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Abstract

An approximation of the Hessian matrix is developed and used to accelerate the

convergence of an adjoint-based aerodynamic shape optimization framework. Exact analyti-

cal formulations of the direct-direct, adjoint-direct, adjoint-adjoint, and direct-adjoint Hes-

sian approaches are presented and the equivalence between the adjoint-adjoint and direct-

adjoint formulations is demonstrated. An approximation of the Hessian is obtained from

the analytical formulation by partially solving first-order sensitivities to reduce computatio-

nal time, while neglecting second-order sensitivities to ease implementation. Error bounds

on the resulting approximation are presented for the first-order sensitivities through per-

turbation analysis and eigenvalue analysis. The proposed method is first assessed using an

inverse design pressure problem for a quasi-one-dimensional Euler flow. Additionally, three-

dimensional inviscid transonic test cases are used to demonstrate the effectiveness of the

method. Eigenvalue analysis of the Hessian for various test cases will seek to explain the

resulting acceleration.
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Abrégé

Une approximation de la matrice Hessienne est développée et est utilisée afin d’accélérer

la convergence d’un système d’optimisation de la forme aérodynamique basée sur la méthode

adjointe. Les formulations analytiques exactes de la Hessienne sont présentées sous quatre

différentes formes : directe-directe, adjointe-directe, adjointe-adjointe et directe-adjointe.

L’équivalence entre la forme adjointe-adjointe et la forme directe-adjointe est démontrée. La

Hessienne approximative est formée à partir des formulations analytiques en résolvant partiel-

lement les sensibilités de premier ordre et en approximant certaines dérivées de second ordre.

Les erreurs engendrées par l’estimation des dérivées de premier ordre sont examinées à tra-

vers la théorie des perturbations et une analyse des valeurs propres. La stratégie est d’abord

testée à l’aide d’un problème inverse pour un écoulement quasi-uni-dimensionnel d’Euler.

Additionellement, des cas types tridimensionels d’écoulements transsoniques non-visqueux

sont utilisés pour démontrer l’efficacité de la méthode. L’analyse des valeurs propres de la

Hessienne est performée pour les divers cas type afin d’expliquer l’origine de l’accélération.
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Chapter 1

Introduction

The use of computational fluid dynamics (CFD) in conjunction with numerical op-

timization has been a dominant design method in recent years, due to its lower cost than

experimental trial and error. Flow solvers and optimization algorithms improvements have

led to faster and more robust design tools which serve in the design of the next generation

of environmentally and economically friendly aircraft. With the rise of massively parallel

supercomputers and the growth of computational power, it is now possible to successively

evaluate multiple CFD solutions in a matter of days or weeks. Consequently, the use of op-

timization algorithms with CFD has allowed engineers to numerically optimize aerodynamic

shapes.

1.1 Numerical Optimization

Numerical optimization methods can be classified into two categories: derivative-free

and gradient-based methods. The use of derivative-free methods entails that no gradient

evaluations are required. Moreover, these methods tend to be more exploratory and may

lead to multiple local minima. The approach is advantageous for problems where the func-
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CHAPTER 1. INTRODUCTION 2

tional is neither continuously differentiable nor its gradient can be estimated accurately.

However, these methods are often associated with an increased number of objective function

evaluations, which is not practical for high-fidelity flow evaluations. Although they may be

well-suited for preliminary designs where low-fidelity models are often employed, they are

less desirable at later design stages when high-fidelity models with computationally costly

functional evaluations are required. Additionally, avoiding the gradient evaluations has be-

come a much smaller benefit with the advent of the adjoint method developed by Pironneau

[42] and extended by Jameson [23]. Hence, gradient-based methods have been the preferred

optimization algorithms in the aerodynamic shape optimization (ASO) community.

The adjoint method provides the optimizer with the gradients of the objective function

with respect to the design variables at a cost independent of the number of design variables,

making it superior to the traditional finite-difference method or the direct method, which

have a computational cost proportional to the number of design variables. Moreover, gradi-

ents, also known as sensitivities, are not only useful for the optimizer, but also invaluable for

the engineer. The succession of gradient evaluations gives insights on the design space and

how sensitive the system is. As a result, gradient-based optimization also develops knowledge

in the system of interest. Gradient-based algorithms such as, steepest descent, quasi-Newton

methods and Newton’s method use the sensitivities to march towards a descent direction.

While the steepest descent method only requires the gradients, Newton’s method uses the

second-order sensitivities to converge to a local minimum at a quadratic rate, whereas quasi-

Newton methods approximate the Hessian to converge to a local minimum superlinearly.

Since the adjoint method was introduced to the ASO field, increasingly complex

frameworks have been successfully developed. Wings in various flow regimes are designed

with ease and are now simple enough to be considered as academic base cases [1, 6, 53, 20,

26]. Aircraft configurations may be studied through multidisciplinary design optimization

that takes into account both the flow and the structure [45, 28, 24]. The adjoint method has
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also extended to rotorcraft [29, 12, 30] and turbomachinery [56, 34, 57] design optimization.

The capability to perform high fidelity design optimization through the adjoint method will

continue to grow as the community develops more efficient and robust flow solvers.

1.2 The Hessian

The Hessian, also known as second-order sensitivities, is the matrix containing the

second derivatives of a multivariate function. It defines the rate of change of the gradients

with respect to the design variables. Geometrically, the gradients represent the slopes of

the function in the design space, while the Hessian matrix characterizes the curvature of the

design space. In fact, the eigenvalue decomposition of the Hessian produces the magnitude

of the principal curvatures and its principal directions. Furthermore, simply looking at the

magnitude of the diagonal terms and off-diagonal terms gives a quick understanding of the

relationship between the different design variables.

Multiple techniques have been devised to accelerate the optimization problem con-

vergence, most of which involve a Hessian formulation. The steepest descent method can

alternatively be interpreted as Newton’s method with an identity matrix as its Hessian

approximation. The most simplistic change to the gradient descent algorithm is to scale

the design variables such that the search direction is not disproportionate. The resulting

scaling can be represented as a Hessian with scaled diagonal entries that seek to imitate

curvature information. Quasi-Newton methods approximate the Hessian through various al-

gorithms such Broyden-Fletcher-Goldfarb-Shanno (BFGS) and symmetric rank-one (SR1) at

each design cycle from the change in design variables and gradients. Analytical approximate

Hessians that do not require second-order flow sensitivities have been formulated for inverse

design problems due to their quadratic nature [22, 46]. The idea of gradient smoothing

using Sobolev gradients [23] has extended to more complex approximate Hessians via shape
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calculus and Fourier analysis [2, 48]. With the advent of automatic differentiation (AD),

exact second-order sensitivities [51, 38, 14] have been employed in ASO problems. However,

the high cost of computing the exact Hessian has lead to truncated-Newton methods [35, 19]

that use conjugate-gradient or Newton-Krylov methods to approximate the search direction

with matrix-vector products of the Hessian. Due to their low computational and implemen-

tation cost, identity-initialized quasi-Newton methods are still the workhorse of most ASO

frameworks such as SNOPT [16], NLPQLP [47] and IPOPT [55].

Ideally, Newton steps are taken from the initial design to the optimal design to con-

verge quadratically. Unfortunately, the prohibitive cost of evaluating the Hessian and its

instability in non-convex regions disfavor the use of Newton’s method. The goal of the

BFGS algorithm is to update the Hessian matrix at every design cycle, such that it properly

estimates the design space curvature while maintaining positive-definiteness. In other words,

it retrieves some second-order information at every step. During the final iterations of the

optimization, the algorithm hopes to perform Newton steps such that a local minimum is

found superlinearly. However, for a quadratic design space, the BFGS algorithm requires as

many steps as the number of design variables to retrieve the exact Hessian [10]. A non-linear

design space will require even more design cycles to retrieve a good approximation without

any guarantee that it ever will. Practically, it is rare to have as many or more design cycles

than design variables for ASO. Most practitioners would also be surprised by the inefficacy

the BFGS algorithm in the ASO context and how similar it is to a scaled steepest descent.

The use of the adjoint method to calculate the Hessian matrix in an aerodynamic

context was first seen in the work of Sherman et al. [51]. It has since been expanded to be

used in different areas such as optimization, extrapolation, and uncertainty analysis. The

work of Papadimitriou and Giannakoglou [38, 37, 36, 15, 39] is more closely tied to ASO

and explores the use of an exactly-initialized BFGS algorithm to optimize two-dimensional

aerodynamic shapes. Although the Hessian is only evaluated once in the exactly-initialized
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BFGS algorithm, the initial cost is still too large to be effective. It is especially risky when the

initial design lies in a non-convex region, where the Hessian must be modified. Furthermore,

the initial time required to compute the Hessian is a large investment since the optimizer

spends most of its computational time without stepping towards an optimum.

1.3 Contributions and Thesis Overview

The current work aims to drastically reduce the initial cost by evaluating an approx-

imate Hessian. Furthermore, the proposed method is implemented in a three-dimensional

framework which introduces additional implementation complexity such as computational

scalability and memory usage. The same initialized-BFGS framework as Papadimitriou and

Giannakoglou [38] is used, but with an approximate initial Hessian. The approximation is

recovered by partially solving first-order flow sensitivities, which are the most computation-

ally intensive terms. An error bound from the resulting approximation is derived for the

Hessian entries, the search direction, and the Hessian eigenvalues. Further approximation

of the Hessian by discarding second-order flow sensitivities is performed to alleviate the im-

plementation complexity in an existing adjoint-based framework. The proposed method is

tested in a quasi-one-dimensional and three-dimensional framework.

The flow solvers are first presented in Chapter 2, followed by the optimization frame-

work in Chapter 3. Chapter 4 describes how the first-order and second-order sensitivities

are derived and evaluated. Exact analytical formulations of the direct-direct, adjoint-direct,

adjoint-adjoint, and direct-adjoint Hessian are presented based on previous works [51, 38].

The equivalence between the adjoint-adjoint and direct-adjoint formulations is demonstrated.

Subsequently, the parts of the Hessian are approximated in order to alleviate computational

and implementation cost. The methodology of the proposed methods and the bounds of

the incurred errors are presented in Chapter 5. The proposed methods are tested using a
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quasi-one-dimensional Euler flow inverse pressure problem and three-dimensional inviscid

transonic optimization problems, which are presented in Chapter 6.



Chapter 2

Flow Solver

The governing equations and numerical discretization are presented for the quasi-

one-dimensional and three-dimensional Navier-Stokes flow solvers. The three-dimensional

case uses the McGill University Computational Aerodynamics Group in-house finite-volume

structured multi-block solver.

2.1 Quasi-one-dimensional Euler

2.1.1 Governing Equations

The conservative form of the quasi-one-dimensional Euler equations defined on a one-

dimensional nozzle of area S(x) are described by

∂w

∂t
+

1

S

∂(fS)

∂x
= q, (2.1)

7
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where the conservative state vector w, the inviscid flux vector f and the source term vector

q are defined as

w =

⎡
⎢⎢⎢⎢⎣

ρ

ρu

ρE

⎤
⎥⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎢⎣

ρu

ρu2 + p

(ρE + p)u

⎤
⎥⎥⎥⎥⎦ , q =

⎡
⎢⎢⎢⎢⎣

0

p
S

dS
dx

0

⎤
⎥⎥⎥⎥⎦ . (2.2)

The density, velocities and the total energy are respectively denoted as ρ, u, and E. The

total energy is given by E = e+ 1
2
u2. The pressure p is determined by the equation of state

p = (γ − 1)ρ

[
E − 1

2
u2

]
, (2.3)

where γ is the ratio of specific heats. Only steady state solutions are considered in this study.

