1
2

.

By Lemma 2.19 and Lemma 2.5, we have

|∂αuγ(m)| ≤ C
∏3

l=1 e
− 1

2
d(0,γl0)

(1− |m|2)2+|α| , (4.24)
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for m ∈ γ(supp a). On the other hand, since |∇mψγ(γ
−1m)|2 is a homogeneous polynomial

of degree 2 in ∂iψγ(γ
−1m), a straightforward inductive argument gives us that

∂α
∂jψγ(γ

−1m)

|∇mψγ(γ−1m)|2
=
Q

(2|α|+1−|α|−1)

2|α|+1+|α|−1
(∂1ψγ(γ

−1m), ∂2ψγ(γ
−1m))

|∇mψγ(γ−1m)|2|α|+1
, (4.25)

where Q
(k)
l (X1, X2) is a homogeneous polynomial of degree k with coefficients being integer

multiples of products of higher partial derivatives of ψγ(γ
−1m) such that the total order for

each term is l; see (4.13) as an example for the case where |α| = 1. Applying Lemma 2.5

to these coefficients, i.e., with F (m) := ∂jψγ(m), and the trivial inequality |∂jψγ(γ−1m)| ≤

|∇mψγ(γ
−1m)| to the “variables”Xj = ∂jψγ(γ

−1m) of the polynomialQ
(2|α|+1−|α|−1)

2|α|+1+|α|−1
in (4.25),

we get∣∣∣∣∣∂α ∂jψγ(γ
−1m)

|∇mψγ(γ−1m)|2

∣∣∣∣∣ ≤ Cα

(1− |m|2)2|α| |∇mψγ(γ−1m)||α|+1
≤ Cα
|m||α|+1(1− |m|2)|α|−1

, (4.26)

for some Cα > 0, when m ∈ γ(supp a). The last inequality is a direct consequence of (4.21).

Now, we want a bound of the form (4.22) for Bγ(λ). Proceeding as in the proof of

Theorem 1.2, we can combine (4.21), (4.24) and (4.26) to get

|Bγ(λ)| ≤ C
∏3

l=1 e
− 1

2
d(0,γl0)

λj

j∑
k=0

∫
γ(supp a)∩{|m|>(2λ)−β}

λkβ

|m|2j−k
dm

(1− |m|2)2
, (4.27)

for some C > 0. If d(0, γ0) is large enough so that γ(supp a) ∩ B2
0(1

2
) = ∅, then |m| > 1

2
in

the integrand and

|Bγ(λ)| ≤ C ′jλj(β−1)

3∏
l=1

e−
1
2
d(0,γl0)

∫
γ(supp a)

dm

(1− |m|2)2

= C ′jλj(β−1)

3∏
l=1

e−
1
2
d(0,γl0)VolH2(supp a), (4.28)

for some C ′ > 0, when λ is large. Otherwise, the compact set γ(supp a) is contained in some

ball of radius R < 1 independent of γ, and (4.27) becomes

|Bγ(λ)| ≤ C ′′
∏3

l=1 e
− 1

2
d(0,γl0)

λj

j∑
k=0

∫
B2

0(R)∩{|m|>(2λ)−β}
λkβ

|m|2j−k
dm,
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for some C ′′ > 0. Passing to polar coordinates (with dm = rdθdr and r := |m|) in the last

integral, we obtain

|Bγ(λ)| ≤ C̃
∏3

l=1 e
− 1

2
d(0,γl0)

λj

j∑
k=0

∫ R

(2λ)−β

λkβ

r2j−k−1
dr ≤ C̃ ′

3∏
l=1

e−
1
2
d(0,γl0)λ(2j−2)β−j, (4.29)

for some C̃, C̃ ′ > 0, when λ is large enough.

Fix β := 1
2

and let j be large enough so that j(β−1) > 1. From (4.22), (4.28) and (4.29),

we get the upper bound

|Iγ(λ)| ≤ C
3∏
l=1

e−
1
2
d(0,γl0)λ−1

when λ is large enough.

Now, consider the case where γ−1
1 ξ, γ−1

2 ξ and γ−1
3 ξ are not all different. If γ−1

i ξ = γ−1
j ξ

for some i 6= j, then at least two of the three unit vectors in the sum
∑3

k=1 ∇̃φγ−1
1 ξ are

equal, which implies that
∣∣∣∇̃mψγ(m)

∣∣∣ ≥ 1. Hence the phase is non stationary and repeated

integration by parts gives us

|Iγ(λ)| ≤ C
3∏
l=1

e−
1
2
d(0,γl0)λ−k, for all k ∈ N,

uniformly in γ.

Finally, we apply the argument about the exponent of convergence of the Poincaré series

described in §4.1.3 to sum over Γ× Γ× Γ. This provides us with the bound

∑
γ1,γ2,γ3∈Γ

Iγ(λ) = O(λ−1),

as λ→∞. The independence of the implied constant on ξ ∈ ∂X follows from the explanation

given at the end of §4.1.3. This proves the assertion of the proposition when k = 3.
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Case 2: k = 1

We use ξ1 = i, ξ2 =
√

3/2 + i/2 and ξ3 = −
√

3/2 + i/2. The right-hand side of (4.20)

then becomes

∇mψγ(γ
−1m) = ∇mφξ1(m)−∇mφξ2(m)−∇mφξ3(m)

=

(
6
(
2(m− i)−

(
m− im

m

))
(|m|2 − 1)(m+ i)(m− (

√
3/2− i/2))(m− (−

√
3/2− i/2))

)
m.

Since the factor in front of m in the previous equation is bounded away from 0 when m ∈ D,

inequality (4.21) holds. An argument along the lines of the one used to treat the previous

case then applies directly.

Case 3: k = 0 or k = 2

The expression of ∇mψγ(γ
−1m) differs from the ones of Case 1 and Case 2 respectively

only by a minus sign. The same argument applies directly. This concludes the proof of

Proposition 4.1.
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CHAPTER 5
An error term for the fourth moment on surfaces

In this chapter, we provide a polynomial remainder for the fourth moment of Eisenstein

series on surfaces. The bulk of this error term consists in the restricted L4-bound given by

Theorem 1.3. This is proved in §1.3. The procedure we will follow is strongly inspired by

[16, Lemma 7], which is the main block in the proof of the restricted L2-bound given by

(1.1). For this reason, the proof of this result will be reproduced in §5.1. However, as will

be seen below, a distinctive feature of the fourth moment considered in this chapter is that

we have to deal with stationary phases, as opposed to the equidistribution problem studied

by Guillarmou and Naud [16], in which the phases were all non-stationary.

We begin by stating and proving an elementary fact about Möbius transformations that

will be useful to prove the two theorems below.

Lemma 5.1. Let Γ be a convex co-compact subgroup of Isom+(Hn+1). Let F be a fixed

fundamental domain of Γ. Then there exists a constant C > 0 such that

|γξ − γ′ξ| ≥ C max
{
e−d(0,γ0), e−d(0,γ′0)

}
, (5.1)

uniformly for all ξ ∈ F ∩ Sn and for all γ, γ′ ∈ Γ such that γ 6= γ′.

