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Abstract

The paper presents a multiscale procedure for the linear analysis of com-
ponents made of lattice materials. The method allows the analysis of both
pin-jointed and rigid jointed microstruss materials with arbitrary topology
of the unit cell. At the macroscopic level, the procedure enables to deter-
mine the lattice stiffness, while at the microscopic level the internal forces in
the lattice elements are expressed in terms of the macroscopic strain applied
to the lattice component. A numeric validation of the method is described.
The procedure is completely automated and can be easily used within an
optimization framework to find the optimal geometric parameters of a given
lattice material.
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1. Introduction

Cellular materials are a broad range of natural and artificial materials
characterized by an abundance of microvoids confined in cells. The macro-
scopic characteristics of a cellular material depend not only on the shape and
volume of the voids, but also on the material and cross section of the cell
walls. As a subset of cellular materials, lattice materials are characterised
by an ordered periodic microstructures obtained by replicating a unit cell
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along independent tessellation vectors. For a given density, lattice materi-
als are tenfold stiffer and threefold stronger than foams, which, due to their
stochastic arrangement of cells, lie below the lattices in the Ashbys charts
(Ashby, 2005).

Recent developments in additive manufacturing enable to build lattice
materials with a high level of quality at affordable cost (Yang et al., 2002;
Stampfl et al., 2004). Such techniques provide material designers with a supe-
rior degree of control on the material properties and allow them to tailor the
material performance to meet prescribed multifunctional requirements. For
instance, desired macroscopic stiffness, strength, and collapse mode can be
attained in given directions by properly selecting the geometric parameters of
the microstructure. Unusual mechanical behaviour, such as negative macro-
scopic Poisson’s ratio, can be obtained by selecting auxetic topologies of the
lattice (Lakes, 1987). In the aerospace sector, lattice materials can be applied
for the design of morphing wings for next generation aircrafts (Spadoni, 2007;
Alderson and Alderson, 2007; Gonella and Ruzzene, 2008). In the biomedi-
cal field, lattice materials have been proposed for advanced bone-replacement
prosthesis, where the microtruss can be designed to resemble the inner ar-
chitecture of trabecular bones, allowing seamless bone-implant integration,
with reduced stress-shielding and bone resorption (Murr, 2010).

Reliable constitutive models are necessary to accurately predict the prop-
erties of lattice materials and exploit fully their potential. If the microscopic
dimensions of the lattice are small compared to the macroscopic dimensions of
the component, the number of degrees of freedom of a detailed model becomes
extremely large and a direct approach involving the individual modelling of
each cell is not practical.

An abundance of literature exists about constitutive models for cellu-
lar and lattice materials. In a work discussing alternative approaches for
the analysis of large periodic structures, Noor (1988) emphasized that mod-
elling the discrete structure as an equivalent continuum is the most promising
strategy. He also outlined a method to evaluate the elastic constants of the
surrogate continuum based on the isolation of the repeating cell and the use
of the Taylor series expansion to approximate the displacement field inside
the cell. His conclusion is that the Cauchy strain tensor can be used for the
analysis of pin-jointed lattices, while for rigid jointed lattices the micropolar
strain theory should be adopted.

In their comprehensive work on cellular materials, Gibson and Ashby
(1988) estimated the stiffness and the strength of hexagonal and cubic lat-
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tices considering only bending in the cell walls. Their analysis focuses on a
single cell under uni-axial load conditions and models the cell walls as either
beams or plates. Zhu et al. (1997) applied a similar approach to model the
tetrakaidecahedral topology, the cell shape usually assumed by foams, and
obtained the Young’s and shear moduli as a function of the relative density.

Wang et al. (2005) analysed the behaviour of extruded beams with cellu-
lar cross section, subjected to combined in-plane and out-of plane loadings.
The in-plane macroscopic stiffness of the beam cross section was derived
for a number of bidimensional lattices, considering a single cell subjected to
shear and compression along different axes. The elastic constants of the lat-
tices were determined through a detailed analysis of each case, the pertinent
loads were applied to the unit cell, and the lattice stiffness was calculated
from the resulting nodal displacements (Wang and McDowell, 2004). Kumar
and McDowell (2004), on the other hand, used the micropolar theory to es-
timate the stiffness of rigid-jointed lattices. The rotational components of
the micropolar field were used to account for nodal rotations. The displace-
ments and rotations within the unit cell were expressed by a second order
Taylor expansion about the cell centroid; then, the micropolar constitutive
constants were determined by equating the expressions of the deformation
energy of the micropolar continuum and of the discrete lattice. The analysis
was limited to unit cell topologies that included a single internal node only.
Lately, Gonella and Ruzzene (2008) analysed the wave propagation in repet-
itive lattices by considering an equivalent continuous media; the generalized
displacements field of the unit cell was expressed by a Taylor series expansion
around a reference node; the equivalent elastic properties were obtained by
direct comparison of the wave equations of the homogenized model, and of a
uniform plate under plane-stress. The method was illustrated with specific
reference to the regular Hexagonal and re-entrant honeycombs. The same
authors, in a more recent paper (Gonella and Ruzzene, 2010), noted that the
order of the Taylor series expansion is limited by the number of boundary
conditions that can be imposed on the unit cell, and limits the accuracy of the
continuous model; the authors, thus, proposed an alternative approach using
multiple cells as repeating units to improve the capability of the continuous
model in capturing local deformation modes. Another approach was recently
presented by Hutchinson and Fleck (2006), who resorted to the Bloch theo-
rem and the Cauchy-Born rule to analyse pin-jointed lattices materials with
nodes only on the boundary of the unit cell. Elsayed and Pasini (2010a)
expanded this method introducing the dummy node rule, for the analysis of
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pin jointed lattices with elements intersecting the unit cell envelope. The
same authors used this approach for the analysis of the compressive strength
of columns made of lattice materials (Elsayed and Pasini, 2010b).

