IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

471

Efficient Implementation of Gaussian Belief Propagation Solver for Large
Sparse Diagonally Dominant Linear Systems

Yousef El-Kurdi, Warren J. Gross, and Dennis Giannacopoulos

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 2A7, Canada

We present an implementation-oriented algorithm for the recently developed Gaussian Belief Propagation solver that demonstrates
17 x speedup over the prior algorithm for diagonally dominant matrices generated by typical Finite Elements applications. Compared
to the diagonally-preconditioned conjugate gradient method, our algorithm demonstrates empirical improvements up to 6 X in iteration
count and speedups up to 1.8 X in execution time. Also we present a new flexible scheduling scheme of the algorithm that is aimed for
implementation on parallel architectures by reducing the iteration count of parallel GaBP and achieving better hardware parallelism.

Index Terms—Acceleration, Gaussian belief propagation, parallel algorithms, sparse matrices.

1. INTRODUCTION

ELIEF PROPAGATION (BP) algorithms, first presented
by Pearl [1], are probabilistic inferencing algorithms
based on recursive message updates that in general exhibit low
complexity and high parallelism; both of which properties can
be greatly exploited in processing large sparse linear systems.
Linear systems of equations are algebraically formulated as
Ax = b, where the solution to the system is z* = A~ 1h.
Iterative methods, e.g., the Preconditioned Conjugate Gradient
(PCG), are traditionally used to to solve such large sparse
systems, since they exhibit lower computational complexity
and memory requirement than directly computing the inverse
of A. A newly introduced iterative method, shown in [2], uses
BP over Gaussian graphical models (GaBP) as a solver for
linear system of equations. In this paper, we present implemen-
tation-oriented algorithms of GaBP that demonstrate potential
speedups for both sequential CPU execution as well as parallel
implementation on emerging many-core architectures.
It can be seen that the solution of the linear system z* =
A~'b can be found by solving the optimization problem:

1
max [exp <—§LIJTALL‘ + b?x)} . (1

The exponential expression in (1) resembles a multivariate
Gaussian probability distribution p(x) where z is the nodal
variables vector and A~! is the covariance matrix. By alge-
braically solving the maximization problem, it can be shown
that the solution vector z* to the linear system is actually the
mean vector of the nodal variables z of the probability distribu-
tion p(z) defined as u = A~'h. Hence the solution to the linear
system is transformed to the probabilistic inference problem of
finding the means of the variables in the multivariate Gaussian
distribution p(z).

The matrix A;; with nodal variables represented by z can
be viewed as an undirected graph, also referred to as Markov

Manuscript received July 06, 2011; revised October 01, 2011; accepted
November 03, 2011. Date of current version January 25, 2012. Corresponding
author: Y. El-Kurdi (e-mail: yousef.elkurdi@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2011.2176318

random field, where each non-zero (A4;; # 0) represents an
undirected edge between variable node n; and variable node n ;.
By factoring the graph’s distribution p(z) into the nodal func-
tions ¢ (x;) = exp(—(1/2)Asx? + biz;) and edge functions
Vi j(zi, ;) = exp(—(1/2)x;A;jx;), the continuous formula-
tion of belief propagation algorithm can then be applied to infer
the means of the nodal variables ;. In belief propagation, each
node n; computes a new message towards node n; on a partic-
ular edge (7 — 7) using all messages received from nodes in the
neighbourhood V(%) of node n; excluding the message received
from n;, with message updates from each node performed ei-
ther sequentially or concurrently subject to a specific schedule.
Since the underlying distribution is Gaussian, the belief updates
will be based on propagating only two variables: the estimated
nodal means p and variances P, as shown in (2) and (3). For
detailed derivation of GaBP, the reader is encouraged to refer to
[2] and [3]:

-1
Pij=—A%| A+ Y. P)
keN(i)\j

-1

pij = —Aij | A+ Z Py;
keN (i)\j

b+ Z Hki

keN(i)\J
3

GaBP was shown in [4] to converge for a particular class
of matrices referred to as walk-summable models. The
walk-summability condition states that the spectral radius of
the normalized off-diagonals of A in the absolute sense should
be p(|I — D= /DAD=(/2)|) < 1, where D is the diagonal
elements of A. Such class of matrices includes the symmetric
positive-definite diagonally dominant systems that arise in
many key applications such as the finite element method
(FEM).