Proof. We follow the argument that led to equation (23) in [16]. By Lemma 2.3, with z = ξ

and z′ = γ−1 ◦ γ′ξ, we have

|γξ − γ′ξ| = |ξ − γ−1 ◦ γ′ξ|
sinh2(1

2
d(0, γ0))|ξ − aγ||γ−1 ◦ γ′ξ − aγ|

.

Since Γ is discrete and ξ ∈ ΩΓ is bounded away from the limit set of Γ, the numerator on

the right-hand side of the last equation is bounded from below uniformly in γ 6= γ′ and

ξ ∈ F ∩ Sn. Moreover, the discreteness of Γ, along with Proposition 2.2, implies that aγ
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is bounded from above uniformly in γ ∈ Γ. Therefore, there exists C > 0 independent of

γ 6= γ′ and ξ such that

|γξ − γ′ξ| ≥ Ce−d(0,γ0).

Applying the argument again after interchanging γ and γ′, we deduce (5.1).

5.1 The second moment

This section is devoted to recalling the proof of (1.1) discussed in the introduction. The

intent is to first expose the reader to an argument in the vein of the one used to prove

Theorem 1.3, but technically simpler.

The equidistribution result of Guillarmou and Naud can be restated as follows.

Theorem 5.2 (Guillarmou and Naud [16]). If δΓ < n/2, then for any a ∈ C∞0 (X),∫
X

a(m)|E(sλ;m, ξ)|2dvX(m) =

∫
X

a(m)E(n;m, ξ)dvX(m) +O(λ2δΓ−n),

as λ→∞, where dvX(m) is the hyperbolic volume measure.

Proof. We follow the argument of the proof of Lemma 7 in [16]. The reader is referred to

§3.1 for the notation that remains unexplained below. By (3.1) and Lemma 3.2, the proof

amounts to showing that

∑
γ 6=γ′

Iγ,γ′(λ) = O(λ2δΓ−n),

as λ→∞, where

Iγ,γ′(λ) :=

∫
X

a(m) (E0(1; γm, ξ)E0(1; γ′m, ξ))
n
2 eiλψγ,γ′ (m)dvX(m),

and

ψγ,γ′(m) := log

(
E0(1; γm, ξ)

E0(1; γ′m, ξ)

)
.
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A direct calculation (see, e.g., (3.3) and (4.1) above) gives us

|∇mψγ,γ′(m)| = 2|γ−1ξ − γ′−1ξ|
|m− γξ||m− γ′ξ|

. (5.2)

Therefore, the phase function ψγ,γ′(m) has no stationary points. We can then apply integra-

tion by parts to Iγ,γ′ :

Iγ,γ′(λ) =
1

iλ

∫
X

a(m)
(
Eγ

0 (m)Eγ′

0 (m)
)n

2 ∇m

(
eiλψγ,γ′ (m)

)
· ∇mψγ,γ′(m)

|∇mψγ,γ′(m)|2
dvX(m)

=
1

iλ

∫
X

eiλψγ,γ′ (m)∇∗m
(
a(m)

(
Eγ

0 (m)Eγ′

0 (m)
)n

2 ∇mψγ,γ′(m)

|∇mψγ,γ′(m)|2

)
dvX(m). (5.3)

Now, we want to control the growth of Iγ,γ′(λ) as γ 6= γ′ vary over Γ. By (4.1) and (5.2), we

have

∇mψγ,γ′(m) =
Fγ−1ξ,γ′−1ξ(m)

Gγ−1ξ,γ′−1ξ(m)
,

where Fγ−1ξ,γ′−1ξ(m) = 0 if and only if γ = γ′, (see also Lemma 3.2) and

|Gγ−1ξ,γ′−1ξ(m)| ≥ C, m ∈ supp a,

for some constant C > 0 uniformly in γ 6= γ′. Therefore, for all α ∈ Nn+1
0 , there exists a

constant Cα > 0 such that

|∂α∇mψγ,γ′(m)| ≤ Cα|γ−1ξ − γ′−1ξ|, (5.4)

for all m ∈ supp a. Combining (5.2), (5.4) and Lemma 5.1, we deduce the existence of a

constant Cα independent of γ 6= γ′ and ξ such that∣∣∣∣∂α ∇mψγ,γ′(m)

|∇mψγ,γ′(m)|2

∣∣∣∣ ≤ Cα min
{
ed(0,γ0), ed(0,γ′0)

}
,

for any m ∈ supp a. This equation can then be used with Lemma 2.19 to bound the

integrand in (5.3). This gives us the inequality

|Iγ,γ′(λ)| ≤ Cλ−1e−
n
2

(d(0,γ0)+d(0,γ′0)) min
{
ed(0,γ0), ed(0,γ′0)

}
,
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for some C > 0 independent of γ, γ′ and ξ. If, instead, we perform the integration by parts

j times and apply again the argument above, we get

|Iγ,γ′(λ)| ≤ Cλ−je−
n
2

(d(0,γ0)+d(0,γ′0)) min
{
ejd(0,γ0), ejd(0,γ′0)

}
. (5.5)

It remains to sum up the Iγ,γ′(λ) over Γ× Γ\diag. This is done as follows, by decomposing

Γ into two parts Γ = Γ≤ t Γ>, where

Γ≤ := {γ ∈ Γ : d(0, γ0) ≤ log(λ)} and Γ> := {γ ∈ Γ : d(0, γ0) > log(λ)} .

By Theorem 2.16, if j ≥ n
2
, then for any large λ,

∑
d(0,γ0)≤log λ

e(j−n
2

)d(0,γ0) ≤ N(log λ)e(j−n
2

) log λ = O(λj−
n
2

+δΓ). (5.6)

On the other hand, applying Stieltjes integration and using Theorem 2.16 again, we find

∑
d(0,γ0)>log λ

e−
n
2
d(0,γ0) ≤

∫ ∞
log λ

e−
n
2
udN(u) = O(λδΓ−

n
2 ). (5.7)

The proof would be complete if we showed that

∑
γ∈Γα,γ′∈Γβ

γ 6=γ′

Iγ,γ′(λ) = O(λ2δΓ−n), (5.8)

for all α, β ∈ {α, β}. When α = β =>, the bound O(λ2δΓ−n) is obtained without integration

by parts. Indeed, the bound (5.5) with j = 0 can by found directly from Iγ,γ′(λ) and the

estimates above. One can then apply (5.7) to the sums over both γ and γ′.

In the case where α = β =≤, we apply integration by parts 2j times, where j ≥ n
2
, and

we use (5.6) to conclude that (5.8) holds. In the two remaining cases, we integrate by parts

j times, where j ≥ n
2
. The bound O(λ2δΓ−n) is then the result of a combination of both (5.6)

and (5.7). This concludes the proof.
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In order to obtain a remainder for the second moment of the real and imaginary parts

of the Eisenstein series, i.e., the content of (1.8), the “cross-terms” have to be considered as

well. This issue will be discussed at the end of §5.3:

5.2 Proof of Theorem 1.3

Like with the other results presented so far, the proof of this theorem consists mainly in

using the representation of E(sλ;m, ξ) as an absolutely convergent series over the elements of

the group Γ in order to study, by means of elementary methods originating from the theory

of oscillatory integrals, the limit as λ→∞ of each of the terms of the resulting series. Unless

stated explicitly, the notation used in this section is the one introduced in Chapter 3 and

Chapter 4.

