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Motivated by recent experiments, a theory for the dynamics that follow a quench from an ordered
state to both ordered and disordered regions is presented for systems with a nonconserved order
parameter. For quenches below the anneal temperature, an initial growth of fluctuations is followed
by a decay to the equilibrium values. For sufficiently low temperatures a temporary instability to
phase separation occurs giving rise to an effective spinodal curve. Quenches to the disordered phase
are found to involve nonexponential relaxation in the early stages. Analytic expressions are obtained
for the dynamic structure factor for all these situations and their relevance to recent experiments is

discussed.

I. INTRODUCTION

Quenches of systems with a nonconserved order pa-
rameter have been studied intensively.! =16 These pro-
cesses describe order-disorder transitions in alloys and
paramagnetic-antiferromagnetic transitions in Ising-like
systems. In a typical experiment, a system is prepared
in the disordered or high-temperature phase and rapidly
quenched to a lower temperature where an ordered phase
is preferred. The dynamics that follow the quench involve
the creation of ordered domains that coarsen or enlarge as
time evolves. The late stage dynamics of these transfor-
mations is well understood and is controlled by the mo-
tion of domain walls or antiphase boundaries. Allen and
Cahn? have described domain growth by assuming that
the antiphase boundaries propagate as solitary waves.
They found a constant velocity proportional to the mean
curvature from which follows a t/2 growth law for the av-
erage domain size. There have been many other theoret-
ical approaches to this problem*57:16 which yield more
detailed ‘information, but essentially recover the funda-
mental t/2 growth law. In addition there have been
extensive numerical®%!%!4 and experimentall:2:10:11,13
verifications of this result. In this paper we focus on
quenches for which the initial state is in the ordered re-
gion. This work was motivated by recent in situ time
resolved x-ray scattering experiments of Park et al.l on
the ordering dynamics of FegAl in the DO3 phase.

These experiments display intriguing behavior, some-
what analogous to the early stages of growth for a quench
from the disordered to the ordered regime. Upon a
quench from an anneal temperature of T, to a temper-
ature of T (such that T > T, > Tg, where T¢ is the
critical temperature) the Bragg peak associated with the
sublattice concentration (or DOz phase) always relaxes
exponentially to a higher value, indicating no phase sep-
aration. In contrast, the x-ray intensity associated with
the short-range order (or fluctuations about the ordered
phase) appears to sharpen at early times. In quenches
from the disordered regime to the ordered region this
sharpening is associated with the creation and growth of
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domains. The results of our study herein indicate that a
sharpening of the x-ray intensity can occur due to a sub-
tle coupling between long- and short-range order, without
the creation of domain walls.

Our work focuses on a simple model of this process
known as model A in the Halperin and Hohenberg!?
classification scheme. Model A is a nonlinear Langevin
model that describes the dynamics of a nonconserved
field (¢), which would correspond to the sublattice con-
centration in order-disorder transitions. Although model
A is highly nonlinear, analytic expressions are obtained
for the dynamic structure factor (which is equivalent to
the x ray intensity measured in experiment) by decou-
pling the growth of the mean value of the ordering field
(v0) from fluctuations (§%) about it. This decoupling
leads to a nonlinear, but spatially independent equation
for o and a linear equation of motion for 81, both of
which can be solved exactly. In the next section model A
is presented and the initial prequench state is described
in terms of quantities measured in x-ray scattering ex-
periments. The following section provides the details of
the approximation scheme outlined above and discusses
the results of these approximations. Finally a summary
of results is given and their relevance to experiment is
discussed in the last section.

II. MODEL EQUATIONS
The partition function contains all the information rel-
evant to the equilibrium properties of statistical systems.

