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INTRODUCTION 

A study of the electronic properties of a substance 

usually requires the knowledge of its band structure. The 

starting point when trying to determine the band structure of 

a crystalline material is to employ one or another type of 

approximation to obtain the general form of the structure of 

energy bands. This general form usually contains certain 

parameters whose theoretical calculation is difficult or pro

hibitive. Thus we resort to experiments to determine the 

values of these parameters and consequently the exact band 

structure. 

To establish the validity of an approximation we 

have to show that the model based on this approximation can 

explain the physical properties of the material. In this 

present work we rely on the model developed by P.R. Wallace(l) 

using the tight binding approximation for single crystal 

graphite. Our task is to examine whether the optical proper

ties of graphite as calculated using this model conform with 

experimental measurements in the infrared region of radiation. 

With the knowledge of the structure of energy bands 

and the crystal wave functions we can calculate the complex 

dielectric constantE =E1 + iE2 making use of the formulae 

derived by Ehrenreich and Cohen(2 ) for this quantity. From 

t we can obtain the reflection coefficient R and make compari

son between experimental values and the theoretically derived 

values. 
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The same problem has been dealt with by Boyle and 

Nozieres(3). In arder to obtain reliable data, rather than 

measure the optical constants directly, they measured the 

reflection coefficient for graphite in the case of mono

chromatic, linearly polarized radiation at liquid helium 

temperature for wavelengths À = 1 - 30)" (F'ig. 3). In their 

theoretical work they rely on the band structure of graphite 

developed by Slonczewsky and Weiss(4 ) using group theory and 

perturbation methods to calculate the general topology of 

bands. This madel gives rise to a number of adjustable 

parameters. B. and N.'s work is concerned with the deter

mination of one of these parameters from the experiment 

mentioned above. 

Our purpose is to try to fit the experimental data 

on the reflection coefficient using P.R. Wallace's model. 

It is interesting to see whether this madel, despite its 

simplicity, can give a fair agreement with the experiment in 

question. 
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CHAPTER 1 

THE BAl~D STRUCTURE OF GRAPHITE 

In this section we give a short account of the 

derivation of the structure of the energy bands and electronic 

wave functions for single crystal graphite using the tight 

binding approximation(l). 

(a) Crystal Structure of Graphite 

In graphite the carbon atoms are arranged in 

parallel layers in such a way that atoms in each layer form 

a hexagonal network (Fig. 1). The hexagonal spacing in the 

layer (1.42A) is small compared with the spacing of the 

lattice planes (d = 3·37A). This suggests that in first 

approximations we neglect the interaction between layers and 

treat graphite as a two dimensional crystal structure. 

Graphite has four valence electrons, three of which 

form tight bonds with neighbouring atoms in the layer. The 

fourth electron is considered to be in the 2Pz state with its 

axis of symmetry perpendicular to the lattice plane. Since 

the electrons forming bonds in the plane do not play a part 

in the electrical properties of graphite, we will assume that 

graphite has one conduction electron in the 2Pz state. 

The unit cell in the hexagonal layer contains two 

atoms: A and B (Fig. 1). 

The fundamental lattice displacement vectors are: 
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( f5a a O) 
al = 2 ' 2' ' a2 = ( 0 , a , 0) , a

3 
= (0, o, d). 

The corresponding reciprocal lattice vectors: 

- 4T 
b 1 = ([3a' o, 0), b

2 
= (- 2T 2T O) 

[3a' a ' 
21r) b3 = (0, o, ~ . 

The first Brillouin zone for a layer of graphite is depicted 

in Fig. 2. 

(b) The Tight Binding Approximation 

In the tight binding approximation the wave function 

is of the form: 

~ = ~1 + ~2 

where ~1 = L exp(ik.rA) X(r - rA) 
A 

o/2 = L exp(ik.rB) X(r - rB) 
B 

X(r) is the normalized 2Pz wave function for an isolated atom 

and the sums are taken over all sites occupied by A or B type 

atoms respectively. Using the variational method and assum

ing that the X(r)'s centered on different atoms do not over

lap, that is 

we obtain for the energies and wave functions: 

E± = Hll ± jH12l 

f :1: = A c~l ± "~2) 
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where the ± sign applies if k is ~~~~~~e of the hexagonal zone. 

