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Estimation of the Flexural States of a Macro–Micro
Manipulator Using Point-Acceleration Data

Kourosh Parsa, Jorge Angeles, and Arun K. Misra

Abstract—The work reported here was motivated by the de-
velopment of manipulator systems comprising one long-reach,
flexible-link subsystem, termed the macromanipulator, and a
short-reach, rigid-link subsystem, called the micromanipulator.
The flexural states of the macromanipulator, needed for control-
ling such systems effectively, are not usually measurable directly.
For this reason, a state-estimation algorithm is proposed which
uses the velocity and angular-velocity data of the micromanipu-
lator base to estimate the flexural states of the macromanipulator.
The velocity data are inferred from the acceleration signals deliv-
ered by a kinematically redundant set of triaxial accelerometers.
The accelerometer signals are also utilized to calculate the trans-
lational and angular accelerations of the micromanipulator base,
which are, in turn, used along with the dynamics equations of
the micromanipulator to obtain the reaction force and moment
acting between the two subsystems. Treating the force and the
moment as inputs, the dynamics equations of the macromanipu-
lator alone are used in the observer, thus reducing the order of the
dynamics model. The state–output relations, on the other hand,
are linearized in closed form to lower the computational cost. The
relations thus obtained are then used in an extended Kalman filter
to estimate the flexural states of the system.

Index Terms—Flexible manipulator, flexural coordinates, lin-
earized kinematics, macro–micro manipulator, state estimation,
twist vector.

I. INTRODUCTION

K INEMATICALLY redundant manipulators composed of
a rigid-link, rigid-joint robot and a structurally flexible

arm, on top of which the former is located, constitute a new
paradigm of long-reach manipulation systems. This new para-
digm motivated the ongoing research work reported here. One
such manipulation system is the mobile servicing system (MSS)
of the International Space Station. The MSS is composed of a
mobile base; the Canadarm2 manipulator; and the special pur-
pose dextrous manipulator (SPDM), which has recently been
renamed Dextre. Canadarm2 is poised to carry, at the end of its
fully extended length of 17.5 m, a dual-arm SPDM with a total
of 15 shorter links. This paper focuses on the development of
state-estimators for this class of systems.
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In this paper, flexural generalized coordinates, or flexural co-
ordinates for short, are understood as the elements of a set of
real variables that can describe the deformed shape of a struc-
turally flexible link or system in a discretized sense. These co-
ordinates can be, for example, the nodal displacements in a fi-
nite-element mesh, the end-point displacements of the flexible
links, or the generalized coordinates used in the assumed-modes
method. The generalized coordinates, along with their time rates
of change, the flexural generalized velocities, constitute the flex-
ural states of the system.

Since the very early experiments on flexible manipulators,
the problem of determining the flexural states has attracted the
attention of many researchers. In [1], an optical sensor—com-
prising a light bulb, a focusing lens, and a photodetector—was
used to determine the end-point displacement of a single-link
flexible manipulator, which was then used in a state-feedback
control loop. The data were then processed in a discrete filter to
obtain the system states. A similar instrumentation system was
described in [2].

The flexible-link manipulator systems reported in [3]–[5]
were instrumented by vision systems meant to measure the
end-point displacement of the flexible links. However, a vision
system that can capture the deformed shape of a flexible-
manipulator links in three dimensions may take a long pro-
cessing time, which could make them unsuitable for real-time
applications. Nevertheless, a vision system may be used every
several sampling periods to correct the results of other types of
sensor systems.

In [6], the authors suggested the use of three-axis force and
torque sensors at the proximal end of each link to estimate the
flexural states of a two-link, three-degree-of-freedom flexible
manipulator using an observer. Other researchers have reported
the use of strain gauges for the same purpose, among many
others [7]–[10].

Another type of sensor used for the estimation of flexural
states is the accelerometer. A system which kinematically re-
sembles that of [6], and which is instrumented with three single-
axis accelerometers attached to the manipulator tip was dis-
cussed in [11], where the linear three-dimensional flexibility
model of [12] was used. In both these papers, a number of gen-
eralized coordinates represented the deformation of the whole
system as measured at the end effector, i.e., no discretization
was involved. It is worth noting that, even if all the joints of a
flexible manipulator with linearly elastic links are locked, the
entire system may not behave as a linear system due to geo-
metric nonlinearities.