The computational speed of GaBP implementation will
depend on certain factors such as: the data-structure used to
represent the nodes and their connectivities which are typically
sparse in memory, and the message transfer medium such as
the memory bandwidth for shared-memory architectures or
the network bandwidth for CPU-clusters. GaBP nodes process
messages in three designated stages. First, the node receives

0018-9464/$31.00 © 2012 IEEE

472

messages from sparse connections. Second, the node retrieves
the messages locally and performs computations. Last, the node
responds with new messages on the same sparse connections.
For CPU implementation, the choice of sparse data-structure
required to store the messages will have the critical impact
on performance due to message access time, data-locality and
vectorization of computational loops. As will be demonstrated
later, sparse matrices arising from typical FEM applications
can exhibit banded sparsity structure, when proper reordering
algorithms are used, which reduces connection sparsity and
increases the parallel GaBP performance.

GaBP message updates are performed subject to a partic-
ular schedule. Empirical results show that the choice of the
belief propagation schedule can greatly impact the number of
iterations required for convergence [5]. Two basic scheduling
schemes common in belief propagation are, Sequential Update
(SU) scheduling, and Parallel Update (PU) scheduling also
known as flooding. In SU scheduling, nodes are processed in
sequence according to a particular ordering; while messages
are propagated sequentially to subsequent nodes in the same
iteration. Hence, nodes can only be processed in sequence
providing little opportunity for parallel node processing. PU
scheduling on the other hand, facilitates fully concurrent ex-
ecution of nodes; however the catch is that PU scheduling
requires considerably larger number of iterations for the belief
propagation to converge when compared to SU scheduling.

In this paper, we introduce an implementation-oriented algo-
rithm of GaBP suitable for execution on both sequential as well
as parallel hardware architectures. The new algorithm achieves
optimum message retrieval time by embedding nodal connec-
tion information in each message, therefore eliminating the need
to use sparse data-structures, and facilitating the use of con-
stant-time access data-structures such as queues or stacks. In
addition, such data-structures exhibit contiguous data locality
allowing the algorithm to exploit instruction level parallelism
(ILP) or (loop vectorization) making the algorithm’s execution-
time more competitive with traditional iterative methods imple-
mentations such as the PCG algorithm. We also present em-
pirical results of SU-GaBP computational performance com-
pared with PCG showing considerable reduction in iteration
count for large sparse diagonally-dominant linear systems. Fi-
nally, we present a Hybrid Update (HU) scheduling version
of our algorithm which is expected to benefit from features of
both sequential and parallel updates resulting in improved par-
tially-parallel implementations while considerably reducing the
PU-GaBP iterations.

II. IMPLEMENTATION-ORIENTED GaBP ALGORITHM

The sequential update version of our algorithm is shown in
Fig. 1. By adding a source node pointer (n;) and the edge vari-
ance parameter (A, ;), simple contiguous data-structures such
as stacks and queues are only required to store the nodes’ mes-
sages. This optimization resulted in constant-time per message
for retrieval and processing, reducing the algorithm’s overall
message processing complexity to O(nnz), where nnz is the
number of non-zeros in A. Also since the data-structure used
is contiguous in memory, the computational loops in lines 11

IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

1: Initialize:

2: Define node ordering: 7

3: for each edge A(i,j) do

4 if n; <, n; then

5: n;. push(n;. pointer, A;;, Pj; = 0, u;; = 0)
6: end if

7: end for

8: Compute:

9: repeat {iterations}

10. for each node n; € n do
11: Pagg:Aii+ZkPki

12: Hagg = bi + D4 Hki

13: for each received message n; — n; do
14: ftij = —Aij(Pagg — Pji) " (ttagg — i)
15: Py = *Azzj (Pagg — Pji) ™!

16: n;.pop_message

17: n;. push(n;. pointer, A;;, Pij, pij)

18: end for

19: Ty = flaggPrgy

20: end for
21: until convergence: all T; converged
22: Qutput: T;

Fig. 1. Sequential update GaBP implementation-oriented algorithm.