For a system with a single order parameter, the partition
function takes the form

2z = / (DY} e—HIWI/koT 1)
H{[v], the Hamiltonian, can be generally written,
- K 2
Bl = [ax (5IVuP+V). (2)
Here it is assumed the potential density V is a function
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of 1 only. The nonequilibrium behavior of this system is
given by a Langevin equation, which assumes the dynam-
ics of ¢ are governed by the minimization of H[¢]. The
Langevin equation is a classical equation of motion for
the field 9 to which a random noise term with a well de-
fined distribution is added, to take into account thermal
fluctuations. It is written as

OY(x,t) _ . 6H[Y|
ot~ somp T 100
=T (nv%p(x, t) — %) + n(x,t).

®3)

7(x,t) is a scalar field associated with the thermal fluctu-
ations and its distribution can be defined by its moments.
‘We will use the usual Gaussian distribution which is com-
pletely specified by

(n(x,t)) =0,
(4)
(n(x,t)n(x’,t'")y = 2TkpT6(x — x')6(t — t').

In the vicinity of T¢, the equilibrium properties of sys-
tems undergoing a second-order phase transition are well
described by an effective Hamiltonian density of the form,
H[Y] = 6|V|2/2—r¢? /24 s1p* /4, where 1(x) is a scalar
field which, when averaged over thermal fluctuations,
(¥(x)), plays the role of the order parameter. When
there is no external field present, as is the case here, the
Hamiltonian is symmetric under the parity transforma-
tion ¥(x) — —(x). For r < 0 the order parameter
is zero and symmetric: (¥(x)) = (—9(x)) = 0. This
characterizes the disordered phase. When r > 0 the or-
der parameter is nonzero and not symmetric: (¢(x)) #
0, (¥(x)) # (—9(x)). This shows spontaneous symme-
try breakdown and characterizes the ordered phase. We
shall make use of this form, although we will consider
temperatures T, and Tq sufficiently far from T, that we
are not in the critical regime.

The reordering that occurs when a system in its or-
dered state undergoes a rapid change in temperature (be
it to higher or lower temperatures) will be investigated
using the ¥* Hamiltonian density given above. For such
purposes it is convenient to employ dimensionless vari-
ables, by rescaling space, time, 9, and 7 in the following
manner:

T =Tqlrglt, p=\/Irql/kex, ¢=1/sq/Irql¥,
(5)
¢ =1/sq/Irql/(Tqlrel)n,

where the subscript @ refers to the quenched state. In
these variables, for the ¢* model, Eq. (3) becomes

= (£1+ V2)¢(p,7) — ¢*(p,7) +C(p,7),  (6)

where (((p,7)¢(p", 7)) = 2¢qb(p — p)6(7 — ') and
eq = keTgsq/|rql? (|7‘Q’/K.Q)d/2. The plus and minus

9¢(p, T)
or
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sign corresponds to quenches below and above T, respec-
tively. The phenomenological constants can be related
to the susceptibility (x), the saturation value of ¥ (¥o),
and the correlation length (¢), i.e.,

1 kBTQ

X@ = 4l Tral

Irql 2 kQ
¢2 = 1»[}2 = 5 =T
© 7T s 27 Irql
(7
where ag stands for the lattice constant. Hence, the noise
strength can be written

d
= XQ (%
Ty (ﬁo) ' ®)
To solve Eq. (6) we split ¢ into two parts, i.e.,
#(p, ) = ¢go(7) + 6¢(p, 7). 9)

The first term is the average value of the field, ¢o(7) =
(¢(p, 7)), and is spatially uniform while 6§¢(p, ) repre-
sents fluctuations about this average value. In what fol-
lows we assume that 6¢ is a small parameter so that its
equation of motion can be linearized, the validity of which
will be discussed later. Let us now consider a quench
from an anneal temperature 7, < 7, to a temperature
Tq < T.. The theory can be formulated using three pa-
rameters that correspond to ratios of measurable physical
quantities. One is the ratio of the square of the satura-
tion value at the initial temperature T,, to its value at
the final temperature Tg, which is equivalent to the ratio
of the Bragg peaks associated with the long-range order,
ie.,
2 B
= -,‘A)-g- = -{% , (10)
v 15

where IZ and I, g correspond to the intensity of the Bragg
peak in the anneal and quench states, respectively. The
ratio of the susceptibilities, R, can be estimated by sub-
tracting the Bragg intensity from the total scattering pat-
tern. What is left corresponds to the structure factor of
the fluctuations around the ordered state, normally re-
ferred to as the short-range order and usually assumed
to be a Lorentzian of the form,