The factor 1;[2 has been inserted in order to normalize the 

periodic part of the wave function over the unit cell. H11 , 

H12 and À are given by the expressions: 

Hll = s ~Î H~l d3r 

H12 = 5 ~~ H~2 d3r 

H* 
exp ( id(k)) À 12 

= 
IH12l 

= 

Calculating H11 and H12 as an approximation, only exchange 

integrals connecting nearest neighbours amongst the A type 

atoms, and integrals connecting nearest neighbours between 

different types (A and B) of atoms are retained. In this 

approximation vle obtain: 

i~ ~ i~ ] 
Hl2 = -ro [exp(- --:f') + 2cos(-jl-) exp(2 3x) 

and 
~ ~ ak 

sin(-Z) - 2sin(~) cos C-f) 
tan J (k) 3 2 3 

= ak ~ ~ 
cos(-Z) - 2cos(-Z) cos(-jl) 

3 2 3 
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we notice that in the reduced wave vector representation 

ÀE =21H12[ gives the energy difference between levels 

corresponding to the same k in the conduction and valence 

bands respecti v ely. 1.,Je can see that the bands do not overlap 

and there are degeneracies at the corners of the Brillouin 

Zone. Near the corners the following expression is valid: 

where k is measured from the respective corner. 

Previous theoretical estimates and fitting of the 

model to various physical properties of graphite give the 

value Îo = 2.6 Ev. 
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CHAPTER 2 

THE REFLECTIOH COEJ!1FICIENT A FUNCTION 

OF THE COMPLEX DIELECTRIC CONSTM~T 

As stated in the introduction, we v1ant to calculate 

the reflection coefficient R of graphite at normal incidence 

of radiation. In this case R can be expressed in terms of the 

optical constants n and kin the following way(5). 

R (n+ik-1)2 

= (n+ik+l)2 = 
(n-1)2 +k2 

(n+l) 2 +k2 

The relationship between the complex dielectric 

constant and the optical constants is: 

Hence 

and 

n2 - k2 E = 1 ' 

2n
2 

= E 1 + ~ E Î + E ~ 

2k
2 

= -E1 + J EÎ + E ~ 

(a) Formulae for the Dielectric Constant 

(2.1) 

(2.2) 

Ehrenreich and Cohen(2 ) derived expressions for the 

complex dielectric constant for solids in the case when the 

electron-lattice interaction is negligible. The criterion for 

the relaxation effects to be negligible is that Wl")~l. Binee 
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the measurements of the reflection coefficient were done at 

liquid helium temperature in the infrared region, this 

condition is fullfilled in our case. (8oule(6 ) gives the 

estimate ~~ 3 x 10-11cm. for T = 4.2K. For the angular 

frequencies considered W) ~~ 1014 
= 0.63 x 1014• Hence 

wt'" ~ 2 x 103.) 

For monochromatic radiation of angular frequency 

UJand polarization in the)4 direction, the real and imaginary 

parts of the comp1ex dielectric constant are given by the 

expressions: 

where 

:2 .2_ j d3kfoCl1<:t{JcEië+q,L- '1<c 1iw) -
l 

- d (Ek-q ,t- B_kt + flw)J 

1iwte. -~ ~t· - ~t 

)Jo. J * A d3r, p)l. = - ·n d Pu' = uk •.t P Ukf- J: -

unit cell dX)'--
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Since the measurements were done at such a low temperature, 

we may calculate E for zero temperature by setting the dis

tribution function f
0

(E) equal to a step function. In the 

simple two dimensional model upon which we base our calcula

tians, graphite has one valence and one conduction band. 

Since the bands do not overlap, the valence band will be 

completely filledo In arder to give an explanation for the 

diamagnetic susceptibility of graphite, Haering and Wallace(?) 

assumed that the conduction band is filled up to 0.06Ev from 

the degeneracy corners even at very low temperatureso 

If the electric radiation is directed perpendic

ularly to the layer and polarized in the x direction, we ob

tain with the above assumptions: 

E - 2e~2 Jd2k 2- 2 2 m d 

(2.3) 

(2.4) 

~he second term in f 2 dropped since at zero temperature it 

is different from zero only when W = O.) 

d = inter-layer distance 

nw+- = E+(k) - E_(k) = 2/H1 21 
EF = Fermi energy. 
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(b) The Matrix Element <u+\ ~ 1 u_) • 

In arder to calculate the complex dielectric con-

stant we have to evaluate the matrix element 

< u + 1 ~x 1 u _) = J d 
3

r 0 u: ~x u _ 

where J d3r
0 

indicates integration over the unit cell. 