In [13], the authors discussed a full-state sliding observer
for a similar system. The instrumentation system included two
single-axis accelerometers attached at the end of each link. The
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Fig. 1. Redundant set of triaxial accelerometersA attached to the rigid-body
B located at points P , for i = 1; . . . ;m > 3.

accelerometer signals were filtered and integrated in charge am-
plifiers to obtain the link end-point velocity. It appears, how-
ever, that the accelerometer orientation changes induced by the
system flexural motion has been neglected in all of [11]–[13];
this may result in erroneous estimation results.

The use of accelerometers, either alone or along with strain
gauges, to instrument structurally flexible manipulators has
been reported extensively, e.g., in [14]–[17]. However, in all
these works the accelerometer signals are employed for accel-
eration feedback, not for estimating the flexural states.

Now, let us assume that an accelerometer array—i.e.,
a kinematically redundant set of more than three triaxial
accelerometers—as depicted in Fig. 1, is attached to the base
of the micromanipulator of a macro–micro structure, and that
the array data are processed to obtain the twist—velocity and
angular velocity—of the base. We report here on an algorithm
which utilizes the accelerometer readouts and the twist data of the
base to estimate the flexural states of the macromanipulator in an
extended Kalman filter (EKF).

It should be noted that the relations between the flexural
states and the twist, which are the state–output relations
here, are nonlinear. However, a great number of today’s
well-known state-estimation techniques rely on the linearity
of the above-mentioned relations. For example, the techniques
discussed in [18]–[20], among many others, rely on the linearity
of the state–output relations. To apply such techniques when
these relations are nonlinear, one may linearize the relations
and then try the particular technique using the linearized rela-
tions on the system. To this end, the calculation of the partial
derivatives of the twist of the macromanipulator end-effector
with respect to the states—the generalized coordinates and
generalized velocities of the system—is essential.

The partial derivatives at play may, of course, be obtained by
deriving the expressions for the twist, and then differentiating
them symbolically. However, the drawback of such a method is
that the differentiations have to be done for each manipulator
separately, and that redundant algebraic manipulations and arith-
metic operations are unavoidable. As an alternative, we derive, in
closed form, the required relations in terms of other usually avail-
able entities, such as the robot Jacobian, its time derivative, the
angular velocity, and the translational velocity. These variables
are usually available in the control loop of a robot, so that the
number of calculations needed will be dramatically reduced.

The structure of the observer proposed here is explained in
Section II. Then, in Section III, we review some basic kine-
matic relations. The dynamics modeling of the system is the sub-
ject of Section IV. The discrete state-space dynamics equations
are obtained in Section V. Next, the linear relations are derived
in Section VI. The EKF relations are recalled in Section VII.
Some simulation results are reported in Section VIII. The ob-
servability issue is discussed in Section IX, the paper concluding
in Section X.

All the vectors and cross-product matrices used here are
expressed in their corresponding local frames, overdots repre-
senting element-wise time derivatives. Furthermore, throughout
the paper, subscripts or superscripts “ ” and “ ”—in roman
fonts—refer to the micromanipulator and the macromanipu-
lator, respectively.

II. STATE-ESTIMATOR STRUCTURE

State estimation using an observer requires both a set of
dynamics equations, expressing the modeled dynamics of the
state variations, and a set of measurement equations, otherwise
known as state–output relations. The measurement set includes
algebraic relations in the states, whereas the set of dynamics
equations, in continuous-time domain, comprises—usually—
ordinary differential equations. Since the dynamics equations
of a multilink manipulator are quite complicated, it would seem
promising if the manipulator kinematic relations could be used
as the modeled dynamics used in the observer, for the kinematics
relations are far less involved algebraically. However, a kine-
matics-based observer has a major drawback: The kinematic
relations, which relate the evolution of the states to the pose
and twist of one or more bodies in the kinematic chain, are of
a pure-integrator nature, thus exhibiting an inherently unstable
behavior. Hence, such an observer is not used in this work.

The dynamics equations of the entire macro–micro system,
when used as the modeled dynamics for the observer of a macro
manipulator, are to be integrated online at each sampling time.
This is especially expensive computationally because of the
usually twice-as-large dimension of the system of differential
equations for the entire macro–micro system. For this very
reason, we suggest using the macromanipulator dynamics
equations alone as the modeled dynamics. The idea of sepa-
rating the dynamics of the macromanipulator from that of the
micromanipulator has been used in the context of the vibration
control of macromanipulators, e.g., in [21], [22], among others.

