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ABSTRACT

The objective of an Optimal Power Flow (OPF) algorithm is to find the steady-
state operation point of a generation-transmission system which minimizes a pre-specified
cost function and meets a set of operational and/or security constraints. OPF algorithms
are among the tools present in many Energy Management Systems and their usefulness
is increasingly being recognized by power utilities.

This thesis presents an algorithm which uses the parameters existing in the OPF
problem to find its solution. These parameters can be in the objective function or the
equality or inequality constraints. This algorithm is applied to a parameterized OPF model
built according to the following criteria: (i) when all parameters present in the model are
relaxed from their given levels, a solution can be trivially found for this parameterized
problem and (ii) when all parameters are returned to their original values, the
parameterized model is equal to the original OPF. As the initially relaxed parameters are
returned to their original values, they define a sequence of OPF problems which converge
to the original one. The algorithm is designed to track the optimal solutions of these
intermediate problems until the optimum of the original OPF. This tracking is made in
a systematic manner. By using a binary search or a linear prediction method, the
algorithm finds the maximum increment of the parameters which allow only one
inequality to be fixed at its limit or to be released. The parameters are then adjusted to
their new values, defining a new OPF problem with known optimal active feasible set.
As a consequence, the optimal solution of this new problem can be easily found by
solving the first order optimality conditions by Newton's method. In this way, the
optimum is tracked irom one active feasible set to the next until the parameters reach
their original values.
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ABSTRACT i

The parameterization permits the solution of the OPF preblem for a fixed and
variable load using the same mechanism described in the previous paragraph. As a result
of this systematic tracking, the method is robust and able to provide a very good insight
about the behaviour of the OPF solutions. In addition, the main difficulties encountered
in solving the OPF problem are easily visualized and, in particular, the approach permits
the differentiation of the potential causes for the failure of the tracking process, including
the identification of unsolvable cases. The sensitivities of the optimal solution as a
function of the parameters are also by-products of the method; including the Bus
Incremental Costs and the System Incremental Cost as functions of the loads. The
approach is also flexible enough to permit the simulation of line contingencies and of
Flexible AC Transmission Systems (FACTS devices). The algorithm developed was tested
in numerous networks with different objective functions and initializations and the results
demonstrated the potential of this technique.



RESUME

Le but d'un algorithme d'écoulement optimal de puissance (EOP) est de trouver
le meilleur point d'exploitation en régime permanent d'un réseau de production-transport
d'énergie qui répond a un ensemble de contraintes opérationnelles ou de sécurité. Les
algorithmes de EQP sont des outils présents dans les Centres de Conduite de Réseaux et

leur utilité est de plus en plus reconnue par les compagnies électriques.

Cette thése présente un algorithme utilisant les paramétres qui existent dans le
probléme de EOP dans le but de trouver sa solution. Ces paramétres peuvent étre présents
dans le critére d'optimisation ou dans les contraintes d'égalité et d'inégalité. Cet algorithme
est appliqué & un modéle paramétré de I'EOP biti selon les critéres suivants: (i) quand
tous les paramétres du modéle sont reldchés de leurs valeurs données, une solution triviale
peut étre obtenue et (ii) quand tous les paramétres relichés sont retournés a leurs valeurs
originales, une séquence de problémes EQP est définie convergeant au probléme original.
L'algorithme est congu pour suivie la solution optimale de tous ces problémes
intermédiaires jusqu'au point optimal du probléme original. Ce processus est fait d'une
fagon systématique. En utilisant une recherche binaire ou une méthode de prévision
linéaire, I'algorithme trouve l'incrément maximum des paramétres permettant ainsi qu'une
seule inégalité soit fixée & sa limite ou soit libérée. Les paramétres sont alors ajustés a
leurs nouvelles valeurs définissant ainsi un nouveau probléme EOP comportant un
ensemble d'inégalités actives connues. Par conséquent, la solution optimale de ce nouveau
probléme peut étre facilement trouvée en solutionnant les conditions optimales de premier
ordre par la méthode de Newton. De cette fagon, I' optimum est suivi d'un ensemble actif

faisable a l'autre jusqu'a ce que tous les paramétres soient arrivés a leurs valeurs d'origine.

La mise en évidence des paraméires permet de solutionner le probléme EOP dans

le cas des charges fixes ou variables en utilisant le méme mécanisme décrit ci-haut. A la

iv



RESUME v

suite de ce processus systématique, il est possibie d'obtenir un trés bon apergu du
comportement des solutions de I'EQOP. Les difficultés principales auxquelles on doit faire
face en solutionnant le probléme EOP sont facilement visualisées et, en particulier,
I'approche permet la différentiation des causes potentielles d'interruption du processus
d'optimisation, y compris l'identification des cas sans solution. Les sensibilités de la
solution optimale, en fonction des parametres, sont aussi des produits secondaires du
processus, ce qui inclue le colit marginal de la charge du réseau et les coiits marginaux
des charges individuelles. L'approche est assez flexible pour permettre la simulation des
contingences topologiques et l'optimisation des dispositifs "FACTS" (Flexible AC
Transmission Systems). L'algorithme a été validé dans plusieurs réseaux, en considérant
différents objectifs d'optimisation et les résultatc démontrent le potentiel de cette
technique.
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CHAPTER 1

INTRODUCTION

1.1 General

Power utilities nowadays place great importance on the secure-economic operation
of their systems. The savings that can be obtained by an economical operation have been
proven to be considerable [Maria and Findley, 1987 and Bridenbaugh et al., 1992). With
increased restrictions in the construction of new power plants and transmission lines ( in
spite of a continuous increase in the demand ), it becomes even more necessary to obtain

the best possible performance out of existing systems.

The problem of optimal steady-state operation of a generation-transmission system
is represented through a mathematical model broadly known as the Optimal Power Flow
(OPF) problem. The OPF problem can be defined as a "general mathematical tool used
to find the instantaneous optimal operation of a power system under constraints which
meet operating feasibility and, optionally, security constraints" [Carpentier, 1987]. The
first mathematical formulation of the OPF problem was proposed almost four decades ago

and, since then, has been used almost with no modifications in numerous studies.

All research on the OPF problem can be rationalized if we consider that, by
solving this problem, all state variables of a power system can be optimally controlled
{according to some pre-specified criterion, e.g., minimum cost or minimum transmission
losses) while satisfying a very complex set of equality and inequality constraints. The
OPF problem is a power engineers' answer to society's demand for the minimum possible
waste of energy with a high quality of service. An OPF forms part of the specifications
in any project submitted today for the energy management system (EMS) of a power
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system. Nevertheless, the OPF is still is not broadly used, mainly because of the
difficulties of using such a tool in control centres [Stott et al., 1987 and Heinz et al,,
1993]. The reasons for these difficulties are various. In spite of the extensive research
made in OPF, still today there are cases where OPF algorithms fail to find an optimal
solution. More important, some of the constraints present in day-to-day operation cannot
yet be properly modelled. As a consequence, solutions provided by the OPF algorithms
are not always realistic and it still corstitutes a risk to rely entirely in OPF algorithms in
daily operation of a power system. In addition, unlike load flow programs that are broadly
used by the power utilities (and considered reliable tools for operation), the
implementation and use of OPF programs is not trivial. The fact that there must be
specialized personnel to use an OPF package and the sophistication of such a tool
accounts for a general reluctance in the power utilities about the advantages of using an
OPF program in daily operation.

Unfortunately ( and perhaps predictably ), the task of optimizing the steady-state
operation of a generation-transmission system is not easily tractable, The laws that rule
power generation and transmission transform the OPF into 2 mixed integer-nonlinear (non-
convex) problem which can defy the most sophisticated optimization methods. Because
of its numerous potential applications in power as well as its complexity, the OPF
problem can be classified among classical optimization problems such as the "knapsack
problem” or the "travelling salesman problem”. Surprisingly, until today, in spite of the
huge bibliography that exists about the OPF, no attempt has been made to condense the
many different aspects of this problem in a book where, usually, one finds only the theory
of some of the more elementary versions of the OPF, e.g., the Equal Incremental Cost
Economic Dispatch and the classical load flow problem. This, together with the basic
characteristic of the OPF, which requires a good knowledge in both power systems
operation and mathematical programmiing, has led to the lack of a consensus in the
literature as to the best way to approach this problem,

Presently, different OPF packages are available in the market [ Burchett et al.,
1984, Sun et al, 1984; Alsag et al, 1990 and Bertran et al., 1990]. Computational
programs exist that find the optimal operation state of a power system in seconds,
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contradicting the previous general perception that the steady-state optimization could not
be done on-line. Nevertheless, in spite of all the advances achieved in terms of
computational speed, many theoretical aspects of the OPF probiem have not been
sufficiently studied. Consequently, causes of failure or difficult convergence of OPF
algorithms are not always known. This is a difficult area which could not yet be properly
studied, in part because of the tools available to solve the problem.

The research being carried out nowadays in this area is mainly concerned with
implementing fast algorithms that provide reliable solutions for the OPF problem where
the system demands and topology are considered fixed. Ideally, a method that would
represent the changes in the operation environment should be employed in order to be as
close as possible to the day-to-day operation of a power system. With this in mind, we
propose in this thesis the use of a method that would be able to represent to some extent
the changes that could occur in the power system. Here, a parametric optimization method
is used to solve the OPF problem. This approach was also motivated by a desire to
investigate the behaviour of OPF solutions with respect to variations in problem
parameters such as loads and variable limits,

1.2 The Present Thesis

The OPF model, as any other mathematical model, is composed of decision
variables which can be controlled and a set of variables over which usually one has no
control: the parameters. Active and reactive generation are some examples of the decision
variables while load demand, line characteristics and operational limits are examples of
parameters.

Parametric optimization characterizes the behaviour of the optimal solution of a
problem for a range of parameter variations. Thus, the use of a parametric optimization
approach in the OPF serves to analyze the optimal behaviour of the decision variables as
some of the model parameters vary. This variation can be due to normal time behaviour
such as daily load changes. Parameter variation can also be artificially imposed to
examine the behaviour of the OPF solutior with respect to coefficients such as vanable
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limits and cost data. The latter type of parameter variation is interesting to study on its
own merits, however we found that it can be the basis for a2 new approach to solve the
OPF.