This paper presents an alternative method for the analysis of both pin-
jointed and rigid-jointed lattices. The procedure is based on a multiscale
approach, where the macroscopic properties of the lattice are evaluated by
expressing the microscopic deformation work as a function of the macroscopic
strain field. In contrast to previous approaches relying on the Taylor series or
the Cauchy-Born rule for the approximation of the displacements within the
repeating cell, this method do not make any kinematic assumption on the
internal points, but only on the boundary points of the cell. In addition, our
approach does not resort to micropolar theory for the determination of the
lattice nodal rotations; rather the rotational degrees of freedom (DoFs) of the
cell nodes are evaluated enforcing periodic equilibrium conditions on the unit
cell. At the microscopic level, after expressing the nodal DoFs of the unit cell
as a function of the components of the macro-strain field, the internal forces in
the lattice members are determined to verify whether the solid material of the
cells fails. The procedure is illustrated with reference to three bidimensional
topologies, namely the triangular, the hexagonal and the Kagome lattice. Its
validation is accomplished by comparing the displacements of a finite lattice
to those of an equivalent continuous model for prescribed geometry of the
component, applied loads and boundary conditions.

2. The multiscale approach

Lattices consist of a regular network of structural elements connected
at joints; they are obtained by the replica of a unit cell along independent
periodic vectors. Figure 1 shows the sample lattices under investigation in
this paper.

A multiscale structural problem can be solved setting two boundary value
problems, one at the component level, and the other at the microscopic level;
the solution can be found by defining proper relations between the micro
and macroscale models. Figure 2 summarizes the steps followed in setting
up the multiscale framework. The procedure is general and can be used
to account also for non linear lattice behaviour, such as geometric non lin-
earity, due to the re-orientation of the lattice elements during loading. We
follow the approach outlined by Kouznetsova et al. (2002). At the macro-
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Figure 1: Sample lattice topologies, a1 and a2 are periodic translational
vectors, dotted lines represent cell boundaries and thicker lines the unit cell
elements

1) macro disp. and strain 2) lattice deformation 3) micro disp. and strain 4) micro stress

5) deformation work6) macro stress7) Virtual Work Principle8) forces

Macro Micro

Figure 2: The multiscale scheme

scopic level (1) , the components of the Cauchy strain tensor are evaluated
from the displacements of the continuous medium, uM . We note here that
although the macroscopic strain distorts the lattice, after deformation the
microtruss remains periodic, and the deformed tessellation vectors comply
with the macroscopic strain (2). At the microscale, the equilibrium prob-
lem of the unit cell (3-4-5) can be solved by imposing a kinematic and a
static condition on the boundary of the cell. The relative displacements of
the boundary points have to respect any change in the tessellation vectors,
and the forces of the boundary nodes have to balance the forces imposed by
the surrounding cells. Upon solving the equilibrium, the nodal DoFs, um ,
and the deformation work, Wm, of the unit cell can be determined. Since
Cauchy stress and strain are work conjugate, the macroscopic stress tensor
can be evaluated as shown in step (6) . The equilibrium of the structure can
then be solved by application of the Virtual Work Principle (7-8) . We note
that at the microscopic level, once the relation between macroscopic stress
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and nodal displacements of the unit cell is found, the internal forces in each
element of the lattice can be obtained from the macro-strain components, as
illustrated in section 4.

3. Lattice macroscopic stiffness

The periodic nature of the lattices allows obtain the position of all the
nodes of the infinite lattice, starting from the position of the nodes of the
unit cell as follows

rk(l) = rk + li ai
∀ li ∈ N
and k = 1 ... J

(1)

Where rk is the position of the k − th node of the unit cell; rk(l) are the
positions of the nodes corresponding to rk; ai are the translational vectors;
i ∈ {1, 2} for 2D and i ∈ {1, 2, 3} for 3D lattices; J is the number of nodes
of the unit cell. As lis span the integer field, N , and k spans the unit cell
nodes, rk(l) spans of all the nodes of the lattice.

The unit cell nodes can be divided into two classes: i) the internal nodes,
that only connect elements of the same cell, and have no correspondent node
in the cell; and ii) the boundary nodes, that join elements of neighbour cells,
and have necessarily at least one correspondent cell node on the opposite
boundary. The position of each node of the lattice can then be obtained
from a subset of the unit cell nodes, the independent nodes. We note that all
internal nodes are independent, since no other node of the same cell can be
obtained through a translation along any combination of the periodic vectors.
For each cell topology, alternative choices of the boundary independent nodes
are possible.

With reference to the triangular lattice (figure 1a), the position of nodes
2 and 3 can be obtained from the position of node 1, as r2 = r1 +a1 and r3 =
r1+a2, thus the triangular lattice has no internal nodes and one independent
node. For the hexagonal lattice (figure 1b), it results r3 = r2 + a1 and
r4 = r2 + a2, and the following independent nodes can then be defined:
nodes 1, that is internal, and node 2. Analogously, for the Kagome lattice
(figure 1c) a possible choice of independent nodes is nodes 1, 2, and 3; where
node 1 is internal, and it results: r4 = r2 − a1 and r5 = r3 − a2.

