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ABSTRACT
Today’s smartphone notification systems are incapable of
determining whether a notification has been successfully
perceived without explicit interaction from the user. If the
system incorrectly assumes that a notification has not been
perceived, it may repeat it redundantly, disrupting the user
and others (e.g., phone ringing). Or, if it incorrectly assumes
that a notification was perceived, and therefore fails to re-
peat it, the notification will be missed altogether (e.g., text
message). Results from a laboratory study confirm, for the
first time, that both vibrotactile and auditory smartphone no-
tifications induce skin conductance responses (SCR), that the
induced responses differ from that of arbitrary stimuli, and
that they could be employed to predict perception of smart-
phone notifications after their presentation using wearable
sensors.
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(a)

Figure 1: Overviewof the proposed feedback loop. Anotifica-
tion is perceived by a user. The user anticipates the potential
rewarding social interaction, which induces an SCR. Sweat-
Sponse captures the SCR using a wearable sensor, predicts
whether it was perceived and feeds the information back to
the notification system.

Scotland Uk. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3290605.3300420

1 INTRODUCTION
Although intelligent devices are increasingly embedded into
our daily lives, in most cases, their delivery of notifications
operates in an open loop framework. This leads to inefficient
and potentially disruptive communication approaches, as
seen in both synchronous and asynchronous contexts. In the
former (e.g., phone calls and videoconferencing), alerts are
repeated until acknowledged by being explicitly addressed
or silenced. During the interval between the user’s initial
perception of the alert and then reaching their device, the
continuous ringing has the potential to cause unnecessary
disruption of colleagues or nearby strangers. In the context
of asynchronous interactions (e.g., text messaging, email and
instant messaging applications), a single alert is delivered.
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The user is often never reminded of the event, which can
delay the response to potentially critical messages.
We believe that a notification should be presented at the

minimal volume or vibration intensity necessary for percep-
tion, and only be repeated as needed to reduce disruption to
a user’s environment, whether social or professional. With
recent advances in wearable technologies, especially in the
domain of wellness and physiological sensing, systems now
have access to information about their users’ internal states
and context that we anticipate enables the possibility of clos-
ing the loop on notification delivery.

In this paper, we report the first evidence of physiological
responses to smartphone notifications and present support-
ing evidence that those responses could be used to improve
the notification experience if carefully integrated into a per-
ception prediction system. Drawing from these findings, we
introduce SweatSponse, a feedback loop relying on skin con-
ductance responses (SCR) that could allow systems to infer
a user’s perception of a vibrotactile or auditory notification
following its presentation, without explicit intervention from
the user. While it is still an early prototype, we envision that
in the future this feedback channel could allow a notifica-
tion system to adapt its communication behavior approach
by silencing, repeating, or otherwise modifying the sensory
characteristics of a notification based on the user’s percep-
tion (See Figure 1).

2 RELATEDWORK
Determining Notification Perception
Two main approaches exist in determining a user’s percep-
tion of a notification or other vibrotactile or auditory stim-
ulus. The first approach is the standard for today’s devices
and relies on explicit user interaction. Perception is assumed
after a user manually acknowledges the item in the notifica-
tion tray or opens the application and/or conversation that
generated the notification [6, 13, 15]. In this active approach,
depending on system-specific implementations, failure from
a user to acknowledge a notification in a timely manner can
lead to the repeated rendering of an alert (e.g., the continu-
ous ringing of an incoming call). Their limitation is evident
when a user perceives a notification, but is unable, or does
not wish, to respond at that moment. In this case, the system
falsely interprets the lack of direct interaction with the ap-
plication or notification tray as a failure in alerting the user
of a notification.
The second approach attempts to predict if a signal will

be perceived prior to its delivery based on user context at-
tributes and properties of the stimulus. For example, Ander-
sen et al. successfully used users’ age, current activity and
vibration intensity to predict the probability that a vibro-
tactile signal would be perceived [1]. One of the limitations

outlined by the authors was the impractical reliance on a
discrete activity recognition system. Blum et al. addressed
this issue by using aggregated continuous accelerometer
measurements to represent the amount of haptic noise prior
to the delivery of the vibrotactile stimulus, instead of using
discrete activity, to predict the likelihood of perceiving the
stimulus [3]. While these examples theoretically allow the
adjustment of stimulus properties to maximize perception,
they are employed prior to the presentation of the notifi-
cation and as such cannot confirm that the stimulus was
actually perceived.
To the best of the authors’ knowledge there currently

exists no method that can automatically confirm perception
after the delivery of a stimulus that does not require users
to interact with their devices.

