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ABSTRACT
Methods  for  the  reconstruction  of  three-dimensional  objects  by  triangulating  between  pairs  of  two-

dimensional contours are discussed. Alternative cost functions for optimizing the triangulation are considered, 
and new cost functions are proposed that measure the narrowness of the triangles. These narrowness functions 
are particularly well suited to the generation of finite-element meshes.

1. INTRODUCTION
The problem of reconstructing the shapes of three-dimensional objects from series of two-dimensional 

contours  arises  in  a  number  of  areas,  including  many  biomedical  applications  involving  the  forms  and 
interrelationships of complex three-dimensional anatomical structures studied by serial histological sections.

Given a set of N planar polygonal closed contours, each described by the x and y coördinates of its vertices 
and by a single z coördinate, one approach to defining the surface of a corresponding three-dimensional solid is 
to define non-overlapping triangular ‘tiles’ or  facets joining pairs of  contours.  For each triangle,  two of its 
vertices will be neighbouring points on one polygonal contour, and the third vertex will be some point on a 
neighbouring contour.

In Section 2 I shall review the methods that have been described in the literature for choosing such a 
triangulation: it will be seen that the algorithm of Fuchs  et al. [4936] offers a robust and reasonably efficient 
method. Their presentation of the method took surface area as the cost function to be minimized, and this has 
been repeated in subsequent uses of the method [1744,4264,4940,4931], but it is not essential. In Section 3 I 
shall discuss the use of different cost functions, and present new ones that may be preferable, particularly when 
the triangulation is to be used for generating a finite-element mesh for subsequent structural or other analysis.

2. REVIEW OF PUBLISHED METHODS
The basic computational  problem involves  choosing a  particular  order  in  which to  join up nodes on 

neighbouring contours so as to form sequences of non-overlapping triangles. Suppose that we are given the 
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contours SA and SB, consisting of the points {Ai, i = 1, 2, ... m} and {Bj, j = 1, 2, ... n}. One must choose vertices 
Ai0 and Bj0 at which to start, and then choose a particular sequence of triangulation. In the following review of 
previously published methods, I shall consider the triangulation itself first, and afterwards discuss the problem of 
choosing a pair of starting points.

Triangulation algorithms
Keppel [4367] published the first description of a triangulation algorithm of which I am aware, although 

he mentioned (without references) earlier uses of triangulation by U. Rosenow, by J. Weinkam, and by W.A. 
Hunt. Keppel introduced the use of concepts from graph theory to describe the problem. He adopted a simple 
optimization  criterion,  namely,  the  maximization  of  the  volume  enclosed  by  the  surface  defined  by  the 
triangulation,  and  showed  that  the  problem of  finding  the  optimal  triangulation  is  equivalent  to  finding  a 
maximum-cost path through a graph which turns out to have a particularly simple structure. Each triangle is 
associated with an arc in the graph, and has a cost function, in this case volume, associated with it. Dijkstra 
[1001] had already described an algorithm for solving this problem in a more general class of graph, and Keppel 
presented an even simpler algorithm for the special case involved here. Unfortunately, these algorithms rely for 
their efficiency on the choice of a cost function which is never negative. The volume cost function is guaranteed 
to be non-negative only when the contour is convex, and as a result Keppel was forced to subdivide his contours, 
treating only convex subsets, and iterating until all contour points had been treated. The algorithm as a result is 
difficult to programme, and in fact Keppel did not give the details about the most difficult aspects of combining 
the treatments of the convex and concave parts of the contours.

Fuchs, Kedem & Uselton [4936] followed Keppel in formulating the problem in terms of graph theory. 
One  of  the  two  main  contributions  in  their  paper  was  in  choosing  to  minimize  surface  area  rather  than 
maximizing volume. The surface-area cost function is always non-negative, and thus they avoided most of the 
complexities of Keppel’s algorithm. The basic graph-traversal algorithm they used was similar in spirit to that 
described  by  Keppel  although  organized  somewhat  differently:  whereas  Keppel  advanced  through  the 
rectangular grid of the graph with a diagonal ‘front’, Fuchs  et al. advanced row by row [1002]. As discussed 
below, they incorporated into this row-by-row algorithm a second major contribution, making the choice of 
starting points much more efficient.