1: Initialize:

2: for each edge A(i,j) do

3: n,.push(n;. pointer, A;;, Pj; = 0, u;j; = 0)

4: end for

5: Compute:

6: repeat {iterations}

7. for each node n; do {concurrent execution}
8: wait for all n; messages to be received

9: n;. swap_pointers(currMessStack, newMessStack)
10: Pagg =A; + Zk Py
1L Magg = b; + Zk; Hki
12: for each received message n; — n; do
13: pij = —Aij(Pagg — Pji) ™ (1tagg — 13:)
14: P = *A?j(Pagg - Pji)71

15: n;. pop_message
16: nj. push(ni. pointer, Aij; Pij7 Hij)

17: end for

18: Ti = aggPrgy

19: end for
20: until convergence: all T; converged
21: Qutput: T;

Fig. 2. Parallel update GaBP implementation-oriented algorithm.

and 12 can be vectorized by the compiler resulting in consid-
erable speedups due to ILP. Stacks are used in all our algo-
rithms in Figs. 1, 2, and 3; however, queues could be used in-
stead without any impact on the algorithm’s performance. It is
important to note that this message modification resulted in a
fixed increase in memory requirement on a per message basis.
Since this fixed increase is independent of the problem size, the
algorithm’s overall message memory requirement scalability is
not impacted e.g., O(c¢ x nnz) = O(nnz).

The initialization stage is critical for the correct operation of
the algorithm. As shown in lines 2 to 6, a unique nodal ordering

EL-KURDI et al.: GAUSSIAN BELIEF PROPAGATION SOLVER FOR LARGE SPARSE DIAGONALLY DOMINANT LINEAR SYSTEMS 473

1: Initialize:

2: Define node partitioning ¢

3: Define node ordering 7 in each (

4: for each edge A(7,j) do

5. if n; =¢ n; then {nodes in the same partition}
6 if n; <p Ny then

7 n;. push(n;. pointer, A;;, Pj; = 0, pj; = 0)
8

9

end if
else {nodes NOT in the same partition}
10: n;. push(n;. pointer, A;;, Pj; = 0, 1, = 0)
11: end if
12: end for
13: Compute:

14: repeat {iterations}
15: for each partition in ¢ do {concurrent execution}

16: for each node n; € n do {sequential execution}
17: wait for all n; messages to be received

18: n;. swap_pointers(currMessStack, newMessStack)
19: Pagg =A; + Zk Py;

20: Hagg = b; + Zk Hki

21: for each received message n; — n; do

22 pij = —Aij(Pagg — Pji) ™ (ttagg — ji)

23: P = *Afj(Pagg*Pji)_l

24: n;. pOp_message

25: nj. push(ni. pointer, Aij7 Pija /,l,”)

26: end for

27: Ti = faggPogy

28: end for

29: end for
30: until convergence: all T; converged
31: Output: T;

Fig. 3. Hybrid update GaBP implementation-oriented algorithm.

(1) needs to be defined, where <,, is an ordering relationship
used to initialize messages according to 7 order. The nodes need
to be processed according to the same order, so to avoid dead-
lock in SU-GaBP.

The parallel update version of our algorithm is shown in
Fig. 2. The PU-GaBP algorithm facilitates concurrent node
execution by using two message buffers, a current-message
buffer to store messages from the previous iteration, and a
new-message buffer to receive messages in the current itera-
tion. At the beginning of each node execution the buffers are
swapped. Also, there is no need to define any node ordering
as the case in SU-GaBP. Since the number of processing ele-
ments in typical computing environments is much less than the
number of nodes, the PU-GaBP algorithm may not be practical
for implementation of large systems; nonetheless, the algorithm
has conceptual importance as we will see later.

A. Hybrid Update GaBP Algorithm Implementation

In typical parallel computing environments, the number of
processing elements is limited; hence a degree of sequential
processing will be required for large systems. Our implementa-
tion-oriented Hybrid Update (HU) algorithm, shown in Fig. 3,
take advantage of this sequentiality to propagate faster message
updates which reduces the PU-GaBP iteration count while ex-
ploiting parallelism in both nodal multi-processing and sequen-
tial ILP.