Skin Conductance Responses to Notifications
Since the middle of the twentieth century, electrodermal
activity has been employed as a robust indicator of a sub-
ject’s perception of novel, startling, aversive or otherwise
significant stimuli [5]. In these contexts, a change in skin
conductance in response to a specific event or stimulus is
called an event-related skin conductance responses (eSCR).
An eSCR is characterized by a sharp increase in skin conduc-
tance beginning one to four seconds after the presentation
of a stimulus [11], followed by a slow decrease until the
baseline is reached.

Physiological responses to arbitrary auditory, visual, and
vibrotractile stimuli have been studied extensively and these
signals’ capacity to induce identifiable eSCR has been demon-
strated on hundreds of occasions. However, the relation be-
tween smartphone notifications and physiological signals
remains largely unexplored. We argue that notifications dif-
fer from arbitrary stimuli since in addition to their sensory
component, they are used to announce a social interaction.
Prior work has demonstrated a causal relationship between
digital social interactions (i.e. subject of notifications) and
activation of dopaminergic reward circuits [10]. This kind
of activation has been correlated with heightened arousal
states [16] that are known to influence electrodermal ac-
tivity [4]. This makes notifications an extremely promising
candidate in robustly and repeatably inducing eSCR.
In addition, smartphone notifications follow a variable-

ratio reinforcement schedule [16], i.e., a variable delivery rate
and uncertain outcome (e.g., positive message from a friend
versus a work-related email). This reinforcement schedule,
also observed in gambling, is known for its addictive behav-
ior reinforcement. The uncertainty and unpredictability in
delivery time and content, combined with our innate desire
for social interactions, induces strong arousal states [16] that
are less likely to be subject to habituation. In the case of
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smartphone notifications, the hypothesized relationship be-
tween the anticipated rewarding social interaction and the
stimulus of the notification is reinforced dozens of times per
day [13]. As such, the difference between notifications and
arbitrary stimuli should be outlined in their more complex
habituation and conditioning characteristics.

3 SWEATSPONSE
The aim of Sweatsponse is to improve the notification expe-
rience by creating a perception feedback loop that enables
a device to efficiently adapt its communication based on
user perception without requiring any explicit intervention
(see Figure 1). This relies on Sweatsponse’s ability to infer
a user’s perception of a notification from the occurrence of
an eSCR, or the lack thereof, using a wearable skin conduc-
tance sensor. The proposed method is based on the tight
temporal coupling between the delivery of a known stimulus
(in this case, a notification) and an anticipated eSCR (1-4 s
post-stimulus [11]) to avoid responses that could be induced
by external non-relevant stimuli. We believe accurate mea-
surements are possible with recent wearable physiological
sensor technologies such as Empatica’s E41 and Thought
Technology’s Triple Point Sensor (TPS)2 that offer long-term
electrodermal activity recordings. From these measurements,
we anticipate perception can be inferred using features ex-
tracted by existing effective eSCR response modeling and
detection tools [2].

4 USER STUDY
The central objective of this project is to investigate whether
skin conductance measurement could be used to infer the
perception of notifications without requiring explicit user
interaction. To achieve this goal, the following research ques-
tions first need to be answered:

• Q1 Can smartphone notifications provoke measurable
event-related skin conductance responses (eSCR)?

• Q2 Are those eSCR correlated with the participants
fear of missing out (FoMO)?