Some authors have attempted to simplify the triangulation problem by making a series of local decisions 
about which triangles to use, rather than performing a global optimization. For example, one can decide which of 
two alternative triangles to use at each step on the way around the contours by choosing the triangle with the 
shorter diagonal [4935, 1003]. In terms of the graph-theoretic formulation, this is equivalent to using a cost 
function equal to triangle perimeter (which is non-negative), but making a final decision about direction at each 
step along the path rather than looking at all the possibilities and making a globally optimal decision. When it 
works, this local strategy is of course much faster, but it can sometimes give unacceptable results even for 
relatively simple contours with mild concavities. Before triangulating, Christiansen & Sederberg [4935] scaled 
the  x and  y coördinates separately,  and translated them, so as  to map the contours onto unit  squares.  This 
improves  the  behaviour  at  least  for  some contours,  but  does  not  guarantee  acceptable  results  for  complex 
contours.

Ganapathy & Dennehy [5021] made local decisions based on a cost function involving the cumulative 
sum of the lengths of the contour segments (normalized by dividing by the overall contour perimeter), which 
works well for pairs of contours that are quite similar. The authors pointed out that, unlike other methods that 
make local decisions, this method has memory in the sense that its cost function depends on previous decisions; 
it is not clear how much of an advantage this is. They also pointed out that the decision criterion does not depend 
on the distance between contours.  This means that the same triangulation is obtained even if  the planes of 
consecutive contours are not parallel; other cost functions would presumably work for nonparallel planes but the 
particular triangulation obtained would depend on their relative positions and orientations.

Batnitzky  et  al. [3923]  described  another  local  method.  They  first  mapped  each  contour  (in  some 
unspecified way) onto a contour that was star convex relative to the centroid of the original contour, that is, a 
contour on which every point could be joined to the centroid by a straight line which did not cross over the 
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contour. They decided which pairs of points to join based on the directions from the contour centroids: of the 
two candidate pairs of points at each stage, they joined the pair for which the difference in direction of the points 
from their respective centroids was smaller. This method of choosing obviously depends on the property of star 
convexity, and such a mapping is only possible for contours which are fairly smooth and well behaved, without 
abrupt concavities.

Choosing starting points
Keppel [4367] did not address the problem of choosing a pair of starting points. One possibility [4935, 

1003] is to choose the two vertices which are closest together, that is, to choose i0 and j0 such that Ai0 and Bj0 are 
closer together than any other pair Ai and Bj. (One can either look at all mn pairs of points before deciding which 
two points are closest, or, with some risk, arbitrarily choose to use the point on SA which was used as starting 
point when triangulating between it and the previous contour, and only look at the n distances between it and the 
points on SB.) This use of proximity runs into trouble if the two contours are skewed with respect to each other, 
and can be improved by aligning the centroids of the two contours before choosing the starting points [1004].

Another approach is to choose points Ai0 and Bj0 that lie in almost the same direction from the centroids of 
their respective contours [3923]. This method is suitable only for a contour which is star convex, or which can at 
least be mapped onto a contour which is star convex.

A third approach is to choose points with, for example, minimal x values [5021].

None of these approaches is suitable for contours with complex concavities. An approach which is more 
reliable, albeit considerably more expensive, is to choose one point arbitrarily on SA to begin with and consider 
joining it to all  n points on  SB, performing a new triangulation for all  n such pairs of starting points, finally 
choosing the triangulation which is best in some sense. For the triangulation algorithm of Fuchs  et al., which 
performs a global path optimization for each starting point, it can be seen that by choosing Ai0 arbitrarily and 
trying all Bj one is guaranteed to find the best overall path. However, in the case of an algorithm which makes a 
series of local decisions in determining a path, a given set of n starting pairs can easily give rise to n paths of 
which none is as good as might be obtained with some other starting pair.