2.1.2 Numerical Discretization

The governing equations (2.1) can be rewritten over the computational domain in

semi-discrete form as,

V ∂w

∂t
+R(w) = 0 in D, (2.4)

where V is the volume, R(w) is the residual comprised of the convective and dissipative

fluxes, as well as the source term, and D is the computational domain. Characteristic-based

boundary conditions are imposed at the inlet and outlet of the nozzle. The solver used for

this study uses a cell-centered finite-volume approach with scalar dissipation and Jameson’s

fourth-order Runge-Kutta with local time-stepping.
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2.2 Three-Dimensional Navier-Stokes

2.2.1 Governing Equations

The conservative form of the three-dimensional compressible Reynolds-averaged Navier-

Stokes equations (RANS) in Cartesian coordinates x1, x2, and x3 are described, using Ein-

stein notation, by
∂w

∂t
+

∂fi
∂xi

− ∂fv,i
∂xi

= 0 in V, (2.5)

where the conservative state vector w, inviscid flux vector fi, and viscous flux vector fv,i are

defined as,

w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu1

ρu2

ρu3

ρE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρEui + pui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, fv,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

τijδi1

τijδi2

τijδi3

ujτij + k δT
δxi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.6)

The density, velocities, Kronecker delta function, the total energy, and viscous stresses are

respectively denoted as ρ, ui, δij, E, and τij. The total energy is given by E = e+ 1
2
(‖u‖2).

The pressure p is determined by the equation of state

p = (γ − 1)ρ

[
E − ‖u‖2

2

]
, (2.7)

where γ is the ratio of specific heats. Steady state solutions are considered in this study. For

the inviscid solutions, the viscous fluxes are set to zero; the Euler equations are thus solved.



CHAPTER 2. FLOW SOLVER 10

2.2.2 Numerical Discretization

Eq. (2.5) can be rewritten over the computational domain in semi-discrete form as,

V ∂w

∂t
+R(w) = 0 in D, (2.8)

where V is the volume, R(w) is the residual comprised of the convective and dissipative

fluxes, and D is the computational domain. The solver used for this study uses a second-

order cell-centered finite-volume numerical scheme with H-CUSP [54], five-stage modified

Runge-Kutta [27] with local time-stepping. Lower-upper symmetric Gauss-Seidel (LU-SGS)

[11] implicit smoother is used for more challenging test cases. No-penetration conditions are

imposed at the wall. Residual averaging and multigrid techniques are used to accelerate the

convergence.



Chapter 3

Optimization Framework

This chapter discusses the optimization framework used to minimize nonlinear aero-

dynamic objective functions. Unconstrained optimization is first presented to demonstrate

the basic concepts and the role of the Hessian, followed by the sequential quadratic program-

ming approach used in this work. Finally, we expand on the details of the mesh deformation

scheme used to adapt the volume mesh and the different parametrization methods that will

determine the design space.

3.1 Unconstrained Optimization

The unconstrained optimization problem seeks to minimize the cost function I with

respect to the design variables α.

minimize I(α),

w.r.t. α.

(3.1)

11
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3.1.1 Gradient Descent

The gradient descent, also known as steepest descent, algorithm only requires the

gradient vector g = ∇I to produce a search direction. In fact, the search direction pk at

iteration k is simply the negative of the gradient scaled by a factor γ

αk+1 −αk = pk = −γgk. (3.2)

The factor γ is the result of a line search to ensure a decrease of the cost function.

3.1.2 Newton’s Method

Newton’s method uses the Hessian H = ∇2I to scale and rotate the search direction.

It can be derived from a Taylor series expansion of the function of interest around the point

αk

I(αk+1) = I(αk) +∇T Ipk + 1
2
(pk)THpk +O((pk)3). (3.3)

The minimum is found when the gradient of the functional is zero, which gives the formula

for a search direction.

0 = g +Hpk,

pk = −H−1g.
(3.4)

For a more robust algorithm a scaling factor γ is added to the search direction formulation.

pk = −γH−1g. (3.5)

As the solution gets closer to the optimum, the scaling factor should be equal to one to

ensure quadratic convergence.
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x

y

0 1 2
0

1

2

Figure 3.1 – Simple function f(x) = x3−2x2+1 (red), gradient descent (blue), and Newton’s
method (green)

Note that the Hessian matrix needs to be positive-definite in order to move in a

direction of descent. If an eigenvalue of the Hessian is found to be negative, the point is in

a region of non-convexity and the curvature information should be disregarded. This effect

can easily be shown through the one-dimensional example represented in Fig. (3.1). Let us

define the functional of interest, its gradient and its second-order sensitivity

y = f(x) = x3 − 2x2 + 1, ∇f = 3x2 − 4x, ∇2f = 6x− 4, (3.6)

which has a local minimum located at x = 4/3. A starting point x = 1/2 would have

its gradient defined as ∇f(1/2) = −5/4 and its Hessian defined as ∇2f(1/2) = −1. The

negative of the gradient is the correct search direction. However, if the Hessian is taken

into account, the search direction does not tend towards the local minimum. This issue is

discussed more thoroughly in section (5.4).

Additionally, an eigendecomposition of the Hessian reveals that small eigenvalues
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Gradient Descent

Scaled x2

Scaled x1

Newton’s Method

−1−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

Figure 3.2 – Minimize I(x) = 1/4x2
1 + 4/5x2

2, with gradient descent (red), scaled by an

approximate Hessian H =

[
1/2 0
0 1

]
(blue), an approximate Hessian H =

[
1 0
0 8/5

]
(green),

and the exact Hessian H =

[
1/2 0
0 8/5

]
(black)

allow the optimizer to take larger steps in directions of low curvature, thus accelerating

the convergence. On the other hand, large eigenvalues reduce the step length in directions

of high curvature. In effect, the Hessian both accelerates and stabilizes the optimization

process through proper scaling of the search direction, whereas the gradient descent algorithm

requires tuning of the step size. Fig. (3.2) shows how gradient descent overshoots in the

direction of high curvature and undershoots the direction of low curvature. Proper scaling

results in the optimal search direction for the quadratic problem. Furthermore, eigenvectors

of the Hessian are required to rotate the search direction such that scaling can occur in the

proper frame of reference as shown in Fig. (3.3).
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Gradient Descent

Scaled x1, x2

Newton’s Method
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Figure 3.3 – Minimize I(x) = 1/2x2
1+1/2x2

2−1/2xy, with gradient descent (red), scaled by an

approximate Hessian H =

[
1/2 0
0 3/2

]
(blue), and the exact Hessian H =

[
1 −1/2

−1/2 1

]
=[−√1/2 −√1/2

−√1/2
√
1/2

] [
1/2 0
0 3/2

] [−√1/2 −√1/2

−√1/2
√
1/2

]
(black)
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3.1.3 Quasi-Newton Method

Since the Hessian size is quadratically proportional to the number of design variables,

it may not always be tractable to evaluate it. In fact, most ASO frameworks do not evaluate

the Hessian and use a variation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [9] [13]

[17] [50] algorithm. The BFGS algorithm is a quasi-Newton method, which does not require

the exact Hessian. However, it attempts to recover the second-order information from the

change in gradients as the optimizer iterates through the design space. It is defined by the

rank-two formula

Hk+1 = Hk +
yyT

yTp
− (Hkp)(Hkp)T

pTHkp
, (3.7)

where p = αk+1 −αk and y = (g)k+1 − (g)k. The update guarantees positive definiteness if

Hk is positive-definite and yTp > 0.

3.2 Sequential Quadratic Programming (SQP)

The sequential quadratic programming framework is used to solve an optimization

problem where the objective function or constraints are nonlinear. As the name entails,

SQP methods successively solve quadratic problems (QPs) in the form of

minimize I(α) = 1
2
αTHα+ gTα,

w.r.t. α,

subject to cj(α) = 0, j = 1, . . . ,m,

ĉj(α) ≥ 0, j = 1, . . . , n.

(3.8)

Convex QPs are known to be easily solvable through active-set methods or interior-point

methods. Therefore, given the following equality constrained nonlinear optimization prob-
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lem,

minimize I(α) = 1
2
αTHα+ gTα,

w.r.t. α,

subject to cj(α) = 0, j = 1, . . . ,m,

(3.9)

where I(α) is the quadratic approximation of the objective function, α are the design vari-

ables, and c(α) are the active equality constraints, the goal is to reformulate it into a sequence

of convex QPs. The first step is the introduction of a dual variable λ which gives rise to the

Lagrangian function

L(α,λ) = I(α)− λTc(α). (3.10)

Let us also define the Jacobian of the constraints as

A(α) =

[
∇c1(α),∇c2(α), . . . ,∇cm(α)

]T
. (3.11)

The first-order Karush-Kuhn-Tucker (KKT) conditions of the presented problem can be

expressed as

F(α,λ) =

⎡
⎢⎣g(α)−A(α)Tλ

c(α)

⎤
⎥⎦ = 0. (3.12)

In order to solve the above system, one may use Newton’s method, where the Jacobian

of F is defined by

F′(α,λ) =

⎡
⎢⎣∇2

ααL(α,λ) −A(α)T

A(α) 0

⎤
⎥⎦ . (3.13)

The Newton step at an iterate (αk,λk) is given by

⎡
⎢⎣αk+1

λk+1

⎤
⎥⎦ =

⎡
⎢⎣αn

λn

⎤
⎥⎦+

⎡
⎢⎣pk

pλ

⎤
⎥⎦ . (3.14)
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where p =

⎡
⎢⎣pk

pλ

⎤
⎥⎦ is found from the Newton-KKT system

F′p = F, (3.15)

⎡
⎢⎣∇2

ααL(α,λ) −A(α)T

A(α) 0

⎤
⎥⎦
⎡
⎢⎣pk

pλ

⎤
⎥⎦ =

⎡
⎢⎣−g(α) +A(α)Tλ

−c(α)

⎤
⎥⎦ . (3.16)

The Hessian of the Lagrangian is required, which includes both the Hessian of the cost func-

tion ∇2I and the Hessian of the nonlinear constraints ∇2c(α). An inequality constrained

problem follows the same derivation. However, the QP becomes an iterative process to solve

for the dual variables stemming from the inequalities.

Overall, the optimization process follows Fig. (3.4). A thorough review of gradient-

based optimization techniques may be found in Nocedal and Wright [32]. The current work

uses NLPQLP from Schittkowski [47] as the black-box optimizer since it provides the user

access to the Hessian.
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Initial Design α0

Solve Flow

Solve Adjoint

Evaluate Gradients

Solve Flow Sensitivities

Initialize Hessian

Optimizer
Solve QP
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KKT < TOL?
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Update Hessian
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Figure 3.4 – Optimization framework flowchart
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3.3 Mesh Deformation

Since the aerodynamic surface changes throughout the design cycles, it is important

for the volume mesh to adapt accordingly. The mesh deformation scheme used in this work

employs radial basis functions (RBF) to interpolate the volume mesh points. The volume

mesh points are moved with respect to the RBF points displacements which are determined

by the surface points. The surface points are parametrized through the design variables.

Therefore, the volume mesh points are a function of the design variables.

x = xvol = xvol(xrbf (xsurf (α))) = xvol(α). (3.17)

The RBF is defined as

f(x) =
n∑

i=1

φ(‖x− xi‖)βi, (3.18)

where φ is Wendland’s C2 function, ‖x−xi‖ is the Euclidean norm between two points, and

βi is the ith RBF coefficient. Given a set of RBF displacements, the goal is to solve for the

RBF coefficients βi to obtain an interpolating function. The interpolating function at the

RBF points can be written as a system of linear equations

Δxrbf = Mβ. (3.19)

The displacements of the volume mesh points use the same interpolating function

Δxvol = Aβ = A [M]−1 Δxrbf . (3.20)

In order to avoid re-evaluating the factorization of the matrix M, the mesh deformation

always originates from the initial mesh. Therefore, at the nth design cycle, the new volume
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mesh points will be defined by

xn
vol = x0

vol +A0
[
M0
]−1

Δxn
rbf . (3.21)

Since every processor has all the necessary information to move its own volume points, the

mesh deformation can be done fully in parallel. The reader may refer to deBoer [8] or

Jakobsson [21] for further readings about mesh deformation using RBF.