• Q3 Is prediction performance affected by the modality
through which a stimulus was perceived? E.g., does a
notification delivered using an auditory alert provoke
the same response as a vibrotactile notification?

• Q4 Knowing that a notification was delivered, is it pos-
sible to predict, withmeaningful performance, whether
it was perceived based on properties of the potentially
induced eSCR?

1Empatica E4
2Thought Technology TPS

Method
Subjects were greeted with an explanation of the experi-
ment’s objectives and asked to read and sign an institution-
ally approved consent form (REB# 83-0814). A pre-test ques-
tionnaire was used to collect standard demographic infor-
mation, the users’ usual notification settings and which of
their applications usually generated notifications. Partici-
pants were asked to complete the fear of missing out (FoMO)
scale, which attempts to quantify one’s anxiety in response
to missing a potentially rewarding social experience [14].
A TPS was attached to the participants’ non-dominant

hand following the manufacturer’s recommended placement
instructions. The sensor streamed the participant’s skin con-
ductance measurements to an Android tablet for logging. For
the purpose of the study, a notification logging application
was developed and installed on the participant’s Android
smartphone. The experiment application uses notification
access permissions to log the time at which a notification
was presented and the application responsible for generat-
ing it. As observed in prior work, certain Android packages
spam the notification channel by continuously updating the
notification tray’s content without presenting a stimulus to
the users [13]. To attenuate the impact of those events on
the results, consecutive events that were logged less than
one second following an initial notification by the same ap-
plication were not considered for analysis.
Participants were instructed to use the buttons on a Peb-

ble smartwatch, placed on the table, to report perceived no-
tifications, and indicate the modality through which each
notification was perceived(see Figure 2b). For example, if
a notification was perceived because of the sound of the
device’s vibrations on the table, or because of an auditory
notification, they would press the "Sound" button. Due to the
difficulty of matching the presentation time of a visual notifi-
cation (e.g., screen lighting up or blinking LED) and the often
delayed perception of such an event while engaging in non-
smartphone based visual activities, the visual modality was
not considered for this study. As such, participants were in-
structed to not report visual notifications. For the duration of
the experiment, the phone’s ringer mode was set to the first
non-silent mode (e.g., vibration, vibration and sound, etc.)
that the participant reported in the pre-test questionnaire
as most likely to be used during a normal day. To minimize
risks of heightened stress states due to smartphone separa-
tion [9] and avoid interference with sensor measurements,
participants were allowed to respond to incoming messages
and look at notifications using their dominant hand only, but
were told to decline incoming calls.

To investigate the influence of user activity on the mea-
sured signals, measurements were made under two experi-
mental conditions:
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(a) (b)

Figure 2: (a) Overall experiment setup (b) Smartwatch graph-
ical interface

• Inactive (IC): Participants were asked to watch a
wildlife documentary [12]. The volumewas adjusted to
ensure it was sufficient for the participants to comfort-
ably understand the documentary’s narration through
the integrated speakers of a LenovoG40 laptop. Tomin-
imize perceived workload, participants were explicitly
told that they would not be questioned about the docu-
mentary after the session. This condition was designed
to allow for the collection of skin conductance mea-
surements with a minimum amount of motion artifacts
and noise introduced by psychological processes. Fur-
thermore, the task took the subjects’ attention away
from their smartphone and incoming notifications.

• Active (AC): Participant were asked to complete a col-
lection of hexagonal paper mazes3 using a pen. The
maze set contains 40 hexagonal mazes of increasing
difficulty and was assembled to ensure no possible
completion within the duration of the experiment. Par-
ticipants were told that they had to complete as many
mazes as possible during the session, and that they
could only move to the next maze once they com-
pleted the previous one. This condition aimed at in-
creasing the amount of motion artifacts as well as noise
in the physiological signals induced by the hypothe-
sized higher mental demands of the task.

The presentation order of the two conditions was balanced
across participants where each condition was presented for
40 minutes. Following completion of each task, perceived
workload was sampled using a standard NASA-TLX pen and
paper instrument [8].

