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Abstract 

Plant petioles and stems are hierarchical cellular structures, displaying geometrical features 

defined at multiple length scales. One or more of the intermediate hierarchical levels consists of 

tissues, in which the cellular distribution is quasi-random, a factor that affects the elastic 

properties of the tissues. The current work focuses on the finite element analysis (FEA) of the 

constituent tissues of the plant Rheum rhabarbarum (rhubarb). The geometric model is generated 

via a recently introduced method: the finite edge centroidal Voronoi tessellation (FECVT), 

which is capable to capture the gradients of cellularity and diversified pattern of cellular 

materials, as opposed to current approaches in literature. The effective stiffness of the tissues is 

obtained by using an accurate numerical homogenization technique via detailed finite element 

analysis of the models of sub-regions of the tissues. As opposed to a large-scale representative 

volume element (RVE), statistical volume elements (SVE) are considered in this work to model 

tissue microstructures that are highly random. 2D finite element analyses demonstrate that the 

distribution of cells in collenchyma and parenchyma tissue make them stiffer in two different 

directions, while the overall effect of the combined tissues results in approximately equal 

stiffness in both directions. The rhubarb tissues, on the other hand, are more compliant than 

periodic and quasi-uniform random cellular materials by a factor of up to 47% and 44%, 

respectively. The variations of the stiffness shows the stiffening role that  cell shape, size, and 

graded cellular distribution play in the mechanics of the rhubarb tissue.  
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1. Introduction 

Plants are one of the major kingdoms in biology. From a structural point of view, plants and their 

organs frequently exhibit excellent mechanical properties. Among their organs, the petiole that 

attaches the leaf to the stem resembles a cantilever beam, which supports the leaf against gravity, 

allowing for its exposure to the sun. The petiole of Rheum rhabarbarum (rhubarb) plant as 

shown in Fig. 1(a) is an example of a cantilever beam that must resist combined loads including 

bending and twisting. The petiole’s flexural and torsional stiffness are largely controlled by its 

overall geometric properties and the stiffness of its constituent tissues. A plant organ (e.g. 

petiole) is generally composed of an assembly of cellular tissues, which make up its 

microstructure and largely govern its physical properties. Each tissue grows to meet specific 

functional requirements that guarantee plant survival in a given environment. The way in which 

multiple tissues are geometrically assembled within an organ helps determine mechanical 

performance, important for structural support. It has been demonstrated that the shape, size, and 

spatial distribution of cells governs the physical, biological, and structural properties of a cellular 

(tissue) material (Ghosh et al., 1996; Pasini, 2008). The microstructural analysis of the virtually 

modelled cellular microstructure of a plant tissue is crucial to the understanding of its mechanical 

behaviour (Faisal et al., 2010). The results of a microstructural analysis, which might provide the 

stiffness of both the individual tissues and their combination help to provide insights into the 

effect of cell size, shape, and cellular distribution with clustered and complex area of higher 

gradients which usually occur in rhubarb petioles. 

The petiole can be considered as a hierarchical structure, having structural features defined at 

multiple length scales. A petiole is generally composed of an assembly of cellular tissues, whose 

mechanical characteristics collectively depend on the geometry of their constituent cells, cell 

wall composition, the structural properties of the wall constituents, and the microarchitecture of 

the tissues.  The orders of structural hierarchy considered in the current work for the rhubarb 

petiole are represented by n  as shown in Fig. 1. As indicated in Fig. 1, n=1 corresponds to the 

cell wall, n=2 to tissue, and n=3 to the petiole. This work specifically focuses on the 

microstructural analysis at the tissue level (n=2) since the microstructural attributes of a tissue, 

such as the size and shape of the cells, and their distribution within a tissue largely affect the 

overall structural properties of the petiole.  
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Fig.1. Multiscale hierarchical organization of a plant (Rheum rhabarbarum) petiole. [n] denotes 

the hierarchical level of the multiscale structure. 1 

Microstructural analysis of cellular solids is crucial to understanding their overall behavior 

since cellular solids are prevalent both in nature and in human-made engineering structures. 

Many researchers have modeled natural cellular solids using repeating unit cells to construct a 

regular microstructure in the form of a circular, square or hexagonal array of cells (Gibson and 

Ashby, 1982). Closed-form relations of the structure-property can be derived with simplified 

geometric models based on repeated unit cells (Gibson and Ashby, 1999; Silva et al., 1995). 