Finally, it is possible to define the metric sensitivities

dxvol

dxrbf

=
Δxvol

Δxrbf

= A [M]−1 , (3.22)

dxvol

dα
=

dxvol

dxrbf

dxrbf

dxsurf

dxsurf

dα
= A [M]−1

dxrbf

dxsurf

dxsurf

dα
, (3.23)

which will be used throughout the remainder of this work. Since the RBF points are placed

on the surface points, the sensitivity of the RBF points with respect to the surface points

(dxrbf)i/(dxsurf)j is 1 for the corresponding points and 0 otherwise.

3.4 Parametrization

The surface parametrization method is an important choice since it defines the opti-

mization problem. Although using surface mesh points as the design variables themselves will

result in the largest design space encompassing globally optimal shapes, it also creates multi-

ple issues such as non-smooth surfaces, complex constraint definitions and an ill-conditioned

optimization problem. In effect, using the surface parametrization control points as design

variables is a way to condition the design space. The use of B-splines [41] and free-form

deformation (FFD) [49] is used in this work. Details for both approaches are expanded in

the following two subsections.
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3.4.1 B-spline

A B-spline curve of order p+ 1 is defined by

C(u) =
n∑

i=0

Ni,p(u)Pi, (3.24)

where Pi are the control points and Ni,p are the pth-degree B-spline basis functions defined

on the normalized knot vector of size m

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , um−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (3.25)

The B-spline basis functions Ni,p(u) are recursively defined as

Ni,0(u) =

⎧⎪⎪⎨
⎪⎪⎩
1 if ui < u < ui+1

0 otherwise.

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u).

(3.26)

The one-dimensional curve is used to define a continuous distribution of design vari-

able, such as twist, thickness, or dihedral along the wing span. There are multiple advantages

to parametrize the geometry based on B-spline curves First, a higher degree B-spline can

achieve arbitrarily high smoothness, while a lower degree B-spline allows for local control of

the geometry. Second, B-spline curves may be extended to non-uniform rational B-splines

which are compatible with computer aided design software and would allow an exact rep-

resentation of the parametrized surface. Finally, the analytical sensitivities of the control

points are conveniently available
dC

dPi

= Ni,p(u), (3.27)

and will be used in the remainder of this work. The reader may consult Poirier [43] or Bisson
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[6] for the use of this parametrization method in an ASO framework.

3.4.2 Free-Form Deformation

The FFD parametrization introduced by Sederberg [49] encloses the design surface

with a box defined by FFD points. The box uses a local coordinate system on a parallelepiped

region with principal directions S, T, and U. Any surface point xsurf has (s, t, u) coordinates

in this system such that

xsurf = X0 + sS+ tT+ uU. (3.28)

The (s, t, u) coordinates of the surface points can be recovered as follows

s =
T×U(xsurf −X0)

T×U · S , t =
S×U(xsurf −X0)

S×U ·T , u =
S×T(xsurf −X0)

S×T ·U . (3.29)

The l×m×n control points Pi,j,k are distributed on a lattice and their locations are defined

by

Pi,j,k = X0 +
i

l
S+

j

m
T+

k

n
U. (3.30)

The design surface is deformed by prescribing displacements to the control points

Pi,j,k. For a surface point xsurf , its local coordinate (s, t, u) is evaluated as shown in Eq.

(3.29) and its new location x∗surf is obtained by evaluating the trivariate Bernstein polynomial

x∗surf =
l∑

i=0

⎛
⎜⎝l

i

⎞
⎟⎠ si(1− s)l−i

⎡
⎢⎣ m∑

j=0

⎛
⎜⎝m

j

⎞
⎟⎠ tj(1− t)m−j

⎡
⎢⎣ n∑

k=0

⎛
⎜⎝n

k

⎞
⎟⎠uk(1− u)n−kPi,j,k

⎤
⎥⎦
⎤
⎥⎦ .

(3.31)

Like the B-spline curves, smoothness and local control is a desirable feature of the

FFD parametrization. It also easily allows continuity to be maintained between different

FFD boxes, such as the wing-body fairing. Furthermore, a simple formulation for the change

in volume can be obtained, which is particularly useful in test cases where the wing volume
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must be maintained due to fuel capacity constraints. Finally, the analytical sensitivities

of the control points are also readily available since the Bernstein polynomial is a linear

combination of the Bernstein basis function.

dxsurf

dPi,j,k

=

⎛
⎜⎝l

i

⎞
⎟⎠ si(1− s)l−i

⎛
⎜⎝m

j

⎞
⎟⎠ tj(1− t)m−j

⎛
⎜⎝n

k

⎞
⎟⎠uk(1− u)n−k. (3.32)



Chapter 4

Sensitivity Analysis

4.1 First-Order Sensitivities

The first-order sensitivities of an objective function, also known as gradients, can be

computed analytically from either direct differentiation or the adjoint method. Although

the adjoint method is used to compute the gradient, the direct method will be required for

the evaluation of the Hessian. The finite-difference approach is also introduced since it is a

useful tool to verify the gradients retrieved through the analytical formulations.

4.1.1 Flow Sensitivities

The objective function I = I(w,x) is a function of the flow state variables w = w(x)

and the geometry x = x(α), which in turn is parametrized through the control points α. The

number of design variables α is defined by Nα. The state variables are implicitly defined

through the steady-state solution of the Navier-Stokes equations, where the residual of a

converged solution is zero.

R = R(w,x) = 0. (4.1)

25
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The gradient of the cost function and the flow residual with respect to control points are

defined through the chain rule.

dI(w,x)

dα
=

∂I

∂w

dw

dα
+

∂I

∂x

dx

dα
, (4.2)

dR(w,x)

dα
=

∂R

∂w

dw

dα
+

∂R

∂x

dx

dα
= 0. (4.3)

4.1.2 Direct Differentiation

The derivative of the state variables with respect to the design variables dw/dα, also

referred as first-order flow sensitivities, may be solved by using Eq. (4.3). The linear system

is then solved for Nα right-hand sides.

∂R

∂w

dw

dα
= −∂R

∂x

dx

dα
. (4.4)

Unfortunately, the number of required solutions increases linearly with the number of

design variables. As a result, the aerodynamic shape optimization community has been using

the adjoint method to evaluate the derivatives of the functional. However, the first-order

flow sensitivities will be necessary to retrieve the Hessian.

4.1.3 Adjoint Method

Since the residual is assumed to be zero, an augmented Lagrangian with the flow as

a constraint can be formed by introducing the adjoint variable ψ.

L(w,x,ψ) = I(w,x) +ψTR(w,x). (4.5)
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The derivative of the augmented cost function can then be re-arranged to be expressed in

terms of flow and metric contributions.

dL(w,x)

dα
=

dI(w,x)

dα
+ψT dR(w,x)

dα

=
∂I

∂w

dw

dα
+

∂I

∂x

dx

dα
+ψT

[
∂R

∂w

dw

dα
+

∂R

∂x

dx

dα

]

=

[
∂I

∂w
+ψT ∂R

∂w

]
dw

dα︸ ︷︷ ︸
Flow Contributions

+

[
∂I

∂x
+ψT ∂R

∂x

]
dx

dα
.︸ ︷︷ ︸

Metric Contributions

(4.6)

As previously seen, the cost of computing the flow variable sensitivities is prohibitively

large. On the other hand, the grid sensitivities dx/dα are readily available when using a

linear mesh deformation scheme. Therefore, the adjoint variable is defined such that the flow

contribution is zero.

Rψ =
∂I

∂w
+ψT ∂R

∂w
= 0, (4.7)

[
∂R

∂w

]T
ψ = −

[
∂I

∂w

]T
. (4.8)

Note that solving for the dual variable ψ requires the solution of a linear system with only

one right-hand vector as opposed to Nα for the direct differentiation method. Although

additional nonlinear constraints require more adjoint solutions, it is uncommon to have less

design variables than nonlinear constraints.

After solving for the adjoint variable, the gradient of the augmented Lagrangian is

simplified to
dL

dα
=

[
∂I

∂x
+ψT ∂R

∂x

]
dx

dα
, (4.9)

such that the metric contributions encompasses the flow contributions through the adjoint

variable.
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4.1.4 Finite-Difference

The finite-difference method stems from the Taylor series expansion of the objective

function. Given an objective function of multiple variables I = I(x) and the standard basis

vector ei = (0, . . . , 0, 1, 0, . . . , 0)T where 1 is at the ith position, the small forward and

backward perturbation h results in

I(x+ hei) = I(x) + h
dI

dxi

∣∣∣∣
x

+
1

2
h2 d

2I

dx2
i

∣∣∣∣
x

+
1

6
h3 dI

3

dx3
i

∣∣∣∣
x

+O(h4). (4.10)

I(x− hei) = I(x)− h
dI

dxi

∣∣∣∣
x

+
1

2
h2 d

2I

dx2
i

∣∣∣∣
x

− 1

6
h3 dI

3

dx3
i

∣∣∣∣
x

+O(h4). (4.11)

By combining Eqs. (4.10 & 4.11) we obtain the second-order finite-difference formu-

lation of the first derivative

dI

dxi

∣∣∣∣
x

=
I(x+ hei)− I(x− hei)

2h
+O(h2). (4.12)

Additionally, the finite-difference method may also be used to evaluate first-order flow

sensitivities.

dw

dxi

∣∣∣∣
x

=
w(x+ hei)−w(x− hei)

2h
+O(h2). (4.13)

The finite-difference approach is particularly useful when the linear system in Eq. (4.4) is

stiff and the flow solver converges well. A framework that evaluates the flow and the ad-

joint explicitly will not need to set up the linear system in an implicit format. Furthermore,

frameworks that solve the flow and the adjoint explicitly will not need to implement the

linear system solver. Since the finite-difference perturbations are extremely small, the con-

verged flow solution is a very good initialization for the slightly perturbed design and should

converge quickly. As it will be demonstrated later, only an approximation of the first-order
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flow sensitivities will be required. Therefore, a first-order finite-difference approach may be

sufficiently accurate.

4.1.5 Implementation

The current work consistently uses the adjoint approach to retrieve the gradients. All

the partial derivatives are derived by hand for the quasi-one-dimensional case. For the three-

dimensional case, automatic-differentiation [18] and finite-difference is used to evaluate the

Jacobian ∂R/∂w, the source term ∂I/∂w, and the metric sensitivities ∂I/∂x and ∂R/∂x.

The analytical formulation of the the mesh sensitivities dx/dα is readily available through

the employed radial basis function (RBF) mesh deformation scheme [44]. The systems of

linear equations (4.4) & (4.8) are solved using PETSc’s sparse linear solver GMRES [5, 4,

3].

Additionally, it is worth noting that when the linear system in Eq. (4.4) is solved

repetitively for multiple right-hand sides, the solution is initialized with the one previously

found. This should be advantageous when subsequent design variables affect the shape

similarly.

4.2 Second-Order Sensitivities

This section demonstrates the four possible Hessian formulations based on previous

works [51, 38]. The direct-direct, adjoint-adjoint, adjoint-direct, and direct-adjoint labelling

refers to the first-order differentiation method in the prefix and second-order differentiation

method in the suffix.
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4.2.1 Direct-Direct

The direct-direct approach directly differentiates the first-order direct differentiation

of the objective function shown in Eq. (4.2) to retrieve the Hessian.

d2I

dα2
=

[
dw

dα

]T
∂2I

∂w∂x

dx

dα
+

[
dw

dα

]T
∂2I

∂w2

dw

dα
+

∂I

∂w

d2w

dα2

+

[
dx

dα

]T
∂2I

∂x∂w

dw

dα
+

[
dx

dα

]T
∂2I

∂x2

dx

dα
+

∂I

∂x

d2x

dα2
.