Although it reduces the ecological validity of the findings,
in addition to naturally occurring notifications, an exper-
imenter sent a message to the participant every 120 ± 20

3SRL Maze Task

Perceived

Noti cation

Synthetic

Noti cation

15 s

SC

t

Figure 3: Sketch presenting a notification labeled as per-
ceived by the user, preceded by a synthetic “missed” noti-
fication that was never presented to the user.

seconds to ensure sufficient data collection during the exper-
iment. Messages were sent using each participant’s favorite
messaging application, e.g., Whatsapp, Signal, or text mes-
sage, and did not require a response.
The notification perception rate was anticipated to be

artificially high in the quiet environment of the lab. Since
most machine learning approaches require a representative
amount of negative and positive samples, synthetic "missed"
notifications were introduced in the log file 15 seconds be-
fore each notification perceived by the user (see Figure3).
The introduction of “missed” notifications is based on the
assumption that if a notification was not perceived, it is im-
possible for it to induce an eSCR, and is therefore equivalent
to sampling the skin conductance signal’s noise. “Missed”
notifications were not introduced within 15 seconds of per-
ception of a real notification in order to avoid polluting the
response to the synthetic (“missed”) notification with that of
actual notifications.

Skin conductance analysis
All skin conductance signals were processed and analyzed
post-experiment using Ledalab4 in a Matlab environment.
Traditionally, the skin conductance signal is decomposed into
its tonic component, a low frequency oscillation independent
of specific events, and its phasic component, characterized by
abrupt changes in skin conductance level associated with dis-
crete events [4]. Continuous decomposition analysis (CDA)
was used to extract the phasic activity from the raw skin
conductance signal [2]. The maximum of the phasic activity
(PhasicMax) was extracted within a response window of one
second after notification presentation to an additional six sec-
onds. Two seconds were added to Lockhart’s suggested 1-4 s
average onset delay to include the peak of the responses [11].

4Ledalab
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5 HYPOTHESES
Based on the prior literature on skin conductance responses,
notifications and their social components, the following hy-
potheses were made:

• H1 It is anticipated that despite the usually non-startling
sensory properties of a smartphone notification, the
anticipation of a potentially rewarding social inter-
action [16] will be sufficient to trigger a measurable
eSCR.

• H2 The difference in maximum phasic activity be-
tween perceived and missed notifications will be cor-
related with the subject’s score on the Fear of Missing
Out scale (FoMO) due to the value associated with
their social interactions.

• H3 Since the eSCR response to notifications is assumed
to be more heavily influenced by its conditioned social
component than its sensory characteristics, vibrotac-
tile and auditory presentation of notifications will not
have a significantly different impact on the maximum
phasic activity of the skin conductance signals.

• H4Assuming an eSCR in response to a notification can
be measured, a classifier will be able to predict whether
a notification was perceived from skin conductance
measurements.

6 RESULTS
Participants
A total of 17 subjects aged between 19 and 29 years (x = 24, 8
identified as females) participated in the study and received
CAD$ 15 per hour as compensation for their time for a to-
tal of CAD$ 30. Participants were recruited from university
mailing lists, classified ads, and the university community’s
social network groups. Only Android users older than 18
years of age, who reported receiving at least 50 notifications
per day, and who had not participated in a previous notifica-
tion perception study, were recruited. Considering that the
physiological sensor has to be worn on the non-dominant
hand, and that smartwatches are almost always worn on
the non-dominant wrist, only participants used to receiving
notifications through their smartphone were eligible to par-
ticipate, minimizing risks of artificially modifying subjects’
notification perception habits by changing the location of
their wearable(s) during the study.

Experimental tasks
The two experimental conditions were initially selected to
offer a controlled and semi-controlled context for evaluation.
Since they are not standardized tasks, a paired t-test was used
to confirm our working hypothesis that the mean aggregated
NASA task load index in the AC was significantly greater
than in the IC (tlx IC = 32.11, σIC = 17.06, tlxAC = 60.41,

σAC = 17.03, t(16)=-5.9554, p< .0001). Cohen’s effect size
(d=1.66) suggests a very high practical difference between
the two tasks’ aggregated perceived workload.