Different parametric approaches have been used to solve the OPF problem. The
present thesis is an extension and generalization of previous research pursued at McGill
University. The studies developed thus far using parametric methods to solve the OPF
problem were limited by the specific nature of the models and algorithms used. Typically,
they minimize a cost subject to linear constraints by parametric quadratic programming.
Alternatively, they can be based on models consisting of non-linear constraints and costs
that are linearized and solved through sequential quadratic programming. Here we propose
a general parametric QPF model where the full nonlinear loac’ flow equalities and
inequalities are enforced while minimizing an arbitrary objective function. Furthermore,
in this work, the OPF problem can be independently parameterized by relaxing one or
more of the following : (a) the objective function; (b) the inequality limits and (c) the
equalities. This feature enables the tracking and analysis of the OPF behaviour in terms
of general parameter variations and also a systematic solution of the OPF from an
arbitrary initial condition,

The strategy proposed here can be divided into two main phases. Phase I finds the
OPF solution for a given load level starting from an arbitraty initial condition. Phase It
tracks the OPF solution as a function of the load level over a given interval starting from
the Phase I solution. '

In Phase 1, the objective function, the equality and inequality constraints are
parameterized by a single parameter. The parameterized OPF is then relaxed by modifying
this parameter in such a way that an arbitrary initial solution is forced to be optimal. The
variation of the parameter produces a sequence of nonlinear optimization problems, with
known active constraint set, whose solutions converge to the solution of the original OPF
problem. Since for each problem in the sequence the active set is always known, the
corresponding solutions are reduced to simply solving the set of equations arising from

the first order optimality conditions. Thus, starting from an arbitrary initial solution, the



INTRODUCTION 35

optimum is tracked through a strategy that consists of two steps: (i) the variation of the
parameter that brings the initial relaxed problem progressivelly closer to the original one
and (it) the solution of the various intermediate optimization problems by Newton's
method. The key of this strategy is step (i). The variation of the parameter must be done
in a way that only one change at a time takes place in the optimal active set. This
approach leads to the systematic tracking of the optimal solution and permits an easy

detection of the causes of failure of the optimization process whenever this occurs.

In Phase II, after obtaining an optimal solution for Phase I, the algorithm tracks
the OPF solution trajectory as a function of the load over a given interval. The ability to
track the OPF solution in terms of the load has potential in an on-line environment by

allowing system operators to pre-calculate the optimal dispatch strategies based on a load
forecast.

1.2.1 Outline of the Thesis
The chapters of this thesis are organized as follows:

Chapter 2, first of all, presents a general description of the OPF problem: the
different formulations, variables, constraints and objective functions used. Next, an
analysis is made of the OPF literature, emphasizing the most recent publications and also
some important work done in the past. These publications are classified according to the
optimization techniques used to solve the problem and some of the strong and weak
points of the different methods are discussed. Following this, a general idea of parametric
methods is given through the discussion of some mathematical examples. Finally, the
various publications in power system operation using parametric methods are presented
emphasizing the work done in Economic Dispatch and OPF.

Chapter 3 presents the theoretical aspects of the parametric approach used in this
thesis. The discussion starts with a description of the parameters existing in the OPF
model. Next are presented the first and second order optimality conditions of a general
nonlinear parametric optimization problem whose feasible set satisfies a set of regularity
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constraints. These optimality conditions are then used to explain the parameterized models
used in this thesis to solve the OPF problem for fixed and variable system load. With the
parametric models described, the process of tracking the optimal solution is studied in
detail and the various causes for the failure of the parametric approach are explained. In
the last section is introduced the concept of "structural stability” of 2 parametnic
mathematical problem. The special case of the Parametric-OPF is then analyzed and some
conclusions are drawn about the behaviour of the OPF solution in a varying load

environment.

Chapter 4 presents the Parametric-OPF algorithm implemented in this thesis. To
describe this algorithm, detailed parameterized models for solving the OPF are introduced
and the associated optimality conditions are derived. The algorithm is divided into two
main stages which are discussed separately: the definition of a feasible set which is active
at the optimal solution of the parameterized model, and the resotution of the first order
optimality conditions defined for this specific active feasible set. First, an explanation is
given about how an optimal active feasible set is obtained through the use of a binary
search or a linear prediction method. The Newton method based approach used to solve
the system of equations composed of the optimality conditions of the parameterized

problem is then described.

Some special applications of the algorithm described in Chapter 4 are presented
in Chapter 5. First of all, a methodology for the simulation of line contingencies is
described. Next, using quantities which are by-products of the Parametric-OPF algorithm,
we derived expressions of the sensitivities of the OPF solutions for an interval of load
variation, including the Bus Incremental Costs and the System Incremental Cost.
Following this, a methodology is described to study the behaviour and influence of
Flexible AC Transmission Systems (FACTS) devices in the optimal steady-state operation

of generation-transmission systems.

In Chapter 6 the results of tests made with the Parametric-OPF algorithm are
presented and analyzed. The systems tested here are: the 14, 30 and 118-bus IEEE test
networks and a 34-bus network with 64 lines characterized by high levels of reactive
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power and voltage instability. The results are organized in two parts. In the first part, the
computational aspects of the method are discussed by comparing its performance for
different initializations, strategies to find the optimal active feasible set and type of
constraints and variables existing in the problem\'ln the second part, some analysis are
made regarding the behaviour of the OPF variables during the solution of the problem for
fixed or variable load; in some cases, also supposing line contingencies. In addition, some
economical aspects of the optimal steady-state operation are also discussed. Next, some
tests with FACTS devices are presented and their influence in the OPF solution is studied

Finally, Chapter 7 provides an overview of the present thesis and recommendations
are made regarding future work.

122 Claim of Originality

To the best of the author's knowledge, the following are the main results and
contributions of this thesis:

1. The formulation of a general parametric OPF model where the objective function,
equality and inequality constraints are parameterized.

2. The implementation of a parametric algorithm where the full OPF problem is
solved by 7ystematically tracking the active set and without recourse to sequential
linear or quadratic programming. Two versions are developed, one for the OPF
with fixed loads and a second for load tracking.

3. A detailed study of the behaviour of the OPF solution for both fixed and variable
system loads, in particular an analysis of the potential causes for the failure of the
method.

4, The definition of a region of structural stability for the OPF problem ( i.e., a
region where there is a continuous change in the optimal solution of the problem
for a change in the system load or any operational limit ).
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The study of the algorithm in a number of test cases including the influence and
behaviour of Flexible AC Transmission System (FACTS) devices in the OPF

problem.



CHAPTER 2

BACKGROUND

2.1 Introduction

The optimal power flow (OPF) problem can be defined as a "general mathematicai
tool used to find the instantaneous optimal operation of a power system under constraints

which meet operating feasibility and, optionally, security constraints”" [Carpentier, 1987].

The OPF is becoming nowadays an important tool in Energy Management Systems
(EMS); it is increasingly replacing the classical load flow algorithms to perform operation
and planning tasks.

The OPF can be classified among very general and difficult mathematical
problems such as the "travelling salesman" or the "knapsack" problems. While it is
possible to find books devoted entirely to the last two problems, the different details of
modelling, approximations and solution methods for the OPF are only superficially treated
in books devoted to power systems planning and control where, usually, one finds only
the theory of some of the more elementary versions of the OPF, e.g. the Equal
Incremental Cost Economic Dispatch and the classical load flow problem. The lack of
textbooks on OPF is surprising since the OPF has been the subject of an enormous
amount of research for over thirty years and its importance has been more and more
recognized by the power utilities. The original model has engendered many different OPF
formulations and almost every mathematical optimization method has been applied to its

solution; but the general problem, as conceived today, remains a challenge.
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In this chapter, first of all, the OPF problem is characterized and the various
details and extensions of the basic model are presented. After that, the various works that
have been published in this field in recent years as well as some important earlier results
are discussed, so as to give an idea about the state of the art in OPF. Subsequently, the
mathematical approach used in this thesis to solve the OPF - a parametric optimization
technique - is introduced and the reasons for this choice are presented together with some

general applications of parametric approaches in power system analysis.
2.2 The Optimal Po é&r Flow Problem

2.2.1 Basic Formulation

The OPF optimizes the static operating condition of a power generation-
transmission system. A scalar function is to be minimized subject, in some cases, to

thousands of sparse equality and inequality constraints.

An OPF algorithm has found many applications in modern power systems
operation and planning, As examples, in operation, the OPF can be used for on-line
(secure or basic) control of the decision variables as a component of a Hydrothermal
Divpatch [Luo et al., 1989] or even as a tool to calculate the "spot price" of both active
and reactive power being traded among utilities and consumers [Shirmohammadi et al.,
1991 In planning, the OPF is slowly substituting the classical load flow, because of the

increasing concern with security and economy of a power system [Hong et al., 1990).

Mathematically, the problem can be generally stated as:

Min c(x) 2.1
X

subject to
g(x) =0 (2.2)

h(x) <0 (23)
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The varniable vector x can be divided into a set of controls u and a set of
dependent variables y.

The control variables can include some active power generations, the voltage
magnitudes or reactive power of generating units and synchronous condensers, the
variable transformer tap and phase-shifter settings, other reactive power sources such as
capacitors and reactors, DC link power flows and, in special conditions, line switching
operations and load shedding.

The dependent variables can include the voltage phase angles, the voltage
magnitudes at load buses, line flows and losses.

The scalar objective function (2.1) can measure economic and performance aspects
of the system operation such as generation cost, transmission losses, voltage profile
deviation from normal, aggregation of control actions or even the number of controls

actions.

The equality constraints (2.2) usually represent the power balance equations at the
load buses while the inequality constraints (2.3) typically depict both the functional

inequalities, such as power flows, and the bounds on x.

The reader is referred to Appendices A and B for a detailed description of the
mathematical OPF formulation.

In its most general formulation, the OPF is a mixed non-linear (non-convex)
integer programming problem whose solution is extremely difficult and time consuming
to find. Most of the approaches developed thus far have considered only continuous
variables in their formulation. Even though approximate methodologies have been
proposed to represent discrete variables [Liu et al., 1992], this is an area that still needs
development.
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In a similar way to what is done with the load flow equations, the variables and
constraints of the OPF can be divided into active and reactive subsets. These subsets are
usually weakly coupled, so that two subproblems can be defined: the "active power OPF"
and the "reactive power OPF" [Stott et al., 1980].