Nevertheless, the modeling of plant tissue is a challenging task since natural cellular solids often 

exhibit non-periodic arrangement of cells. Since the microstructure of plant tissue is typically 

heterogeneous in shape and size, as shown in Fig. 2, the Voronoi tessellation can be used to 

generate an accurate representation of a non-periodic microstructure (Li et al., 2005; Silva and 

Gibson, 1997; Silva et al., 1995).  The Voronoi tessellation is used extensively to model grain 

geometry for the property characterization of polycrystalline aggregates (Cailletaud et al., 2003) 

and inter granular cracks (Hussain et al., 1993). There is a strong correlation between the 

microstructural geometry and the structural properties of space-filling networks. The 

interdependence between topology, geometry and physical dynamics of the spherulitic grain 

size-shape arrangement in semi-crystalline polymeric cellular networks has been shown both 

experimentally and theoretically (Chan and Rey, 1997; Huang et al., 1999; Kamal et al., 1997). 

Mattea et al. (Mattea et al., 1989) and Roudot et al. (Roudot, 1990) pioneered the use of Voronoi 

tessellation to model the microstructure of fruit tissues. Both groups aimed only to capture the 

                                                           
1©US Department of Energy Genome Programs/genomics.energy.gov 
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randomness of the fruit tissue microstructure without necessarily producing a model that 

accurately represented the real tissue. Recently, Ntenga et al. (Beakou and Ntenga, 2011; Ntenga 

and Beakou, 2011) tried to analyse the structure, morphology and mechanical properties of 

Rhectophyllum camerunense (RC) plant fiber using a conventional Voronoi diagram. Due to the 

inherent drawbacks of the Voronoi (CVT) model, semi-infinite edges were present at the 

boundary of the fiber, making the model unsuitable for Finite Element Analysis (FEA). To 

generate a geometric model, having finite edges at the boundary, a Finite-edge Centroidal 

Voronoi Tessellation (FECVT) method has been recently developed (Faisal et al., 2012). The 

FECVT method has been applied to model the tissue microstructures of Arabidopsis thaliana 

and Philodendron melinonii, two plants with distinct tissue architecture (Faisal et al., 2012). In 

this work, the FECVT method is applied to generate the virtual model of the rhubarb tissue (Fig. 

2). In particular, the FECVT method is applied here for the first time to generate both the 

collenchyma and parenchyma tissues and their combined pattern, which is critical to determine 

the overall mechanical behaviour of rhubarb tissue. The presence of vascular bundles, clustered 

higher area gradients, in the parenchyma tissue, make the geometric replication of these 

patterned tissue challenging. This paper shows that the FECVT method can handle and replicate 

complex heterogeneity that emerges in plant tissues. Hence, the virtual models that will be 

obtained here for rhubarb allows calculate the effective stiffness of their tissue via FEA. 

 

Fig.2. Paraffin-embedded rhubarb petiole cross-section stained with TBO and imaged with light 

microscopy at 20x magnifications. Approximately 16 photos were stitched together to create this 

composite image. Collenchyma cells, vascular bundle, and parenchyma cells are visible. Scale 

bar = 50 μm. 

Most studies on the homogenization of cellular solids are based on regular models with a 

periodic microstructure. Real solid foams, however, exhibit amorphous arrangements of pores 
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having different sizes and shapes far from being periodic. The homogenized/apparent elastic 

property for periodic honeycomb varies from 10~15% compared to non-periodic honeycomb 

(Silva et al., 1995). To consider the microstructural irregularity, the Voronoi cell finite element 

method (VCFEM) was developed and coupled with asymptotic homogenization method to 

generate globally homogenized elastic properties (Ghosh et al., 1996). This method considers the 

local periodicity of the microstructure only. To take into account the global periodicity in the 

irregular microstructures represented by the Voronoi tessellation, the homogenization process 

requires a large scale representative volume element (RVE). Analyses of such models had been 

provided by, among others, Silva et al. (Silva et al., 1995), Fazekas et al. (Fazekas et al., 2002), 

Roberts and Garboczi (Roberts and Garboczi, 2001) for both two and three-dimensional models. 

These studies demonstrated that even a large scale RVE of a plant tissue having heterogeneous 

cellularity may not be representative of the respective tissue. Moreover, the large scale RVEs are 

inefficient in terms of computational effort. To overcome this limitation, the computational 

homogenization technique can be applied to several small scale RVEs, rather than to large scale 

RVE, with non-periodic microstructures for global homogenization. In this approach, the 

stochastically selected RVEs, termed as Statistical Volume Element (SVE) (Ostoja-Starzewski, 

1993; Ostoja-Starzewski, 1998; Ostoja-Starzewski, 2006), are able to effectively consider the 

microstructural irregularity present in the plant tissues. For a given boundary condition, the 

effective mechanical properties of rhubarb tissues can be predicted by the numerical simulation 

of each SVE performed by finite element analysis. However, the concept of SVE is coupled with 

the FECVT method and for the first time applied here to determine the stiffness of plant tissue.     