Under the action of a uniform macroscopic strain field, the lattice will de-
form. The deformed periodic directions can be related to the components of
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the macroscopic strain tensor by means of the following (Asaro and Lubarda,
2006)

a′i = (I + ε) ai (2)

where I is the unit tensor and ε is the Cauchy strain tensor, whose compo-
nents are

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3)

The position r′k of the k − th node of the deformed lattice will be given by
the following

r′k(l) = r′k + li a′i = r′k + li (I + ε) ai (4)

Finally, the displacements of all the nodes of the lattice can be expressed as
a function of the displacements of the independent nodes of the unit cell and
of the components of the strain field as follows

dk(l) = r′k(l)− rk(l) = dk + li ε ai (5)

With reference to the unit cell, we introduce the array d containing the all
the DoFs of of the unit cell nodes, and the array d0 containing only the DoFs
of the independent nodes. Through equation (5), d can be expressed as a
function of d0 and of the strain components, collected in the array e, as

d = B0 d0 + Be e (6)

where B0 is a block matrix of zero and unit matrices, and Be is a block
matrix mapping the relative displacements of the dependent nodes to the
components of the macroscopic strain field. In the bidimensional case, the
array of the components of the macroscopic strain field has three elements.
Adopting the engineering notation for the components of the deformation
field gives

e = [εx, εy, γxy] (7)

where γxy = 2εxy.
With reference to the triangular lattice, since the only independent node

is node 1, the displacements of node 2 and 3 can be expressed as

d2 = d1 + ε a1

d3 = d1 + ε a2
(8)
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from which d, d0, B0 and Be are written as

d =
[
d1
d2
d3

]
, B0 =

[
I
I
I

]
, d0 = [ d1 ] , Be =

[
0

Be2
Be3

]
(9)

where I is a diagonal matrix and the sub-matrices Be2 and Be3 map the
DoF of the nodes 2 and 3 to the components of the strain field. Section 5
illustrates in detail how the elements of Be are formed.
For the hexagonal lattice, following the distinction between dependent and
independent nodes it results

d3 = d2 + ε a1

d4 = d2 + ε a2
(10)

from which the following B0 and Be matrices are obtained

d =

[ d1
d2
d3
d4

]
, B0 =

[
I 0
0 I
0 I
0 I

]
, d0 =

[
d1
d2

]
, Be =

[ 0
0

Be3
Be4

]
(11)

For the Kagome lattice, we can write

d4 = d2 + ε a2

d5 = d3 − ε a1
(12)

which yields the following

d =

 d1
d2
d3
d4
d5

 , B0 =

[
I 0 0
0 I 0
0 0 I
0 I 0
0 0 I

]
, d0 =

[
d1
d2
d3

]
, Be =

[ 0
0
0

Be4
Be5

]
(13)

The array d0 in equation (6) will be determined by imposing the self-
equilibrium condition on the nodal forces of the unconstrained unit cell.

By means of the finite element method, the nodal forces of the unit cell,
f , can be expressed in terms of nodal DoFs as

f = Kuc d (14)

where Kuc is the unit cell stiffness matrix, and d, is the array of nodal DoFs.
After deformation, all nodal forces must be zero in the infinite lattice because
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no body forces are applied to the lattice. This condition can be expressed in
terms of the nodal forces of a single cell and can be written as

A0 f = 0 (15)

where A0, the equilibrium matrix, is a block matrix, whose entries are either
unit or zero matrices, and depends on the unit cell topology and the periodic
directions.

With reference to the triangular lattice, the equilibrium condition for the
node 1 is that the sum of all the forces, due to the edges connecting in node
1 is zero. Because of the periodicity, the sum of the forces due to edges c
and d is equal to the sum of the forces due to edges 1 and 3, and the sum
of the forces due to edges a and b is equal to the sum of the forces due to
edges 2 and 3. Therefore, a condition for the equilibrium of the node 1 can
be expressed in terms of the nodal forces of the unconstrained unit cell as

f1 + f2 + f3 = 0 (16)

Following a similar reasoning, two identical equations are obtained for the
other nodes. Therefore, the matrix A0 for the triangular lattice is the fol-
lowing

A0 = [ I I I ] (17)

With reference to the Hexagonal lattice, the equilibrium conditions are

(i) f1 = 0
(ii) f2 + f3 + f4 = 0

(18)

the above can be justified as follows: (i) node 1 is internal and f1 is the sum of
all element forces acting on it; equation (ii) follows to satisfy the periodicity
condition, which requires that a) the force due to edge a on node 2 be equal
to the force due to edge 2 on node 3, and b) the force due to edge b on node
2 be equal to the force due to edge 3 on node 4. The resulting equilibrium
matrix is

A0 =
[
I 0 0 0
0 I I I

]
(19)

Similar reasoning applies to the Kagome lattice, for which the following
relations hold

(i) f1 = 0
(ii) f2 + f4 = 0
(iii) f3 + f5 = 0

(20)
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where: (i) node 1 is internal; (ii) node 2 connects edge 1 and edge 2, whose
sum is f2, and edge a and edge b, whose sum is f4; (iii) node 3 connects edge
2 and edge 3, whose sum is f3, and edge c and edge d, whose sum is f5. For
the Kagome lattice the equilibrium matrix is

A0 =
[
I 0 0 0 0
0 I 0 I 0
0 0 I 0 I

]
(21)

By examining the way in which these matrices are constructed, we can
verify that A0 = BT

0 . Thus, combining equations (14) and (15), the equilib-
rium equation can be written as

A0 Kuc d = BT
0 Kuc d = 0 (22)

Using the expression of equation (6) for d we obtain the following

BT
0 Kuc (B0 d0 + Be e) = 0 (23)

from which the displacements of the independent nodes can be found in
terms of e. From (23), the following linear system of equations results in the
unknown d0:

BT
0 KucB0 d0 = −BT

0 KucBe e (24)

Since both the lhs (left-hand side) and rhs (right-hand side) of the above
equation belong to the column range of BT

0 Kuc, a solution will always exist.
Nevertheless, since Kuc is the stiffness matrix of the unconstrained unit cell,
its null space is not empty, and the solution to (24) is not unique; rather, the
solution is given by an affine subspace defined by any particular solution of
(24) and the null space of the matrix (Strang, 1988). In Section 3.1, we show
that all solutions produce identical expressions for the deformation work and
the macroscopic stiffness matrix, which are then unique.