As explained in §3.1, we lift everything to some fixed fundamental domain F for Γ. By

Lemma 2.20 and Remark 2.8 we can then write

|E(sλ; πΓ(m), πΓ(ξ))|2 = E(1;πΓ(m), πΓ(ξ)) + η(ξ)
∑
γ 6=γ′

(
Eγ

0 (m)Eγ′

0 (m)
) 1

2

(
Eγ

0 (m)

Eγ′

0 (m)

)iλ
,

where m ∈ F . Therefore,

|E(sλ; πΓ(m), πΓ(ξ))|4 = (E(1; πΓ(m), πΓ(ξ)))2

+ 2η(ξ)
∑
γ 6=γ′

E(1; πΓ(m), πΓ(ξ))
(
Eγ

0 (m)Eγ′

0 (m)
) 1

2

(
Eγ

0 (m)

Eγ′

0 (m)

)iλ

+ η(ξ)2
∑
γ1 6=γ′1

∑
γ2 6=γ′2

2∏
l=1

(
Eγl

0 (m)E
γ′l
0 (m)

) 1
2

(
Eγl

0 (m)

E
γ′l
0 (m)

)iλ

. (5.9)

Using the absolute convergence of the series above, we can consider the integral∫
X

a(m)|E(sλ;m, ξ)|4dvX(m)

as the sum of the integrals against the test function a(m) of every term on the right-hand side

of (5.9). It is easy to see that the second summation in (5.9) gives rise to an integral bounded

by O(λ2δΓ−1) as λ → ∞. Indeed, if we define bξ(m) := a(m)E(n; πΓ(m), πΓ(ξ)) ∈ C∞0 (X),
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the proof of Theorem 5.2 can be applied directly to

Iγ,γ′(λ) :=

∫
X

bξ(m)
(
Eγ

0 (m)Eγ′

0 (m)
) 1

2

(
Eγ

0 (m)

Eγ′

0 (m)

)iλ
dv(m),

with a replaced by bξ. (This may be done since supp bξ ⊂ supp a and bξ is uniformly bounded

with respect to ξ.) Hence
∑

γ 6=γ′ Iγ,γ′(λ) = O(λ2δΓ−1).

As regards the last summation, if γ′1 = γ2 and γ1 = γ′2, then the oscillating term is equal

to 1. Summing up the corresponding terms, we obtain

η(ξ)2
∑
γ 6=γ′

Eγ
0 (m)Eγ′

0 (m) =

(∑
γ∈Γ

η(ξ)Eγ
0 (m)

)2

−
∑
γ∈Γ

(η(ξ)Eγ
0 (m))2 = (E(1; πΓ(m), πΓ(ξ)))2

− E(2; πΓ(m), πΓ(ξ)).

Therefore, in order to establish the theorem, it remains only to show that
∑
Iγ1,γ′1,γ2,γ′2

(λ) =

O(λδΓ−
1
2 ) where

Iγ1,γ′1,γ2,γ′2
(λ) :=

∫
X

a(m)
2∏
l=1

(
Eγl

0 (m)E
γ′l
0 (m)

) 1
2

(
Eγl

0 (m)

E
γ′l
0 (m)

)iλ

dv(m),

and the summation is over γ1, γ2, γ
′
1, γ
′
2 ∈ Γ for which γ1 6= γ′1 and γ2 6= γ′2, and either γ′1 6= γ2

or γ′2 6= γ1. We group these elements into three categories and treat them separately.

5.2.1 Case 1: γ′1 = γ2 or γ′2 = γ1.

Without loss of generality, suppose that γ := γ′1 = γ2. For any γa, γb ∈ {γ, γ1, γ
′
2}, define

Iγa,γb(λ) :=

∫
X

bξ(m) (Eγa
0 (m)Eγb

0 (m))
1
2

(
Eγ1

0 (m)

E
γ′2
0 (m)

)iλ

dv(m),

I ′γa,γb(λ) :=

∫
X

a(m)
(
(Eγa

0 (m))3Eγb
0 (m)

) 1
2

(
Eγ1

0 (m)

E
γ′2
0 (m)

)iλ

dv(m),

where bξ(m) := a(m)E(2;m, ξ) ∈ C∞0 (X). In the same spirit as in §3.1, we can reorganize

the sum of Iγ1,γ,γ,γ′2
over γ 6= γ1 6= γ′2 6= γ as follows:

∑
γ 6=γ1 6=γ′2 6=γ

Iγ1,γ,γ,γ′2
(λ) =

∑
γ1 6=γ′2

Iγ1,γ′2
(λ)−

∑
γ 6=γ′2

I ′γ,γ′2(λ)−
∑
γ1 6=γ

I ′γ,γ1
(λ). (5.10)
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Notice that the last two sums correspond to the cases where γ = γ1 6= γ′2 and γ = γ′2 6= γ1

respectively. For
∑
Iγ1,γ′2

(λ), the proof of Theorem 5.2 applies directly. Hence
∑
|Iγ1,γ′2

(λ)| =

O(λ2δΓ−1). As for
∑
I ′γ,γ′2

(λ) and
∑
I ′γ1,γ

(λ), the proof also applies after noticing (see Lemma

2.19) that |(Eγ
0 (m))

3
2 | ≤ Ce−

1
2
d(0,γ0). Therefore, the right-hand side of (5.10) is O(λ2δΓ−1) as

λ→∞.

Before treating the remaining cases, we introduce a notation that will simplify the equa-

tions. Define ξi := γ−1
i ξ, ξ′i := γ′−1

i ξ and γ := (ξ1, ξ
′
1, ξ2, ξ

′
2) ∈ S4. Moreover, let fγ(m) be the

unique function satisfying (
Eγ1

0 (m)

E
γ′1
0 (m)

Eγ2

0 (m)

E
γ′2
0 (m)

)iλ

= eifγ(m)λ.

If we write ψγ := φξ1 − φξ′1 + φξ2 − φξ′2 , where φξ is the usual Busemann function defined in

§2.2.4, then Lemma 2.18 gives us

fγ(m) = ψγ(m)− log |Dγ1(ξ1)|+ log |Dγ′1(ξ′1)| − log |Dγ2(ξ2)|+ log |Dγ′2(ξ′2)|.

We now use the explicit expression of ∇φξ calculated in §3.1 (see (3.3)) to write the gradient

of fγ as a function of m, m and γ:

∇mfγ(m) = ∇mψγ(m) = 2

(
m− ξ′1
|m− ξ′1|2

− m− ξ1

|m− ξ1|2
+

m− ξ′2
|m− ξ′2|2

− m− ξ2

|m− ξ2|2

)
(5.11)

=
2Fγ(m)

Gγ(m)
,

where Gγ(m) := (m− ξ′1)(m− ξ1)(m− ξ′2)(m− ξ2) and

Fγ(m) := m2 (ξ′2 − ξ2 + ξ′1 − ξ1)− 2m(ξ′2ξ
′
1 − ξ2ξ1) + ξ′1ξ1ξ

′
2ξ2(ξ2 − ξ′2 + ξ1 − ξ′1). (5.12)

The proof of the remaining cases consists once again in studying the stationary points

(if any) of the phase functions fγ according to the different possible configurations γ ∈ S4.