For Extra High Voltage (EHV) systems with short transmission lines, the
transmission losses are sometimes neglected and the voltages approximated by 1.0 p.u,
resulting in the linearized or DC load flow model where the energy balance in the
network buses is represented only in terms of active power and voltage angles. If, in the
OPF problem, such a linearized model is used to represent the system power balance, the
model is called Economic Dispatch with Network Constraints or DC OPF. Considerable
research has been conducted with the DC OPF since its formulation, leading to some of
the best known methods for the complete model that exist today [Alsa¢ et al., 1990 and
Bertran et al., 1990].

As pointed out in some literature reviews [Carpentier, 1987; Huneault and Galiana,
1990], accurate and fast OPF methods exist for the active power problem, whereas the
complete active-reactive and reactive power problems, being more intricate, has posed
greater difficulties in finding efficient solution methods. Extensive research in the past
years has been, in fact, devoted to the proper modelling and solution strategy for the
reactive power OPF [ Kirshen and Van Meeteren, 1988; Alsac et al., 1990; Salgado et.
al., 1990]. The basic problem is related to the sequential solution of the decoupled
formulation of the OPF: The active problem is optimized and the results are given as
constants to the reactive subproblem, which will optimize the reactive part of the network
using only the remaining controls (that were not "optimized" by the active subproblem).
In this iterative solution, sometimes the reactive subproblem is not able to correct new
violations on the constraints only by adjusting the available reactive controls, thus
compromising the convergence of the overall algorithm. A general approach to correct this
deficiency is to include in the active model those additional reactive constraints that
cannot be met with reactive means only. In addition, in the objective function of the
reactive subproblem, the binding constraints of the active subproblem are added as penalty
terms {Carpentier, 1987]. Numerous variations of this general approach can be found, as
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can be seen in the references mentioned above.

Regarding the treatment of the types of variables, the OPF problem can be written
in two different ways [Carpentier, 1987):

(1)- Sparse Modelling
Equations (2.1)-(2.3)
In this sparse model, no distinction is made between dependent and controllable variables.
All variables are treated as decision variables and optimized simultaneously, resulting in

very sparse constraints.

(ii)- Compact or Reduced Modelling

Min  c(u,y[x]) (2.4)
subject to

g(u,yl]) = 0 (2:5)

h(uylul) < 0 (2.6)

In this reduced model, the optimization is performed with respect to the controllable
variables, u. The dependent variables are treated as explicit functions of w. In this
formulation, there are fewer variables and constraints but at the expense of a decrease in
sparsity.

With the reduced model, the solution of the OPF is decomposed into two parts:
a load flow solution to find y as a function of u and the optimization of the reduced
problem over u. A large number of procedures used to solve the OPF problem is hased
on the reduced model [Carpentier, 1987].
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2.2.2 The Security Constrained OPF

An important application of OPF algorithms is in security constrained optimal

control of a power system.

An operationally secure power system is one which " can withstand, without
serious consequences, any of a preselected list of credible disturbances (contingencies)"
[Balu et al., 1992].

Unfortunately, the problem of identifying the most suitable corrective actions for
those contingencies which are found to cause overloads, voltage limit violations or
instability in a power system is not a trivial one. However if, associated with each
corrective action, there is a "cost", the problem of optimal secure control of a power
system can be mathematically stated as a modified OPF whose constraints consider not
only operational aspects of the actual generation-transmission system but also of
contingency states. In expanding the basic OPF formulation to include contingency
constraints, two levels of security can be represented [Stott et al., 1987]:

(1)-  Security under contingencies without corrective actions (Preventive
Control).

An optimal set of controls is sought to guarantee that no operating limits are
violated in the system before or after each contingency. In this conservative approach, it
is assumed that no adjustment in the control variables occurs after any of the possible
contingencies. That is, the pre-contingency control is sufficient to ensure that, even if the
contingency occurs, no violations take place. This problem can be formulated as:
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Min  c(uy,¥,) (2.7)
subject to
g(uy¥) =0, hluyy) <0 (2.8)
and
g(uosyg) =0, h(uo,yk) <0 (2.9)

for every contingency k.

(ii)- Security under contingencies with corrective actions (Corrective
Control)

Here, no operating limit is violated in the system, before or after contingency,
assuming that a corrective action can be applied after the contingency occurs. The security
constrained OPF for this case becomes:

Min  c(u,,y,) (2.10)
subject to
8(uysYy) =0, h(uyy,) <0 2.11)
and
8wy =0, h(uy) s 0 (2.12)
aslug-ulsbd (2.13)

for every contingency k.

Thus, for every contingency k, the u, are unknown quantities which can be
adjusted to perform a corrective action within the interval [a,b].
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The final operational cost of the Preventive Control approach can be very high due
to the fact that there are fewer controls. The final operational cost of the Corrective
Control formulation is lower, but the problem becomes enormous due to the increased
number of control variables. There is, of course, a trade-off between operational cost and
security and, in the end, it is up to the utility to define when one is more important than
the other.

In practice, applying an optimal secure control strategy to a generation-
transmission system involves much more than just finding the solution of a secure-OPF.
Normally, the implementation of such control starts with the definition of a number of
“"likely" contingencies, specifying their expected severity, and whether they would be
considered in preventive or corrective control actions. After this initial phase, it is
important to define, through some kind of sensitivity analysis, the set of controls that
would be operated (in preventive or corrective actions) to guarantee the security of the
system after each contingency. This is specially important if we consider the large number
of control variables involved in the corrective control. With a control set defined, it is
then necessary to specify the maximum amplitude of each control adjustment. Finally, the
sequence of control actions may be significant in order to ensure that no violations occur

during the implementation of the sequence of actions.

Some aspects in the formulatior of a secure-OPF must be considered as well.
Security constraints may be treated as "Lurd" or "soft" constraints where the latter may
tolerate some violations. This is specially useful when feasibility is not found for a
problem with hard constraints. By "softening” some hard constraints, the algorithm can
be made to move towards an optimal solution if the relative importance of the specific
violations is defined correctly by the user (i.e. the definition reflects the utility's policy)
[Alsag et al., 1990]. Also, the determination of a proper balance between security and
economy 1s an important issue [Lereverend et al., 1990].
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223 Applications

Many OPF programs, with and without security constraints, are currently
implemented in utility control centres in both off-line studies as well as in the on-line
environment. These two OPF modes have different features. The OPF programs used in
off-line studies are basically applied in operation planning. In this off-line application, in
addition to the standard use of the OPF, the ability to provide sufficient information for
analysis of infeasible cases is very important - for instance, the correct detection of
bottlenecks in a transmission network or the loadability limit. Another desirable
characteristic would be the ability to provide sensitivities of the objective function and
variables with respect to changes in the parameters. In this application, higher
computational costs can be compensated by a more rigorous formulation and soluticn of
the problem.

An OPF intended for on-line execution needs to be compatible with other aspects
of the on-line environment. The power system state is, in general, changing through time
and the (secure) optimal state changes correspondingly. Thus, the solution speed of the
program should be high enough so that it finds a solution before the power system has
changed significantly, which implies being fast enough to run several times per hour. The
secure-OPF is specially complicated because its formulation (i.e., the list of contingencies

or the mode of operation (preventive/corrective)) may change with time as well.

In recent years utilities have reported experiences in the application of OPF to the
operation of their systems [Bridenbaugh et al. 1992 and Heinz et al., 1992). It seems that
numerous improvements are still needed, even in commercial OPF packages, in order to
conform the optimal control actions with other requirements of the daily operation of a
power system. There also exist concerns regarding the efforts in training, maintenance and
tuning necessary to implement the OPF in a control centre [Papalexopoulos et al., 1993].
In any case, the OPF found in control centres is presently implemented only in an
"advisory" mode, i.e., the control actions that constitute the OPF solution are offered only
as recommendations to the dispatcher. The on-line OPF programs working in a closed-
loop are limited to some very specific functions such as constrained economic dispatch
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[Balu et al., 1992]. Nevertheless, it seems inevitable that the OPF will eventually become
accepted and used just as much as the conventional load flow is used today. There is still
a need for further improvement, and the feedback from the utility companies' experience
will continue to bring valuable insight and refinements to the modelling and strategy of
solution of the problem of optimal (secure) control of a power system.

2.3 Literature Review

Since it was first formulated in 1962 [Carpentier, 1962], the optimal power flow
problem has been the subject of extensive research, most of it devoted to numerical
algorithms for its solution. The early methods were directed towards applications in the
area of transmission planning and their utilization in operation was prohibitive due to the
high computational solution time. The development of powerful computers and numerical
methods in recent years has made possible the utilization of an QPF algorithm in on-line

operation tasks as well.

Literature reviews of OPF have been published on a regular basis. The first of
these is a very interesting review by Happ [Happ, 1977] that traces the development of
the OPF starting with the early methods used to reduce operating costs of a generation-
transmission system. Another useful review was published by Stott and colleagues [Stott
et al., 1980] emphasizing the numerical methods applied in OPF solutions. Carpentier also
published a very general paper concerning on-line operation of a power system,
classifying and discussing important results in the field [Carpentier, 1987]. Finally, a more
recent paper by Huneault and Galiana [Huneault and Galiana, 1990] made a very thorough
classification of the works published in the area until 1989. In addition, reviews regarding
recent advances and trends in power system optimization and security control were
published by Stott and colleagues [Stott et. al., 1987] and also by Balu and colleagues
[Balu et al.,, 1992].

The formulation of the optimal power flow problem had its basis on an older
power system operation problem: the Economic Dispatch (ED).
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The ED tries to allocate the total generation required among the generating units,
so that some constraints are satisfied and the total generating cost is minimized. This
problem was first formulated in the early 20's when there was already a concern about
how to economically divide the total load amongst the available generating units. Before
1930, various methods were in use, e.g., the "base load method", where the units were
loaded to the maximum capability following the criteria of efficiency; or the "best point
loading method” where the units were successively loaded to their lowest heat rate
following the same criterion of efficiency. In the early 30's, the "Equal Incremental Cost
Criterion (EICC)" was already considered the best approach, a fact that was proved in
1934 [Happ, 1977]. Since then, sustained research has been carried out in ED [Huneault
and Galiana, 1990 and Chowdhury and Rahman, 1990]. In the classical load flow
formulation, the system incremental cost represents the minimal change in generation cost
per unit change in the system total demand, with this demand located at the slack bus.
The participation factors load flow permits an interesting variation of the optimal dispatch
via EICC. This modified load flow includes the participation factors to distribute the
power mismatch into the complex power balance equations [Guoyu et al., 1985]. By using
it to calculate the transmission penalty factor, Meisel [Meisel, 1993] demonstrated that
the associated system incremental cost represented the minimal incremental change in
generation costs, per unit change in the system total demand, with this demand distributed

according to the specified participation factor vector.