Furthermore, we observe that equation (24) represents the equilibrium of
the unit cell constrained by the surrounding cells. Its rhs is the residual on
the equilibrium equation (15), with sign changed, resulting from the macro-
scopic strain field, if the independent DoFs, d0 , are kept fixed. The lhs of
the equation represents the residual on the equilibrium equation when the
independent DoFs are not null, and no strain is applied to the lattice. Thus,
given an arbitrary macroscopic strain field, the solutions of equation (24)
are the independent DoFs that guarantee the equilibrium of the cell with its
surrounding. Finally, substituting d0 and e in equation (6), we obtain the
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DoFs of the unit cell nodes that both comply with the macroscopic strain
field and guarantee the equilibrium of the unit cell with its surroundings.

The particular solution to equation (24) is given by the following

d0 = −(BT
0 KucB0)

+ BT
0 KucBe e = D0 e (25)

where (·)+ is the Moore-Penrose pseudoinverse. The displacements of all
nodes of the unit cell can be obtained by substituting equation (25) into (6),
which results in

d = (B0D0 + Be) e = De e (26)

Since e has three components, De will have three columns. Each column
represents the DoFs of the nodes of the unit cell, corresponding to the unit
strain, for each strain component. Thus, the array De effectively links the
components of the macroscopic strain to the DoFs of the unit cell nodes,
for an arbitrary strain. Furthermore, De allows express the specific lattice
deformation work as a function of the macroscopic strain components as

W =
1

2 Suc

eTDT
e KucDee (27)

where Suc is the area of the unit cell. Since the linearised Cauchy stress and
strain are work conjugate Slaughter (2002), it results σij = ∂W

∂εji
, that makes

possible to express the components of lattice macroscopic stiffness tensor as
Eijhk =

∂σij
∂εhk

, resulting in

K =
1

Suc

DT
e Kuc De (28)

We note that three matrices are required to evaluate matrix De, specif-
ically: (i) the stiffness matrix of the unconstrained unit cell, Kuc, easily
obtained by means of standard finite element procedure; (ii) the block ma-
trix BT

0 defines the periodic boundary conditions, and it depends on the
periodic translational vectors and on the cell topology; similarly (iii) Bε ex-
presses the relative displacements of the boundary nodes as a function of
the components of the macroscopic strain field. Once these matrices have
been assembled, the macroscopic stiffness of the lattice can be calculated by
means of equations (25) and (26). Thus the evaluation of the lattice stiff-
ness for alternative geometric properties of the cell edges can be completely
automated, and integrated within an optimization framework (Vigliotti and
Pasini, 2011).
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3.1. Uniqueness of W and K

As described earlier, the system of equations (24) has always a solution,
although not unique. In this section, we show that all solutions of (24)
produce the same mechanical work and, consequently, the same macroscopic
stiffness matrix.

Since the null space of the matrix BT
0 KucB0 is not empty, the general

solution to equation (24) is an affine subspace given by

d0 = D0K + µ ∀ µ ∈ Null(BT
0 KucB0) (29)

where D0K is a particular solution, and µ is any element of Null(BT
0 KucB0).

Substituting the above in (26) it gives

d = B0(D0e + µ) + Bee = De e + B0 µ (30)

thus the expression for the deformation work is

W =
1

2 Suc

(µTBT
0 + eTDT

e )Kuc(Dee + B0µ)

=
1

2 Suc

(eTDT
e KucDee + µTBT

0 KucB0µ + 2 eTDT
e KucB0µ)

(31)

Since the following holds

µTBT
0 KucB0µ = 0

Kuc = KT
uc

=⇒ KucB0µ = 0 (32)

it follows that the last two terms in the parenthesis on the lhs of equation
(31) are both zero. This proves that the expression of the deformation work
does not depend on µ; therefore any solution of equation (24) will produce
the same expression for the deformation work and the macroscopic stiffness
matrix of the lattice.

4. Lattice internal forces

By means of the macroscopic stiffness obtained through equation (28), we
can model lattice materials as uniform materials. After solving the structural
equilibrium for a given component, the stress and strain of the equivalent
uniform medium can be calculated. Being homogenised estimates, these
figures do not represent the load on the solid material of the lattice. As a
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result, they cannot be used to assess the material resistance. To evaluate
the load on the solid material, first, the nodal DoFs of the lattice have to be
calculated by means of equation (26) as a function of the macroscopic strain.
Then to assess the resistance at the microscopic level, the stress and strain
in the cell elements can be determined by means of the unit cell model, and
compared with the strength of the solid material.

For instance, if the edges of the lattice are modelled as Euler-Bernoulli
beams, the edge stretching, s, and curvature, χ, are given by (Zienkiewicz
and Taylor, 2005)

s = u2−u1
L

χ = x
(
6 θ1+θ2

L2 − 12v2−v1
L3

)
−
(
22θ1+θ2

L
+ 6v1−v2

L2

) (33)

where x is the abscissa along the element, varying from 0 to L, the element
length; ui are the axial components of the nodal displacements; vi are the
transverse components; θi are the nodal rotations (figure 3). The normal
force and the bending moment are, thus, given by

N = EsA s

M = EsIzz χ
(34)

where Es is the Young modulus of the solid material of the lattice, A and Izz
are the cross section area and the second moment of inertia, respectively.

u1
v1

u2
v2

x

0

L

Figure 3: Degrees of Freedom of a lattice element

5. Analysis of selected lattice topologies and model validation

The procedure described in the previous section is here applied with ref-
erence to the lattice topologies reported in figure 1.