Fuchs et al. showed how one can greatly improve the efficiency of trying n starting pairs, by making use 
of previous results in order to reduce the number of possible paths to be considered for each starting pair. Their 
method reduces the time increase for trying n starting pairs from a factor of n to a factor of log2 n.

3. CHOICE OF COST FUNCTION
As indicated above, the triangulation method of Fuchs et al. offers a reasonably efficient way of reliably 

triangulating even complex contours. However, their use of minimal surface area as an optimization criterion is 
not necessarily the best choice for all purposes. It is intuitively appealing because it is conceptually similar to 
stretching a rubber membrane over a wire frame: the elastic forces in the membrane will  cause it  to adopt 
something like a minimal-surface-area shape. However, it may result in shapes unlike what one would naturally 
choose to interpolate between certain contours. For example, Figure 1 shows the result of triangulating between 
two particular contours using a minimal-area criterion. It can be seen that the urge to minimize surface area has 
caused a deep concavity between the protrusions on the two contours. (The sample contours used here were all 
obtained from serial sections of  a cat  middle ear  [4943]. The triangulations were done using a global path 
optimization algorithm, programmed in FORTRAN on a PDP-11/70.)

Figure 1 suggests that there may be better cost functions than surface area. The maximal-volume criterion 
would obviously avoid a concavity of this sort, but as discussed above it leads to problems because it can be 
either  positive or  negative. The cost function selected must be (1) a quantity associated with an individual 
triangle independent of its neighbours; and (2) one-signed, that is, either non-negative or non-positive. It makes 
no real difference whether it is to be minimized or maximized, and in the following I shall arbitrarily assume that 
all cost functions are to be minimized, for simplicity.

One  type  of  cost  function  that  suggests  itself  is  some  measure  of  the  narrowness  of  the  triangles. 
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Obviously in Figure 1 the avoidance of narrow triangles would have avoided the deep concavity. Furthermore, 
the avoidance of narrow triangles is to be especially commended if the triangulation of the surface is to be used 
for creating a finite-element model of the object: it  is well known that long narrow elements tend to cause 
numerical problems in the matrix computations involved in the finite-element method.

The most obvious measure of narrowness is 1/θmin, that is, the inverse of the smallest angle of the triangle. 
Figure 2 shows the results of using this cost function in triangulating between the same contours as shown in 
Figure 1. It can be seen that the concavity has been avoided, and the resulting triangulation is excellent.

This cost function is somewhat expensive since it involves computing at least two trigonometric functions 
for each triangle. (Only two are needed if use is made of the fact that θ1 + θ2 + θ3 = 180°.) A simpler measure of 
narrowness is obtained by using

Here, cos θk is the cosine of the angle at the k-th vertex of the triangle, and is easily obtained by computing the 
dot product of the 3-dimensional vectors from that vertex to each of the other two vertices of the triangle. 
Choosing the maximal value of the cosine corresponds to minimizing θ. Subtracting from 1 and inverting yields 
a  non-negative  cost  function  which  approaches  infinity  as  the  size  of  the  narrowest  angle  of  the  triangle 
approaches zero, so it is a strong measure of narrowness. This cost function resulted in the same triangulation as 
shown in Figure 2.

An even less expensive cost function would be the maximal cos  θk itself,  but this function is almost 
constant for angles near zero, suggesting that it might not penalize very narrow triangles enough. In fact it gives 
the same triangulation as the previous function for the example of Figure 2, and in most other cases that I have 
tested. In Figure 3, however, is shown a case where the triangulations given by cos  θk and 1/(1 - cos  θk) are 
slightly different. It should be noted that with a triangulation algorithm that makes only local decisions it does 
not matter what the exact shape of the cost function is: any monotonically decreasing function of  θmin should 
work equally well, except for possible numerical problems if the function is nearly flat. However, this is not the 
case when using a global path optimization algorithm like that of Fuchs  et al. In any case the possibility of 
numerical problems is real, and 1/(1–cosmax) is probably a safer choice than cosmax.