The specific objectives of this paper are to: 1) generate the geometric models of the 

constituent tissues of rhubarb petiole using FECVT algorithm; 2) determine the normalized 

effective (homogenized) stiffness of the constituent tissues based on finite element analysis of 

the SVEs (FECVT models); 3) compare the effect of alternative microarchitectures of the 

constituent rhubarb tissues with periodic and quasi-uniformly distributed cells. 

The organization of this paper is as follows. Section 2 describes the methods adopted in this 

work to meet the objectives. Section 3 delineates the results obtained for the rhubarb tissues, and 

Section 4 interprets the physical significance of the results by comparing them with periodic and 

quasi-uniformly distributed microstructures.  
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2. Finite element modeling of the effective tissue stiffness 

Although the mechanical properties of a random microstructure can be determined by using 

direct numerical simulation, this strategy is computationally expensive to apply throughout the 

whole domain. Instead, the homogenized/effective properties of a material with random 

microstructure can be obtained from an RVE, which allows bypass the use of a large scale and 

detailed numerical simulation (Alber et al., 1992; Nemat-Nasser and Hori, 1999). The RVE 

contains the essential microstructural features and has been widely used to compute the effective 

material properties of heterogeneous and composite material having microstructural 

irregularities, such as grains, inclusions, voids, fibers and others. Since the intrinsic non-

homogeneity in the constituent tissues of the rhubarb petiole is highly random, a single FECVT 

model to capture the heterogeneity is not viable, because the requirement of the RVE size, being 

infinite, is neither practical nor desirable; furthermore, the simulation of a large RVE may suffer 

from a significant computational burden (Liu et al., 2010; Yin et al., 2008).  

 In the present analysis, to overcome the above limitations and to capture the effect of 

microstructural variability in the constitutive tissue properties, we adopt the concept of SVE. The 

size of the SVE is smaller than a conventional RVE, but larger than the microstructure 

characteristic length scale (Ostoja-Starzewski, 1993; Ostoja-Starzewski, 1998; Ostoja-

Starzewski, 2006). Hence, each of the FECVT models of a particular tissue should correspond to 

the respective SVE for the numerical simulation so as to capture the microstructural randomness 

present in the tissue. To obtain the effective/homogenized mechanical properties, the numerical 

simulation of compressive deformation in each SVE is performed by finite element analysis. The 

stochastic approach of using several SVEs is, therefore, expected to better represent the overall 

randomness commonly appearing in a tissue. 

2.1. Geometric (virtual) modeling of plant tissue 

A Voronoi microstructure is constructed based on a set of randomly generated points called 

Voronoi sites. The cell boundaries are drawn such that any point within the enclosed polygon is 

closer to its Voronoi site than to the Voronoi sites of the surrounding polygons. The Voronoi 

tessellation thus divides a space into as many regions as the Voronoi sites. The centroids of the 

cells are here used to construct the Voronoi diagram, defining a centroidal Voronoi tessellation 

(CVT). We operate as follows. First, a color or greyscale micrograph of a plant tissue is 
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subjected to image segmentation. Thresholding, a method for image segmentation, is then used 

to convert the colour or greyscale image into a binary (black and white) image. The Canny edge 

detection algorithm (Canny, 1986) is used to detect the shapes of the cells precisely.  

Once the shapes of the cells are detected, the 1st order moments of the cells are computed 

using X  and Y  coordinates of the pixels. The algebraic form of the moment equation of a digital 

image is  
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where the zeroth moment, physically, is equal to the area of the region. 

After determining the centroids of the cells, the Voronoi tessellation is constructed based on 

the Quick hull algorithm (Barber et al., 1996). The outcome is a conventional CVT with semi-

infinite edges at the boundary. The finite element analysis of the Voronoi model having semi-

infinite edges may lead to erroneous result (effective stiffness) since the boundary conditions 

applied at an infinite distance are not realistic. This problem is especially difficult to correct in 

models with irregular shape contour. 