Notifications
On average, participants received 26.2 (σnotif = 8.3) notifica-
tions per experimental block, of which 20 were initiated by
the experimenter. Out of the 17 participants, 11 chose to set
their phone’s ringer mode to vibrations only, 5 to sound only
and 1 to sound and vibration. Based on the registered button
presses, on average 93.4% (σperc = 5.48%) of notifications
presented were perceived when they were first delivered to
the user, which supports the initial decision to introduce
synthetic "missed" notifications in the log file to balance the
dataset. In the absence of more true missed notifications to
do a formal comparison, skin conductance measurements fol-
lowing both true and synthetic missed notifications seemed
to follow random patterns, i.e., there was no evidence of
repeatable event-related responses in either case.

Skin Conductance Measurements
Building on the data analysis approach used by Andersen et
al. and Blum et al. [1, 3], a logistic regression analysis was
conducted to investigate the contribution of the maximum
phasic activity following the reception of a notification to
the prediction of its perception. Based on prior work on skin
conductance activity, interactions between PhasicMax and
the participants’ age and gender were included as predictor
variables [7]. To address Q2, interaction with self-reported
fear of missing out (FoMO) was also included in the model.

To attenuate the influence of inter-subject PhasicMax vari-
ations on the model’s coefficients, the base-2 logarithm of
the raw PhasicMax values was used [4]. Table 1 presents
the logistic regression model employed for the analysis, its
estimated regression coefficients and the output of Wald’s
test investigating the contribution of each predictor variable
to the model’s fitness.

Q1 - Smartphone Notifications on Electrodermal Ac-
tivity. Based on these results, we can conclude that the con-
tribution of loд2PhasicMax to the model’s fitness is statisti-
cally significant. The estimated coefficient of 0.375 shows
that a two-fold increase in the measured PhasicMax follow-
ing the delivery of a notification increases the probability
that the alert was perceived by exp(0.375) = 1.45 times.

A second test on the residual deviance is used to evaluate
how well the proposed model fits the collected data [3]. Con-
sidering the probability that a χ 2 test with 1173 degrees of
freedom would be greater than 1588.8 is < .00001% (p < .05),
wemust reject the null hypothesis that our logistic regression
model provides an adequate fit of the data. Although this
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Predictor Estimated Coefficient Std. Error z value p-value

Intercept 0.015251 0.075648 0.202 0.840221
loд2(PhasicMax) 0.375126 0.143005 2.623 0.008712
loд2(PhasicMax):Age -0.023024 0.006689 -3.442 0.000577
loд2(PhasicMax):Gender 0.035841 0.047386 0.756 0.449432
loд2(PhasicMax):FoMO 0.114687 0.046617 2.460 0.013886

Null deviance 1624.2 on 1177 degrees of freedom.
Residual deviance 1588.8.8 on 1173 degrees of freedom

Table 1: Logistic regression analysis summary and Wald’s test output.

test reveals poor model fitness, it does not invalidate the sig-
nificant contribution of PhasicMax, but rather, suggests that
other factors, not accounted for in the current model, could
explain the variance of the data. For example, the model
could be enhanced by including stimulus-related properties,
as proposed by Andersen et al. and Blum et al. [1, 3].

A Spearman correlation test between the delivery time of a
notification and its corresponding PhasicMax was employed
to validate our working hypothesis that from an electroder-
mal perspective, smartphone notifications are different from
arbitrary auditory and vibrotactile stimuli (see Section 2). As
previouslymentioned, we suggest that this is due to the social
nature of smartphone notifications, for which we would not
expect habituation, or would only observe habituation at a
much slower rate than that of arbitrary stimuli (see Section 2).
A very weak negative monotonic relationship was observed
between the two variables (r=-.06, p < .05 ), indicating that
the amplitude of responses showed a weak downward trend
over the two-hour duration of the experiment, thus provid-
ing support for our working hypothesis. Even though a very
small, yet significant, habituation was observed, the scale
at which it was occurring far exceeds the habituation time
observed in the cases of arbitrary stimuli presentations [4].
In addition to the relevance of the stimuli, there is a possi-
bility that eSCR to smartphone notifications behaves more
similarly to that of defensive responses, which were shown
to exhibit very little habituation over time, than to orienting
responses, which usually have fast habituation [4]. This de-
fensive interpretation would also be aligned with prior work
that outlined the negative perception of notifications and
their properties as physical and psychological stressors [17].
However, a different experiment design explicitly comparing
habituation to smartphone notifications and arbitrary stim-
uli, delivered in the same time period, would be required to
conclude that this hypothesis holds.