(4.14)

As expected, the expensive first-order flow sensitivities dw/dα are still present, requiring

Nα linear solutions from Eq. (4.3). However, the appearance of the second-order flow

sensitivities d2w/dα2 aggravates the situation. This new term can be solved by directly

differentiating the flow equations twice.

d2R

dα2
=

[
dw

dα

]T
∂2R

∂w∂x

dx

dα
+

[
dw

dα

]T
∂2R

∂w2

dw

dα
+

∂R

∂w

d2w

dα2

+

[
dx

dα

]T
∂2R

∂x∂w

dw

dα
+

[
dx

dα

]T
∂2R

∂x2

dx

dα
+

∂R

∂x

d2x

dα2
= 0,

(4.15)

∂R

∂w

d2w

dα2
= −

([
dw

dα

]T
∂2R

∂w∂x

dx

dα
+

[
dw

dα

]T
∂2R

∂w2

dw

dα

+

[
dx

dα

]T
∂2R

∂x∂w

dw

dα
+

[
dx

dα

]T
∂2R

∂x2

dx

dα
+

∂R

∂x

d2x

dα2

)
.

(4.16)

Notice that Eq. (4.16) requires the solution of a large system with (Nα(Nα + 1)/2) right-

hand sides. The direct-direct method requires a total of (Nα +Nα(Nα + 1)/2) large linear

system solutions, which is quadratically proportional to the number of design variables.
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4.2.2 Adjoint-Direct

The adjoint-direct method starts with the gradient of the augmented cost function

derived from the adjoint method in Eq. (4.9) and is then directly differentiated.

d2L

dα2
=

[
dx

dα

]T
∂2I

∂x2

dx

dα
+

[
dx

dα

]T
∂2I

∂x∂w

dw

dα
+

∂I

∂x

d2x

dα2

+

[
∂R

∂x

dx

dα

]T
dψT

dα
+

[
dx

dα

]T (
ψT ∂

2R

∂x2

)
dx

dα

+

[
dx

dα

]T (
ψT ∂2R

∂x∂w

)
dw

dα
+ψT ∂R

∂x

d2x

dα2
.

(4.17)

The first order flow sensitivities dw/dα are evaluated from Eq. (4.4) and require Nα

system evaluations. The adjoint variable is evaluated in Eq. (4.8) at the cost of one system

evaluation.

That leaves dψT/dα to be evaluated. The term can be found in the direct differenti-

ation of the adjoint residual in Eq. (4.7)

dRψ

dα
=

∂2I

∂w∂x

dx

dα
+

∂2I

∂w2

dw

dα
+

[
∂R

∂w

]T
dψT

dα

+ψT ∂2R

∂w∂x

dx

dα
+ψT ∂

2R

∂w2

dw

dα

=

[
∂2I

∂w∂x
+ψT ∂2R

∂w∂x

]
dx

dα

+

[
∂2I

∂w2
+ψT ∂

2R

∂w2

]
dw

dα
+

[
∂R

∂w

]T
dψT

dα
= 0.

(4.18)

Equation (4.18) can then be rearranged and the solution of the adjoint sensitivity

with respect to the design variables is defined by

[
∂R

∂w

]T
dψT

dα
=−

[
∂2I

∂w∂x
+ψT ∂2R

∂w∂x

]
dx

dα

−
[
∂2I

∂w2
+ψT ∂

2R

∂w2

]
dw

dα
,

(4.19)
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and requires the solution to Nα right-hand sides. A total of (2Nα + 1) system evaluations

are required to compute the Hessian using the adjoint-direct approach. This approach is

commonly used in conjunction with truncated-Newton methods [35, 19] since the matrix-

vector product of the adjoint-direct Hessian with the search direction only requires two linear

system evaluations.

4.2.3 Adjoint-Adjoint

The adjoint-adjoint method is first derived based on the work of Papadimitriou and

Giannakoglou [38]. A simplification follows after determining the equivalence between the

first-order flow sensitivities and one of the adjoint variables. Looking at the previous method,

it is possible to add adjoint variables to eliminate some expensive terms by augmenting the

derivative of the augmented cost function.

d2L∗

dα2
=

d2L

dα2
+ βT dR

dα
+ γT dR

ψ

dα
. (4.20)

The expression can be fully expanded by inserting equations (4.3), (4.17), and (4.18)

into Eq. (4.20) giving the adjoint-adjoint form of the Hessian.

d2L∗

dα2
=
∂I

∂x

d2x

dα2
+ψT ∂R

∂x

d2x

dα2

+

{[
dx

dα

]T
∂2I

∂x2
+

[
dx

dα

]T (
ψT ∂

2R

∂x2

)
+ βT ∂R

∂x

+γT ∂2I

∂w∂x
+ γTψT ∂2R

∂w∂x

}
dx

dα

+

{[
dx

dα

]T
∂2I

∂x∂w
+

[
dx

dα

]T (
ψT ∂2R

∂x∂w

)

+βT ∂R

∂w
+ γT ∂2I

∂w2
+ γT

(
ψT ∂

2R

∂w2

)}
dw

dα

+

{[
∂R

∂x

dx

dα

]T
+ γT

[
∂R

∂w

]T}
dψT

dα
.

(4.21)
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The derivative of the adjoint can be eliminated by defining γ to zero-out the last

parenthesis. Unfortunately, as seen in Eq. (4.22), the cost of eliminating dψT/dα is the

same as solving for it. In fact, γ exactly represents the first-order flow sensitivities when

comparing the linear systems (4.4) and (4.22). Evaluating γ costs Nα system evaluations.

∂R

∂w
γ = −∂R

∂x

dx

dα
. (4.22)

The same unfortunate scenario happens for dw/dα where eliminating it costs Nα

system evaluations as seen in Eq. (4.23).

∂R

∂w

T

β = −
{[

dx

dα

]T
∂2I

∂x∂w
+ ...

}T

. (4.23)

Finally, the adjoint-adjoint Hessian after solving for all the adjoint variables reduces

to

d2L∗a
dα2

=
∂L

∂x

d2x

dα2
+ψT ∂R

∂x

d2x

dα2

+

{[
dx

dα

]T
∂2L

∂x2
+

[
dx

dα

]T (
ψT ∂

2R

∂x2

)
+ βT ∂R

∂x

+
dx

dα
γT ∂2L

∂w∂x
+ γTψT ∂2R

∂w∂x

}
dx

dα
.

(4.24)

A total of (2Nα+1) system evaluations are required to solve every adjoint. Note that

the adjoint β was used to eliminate the first-order flow sensitivities when they were in fact

computed as γ. Therefore, augmenting the Hessian with the β adjoint in Eq. (4.20) was

unnecessary and can be reformulated as the simpler augmented cost function

d2L∗

dα2
=

d2L

dα2
+ γT dR

ψ

dα
=

d2L

dα2
+

[
dw

dα

]T
dRψ

dα
, (4.25)
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which leads to the following Hessian formulation

d2L∗

dα2
=
∂I

∂x

d2x

dα2
+ψT ∂R

∂x

d2x

dα2

+

{[
dx

dα

]T
∂2I

∂x2
+

[
dx

dα

]T (
ψT ∂

2R

∂x2

)

+

[
dw

dα

]T
∂2I

∂w∂x
+

[
dw

dα

]T
ψT ∂2R

∂w∂x

}
dx

dα

+

{[
dx

dα

]T
∂2I

∂x∂w
+

[
dx

dα

]T (
ψT ∂2R

∂x∂w

)

+

[
dw

dα

]T
∂2I

∂w2
+

[
dw

dα

]T (
ψT ∂

2R

∂w2

)}
dw

dα

+

�������������������0{[
∂R

∂x

dx

dα

]T
+

[
dw

dα

]T [
∂R

∂w

]T}
dψT

dα
.

(4.26)

where the sensitivity of the adjoint does not need to be evaluated since it is multiplied by

Eq. (4.3), which equals zero. A total of (Nα + 1) linear system solutions are required. This

formulation turns out to be exactly the same as the direct-adjoint approach, presented in

the next subsection.

4.2.4 Direct-Adjoint

The direct-adjoint method is closely related to the direct-direct approach and gives

the same final adjoint-adjoint formulation through simpler derivations. The Hessian of the

cost function shown in Eq. (4.14) is augmented with the Hessian of the flow equation shown

in Eq. (4.15) leading to the following formulation

d2L∗∗

dα2
=

d2L

dα2
+ψT d

2R

dα2
, (4.27)
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d2L∗∗

dα2
=

[
dw

dα

]T {
∂2L

∂w∂x
+ψT ∂2R

∂w∂x

}
dx

dα

+

[
dw

dα

]T {
∂2L

∂w2
+ψT ∂

2R

∂w2

}
dw

dα
+

{
∂L

∂w
+ψT ∂R

∂w

}
d2w

dα2

+

[
dx

dα

]T {
∂2L

∂x∂w
+ψT ∂2R

∂x∂w

}
dw

dα

+

[
dx

dα

]T {
∂2L

∂x2
+ψT ∂

2R

∂x2

}
dx

dα
+

{
∂L

∂x
+ψT ∂R

∂x

}
d2x

dα2
.

(4.28)

The adjoint is used to eliminate the second-order flow sensitivities such that the third

term of Eq. (4.28) vanishes. Coincidentally, the adjoint variable is solved through the same

linear system as if we attempted to eliminate the first-order flow equations, requiring the

solution to one linear system. The first-order flow sensitivities still have to be solved at the

cost of Nα from Eq. (4.4). Therefore, the total cost of (Nα + 1) system evaluations are

required, making the direct-adjoint the most inexpensive method.

4.2.5 Finite-Difference

Once again, the finite-difference method is a useful tool to validate results obtained

analytically. Given the same objective function I and standard basis vector ei as in section

(4.1.4), the Taylor series expansion of the twice perturbed objective function is

I(x+ hei + hej) = I(x) + h
dI

dxi

∣∣∣∣
x

+ h
dI

dxj

∣∣∣∣
x

+
1

2
h2 d

2I

dx2
i

∣∣∣∣
x

+
1

2
h2 d

2I

dx2
j

∣∣∣∣
x

+
1

2
h2 d2I

dxidxj

∣∣∣∣
x

+
1

2
h2 d2I

dxjdxi

∣∣∣∣
x

+
1

6
h3 d

3I

dx3
i

∣∣∣∣
x

+
1

6
h3 d3I

dx2
i dxj

∣∣∣∣
x

+
1

6
h3 d3I

dx1
i dx

2
j

∣∣∣∣
x

+
1

6
h3 d

3I

dx3
j

∣∣∣∣
x

+
1

6
h3 d3I

dx2
jdxi

∣∣∣∣
x

+
1

6
h3 d3I

dx1
jdx

2
i

∣∣∣∣
x

+O(h4).

(4.29)
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By combining Eq. (4.29) at I(x + hei + hej), I(x + hei − hej), I(x − hei + hej), and

I(x− hei − hej), we obtain the central difference finite-difference formulation of the second-

order derivatives

d2I

dxidxj

∣∣∣∣
x

=

I(x+ hei + hej)− I(x+ hei − hej)
− I(x− hei + hej) + I(x− hei − hej)

4h2
+O(h4).

(4.30)

A total of 4n2/2 + 2n flow solutions are required to evaluate the Hessian.

Since the Hessian is the change in first-order derivatives, it is also possible to evaluate

a full column at a time through finite-difference of the gradients. An off-diagonal term

is evaluated as an average of itself and its symmetric counterpart to ensure a symmetric

Hessian.

d2I

dxidxj

∣∣∣∣
x

=
(gi(x+ hej)− gi(x− hej)) + (gj(x+ hei)− gj(x− hei))

2(2h)
+O(h2). (4.31)

A total of (2Nα) gradient evaluations are required. When the gradient is evaluated through

the adjoint, every perturbed gradient call will require a flow solution and an adjoint solution.