The solution of the economic dispatch by the EICC was a precursor of the OPF.
In the late 50's some work was done to improve the transmission loss representation and
minimization through the ED. At the same time, the load flow was implemented in digital
computers, The OPF was a "natural" outcome of these developments since the load flow
equations and the idea of minimizing costs {or any other criteria) were formulated in the
same problem. In the early 60's, Carpentier placed the optimal power flow on a firm
mathematical basis [Carpentier, 1962]. Much of the work in OPF, since then, has been
based on his formulation. In spite of being able to model the problem of optima! power
system operation in a compact way, Carpentier was not successful with his original
solution algorithm based on a Gauss-Seidel method [Happ, 1977].
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Gradient Based Approaches

The first efficient solution of the OPF was accomplished using gradient methods.
In 1968, Dommel and Tinney published an approach based on the reduced gradient
method that would become a benchmark in the area [Dommel and Tinney, 1968). They
extended the Newton's load flow method to the OPF by dividing the variables into
unknowns or dependent variables y, consisting of voltage magnitudes and angles for PQ
buses and voltage angles for PV buses; fixed parameters p consisting of the active and
reactive power injections for PQ buses and the voltage angle of the slack bus; and control
variables u representing the voltage magnitudes on the generator buses, generator real
power and transformer tap ratios. The unknowns were expressed in terms of the controls
and, by linearizing the power flow equations, a gradient method was applied to optimize
the control variables u. After every change in the controls, the non-linear load flow
equations were solved by the Newton method. Inequality constraints were handled by the
projection approach (for the control varables) or via a penalty approach (for y and
functional limits). The method was very flexible but the penalty function and gradient step
mechanisms required careful tuning.

OPF algorithms based on the Generalized Reduced Gradient (GRG) method were
proposed both by Peschon and colleagues [Peschon et al, 1971] and Carpentier
[Carpentier, 1973]. In Peschon's approach, penalty functions were used for the inequalities
only in the beginning (to force the initial solution into a feasible region). Thereafter,
whenever a functional quantity violated a limit, it entered the set u as a control variable
at its limit. In exchange, by linear sensitivity analysis, an existing member of u, that could
become a dependent variable y without violating its limits, was taken out of the set u. A
gradient step was then taken in the new u and a load flow was solved, like in the
Dommel-Tinney approach. Because of these exchanges between y and u, the load flow
equations were not the standard ones, which led to modified sparsity solution techniques.
Since the method did not use penalties, it required less tuning than the Dommel-Tinney
approach, but each iteration was more time consuming [Stot et al., 1980].
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Carpentier's methodology also expressed the dependent variables in terms of the
control variables which are then optimized via GRG. However, this approach expressed,
through linear sensitivity analysis, the violated and near violated functional inequalities
in terms of u, so that no penalties were used. In this reduced model the cost is minimized

subject to the linearized critical inequalities and to the active power balance equation.

Gradient based methods are still in use nowadays, particularly in algorithms that
are based on sequential optimization of the linearized active and reactive optimal power
flows followed by a load flow solution. Lee and colleagues [Lee et al., 1988)] used a
gradient projection method to solve a linearized decoupled OPF where both active and
reactive subproblems minimized the cost of active generation. In the reactive subproblem,
the reactive generations were expressed in terms of the active ones, with the cost
coefficients modified accordingly. The same sequential optimization strategy was used by
Salgado and colleagues [Salgado et al., 1990], with the difference that the objective
function of the reactive subproblem was the transmission losses or minimal deviation of
reactive generation. Both papers did not report any special care to perform the reactive
optimization, but no line limits were considered. The reactive subproblem of the
decoupled OPF algorithm implemented at Electricité de France is also solved via a GRG
based approach [Carpentier, 1987 and 1993).

Pcnalty Based Approaches

Another early attempt to solve the OPF problem was based on techniques of
transforming a constrained optimization problem into an unconstrained one: the Penalty
and Barrier methods. These methods were used by Sasson [Sasson et al., 1969], to
transform the OPF into an unconstrained problem and solve it via the Fletcher-Powell
method. The better performance of the Penalty methods led to subsequent studies [Sasson
et al, 1971]. In this last work, penalties were used to represent both equality and
inequality constraints of the OPF problem and the modified unconstrained OPF was
solved via the Newton method. Because of the fine tuning necessary on the penalty
factors, the convergence of the method was long and the reliability not very good.
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Although the experiences with penalty functions were not encouraging, another
approach developed from the idea of transforming constrained problems into
unconstrained ones: the Augmented Lagrangian (AL) method. The first OPF based on this
method was published in 1988 [Santos Jr. et. al.,, 1988], in an application to minimize
active transmission losses. In this work, both equality and inequality constraints are
treated via the Augmented Lagrangian and a Newton solver is applied to the
unconstrained modified problem. Another application of AL to minimize power system
losses was published shortly after [Rehn et al, 1989]. In this work, the dependent
variables of the OPF were expressed in terms of the control variables using the load flow
equations and the optimization, using a quasi-Newton method, was made over an
augmented Lagrangian function that considered only the active inequalities (also expressed
in terms of the control variables). Recently, a variation of the previous approaches was
presented [da Costa and Santos Jr., 1992]. In it, the Lagrangian of the original problem
is "augmented" only by terms corresponding to the inequality constraints (the equalities
are not penalized), and a quadratic approximation of the modified Lagrangian is solved
via the Newton method. The computational time reported in all these works is very short
and the penalty factors associated with the Augmented Lagrangian (the Lagrange
multipliers) are incremented via a dual procedure. Still, some tuning is necessary to assure
convergence, and the difficulties associated with such tuning are not discussed in the

papers.

Linear Programming Based Approaches

Linear programming (LP) applications for the OPF problem were initially used in
real power dispatching. Works like that of Wells {Wells, 1968] were already very
complete, with piecewise-linear objectives and constraints on all variables. Presently, there
are numerous LP-based algorithms for the OPF. This class of methods can be defined by
the following steps [Stott et al, 1980]:

(i)- solve the standard load flow for y in terms of a guess of u;
(ii)- linearize the problem constraints;

(ii1)- minimize the objective function subject to these constraints;
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Generally speaking, the active subproblem is sufficiently linear and therefore very
few iterations will be enough. In some power systems, the reactive power varies almost
linearly with the voltage, but not in others [Stott et al., 1980]. This can lead to difficulties
for convergence. Many publications in linear programming applied to the OPF were
presented between 1970 and 1980 [Huneault and Galiana, 1990], the best known being
those of Stott and colleagues [Stott and Hobson, 1978 (2) and (b)]. In this work, a dual
simplex approach is applied to the compact model of the linear active OPF. In the
beginning, the constraints are relaxed and, as the process develops, only the violated ones
are added to the working set of constraints. The approach proved to be very efficient,
giving very fast and reliable results.

In the late 80's, some key problems in using LP for solving the reactive OPF were
tackled. To control voltage magnitudes, Kirchen [Kirchen and Van Meeteren, 1988]
proposed an ingenious implementation of a sequential LP based OPF that allowed the
addition of voltage constraints to the active subproblem via a sensitivity matrix. This
made possible the correction of voltage constraints violations via the rescheduling of the
active power controls, in case it was not possible to correct all voltage violations in the

reactive subproblem through reactive controls only.

Sequential LP has been extensively used to solve the OPF problem. The package
by PCA corporation [Alsag et al., 1990] is completely based on the decoupling of the
active and reactive OPF and basically uses the same dual approach described previously
by Stott [Stott and Hobson ,1978 (a) and (b)]. The approach is claimed to be suitable for
a on-line environment and is also capable of handling security constraints. The reported
CPU times are extremely low, even for large systems, notwithstanding that, in the cases
reported, very few constraints had to be enforced. ESCA corporation also released a LP
based OPF package, also based on decoupling and a similar dual approach to solve the
reduced model that can include security constraints [Bertram et al., 1990]. Once more, the
results show a very high performance, but no details were given concerning the number
of active inequalities in the case study.
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Another branch of LP based approaches for the linearized OPF is based on
network flow programming technigues. Previous works applied such methods to active
linear OPF only, with the transmission losses represented as bus-loads [ Lee et al., 1981].
Recently, an application to the complete OPF was reported by Rice and colleagues [Rice
et al., 1991]. In this implementation, the active generations are optimally scheduled via
a generalized network flow programming based algorithm and, subsequently, a load flow
calculation handles the reactive part of the problem. In spite of being very efficient to
solve the active subproblem, the reactive OPF still could not be efficiently solved via

network flow programming.

Linear programming is also the basis of geographic decomposition approaches.
Such decomposition is specially useful in reactive power optimization because of the
localized impact of reactive power. In a recent work [Deeb and Shahidehpour, 1990], a
Dantzig-Wolfe decomposition method is used with such intent. The network is divided
into areas of influence of specific reactive controls. A LP problem is formulated
considering only constraints related to a specific area and a "master problem" is used to
model the linking constraints of all areas. The solution is done in two levels: first, the
optimization of each area's controls is carried out separately; then, the results of each
subproblem are passed to the master problem that makes the necessary adjustments to the
controls in order to meet linking constraints and send back new initial solutions for the

subproblems.

In the solution of an OPF with security constraints, general decomposition
approaches offer the possibility of separation the security-constrained problem into
subproblems, each of them defined for a specific contingency under study. The first
application of such methods to the complete secure OPF was based on a Benders
decomposition scheme [Monticelli et al., 1987]. Each subproblem was solved separately
and provided new constraints to the master problem, so that the final solution respected
the corresponding contingency. The modelling also considered the system corrective
capabilities after the outage occurred. A more recent methodology to solve the security-
constrained reactive OPF, with corrective actions, was also based on a decomposition
approach [Terra and Short, 1991). First of all, some pre-specified contingencies were
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evaluated and the sensitiviies of the control variables to those contingencies were
calculated. Then, a non-linear subproblem is defined for each contingency, considering
only the control devices most effective in eliminating any violation related to that

contingency. The subproblems are solved separately via a reduced-gradient approach and
coordinated by a linear master problem.