Like in the proof of Proposition 4.1, we will make an essential use of isometries of H2 in

order to reduce this task to solving an elementary problem of Euclidean geometry in the
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plane. A considerable part of the proof will then be devoted to controlling the effect of these

isometries using the tools developed in §4.2.

5.2.2 Case 2: The elements γ1, γ2, γ
′
1 and γ′2 are all different.

Since Gγ(m) is bounded in any compact subset of D and Fγ(m) = Fγ(m), finding the

stationary points of ψγ(m) boils down to finding the zero set of Fγ(m).

The function Fγ(m) is a complex polynomial of degree 2, which means that ψγ(m) has

at most two stationary points in D. We claim that there is actually at most one, and that

it corresponds to the intersection (if it exists) of the geodesic joining ξ1 to ξ2 and the one

joining ξ′1 to ξ′2. Indeed, it is an elementary geometry fact that four unit Euclidean vectors

in the plane cancel if and only if to each vector corresponds a vector pointing in the opposite

direction. In other words, they must either be arranged in an X-shape or they must form a

line. Notice, however, that this characteristic fails in higher dimension. It follows that the

sum of unit vectors

∇̃mψγ(m) = ∇̃mφξ1(m)− ∇̃mφξ′1(m) + ∇̃mφξ2(m)− ∇̃mφξ′2(m)

vanishes if and only if either ξi = ξ′i for i = 1, 2, or

∇̃mφξ1(m) = −∇̃mφξ2(m) and ∇̃mφξ′1(m) = −∇̃mφξ′2(m).

The first possibility occurs only if at least two of γ1, γ2, γ
′
1 and γ′2 are equal, which never

happens in the case under consideration. Since ∇̃mφξ(m) corresponds to the unit vector

pointing in the direction of the geodesic linking m to ξ, the second possibility implies that

ξ2 is the point on the unit circle opposite to ξ1 along the geodesic linking m to ξ1; similarly

for ξ′2 and ξ′1. In other words, m must lie on the geodesic joining ξ1 to ξ2 as well as on the

one joining ξ′1 to ξ′2. Therefore, m must be the intersection of those two geodesics, which

was the claim.

According to this claim, it makes sense to subdivide Case 2 further, depending on whether

the configuration (ξ1, ξ
′
1, ξ2, ξ

′
2) ∈ S4 gives rise to a stationary point or not.
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Case 2.1: The geodesic between ξ1 and ξ2, and the one between ξ′1 and ξ′2
intersect.

Let m0 ∈ D be the intersection point of both geodesics, the one joining ξ1 and ξ2, and

the one joining ξ′1 and ξ′2. Let γ0 ∈ PSL2(R) be an isometry sending the point m0 to the

origin. Applying the same argument as the one used to prove (4.19), we get

∇mψγ(γ
−1
0 m) = ∇mφγ0ξ1(m)−∇mφγ0ξ′1

(m) +∇mφγ0ξ2(m)−∇mφγ0ξ′2
(m). (5.13)

In view of the claim above, the only solution of ∇mψγ(γ
−1
0 m) = 0 is m = 0. It follows from

(5.11), (5.12) and the right-hand side of (5.13), that 0 is a root of the polynomial Fγ0γ(m),

where γ0γ is a notation for (γ0ξ1, γ0ξ
′
1, γ0ξ2, γ0ξ

′
2) ∈ S4. By (5.12), this happens if and only if

γ0ξ2 − γ0ξ′2 + γ0ξ1 − γ0ξ′1 = 0, (5.14)

in which case Fγ0γ(m) takes the simpler form −2m(γ0ξ
′
2γ0ξ

′
1 − γ0ξ2γ0ξ1). From (5.14) and

the fact that the points ξ1, ξ′1, ξ2 and ξ′2 are distinct points on the unit circles, we deduce

that γ0ξ2 = −γ0ξ1 and γ0ξ
′
2 = −γ0ξ

′
1. Hence Fγ0γ and Gγ0γ(m) simplify further to

Fγ0γ(m) = −2m(γ0ξ1 − γ0ξ
′
1)(γ0ξ1 + γ0ξ

′
1),

Gγ0γ(m) = (m− γ0ξ
′
1)(m− γ0ξ1)(m+ γ0ξ

′
1)(m+ γ0ξ1).

Since γ0ξ1 and γ0ξ
′
1 are points lying on the unit circle, it follows from elementary Euclidean

geometry that the vectors γ0ξ1 − γ0ξ
′
1 and γ0ξ1 + γ0ξ

′
1 are at least of length

√
2. Hence

|∇mψγ(γ
−1
0 m)| = 2|Fγ0γ(m)|

|Gγ0γ(m)|

≥ 4
√

2|m|min {|γ0ξ1 − γ0ξ
′
1||γ0ξ1 + γ0ξ

′
1|}

|m− γ0ξ′1||m− γ0ξ1||m+ γ0ξ′1||m+ γ0ξ1|

Suppose first that γ0ξ1 is closer to γ0ξ
′
1 than to −γ0ξ

′
1. In this case,

|∇mψγ(γ
−1
0 m)| ≥ C|m||γ0ξ1 − γ0ξ

′
1|

|m− γ0ξ1||m− γ0ξ′1|
,
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for some numerical constant C > 0. Note that we have used the trivial fact that |m+γ0ξ
′
1| ≤ 2

and |m+ γ0ξ1| ≤ 2. By Proposition 2.3, we have

|∇mψγ0γ(γ
−1
0 m)| ≥

C|m||ξ1 − ξ′1| sinh2(1
2
d(0, γ00))|γ−1

0 m− aγ0|2

|γ−1
0 m− ξ1||γ−1

0 m− ξ′1|
.

Applying Lemma 2.4 to sinh2(1
2
d(0, γ00)) with m replaced by γ−1

0 m, we obtain

|∇mψγ(γ
−1
0 m)| = C|m||ξ1 − ξ′1|(1− |γ−1

0 m|2)

(1− |m|2)|γ−1
0 m− ξ1||γ−1

0 m− ξ′1|
.