To remove the infinite edges from the boundary, the centroids of the outermost cells are 

determined. For each centroid, the distances between the centroid and the surrounding Voronoi 

sites (centroids of the surrounding polygons) are calculated, and the minimum distance is 

determined. An imaginary point is created such that the distance between itself and the centroid 
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is half of the minimum distance. The imaginary point is thus created for each of the selected 

centroid. Based on the set of imaginary points and the convex hull algorithm (Barber et al., 

1996), a boundary is imposed, after which a Boolean subtraction is realized. With this Boolean 

operation, the semi-infinite edges are truncated, and the vertices of the truncated edges are 

reconnected to form the final boundary. The FECVT technique is, therefore, capable of capturing 

the microstructure of an image with an arbitrarily shaped boundary contour. This computational 

algorithm, FECVT method (Faisal et al., 2012), is applied here to model the rhubarb tissue 

microstructure shown in Figs. 3 to 5. Since the micrographs are used to generate the geometric 

models of the tissues, the accuracy of the models appears to depend on the quality of the 

experimentally acquired micrographs. As a result, the cellular distribution of the surrogate model 

of the tissue strongly depends on the quality and image clarity of the micrographs. If the 

micrograph of the tissue microstructure is vivid and clear, the FECVT method can capture the 

details of a cellular distribution with a good level of accuracy. 

 

Fig.3. FECVT model of collenchyma tissue of rhubarb petiole. 

 

Fig.4. FECVT model of parenchyma tissue of rhubarb petiole. 



9 
 

 

 

Fig.5. FECVT model of combined collenchyma-parenchyma (col-par) tissue of rhubarb 

petiole. 

 

 

2.2. Construction of the FE model 

The geometric information of the FECVT model (i.e., SVE) is transferred to ANSYS to generate 

the FEA model. The cell walls are considered to be straight and of uniform thickness throughout 

the surrogate tissue model. The relative density of a given model is specified by assigning the 

appropriate cell wall thickness. The constitutive behavior of the wall material is assumed to be 

elastic-perfectly plastic. Each cell wall of the Voronoi microstructure is modeled with a 

BEAM23 element, capable of describing both elastic and plastic behavior. The shear 

deformation, which is important for stubby beams, also is captured by considering the shear 

deflection coefficient of the beam element. The beam elements have a rectangular cross-section 

of uniform thickness t . The relative density, 
s * of the SVE, is given by 

 
*

1area of solid walls

totalarea of Voronoi model

N

i

i

s X Y

l

t
L L
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where N is the total number of beams, li is the length of the beam i; 
XL and 

YL are the dimensions 

of the Voronoi model along the X and Y axes, respectively. The FEA is conducted for different 

relative densities, adjusted by the value of t. In the finite element analysis, a Young’s modulus 
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1sE = is assigned to each beam to obtain the normalized tissue stiffness. To present the FE 

results in non-dimensional form, the value of Young’s modulus is only chosen for convenience. 

The finite element model accounts for the appropriate loading and boundary conditions, as 

explained next. 

2.3. Loading and boundary condition 

One of the most important aspects of using the FEA is the selection and implementation of the 

most appropriate boundary conditions, which should lead to the average global behavior for the 

2D FECVT models and avoid any localized deformation near the mesh boundaries. Three types 

of boundary conditions (BC) generally imposed by the FEA are the (1) periodic boundary 

condition, (2) prescribed displacement boundary condition, and (3) mixed boundary condition. 

Since the microstructures of the tissues (and the corresponding FECVT models) are not periodic, 

the periodic boundary condition is not appropriate. The prescribed displacement boundary 

condition is very strong restriction and is usually used with problems related to plastic 

deformation. The mixed boundary condition enforces the normal displacement, which eliminates 

the tangential force and the bending moments at the nodes on the boundaries. Since the mixed 

boundary condition tends to underestimate the Young’s modulus (Zhu et al., 1997), the 

displacement boundary condition has been adopted here as it was proved to be appropriate for 

the analysis of non-periodic microstructures under uniaxial and biaxial loading (Fazekas et al., 

2002; Shulmeister et al., 1998; Silva and Gibson, 1997; Silva et al., 1995; VanderBurg et al., 

1997). 

 

Fig.6. Simulated tests for determining effective stiffness properties. 
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To determine the effective Young’s modulus, the uniaxial compression load with 

prescribed displacement is simulated in both X and Y directions. A uniaxial compressive strain 

along the X axis is imposed on the nodes of the right edge, while the nodes at the left edge are 

constrained from translating in the X direction as shown in Fig. 6.  The nodes of the bottom edge 

also are constrained from translating in the Y direction to prevent the rigid body motion. 

Similarly, uniaxial compression along Y axis is also performed (Fig. 6[b]). In both cases, the 

nodes are constrained from rotating in the X Y− plane. To determine the effective shear modulus 

(Fig. 6(c)), a biaxial loading test has been simulated with a positive displacement in the X

direction and a negative displacement in the Y direction. The results have been computed for the 

alternative values of relative densities for the prescribed boundary condition. 