LP based algorithms have also been used to solve OPF fuzzy models. Fuzzy
variables were introduced in the OPF very recently. Miranda [Miranda and Saraiva, 1992]
used the formulation on a DC optimal power flow by considering the system active load
as fuzzy variables. Applications to the reactive power problem were presented later
considering the voltage limits as fuzzy quantities [Tomsovic, 1992 and Abdul-Rahman and
Shahidehpour, 1993]. Fuzzy modelling is a very new approach and no study has been
made to assess its impact and potential contribution to the problem of optimal power
system operation.

Quadratic Programming Based Approaches

Another class of algorithms for the OPF can be characterized by the use of
Quadratic Programming (QP) techniques. Here we will define as a QP based approach
every method used to solve linearized quadratic OPF models, or to solve quadratic
approximations of the Lagrangian of the non-linear OPF. This includes the sequential
quadratic programming (SQP) and Newton methods.

An early attempt to directly solve the first order optimality condition equations -
the Kuhn-Tucker (KT) conditions - for the OPF was made by Peschon [Peschon et al.,
1969]. The authors applied a Newton-Raphson solver to the KT equations of the reactive
subproblem and used some rules to define the variables fixed at the limits. The same idea
of solving the KT equations simultaneously is, nowadays, the basis of some of the most
successful approaches to the OPF problem. There are numerous implementations of this
kind [Huneault and Galiana, 1990). Among all the different programs used, it is the
General Electric package [ Burchett et al., 1984 and 1988], the ESCA package [Sun et
al., 1984] and a utility developed software [Maria and Findlay, 1987). .
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The program made by Sun and colleagues was the first implementation of a QP
based algorithm powerful enough to be used in real systems. The authors directly solved
a quadratic approximation of the Lagrangian of the OPF via a Newton method. The KT
conditions were solved, for all the unknowns, considering only the set of equality and
active inequality constraints. Techniques were used to improve convergence
characteristics. the size of the hessian was kept constant throughout the process by the use
of dummy elements to compensate for changes in the active set, special storage and
factorization of the hessian was used to preserve sparsity and penalty terms corresponding
to variable at limits were added to the objective functicn. Functional inequalities of VAR
dispatchable scurces were introduced to the feasible set when violated and other
functional inequalities were treated with penaltiles. The computational times were very
good, but, in spite of all the progress achieved, the identification of the correct optimal
feasible set was not systematic.

The program developed by Gamal Maria and colleagues, also used a Newton
solver with a active set strategy for the KT conditions of the OPF problem. The main
difference between this implementation and the ESCA package was the use of linear
predictions to define the binding inequalities at a certain iteration. After a possible
violation is identified by linear prediction, a LP algorithm calculates the increments in all
decision variables and Lagrange multipliers due to the introduction of this new inequality
in the active set, The possible violated inequalities are tested with the same procedure
until the correct set is identified.

Burchett and colleagues took a different approach to solve the KT conditions.
Instead of directly solving the system of equations, an equivalent quadratic optimization
problem (with linear constraints) is solved. The methodology, known as SQP, was
composed of two loops. The outer loop linearized the KT system, setting up the quadratic
subproblem that would be minimized in the inner loop. After the solution of the inner
loop was found, all variables were updated and the KT equations were checked. If the
resulting errors were bigger than a specified tolerance, new linearizations would be
performed and the program returned to the inner loop. This initial implementation was

later extended to the secure-OPF using a decomposition approach, Each quadratic
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subproblem was decomposed in a master (quadratic) and slaves (linear) problems, each
of the latter defined for one contingency. The master problem was solved via a QP
method while the slaves were solved via LP techniques.

In the last five years, a great number of OPF implementations were based in
quadratic programming. Newton based algorithms were used in studies carried out by
utilities and universities. Sun [Sun et al., 1988] discussed the implementation of the ESCA
package in a real transmission system to optimize the reactive power scheduling, also
presenting a criterion to detect infeasibilities based on the value of the Lagrange
multipliers. The Newton method is also the basis of an algorithm for optimal voltage and
reactive control proposed by Bjelogrli¢ and colleagues [Bjelogrli¢ et al., 1990)]. Here, once
more, the network is divided into control zones each with a reduced set of control
variables, chosen according to their influence on the bus voltage magnitudes of a specific
zone. A suboptimal power flow is defined by using the reduced set of controls and
constraints related only to that zone. The objective function used is composed of a term

which represents transmission losses and another term to guarantee reactive power

reserves.

Many SQP-based strategies were proposed. Lu and colleagues [Lu et al., 1988)
proposed a methodology to incorporate HVDC equations in a SQP based optimal power
flow algorithm. Nanda and colleagues [Nanda et al., 1989] linearized and decoupled the
OPF to solve it via Fletcher's quadratic programming method. The method was compared
with an algorithm based on Beale's method and a L? based algorithm adapted to quadratic
programming, showing better performance, both in terms of computational speed and
memory requirements, Chang [Chang et al., 1990] separated the OPF problem into two
distinct modes. They suggested the utilization of a LP based OPF for fast corrective
generation rescheduling and treatment of infeasibility, together with a SPQ-based strategy

to minimize transmission losses, in case of no limit violations.

Some deficiencies and pitfalls of the Newton approach were discussed in an
interesting paper by Monticelli and Liu [Monticelli and Liu, 1992]. The paper addresses
some cases of non-convergence of the Newton method due to the temporary ill-
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conditioning of the hessian of the Lagrangian, The "adaptative movement penalty method"
proposed by the authors was conceived with the purpose of guaranteeing well-
conditioning of the hessian matrix during the factorizations existing on a Newton iteration.
The method does not affect the convergence of the algorithm and no tuning is necessary
to assure positive definiteness due to ill-conditioning, but the problem of loss of positive-
definiteness due solely to changes in the active set is not addressed.

Other improvements on the original Newton algorithm have been proposed. Hong
[Hong, 1992] discussed some factorization strategies of the hessian matrix to improve the
CPU time and suggested schemes to avoid ill-conditioning and heuristics to treat
inequalities. Also, Crisan {Crisan and Mohtadi, 1992] presented a method for enforcement
of the inequality constraints based on the sensiti~ity of the Lagrangian to changes in OPF

the variables.

Multiobjective Approaches

It is also possible to find multi-objective models for the problem of optimal control
of a generation-transmission system. In reality, trade-offs between different objectives,
such as economic operation, reliability, security and minimal impact on environment, can
be impossible. The usual approach taken by the researchers is to assign distinct weights
to each objective, allowing for relative importance among goals. However, sometimes
different objectives cannot be evaluated under a common measure. With this in mind,
some authors have applied multiobjective optimization techniques to solve the OPF.
Yokoyama [Yokoyama et al., 1988] used the e-constrained technique to obtain the set of
non-inferior solutions of a OPF problem, whose objective functions were the generation
cost, the environmental impact and a penalty for line overload. After the set of non-
inferior solutions was found, the optimal solution of the problem was selected using a
preference index which reflected the static system security. Another interesting application
was proposed by Fouad [Fouad and Jianzhong, 1993]. The optimal rescheduling of power
generation was formulated as a multiobjective problem, taking into consideration also
stability constraints, represented via the transient energy function. The solution strategy
incorporated Goal Programming techniques and a knowledge base.



BACKGROUND 29

Interior Point Methods

Interior point methods based OPF algorithms have appeared in the literature
recently. Granvile [Granvile, 1993] used such approach to solve the reactive power
dispatch and Wu [Wu et al., 1993] applied it to the general problem. In both works, the
OPF was transformed into a equality constrained problem by the introduction of slack
variables in the inequalities and the addition of logarithmic barrier functions on the
objective function to guarantee their non-negativity. The authors proposed a pure and a
predictor-corrector primal-dual interior point algorithm. Both methods had performances
that can be compared to LP-based OPF methods in terms of computational speed.

Parallel Implementation

In the search for computational speed, there are also attempts to solve the OPF in
parallel processors. An interesting formulation for the secure-OPF suitable for such
implementation was presented by Talukdar [Talukdar and Ramesh, 1993]. In this
formulation, a contingency is represented by a correction time and a constraint relating
all correction times is introduced in the model. The overall problem is decomposed into
a set of smaller subproblems - each of them related to one contingency - and these

subproblems are solved in parallel.
Discrete Controls Representation

Some of the controls available to optimize a transmission system operation are
better represented by discrete variables. To consider these controls as such in a OPF
implementation would increase considerably the complexity of the problem. For this
reason, researchers have been concentrating in finding approximate representation for
these discrete controls. One of these controls, is the switching operation, i.e., changes in
the network topology to improve the system state. Some authors have proposed
approaches to incorporate corrective switching actions on the OPF, mainly to meet
security constraints. Schnyder and Glavitsch [Schnyder and Glavitsch., 1988 and 1990]
treated switching actions as contingencies in the network and represented them by current
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injections applied to the original system. Carpentier [Carpentier, 1993] also proposed the
replacement of branch switching by equivalent dummy injections. In his work, he also
suggested a Branch and Bound process to find the optimal solution of the OPF

incorporating switching actions.

Most of the work done in OPF considers the shunt capacitors and inductors as
continuous variables, what can cause discrepancies in the final solutions. Linear
programming based methods permit recognition of control discreteness, however,
nonlinear programming methods do not model discrete controls properly. An approach to
treat these discrete controls on a nonlinear OPF was introduced by Liu [Liu et al., 1992]
in their penalty based discretization algorithm. In it, a quadratic penalty function is
associated to every discrete variable (which is modelled as continuous) and some rules
are used to correctly apply these penalties. The results are very close to those obtained
by an OPF where all controls are treated as continuous, but the tuning of the penalties
seems difficult.