To be able to estimate the macro states using the microma-
nipulator dynamics, however, one needs to have the reaction
wrench—force and moment—applied on the macromanipulator
end effector by the base of the micro. This wrench can be de-
termined if the dynamics equations of the micromanipulator, as
a floating system, and the acceleration of its base are available.
This approach is explained in full detail in Section IV.

III. KINEMATIC RELATIONS

A. Twist Vector

The twist vector of a body is understood here as a set of scalar
variables that comprise the necessary and sufficient amount of
information to determine the velocity field in the body. For a
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Fig. 2. Rigid-body and body and inertial coordinate frames.

rigid body, the three components of the body angular velocity
and those of the velocity vector of a landmark point of the body
provide this information.

We define below two different twist vectors for a rigid body:
1) vector , called the twist and 2) vector , termed the Cartesian
twist

(1)

where , , and , shown in Fig. 2, are the position vector of the
local-frame origin, its absolute velocity, and the frame angular
velocity, respectively, all expressed in the local frame. Further-
more, according to the convention set forth in Section I, is the
element-wise time derivative of vector ; it is, in general, dif-
ferent from . In fact, we have

(2)

Hence, the twist and the Cartesian twist are related through

(3)

in which is the cross-product matrix1 of vector
, while and are the 3 3 identity and zero matrices, re-

spectively.
Hence, for the micromanipulator base, for example, the twist

takes on the form

(4)

where and are the position and angular-velocity vec-
tors of the micromanipulator base, respectively. Consequently,
we have

(5)

in which represents the Cartesian twist of the micromanip-
ulator base, and is the matrix of (3) evaluated for the mi-
cromanipulator base with , subscript zero
refering to the zeroth link, i.e., the micromanipulator base.

1The cross-product matrix V of a vector v, not dependent upon x, is the
skew-symmetric matrix given by,

V � CPM(v)
@(v� x)

@x
; 8 x 2 =) Vx � v � x:

B. Jacobian Matrix

In robot kinematics, the Jacobian can be defined as the par-
tial derivative of the twist vector with respect to the vector of
generalized velocities, i.e.

(6)

where represents the vector of generalized coordinates,
being the vector of generalized velocities. Obviously, since the
relation between and is linear, the Jacobian is independent
of the generalized velocities. Note that the foregoing Jacobian
cannot be defined, in general, as the partial derivative of the
position vector with respect to the generalized coordinates
because the angular velocity is not a time derivative.

Noticing the definition of the twist vector, one can partition
the Jacobian matrix into two blocks, corresponding to the two
parts of the twist vector, as

(7)

C. Partial Derivatives of the Twist

We start by recalling a basic result.
Theorem 1: The partial derivative of the angular velocity

of a rigid-body in a serial kinematic chain with respect to the
chain generalized-coordinate vector can be expressed in terms
of the Jacobian , its time rate, and the cross-product matrix

of the body angular velocity as

(8)

The above theorem is proven in [23], where it is then used
to derive closed-form relations for the partial derivatives of the
Cartesian twist with respect to the generalized-coordinate and
the generalized-velocity vectors. If the vector of generalized co-
ordinates of the macromanipulator is denoted by , based on
the foregoing relations, we have

(9)

in which

(10)

and is defined as the cross-product matrix of .

IV. DYNAMICS EQUATIONS

The dynamics modeling of flexible manipulators has been in-
vestigated by many researchers; indeed, 105 references are cited
in [24]. More references can be found in [25]. Using the results
reported therein, one can derive the macromanipulator mathe-
matical model as2

(11)

2No matter how accurately the macromanipulator dynamics is modeled, the
model can be cast in the form of (11). Therefore, there is no limitation to be
attributed to the model used herein.
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in which is the macromanipulator mass matrix; rep-
resents the system wrench, containing all the Coriolis, gravity,
centrifugal, and flexural generalized forces; is the vector of
actuation generalized forces; and is the reaction wrench
applied on the micromanipulator base by the end-link of the
macromanipulator. Furthermore, if is defined as

(12)

where and are the vectors of joint variables and flexural
generalized coordinates of the macromanipulator, respectively,
then

(13)

with and being the vector of joint-actuation torques and
the zero vector of dimension , the number of flexural general-
ized coordinates, respectively.