The logistic regression analysis supports H1, stating that
the perception of smartphone notifications provoke event-
related skin conductance responses, as reflected by the in-
creased phasic electrodermal activity.

Q2 - Fear of Missing Out on Physiological Response.
The logistic regression analysis showed a statistically sig-
nificant contribution of the interaction between PhasicMax
and FoMO on the model’s fitness. Further model analysis
revealed that FoMO scores below those observed during the
study would cause a slope inversion. This inversion could
be interpreted as an illogical decrease in the probability that
a notification was perceived when larger skin conductance
responses are observed. Based on the model’s lack of fit to
the data, its observed behavior and the reported statistically
significant contribution of the interaction term, we must con-
clude that the sample size used in this study was insufficient
to allow for analysis of the influence of fear of missing out on
eSCR. Similar observations and conclusions can be made re-
garding the statistically significant interaction between age
and PhasicMax, as the fitted model contradicts prior work
that has repeatedly shown a negative monotonic correlation
between age and electrodermal activity [4, 7].
A moderate positive correlation was observed for the

difference between the mean PhasicMax of perceived and
missed notifications, and subjects’ FoMO scores (r=0.604,
t(15)=2.5114, p< .05). This suggests that participants with
high self-reported FoMO scores generally showed larger Pha-
sicMax difference between perceived andmissed smartphone
notifications than those with lower scores.

It is conceivable that the model used the interaction terms
to identify participants’ unique response amplitude, which
statistically had a significant positive effect on the model’s
fitness. As such, even though a positive correlation was ob-
served between FoMO scores and the range of amplitude
of eSCR, the significant interaction term from the logistic
regression analysis prevents us from drawing any conclusion
with regards to our second research question.

Q3 - Perception Modality on Physiological Response.
The finding that notifications indeed provoke eSCR allows us
to consider our third research question: how does perception
modality influence these responses? Out of all the alerts
that were perceived, 73.0% were heard and 27.0% were felt
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tactually, either through direct contact with the phone or by
conduction of the vibrations through the table.
A Wilcoxon rank sum test revealed statistically signifi-

cant difference between the PhasicMax distribution location
of notifications reported as “Sound‘” and “Vibration” (esti-
mated difference in distribution location of 0.25, W = 39245,
p< .0001). Notifications perceived due to their tactual proper-
ties provoked greater skin conductance responses than their
auditory counterparts (medium effect size, Cohen’s d = 0.509).
To examine this difference in greater detail, a comparison
between notifications perceived via sound was conducted
for the cases where the auditory stimulus is an unintentional
consequence of the device’s vibration instead of a normal
audio alert. A Wilcoxon rank sum test shows that there ex-
ists a significant PhasicMax difference between these two
cases (estimated difference in distribution location of 0.207,
W = 22602, p< .0001). Interestingly, alerts perceived due to
the sound of vibrations were accompanied by greater phasic
activity than their purely auditory counterparts (medium ef-
fect size, Cohen’s d=0.578). Since participants were asked to
indicate the modality that they believed allowed them to per-
ceive the notification, even in the cases where a vibrotactile
stimulus was detected because of its sound, it is possible that
the haptic component contributed to an increase in phasic
skin conductance activity.
Similarly, a comparison of the maximum phasic activity

following the perception of a vibrotactile notification via
its tactual or auditory component shows that vibrotactile
notifications perceived because of their haptic properties
elicited greater responses than those reported to be caused by
the auditory artifacts of the vibrations (estimated difference
in distribution location of 0.211, W = 20077, p< .0001, small
effect size, Cohen’s d=0.38).