Miscellaneous

Some deficiencies in the current OPF implementation were discussed in an paper
by Tinney and colleagues [Tinney et al., 1988]. The authors highlighted the importance
of correctly modelling the external network and the discrete OPF variables, and discussed
methods to reduce the number of control actions in OPF applications. The importance of
correctly representing discrete variables was also studied by Papalexopoulos
[Papalexopoulos et al., 1989]. This paper showed, through extensive numerical testing
with a SQP based OPF algorithm, the closeness of coupled and decoupled OPF solutions,
the robustness of the method with respect to different starting points and the negligible
effects of discretization of transformer tap settings.

The effects of load modelling in OPF and secure-OPF implementations were
discussed by Dias [Dias and El-Hawary, 1989 and 1991]. The OPF without security
constraints but including load modelling was found, in some cases, to give unrealistic
results for generation cost minimization due to the tendency of decreasing the bus voltage
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magnitudes to decrease power consumption, thus reducing the final cost. According to the
authors, the secure-OPF solution did not present such characteristic if the load models
were included during contingencies only.

The probabilistic and deterministic modelling of the OPF problem were also
studied with Newton based implementations to minimize generation cost [El-Hawary and
Mbamalu, 1991]. The probabilistic OPF results were compared with a probabilistic
solution based on the use of four different deterministic OPF results plus one OPF
solution for the mean loading condition of the system. The results of the probabilistic

OPF were found to be more accurate, but the differences between the two models were
not significant.

Industry Implementations

Many utilities have implemented OPF algorithms in their EMS centres. Various
studies with this tool have been reported, with emphasis either on the final results of such

an application or the problems associated with its implementation.

Before implementing its own OPF algorithm, Ontario Hydro conducted a study on
the potential savings that such a tool would provide. The results showed that up to $ 2.5
million per year could be saved if a OPF was used in operation control [Maria and
Findlay, 1987]. Following the policy of using the OPF in operation, a later publication
reported the optimization of fixed tap transformer settings the Newton based OPF
[Kellermann et al., 1991]. In this work, the OPF algorithm was applied to a fictitious
system composed by subsystems defined at different load scenarios, and the optimal tap
setting were calculated for the resulting model. The approach zan be extended to all
control variables whose settings are required to be valid and optimal for an extended

period of time, but, due to the size of the resulting problem, the number of different
scenarios is very limited.

Through the optimization of transformer tap settings and capacitor allocation, made
by the GE OPF package, Bridenbaugh and colleagues [Bridenbaugh et al., 1992]
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researched the minimization of the transmission losses and improvement of the voltage
regulation between light load and peak load periods of the Qhio Edison utility. The
optimization of the transformer tap settings and capacitors was performed by an iterative
process. The former were optimized for light load conditions; after a tentative transformer
tap schedule had been established, the optimal capacitor bank allocation was determined
for the peak-load model. The authors reported, as a result, annual reductions of 34.5% on
the reactive power imports, of 1.3% on the active power losses and of 4.3% for the

reactive power losses.

German utilities also have reported the improvements gained by the utilization of
OPF algorithms in operation. Through the use of a SQP based OPF to minimize active
losses considering only reactive controls, Denzel and colleagues [Denzel et al., 1988]
could reduce the network active losses by up to 5%, improving also the system voltage
profile. Also VEW reported savings of 3 to 6% of the annual power system losses
associated with an improvement of the voltage profile [Heinz et al., 1992].

Problems concerning the introduction of an OPF algorithm on EMS centres were
studied by several authors. Vaahedi [Vaahedi and Zein El-Din, 1989], discussed the
influence of load models on a OPF and studied some dynamic security implications of
applying the package in on-line operation. Heinz [Heinz et al., 1992] studied the problem
of voltage reduction at light-load periods of operation due to the use of an OPF package,
proposing strategies for the use of the algorithm. In a recent publication Hong [Hong,
1993] analyses different strategies to apply the corrective control actions, given by an
OPF algorithm, to alleviate VAR violations. Also, a cost/benefit analysis of the on-line
use of an OPF was presented for an application to minimize production cost, considering
only active power controls [Papalexopoulos et al., 1993].

As could be seen in the literature review, the techniques to solve the optimal
power flow probiem have been continuously developing and branching out into different
directions. Among the approaches suitable for on-line OPF implementations are those
using parametric optimization approaches. These optimization strategies, in reality, belong
to class of methods that are based on the idea of solving a mathematical problem by a
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smart manipulation of its parameters: parametric methods. In the next section, we will
give a general idea of such methods and discuss previous works in power systems
analysis based on them,

2.4 Parametric Methods

2.4.1 Basic Concepts

Many physical systems are operated under restrictions that can be formulated as
a finite number of equality and inequality constraints. A common feature of these systems
is that they have two different sets of variables. One is composed of the parameters,
which normally cannot be directly controlied (e.g., the power system load, variable limits,
line resistances and reactances, etc). When the parameters of a physical system are fixed,
they partially or completely determine the behaviour of the other set of variables: the
decision variables (e.g., the voltage magnitudes). It can be of great interest to determine
the behaviour of a set of decision variables with respect to parameter variations {e.g., the
behaviour of voltage magnitudes as the load varies), or it might be possible that, by
conveniently introducing parameters in a complicated mathematical model and varying
them, we are able to transform the original problem into a simpler one, solve it, and by
returning progressively the parameters to their original values, "track” the initial solution
until the solution of the original problem. Parametric methods were conceived with the
purpose of tracking solutions of problems that are "embedded" into a broader class of

problems by the use of parameters.

A straightforward application of the concept of parameterization is in the solution
of nonlinear equations [Garcia and Zangwill, 1981]. These equations are "parameterized”
in a way that, when the introduced parameter € is equal to zero, they are easily
resolvable, and at £ equal to one, they become the original equation. After the initial
equation is solved, the parameter is incremented until 1 and the solution path (that is now
a function of the parameter) is tracked until the final solution.
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The following example, taken from [Garcia and Zangwill, 1981], illustrates the

process:
Example 2.1

Suppose we want to solve the nonlinear system

(%, - 3(x,f +8x +3x, -36=0

(2.14)
xP +x+4=0
If we take, as our initial system of equations,
3 =
(%) +8x +3x,=0 (2.15)

% =0
The only solution is (x,°, x,%)= (0,0).

Using the parameter €, we construct a system that yields the original system for
£=1 and system (2.15) for £=0:

(x,)? + 8x, + 3x, - €[3(x,)* + 361 =0

(2.16)
x +e[(x)+4]1=0
The solution of (2.16) is a function of &:
x,(€) = 6¢ @2.17)

x,(€) = ~ 36€° - 4e

The point (x,(g), x,(€)) describes a path as ¢ increases from 0 to 1. Following this
path leads us directly to the solution (x,(1), x.(1))=(6,-40).
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Equation (2.16) is called homotopy function , HO(g), and the methods used to

track as the parameter varies are called homotopy, path-following or continuation
methods.

In general, suppose that F(x): R™ — R™ and nonlinear. Using the homotopy process,
we want to solve

F(x) =0 (2.18)

First of all, it is necessary to set up a simple system, for which we have a solution

E(x) = 0 (2.19)

Then, we define a homotopy function HO(x,e): R™*' — %™, which has the original
nv variables plus €. HO must be constructed so that

HO(x,0) = E(x) (2.20)
HO(x,1) = F(x)

Following the solutions x(g) of HO(x,g) from €=0 to =1, we find the solution
of the original problem (2.18).

In the same way that it is possible to track the solution path of a system of
equations, it is also possible to follow the solution of an optimization problem. Generally
speaking, parametric optimization deals with the characterization of the optimal decision
variables for a range of parameter variations. The potential of parametric approaches in
nonlinear optimization is broad. In addition to their ability to track optimal solutions as
some of the parameters of the problem change, parametric approaches can also find
applications in transforming complicated optimization problems into convex ones and to

derive globally convergent algorithms for non-convex problems. Also, they can be used
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in global optimization or to provide means of improving the optimal solutions of specific
systems by proposing variations to the parameters of the model [Guddat et al., 1990 and
Zlobec, 1985].

The optimal solution of a minimization problem (P), whose feasible set fulfils
some general properties ( the constraint qualifications), must satisfy the set of first order
optimality conditions for optimality. The opposite is not always true: the solution of this
set of equations must also satisfy the so-called sufficient conditions for optimality in order
to be an optimal solution of (P) [Luenberger, 1984)]. Nevertheless, if we want to verify
the behaviour of the optimal solution of (P) as some of its parameters change, we can
track the solutions of the set of necessary optimality conditions, provided that these are
tested for the sufficient conditions for optimality as well. This idea is the basis of some
of the parametric optimization methods. The following example illustrates the potential

of such approach in the optimal control of power systems.

E/S V[0
:. xl= 0.1 pu ; .
Pg +j- q8 pd +j. qd

Figure 2.1- Test system.

Example 2.2

We want to study the behaviour of the optimal bus voltages of the system of
Figure 2.1 as the system load ( pd + j.qd ) varies with time.
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Suppose that pd= £.Apd and qd= £.Aqd; i.e.,, pd and qd vary with time, starting
from zero, and increasing until Apd and Aqd as € varies from 0 to 1. Thus, pd=pd(g) and
qd=qd(e). The OPF problem for the system of Figure (2.1) is defined as

Min %[(V - 1) + (E - 1¥] (2:21)
subject to
EVsin(d) _ pice) (2.22)
xl
-V? 4 EIVCOS(ﬁ) = gd(e) (2.23)
X

The Lagrangian of the problem ( which is a function of the parameter € ) can be
written as

L(V,E N1 ) = %(V S+ %(E 1y

(2.24)

. 2 _

+ 2 [pdce) - VEsin(d) + A | qd(e) + Ve-VEcos(d)
P xl 1 xl
Therefore, the Lagrangian conditions are:

og _ VEcos(&) VEsin(8&) _
AP P b oid S/ ALl b 2,25
T I A R I (229
og _ _ _ o« Esin(8) 2V - Ecos(8) _ 2.26
= = (-1 -a, =) e 0 (226)
£=(5-1)-1M_1M=0 (2.27)

OE 2 xl T xl
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oL _ _ Evsin(d)

a2, pa(e) %) 0
og _ _ -V? + EVeos(3) _
61‘1 gd(e) g 0

From (2.28) and (2.29), we have

[pd(e)xl}* | [gd(e)xl + V2]* _ . _
&) + &) = gin?(8) + cos?(d) = 1

Which will give

1
Ve (_2qd(€)xl + g2« VE - 4ql(uE” - apd(eV P ]‘5
2

Also,

- «in-1f PA(e)x]
o sm( EV]

Solving equations (2.26) and (2.27) for A, and A, we have:

g =1 V-V - qd(e)xl(E - E?)
P 2pd(e) V2

xl

V* - V3 - gd(e)xl(V + E* - E)

V2

A, = E*-E-qd(e)xl -
y 2(qd(e)xt+1ﬂ)[ e

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

+ gd(e)xl + E* - E] (2.33)

] (234)

Now, using (2.28), we can express A, and A, in terms of E, x, pd(€) and qd(g).
If we substitute the modified expressions of the A, and A, into (2.25), we will end up with
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. two sets of non-linear equations in terms of E, pd(g) and qd(g); each one defined for one
solution of (2.31):

1
E® - 2qd(e)xlE + (3E - 2)[E* - 4qd(e)xlE® - 4pd(e)*xl?]?
(2.35)

1
- 28 -2qd(e)st + B + VEL < AQHQUETApd(T” |2 _ g

When £=0, the (relaxed) problem above has a trivial solution: V=1 p.u, E=1 p.u.
and &= 0.