Assuming that the adjoint requires the same computational effort as the flow, a total of (4Nα)

function calls are required for the objective Hessian plus an additional (2Nα) adjoints per

non-linear constraint Hessian.



Chapter 5

Approximate Hessian

The novel aspect of this work is the approximation of the Hessian through partial

solutions of the first-order flow sensitivities dw/dα. Additionally, the implementation com-

plexity is reduced by neglecting second-order flow sensitivities d2w/dα2.

5.1 Direct-Adjoint Approximation

Although the direct-adjoint analytical Hessian is the least expensive to compute, it is

still costly due to the first-order flow sensitivities dw/dα. The first-order flow sensitivities

are solved iteratively using GMRES and their accuracy depends on the relative residual ηk

rk =
∂R

∂w

[
dw

dαk

]
n

+
∂R

∂x

dx

dαk

, (5.1)

ηk =
‖rk‖∥∥∥∥∂R∂x dx

dαk

∥∥∥∥
, (5.2)

where [dw/dαk]n is the solution at iteration n.

The exact Hessian is retrieved when the relative residual reaches machine precision.

37
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Figure 5.1 – First-order flow sensitivity convergence with GMRES

As seen in Fig. (5.1), computational time is proportional to the desired accuracy. The

proposed method sets the iterative convergence criteria to a relative residual of ηk = 1.0e-01.

Therefore, the cost of retrieving this approximate Hessian is only a fraction of recovering

the exact one. From this approximation, the retrieved first-order sensitivities will only have

a single digit of accuracy. The idea to approximate the Hessian stems from the fact that

superlinear convergence does not require exact Hessian evaluations as it will be demonstrated.

A linear relationship between the error incurred by the approximation has been observed

and will be demonstrated in the following section.

Another cost of the direct-adjoint approach is the implementation time of the sparse

tensors that appear in its formulation. More specifically, the partial second-order sensitivities

of the residual (∂2R/∂ · ∂·) need to be evaluated and stored efficiently. Papadimitriou and

Giannakoglou [38] have already attempted to simplify the process by neglecting the second-

order residual sensitivities ∂2R/∂w2 and ∂2R/∂w∂x. However, the second-order residual

sensitivities ∂2R/∂x2 still need to be evaluated. The next section offers an alternative to
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ease the implementation.

5.2 Direct-Direct Approximation

In order to avoid the implementation complexity of tensors, we take another look at

the most expensive method to compute the analytical Hessian: the direct-direct method.

Once again, the first-order flow sensitivities are approximated through partial solves. Addi-

tionally, the second-order flow sensitivities ∂2w/∂α2 are neglected. The direct-direct method

is reduced to

d2I

dα2
=

[
dw

dα

]T
n

∂2I

∂w∂x

dx

dα
+

[
dw

dα

]T
n

∂2I

∂w2

[
dw

dα

]
n

+

[
dx

dα

]T
∂2I

∂x∂w

[
dw

dα

]
n

+

[
dx

dα

]T
∂2I

∂x2

dx

dα
+

∂I

∂x

d2x

dα2
.

(5.3)

As a result, the approximate direct-direct method computational cost is a fraction of

solving Nα linear systems. Although it is similar in computational effort to the direct-adjoint

approach, its implementation is more straightforward since sparse tensors, such as ∂2R/∂w2,

∂2R/∂w∂x, and ∂2R/∂x2 do not appear in the direct-direct formulation. Given that most

ASO frameworks already support the adjoint method, which requires the Jacobian ∂R/∂w,

the first-order flow sensitivities can easily be computed by changing the right-hand side.

The only new terms are the second-order partials with respect to the objective function

and the second-order mesh sensitivities. The partial derivatives of the objective function are

usually readily available, whereas the second-order mesh sensitivities vanish for linear mesh

deformation schemes. This approach is used for the three-dimensional case due to its ease

of implementation.

The impact of neglecting d2w/dα2 will depend on the problem and its contribution

is expected to be greater for highly nonlinear design spaces. The test cases will seek to
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demonstrate that the contribution of this term is negligible.

5.3 Implementation

The first-order sensitivities are evaluated as shown in section (4.1). The second-order

partial derivatives of the cost function and the nonlinear constraints are evaluated through

AD [18] or finite-difference.

The size of the first-order flow sensitivities and first-order metric sensitivities can grow

quite fast since they may be dense matrices. Although the second-order partial sensitivities

of the cost function are sparse matrices, it is possible to avoid assembling them by multiplying

each entry with the corresponding row and column of the adjacent matrices. This procedure

is a sum of outer-products, which has to be performed as many times as there are entries

in the functional sensitivity matrix. The result is a trade-off between computational time

and memory usage. In fact, evaluating the residual sensitivity tensors would leave the user

the choice between evaluating an intractable sum of outer-products, or storing a very large

amount of data on memory. Overall, this second approximation is useful to reduce both the

implementation cost and the computational requirements.

5.4 Hessian Positive-Definite Modification

Although the Hessian entries inform us about the design space, its eigendecomposition

offers better insights about the curvature. The Hessian eigenvalues represent the principal

magnitudes of the design space curvature, while the eigenvectors define the corresponding

directions. At every design cycle, the search direction p is a function of the Hessian H and
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the gradient g.

Hp = −g

QΛQ−1p = −g

p = −QΛ−1Q−1g,

(5.4)

where Λ is the diagonal matrix containing the eigenvalues of H and Q is the matrix of

eigenvectors of H. The matrix of eigenvectors Q is orthonormal and represents a unitary

transformation that rotates the gradient vector g without scaling it. Therefore, the eigen-

values in Λ−1 dictate how to scale the gradient vector to find the optimal search direction.

Since we know that the gradient vector represents a direction of descent, a negative eigen-

value will flip this direction in a direction of ascent. Additionally, small eigenvalues of H

result in larger steps and large eigenvalues result in smaller steps.

A disadvantage of Newton’s method is that the exact Newton step does not guaran-

tee convergence. In fact, the search direction is a descent direction only if the Hessian is

positive-definite, which represents convexity. Therefore, whether the exact Hessian or the

approximate Hessian is evaluated, a mechanism must ensure positive-definiteness.

When the Hessian is evaluated, an eigenvalue decomposition is performed and the

eigenvalues must be modified such that they are all positive. A common method to guarantee

positive-definiteness is to shift the eigenvalues of H such that the smallest eigenvalue is

greater than some positive value ε defined by the user [32].

H+ = H+ I ·max(0, ε− λmin(H)). (5.5)

However, large negative eigenvalues would require a large modification, where the Hessian

would lose the second-order information.

The utilized method evaluates the geometric mean of the positive eigenvalues, which
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translates to the average magnitude of the positive eigenvalues. The negative eigenvalues are

then replaced by this average positive eigenvalue and the Hessian is reassembled, where it

produces a search direction that is neither greater nor lower than all its positive counterparts.

Given the cardinality n of the set of positive eigenvalues of the Hessian, the eigenvalues λ

are modified such that

λk =

⎧⎪⎪⎨
⎪⎪⎩
λk, if λk > 0,

n
√∏

i:λi>0 λi, otherwise.
(5.6)

For added stability, the threshold to modify the eigenvalues may be changed to a

multiple of the maximum eigenvalue, such that tiny eigenvalues do not disproportionally

dictate the search direction.

λk =

⎧⎪⎪⎨
⎪⎪⎩
λk, if λk > ελmax,

n
√∏

i:λi>0 λi otherwise.
(5.7)

Since, the cost of added stability results in a decreased convergence rate, it is suggested to

modify this parameter only when the optimization process stalls.

5.5 Error Bounds

The error incurred by the first-order flow sensitivity approximation is bounded for

the Hessian, the search direction and the Hessian eigenvalues. A shorthand notation is

introduced to simplify the derivations. The direct-direct formulation of the entry (i, j) of
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the Hessian is shown in Eq. (5.8).

hi,j =
d2I

dαidαj

=

[
dw

dαi

]T
∂2I

∂w∂x

dx

dαj

+

[
dw

dαi

]T
∂2I

∂w2

dw

dαj

+

[
dx

dαi

]T
∂2I

∂x∂w

dw

dαj

+
∂I

∂w

d2w

dαidαj

+

[
dx

dαi

]T
∂2I

∂x2

dx

dαj

+
∂I

∂x

d2x

dαidαj

.

(5.8)

Let us define a simpler notation where,

zi =
dw

dαi

,

ẑi =

[
dw

dαi

]
n

= zi(1 + η),

mi =
∂2I

∂w∂x

dx

dαi

,

N =
∂2I

∂w2
= NT ,

pi,j =
∂I

∂w

d2w

dαidαj

+

[
dx

dαi

]T
∂2I

∂x2

dx

dαj

+
∂I

∂x

d2x

dαidαj

,

simplifies the Hessian expression to

hi,j = hi,j(zi, zj) = zTi mj + zTi Nzj +mT
i zj + pi,j. (5.9)

5.5.1 Hessian Entry

A Taylor series of the Hessian entry perturbed by a relative error η is taken about

the exact first-order flow sensitivities

ĥi,j = hi,j(ẑi, ẑj) = hi,j(zi + ηzi, zj + ηzj)

= hi,j(zi, zj) + ηzTi
∂hi,j

∂zi
+ ηzTj

∂hi,j

∂zj
+O(η2).

(5.10)
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Using the Matrix Cookbook as a reference [40] for derivatives of matrices and vectors, the

derivatives are evaluated as follow:

∂hi,j

∂zi
=

∂(zTi mj)

∂zi
+

∂(zTi Nzj)

∂zi
+

∂(mT
i zj)

∂zi
+

∂(pi,j)

∂zi

= mj +Nzj + 
0+ 
0,

(5.11)

∂hi,j

∂zj
=

∂(zTi mj)

∂zj
+

∂(zTi Nzj)

∂zj
+

∂(mT
i zj)

∂zj
+

∂(pi,j)

∂zj

= 
0+Nzi +mi + 
0.

(5.12)

ĥi,j = hi,j(zi, zj) + η(zTi mj + zTi Nzj + zTj Nzi + zTj mi) (5.13)

Given a target maximum relative error t of the entry hi,j, it is possible to choose a

relative error η of the first-order flow sensitivities to satisfy

∣∣∣∣∣ ĥi,j − hi,j

hi,j

∣∣∣∣∣ ≤ t. (5.14)

η ≤ t
|ai,j + pi,j|

|ai,j + zTi Nzj)| , where ai,j = zTi mj + zTi Nzj + zTj mi. (5.15)

Note that the convergence test would require the evaluation of ai,j, pi,j, and zTi Nzj at every

GMRES iteration. Instead, using

η ≤ t, (5.16)

as a simpler convergence test may be equivalent in multiple situations. First, if

|ai,j + pi,j|
|ai,j + zTi Nzj)| ≥ 1, (5.17)

the simpler convergence test always insures that the more complex one is satisfied. Second,

if the magnitude of ai,j is much greater than pi,j and zTi Nzj, the approximation

|ai,j + pi,j| ≈ |ai,j + zTi Nzj|, (5.18)
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is valid and the simple convergence test holds true for

η(1− ε) ≤ t, (5.19)

where ε is small. In practice, the simpler convergence test is used with a safety margin.

An additional issue arises in practice since the exact solution is not known. It is

not possible to determine the exact relative error of the solution η. Therefore, the residual

‖Az−b‖/‖b‖ is used since it is proportional to the solution error and the condition number

of A.