2.4. Determination of the effective stiffness properties 

For each model with a given relative density, the effective Young’s modulus, *E , and effective 

shear modulus, *

12G , are determined. The macroscopic stress,
* , is calculated from the global 

reaction forces of the structure in the loading direction. The sum of the nodal reaction forces is 

divided by the edge length to determine the average normal stress in the loading direction. The 

strain,
* , is determined based on the technique of gage lines introduced by Silva (Silva et al., 

1995) so as to eliminate the end effects. The displacement at each location, where the gage line 

intersects a cell wall, is computed by using a linear interpolation of the displacements of the two 

adjacent nodes. For a given pair of gage lines, the normal strain is computed as the change in 

distance between the gage lines divided by their original distance. The shear strain is computed 

as the change in the angle between the gage lines oriented at 45o
with respect to the coordinate 

axes. Nevertheless, the computed elastic constants for any model may vary by several percent, 

depending on the location of the gage lines. 

3. Results 

The effective stiffness of the collenchyma, parenchyma, and combined collenchyma-

parenchyma (col-par) tissues are predicted through the FEA of the FECVT models of the 

respective tissues. For each tissue, five FECVT models – the SVEs – have been considered based 

on the randomly chosen sections. The statistical results and the average effective stiffness 

properties are described in the following sub-sections. 
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3.1. Effective stiffness of collenchyma tissue using FEA 

The FECVT models of the collenchyma tissues are simulated in ANSYS to determine the 

effective tissue stiffness.  Each of the FECVT models is simulated for a set of relative density, 

varying from 5% to 30%. Fig. 7 shows the nodal displacements of the model tissue for 15% 

relative density, with compressive strain along X andY directions. The microstructure in the X

direction is less stiff than that in the Y direction. The microstructural anisotropy of the plant 

tissue originates from the cellular distribution. 

 Supplementary Figs. S.1(a) to S.1(c) in Appendix A, represent the variability of the 

computed stiffness with one standard error. The variations of the shear moduli are significant 

compared to the Young’s moduli of the FECVT models at varying density. 

   

(a) Nodal displacement along X direction  (b) Nodal displacement along Y direction 

Fig.7. Nodal displacement of the FECVT model of collenchyma tissue under uniaxial 

displacement BC. (a) X component of nodal displacement and (b) Y component of nodal 

displacement. 
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Fig.8. Normalized moduli of the FECVT model of collenchyma tissue. 

The normalized effective stiffness of the FECVT model along theY direction is around 

15% to 25% higher than that of the FECVT model along the X direction for the range of density 

considered here (Fig. 8). The variation reflects the stiffening effect of the cell shape, size, and 

cellular distribution, and also depicts the anisotropic behavior of the collenchyma tissue of the 

rhubarb petiole. Supplementary Fig. S.2 (Appendix A) depicts the variability of the Poisson’s 

ratio, 
*

XY and
*

YX , of the FECVT model of the collenchyma tissue. However, the effective 

Poisson’s ratios, 
*

XY and
*

YX , exhibit no difference within the range of relative density (Fig. 9).  

 

Fig.9. Effective Poisson’s ratio of the FECVT model of collenchyma tissue. 

3.2. Apparent stiffness of parenchyma tissue using the FEA 

The FECVT models of the parenchyma sections also are simulated in ANSYS for the 

range of relative density,
*0.05 / 0.30s   , to determine the effective tissue stiffness.  Fig. 10 

shows the nodal displacements of model tissue for 15% relative density, with compressive strain 
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along X andY directions. The microstructure of the parenchyma tissue in the Y direction is less 

stiff than that in the X direction, whereas the collenchyma is less rigid in the X direction. 

    

(a) Nodal displacement along X direction    (b) Nodal displacement along Y direction 

Fig.10. Nodal displacement of the FECVT model of parenchyma tissue under uniaxial 

displacement BC: (a) X component of nodal displacement, (b) Y component of nodal 

displacement. 

Supplementary Figs. S.3(a) to S.3(c) (Appendix A) represent the variability of the 

computed stiffness with one standard error. Similar to the collenchyma tissue, the variations of 

the shear moduli are significant compared with the Young’s moduli of the FECVT models at 

varying relative density.  

 

Fig.11. Normalized modulus of the FECVT model of parenchyma tissue. 

The normalized effective stiffness of the parenchyma FECVT model along the X

direction is an average of 15% higher than that of the FECVT model along the Y direction for 
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the range of density considered here (Fig. 11). The clustered and graded cellularity of the 

vascular bundle stiffens the parenchyma tissue in X direction compared to Y direction. Along 

with the higher gradient in clustered regions, the cell size and cellular distribution lower the 

stiffness of the parenchyma tissue compared to the collenchyma tissue. Supplementary Fig. S.4 

depicts the variability of the Poisson’s ratios, 
*

XY and
*

YX , of the FECVT model of the 

parenchyma tissue. However, the effective Poisson’s ratios, 
*

XY  and 
*

YX , of the FECVT model 

of the parenchyma tissue exhibit an average of 15% difference within the range of specified 

relative density (Fig. 12). From a structural point of view, the microarchitecture of the 

parenchyma tissue seems to be the origin of this variation. 