Therefore, for m ∈ γ0(supp a), we have

|∇mψγ(γ
−1
0 m)| ≥ C|m||ξi − ξ′i|

(1− |m|2)
, (5.15)

where i = 1 and C is some positive constant depending only on supp a. Notice that the

same argument can be applied if we replace γ1 by γ2 and γ′1 by γ′2. This leads us to conclude

that (5.15) is also valid for i = 2. Hence

|∇mψγ(γ
−1
0 m)| ≥ C|m|max {|ξ1 − ξ′1|, |ξ2 − ξ′2|}

(1− |m|2)
. (5.16)

On the other hand, differentiating (5.12) allows us to deduce that

|∂αm(∂jψγ(m))| ≤ Cα max {|ξ1 − ξ′1|, |ξ2 − ξ′2|} ,

for m ranging over a compact subset of D. We can then use Lemma 2.5 (with F (m) :=

∂jψγ(m) and K := supp a) along with an argument similar to the one that led to (4.26) to

deduce from (5.16) and the last inequality that∣∣∣∣∣∂α ∇mψγ(γ
−1
0 m)∣∣∇mψγ(γ
−1
0 m)

∣∣2
∣∣∣∣∣ ≤ Cα
|m||α|+1(1− |m|2)|α|−1 max {|ξ1 − ξ′1|, |ξ2 − ξ′2|}

(5.17)

By Lemma 5.1, we can bound the right-hand side of (5.17) further to obtain an expression

which will be more tractable when we will sum over the elements of the group:∣∣∣∣∂α ∇mψγ(γ
−1
0 m)

|∇mψγ(γ
−1
0 m)|2

∣∣∣∣ ≤ Cα min
{
ed(0,γ10), ed(0,γ′10), ed(0,γ20), ed(0,γ′20)

}
|m||α|+1(1− |m|2)|α|−1

, (5.18)
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for Cα > 0 depending only on α ∈ N2 and on supp a.

We can now remove the hypothesis that γ0ξ1 is closer to γ0ξ
′
1 than to γ0ξ

′
2 = −γ0ξ

′
1, by

noticing that if it is not the case, the bounds

|∇mψγ(γ
−1
0 m)| ≥ C|m||ξ1 − ξ′2|

(1− |m|2)
and |∇mψγ(γ

−1
0 m)| ≥ C|m||ξ2 − ξ′1|

(1− |m|2)

replace (5.15) for i = 1 and i = 2 respectively. Essentially the same argument that allowed

us to derive (5.18) would give us the same bound again.

Let Iγ(λ), Aγ(λ), Bγ(λ) and Sγ be as in the proof of Proposition 4.1. Using the Weyl’s

tube formula [43] in the same way as we derived (4.22), we deduce that when λ is large,

|Aγ(λ)| ≤ Cλ−2βe−
1
2(d(0,γ10)+d(0,γ′10)+d(0,γ20)+d(0,γ′20)), (5.19)

where β > 0 is the undetermined constant entering in the definition of Aγ(λ). Like in the

proof of Proposition 4.1, this constant will be fixed later. Applying integration by parts j

times to Bγ(λ) as in the proof of Proposition 4.1, we obtain (4.23) with

uγ(m) :=
a(γ−1m)

(1− |m|2)2

2∏
l=1

(
Eγlγ

−1

0 (m)E
γ′lγ
−1

0 (m)
) 1

2
.

Combining (5.18), the corresponding analogue of (4.24) and property (iv) of the function

ρλ
β

γ (m) (see §4.1.2), we obtain

|Bγ(λ)| ≤ Cv
(j)
γ (λ)

λj

j∑
k=1

∫
γ(supp a)∩{|m|>(2λ)−β}

λkβ

|m|2j−k
dm

(1− |m|2)2
(5.20)

where

v(j)
γ (λ) := min

γ∈{γ1,γ2,γ′1,γ
′
2}

{
ejd(0,γ0)

}
e−

1
2(d(0,γ10)+d(0,γ′10)+d(0,γ20)+d(0,γ′20)). (5.21)

Like we did in the proof of Proposition 4.1, we consider two cases, depending on the value

of d(0, γ00). If d(0, γ0) is large enough so that γ(supp a) ∩ B2
0(1

2
) = ∅, then we obtain an
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analogue of (4.28), namely

|Bγ(λ)| ≤ C ′jλj(β−1)v(j)
γ (λ)VolH2(supp a),

when λ is large. Otherwise, γ(supp a) is contained in B2
0(R) for some R < 1 independent of

γ, and

|Bγ(λ)| ≤ Cv
(j)
γ (λ)

λj

j∑
k=1

∫
B2

0(R)∩{|m|>(2λ)−β}
λkβ

|m|2j−k
dm

(1− |m|2)2
.

Using polar coordinates, the volume element dm takes the form dm = rdθdr and

|Bγ(λ)| ≤ C ′v
(j)
γ (λ)

λj

j∑
k=0

∫ R

(2λ)−β

λkβ

r2j−k−1
dr ≤ C ′′v(j)

γ (λ)λ(2j−2)β−j, (5.22)

assuming that j ≥ 3 and λ is large enough. The rate of convergence is optimized by choosing

β := 1
2
. From (5.19) and (5.22), we get |Iγ(λ)| ≤ Cv

(j)
γ (λ)λ−1 when λ is large enough.

We can now sum the Iγ1,γ′1,γ2,γ′2
’s over all the elements of Γ4 corresponding to Case 2.1.

We decompose Γ into Γ = Γ≤ t Γ> where Γ≤ corresponds to the elements γ ∈ Γ such that

d(0, γ0) ≤ α log λ for some constant α > 0 that will be fixed later, and Γ> corresponds to

the elements γ ∈ Γ such that d(0, γ0) > α log λ. Such a decomposition of Γ gives rise to

sixteen different configurations of Γα1 × Γα2 × Γα3 × Γα4 with αi ∈ {≤, >} and i = 1, . . . , 4.

We have the trivial inequality

min
γ∈{γ1,γ2,γ′1,γ

′
2}

{
ejd(0,γ0)

}
≤ ea1d(0,γ10)+a2d(0,γ′10)+a3d(0,γ20)+a4d(0,γ′20), (5.23)

for any a1, a2, a3, a4 ≥ 0 such that a1 + a2 + a3 + a4 = j. By Theorem 2.16, we find an upper

bound for the sum over the elements of Γ≤:

∑
d(0,γ0)>α log λ

e−
1
2
d(0,γ0) ≤

∫ ∞
α log λ

e−
1
2
udN(u) = O(λα(δΓ− 1

2
)). (5.24)
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If we assume further that ai ≥ 1
2
, then we obtain the following bound for the sum over the

elements of Γ>:

∑
d(0,γ0)≤α log λ

e(ai− 1
2

)d(0,γ0) = O(λα(ai+δΓ− 1
2

)), ai ≥
1

2
. (5.25)

We can then combine (5.23), (5.24) and (5.25) to derive a bound for the sum of Iγ1,γ′1,γ2,γ′2
.

Namely,

∑
Iγ1,γ′1,γ2,γ′2

(λ) =

 O(λ4α(δΓ− 1
2

)), if αi =>, for all i

O(λα(4δΓ+j−2)−1), if αi =≤, for at least one i,

where the sum is over the subset of Γα1 ×Γα2 ×Γα3 ×Γα4 with αi ∈ {≤, >} and i = 1, . . . , 4

containing all quadruplets of distinct elements (γ1, γ
′
1, γ2, γ

′
2) giving rise to a stationary point

m0 = γ−1
0 0.

It remains only to fix the positive constant α so that the bound that we found be in

agreement with the one in the statement of the theorem. For α = 1
j
, the sum above becomes

O(λ
4
j

(δΓ− 1
2

)). Finally, we fix j = 4, so that we obtain

∑
Iγ1,γ′1,γ2,γ′2

(λ) = O(λδΓ−
1
2 ),

as λ→∞.