Ju;ikx u_d3r drops since u+ and u_ are orthogonal. 

Su* .a_ u d3r = Ns u* l_ u d3r since u and u have the 
+ êx - + dX - o + -

periodicity of the lattice. (N is the number o.f cells in the 

crystal.) 

Hence 

Now we have: 

0 ) 1 id \ d \ id < t +1 dXIo/- = 2 < ~l +e ~2 oX ~1-e ~2 > 

= ~ < h\ ~~ \ ~l~ - e~cf < h \ ;x J ~2> 

The first and last terms on the right hand side cancel each 

other, thus we have to evaluate only the second and third 

terms. 
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and 

= N L_ exp(ik.rL) J x* Ci:')~ X(i'-i'L)d3r 
L 

And simi1ar1y 

Let us set the origin of the coordinate system on an A type 

atom. Then eva1uating the sums we make the approximation in 

which on1y terms connecting nearest neighbours amongst atoms 

of different types are taken into account. This approxima

tion seems to be justified, for, on account of the negative 

exponentia1 character of X(r), the integra1s fall off very 

rapidly as rL increases. Thus both sums will consist of 

three terms corresponding to rL =rB , rB , rB (see Fig. 1). 
1 2 3 

Haking use oJ: the form .of the atomic orbital X(r) 

it is easily seen that the integrals of interest will be: 
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Then we obtain in our approximation: 

Ne-id' Lexp(-ik.rB )+ ~exp(-ik.rB )+ ~ exp(-ik.rB )] 
- 2 r: 1 2 3 

[ 
ak ak ak 

= -N o<. cos(~+ d)+2 ~cos(~- d)cos(-i'-)] 
3 2 3 

It is shown in Appendix 1 that: 

o( > 0 ' f-1< 0 and 

Renee we have 
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CHAPTER 3 

THE Cür1PLEX DIELECTRIC CONSTANT 

(a) The Imaginary Part 

As we saw in the previous section, the contribution 

of the intra-band term to E2 is zero and the imaginary part 

of the complex dielectric constant is given by the expression 

(2 .4): 

E0 2= !~:; J d2
k 1< u+l ;x 1 u_) 12 J (1iw+- - 1\w) 

flw +.? 2E:if 

Substituting for < u) {xl u_) andW+-

In order to perform the integration we break up the Brillouin 

zone into sections as indicated in the figure. For each 

section we shift the origin of the coordinate system in the 

corresponding corner of the Brillouin zone. For small values 

of k = lk! (where k is now measured from the corner of the 

zone corresponding to the section over which we integrate), 

we have to first order in k; [H12! = ([3/2) ar
0
k. Since the 

k values for which the argument of the delta function 

vanishes are small, we canuse this approximate expression 

for [H12/ through the entire section. (For the frequencies 
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considered the energy of the radiation E < 2 x lo-12 erg 

and 21H12 \ < 2 x lo-l9kerg. Hence k < 107 or ak <. 0.25). 

In what follows, the expression in the square 

bracket is expressed in polar coordinates, then expanded 

about k = 0 to first order in k (see Appendix 2). Perform-

ing the integration in each section over the angle variable 

and summing over the sections we obtain: 

= 2e~: ~2 [~ + Bf] 
where 

A = ~(ïf - 2{!) B = 

Substituting the numerical values for e, h, etc. and writing 

E2 as function of wavelength (expressed in microns): 

E 2 = 5.25 CÀ- o.l6) (3.1) 

(b) The Real Part 

The real part of the complex dielectric constant 

(2 .la) is made up of two parts, Ela corresponding to the 

contribution of band to band transitions andE 1b correspond

ing to the contribution of free electrons. 
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Evaluating this integral we go ahead in a similar way as we 

did in the case of E2 • 

The main contribution to the integral comes from 

k values for which the denominator is small. These values 

are near the corners as we explained before. we express the 

integrand in polar coordinates and expand it to first order 

in k (again, k is measured from the corners)o Moreover, 

since the small k values give the large contribution to the 

integral we use a eut-off for ko We will perform the 

integration for k<K = 2 x 107 and neglect the contribution 

of k values for which k) K. 