As mentioned in Section II, the reaction wrench is
needed if the model (11) is to be used as the modeled dynamics
in the estimator. To calculate this wrench, the acceleration
measurements delivered by the accelerometer array, which is
installed on the micromanipulator base, are collected at each
instant. In general, accelerometers are also affected by gravity;
as explained in [26], however, this effect is eliminated from the
acceleration differences if the accelerometers relative orienta-
tions are known. Furthermore, the accelerometer data can be
processed to obtain the twist and the angular acceleration of the
base, as well as the translational acceleration of the origin of its
local frame. The calculation of the translational acceleration,
however, requires the attitude of the micromanipulator base to
eliminate the effect of gravity; that attitude can be estimated
from the macromanipulator generalized coordinates and its
kinematics.

The information thus obtained is substituted into the dy-
namics model of the micromanipulator to obtain the reaction
wrench sought. This approach is formulated below. First, we
notice that the dynamics model of the micromanipulator, as a
rigid robot with moving base, can be derived as [27]

(14)

in which is the mass matrix, while , , and represent
the system, actuation, and end-effector external wrenches of the
micromanipulator, respectively. The system wrench includes all
the Coriolis, centrifugal, and gravity forces. Moreover, the vec-
tors , , and are given by

(15)

where , , and are the vectors of the micromanipu-
lator joint variables and joint-actuation torques, and the -di-
mensional zero vector, respectively, being the number of the
micromanipulator joints.

Then, partitioning the mass matrix and all the vectors of the
dynamics model (14) corresponding to the two parts of , we
can rewrite the dynamics model as

(16a)

(16b)

in which , , and are the blocks of the mass matrix
; and are the subarrays of its system wrench; and

and are the subarrays of the end-effector external wrench,
i.e.

Subscripts “ ” and “ ” above refer to the base and the joint (ro-
tational) degrees of freedom of the micromanipulator, respec-
tively.

Next, one can solve (16b) and (16a) for and ,
respectively, to obtain

(17a)

(17b)

It is worth mentioning that symbolic expressions for the reaction
force and moment have been reported elsewhere, in [28], for ex-
ample. However, the expressions in [28] are given in terms of
the generalized coordinates, velocities, and accelerations of the
entire system. Moreover, it is assumed therein that all macroma-
nipulator joints are locked, which in not needed in our approach.

Finally, if the translational and angular accelerations of the
micromanipulator base as well as its twist are determined using
the accelerometer array, one can readily calculate . As for
the other information needed for the right-hand sides of (17), the
subarrays of the micromanipulator system wrench and
can be calculated from the dynamics equations using the joint
angles and joint rates; the external wrench applied on the micro
end effector is inferred from the end-effector force and torque,
either known or measured directly; and the actuation torques
are also assumed to be either known from the control system
or measured. Thereafter, solving the above linear equations se-
quentially to obtain the reaction wrench is straightforward.

V. STATE-SPACE DYNAMICS MODEL

Let us denote the state vector of the macromanipulator by ,
which is given by

(18)

Using the above definitions of the states, one can write the math-
ematical model (11) of the macromanipulator in state-space
form as

(19a)

(19b)

with , , and defined as

(20)

(21)

(22)



PARSA et al.: ESTIMATION OF THE FLEXURAL STATES OF A MACRO–MICRO MANIPULATOR 569

in which was defined in (10), while matrix , defined as the
inverse of the mass matrix , is partitioned into two blocks

(23)

The first block is an matrix, with and
denoting the degree of freedom of the macromanipulator and its
number of links, respectively.