Case 2.2: The geodesic between ξ1 and ξ2, and the one between ξ′1 and ξ′2 do
not intersect.

If the geodesic joining ξ1 and ξ2, and the one joining ξ′1 and ξ′2 are disjoint, then necessarily,

for some choice of (j, k) ∈ {(1, 2), (2, 1)}, the geodesic between ξ1 and ξ′j, and the one

between ξ2 and ξ′k will intersect at some point m0 ∈ D. Without loss of generality, assume

that (j, k) = (2, 1). As before, let γ0 ∈ PSL2(R) be an isometry sending the point m0 to the

origin. The point 0 = γ0m0 is then a solution of the equation Fγ0γ̃(m) = 0 (see (5.12) above),

where γ̃ corresponds to γ in which ξ2 has been interchanged with ξ′2, i.e., γ̃ := (ξ1, ξ
′
1, ξ
′
2, ξ2).

Modifying (5.14) accordingly, it follows that γ0ξ2 − γ0ξ
′
2 = γ0ξ1 − γ0ξ

′
1. We can then deduce

from the fact that ξi and ξ′j are distinct points on the unit circle that γ0ξ
′
2 = −γ0ξ1 and
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γ0ξ2 = −γξ′1. Therefore,

|∇mψγ(γ
−1
0 m)| = 4|m2 + (γ0ξ1)(γ0ξ

′
1)||γ0ξ1 − γ0ξ

′
1|

|m− γ0ξ1||m+ γ0ξ1||m− γ0ξ′1||m+ γ0ξ′1|
.

By (2.5) of Proposition 2.3, for all m ∈ γ0(supp a), we have

lim
d(0,γ00)→∞

(γ0(γ−1
0 m)− γ0ξ1)(γ0(γ−1

0 m)− γ0ξ
′
1) = 0.

Rewriting m2 + (γ0ξ1)(γ0ξ
′
1) as (m − γ0ξ1)(m − γ0ξ

′
1) + m(γ0ξ1 + γ0ξ

′
1) and using the last

equation, we get for any m ∈ γ0(supp a) that

lim
d(0,γ00)→∞

|m2 + (γ0ξ1)(γ0ξ
′
1)| = |γ0ξ1 + γ0ξ

′
1|.

Moreover, it is easy to see that this quantity does not vanish. Indeed, this would contradict

the fact that |γ0ξ1 − γ0ξ
′
1| → 0 as d(0, γ00)→∞, which is a direct consequence of (2.5). We

can then adapt the argument invoked in Case 2.1 when deriving (5.16). This gives us the

estimate

|∇mψγ(γ
−1
0 m)| ≥ C

max {|ξ1 − ξ′1|, |ξ2 − ξ′2|}
1− |m|2

.

The rest of the proof of this case is similar to the last part of the proof of Case 2.1.

However, since the phases of Iγ(λ) are non-stationary, the situation is more simple. We can

now apply integration by parts directly to Iγ(λ). Applying the arguments of the previous

case directly to Iγ(λ) instead of Bγ(λ) (see, in particular (5.17), (5.18), (5.20) and (5.21)),

we can derive the bound

|Iγ(λ)| ≤ Cλ−j min
γ∈{γ1,γ2,γ′1,γ

′
2}

{
ejd(0,γ0)

}
e−

1
2(d(0,γ10)+d(0,γ′10)+d(0,γ20)+d(0,γ′20)). (5.26)

The rest the proof consists essentially in the argument used to sum the integrals Iγ,γ′(λ) at

the end of the proof of Theorem 5.1. (Compare (5.26) with (5.5).) This gives the bound

∑
Iγ(λ) = O(λ4δΓ−2),
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as λ → ∞, where the summation is over all quadruplets (γ1, γ
′
1, γ2, γ

′
2) of distinct elements

for which ψγ has no stationary points.

5.2.3 Case 3: Either γ′1 = γ′2 and γ1 6= γ2 or γ′1 6= γ′2 and γ1 = γ2.

By multiplying ∇mψγ(m) by −1 if necessary, we can suppose without loss of generality

that ξ′1 = ξ′2 and ξ1 6= ξ2. Applying this assumption to (5.11) and (5.12), we get readily that

∇mψγ(m) =
−2
(
(m− ξ2)(ξ1 − ξ′1) + (m− ξ1)(ξ2 − ξ′1)

)
(m− ξ1)(m− ξ2)(m− ξ′1)

. (5.27)

The denominator being bounded from above and from below when m ∈ supp a, we can

restrict our analysis to the numerator. If we multiply the numerator by the complex number

(ξ′1)2 (a rotation), it becomes

−2
(
(mξ′1 − ξ2ξ

′
1)(ξ1ξ

′
1 − 1) + (mξ′1 − ξ1ξ

′
1)(ξ2ξ

′
1 − 1)

)
. (5.28)

Since we are only interested in the complex modulus of the gradient (which is not affected

by a rotation), we will suppose without loss of generality that ξ′1 = 1 in order to simplify the

calculations. This corresponds to rotating the points ξ1, ξ2 and ξ′1 so that ξ′1 = 1. The general

expression will then be obtained by rotating back once the calculations are completed. With

ξ′1 = 1, the numerator (5.28) becomes (up to a numerical constant)

m(ξ1 + ξ2 − 2) + (ξ1 + ξ2 − 2ξ1ξ2) = mξ1ξ2(ξ1 + ξ2 − 2ξ1ξ2) + (ξ1 + ξ2 − 2ξ1ξ2)

= (ξ1 + ξ2 − 2ξ1ξ2)

(
mξ1ξ2 +

(ξ1 + ξ2 − 2ξ1ξ2)

(ξ1 + ξ2 − 2ξ1ξ2)

)
. (5.29)

The value of |mξ1ξ2| being strictly less than 1 and bounded away from 1 uniformly for

ξ1, ξ2 ∈ S1, when m varies over a compact subset of D, the second term in the product on

the right-hand side of (5.29) is larger than some positive constant. Therefore, we have

|∇mψγ(m)| ≥ C |ξ1 + ξ2 − 2ξ1ξ2| ,

for m ∈ supp a.
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Let us now refine this lower bound by carrying out some elementary calculations:

|ξ1 + ξ2 − 2ξ1ξ2|2 = |ξ1 − 1|2 + |ξ2 − 1|2 + ξ1ξ2 + ξ1ξ2 − ξ1 − ξ1 − ξ2 − ξ2 + 2.

= 2(ξ1 − 1)(ξ1 − 1) + 2(ξ2 − 1)(ξ2 − 1)− (ξ1ξ2 − 1)(ξ2ξ1 − 1)

= 2|ξ1 − 1|2 + 2|ξ2 − 1|2 − |ξ1 − ξ2|2.