Substituting IH121 = ([3/2) arok and performing 

the integration over the angle variable: 

K 

Ela 
4e2rioc.2 Jl3 J dk A + Bk 

= k2 -Jl2c.~l ïf m2d 
kF 

where A, B and .Q were defined in section (a) and kF is 

defined by ~ = C0/2)aY'okF. 
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Carrying out the integration and substituting numerical 

values for the constants we obtain for E1a as a function of 

wavelength: 

CEp is measured in electron-volts, À in microns and K has 

been taken to be 2 x 107.) 

The contribution of free electrons E1b is given 

by: 

where the integration is taken over the occupied states of 

the conduction band. 

Near the corners (setting the energy level to zero 

at the corners): 

He nee 

Introducting polar coordinates and performing the integra-

ti on 
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And as a function of wave1ength: 

(3.2b) 

From (2.3), (3.2a), (3.2b) and (3.1) we fina11y 

have for the comp1ex die1ectric constant: 

E 2 = 5.25(À - o.16) 
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Sill"IHARY 

We obtain the numerical values of the reflection 

coefficient from Equations (2.1), (2.2), (3.3) and (3.4). 

Curves for the reflection coefficient for differ

ent values of the Fermi energy are plotted against wave

length in Fig. 3. Comparison of our graphs with the ex

perimental graph shows that the agreement between the ex

perimental and theoretically calculated values of R is 

rather poor. The reason for this discrepancy is thought to 

lie in the simplicity of the model upon which we have based 

our calculations. It is very likely that using P.R. Wallace's 

three dimensional model instead of the two dimensional, we 

would have gotten a much better agreement with experiment. 
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APPENDIX 1 

As wave function for an isolated atom, we use the 

normalized 2Pz Slater-Zener orbital(S): 

k5 }~ 
where k = 1.625, N = (~) and distances are measured in 

Bohr radii a
0

• 

In general 

Renee 

J X(r) Jx X(r-rL)d3r = - J x(r-rL) 1x X(r)d3r 

Consequent1y 

(A.l) 

(A.2) 

And since rB is the mirror image of rB with respect to the 
3 2 

x axis (Fig. 1) 

Combining (A.2) and (A.3) we obtain the expressions given 

on page 12. 

(a) Calculation of Ol. 

From (A.l) and (A.2) we have for ~~ 

2 -k \ :r \ d -k 1 r-rB~ 3 
Z e dx e d r 

(A.3) 
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Introducing the notation B1 = krB , B = \BI and the trans-
1 - _, 

formation kr = r 

Transforming to polar coordinates with the x axis as polar 

axis, 

x = r cos~ 

y = r sin~ cosV> 

z = r sin.} sintp 

c( = - ~ J (r cos~ -B)sin3J- sin~ 

where R = 1 r-B1! and o<-&~T , 

Performing the integration over 1 , 

ïTN2 5 ~ 3.q.. 4 -r e-R Q. 
~ =- ~ (r cosv -B)sin v·r e ~dr dv (A.4) 

We make use of the expression(9): 

d Ot th smaller of r and B en es e larger • 

Substi tu ting we obtain for oZ ; 
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c:;/'l T c::>ô 

ol. =11'~ I (2n+l) J cosîl' sin3~ Pn (cos~ )d~ ~ r5 e-r jn (ir< )11, (ir> )dr 
k ~0 0 0 

oD T oo 

- <rN!B L (2n+l) J sin3~ Pn (cos-& )d}l r 4 e-rjn (ir<)h, (ir>)dr 
k n=O 0 0 

Or, denoting the integra1s over ~ and r by ...e- and R respect

ive1y; 

o() 