To  test  whether  the  results  could  be  improved  upon  by  simple  modifications  of  the  cost  function, 
triangulations were done with 8 different contour pairs using the cost function 1/(1–cosmax) raised to various 
powers between 0.1 and 5.0. In all cases tried, the triangulation results were the same over the whole range of 
powers. It appears that a drastic change in the shape of a cost function is needed in order to change its behaviour. 
Changing the function from being convex upwards (cos θ) to being convex downwards (1/(1 – cos θ) or 1/θ) is 
sufficient to cause at least small changes in the triangulation.

Another cost function that is suggested by Figure 1 is triangle perimeter. The resulting triangulation is in 
fact  the  same  as  that  of  Figure  2.  This  cost  function  is  related  to  the  shorter-diagonal  criterion  used  by 
Christiansen & Sederberg [4935] and Chawla [1003]: the two are equivalent for an algorithm making local 
decisions, but they may be slightly different for a global optimization. Comparing lengths of diagonals obviously 
requires less computation than comparing perimeters, since one needs to consider only the leading edge of each 
triangle rather than all three edges. One can simplify the diagonal-length calculation further by ignoring the  z 
coördinates [1004]; again, the results will be identical when using local decisions but may differ slightly with 
global optimization.

4. CONCLUSIONS
The global path optimization algorithm of Fuchs et al. yields a robust triangulation procedure that works 

fairly well even for complex contours. However, the area-minimization criterion that has generally been used 
with it sometimes yields undesirable results. The volume-maximization criterion of Keppel [4367] may give 
better shapes but is much more complicated to use. The alternative cost functions suggested here give better 
results than the area function, without introducing extra difficulties. The narrowness function is especially well 

1
1−max cosk

, k=1,2,3
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suited  to  applications  where  the  triangulation  is  to  be  used  as  a  finite-element  mesh,  since  finite-element 
computations are sensitive to the existence of long narrow elements.

These alternative cost functions may also be desirable when the triangulation is being used specifically for 
volume and surface estimations, as by Marino et al. [4942], since they avoid the built-in biases of the maximal-
volume and minimal-area cost functions.

In some applications one can get  away with using an algorithm that  uses local  decisions rather than 
performing a global path optimization. This is true if the contours are relatively smooth and do not change shape 
too drastically from one contour to the next. These conditions may require using more closely spaced contours 
and more points per contour. If the computational burden imposed by these extra points is excessive (as it may 
well be if subsequent finite-element or hidden-surface computations are required) then it may be better to stay 
with the more expensive but more reliable global optimization. In either case the narrowness and perimeter cost 
functions may be used. The differences among different cost functions will be more pronounced with less well 
behaved contours.
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CAPTIONS
Figure 1. Example of a triangulation using surface area as the cost function. On the left the two contours are 

shown projected onto the x-y plane, on the right they are projected onto the y-z plane.

Figure 2. Example of a triangulation using a narrowness cost function, for the same contours as in Figure 1. The 
same results were obtained for the cost functions 1/θ, 1/(1 – cos θ) and cos θ, and also for the triangle 
perimeter.

Figure 3. An example of triangulation in which different results were obtained by the different narrowness cost 
functions. Part  a shows the triangulation obtained using 1/(1 – cos θ); the same results were obtained 
using 1/θ. Part b shows the upper part of the triangulation obtained using either cos θ or triangle perimeter; 
the lower part of the triangulation is the same as in Part a. Part c shows the upper part of the triangulation 
obtained using area; again the lower part is the same as in Part a. 
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Figure 1
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Figure 2
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Figure 3 (corrupted)
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