5.5.2 Hessian Matrix

Now that every entry hi,j is bounded by a target relative error t, it is possible to

represent a perturbed Hessian by a matrix multiplication

Ĥ = (1 + t)IH = (I+ Er)H, where Er = tI. (5.20)

5.5.3 Search Direction

During a quadractic programming step, we solve

Hkpk = −gk, (5.21)

where pk is the search direction and gk is the gradient at step k. However, only the approx-

imation of the Hessian is available. We now seek to bound the error on the search direction

by using perturbation analysis. Since we are only interested in the perturbation due to par-

tial solutions of the Hessian, we do not take into account the conditioning of the Hessian or
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numerical errors of the right-hand-side.

Ĥkpk(Er) = −gk, where pk(0) = pk

(Hk + ErHk)pk(Er) = −gk

H−1
k (Hk + ErHk)pk(Er) = −H−1

k gk

(I+ ErI)pk(Er) = pk.

(5.22)

(I+ Er)
−1 = I− Er + Er

2 − ..., through Taylor series expansion. (5.23)

pk(Er) = (I− Er + Er
2 − ...)pk

= (1− t)Ipk +O(t2)

(5.24)

Finally, the norm of the relative error of the search direction due to the approximation of

the Hessian is bounded as a function of the relative error of the Hessian, which in turn is a

function of the flow sensitivities.

‖pk(Er)− pk‖ = ‖ − tIpk +O(t2)‖

≤ t‖pk‖+ ‖O(t2)‖

≤ t‖pk‖.

(5.25)

‖pk(Er)− pk‖
‖pk‖ ≤ t. (5.26)

5.5.4 Eigenvalues

Another interesting error bound to find is the error of the Hessian eigenvalues from the

inexact first-order flow sensitivities. Li [25] reformulates Ostrowski’s relative perturbation

results [33] to show that for two n × n Hermitian matrices A and Â = D�AD, where D is

nonsingular, with eigenvalues

λ(A) = {λ1, · · · , λn} and λ(Â) = {λ̂1, · · · , λ̂n}, (5.27)
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ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n, (5.28)

we have

σmin(D)2 · λi ≤ λi ≤ σmax(D)2 · λi for 1 ≤ i ≤ n, (5.29)

which implies a relative perturbation bound

max
1≤i≤n

|λi − λ̂i|
|λi| ≤ ‖I−D∗D‖2. (5.30)

Since the relative error bound on H is known to be Er = tI, we can define a pertur-

bation matrix

D = (1 + i
√
t)I, (5.31)

such that

Ĥ = (1 + t)IH = (I+ Er)H = D�HD. (5.32)

Finally, by applying the above theorem to the perturbed Hessian matrix, we recover a bound

on the relative error of the eigenvalues

max
1≤i≤n

|λi − λ̂i|
|λi| ≤ ‖I−D∗D‖2 = t. (5.33)

The theoretical error bound implies that the maximum relative error of the Hessian eigen-

values is less than the relative error of the first-order flow sensitivities. A numerical study

from the quasi-one-dimensional test case is shown in Fig. (5.2).
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Figure 5.2 – Eigenvalue relative error is proportional to first-order flow sensitivities relative
error



Chapter 6

Optimization Results

6.1 Quasi-One-Dimensional Nozzle

The quasi-one dimensional test case is an inverse design optimization problem where

the optimization problem is defined as

minimize
1

2
‖p− pt‖2,

w.r.t. α,

where α are the control points of the B-spline defining the nozzle shape. A target pressure

pt is defined for a nozzle with a target shape S defined as

S(x) = 1− h
(
sin
(
πxt1

))t2 , (6.1)

with h = 0.05, t1 = 1.00, t2 = 3.0. The initial shape is recovered with h = 0.1, t1 = 0.8,

t2 = 6.0 and the B-spline with control points α is fitted through this initial shape.

Six different optimization methods are explored and compared: Newton’s method

49
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Design point # Finite-Difference Direct Method Adjoint Method

1 1.445052884714980e-03 1.445052712806137e-03 1.445052712806124e-03
2 3.279206296519615e-04 3.279208105919162e-04 3.279208105919257e-04
3 3.351289469822513e-05 3.351296759502973e-05 3.351296759503905e-05
4 2.165527440082186e-06 2.165342017862913e-06 2.165342017870861e-06
5 1.228593748550424e-06 1.228643267248969e-06 1.228643267248725e-06
6 1.434578767454679e-06 1.434571339692973e-06 1.434571339687410e-06
7 5.916587891457459e-07 5.917751860259154e-07 5.917751860177707e-07
8 -2.199928986749219e-06 -2.199855102015695e-06 -2.199855102017955e-06
9 -7.952161399393077e-06 -7.952012213086853e-06 -7.952012213084091e-06
10 -1.772320493235569e-05 -1.772314360287281e-05 -1.772314360287690e-05

Table 6.1 – Gradient validation of quasi-one-dimensional nozzle

(NM), BFGS with a scaled identity matrix as its initial Hessian (IBFGS), BFGS with an

exactly-initialized Hessian (EBFGS), BFGS with an initial Hessian by partial convergence

of dw/dα (ABFGS1), BFGS with an initial Hessian by neglecting d2w/dα2 (ABFGS2), and

BFGS with an initial Hessian by partial convergence of dw/dα and neglecting d2w/dα2

(ABFGS3)

Note that ABFGS1 evaluates the Hessian with the direct-adjoint approach since

d2w/dα2 is too computationally expensive, whereas ABFGS2 and ABFGS3 uses the direct-

direct approach. ABFGS2 is used to demonstrate the effects of neglecting the second-order

flow sensitivities. The proposed novel methods are ABFGS1 and ABFGS3.

6.1.1 Sensitivity Analysis

First-order

The gradient evaluated through the adjoint method is verified against the finite-

difference method and the direct method. A comparison of the first ten design points are

seen in Table (6.1), while all fifty design points appear on Fig. (6.1).
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Figure 6.1 – Gradient comparison of quasi-one dimensional inverse design problem

Second-order

The Hessian evaluated through the direct-adjoint method is verified against the finite-

difference of the gradient described in subsection (4.2.5). The entry-wise relative error is

shown in Fig. (6.2), where log10 of the error is color-coded.

6.1.2 Convergence

The convergence plot shown in Fig. (6.3a) uses IBFGS to demonstrate the increase in

the problem complexity with the number of design variables. For larger numbers of design

variables, the gradient stagnates for a while before achieving a superlinear convergence rate.

This plateauing behavior and decreased convergence rate has also been observed in the work

of Skajaa [52] for nonsmooth problems. Using the 50 design variables parametrization as

the basis of comparison, all the other methods outperform IBFGS as seen in Fig (6.3b),

especially NM that converges quadratically in four design cycles. However, the number of

design cycles can be misleading since the cost of each cycle is not taken into account.
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Figure 6.2 – Entry-wise relative error on an exponential scale of the direct-adjoint method
and the finite-difference Hessian

Instead, the convergence with respect to the number of system evaluations is shown

in Fig. (6.4a). NM requires the full Hessian to be evaluated at every design cycle, for a total

of (Nα + 2) system evaluations per design cycle. EBFGS and ABFGS has an initial cost of

(Nα + 2) system evaluations on the first design cycle, but only solves for the flow and the

adjoint in the subsequent cycles. Although EBFGS and ABFGS require more design cycles,

they require less system evaluations to fully converge. The initial cost is represented by the

offset of the first design cycle in Fig. (6.4a). EBFGS and ABFGS2 seem to outperform the

other methods, however, they require the first-order flow sensitivities dw/dα to be solved

exactly.

Therefore, the CPU time reflects more accurately the difference in initial cost from

approximating first-order flow sensitivities as seen in Fig. (6.4b). The proposed methods

ABFGS1 and ABFGS3 greatly outperform the other existing methods with this evaluation

criterion because they avoid evaluating the exact first-order flow sensitivities. Additionally,
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(a) IBFGS for different number of design variables

(b) Different optimization methods for 50 design variables

Figure 6.3 – Gradient convergence of quasi-one-dimensional inverse design problem with
respect to design cycles
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(a) Number of system evaluations

(b) CPU time

Figure 6.4 – Gradient convergence of quasi-one-dimensional inverse design problem
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we can observe that IBFGS requires more system evaluations but converges more quickly in

CPU time than NM. This is explained by the overhead costs of using PETSc’s sparse solvers

and the rapidity of solving quasi-one-dimensional flows. It is expected that flow equations,

adjoint equations, and first-order sensitivities have a similar cost on more complex problems.

Moreover, omitting second-order flow sensitivities seems to slightly improve the con-

vergence. This behavior is not expected to hold for more complex nonlinear problems, so its

effects will be case dependent.

6.1.3 Hessian Accuracy

In order to better understand the importance of the Hessian, the required accuracy

for BFGS to retrieve superlinear convergence is studied. The relative error of the Hessian

matrix is defined as

Er =
‖Hexact −HBFGS‖

‖Hexact‖ . (6.2)

Fig. (6.5a) demonstrates that IBFGS never recovers the exact Hessian. However, it still

converges at a higher rate once its relative error is approximately 0.2 as demonstrated by

Fig. (6.4). The same behavior is observed for EBFGS and ABFGS on (6.5b). To compute

the error, the exact Hessian is evaluated at every design cycle, making this analysis possible

only for simple problems.

Because the first-order flow sensitivities are solved within a specific tolerance, it is

unexpected to see high initial errors for ABFGS. The rapid convergence hints that the

approximated Hessians should be more accurate than what is shown in Fig. (6.5).
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(a) Hessian error for IBFGS

(b) Hessian error for EBFGS and ABFGS

Figure 6.5 – Hessian error from BFGS over the design cycles
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6.1.4 Eigenvalue Analysis

The goal of partially solving the first-order flow sensitivities such that the correct

magnitudes are retrieved is to approximate the eigenvalues magnitudes and eigenvectors di-

rections. As shown in Fig. (6.6), IBFGS requires an incredible amount of design cycles to

approximate the eigenvalues correctly, whereas EBFGS and ABFGS already capture the cur-

vature information of the design space. An in-depth analysis of BFGS’s effect on eigenvalues

is discussed by Nocedal [31].

Essentially, second-order information is necessary to compute a proper search direc-

tion. Without a Hessian, the quadratic sub-problem reduces to a linear sub-problem leading

to the deprecated steepest descent algorithm for most of the early iterations.

6.2 Inviscid Transonic NACA0012 Airfoil

The NACA0012 airfoil problem is the first case of the ADODG [1] problem set. A

drag minimization optimization is performed on the airfoil in transonic flow at zero angle of

attack. Thickness is constrained such that it may not decrease. The optimization problem

is posed as follows

minimize CD,

w.r.t. α,

subject to: |y − ybaseline| ≥ 0,

where α are the y-displacements of the control points of a FFD box as shown in Fig. (6.8).

The Mach number is fixed at 0.85. The original 2D grid of size 768 × 128 was extruded in

order to use the three-dimensional implementation of the Hessian.
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Figure 6.6 – Comparison of BFGS eigenvalues to exact Hessian eigenvalues with 20 design
variables
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6.2.1 Sensitivity Analysis

The drag gradient is evaluated via the adjoint method throughout the optimization

process. A comparison of the finite-difference approach against the adjoint method is shown

in Table (6.2) and Fig. (6.7). The relatively high error in the relative gradient error may be

due to the inaccuracy of the flow solution since it was only able to converge with a residual

of 1.0e-04. As a result, the adjoint, which assumes a zero residual, will be inaccurate and the

finite-difference approach, which relies on accurate function evaluations, will also degrade in

accuracy. Nevertheless, the optimizer was still able to reduce the KKT optimality by several

orders of magnitude as seen in the following section.