“%N=1e4 hash-map
——N=5e4 hash-map
16/{SN=1e4 ordered-map
£+ N=5e4 ordered-map

Time speedup

L L

04 012 014 016 018 02 022 024 026
Density %

Fig. 4. Implementation-oriented SU-GaBP algorithm speedup over or-
dered-map and hash-map based implementations.

By creating a partitioning scheme of nodes, where each par-
tition is processed in parallel by a processing element, updates
between nodes in different partitions will be done using the PU
algorithm, while updates between nodes in the same partition
will be done using the SU algorithm. This flexibility allow the
HU algorithm to easily implement different sequential-parallel
scheduling variations by simply changing the partitioning and
the node ordering within each partition. That is, by choosing a
partitioning and an ordering scheme that exploits node locality
in terms of connectivity, the number of iteration penalty due to
parallel GaBP can be considerably reduced, as will be demon-
strated by our results. Typically, FEM matrices have banded
sparsity structures making them more suitable for parallel pro-
cessing using our HU algorithm.

III. RESULTS

Fig. 4 shows the speedups that can be achieved using our pro-
posed implementation-oriented SU-GaBP algorithm compared
with implementations using both ordered-maps and hash-maps
as data-structures to store messages. All executions were run-
ning on a single CPU core (Intel Core2 Quad @ 2.8 GHz) using
double-precision computations. Randomly generated sparse
matrices (nodes with random connectivities) are used for this
performance analysis. Our implementation has demonstrated
speedups of up to 17x with an increasing overall trend as the
number of non-zeros increases. This speedup trend was mainly
due to the exploitation of ILP parallelism facilitated by the
enhanced data-locality of our new algorithm. While hash-maps
can provide constant-time access for messages, they exhibit
poor data locality limiting ILP parallelism. The vertical trend
in the graphs is mainly due to the speedups from the improved
message access time-complexity. While our algorithm and
hash-map based implementation provides constant-time access
for messages, the ordered-map based implementation provides
O('m) access time-complexity where m is the total messages
per node. It is important to note that ordered-map is typically
the preferred choice of data-structure to implement compressed
row sparse matrices in sparse computational libraries that
require flexible read/write operations on the sparse matrix such
as the case in GaBP.

In order to assess the computational speed of SU-GaBP,
we compare it with the Diagonally-Preconditioned Conjugate
Gradient (D-PCG). The D-PCG code was executed on the same

474

-
~

e ==n

——G3_circtui| Q 4 — irctui
5\ _(84 G3_circtui
2 o thermaiz | @ ST —o—thermal2
a . —5—random I % 16 —=—random
©
1.4
$ g S
23 T 1812]
hag Q
£, >(_\\ﬂ\ﬂ o 1 \>\/i;/\/
bt \S\%@L\,‘:‘, £ 08 P
el 1% 4
& o8 //
o 04

10°

3
3
an

10" 10° 10' 10° : 10 10 10
Diagonal loading ¢ (log scale) Diagonal loading o (log scale)

(a) (b)

Fig.5. Implementation-oriented SU-GaBP speedup. (a) Iteration improvement
of GaBP over PCG, (b) SU-GaBP time speedup over PCG.

TABLE I
TEST MATRICES [7]

Category ecology G3_circuit thermal2 random
N (nodes) 1,000,000 1,585,478 1,228,045 1,000,000
nnz 4,996,000 7,660,826 8,580,313 8,999,976

CPU and it was obtained from the GMM-++ library [6] which
is widely used for FEM applications. Iterations were stopped
when the Frobenius norm of the residual reached ¢ = 1077
using double-precision computation. The test matrices, shown
in Table I, are obtained from [7], with the exception of the
matrix “Random”. The matrix “thermal2” results from unstruc-
tured steady-state FEM application. The matrices were made
diagonally dominant by loading the diagonals with a uniformly
distributed positive random number having a standard devi-
ation o € [1072,10%], in order to make them conform with
the walk-summability criteria [4] required for GaBP conver-
gence. The plots in Fig. 5(a) and (b) show the performance
results against D-PCG. Iteration count reductions, up to 6x,
are obtained by SU-GaBP. Also our SU-GaBP implementation
was able to achieve time speedups for many cases reaching
up to 1.8x. It is worth noting the discrepancy between the
time speedup gains and the iteration reduction, which could
be mainly due to the memory bandwidth requirements of
SU-GaBP which is not currently optimized in our code.