ID
q%¢?+2 "
where S(g, ) = (|6¢(g, 7)|?)/[(2m)?6(q + a')]. The ratio
R, can thus be related to an experimental quantity in
the following way:

Xa IaD
R, =2Xo - o
*xe I8

Ry

S(q) = (11)

(12)

The last parameter is the ratio of the square of the cor-
relation length. It is written as

£
)

The initial and final structure factors then take the form

_ Kalral (13)

R —
¢ Ta KQ
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(Ip(g, 7 =0-)°) = Rr(2m)%6(q) + eqRy/(¢*Re + 2) ,
(14)
(l¢(g, T = 0)[?) = (2m)%6(q) + eq/(¢* +2) .

In the dimensionless units defined by Eq. (5) the cor-
relation length is 1/4/2. For a process where Tq > T,
¢o(7 — 00) = 0 and the equilibrium structure factor is
given by

(Ip(g, 7 = 00)|?) =eq/(¢* + 1) . (15)

III. APPROXIMATE SOLUTION OF
MODEL EQUATIONS

To analyze the reordering that takes place when the
system is quenched from an anneal temperature T, < T,
to a temperature Ty, it is assumed that the equation of
motion for ¢ can be decoupled from that for §¢. For a
general Hamiltonian specified by Eq. (2), the equations
of motion for the average saturation value and for the
structure factor of the fluctuations respectively, are

O%o(t) _ OV (t)]

ot Oo(t) '
(16)
2
65;3’ t) = 9T (ng + %) S(q,t) + 2I'kgT.

Here all nonlinear contributions to the equation of motion
for §¢ have been dropped. In rescaled units the 1% model
then becomes

'&ia?;(-l2 = %¢o(7) — $5(7), (17)
65;‘1; g 2(£1 — ¢ — 363(7)1S(q, ) + 2¢q. (18)

As before, the plus and minus signs correspond to T <
T, and T > T, respectively. Solving for ¢o(7) gives the
time evolution of the Bragg intensity, i.e.,

IB(T) _ e:t2rRI

2(r) = = .
%o(7) 1B 1+ (e*2” —1)R;

(19)

As mentioned earlier, for a quench within the disordered
region, R; is the ratio of the Bragg intensities, IB/IB.
When the system is heated up to a temperature above IQC,
this quantity does not clearly correspond to any measur-
able quantity. Far above T, the Hamiltonian can usually
be well approximated by a %2 model, since higher orders
are only important when the fluctuations are large. Nev-
ertheless, these higher-order terms do play a role when
the prequench state has an average value that is large, as
is the case considered here. For estimation purposes we
assume that s is approximately constant below as well as
above T,.

Regardless of the precise value of Ry, Eq. (19) shows
a relaxation from an initial state R; to the final state
which is equal to 1 when Tg < T and 0 when T > T..
6¢ shows a much richer behavior. This is due to the

time dependence of the dispersion relation [i.e., w(g, ),
where S(g,7) = e“(@7)t8(q,0)], which is dictated by the
reequilibration of the long-range order. The dispersion
relation is

,
w(g,7) =+1—¢% — %/ dr' (1), (20)
0
which defines a dynamic spinodal at
w(0,0) =0, — ¢gp = 2 _ 1 (21)
) ) sp Ig \/—3— .