These results do not support our third hypothesis (H3) stat-
ing that the phasic component of the skin conductance signal
would not be significantly different between the cases where
notifications were perceived through the auditory and haptic
channels. Instead, significant differences in the amplitude
of responses were observed, with notifications presented in
vibration mode generally eliciting larger eSCR than their au-
ditory counterparts. Even though these results contradict our
research hypothesis, this presents an additional opportunity:
the differences between modalities suggest that a perception
prediction system performance could benefit from knowing
a device’s current ringer mode when attempting to make
perception predictions.

Q4 - Perception Prediction Performance. To investigate
whether a perception prediction system based on skin con-
ductance could assist in a notification scenario, the device’s
current ringer mode was included as a predictor variable to
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Figure 4: ROC curves generated from the proposed model
for the inactive condition (IC), active condition (AC) and ag-
gregated (all data).

the logistic regression model, and receiver operating charac-
teristic (ROC) curves were generated using leave one subject
out cross-validation (see Figure 4).

To compare the effect of the user’s activity and perceived
workload on the model’s performance, three ROC curves are
presented. The first represents the general SweatSponse per-
formance and was created using all of the held-out subject’s
data as the test set independently from the experimental
condition. The second and third ROC curves were generated
using only the held-out test data collected during the inactive
(IC) and active (AC) experimental conditions, respectively.

The difference between the area under the curve (AUC)
for combined experimental conditions and that of a random
binary predictor is statistically significant as revealed by
pROC’s "Bootstrap" method (AUCALL = .0.573, AUCRDM =

.50, D=4.37, n.boot=2000, boot.stratified=1,p < .0001). Hence,
the overall performance of SweatSponse is statistically sig-
nificantly better than randomly predicting perception.

The observable difference in AUC between the data from
the IC and AC conditions was found to be statistically signif-
icant (AUCIC = .61, AUCAC = .53, D=2.1965, n.boot=2000,
boot.stratified=1, p < .05). This suggests that there is a sig-
nificant drop in performance as the perceived workload and
user activity increases.
When selecting a general threshold that minimizes the

distance between the ROC curve and the [0,1] coordinate on
the ROC plot, an accuracy of 0.61, recall value of 0.75 and
specificity of 0.38 are obtained. By interpreting these results
and the ROC curves, one can conclude that the prediction
performance of the system performs better than a random
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binary classifier, but has room for improvement. It correctly
inferred perception in 75% of the cases where a notification
was indeed perceived by participants, at the expense of only
correctly identifying 38% of missed notifications as such. In
its current state and using this threshold, it is anticipated
that the proposed system could potentially enhance users’
notification experience by automating non-critical actions
such as reducing the intensity of a notification once it was
perceived. By automatically reducing notification intensity,
as opposed to completely silencing it, SweatSponse could
reduce the risks of negatively impacting the effectiveness of
the notification system due to false predictions.
The comparison of ROC curves and logistic regression

analysis suggest that the perception of smartphone notifica-
tions do indeed produce measurable event-related skin con-
ductance responses, as quantified by the maximum of skin
conductance phasic activity (H1), and that those responses
could allow a system to obtain perception feedback. However
promising these results, more empirical data, specifically con-
sidering the user experience with such a system, would be
required to conclude that it offers a superior notification
experience in practice (H4).

7 LIMITATIONS
Experiment
While the results of this study are promising, it must be noted
that the participants were drawn from a young adult popula-
tion, who were all Android users, and who lived in a North
American cultural context at the time of the experiment.