 

Fig.12. Effective Poisson’s ratio of the FECVT model of parenchyma tissue. 

3.3. Apparent stiffness of collenchyma-parenchyma (Col-Par) tissue using the FEA 

Since the overall stiffness of a plant petiole or stem depends on the constituent tissues as 

a whole, the stiffness properties of the collective tissues also are analyzed in this section. To 

capture the cumulative and integrated effects of both the collenchyma and parenchyma (col-par) 

tissue, the FECVT models of the combined tissue sections are also simulated in ANSYS for the 

range of relative density,
*0.05 / 0.30s   , to determine the normalized tissue stiffness. Fig. 

13 displays the nodal displacements of the col-par FECVT model for 15% relative density, with 

compressive strain along the X  and Y directions. The displacements along both directions 

display the same order of magnitude for the cellular distribution in the combined tissue.  
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(b) Nodal displacement along X direction   (b) Nodal displacement along Y direction  

Fig.13. Nodal displacement of the FECVT model of col-par tissue under uniaxial displacement 

BC: (a) X component of nodal displacement, (b) Y component of nodal displacement. 

 Supplementary Figs. S.5(a) to S.5(c) (Appendix A) represent the variability of the 

computed stiffness with one standard error. An expected trend of variability, similar to the 

collenchyma and parenchyma tissue, is observed for the combined tissues (Fig. 14). 
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Fig.14. Normalized modulus of the FECVT model of collenchyma-parenchyma tissue. 

 

Fig.15. Effective Poisson’s ratio of the FECVT model of collenchyma-parenchyma tissue. 

 The combined effect of the collenchyma and parenchyma tissue is different than that of 

the individual tissues. The normalized effective stiffness of the col-par FECVT model is nearly 

similar (an average of 4% higher along the X direction) along both the X and Y directions 

throughout the relative density range considered here (Fig. 14). The overall effect of the 

combined tissues results in approximately equal stiffness. Nevertheless, the effective Young’s 

moduli and shear modulus of the combined tissues are in-between the individual tissues. The 

Poisson’s ratios, 
*

XY  and 
*

YX , of the FECVT model of the combined tissues also exhibit a 

difference between the ratios (Supplementary Fig. S.6 (Appendix A) and Fig. 15). 

 The normalized stiffness of the individual tissues and their combination provide insights 

into the effect of cell size, shape, and cellular distribution with clustered and complex area of 
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higher gradients present in the rhubarb petiole. The analyses presented here manifest the micro 

architectural effect of constituent tissues. 

4. Discussion 

4.1. Comparison of the normalized stiffness of various tissues 

The normalized stiffness of the FECVT models are compared to the stiffness of a 

randomly generated Voronoi model, and the stiffness calculated from closed-form expressions 

available in literature for periodic cellular materials and used for plant tissue modeling (Silva et 

al., 1995). Cellular periodicity, however, is an oversimplified assumption, not representative of 

the real random distribution of cells often seen in plant tissues. These formulas are obtained with 

an isotropic periodic cellular model that has a hexagon as a unit cell. On the other hand, the 

quasi-uniform random Voronoi model is generated for a set of uniformly distributed points. 

Supplementary Fig. S.7 (Appendix A) shows a regular hexagonal unit cell and the quasi-uniform 

randomly generated Voronoi model. 

 The normalized stiffness of the FECVT models of collenchyma, parenchyma, and 

combined collenchyma-parenchyma tissues; quasi-uniform Voronoi model; and the hexagonal 

unit cell are shown in Fig. 16. The FEA of the quasi-uniform random Voronoi model shows an 

average of 8% and 6% higher axial and shear modulus, respectively, compared to the closed-

form solutions obtained for the unit cell shown in Supplementary Fig. S.7(a) (Appendix A). The 

results of the moduli are in agreement with those presented by Gibson et al.(Gibson and Ashby, 

1999; Silva et al., 1995). For a given set of relative density, the normalized effective elastic 

moduli of the different models at X andY directions are shown in Figs. 16(a) and 16(b). With 

respect to relative density, 
*0.05 / 0.30s   ,  the  FECVT models of the rhubarb tissues 

exhibit nearly equal stiffness, which is 31% to 40% less rigid than the quasi-uniform random 