As € is varied from 0 to 1 (i. e, the pd and qd vary from 0 to Apd and Aqd ),
equation (2.35) can be solved numerically, giving two solutions E(g), only one of these
satisfying the sufficient conditions for optimality. Substituting the values of E(g) in (2.31)
and (2.32) we have the expression of V(g) and 8(g). Finally, the expressions of A (€) and
A,(g) can be obtained by substituting the values of E(e) and V(g} in (2.33) and (2.34).

. As a result, for specified Apd and Aqd, we obtain the solution trajectories of the voltages
of the system represented in Figure (2.1) as ¢ is varied from 0 to 1. Figure 2.2 depicts
the optimal values of E and V as the system load increases from pd=0 and qd=0 until
pd=0.8 p.u. and qd=0.1 p.u.. It is interesting to note that, as the load increases, the voltage
magnitude at the generator bus increases and the voltage magnitude at the load bus
decreases. If there was a maximum limit for E, for pd greater than 0.62 p.u,, E would be

fixed and, as consequence, V would drop much faster.

In the example above, the system of KT equations (2.25)-{2.29) is the homotopy
function HO(V ,E,pg,qg,A,,A &) that connects the minimization problem defined for pd=0
and qd=0 with the problem defined for pd=0.8 and qd=0.1. As the system load was

increased, we followed this homotopy function to obtain the optimal solution paths of E
and V.

Although the idea of tracking the solution is quite simple, the existence of a path,

. defined here as a piecewise differentiable curve in space, is not always guaranteed. To
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Figure 2.2- Optimal trajectories.

assure the existence of a path, the jacobian of the homotopy function of each example
must satisfy a set of conditions for all € € [0,1]. The solution of optimization problems
can be specially complicated when inequality constraints exist in the model (as they exist
in the OPF). For such problems, the behaviour of the active feasible set is of special
importance, since there are situations were even a very small change in the parameter can

produce a "collapse" of this set, interrupting the solution process.

In this thesis we will work with a OPF model in which all individual data involved
depend only on one parameter. The tool that we use for a solution algorithm is a path-
following method. Since the behaviour of such methods depends heavily on the structure
of the set of all local minimizers of the parametric problem, the concepts of stability of
a feasible set and of degeneracies (here called critical points) will be important throughout
the development of the theoretical basis of the approach. Although there is a considerably
large literature about parametric optimization, for the theoretical aspects of the problem
we will refer, most of the time, to the book of Guddat and colleagues [Guddat et al.,
1990] and to some additional publications by the same research group.
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2.4.2 Parametric Techniques in Power System Analysis

General Applications

Parametric methods have been used in many studies in power system analysis. As
early as in 1971, a parametric approach was used to generate load flow solution
trajectorier. and to calculate points of singularities in the load flow jacobian [Thomas et
al., 1971). Since then, many different homotopy methods were applied with basically the
same intent: find the voltage collapse point (also called bifurcation point or maximum
loadability point) in the power system steady state operation. In the late 80's, an attempt
to calculate multiple solutions of the load flow equations was based in the so-called
Simplicial Methods [Okumura et al., 1989]. Since then, other related work has been based
on a parameterization of the load flow equations which augments by 1 the dimension of
the system jacobian. During the process, different variables are alternately treated as the
parameter of the problem, which, according to the authors, keeps the load flow jacobian
well conditioned near the point of voltage collapse (contrary to what happens with other
methods based on the pure system jacobian). Among the publications are the works of Iba
[Iba et al.,, 1991], Ajjarapu [Ajjarapu and Christy, 1992) and Caiiizares [Caiiizares and
Alvarado, 1992]. A very recent paper in the area introduced a different type of
parameterization of the load flow equations that preserves the dimension of the jacobian;
only adding some non-zero elements to the original matrix [Jean-Jumeau and Chiang,
1993). Basically, the interesting characteristics of these approaches in the calculation of
the maximum loadability limit is that they are not exhausting cut-and-try processes and

that the numerical difficulties that exist near a system loading limit are overcome.

Parametric Methods in OPF Studies

Parametric optimization techniques have been previously used in studies in OPF,
both as a means of performing sensitivity analysis and of tracking the power system
variables -optimal behaviour. The first work in OPF that used parameter variations was

published in the early 80's [Dillon, 1981]. This work was also a Newton-based
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OPF implementation but, in it, the sensitivities of the optimal solutions to parameter
(load) variations were used to find the changes in the OPF constraints, so that the Newton
solver could be applied together with a feasible set strategy. Since then, several extensions

of the approach have been proposed.

Aoki [Aoki and Satoh, 1982] published a work in ED with security constraints
using a model where the transmission losses were represented as a quadratic function of
the real power, added to the objective function of the problem as a penalty, and the
associated Lagrange multiplier was treated as a parameter. A parametric quadratic
programming method was applied to solve the modified problem. Later, Carpentier
[Carpentier, 1983] presented some results of another application of parametric quadratic
programming to the real power dispatch. In his model, however, the system load was
treated as a parameter and the optimal solution was found for a range of load variations.
Later, the method was applied in a solution strategy for the full OPF [Carpentier, 1987].
At the same ﬁme, Blanchon [Blanchon et al., 1983] also applied the same technique to
find the point of voltage collapse in a reactive power dispatch. Parametric optimization
methods were also used by a group from the Italian power utility ENEL to solve the real
power dispatch, to solve both linear and quadratic formulations of the real power dispatch
[Innorta et al., 1985 and 1987].

Bacher [Bacher and Van Meeteren, 1988] also reported results on the use of a
parametric quadratic programming technique for real time generation control while Gribik
[Gribik et al., 1990] described a parametric OPF formulation to perform sensitivity
analysis of the system losses with respect to the load. Finally, the concept of
parameterization was used by Venkatesh [Venkatesh et al, 1992] to calculate the

sensitivities of OPF solutions with respect to variable limits.

At McGill University, research in parametric optimization applied to the problem
of optimal system operation was first done by Vojdani [Fahmideh-Vojdani and Galiana,
1983]. In this first application, the continuation method was used to track the optimal
solution of the linearized OPF throughout an entire interval of variation. Later, Galiana
[Galiana et al., 1983] proposed a parametric technique for the OPF based on a varying
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limits strategy. In Ponrajah's work [Ponrajah and Galiana, 1989], this varying limits
strategy, together with the restart homotopy continuation algorithm, was applied to the
economic dispatch problem where the losses were treated as a non-linear function of the
control variables. More recently, Huneault [Huneault and Galiana, 1991] suggested a
successive linearization solution for the full OPF problem where each linearized
subproblem is solved by a continuation method that considered the load and the variables'
limits as parameters. An extension and generalization of these previous works was
presented in the past year [ Almeida et al., 1993, (a) and (b)]. In these results, a general
parametric model was examined considering the full non-linear load flow equations and
inequalities and an arbitrary objective function. The present thesis details the investigation
summarized by these two publications.

2.5 Motivation for Thesis Research

The present thesis is an extension and generalization of previous studies in OPF
done at McGill University. The first of these works used the continuation method to
follow the solution of the ED vvith network constraints as the system load varied with
time [Fahmideh-Vojdani, 1982]. In it, the only variable considered as a parameter was the
system load, an initial solution for the problem was found for a constant load, whose level
did not affect any of the variable limits existing in the model (i.e., generation and line
limits). Subsequently, the load (parameter) was varied and the initial optimal solution was
tracked unti! the feasibility limit was reached.

As an extension of this first work, the thesis of Ponrajah [Ponrajah, 1987] applied
the continuation method to an economic dispatch problem with network constraints
represented by the full load flow equations, Initially, both the functional and the variable
limits were relaxed through the parameterization of their limits, so that an initial optimal
solution is easily found for the ED. Subsequently, these limits were progressively returned
to their initial values and the initial solution was tracked until the optimal solution of the
original probiem using the restart homotopy continuation method.
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Finally, in a later work, Huneault [Huneauit, 1988] solved a parameterized OPF,
with a quadratic objective function (the generation cost), via a mix of SQP and
continuation method. For a specified load level, the OPF was first of all linearized. The
inequalities of the linear subproblem were then relaxed through the parameterization of
their limits. As the limits were returned to their original values, the initial solution was
tracked until the final solution of the linear subproblem. If the solution of the linear
subproblem satisfied the non-linear constraints of the original problem, the final solution
was found; if not, a new linearization was made at this point and the process was
repeated. After the OPF was solved for the initial load level, the load was varied and the
whole process repeated.

The research developed thus far conceming the application of parametric methods
to the OPF has been restricted to some specific formulations of the general problem. From
the literature review, it is easy to see that most of the applications were restricted to the
active linearized OPF. Even in the cases where the non-linear network constraints were
considered, either only the active OPF was solved [Carpentier, 1987], or the solution
procedure was made specific to solve one of the OPF tasks (that is, minimize the
generation cost) [Ponrajah, 1987], or even the approach was based in successive
linearizations of the original problem [Huneault, 1988]. The full nonlinear problem, with
a general objective function, was never solved directly, i.e., without linearizations. This
is the objective of the present thesis.