The parallel behavior of our HU-GaBP algorithm was simu-
lated on a single-core CPU. In order to simulate different parti-
tioning and node ordering, matrix reordering techniques were
used. Two common reordering techniques used here are Re-
verse Cuthill-McKee (RCM) [8] which reduces the matrix band-
width, and Approximate Minimum-Degree (AMD) which pro-
duces large blocks of zeros [9]. Fig. 6 shows the parallel sim-
ulation results of our HU-GaBP implementation algorithm on
the matrix “thermal2” as the number of parallel partitions in-
creases from 1 to 4096. HU-GaBP demonstrates gradual rate
of increase in iterations, while RCM and AMD showed con-
siderably lower rate of increase compared to the original ma-
trix. These results demonstrate HU-GaBP potential for paral-
lelization speedups and its flexibility in exploiting the problem’s
connectivity structure. Our future work objective is to imple-
ment HU-GaBP on CPU-clusters and many-core architectures
and compare its performance to leading parallel implementa-
tions of other iterative methods.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 2, FEBRUARY 2012

80

—+—no-reordering
—v—RCM-reordering
—=— AMD-reordering

701

601

501

401

301

Normalized parallel itrs % increase

. 2 b

1 2 4 8 16 ‘;2 64 1‘28 2‘56 5‘12 1624 2(;48 4096
Number of parallel partitions (log 2 scale)

(@)
AN
[
["
| \\
, ‘) N \
SR TR ‘ \\
(b) (©)

Fig. 6. HU-GaBP algorithm results for thermal2. (a) HU-GaBP parallel iter-
ation increase rate, (b) Sparsity structure of original thermal2, (¢) RCM re-
ordered, and (d) AMD reordered.

IV. CONCLUSION

Implementation-oriented algorithms of GaBP were presented
which demonstrates speedups of up to 17 x. Also, both improve-
ments in execution time and reduction in iteration count over
D-PCG were demonstrated using our modified algorithm. Fi-
nally, a hybrid parallel-sequential scheduling variant of our al-
gorithm was simulated to demonstrate considerable reductions
in parallel iterations and promising more potential for parallel
performance gains from implementations on CPU-cluster and
multi-core hardware architectures.

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. New York: Morgan Kaufmann, 1988.

[2] O. Shental, P. Siegel, J. Wolf, D. Bickson, and D. Dolev, “Gaussian
belief propagation solver for systems of linear equations,” in /EEE Int.
Symp. Information Theory (ISIT), 6-11, 2008, pp. 1863-1867.

[3] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
gaussian graphical models of arbitrary topology,” Neural Comput., vol.
13, no. 10, pp. 2173-2200, 2001.

[4] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Walk-sum inter-
pretation and analysis of Gaussian belief propagation,” in Advances in
Neural Information Processing Systems 18. Cambridge, MA: MIT
Press, 2006, pp. 579-586.

[5] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation:
Informed scheduling for asynchronous message passing,” in Proc. 22nd
Conf. Uncertainty in Al (UAI), Boston, MA, Jul. 2006.

[6] Gmm++: a generic template matrix c++library. Retrieved 2010.
[Online]. Available: http://download.gna.org/getfem/html/homepage/
gmm.html

[7] The University of Florida Sparse Matrix Collection. Submitted to ACM
Transactions on Mathematical Software. [Online]. Available: http://
www.cise.ufl.edu/research/sparse/matrices

[8] E.Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proc. 1969 24th National Conf. ACM, New York, 1969,
pp. 157-172, ACM.

[9] A. George and W. H. Liu, “The evolution of the minimum degree or-
dering algorithm,” STAM Rev., vol. 31, pp. 1-19, Mar. 1989.