According to Gibson et al. (1982), for low density materials, cell walls
behave as slender beams, and can be modelled as Euler-Bernoulli beams,
neglecting shear. The stiffness matrix of the unit cell, Kuc, can then be
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obtained by assembling the stiffness matrices of the single elements. Since
this paper is restricted to a linear analysis, we can separate the stiffness ma-
trix into the bending and stretching contributions, and obtain the following
expressions of the strain energy due to bending and stretching:

Wb = 1
2
dT Kucb d

Ws = 1
2
dT Kucs d

(35)

where Kucs is the stiffness matrix for the axial deformation, and Kucb is the
stiffness matrix for the bending. The total deformation work of the unit cell
is given by the W = Ws +Wb.

We note that the method presented in this paper is general. Although
here the lattice edges have been modelled as Bernoulli beams, the cell walls
can also be modelled with other type of elements, such as Timoshenko beams
or plane membranes, as required by the structural function.

5.1. Numerical validation

To validate and assess the accuracy of the procedure described in the pre-
vious section, a finite rectangular plate made of lattice material is examined
under prescribed loads and constraints. In one case, the lattice of the plate
is modelled edge by edge using beam elements. In the other case, the rectan-
gular plate is modelled with a uniform material of equivalent stiffness. The
displacements of the free sides of the two models are then compared for each
of the lattice topologies considered in this paper. The boundary conditions
and the two load cases (figure 4) have been specified as follows

• On the constrained side, the nodes are pinned on both the continuous
and the discrete model;

• On the side where the load is applied, the nodes are constrained to
remain aligned, and the load is applied on one node only;

• The remaining sides are free.

Since the lattice stiffness is evaluated for a uniform macroscopic strain
applied to the infinite lattice, the displacements of the detailed model will
deviate from those of the equivalent model in the areas where the boundary
conditions are applied, and the strain gradients are stronger. As shown by
Phani and Fleck (2008), a lattice with finite dimensions develops a transi-
tion zone in the proximity of the boundaries, the boundary layer, where the
lattice deformations are not uniform. In these regions, the wavelength of
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Figure 4: Boundary conditions and applied loads of the rectangular plate
(”Detail” in Figures 6, 8 and 10)

the macroscopic strain field becomes comparable to the length of the lattice
edges; thus, in these zones the quality of the approximation of the continuous
model tends to deteriorate.

The displacements of the continuous and discrete models are compared
both quantitatively and qualitatively. The discrete model is chosen as a
baseline, and the percentage differences between the two models have been
evaluated interpolating the displacements of the continuous model at the
position of the nodes of the discrete model. For each lattice topology, the
maximum errors are given in a Table at the end of each section. For a
qualitative assessment of the deformed shapes, the plots of the areas enclosed
in the small rectangles at the top-left corner of the domains shown in figure
4, have been superimposed. We investigate the effect the length of the cells
edges on the accuracy of the estimated stiffness. For this purpose, two lattices
of different cell size have been considered for given outer dimensions of the
rectangle. In each case, the lattice edges have been modelled with a single
beam. The lattice with smaller cell size included a higher number of cells
and of DoFs. The comparison between the models shows that the resulting
estimate of the stiffness increases if the size of the cell decreases with respect
to the size component. As expected, the accuracy of the results thus improves
when the lattice is relatively closer to the asymptotic approximation of an
infinite media.

The commercial software Ansys rev 12.1 (ANSYS, Inc.) is used for the
numerical simulations. In particular, for the detailed model, the BEAM3
element, which models a bi-dimensional Bernoulli beam, has been used for
the cell elements, whose material properties and geometry parameters are
reported in Table 1. For the continuous model, plane-stress PLANE182
elements have been used with unit thickness. The PLANE182 element has
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only translational degrees of freedom and allows the input of an arbitrary
material stiffness matrix.

Cross-section Material
A π 0.12 Es 1 102

Izz π 0.14

4
ν 0.3

Table 1: Cross-section and material properties of each truss element

5.1.1. Triangular Lattice

The unit cell and the translational vectors for the triangular lattice are
illustrated in figure 1a. The translational vectors are a1 = L [1

2
,
√
3
2

], and

a2 = L [1, 0], the area of the unit cell is Suc = |a1 × a2| = L2
√
3
2

.
As mentioned earlier, the displacements of the dependent nodes can be ex-
pressed as a function of the displacements of the independent nodes and of
the components of the deformation field. Equation (8) can be written in
terms of the DoF of node 2 and 3 as

d2x = d1x + εxa1x + 1
2
γxya1y

d2y = d1y + 1
2
γxya1x + εya1y

d2θ = d1θ

d3x = d1x + εxa2x + 1
2
γxya2y

d3y = d1y + 1
2
γxya2x + εya2y

d3θ = d1θ

(36)

The elements of the sub-matrices Be1 and Be2 of equation (9) can thus be
expressed by writing equations (36) in matrix form, as

Be1 =

[
a1x 0

a1y
2

0 a1y
a1x
2

0 0 0

]
= L

[
1
2

0
√
3
4

0
√
3

2
1
4

0 0 0

]

Be2 =

[
a2x 0

a2y
2

0 a2y
a2x
2

0 0 0

]
= L

[
1 0 0

0 0 1
2

0 0 0

] (37)

After evaluating the matrix B0, as described in section 3 and Be, as described
above, it is possible to evaluate the matrix De by means of equations (25)
and (26).
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All calculations can be performed symbolically by means of dedicated soft-
ware packages. The expression of De is reported below

DT
e = L

[
0 0 0 1

2
0 0 1 0 0

0 0 0 0
√

3
2

0 0 0 0

0 0 0
√
3

4
1
4

0 0 1
2

0

]
(38)

As mentioned earlier, the columns of De represent the value of the nodal
displacements and rotations corresponding to unit strains; they can be used
to plot the deformed lattices, corresponding to each unitary strain state, as
shown in figure 5.