Voronoi model, and 29% to 35% less stiff than the periodic unit cell along the X direction. On 

the other hand, the stiffness of the FECVT models of the rhubarb tissues varies along theY

direction. Along this direction, for relative densities varying between 5% to 30%, the 

collenchyma FECVT model is 20% to 39% less stiff than the random Voronoi model and 15% to 

35% less rigid than the unit cell model; the parenchyma FECVT model is 22% to 47% more 

pliant than the random Voronoi model and 19% to 44% less stiff than the unit cell model. The 



19 
 

col-par FECVT model is 18% to 39% more compliant than the quasi-uniform random Voronoi 

model and 24% to 33% than the unit cell model. Similarly, the shear moduli of the FECVT 

models are considerably lower than both the random Voronoi and unit cell models. The shear 

modulus of the collenchyma FECVT model is 30% to 57% less rigid than the quasi-uniform 

randomly generated Voronoi and hexagonal unit cell models. However, the FECVT models of 

the parenchyma and combined collenchyma-parenchyma tissues are much less stiff than the 

random Voronoi and the unit cell models.  

 To generate the Voronoi tessellation, a (quasi) uniform distribution of points has been 

imposed. Hence, the randomly generated Voronoi model displays a uniform cell size, a factor 

that influences the stiffness properties as shown in Fig. 16. In the FECVT model, both the shape 

and size of the cells, vary significantly with respect to the random Voronoi model and the 

hexagonal cell model. Therefore, the shape and size of the cells affect the normalized stiffness, 

which varies with density. The variation of the stiffness of the different FECVT models along the

X andY direction reflects the stiffening effect of the cell shape, size, and cellular distribution. 

Nonetheless, since the FECVT model contains smaller cells than those of the actual tissue, the 

stiffness could be overestimated. In addition, the short cell walls modeled by the beam element 

may impose spurious stiffness.  

 

(a) Normalized modulus along x-axis 



20 
 

 

(b) Normalized modulus along y-axis 

 

(c) Normalized shear modulus 

Fig.16. Comparison of the normalized modulus of the FECVT models of the different 

constituent tissues to quasi-uniform random Voronoi and hexagonal unit cell models. 

 Fig. 17 depicts the effective Poisson’s ratios for the FECVT, random Voronoi, and 

hexagonal unit cell models. The finite element analyses of the different FECVT models and 

random Voronoi models exhibit a marginal difference between the Poisson’s ratio of 
*

XY and 

*

YX . The Poisson’s ratios of the FECVT, and the random Voronoi model are weakly dependent 

on relative density, and the microarchitecture of the tissue weakly affects the Poisson’s ratio. 
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Fig.17. Comparison of effective Poisson’s ratio of the FECVT models of the different 

constituent tissues to quasi-uniform random Voronoi and hexagonal unit cell models. 

The effective stiffness of the cellular tissue can be obtained from the computed wall 

stiffness (Faisal et al., 2013; Faisal, 2013). The axial stiffness of parenchyma tissue lies between 

13.2 and 19.6 MPa and the shear modulus is approximately 6.7 MPa. The experimental stiffness 

of fresh parenchyma tissue was obtained from compression tests of cubes of parenchyma 

immersed  in a solution of 0.02M each of potassium phosphate monobasic and potassium 

phosphate dibasic (N. Hristozov, unpublished data). The experimental stiffness of the fresh 

parenchyma tissue is approximately 5 MPa, which is considerably lower than the computed 

stiffness of the respective tissue. This difference may result from experimental and biological 

factors as well as from the computer model as it currently stands. First, the orientation of the 

parenchyma cubes during the compressive tests differed from that used in the computational 

model (longitudinal in the experiment versus transverse in the model).  In addition to the 

orientation of the compressive force, the osmotic strength of the buffer used during testing can 

affect the experimental results since the internal turgor pressure within the fluid-filled cells plays 

an important role in controlling the cellular stiffness. Ideally, this effect would be quantified and 

included in the model. Another biological factor that can play a role is the chemical make-up and 

molecular organization of the cell walls, which can differ between cells and cell types (e.g. the 

vascular tissue is reinforced by the production of internal secondary cell walls; dissimilar 

cellulose microfibril angles can alter wall strength in specific directions). In the computational 

model, the tissue stiffness is derived from the wall stiffness based on an average of 30% 

cellulose microfibrils, 60% pectin, and 10% hemicelluloses – a typical primary cell wall 

configuration for dicotyledonous plants (Faisal, 2013). Hence, instead of using the generic 
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composition of the dicotyledonous plant cell wall, the cell wall composition and the microfibril 

angle (MFA) of the model plant should be determined via experiments. This would enable the 

corresponding computational stiffness to provide a more realistic prediction of the actual tissue 

stiffness. Finally, as noted earlier, the FECVT model can result in a smaller cell  size per unit 

area, thereby  resulting in higher numbers of both cells and cell walls, factors that would increase 

the stiffness of the model. These factors reflect the complexity of plant tissue systems and the 

need to consider multiple parameters during their modeling. Nevertheless, the utility of our 

system is demonstrated and the computational stiffness derived using values from the literature 

provides theoretical bounds for the stiffness of the constituent tissues. This step is essential to 

develop a multiscale model capable of predicting the overall mechanical properties of plant 

petioles and stems from the structural properties obtained at each length scale as well as the 

properties of the constituent tissues.  