(2n+1}&nRn -~ ~ (2n+1}6-~R~ 
k n=o 

It is easi1y seen that on1y certain terms are different from 

zero in these sums. For instance in the first sum: 
~~~ T 

-&n= S cos~ sin3~ Pn(cos.{)- )d~=J (cos3J-cos~ )Pn(cos..J )d(cos~) 
0 0 

1 1 

= - s (p.-p.3)pn~) df = ~ ) (P1-P3)Pn(f) df 

-1 -1 

On account of the orthogona1ity of the Legendre po1ynomia1s 

only -e-1 and ~3 are different from zero; 

1 1 
Simi1ar1y in the second term on1y -6-

0 
and ...g...2 differ from zero, 

1 4 
-eo=3' 

1 4 
-e-2 = - 15 

To obtain ~ we new have to evaluate the corresponding R and 
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R' values. It is accomplished by breaking up the integrals 

into two parts and substituting the proper spherical Bessel 

and Hankel functions. (It should be noted that B = 4.36 and 

the symbol is left in the following expressions for sake of 

convenience). E.g.: 

00 

~ J r5 -r j 1 (ir<) hn(ir))dr = e 
0 

B 00 

h1 (iB) J r5 -r j 1 (ir)dr + j 1 (iB) I r5e-rh1 (iB)dr = e 
0 B 

= -63.65e -B 

Similar calculations give 

R3 
-B = -44.13e 

R' -B = -17.12e 
0 

1 -B 
R2 = -12.75e 

Substitution of the -&and R values in (A.4) yields r:J.. = 0.203. 

It should be remembered that we carried out our 

calculations in atomic units. The integral defining~ has 

the dimension [L]-1 , hence, in order to obtain~ in ordinary 

units, we have to divide 0.203 by the Bohr radius 
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(b) Calculation of~ 

From (A.l) and (A.3), 

With the substitutions kr = r' and B2 = krB 
2 

We rotate the coordinate system about the Z axis so that 

the new x axis will coincide with B2 and introduce polar 

coordinates \dth the new x axis as polar axis, 

1 1 ...2' t cos~ x = - 2 x- 2 y x = r 

...2 1 1 ' 1 

r sin} cosy y = 2 x - 2Y y = 

z = z' z = r sin~ sintp 

Making the substitutions and performing the integration 

over ~ we obtain: 

0 =v~ J (r cos~ -B)r
4 

2k 
e -r 

Comparing this expression with (A.4) we obtain: 



-24-

APPENDIX 2 

The technique employed in the evaluation of the 

integrals in Chapter 3 was to integrate the approximate 

expressions for the integrands near the corner of the 

Brillouin zone, and neglect the contribution of k values 

farther away from the corners. It is necessary to sub

stitute the squared matrix element 

l 
è) / 2 [ ak <' ak {\ ak :12 < uJ dX lu_) =}Lcos( 

3 
x + d )-cos(

2 
~ - d )cosC--:f)J (A.5) 

with expressions readily integrable in the neighbourhood of 

the corners. 

(a) d(k)is defined by the expression: 

or d(k) = 

* Expansions of H12 about the corners yield: 

Jl 
î\ = 6 -'j' d''+ = .2!: l.f 6 -

J2 1r J5 " = - 6 +y> = - 2 -'f 

J3 = .2:!!: 'f 6 - d'6 = ~ +'f 

(di denotes the expression representing d(R) around corner 

i). 

(b) The squared matrix element (A.5) is expressed 
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in polar coordinates, then expanded to first order in k. 

Using this technique we obtain for (A.5) in the vicinity 

( 4ïr) of e.g. corner 2 o, 3a : 

Similar expressions are obtained for the other corners. 

Suppose now that we want to integrate (A.5) in 

the shaded region depicted in the figure. We simply 

integrate the different approximate expressions between the 

( 7K lJ.:iï angle limits appropriate to the corners E.g. ï2 < 'f~ 12 

at (0, ~~)) and add the resulta. 

If the integration of (A.5) is performed only 

over f we obtain: 

where 

A = ~ (T - 3ii) ' 
gz B = - 4 a. 

s 



t+ 

tt 

IH * IJ 
!± 

,· .+-~ 

t 

F1gure 3. 
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Figure 1. 

L---------4-------------~ k~ 

Figure 2. 
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