Hence, the discrete-time linearized form of (19) can be
written as

(24a)

(24b)

in which is the sampling period, and are the subarrays
of the vector of the uncorrelated white-noise processes rep-
resenting the unmodeled dynamics, and is a redefined input
function given by

(25)

Thus, in standard form, we have

(26)

with and defined as

(27)

(28)

To complete the derivation of the state-space dynamics
model, the partial derivatives of with respect to and
must be found. Between the two, however, it is the partial
derivative of with respect to that needs extra attention,
because of the dependence of on the generalized coordinates.
To obtain this partial derivative, we notice from (20) that

(29)

where is a dummy variable. However, the first term on the
right-hand side can be written as

(30)

from which we can readily conclude that

(31)

Hence, using (29) and (31), one can derive the partial deriva-
tive of with respect to as

(32a)

while the partial derivative of with respect to is clearly
given by

(32b)

VI. STATE-OUTPUT RELATIONS

To obtain the state–output relations for the system, we denote
the output vector by and define it as

(33)

where , as mentioned before, is the Cartesian twist of the mi-
cromanipulator base. While the relation of with the states of
the system is evidently linear and readily known, for the entries
of are among the system states themselves, the state–output
relations pertaining to are indeed nonlinear and should, thus,
be linearized. To linearize these relations, is expanded using
a Taylor series up to first-order terms about . Neglecting the
higher order terms, we obtain

(34)

where represents the estimated state vector, and, obviously

(35)

The partial derivatives needed in (35) are available in closed
form from (9).

Consequently, upon defining a new output vector, denoted by
, as

(36)

the state–output relation can be rewritten in the linearized form
as

(37)

(38)

in which is the vector of the uncorrelated, white measure-
ment-noise processes,3 and is a rectangular array of
ones and zeros in which the largest left-hand-side block is the

identity matrix.

3A more realistic model for noise on the translational-velocity part of the
output, which is inferred from the accelerometer-array signals by integration,
will perhaps be a Markov process [29] if the accelerometer noise is assumed to
be white.
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Fig. 3. Planar RRRR macro–micro manipulator in its initial posture.

Hence, the time-discretized form of the state–output relation
(37) can readily be written as

(39)

As mentioned before, using the accelerometer-array signals,
one can readily calculate the twist rate—the acceleration and the
angular acceleration—of the micromanipulator base. These data
may also be taken as outputs. However, taking the twist-rate ele-
ments as outputs will require differentiating the dynamics equa-
tions of the flexible manipulator, which, in turn, complicates the
linearization of the state-space form of the mathematical model
further. Therefore, this is avoided. Nevertheless, if, in a partic-
ular problem, taking only the twist does not produce reliable
results, one can include the twist-rate in the outputs and use the
linearized state–output relations derived in [23].

VII. EXTENDED KALMAN FILTER

With the linearized governing equations available, one can
use the EKF relations to obtain the state estimates. These rela-
tions are derived in [30] as

(40a)

(40b)

(40c)

(40d)

(40e)

(40f)

(40g)

where and are the covariance matrices of the uncor-
related white-noise processes and , respectively.

VIII. SIMULATION STUDY

The ideas explained here regarding the estimation of the
flexural states using an accelerometer array are demonstrated
by simulating the dynamics of a planar manipulator,
illustrated in Fig. 3, on a horizontal plane. The first two links
of this manipulator—constituting the macromanipulator—are
assumed flexible, while the other two—making up the mi-
cromanipulator—are assumed rigid. Moreover, we discretize
the flexible links using the assumed-modes method, taking
the clamped-free eigenfunctions as the shape-functions; the
bending of each of the macromanipulator links is described by
one flexural generalized coordinate. The specifications of the
links are given in Table I.

TABLE I
LINK SPECIFICATIONS OF THE RRRR MANIPULATOR

Furthermore, it is assumed that the noise covariances are con-
stant and given by

where and are the 2 2 and 4 4 identity matrices, re-
spectively. The entries of are determined based on a noise-to-
signal ratio of approximately 2.5% for the first three blocks and
double that for the last two blocks—to account for the lineariza-
tion error—whereas the entries of are guessed values. Our
simulations have shown that the state-estimation results remain
acceptable over a rather large range of values.

Two different manipulator motions are considered here; in
each of the two cases, flexural motion is induced in the macro-
manipulator by having one or more of the joints to follow peri-
odic motions. In the first case, to keep the motion simple, we as-
sume that joints 1, 2, and 4 are locked at , ,
and , and the motion of the third joint is given by

where is the unit step function.
Applying our algorithm, we can estimate both the flexural

states and the joint-rates, but we mainly focus here on the
former. Fig. 4 shows the actual and the estimated flexural
generalized coordinates; the results pertaining to the flexural
generalized velocities are displayed in Fig. 5. The estimation
errors of the two are plotted in Figs. 6 and 7. The states with
a subscript 1 pertain to the first link, while those having a
subscript 2 pertain to the second link.