Function L2 relative error norm

CD 8.24e-03

Table 6.2 – L2 relative error norm between finite-difference and adjoint method of inviscid
NACA0012 drag gradient
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Figure 6.7 – Gradient validation of the NACA0012
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6.2.2 Results

The optimization is performed for 32, 64, 96, and 128 FFD points chord-wise. The

Mach contours and pressure distributions of the initial and optimal shapes are shown in

Fig. (6.8). In [7], the authors parametrized the airfoil with B-splines and achieved a drag

coefficient of 37.5 counts with the same 768 × 128 grid utilized here. A super fine grid of

3072 × 512 yielded 25 counts of drag. We believe the difference in the final results may be

due to the choice of parametrization. However, the convergence of the Karush-Kuhn-Tucker

(KKT) optimality in Fig. (6.9) shows that the optimizer has found an optimum for the given

parametrization and validates the contribution presented in this work.
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Figure 6.8 – NACA0012 airfoil drag minimization under transonic conditions with 64 design
variables

The resulting convergences of the 32 and 64 design variables parametrization in Fig.

(6.9a & 6.9b) showcase the acceleration resulting from an approximate Hessian where the

optima are found in a lower amount of time. Moreover, the KKT optimality of the con-
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ventional approach demonstrates a sublinear convergence rate, characteristic of a gradient

descent algorithm, whereas the proposed approach indicates a superlinear rate.

The 96 and 128 design variables parametrizations were initially unable to converge for

both the conventional and Hessian approach. A modification as shown in section (5.4), with

ε = 1.0e-07, adds stability to the Hessian approach, thus allowing it to take more design

steps before stalling. As a result, the increase in design variables allows for a lower optimal

drag to be recovered.

Inspecting the eigenvalues of the Hessian in Fig. (6.10), the conventional approach

modified less than half of the eigenvalues magnitudes. As a result, the optimizer locates an

optimum before BFGS reaches the superlinear convergence rate. This superlinear conver-

gence is attained in the early design cycles of the Hessian-based approach due to second-order

information.

6.3 Inviscid Onera M6 Drag Minimization

The ONERA M6 test case is a drag minimization problem where lift and volume are

constrained to be greater or equal to their initial values. The minimum thickness must be

within 25% of the initial thickness to avoid unrealistically thin wing tips. The optimization

problem is posed as follows

minimize CD,

w.r.t. α,

subject to: CL − 0.0875 ≥ 0,

V − 0.0633 ≥ 0,
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(a) 32 design variables
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(b) 64 design variables
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Figure 6.9 – Drag and KKT optimality convergence of NACA0012 airfoil
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Figure 6.10 – Hessian eigenvalues of NACA0012 airfoil with 32 design variables

where α are the y-displacements of the control points of a FFD box as shown in Fig. (6.11).

The leading edge, trailing edge, root and tip are constrained. The Mach number is fixed at

0.84.

6.3.1 Sensitivity Analysis

The lift and drag gradients are evaluated via the adjoint method throughout the

optimization process. A comparison of the finite-difference approach against the adjoint

method is shown in Table (6.3) and Fig. (6.12).

Function L2 relative error norm

CD 2.01e-04
CL 2.48e-04

Table 6.3 – L2 relative error norm between finite-difference and adjoint method of inviscid
ONERA M6 lift and drag gradients
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Figure 6.11 – ONERA M6 wing enclosed in FFD box with 12 control points span-wise and
chord-wise

6.3.2 Results

The optimization is performed for four different number of design variables, where

the span-wise and chord-wise distribution is refined. The convergence of drag and KKT

optimality can be found in Fig. (6.13). Drag is minimized by reducing the strength of the

shock, which is achieved by decreasing the thickness of the tip while increasing the root

thickness to maintain volume.

As expected, the optimization framework infused with second-order sensitivities re-

quire fewer steps to reach an optimum than the identity-based BFGS method. Furthermore,

the CPU time required to reach the optimum shows that the Hessian is also beneficial in

terms of computational cost due to its higher convergence rate. As seen in Fig. (6.14), only a

few eigenvalues were modified with the conventional approach. The identity-initialized BFGS

method is therefore extremely similar to gradient descent, whereas the proposed approach

would scale the directions according to the design space curvature.
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Figure 6.12 – Gradient validation of the ONERA M6

Unfortunately, both methods suffer from a sublinear convergence of the KKT op-

timality. The sublinear behaviour of the Hessian-based approach may be caused by the

following two reasons. First, the initial non-convexity of the problem leads to a positive-

definite modification of the Hessian, which estimates the curvature magnitude in the descent

direction.

In the 200 design variables case, 72 out of 200 eigenvalues were initially modified to

the positive geometric mean eigenvalue. The set of modified eigenvalues can be visualized in

Fig. (6.14a), where they are initialized with the value 2.3e-03.

Second, as the optimizer moves throughout the design space, the curvature also

changes for optimization problems that are not quadratic in nature and BFGS may not

update the Hessian as fast as the curvature is changing. Therefore, it is not surprising to

witness a decrease in convergence rate as we move away from the point where the approx-

imate Hessian was initially evaluated. Re-evaluating an approximate Hessian later in the
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(a) 8× 2× 8 FFD box, Nxp = 72
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(b) 12× 2× 12 FFD box, Nxp = 200
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(c) 16× 2× 16 FFD box, Nxp = 392
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(d) 20× 2× 20 FFD box, Nxp = 648

Figure 6.13 – Drag and KKT optimality convergence of ONERA M6 Wing
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Figure 6.14 – 40 out of 200 Hessian eigenvalues of ONERA M6 wing

design process is subject for further investigation to determine cost effectiveness.

Furthermore, as the number of design variables increases, the optimization problem

does not seem to increase in complexity as we had initially expected. We believe this be-

haviour is due to the nature of the problem, where shock removal only requires local changes.

Since the optimum is found quickly, the acceleration induced by the Hessian may not out-

weigh the initial cost for a high number of design variables in this case.

Finally, an interesting feature appearing in the convergence plots is the larger oscilla-

tions of the KKT optimality. The large change in optimality from one design cycle to another

indicates that the optimizer is taking larger steps in the design space which should increase

the convergence rate. However, it would also favor violation of the linearized constraints,

depending on the nonlinearity of the problem.
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Function L2 relative error norm

CD 3.18e-05
CL 3.33e-05
CM 3.02e-05

Table 6.4 – L2 relative error norm between finite-difference and adjoint method of inviscid
CRM lift, drag, and pitching moment gradients

6.4 Inviscid CRM Drag Minimization

The inviscid CRM test case is a drag minimization problem where lift and volume are

constrained to be greater or equal to their initial values. It is similar to the fourth ADODG

[1] test case, except that it is inviscid and the pitching moment constraint has been removed.

The optimization problem is posed as follows

minimize CD,

w.r.t. α,

subject to: CL − 0.5 ≥ 0,

V − 0.2615 ≥ 0,

where α are the y-displacements of the control points of a mapped FFD box as shown in

Fig. (6.15). The leading edge, trailing edge, root and tip are constrained. The minimum

thickness must be within 25% of the initial thickness to avoid unrealistically thin wing tips.

The Mach number is fixed at 0.85.

6.4.1 Sensitivity Analysis

The drag, lift and pitching moment gradients are evaluated via the adjoint method

throughout the optimization process. A comparison of the finite-difference approach against

the adjoint method is shown in Table (6.4) and Fig. (6.16).
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Figure 6.15 – CRM wing enclosed in FFD box with 15 control points span-wise and chord-
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Figure 6.16 – Gradient validation of the CRM
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6.4.2 Results

The optimization is performed for three different number of design variables, where

the span-wise and chord-wise distribution is refined. The convergence of drag and KKT

optimality can be found in Fig. (6.17). Drag is minimized by reducing the strength of the

shock the same way it was achieved for the ONERA M6.

The convergence rate is greatly increased both in terms of design cycles and CPU

time in all three cases. The same pressure coefficients and airfoil shapes are recovered as

seen in Fig. (6.19). Sublinear convergence is explained by the same arguments mentioned

for the ONERA M6. Once again, the eigenvalues of the Hessian seen in Fig. (6.18) support

the higher convergence rate of the proposed approach.

The 128 design variables parametrization convergence in Fig. (6.17a) demonstrates an

interesting behaviour of the conventional approach. The KKT optimality initially stalls very

quickly and rises before converging further as previously seen in the quasi-one-dimensional

nozzle in Fig. (6.4a). We believe the optimizer slowdown was due to the presence of a saddle

point where gradient vector is close to zero. Therefore, the optimizer requires multiple BFGS

updates to properly scale and rotate the search directions. Once it retrieves an appropriate

search direction, the gradient magnitudes are no longer zero and the cost function decreases

at a higher rate until it finds the same critical point recovered by the Hessian approach. It is

hypothesized that the curvature information from the Hessian approach allows the optimizer

to jump over some noisy regions and saddle points of the design space, where gradient descent

might stall.

A greater number of design variables does not seem to increase the optimization

complexity for wave drag reduction problems. Hence, increasing the number of FFD control

points does not necessarily increase the stiffness of the optimization problem as previously

discussed in subsection (6.1).
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(a) 10× 2× 10 FFD box, Nxp = 128
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(b) 15× 2× 15 FFD box, Nxp = 338
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(c) 20× 2× 20 FFD box, Nxp = 648

Figure 6.17 – Drag and KKT optimality convergence of CRM wing
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Figure 6.18 – 25 out of 128 Hessian eigenvalues of CRM



CHAPTER 6. OPTIMIZATION RESULTS 73

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

10% span

(a) 10% span

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

26% span

(b) 25% span

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

42% span

(c) 42% span

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

58% span

(d) 58% span

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

74% span

(e) 74% span

0

0.5

1

1.5

Initial

With Hessian

Without Hessian

90% span

(f) 90% span

Figure 6.19 – Pressure coefficient plots of CRM wing at different span locations for 128
design variables



Chapter 7

Conclusion

The approximation of the initial Hessian by partial solutions of first-order flow sen-

sitivities in a BFGS framework may greatly reduce the computational effort in ASO. The

error incurred by this approximation is bounded for the Hessian entries, the search direction

and the Hessian eigenvalues. Further approximation neglecting second-order flow sensitiv-

ities leads to a simpler implementation of the algorithm while decreasing computational

requirements. An existing adjoint-based framework can easily evaluate the first-order flow

sensitivities and only requires partial second-order derivatives of the cost function.

The proposed approach is superior to the conventional identity-initialized BFGS

approach on every test case. The superlinear convergence is observed in the quasi-one-

dimensional and two-dimensional test cases. Although the convergence rate becomes sub-

linear for the three-dimensional test cases, the Hessian-based approach still outperforms

the conventional approach. The acceleration benefits may be limited when the optimiza-

tion problem does not have a complex enough design space and a large number of design

variables. More specifically, three-dimensional wave drag reduction does not exhibit the

decreased convergence rate as the number of design variables increases.

An eigenvalue analysis for the presented test cases demonstrate the ability of the op-
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timizer to capture second-order information. Most practitioners may find that their BFGS

algorithm predominantly behaves as a gradient descent algorithm. The wide range of eigen-

values recovered by the approximate Hessian aid to scale the descent directions. In effect,

small eigenvalues will accelerate the convergence, whereas large eigenvalues will stabilize it.

It is also possible to perform further analysis of the eigenvectors effect on the rotation of the

search direction.

The full benefits of the proposed algorithm are yet to be explored by applying it to

more challenging test cases. Its tractability and benefits on a viscous test case is the next

step to justify the high initial cost. Using the finite-difference method may be an attractive

alternative to approximate the first-order flow sensitivities. Additionally, a mathematical

bound on the error incurred by the second-order flow sensitivities or a better approximation

would help justify the current approximation. In addition to an accelerated convergence

rate of ASO, second-order information may be of use in one-shot methods and uncertainty

quantification.



Bibliography

[1] Aerodynamic Design 0ptimization Discussion Group. American Institute of Aeronau-

tics and Astronautics. 2015. url: https : / / info . aiaa . org / tac / ASG / APATC /

AeroDesignOpt-DG/default.aspx.