This effective spinodal defines the initial stability of the
fluctuations, such that for ¢o(0) < ¢sp and ¢o(0) > Psp,
6¢ will grow or decay, respectively. This is analogous to
the spinodal line defined in spinodal decomposition, ex-
cept that it only applies to the initial stages of growth.
Figures 1(a) and 1(b), respectively, show the dispersion
relation at various times for a quench above and below
the spinodal curve. A linear instability is seen at early
times for quenches below the spinodal line [Fig. 1(b)].
Nevertheless, §¢ is always linearly stable at late times.
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FIG. 1. The dispersion relationship is shown at various

times for Tg/T. = 0.8 and Tg/7T. = 0.6 in Figs. (a) and
(b), respectively with T, /T, = 0.9. In both figures the curves
from top to bottom correspond to 7 = 0, 1, 2, and 3.
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The linear approximation for §¢ would not be appropri-
ate if I°(0)/I2(0) ~ 1, since this could lead to the cre-
ations of domain. However, if IP(0)/IZ(0) < 1, the time
period over which ¢ is unstable is not sufficient to create
domains. The reason for this is that the maximum rate
of growth of §¢ is less than the rate of growth of ¢g. Con-
sequently if IP(0)/IZ(0) < 1, then IP(7)/IB(1) < 1 for

|
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all 7 > 0. For quenches above T, 6¢ is always linearly
stable and thus the linearization scheme is appropriate.
The theory is not valid in the vicinity of T, where non-
linear terms are known to play a crucial role in both
equilibrium and nonequilibrium phenomena.

The structure factor for ¢ can be obtained from Eq.
(18) and is

q2

2 2
_ €Q a1 @FV 2p tor (1—e77

+3(1 F Ry)(Rye*?7)? (

1—e
+27\3
:i:(Rje ) <——————2 2

The first four terms of this expression correspond to the
growth of the new fluctuations. The last term describes
the initial fluctuations, which go to zero in the infinite
time limit. This form ensures that the structure fac-
tor gives the correct final distribution both for quenches
within the ordered region (upper sign), and for quenches
up to the disordered region (lower sign).

IV. RESULTS

Equations (19) and (22) are the main results of this
work and describe the dynamics of the long- and short-
range order, respectively. To elucidate the behavior of
these equations it is necessary to determine approximate
values for the three ratios, Ry, Ry, and R¢. To do so,
mean-field results are used, since mean-field theory works
quite well for the quenches considered here (note for
quenches near 7T, the linearization for ¢ breaks down).
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FIG. 2. Plot of the coexistence curve (solid line) and of

the spinodal curve (dotted line) defined in Eq. (21). The
square and triangles correspond to the anneal and quench
temperatures considered in latter plots, respectively. For all
subsequent plots, the anneal temperature is 7, = 0.9.

?+1

1— e—~(q2:i:1)2‘r>

—(g*£2)2r e—(*F1)2r
—_. 22
[
The mean-field values are
1-TLI" "> TH1-T5° 1-7
(23)

where the temperatures have been scaled by the critical
temperature, e.g., T/ = T/T,. The spinodal tempera-
ture Ty, is then T, = 3T, — 2. For illustrative purposes
we consider T, = 0.9, which gives, T, = 0.7. These
quenches are schematically represented in Fig. 2 (which
also includes quenches to above 7.). In Figs. 3, 4, and
5 the Bragg intensity [i.e., ¢(7)2], S(k = 0,7) and &(7)
are shown for quenches below T, respectively. &(7) was
defined as the half-width at half-maximum of S(k, ). It
should be noted that S(k, ) fits a Lorentzian well at all
times. In these figures three temperatures are consid-
ered, one above T, (i.e., Ty = 0.95) one below T but
above the spinodal (i.e., T = 0.8) and one below the
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FIG. 3. The Bragg peak is plotted as a function of time.
The solid, dotted, and dashed lines correspond to quenches
to temperatures of T, = 0.6, 0.8, and 0.95, respectively. The
effective spinodal temperature is at Ty, = 0.7.
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FIG. 4. S(k = 0,7) is shown as a function of time for
several quench temperatures. The line types are the same as
in Fig. 3.