Since the points ξ1, ξ2 and 1 form a triangle, elementary trigonometry can be applied as

follows to the right-hand side of the last equation:

|ξ1 + ξ2 − 2ξ1ξ2|2 = |ξ1 − 1|2 + |ξ2 − 1|2 + 2|ξ1 − 1||ξ2 − 1| cosα,

where α is the angle between the two sides given by ξ1 − 1 and ξ2 − 1 respectively. We

decompose α = α1 + α2, where αi is the angle between ξi− 1 and the real axis (the smallest

αi is taken to be negative if the two ξi’s are both on the same side of the real axis). By the

trigonometric identity cos(α1 + α2) = cos(α1) cos(α2)− sin(α1) sin(α2) we obtain

|ξ1 + ξ2 − 2ξ1ξ2|2 = |ξ1 − 1|2 − sinα1 sinα2|ξ1 − 1||ξ2 − 1|+ |ξ2 − 1|2

+ 2(|ξ1 − 1| cosα1)(|ξ2 − 1| cosα2).

Since |ξi−1| cosαi = 1−Re(ξi), it is a straightforward elementary calculation to rewrite the

last term in the previous equation as |ξ1 − 1|2|ξ2 − 1|2/2. Therefore,

|ξ1 + ξ2 − 2ξ1ξ2|2 ≥ (|ξ1 − 1| − |ξ2 − 1|)2 +
|ξ1 − 1|2|ξ2 − 1|2

2
≥ |ξ1 − 1|2|ξ2 − 1|2

2
.

Hence, for a general ξ′1 (i.e., after rotating back), we get

|∇mψγ(m)| ≥ C|ξ1 − ξ′1||ξ2 − ξ′1|.

for all m ∈ supp a.

On the other hand, differentiating (5.27) (see also (5.29)), we deduce that

|∂αm∇mψγ(m)| ≤ Cα max {|ξ1 − ξ′1|, |ξ2 − ξ′1|} .
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for all m ∈ supp a. Therefore, a slight modification of the argument leading to (4.13) gives

us ∣∣∣∣∂i ∂jψγ(m)

|∇mψγ(m)|2

∣∣∣∣ ≤ Ci
max {|ξ1 − ξ′1|, |ξ2 − ξ′1|}
|ξ1 − ξ′1|2|ξ2 − ξ′1|2

= Ci
max {|ξ1 − ξ′1|−1, |ξ2 − ξ′1|−1}

|ξ1 − ξ′1||ξ2 − ξ′1|
,

where i, j = 1, 2 and m ∈ supp a. We can then deduce from Lemma 5.1, that∣∣∣∣∂j ∂jψγ(m)

|∇mψγ(m)|2

∣∣∣∣ ≤ Civγ,

where

vγ := min

 e3d(0,γ′10), ed(0,γ10)ed(0,γ20)ed(0,γ′10), ed(0,γ10)e2d(0,γ′10), ed(0,γ20)e2d(0,γ′10),

ed(0,γ10)ed(0,γ20) max
{
ed(0,γ10), ed(0,γ20)

}
 .

The phases being non-stationary, we can apply integration by parts directly to the integral

Iγ(λ), in the same manner as in §5.2.2. By integrating by parts only once, we get the bound

|Iγ(λ)| ≤ Ce−
1
2(d(0,γ10)+d(0,γ20)+2d(0,γ′10))vγλ

−1. (5.30)

We can now use the decomposition introduced at the end of §5.2.2 to sum up the elements.

Let Γ′ ⊂ Γ×Γ×Γ×Γ be the set of quadruplets of the form (γ1, γ2, γ
′
1, γ
′
1), where γ1, γ2 and

γ′1 are all distinct. Applying Theorem 2.16 as above, we can derive the following analogues

of (5.24) and (5.25) respectively:

∑
d(0,γ0)>α log λ

e−sd(0,γ0) ≤
∫ ∞
α log λ

e−sudN(u) = O(λα(δΓ−s)), (5.31)

and

∑
d(0,γ0)≤α log λ

e(t−s)d(0,γ0) = O(λα(t+δΓ−s)), (5.32)

where s ∈ {1/2, 1}, t ∈ {1, 2, 3} and δΓ <
1
2
. Depending on the decomposition Γα1×Γα2×Γα3 ,

αi ∈ {≤, >}, there are eight different cases to treat. For five of them, inequality (5.30) can

be used to obtain the following bounds on Iγ(λ):
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• If (α1, α2, α3) = (≤,≤,≤), then

|Iγ(λ)| ≤ Cλ−1e
1
2
d(0,γ10)e

1
2
d(0,γ20);

• If (α1, α2, α3) = (>,≤,≤), then

(|Iγ(λ)| ≤ Cλ−1e−
1
2
d(0,γ10)e

1
2
d(0,γ20)ed(0,γ′10);

• If (α1, α2, α3) = (≤, >,≤), then

(|Iγ(λ)| ≤ Cλ−1e
1
2
d(0,γ10)e−

1
2
d(0,γ20)ed(0,γ′10);

• If (α1, α2, α3) = (≤,≤, >) and

– if ed(0,γ10) ≥ ed(0,γ20), then

|Iγ(λ)| ≤ Cλ−1e
3
2
d(0,γ10)e

1
2
d(0,γ20)e−d(0,γ′10);

– if ed(0,γ10) < ed(0,γ20), then

|Iγ(λ)| ≤ Cλ−1e
1
2
d(0,γ10)e

3
2
d(0,γ20)e−d(0,γ′10);

• If (α1, α2, α3) = (>,>,≤), then

|Iγ(λ)| ≤ Cλ−1e−
1
2
d(0,γ10)e−

1
2
d(0,γ20)e2d(0,γ′10).

Using these bounds in combination with (5.31) and (5.32), we can sum up the elements for

the cases above. For each of them we have
∑
|Iγ(λ)| = O(λα(3δΓ+1)−1).

For the last three cases of (α1, α2, α3), we do not integrate by parts. We use instead the

estimate

|Iγ(λ)| ≤ Ce−
1
2
d(0,γ10)e−

1
2
d(0,γ20)e−d(0,γ′10),
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which is obtained trivially by bounding the integrand of Iγ(λ) with the use of Lemma 2.19.

For (≤, >,>) and (>,≤, >), the bound (5.31) in combination with

∑
d(0,γ0)≤α log λ

e−
1
2
d(0,γ0) = O(λαδΓ), (5.33)

provides us with

∑
|Iγ(λ)| = O(λα(3δΓ− 3

2
)).

Notice that (5.33) was obtained by applying Theorem 2.16 and e−
1
2
d(0,γ0) ≤ 1. For (>,>,>),

we apply (5.31) to each of γ1, γ2 and γ′1, which gives

|Iγ(λ)| ≤ Ce−
1
2
d(0,γ10)e−

1
2
d(0,γ20)e−d(0,γ′10).

Hence
∑
|Iγ(λ)| = O(λα(3δΓ−2)). If we set α = 1

3
in any of the previous bounds, we obtain

∑
γ∈Γ′

|Iγ(λ)| = O(λδΓ−
1
2 )

as λ→∞.

Since all the cases have been treated and the bound O(λδΓ−
1
2 ) is the largest one, we have

I4
2 (λ, ξ) =

∫
X

a(m)f4(m, ξ)dvX(m) +O(λδΓ−
1
2 ).

The independence of the implied constant on ξ ∈ ∂X follows from the explanation at the end

of §4.1.3 and from the fact that the argument leading to Theorem 5.2 is also independent of

ξ. The proof of the theorem is then completed.