[2] E. Arian and S. Ta’asan. « Analysis of the Hessian for aerodynamic optimization:

inviscid flow ». In: Computers & Fluids 28.7 (Sept. 1999), pp. 853–877.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. « Efficient management

of parallelism in object oriented numerical software libraries ». In: Modern Software

Tools in Scientific Computing. Ed. by E. Arge, A. M. Bruaset, and H. P. Langtangen.

Birkhäuser Press, 1997, pp. 163–202.

[4] S. Balay et al. PETSc users manual. Tech. rep. ANL-95/11 - Revision 3.7. Argonne

National Laboratory, Apr. 2016.

[5] S. Balay et al. PETSc Web page. 2016. url: http://www.mcs.anl.gov/petsc.

[6] F. Bisson. « Aerodynamic design optimization using the drag decomposition method ».

MA thesis. McGill University, Aug. 2015.

[7] F. Bisson and S. Nadarajah. « Adjoint-based aerodynamic optimization of benchmark

problems ». In: 53rd AIAA Aerospace Sciences Meeting. Paper No. AIAA 2015-1948.

American Institute of Aeronautics and Astronautics, Jan. 2015.

[8] A. de Boer, M. van der Schoot, and H. Bijl. « Mesh deformation based on radial basis

function interpolation ». In: Computers & Structures 85.11 (July 2007). Fourth MIT

Conference on Computational Fluid and Solid Mechanics, pp. 784–795.

76



BIBLIOGRAPHY 77

[9] C. G. Broyden. « A new double-rank minimization algorithm ». In: Notices American

Mathematical Society 16 (1969), p. 670.

[10] C. G. Broyden. « The convergence of a class of double-rank minimization algorithms

1. general considerations ». In: IMA Journal of Applied Mathematics 6.1 (Mar. 1970),

pp. 76–90.

[11] J. Cagnone, K. Sermeus, S. Nadarajah, and E. Laurendeau. « Implicit multigrid schemes

for challenging aerodynamic simulations on block-structured grids ». In: Computers &

Fluids 44.1 (May 2011), pp. 314–327.

[12] S. Choi, K. Lee, M. M. Potsdam, and J. J. Alonso. « Helicopter rotor design using

a time-spectral and adjoint-based method ». In: AIAA Journal of Aircraft 51.2 (Feb.

2014), pp. 412–423.

[13] R. Fletcher. « A new approach to variable metric methods ». In: The Computer Journal

13.3 (1970), pp. 317–322.

[14] D. Ghate and M. Giles. « Efficient Hessian calculation using automatic differentia-

tion ». In: 25th AIAA Applied Aerodynamics Conference. Paper No. AIAA-2007-4059.

June 2007.

[15] K. C. Giannakoglou and D. I. Papadimitriou. « Adjoint methods for shape opti-

mization ». In: Optimization and Computational Fluid Dynamics. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008. Chap. 10, pp. 79–108.

[16] P. E. Gill, W. Murray, and M. A. Saunders. « SNOPT: an SQP algorithm for large-scale

constrained optimization ». In: SIAM Review 47.1 (Aug. 2005), pp. 99–131.

[17] D. Goldfarb. « A family of variable-metric methods derived by variational means ». In:

Mathematics of Computation 24.109 (1970), pp. 23–26.

[18] L. Hascoët and V. Pascual. « The Tapenade automatic differentiation tool: principles,

model, and specification ». In: ACM Transactions On Mathematical Software 39.3

(Apr. 2013). Article No. 20.



BIBLIOGRAPHY 78

[19] J. E. Hicken. « Inexact Hessian-vector products in reduced-space differential-equation

constrained optimization ». In: Optimization and Engineering 15.3 (Sept. 2014), pp. 575–

608.

[20] J. E. Hicken and D. W. Zingg. « Induced-drag minimization of nonplanar geometries

based on the Euler equations ». In: AIAA Journal 48.11 (Nov. 2010), pp. 2564–2575.

[21] S. Jakobsson and O. Amoignon. « Mesh deformation using radial basis functions for

gradient-based aerodynamic shape optimization ». In: Computers & Fluids 36.6 (July

2007), pp. 1119–1136.

[22] A. Jameson, L. Martinelli, and N. Pierce. « Optimum aerodynamic design using the

Navier-Stokes equations ». In: Theoretical and Computational Fluid Dynamics 10.1

(Jan. 1998), pp. 213–237.

[23] A. Jameson. « Aerodynamic design via control theory ». In: Journal of Scientific Com-

puting 3.3 (Sept. 1988), pp. 233–260.

[24] G. K. Kenway and J. R. Martins. « Multipoint high-fidelity aerostructural optimization

of a transport aircraft configuration ». In: AIAA Journal of Aircraft 51.1 (Jan. 2014),

pp. 144–160.

[25] R.-C. Li. « Relative perturbation theory: I. eigenvalue and singular value variations ».

In: SIAM Journal on Matrix Analysis and Applications 19.4 (Feb. 1998), pp. 956–982.

[26] Z. Lyu, G. K. Kenway, and J. R. Martins. « Aerodynamic shape optimization inves-

tigations of the common research model wing benchmark ». In: AIAA Journal 53.4

(Apr. 2014), pp. 968–985.

[27] L. Martinelli and A. Jameson. « Validation of a multigrid method for the Reynolds

averaged equations ». In: AIAA 26th Aerospace Sciences Meeting. Paper No. AIAA-

88-0414. Jan. 1988.

[28] J. R. Martins, J. J. Alonso, and J. J. Reuther. « A coupled-adjoint sensitivity analysis

method for high-fidelity aero-structural design ». In: Optimization and Engineering 6.1

(Mar. 2005), pp. 33–62.



BIBLIOGRAPHY 79

[29] S. Nadarajah and C. Tatossian. « Multi-objective aerodynamic shape optimization for

unsteady viscous flows ». In: Optimization and Engineering 11.1 (Feb. 2010), pp. 67–

106.

[30] E. J. Nielsen, E. M. Lee-Rausch, and W. T. Jones. « Adjoint-based design of rotors

in a noninertial reference frame ». In: AIAA Journal of Aircraft 47.2 (Mar. 2010),

pp. 638–646.

[31] J. Nocedal. « Theory of algorithms for unconstrained optimization ». In: Acta Numer-

ica 1.5 (1992), pp. 199–242.

[32] J. Nocedal and S. J. Wright. Numerical optimization. 2nd ed. Springer, 2006.

[33] A. M. Ostrowski. « A quantitative formulation of Sylvester’s law of inertia ». In: Pro-

ceedings of the National Academy of Science 45.5 (May 1959), pp. 740–744.

[34] D. I. Papadimitriou and K. C. Giannakoglou. « A continuous adjoint method with

objective function derivatives based on boundary integrals, for inviscid and viscous

flows ». In: Computers & Fluids 36.2 (Feb. 2007), pp. 325–341.

[35] D. I. Papadimitriou and K. C. Giannakoglou. « Aerodynamic design using the trun-

cated Newton algorithm and the continuous adjoint approach ». In: International Jour-

nal for Numerical Methods in Fluids 68.6 (Jan. 2012), pp. 724–739.

[36] D. I. Papadimitriou and K. C. Giannakoglou. « Aerodynamic shape optimization using

first and second order adjoint and direct approaches ». In: Archives of Computational

Methods in Engineering 15.4 (Aug. 2008), pp. 447–488.

[37] D. I. Papadimitriou and K. C. Giannakoglou. « Computation of the Hessian matrix in

aerodynamic inverse design using continuous adjoint formulations ». In: Computers &

Fluids 37.8 (Sept. 2008), pp. 1029–1039.

[38] D. I. Papadimitriou and K. C. Giannakoglou. « Direct, adjoint and mixed approaches

for the computation of Hessian in airfoil design problems ». In: International Journal

for Numerical Methods in Fluids 56.10 (Sept. 2008), pp. 1929–1943.



BIBLIOGRAPHY 80

[39] D. I. Papadimitriou and K. C. Giannakoglou. « The continuous direct-adjoint approach

for second order sensitivities in viscous aerodynamic inverse design problems ». In:

Computers & Fluids 38.8 (Sept. 2009), pp. 1539–1548.

[40] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Version 20121115. Nov.

2012.

[41] L. Piegl and W. Tiller. The NURBS Book. 2nd ed. New York, NY, USA: Springer-

Verlag New York, Inc., 1997.

[42] O. Pironneau. « Optimal shape design for elliptic systems ». In: System Modeling and

Optimization. Vol. 38. Lecture Notes in Control and Information Sciences. Springer

Berlin Heidelberg, Sept. 1982, pp. 42–66.

[43] V. Poirier. « An efficient radial basis function mesh deformation scheme within an

adjoint-based aerodynamic optimization framework ». MA thesis. McGill University,

Aug. 2011.

[44] V. Poirier and S. Nadarajah. « Efficient reduced-radial basis function-based mesh de-

formation within an adjoint-based aerodynamic optimization framework ». In: AIAA

Journal of Aircraft 53.6 (July 2016), pp. 1905–1921.

[45] J. Reuther, J. J. Alonso, J. Martins, and S. C. Smith. « A coupled aero-structural

optimization method for complete aircraft configurations ». In: 37th Aerospace Sciences

Meeting and Exhibit. Paper No. AIAA-99-0187. Jan. 1999.

[46] M. P. Rumpfkeil and D. J. Mavriplis. « Efficient Hessian calculations using automatic

differentiation and the adjoint method with applications ». In: AIAA Journal 48.10

(Oct. 2010), pp. 2406–2417.

[47] K. Schittkowski. NLPQLP: a Fortran implementation of a sequential quadratic pro-

gramming algorithm with distributed and non-monotone line search - User’s guide,

Version 3.0. Report. Department of Mathematics, University of Bayreuth, 2009.

[48] S. Schmidt. « Efficient large scale aerodynamic design based on shape calculus ». PhD

thesis. University of Trier, Germany, Apr. 2010.



BIBLIOGRAPHY 81

[49] T. W. Sederberg and S. R. Parry. « Free-form deformation of solid geometric models ».

In: SIGGRAPH Computer Graphics 20.4 (Aug. 1986), pp. 151–160.

[50] D. F. Shanno. « Conditioning of quasi-Newton methods for function minimization ».

In: Mathematics of Computation 24.111 (1970), pp. 647–657.

[51] L. L. Sherman, A. C. T. III, L. L. Green, P. A. Newman, G. W. Hou, and V. M. Korivi.

« First- and second-order aerodynamic sensitivity derivatives via automatic differen-

tiation with incremental iterative methods ». In: Journal of Computational Physics

129.2 (Dec. 1996), pp. 307–331.

[52] A. Skajaa. « Limited memory BFGS for nonsmooth optimization ». MA thesis. New

York University, Jan. 2010.

[53] G. M. Streuber and D. W. Zingg. « Investigation of multimodality in aerodynamic

shape optimization based on the Reynolds-averaged Navier-Stokes equations ». In:

35th AIAA Applied Aerodynamics Conference. Paper No. AIAA 2017-3752. June 2017.

[54] S. Tatsumi, L. Martinelli, and A. Jameson. « A new high resolution scheme for com-

pressible viscous flows with shocks ». In: 33rd AIAA Aerospace Sciences Meeting and

Exhibit. Paper No. AIAA 95-0466. Jan. 1995.

[55] A. Wächter and L. T. Biegler. « On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming ». In: Mathematical Pro-

gramming 106.1 (Mar. 2006), pp. 25–57.

[56] B. Walther and S. Nadarajah. « Optimum shape design for multirow turbomachinery

configurations using a discrete adjoint approach and an efficient radial basis function

deformation scheme for complex multiblock grids ». In: ASME Journal of Turboma-

chinery 137.8 (Aug. 2015), p. 081006.

[57] D. X. Wang and L. He. « Adjoint aerodynamic design optimization for blades in mul-

tistage turbomachines—part I: methodology and verification ». In: ASME Journal of

Turbomachinery 132.2 (Oct. 2010), p. 021011.