Conclusion 

Cellular solids are prevalent both in nature and in human-made engineering structures. Their 

constituent materials and the way they are architectured across the length scale govern the 

mechanical response at the macroscale. A micromechanical analysis, capturing the realistic 

arrangement of the microstructure can thus provide insight into the overall macroscale behavior 

of a cellular material. The FECVT method is general and not tailored for a specific species of 

plant tissue. It has already been applied to reproduce  the tissue geometry of Arabidopsis 

thaliana and Philodendron melinonni (Faisal et al., 2012). Furthermore,  FEA has been carried 

out to predict the mechanical properties  of the surrogated models describing  the tissue of P. 

melinonii (Faisal et al., 2011). This paper has presented a microstructural analysis of rhubarb 

tissues, which can be considered as a paradigm of random cellular structures with complex 

heterogeneity. The geometric models developed via the FECVT algorithm surrogate the 

constituent tissues of the rhubarb petiole, thereby allowing the calculation of the elastic 

properties of a cellular tissue. Finite element analysis has been used as a computational mean to 

assess the constituent tissue properties of the rhubarb petiole, whose cellular microstructures 

have been generated by the FECVT algorithm. Instead of a large scale RVE, the statistical 

volume elements of the tissue are considered to capture the microstructural irregularity present in 

the tissue and compute its stiffness via FEA. The finite element analysis of the SVEs depicts the 
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impact of complex heterogeneity and graded cellularity in the tissues. The cell shape, size, and 

cellular distribution of the collenchyma and parenchyma tissues are shown to have a different 

impact on their respective normalized stiffness properties. The collenchyma tissue is found to be 

stiff along the Y direction, whereas the parenchyma tissue stiff in the X direction. The variation 

of stiffness along the X and Y directions are due to the heterogeneous cellularity and clustered 

higher area gradients observed in the parenchyma tissue, albeit the directions are chosen 

arbitrarily. The axial stiffness of the combined tissue, on the other hand, is similar in both 

directions. The shear modulus of the collenchyma tissue has been also found higher compared to 

the parenchyma tissue, and in-between for the tissues as a whole. By comparing these results 

with the quasi-uniform randomly generated Voronoi and hexagonal unit cell models, a clear 

inference can be made about the nonhomogeneous cellularity in the rhubarb tissues, a factor that 

make them more compliant than the predictions obtained with  the periodic as well as quasi-

uniform random cellular microstructure. 
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Supplementary Figures: 

 

  

(a) Young’s modulus along X − axis   (b) Young’s modulus along Y −  axis 

 

(c) Shear modulus 

Fig.S.1. Variablity of the mean stiffness of the FECVT models of collenchyma tissue for varying 

relative density with one standard error. 

 

 Poisson’s 

ratio, 
*

XY          (b) Poisson’s ratio, 
*

YX  
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Fig.S.2. Variablity of mean Poisson’s ratio of the FECVT models of collenchyma tissue for 

varying relative density with one standard error. 

 

  

(a) Young’s modulus along X − axis   (b) Young’s modulus along Y − axis 

 

(c) Shear modulus 

Fig.S.3. Variablity of mean stiffness of the FECVT models of the parenchyma tissue for varying 

relative density with one standard error. 

  

(a) Major Poisson’s ratio         (b) Minor Poisson’s ratio    
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Fig.S.4. Variablity of mean Poisson’s ratio of the FECVT models of parenchyma tissue for 

varying relative density with one standard error. 

 

   

(a) Young’s modulus along X − axis    (b) Young’s modulus along Y − axis 

 

(c) Shear modulus 

Fig.S.5. Variablity of mean stiffness of the FECVT models of combined collenchyma-

parenchyma tissue for varying relative density with one standard error. 

   

(a) Major Poisson’s ratio              (b) Mionr Poisson’s ratio 



29 
 

Fig.S.6. Variablity of mean Poisson’s ratio of the FECVT model of collenchyma-parenchyma 

tissue for varying relative denisty with one standard error. 

 

    

(a)        (b) 

Fig.S.7. (a) Hexagonal unit cell (b) Quasi-uniform random Voronoi model. 
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