For the second manipulator motion, the joints 1, 2, and 4 are
assumed to follow:

while the motion of the third joint remains the same. The estima-
tion results of the flexural coordinates and flexural generalized
velocities are shown in Figs. 8 and 9, respectively, and the esti-
mation errors are plotted in Figs. 10 and 11.

As seen from the graphs, the estimator has been able to esti-
mate the flexural states with a high accuracy, as the theoretical
and the estimated values of the flexural states are almost indis-
tinguishable. However, a caveat is in order here. For the simula-
tions, the “actual flexural dynamics” of the macromanipulator



PARSA et al.: ESTIMATION OF THE FLEXURAL STATES OF A MACRO–MICRO MANIPULATOR 571

Fig. 4. Flexural generalized coordinates; (solid) theoretical values and
(dashed) estimated values.

Fig. 5. Flexural generalized velocities; (solid) theoretical values and
(dashed) estimated values.

Fig. 6. Estimation error of the flexural coordinates.

has been modeled by taking one flexural coordinate for each
of the flexible links, which is the same number of flexural co-
ordinates used in the modeled dynamics employed in the state

Fig. 7. Estimated error of the flexural generalized velocities.

Fig. 8. Flexural generalized coordinates; (solid) theoretical values and
(dashed) estimated values.

Fig. 9. Flexural generalized velocities; (solid) theoretical values and
(dashed) estimated values.

estimator. Therefore, in a practical situation, if the system is
modeled improperly, the accuracy of the results are expected to
deteriorate.
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Fig. 10. Estimation error of the flexural coordinates.

Fig. 11. Estimated error of the flexural generalized velocities.

IX. OBSERVABILITY OF THE FLEXURAL MOTION

A complete observability analysis for the type of systems
treated in this paper seems quite elusive, due to the non-
linear, highly complex nature of both dynamics equations and
state–output relations. Nonetheless, to help us visualize how
many flexural generalized coordinates one can estimate using
one accelerometer array, consider a cantilever flexible link. If
an accelerometer array is installed at the tip of such a link, the
three components of the translational acceleration and those of
the angular acceleration of the array, totaling six, can be used
to estimate six flexural coordinates: Four flexural generalized
coordinates describing bendings in two planes plus two flexural
coordinates in each plane; one of the latter represents the tor-
sional twist of the link, the other the elongation of the link axis.
Consequently, if, in a particular case, more than two flexural
coordinates are needed to effectively describe the bending of a
link in one plane, then additional accelerometer arrays must be
installed on the link along its length.

By the same token, if a flexible planar manipulator has more
than two links, extra accelerometer arrays—each comprising
more than two two-axis, or four single-axis, accelerometers—in

addition to the one located at the tip of the end link, have to be in-
stalled on the distal end of the links to provide the estimator with
enough information. The same should be done if the bending de-
formation of any of the links is to be discretized with multiple
flexural coordinates. Otherwise, what the estimator will cor-
rectly estimate will be the translational and rotational motions of
the end-point frame of the end-link. If additional accelerometer
arrays are to be used, one can relate the twist of two subsequent
link-end frames to simplify the state–output relations.

X. CONCLUSION

The estimation of the flexural states, the flexural generalized
coordinates and generalized velocities, of the flexible links of
a macro–micro manipulator was discussed in this paper. It was
proposed that the data collected by an accelerometer array fixed
to the micromanipulator base be used to infer the translational
and angular accelerations of the base as well as its translational
and angular velocities. The acceleration data were used to sepa-
rate the dynamics of the macromanipulator from that of its micro
counterpart. The velocity data, on the other hand, were taken as
the outputs, and their relations to the flexural states were written
and linearized in closed form. Then, having all the state-space
equations in linearized form, we used them in an EKF to esti-
mate the flexural states.

The estimation method explained here was based on the
assumption that the dynamics of the system is exactly known.
Therefore, dynamics modeling of the system, in general, and
that of the macromanipulator, in particular, requires precise
knowledge of the model parameters.

Simulation results reported in this paper demonstrate that the
proposed estimation algorithm can indeed produce reliable es-
timates of the states. Although we have made use of an EKF to
estimate the states, the state-space equations derived here can be
used in other types of observers as well, especially since most
of the observers devised for nonlinear systems are based upon
linear state–output relations.
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