This study was conducted in a laboratory setting over
a two-hour period. It is possible that the time of the day
at which participants completed the procedure influenced
their physiological responses, due to prior expectations of a
message’s origins. For example, if a subject usually receives
work-related emails during the time frame in which they
participated in the study, they may not experience the same
response as if they were participating at a later time when
they usually expect their partner’s call.
Furthermore, it is possible that the high notification fre-

quency induced frustration or other negative emotional states
that may have influenced physiological measurements [4].
We hypothesize that the observed weak habituation could
be a consequence of this phenomena, combined with the
knowledge that most notifications were in fact originating
from an experimenter. It is expected that under regular, non-
experimental conditions, the effect of smartphone notifica-
tions on eSCR would, if anything, be even more pronounced.

To maximize performance and external validity of Sweat-
Sponse, more data should be collected in the wild, allowing
the measurement of eSCR in response to naturally occurring
notifications, as opposed to those acquired under laboratory

conditions. Nevertheless, the chosen tasks, i.e., watching
a documentary and completing a set of paper mazes, are
representative of everyday activities such as watching tele-
vision, engaging in desk work and attending a meeting or
presentation.

System
SweatSponse cannot avoid limitations inherent to the skin
conductance measurements. Due to the 1-4 second latency
in the response following a stimulus presentation [11], we
would advise against using eSCR for the detection of frequent
events (<5 seconds inter-stimulus intervals) and especially to
detect time- and safety-critical events. Furtherworkwould be
needed to validate whether other behavioral or physiological
signals could reliably be used for the cases where multiple
stimuli are being delivered in rapid sequence. Indeed, prior
work on smartphone separation showed that participants
exhibited significantly greater stress levels, reflected by an
increase in stress-specific gestures, when they could not
access their own smartphone or could only use a stranger’s
system than when they were allowed to quickly access their
own device [9]. It is possible that stress-related markers in
motion patterns could be used as indicators of smartphone
notification perception even when users are not separated
from their device.

In addition, some environmental contexts could interfere
with the function of SweatSponse by not satisfying mini-
mal conditions required for the electrical measurement of
skin conductance. For example, even though they should
be tightly coupled to the skin, existing SCR sensing wear-
ables often expose the electrodes to the elements (e.g., rain or
snow), which can negatively impact measurement accuracy.
Furthermore, while this experiment was conducted in a static
environment, certain physical activities could introduce a
greater level of motion artifacts to the measurements than
existing automated signal correction techniques can process
reliably. This is particularly problematic, since the contexts
in which the quality of measurements are the worst are the
same as those in which notifications are most likely to be
missed [3].

8 FUTURE APPLICATIONS
In the future, we expect that physiological measurement
devices will increase in accuracy and be embedded in main-
stream wearable technologies, which will improve Sweat-
Sponse’s perception detection and viability for day-to-day
use.

We now present a possible application of SweatSponse in
notification systems that we anticipate could be realized with
further development. Instead of users manually adjusting the
volume or intensity of their notifications, Sweatsponse could
allow the introduction of "scaling" notifications. A "scaling"
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notification would start at the minimum intensity at which
it is likely to be perceived, using methods such as the one
proposed by Blum et al. [3]. It would then gradually ramp
up in volume and/or vibration intensity until SweatSponse
reports a high probability of perception at which point, the
alert intensity could be reduced or stopped. Scaling could
also involve a change in modality. For example, if the notifi-
cation is being delivered initially through vibration, the in-
tensity could be increased until its maximum value, and then
switched to more salient auditory alerts in the prolonged
absence of responses. This would be particularly valuable
when the user is attempting to locate their phone that was
last left in vibration or silent mode.

9 CONCLUSION
From the results of the presented laboratory study, we con-
clude for the first time that smartphone notifications reliably
induce skin conductance responses. Furthermore, given their
strong association with potential social interaction, smart-
phone notifications differ from arbitrary vibrations, sound,
and light feedback used in prior studies employing electro-
dermal measurements. This is reflected in the comparatively
marginal habituation observed over the duration of the study.
Based on these results, this work introduces SweatSponse,
the first method that allows for prediction of perception of
a notification after its presentation, without the need for
users to engage with their device. Preliminary performance
assessments indicate that the system presents a promising
approach to perception prediction of smartphone notifica-
tions.
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