5.3 Proof of Corollary 1.5

We use a slight modification of the argument appearing in the proof of Theorem 1.2 to

treat the remaining terms in the expansion of (E(sλ;m, ξ)± E(sλ;m, ξ))
4.

Proposition 5.3. Let X = Γ\H2 be a convex co-compact hyperbolic surface with δΓ < 1/2.

Let a ∈ C∞0 (X) and let E(s; ·, ξ) be an Eisenstein series with ξ ∈ ∂X. Then for k = 0, 1, 3

89



or 4, ∫
X

a(m) (E(sλ;m, ξ))
k
(
E(sλ;m, ξ)

)4−k
dvX(m) = O(λ−

1
d ).

as λ→∞, where d = 16 if k = 0 or 4 and d = 18 if k = 1 or 3.

Sketch of the proof. The proof of Theorem 1.2 does not apply directly when p = 4. A specific

choice of γ1, γ2, γ3, γ4 ∈ Γ can make the gradient of ψγ vanish everywhere on a parametrized

line x 7→ (x, y) ∈ D, for some y ∈ (−1, 1), thus preventing the constant Cm introduced in

the proof of this theorem to be positive.

If k = 0 or 4, the geometrical argument used in Theorem 1.3 applies directly to conclude

that in order for∇ψγ(m) to vanish, m must lie on the intersection of two geodesics joining the

two pairs of points (γ−1
i1
ξ, γ−1

i2
ξ) and (γ−1

i3
ξ, γ−1

i4
ξ) respectively, for some choice of i1, i2, i3, i4 ∈

{1, 2, 3, 4}. It follows that for ∇ψγ(m) to vanish on an Euclidean line, we must have i1 = i3

and i2 = i4, or i1 = i4 and i2 = i3. Moreover, this line is horizontal if and only if i1 = i3 = ±1

and i2 = i4 = ∓1 (or i1 = i4 = ±1 and i2 = i3 = ∓1, respectively).

Notice that this issue would not arise if instead of considering the whole set S4, we apply

the argument to a closed subset S1 ⊂ S4, for which it always happens that one of the γ−1
j ξ’s

is bounded away from the points ±1. Interchanging x and y in the proof, the argument

can be applied again to the closure (in R2) of the complement of S1 (in S4). We then get

two different constants C in (4.17). The statement follows by taking the largest one and by

applying the rest of the proof of Theorem 1.2.

The cases where k = 1 or 3 are treated similarly, noticing that in order for∇ψγ1,±,γ2,±,γ3,±,γ∓

to vanish on a horizontal line, we must have γ−1
∓ ξ = γ−1

i1,±ξ, γ
−1
i2,±ξ = 1 and γ−1

i3,±ξ = −1 for

some choice of i1, i2, i3 ∈ {1, 2, 3}. We can then take S1 ⊂ S4 to be a closed subset for which

it always happens that two of the γ−1
j,±ξ’s are bounded away from ±1. The statement follows

as described above by applying the argument a second time to the closure of the complement

of this set, with x replaced by y.
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Corollary 1.5 is then a straightforward application of Theorem 1.3 and Proposition 5.3

to the expansion of (E(sλ;m, ξ)± E(sλ;m, ξ))
4.

We conclude this subsection with a remark about the second moment of the real and

imaginary parts of Eisenstein series. The high-energy limit of the restricted L2-norm of the

Eisenstein series is the content of Theorem 5.2. In order to compute the second moment of

the real and imaginary parts, one must also consider the limit as λ → ∞ of the integrals

I2
0 (λ) and I2

2 (λ). By Theorem 1.1, we know that these integrals vanish at high-energy. The

rate of convergence can be estimated by adapting the proof of Theorem 1.2. More precisely,

one can use a geometrical argument, similar to the one invoked in the proof of Theorem 1.3,

to conclude that, in this case, the zero set of ∇ψγ,γ′(m) corresponds to the geodesic lying

between the two points γ−1ξ and γ′−1ξ on the unit sphere. An argument along the lines of

the proof of Proposition 5.3 (for the cases k = 0 and k = 4) would then apply. This gives us

the error term O(λ−
1
8 ) for both I2

0 (λ) and I2
2 (λ). Equation (1.8) follows directly.

91



CHAPTER 6
Conclusion

The problem of determining the high-energy limit of the moments of the Eisenstein series

on convex co-compact hyperbolic manifolds has been solved completely in the case where the

dimension of the limit set is less than n
2
. However, the question about the rate of convergence

is yet far from being completely solved, not to mention finding precise asymptotics for any

of the moments.

The polynomial error terms obtained for the odd-order moments are not sharp in general.

This is essentially due to the generality of our approach, which does not take into account the

properties of the stationary points involved with enough specificity. On the other hand, the

direct approach followed in §4.2 and in Chapter 5 to treat the third and the fourth moments

of the Eisenstein series on surfaces does not seem to generalize easily to higher moments. The

larger the power of the Eisenstein series, the more complicated the expression of the gradient

of the phase function. Consequently, the calculations involved in the determination of its

zero set become quickly very tedious. Moreover, even a precise knowledge of the stationary

points is not sufficient to guarantee the success of this approach. The method developed here

depends strongly on the geometry of the problem and on the simplicity of the stationary

points involved. For example, a straightforward generalization could not be expected when

the phase is stationary at more than one point.

For much the same reasons, it does not seem practicable to adapt the proofs of these two

special cases to manifolds of higher dimensions. For example, when n = 2, the gradient of

the phase functions appearing in the calculations of the restricted L4-norm would generally

not vanish at one point, but on a (1-dimensional) curve. New ideas would then be required

to resolve this issue which does not arise on surfaces (i.e., when n = 1).
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On the other hand, it does not seem that a general argument of the same nature as

the one leading to Theorem 1.2 would be suitable for the even-order moments. Indeed, the

“middle-term”, i.e., Ipp/2(λ), gives rise to oscillatory integrals that have phase functions for

which the gradient cannot be bounded from below uniformly in γ, contrary to the odd case.

A more precise knowledge of the gradient of the phase functions appears then to be necessary

if one wants to follow this approach. However, as discussed above, due to the complexity of

the calculations involved, such information does not seem to be easily attainable when p is

large. For all of these reasons, we think that the methods developed here have reached their

limit as far as the rate of convergence is concerned.

A natural generalization of the problem addressed in this work would be to consider

the case where the dimension of the limit set is larger than n/2. However, under these

circumstances the Eisenstein series do not lift to the absolutely convergent series provided

by Lemma 2.20. We then expect that an approach of considerably different nature would be

necessary to tackle this problem.

In view of Theorem 1.1 and Corollary 3.3, a natural direction for further research is the

question mentioned in §1.1 about the possible existence of a random variable F to which the

family of random variables Fλ would converge in distribution. Starting from the knowledge

of limλ→∞ E(F p
λ ) for all p ≥ 1, one could now attempt to identify a probability law whose

moments and the ones of the Eisenstein series at high-energy coincide. However, since the

limits limλ→∞ E(F p
λ ) depend (at least a priori) on the choice of the manifold X, finding a

general expression for such a probability distribution is not expected to be straightforward.
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