(a) εx > 0, εy = γxy = 0 (b) εy > 0, εx = γxy = 0 (c) γxy > 0, εx = εy = 0

Figure 5: Deformation modes of the triangular lattice with rigid joints

Through equation (27) and equation (28), we obtain the expressions for
the deformation work and for the macroscopic stiffness matrix as

W =

√
3 Es

4

[
(
A

L

(
γxy

2 + 3εx
2 + 3εy

2 + 2εxεy
)
+

12Izz
L3

(
γxy

2 + (εx − εy)2
)] (39)

K =
3 Es

4L3
√
3

[
3(AL2+4Izz) AL2−12Izz 0

AL2−12Izz 3(AL2+4Izz) 0

0 0 AL2+12Izz

]
(40)

The stretching and bending contributions to strain energy are given by the
following

Ws =
√
3 EsA
4 L

(γxy
2 + 3εx

2 + 3εy
2 + 2εxεy)

Wb = 3
√
3 EsIzz
L3 (γxy

2 + (εx − εy)2)
(41)

The triangular lattice is isotropic, and the eigenvectors of its macroscopic
stiffness matrix are: ε1 = [1, 1, 0], ε1 = [1,−1, 0], ε1 = [0, 0, 1]. Table 2
reports the eigenvalues of the stiffness matrix and the ratios Wb

Ws
corresponding
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ε1 ε2 ε3

λ 2
√
3EsA
L

√
3E(AL2+12Izz)

L3

√
3E(AL2+12Izz)

4L3

Wb

Ws
0 12Izz

AL2
12Izz
AL2

Table 2: Eigenvalues of the stiffness matrix and strain energy ratios for
triangular lattice

to each eigenvector.
As shown in Table 2, for the hydrostatic stress, ε1, no bending energy is
present and the lattice is only subject to stretching. In the other cases, since
is o[Izz] = o[A2] and for slender beams is o[A]� o[L2], it results

Wb

Ws

=
12 Izz
A L2

≈ A

L2
� 1 (42)

Thus the bending is always negligible with respect to stretching.
Once the nodal displacements have been found, the load in the lattice cell

walls are determined through equation (34). Table 3 lists the normal forces
and bending moments acting on each element for arbitrary strain compo-
nents, at any point of the element.

edge Internal force

1
N = EsAεx
M = EsIzz

[(
3
L
− 6

L2x
)
γxy
]

2
N = EsA

[
1
4
εx + 3

4
εy −

√
3
4
γxy

]
M = EsIzz

[(
3
√
3

2L
− 3

√
3

L2 x
)
εx +

(
3
√
3

L2 x− 3
√
3

2L

)
εy +

(
3
L2x− 3

2L

)
γxy

]
3

N = EsA
[
1
4
εx + 3

4
εy +

√
3
4
γxy

]
M = EsIzz

[(
3
√
3

L2 x− 3
√
3

2L

)
εx +

(
3
√
3

2L
− 3

√
3

L2 x
)
εy +

(
3
L2x− 3

2L

)
γxy

]
Table 3: Normal forces and bending moments of the triangular lattice

The expressions in Table 3 allow verify if material failure occurs at the
microscopic level. Once the structural problem is solved by using the ho-
mogenised representation of the material, and the components of the macro-
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scopic strain field are retrieved, the expressions in table 3 allow evaluate the
load on each cell element and compare it with the beam strength.

Table 4 shows the maximum errors on the horizontal, u, and vertical, v,
displacements of the two models; the deformed shape for the plate and the
smaller beam model are illustrated in figure 6.

model DoF Normal Load err. Shear err.
beam plate u err v err u err v err
5967 800 0.1% 1.12% 0.75% 2.14%
58905 800 0.02% 0.79% 0.60% 1.63%

Table 4: Errors of plate models wrt lattice models, triangular lattice

As can be observed, the maximum error is 2.14%; furthermore the accu-
racy delivered by the plate model improves as the size of the lattice edges
decreases with respect to the size of the component.

nodes of the continuous model

(a) Normal load, lattice and plate models (b) Shear load, lattice and plate models

Figure 6: Deformed plate (”Detail” in Figure 4) made of triangular lattice
with rigid joints

5.1.2. Hexagonal Lattice

The unit cell, and the translational vectors of the Hexagonal lattice are

shown in figure 1b. The periodic directions are a1 = L
[
3
2
,
√
3
2

]
and a2 =

L
[
3
2
,−
√
3
2

]
; while the area of the unit cell is Suc = 3

√
3

2
L2. The B0 and

Be matrices for the hexagonal lattice are given by equation (11). The sub-
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matrices Be3 and Be4 are

Be3 =

[
a1x 0

a1y
2

0 a1y
a1x
2

0 0 0

]
= L

[
1
2

0
√
3

4

0
√
3

2
1
4

0 0 0

]