spinodal (i.e., T = 0.6). In all these figures, the quan-
tities plotted are rescaled so that at 7 = 0 they agree.
For these three quenches, the Bragg intensity, shown in
Fig. (3), monotonically relaxes to its equilibrium value
consistent with the experiment of Park et al.l Figures 4
and 5 indicate that the dynamics of S(0,7) and £(7) are
qualitatively different for quenches above and below T,.
For quenches below T, both quantities initially increase
before decreasing to the final equilibrium values, while
for quenches above T, there is an initial decrease before
a final rise to the equilibrium values. The reason for the
complex nonexponential behavior is due to the changing
value of ¢g or w(g, 7). In essence, at early times the av-
erage value of ¢ has not reached its equilibrium value
and consequently 6¢ is relaxing to a state that is not
commensurate with the infinite time solution. It is inter-
esting to note that the spinodal does not seem to play an
important role, such that quenches above and below the
spinodal are qualitatively similar.

Similar plots are shown for quenches above T, in
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FIG. 5. The evolution of the correlation length is shown
as a function of time for several quench temperatures. The
line types correspond to the same temperatures as in Fig. 3.
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FIG. 6. The relaxation of the Bragg peak for quenches
above T, is shown in this figure. The solid, dotted, and dashed
lines correspond to quench temperatures of Té; =1.1, 1.2, and
1.3.

Figs. 6-8 for the Bragg intensity, S(0,7), and £(7), re-
spectively. The temperatures considered are T, = 1.1,
Ty =1.2, and T}, = 1.4 as shown in Fig. 2. Contrary to
quenches below T,, the Bragg intensity relaxes to zero,
which means that the order parameter is zero and the
symmetry of the disordered phase is restored. The diffuse
peak intensity and the correlation length evolve to there
equilibrium value in a way similar to quenches above the
anneal temperature but below T,. The sudden change in
temperature (which corresponds to an abrupt variation
of the parameters) creates a far from equilibrium state
into which S(k, 7) tries to relax. Note that this nontriv-
ial relaxation of the diffuse intensity peak and of the cor-
relation length depends crucially on the nonlinear treat-
ment of the average saturation value even though we are
quenching up to the disordered phase. These events can
also be seen experimentally, although the decoupling be-
tween the Bragg intensity and the diffuse intensity men-
tioned before will be much harder to perform correctly;
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FIG. 7. S(k =0,7) is shown as a function of scaled time
for quenches into the disordered phases. The line types cor-
respond to those given in Fig. 6.
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FIG. 8. The evolution of the correlation length is plotted
as a function of time. The line types correspond to those
given in Fig. 6.

as the Bragg intensity goes to zero, it will be confounded
with the diffuse peak.

V. CONCLUSION

‘We have outlined a theory for the relaxational dynam-
ics of a quenched nonconserved system with its initial
state in the ordered region. This theory predicts interest-
ing behavior which is consistent with recent experiments
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on FezAl in the DO3; phase by Park et al.!l The behav-
ior of the diffuse peak (associated with the short-range
order) is strongly correlated with the dynamics of the
Bragg intensity (associated with the long-range order).
In essence the short-range order fluctuations attempt to
relax to a value consistent with the average value of the
order parameter which is time dependent. This com-
plex process leads to nontrivial dynamical behavior of the
short-range order peak. In summary we believe that the
apparent sharpening of the short-range order peak seen
in the experiments of Park et al.! is consistent with our
results and is not necessarily due to the creation of anti-
phase boundaries. A direct comparison with experiment
is unfortunately quite difficult, due to the dependence of
S(g,7) on @(7). The solution for ¢(r) given in Eq. (19)
depends on the specific form of free energy used (e.g., a
¢* free energy used here). It may that for quantitative
comparison with experiment, a more realistic free energy
must be selected.
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