Be4 =

[
a2x 0

a2y
2

0 a2y
a2x
2

0 0 0

]
= L

[
1
2

0 −
√
3

4

0 −
√
3

2
1
4

0 0 0

] (43)

by means of equation (25) it is then possible to evaluate De for the hexagonal
lattice

DT
e =

 AL3+36IzzL

2AL2+24Izz
0 0 0 0 0 3L

2
0 0 3L

2
0 0

AL3−12IzzL

2AL2+24Izz
0 0 0 0 0 0

√
3L
2

0 0 −
√
3L
2

0

0 AL3

AL2+12Izz
0 0 0 0

√
3L
4

3L
4

0 −
√
3L
4

3L
4

0

 (44)

The deformed lattices corresponding to pure strains are shown in figure 7.
The expression of the deformation work and the macroscopic stiffness matrix
are

W =
EsA

4
√

3 (AL3 + 12 IzzL)

[
AL2(εx + εy)

2+

Izz
(
2γxy

2 + 3εx
2 + 3εy

2 − 2εxεy
)] (45)

K =
1

2
√

3

EsA

L (A L2 + 12 Izz)

[
AL2+36Izz AL2−12Izz 0
AL2−12Izz AL2+36Izz 0

0 0 24Izz

]
(46)

The above expression for the macroscopic stiffness of the hexagonal lattice
coincides with the findings of Gonella and Ruzzene (2008). Following the
steps described in section 5, and using equation (35) the expressions for the
bending and the stretching strain energy for the hexagonal lattice are found
as a function of the strain field components, as

Wb =
4
√
3A2EsIzzL(εx2−2εyεx+γxy2+εy2)

(AL2+12Izz)
2

Ws =
AE(A2(εx+εy)2L4+24AIzz(εx+εy)2L2+144I2zz(3εx2−2εyεx+2γxy2+3εy2))

2
√
3L(AL2+12Izz)

2

The hexagonal lattice is also isotropic, and the eigenvectors of its stiffness
matrix are identical to those of the triangular lattice. Table 5 shows the
eigenvalues of the stiffness matrix and the ratios Wb

Ws
corresponding to each
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ε1 ε2 ε3

λ 2EA√
3L

16
√
3EsAIzz

AL3+12IzzL
4
√
3EsAIzz

AL3+12IzzL

Wb

Ws
0 AL2

12Izz
AL2

12Izz

Table 5: Eigenvalues of the stiffness matrix and strain energy ratios of the
hexagonal lattice with rigid joints

eigenvector. For hydrostatic stress, since contribution to lattice stiffness due
to edges bending is again null, the strain energy is stored in stretching only. In
the other cases, it can be noted that the deformation energy is mainly stored
as bending, being Wb

Ws
= AL2

12Izz
� 1, as expected since the lattice is bending

dominated. We note that the eigenvalue corresponding to the hydrostatic
stress is much higher than the others. With reference to λ2

λ1
, it results

λ2
λ1

=
24 Izz

AL2 + 12 Izz
� 1 (47)

Thus, even if the deviatoric or shear stress components are small, the de-
formation in those directions will be dominant, and the lattice with fail ac-
cording to the modes ε2 or ε3. Table 6 lists the normal forces and bending

(a) εx > 0, εy = γxy = 0 (b) εy > 0, εx = γxy = 0 (c) γxy > 0, εx = εy = 0

Figure 7: Deformation modes of the hexagonal lattice with rigid joints

moments on each lattice element; Table 7 reports the displacement error of
the plate model with respect to the lattice model; and Figure 8 illustrates
the deformed shapes.

5.1.3. Kagome lattice
Figure 1c shows the unit cell and translational vectors of the Kagome

lattice; the periodic translational vectors are a1 = L
[
1,
√

3
]

and a1 =
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edge Internal force

1
N = EsA

[
AL2+36Izz
2AL2+24Izz

εx + AL2−12Izz
2AL2+24Izz

εy

]
M = EsIzz

6AL−12Ax
AL2+12Izz

γxy

2
N = EsA

[
AL2

2AL2+24Izz
εx + AL2+24Izz

2AL2+24Izz
εy + 12

√
3Izz

2AL2+24Izz
γxy

]
M = EsIzz

[
6
√
3Ax−3

√
3AL

AL2+12Izz
εx + 3

√
3AL−6

√
3Ax

AL2+12Izz
εy + 6Ax−3AL

AL2+12Izz
γxy

]

3
N = EsA

[
AL2

2AL2+24Izz
εx + AL2+24Izz

2AL2+24Izz
εy − 12

√
3Izz

2AL2+24Izz
γxy

]
M = EsIzz

[
3
√
3AL−6

√
3x

AL2+12Izz
εx + 6

√
3Ax−3

√
3AL

AL2+12Izz
εy + 6Ax−3AL

AL2+12Izz
γxy

]
Table 6: Normal forces and bending moments of the hexagonal lattice

model DoF Normal Load err. Shear err.
beam plate u err v err u err v err
5418 800 6.25% 1.83% 1.81% 2.02%
45018 800 1.40% 0.26% 1.15% 1.43%

Table 7: Errors of plate models wrt lattice models, hexagonal lattice

(a) Normal load, lattice and plate models

nodes of the continuous model

(b) Shear load, lattice and plate models

Figure 8: Deformed plate (”Detail” in Figure 4) made of hexagonal lattice
with rigid joints

L
[
1,−
√

3
]
; the area of the uc is Suc = 2

√
3L2; while B0 and Be are given
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by equation 13. For the Be4 and Be5 sub-matrices it results

Be4 =

 a2x 0
a2y
2

0 a2y
a2x
2

0 0 0

 = L

 1 0 −
√
3

2

0 −
√
3 1

2

0 0 0



Be5 = −

 a1x 0
a1y
2

0 a1y
a1x
2

0 0 0

 = −L

 1 0
√
3

2

0
√
3 1

2

0 0 0


(48)

Similarly to the hexagonal lattice, the following expression can be found
for the De matrix

DT
e =

[
L
2

0 0 0 0
√
3
4

L 0 −
√
3

4
L 0

√
3

4
0 0 −

√
3

4

0 −
√
3L
2

0 0 0 −
√
3

4
0 0

√
3
4

0 −
√
3L −

√
3

4
0 −

√
3L

√
3
4

−
√
3L
4

L
4
− 1

2
0 0 1

4
0 L

2
1
4
−
√
3L
2

L
2

1
4
−
√
3L
2

0 1
4

]
(49)

The corresponding expression for the deformation work and the material
stiffness matrix are

W =

√
3Es

16L3

[
A
(
γxy

2 + 3εx
2 + 3εy

2 + 2εxεy
)
L2+

Izz
(
γxy

2 + (εx − εy)2
)] (50)

K =

√
3Es

8L3

[
3(AL2+2Izz) AL2−6Izz 0

AL2−6Izz 3(AL2+2Izz) 0

0 0 AL2+6Izz

]
(51)

The above expression for the macroscopic stiffness of the Kagome lattice,
in the hypothesis of pin jointed elements, Izz = 0, is in agreement with the
results obtained by Hutchinson and Fleck (2006). With reference to the
deformation work, the stretching and bending contributions are given by

Ws =
√
3AEs(γxy2+3εx2+3εy2+2εxεy)

16L

Wb =
3
√
3EsIzz(γxy2+(εx−εy)2)

4L3

(52)

The eigenvalues of the stiffness matrix are still the same as those of the
previous cases. Table 8 gives the expression of the Wb

Ws
ratios for the Kagome

lattice.
Table 9 reports the internal forces for the Kagome lattice; due to the

symmetries of the unit cell, the forces in the corresponding edges of the unit
cell are equal. Figure 9 shows the lattice deformed shapes for the case of the
Kagome rigid-jointed lattice. In Table 10 the differences between the beam
and the plate models are reported; for the Kagome lattice, Figure 10 shows
the deformed lattice under two different load conditions.

23



ε1 ε2 ε3

λ
√
3EsA
2L

√
3E(AL2+6Izz)

4L3

√
3E(AL2+6Izz)

16L3

Wb

Ws
0 6Izz

AL2
6Izz
AL2

Table 8: Eigenvalues of the stiffness matrix and strain energy ratios of the
Kagome lattice with rigid joints

edges Internal forces

1 and 4
N = EsA

[
1
4
εx + 3

4
εy −

√
3
4
γxy

]
M = EsIzz

[(√
3
L
− 3

√
3

2L2 x
)
εx +

(
3
√
3

2L2 x−
√
3
L

)
εy + 3

2L2γxyx
]

2 and 6
N = EsAεx

M = EsIzz

[
−
√
3

2L
εx +

√
3

2L
εy +

(
3
2L
− 3

L2x
)
γxy

]
3 and 5

N = EsA
[
εx
4

+ 3εy
4

+
√
3γxy
4

]
M = EsIzz

[(
3
√
3

2L2 x−
√
3

2L

)
εx +

(√
3

2L
− 3

√
3

2L2 x
)
εy +

(
3

2L2x− 3
2L

)
γxy

]
Table 9: Normal forces and bending moments of the Kagome lattice

(a) εx > 0, εy = γxy = 0 (b) εy > 0, εx = γxy = 0 (c) γxy > 0, εx = εy = 0

Figure 9: Deformation modes of the Kagome lattice with rigid joints

6. Conclusions

A linear multiscale procedure for the analysis of lattice materials has been
described and validated in this paper. The method allows the evaluation of
the macroscopic stiffness of both pin-jointed and rigid-jointed lattices with
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model DoF Normal Load err. Shear err.
beam plate u err v err u err v err
6936 800 0.22% 0.02% 1.30% 1.55%
27921 800 0.05% 0.02% 0.39% 0.41%

Table 10: Errors of plate models wrt lattice models, Kagome lattice

nodes of the continuous model

(a) Normal load, lattice and plate models

nodes of the continuous model

(b) Shear load, lattice and plate models

Figure 10: Deformed plate (”Detail” in Figure 4) made of Kagome lattice
with rigid joints

arbitrary cell topology. The method permits also to determine the internal
forces acting on each member of the lattice. The procedure focuses on the
linear analysis of bidimensional lattices and it is illustrated with reference
to three topologies: the triangular, the hexagonal and the Kagome. Fur-
ther work is required to extend the analysis to tridimensional lattices with
open and closed cell as well and to include the modelling of geometrical non
linearity due to the lattice reorientation under an applied load.

For each topology, analytical expressions have been determined for the
macroscopic in-plane stiffness constants and for the internal forces in the lat-
tice edges. The results are in agreement with those found in the literature
for the hexagonal and the Kagome lattice. To validate the procedure, the
model of a rectangular portion of a discrete lattice has been compared with
the model of a homogeneous rectangular domain of equivalent macroscopic
stiffness, for prescribed dimensions, constraints and applied loads. The com-
parison of the displacements at the free boundaries has shown that the pro-
cedure described in this paper delivered a correct estimation of the stiffness
of the lattice.
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The methodology presented in this paper allows readily express the lattice
properties as a function of the cell parameters. Therefore, it can be easily
integrated in an optimization framework for the optimum design of lattice
materials.
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