In this work, we parameterize a complete OPF problem where all the variables are
treated as continuous, considering both functional inequalities and beunds on the problem
variables. The non-linear parameterized problem is solved by Newton method (i.e, the
problem is solved directly, without applying the strategy of successive linearizations used
by Huneault). The choice for direct solution was motivated by the fact that successive
linearizations can lead to intermediate subproblems whose solution is very far from the
region defined by the original non-linear constraints, compromising the performance of
the algorithm,

Four important factors were considered in the choice of the parametric method:
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(-

(i))-

(iii)-

Many different approaches have been used to solve the OPF, some of them being
very successful in terms of computational speed. Nevertheless, the non-linear
methodologies used so far rely either on penalty factors or on heuristics to define
the optimal feasible set. Parametric methods provide a way of systematically
conirolling the changes in the active set throughout the optimization process.

The treatment of the system load as a parameter allows very fast sclution of the
OPF problem for varying load. In addition, the parametric algorithm is capable of
exactly tracking the load curve. These two characteristics make such approach
very suitable for on-line use.

Parametric methods are powerful tools for analysis of mathematical models.
Although many algorithms have been successful in solving the OPF problem, most
of the times it is very difficult to determine causes for non-convergence of the
algorithms (i.e., to distinguish between infeasible and feasible cases when an
optimal solution cannot be found). Parametric approaches give us valuable
information about weak points and bottlenecks of a power system. This
characteristic is particularly useful in planning studies, not only because parametric
methods show very clearly the evolution of all variables as the system load is
varied, but also can provide the trajectories of these quantities as any parameter
of the system varies.

As it was previously discussed, the OPF is a important tool for power system
operation. It is a more general model than the classical load flow because, in
principle, no control is considered fixed. It is, thus, of great interest to observe the
behaviour of the OPF variables as some parameters of the system varies because
this can give us a valuable insight about the main problems for its operation. A
parametric method allows a very good understanding of the generation-
transmission system optimal behaviour.

In the next chapter we will introduce the parametric OPF model and discuss in

more detail the theoretic aspects of the implementation.



CHAPTER 3

THEORETICAL BASIS OF THE PARAMETRIC
OPTIMAL POWER FLOW

3.1 Introduction

As was shown in the previous chapter, a smart parameterization of a complicated
mathematical problem provides a means for its solution and for analysis of its behaviour
with respect to parameter variations. The use of such an approach to solve the OPF gives
us a very good understanding of the optimal power system operation (see example 2.2)
not possible with other solution methods. The OPF is a complicated problem, and the
application of a parametric technique for its solution highlights ( and explains ) many of
the difficulties that have been encountered by researchers, this being so because the
parametric approach "dismembers" the original OPF into a sequence of simplified
problems that "converges" to the original one. This property will become clearer as the

chapter progresses.

In this chapter, we will introduce a general parametric OPF model (Parametric-
OPF) and examine some theoretical aspects of the methodology. In addition, we will
discuss some problems that are identified when a parametric approach is used to solve the

OPF, emphasizing their relation to optimal power system operation.

46
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3.2 Parameterization of the OPF Problem
3.2.1 Parameters of the OPF

We can consider as parameters every quantity that usually cannot be directly
controlled. In the OPF model, parameters can be found in the objective function, equality
and inequality constraints.

The objective function of the OPF is composed of "costs" which measure the
quality of a solution from the operational as well as economical point of view. Any cost
coefficient associated with the decision variables can be seen as a parameter and thus can
be used as a means of controlling the optimization process. In addition, the shape of the
objective function can be modified through the use of parameters to facilitate the

optimization process; for example by the introduction of some quadratic parameterized
terms (see section 3.2.3).

The equality constraints of the OPF model are also composed of parameters and
decision variables. The most commonly used parameter is the system load which was
considered in several previous applications of parametric methods to OPF (see section
2.3). Also, we can consider as parameters the line reactances, susceptances and
resistances. While the parameter "system load" makes it possibie to track the load
variation throughout an interval of time, the relaxation of some of the line parameters
allows us to represent even topological changes in the system network. As a result, the
parameterization of the equality constraints of the OPF allows us to simulate the optimal
behaviour of a system whose topology and total load varies with time which is consistent
with the day-to-day operation of a generation-transmission system.

Finally, all limits on the decision variables and functional inequalities can also be
considered as parameters. The study of the system optimal behaviour, as some of these
parameters vary, can give us a good idea of the operational cost imposed by such limits
and of their influence on the power system steady state operation.
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In general, thus, the parameterization of the objective function, equality and
inequality constraints of the OPF, not only provides a methodology for the solution of this
problem but offers a means to carry out OPF analysis for a broad range of operational
conditions. These two strong points of parametric approaches are used here in the solution
of the OPF problem for both constant and variable system load. The method of solution
proposed in this thesis is based on the relaxation of parameters appearing in the objective
function, equality and inequality constraints of the OPF. We can subdivide our
methodology into two phases: in Phase I the OPF problem is solved for a specified load
level, subsequently, in Phase II, a load curve is tracked starting from the optimal solution
of Phase I. At the beginning of Phase I, both equalities and inequalities are relaxed ( so
that the feasible set is made as broad as necessary) and the objective function is reshaped
through a smart parameterization. A trivial initial optimal solution can then be found and
tracked until the final optimal solution as the initially relaxed problem is returned to its
original form. Since we start Phase IT of the algorithm at the optimal solution of Phase
I, the parameterization required at this point is a simplification of that used during Phase
1. For this reason, we chose to discuss the theoretic aspects of the methodology for both

parameterized models together.

3.2.2 Parameterized OPF and Optimality Conditions

If we want to solve an optimization problem via any numerical method, the firsi
step is the definition of an initial guess sufficiently close to the solution of the original
problem. This is crucial since, in general, numerical methods have local convergence only.
Parametric techniques can be used to globalize locally convergent algorithms for the
solution of non-linear optimization problems [Guddat et al., 1984].

Our goal in this thesis is to propose an algorithm that, in principle, is able to find
the optimal solution of the OPF problem, starting from any initial solution.

First, let the general parametric OPF problem P(g) be defined as
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Min c(x,€) (3.1)
X
subject to
g (x,€)=0,kekK (3.2)
h(x,e) <0,l€elL (3.3)

where x € R", g € [0,1], ¢, g, and h, are real valued functions, K={ 1, .., m }, m <nv,
and L= {1,...,s}.

The idea is to modify the OPF model so that, at £=0, any initial solution (x°, A%,
1°) is optimal (which implies that it is also feasible). To be an optimal solution, (x°, A°,
n°) must satisfy a certain set of conditions at €=0 discussed below. Since we are
interested in tracking the optimal solution from €=0 until £=1, ideally these conditions
must be satisfied throughout this interval of variation. Unfortunately, this is not always
the case and, as a consequence, the algorithm is not able to arrive at the optimal solution,
The failure of the continuation process can be due to two main reasons: (i) No solution

exists beyond a certain € or (ii) failure of the algorithm to find an optimum even when
one exists.

In the following sections we discuss in more detail the conditions which allow us
to characterize (x°, A% p°) as an optimal solution and to track this initial optimum over
the entire interval of €. In addition, we will pay particular attention to cases where the
continuation process fails.

Constraint Qualifications

Throughout this work, we will characterize the optimal solutions of the Parametric-
OPF using the first order optimality conditions (the Kuhn-Tucker conditions) and the
second order sufficiency conditions [Luenberger, 1984). In the same way that it was done
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in example (2.2), where the necessary optimality conditions were tracked, the
methodology proposed here is based on the tracking of the Kuhn-Tucker conditions as the
parameter ¢ 1s varied from 0 to 1. To be able to track the Kuhn-Tucker conditions, we
impose some additional assumptions, called constraint qualifications [Fiacco, 1983]. Cases
where the tracking process cannot continue, including OPF infeasibility, are often related

to the violation of the constraint qualifications. Some definitions are now introduced.

Let the feasible set of the parametric OPF problem, P(g), be
M(e) = {x e R” | g(x,€) =0, k € K, hy(x,e) s 0,1 €L} (3.4)
Also, for a fixed g, let Ly(x,e) be the set of active inequality constraints. Thus,
L (x,€) = {l € L | h(x,€) = 0} (3.5)

In this study, two constraint qualifications are specially significant:

(1)- the linear independence constraint qualification (LICQ);
(i1)- the Mangasarian-Fromovitz constraint qualification (MFCQ).

The first set is more restrictive than the second set of constraints.

At a point X € M(e), the linear independence constraint qualification (LICQ) is
. . 0g; oh, .
said to hold if the vectors -Ex—(x,e), k e K, and -é-—-(x,e), I € Ly(x,€), are linearly
x

independent.

At x € M(e), the Mangasarian-Fromovitz constraint qualification (MFCQ) is
said to hold if
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: )
(i)- the vectors %(x,e), k € K are linearly independent;
X

(11)- there exists a non-zero vector @ € R™ such that

aT
o xe)m =0,kek (36)
ox

il

—a—:'(x,e)w < 0,1 € Ly(x,¢€) 3.7

Note that equation (3.6) implies linear dependence of the columns of —gg(x,e)
x

and therefore does not contradict supposition (i) of MFCQ . The geometrical interpretation
. of MFCQ is that the gradients of the active inequality constraints at x form a pointed

cone (i.e., a cone with an angle smaller than 90° ) and there exists a vector in this cone

that is tangent to the surface formed by the equality constraints. Also, note that every
point that satisfies LICQ also satisfies MFCQ.

The importance of these constraint qualifications will become clearer when we

discuss the tracking process and the possible ways in which it can fail.
Optimality Conditions

Let the Lagrangian function of P(g ) be defined as

L(x,€) = c(x,€) + Y A g(x,€) + Y wihy(x,€) (3.8)
kek leky
. Supposing that, at (x,g) , either LICQ or MFCQ is satisfied. Then, x is the local

optimal solution of P(g), if and only if [Luenberger, 1984],
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{i)- the Kuhn-Tucker equations hold:

dc agk ah;
= A, —= (X, —(x,e) =0 3.9
ax(;v:,e) * k; oy (x,€) + rg,, ki (x,€) (3.9
8 (x,€)=0,kek (3.10)
h(x,€) = 0,1 ¢ L, (3.11)
h(x.e) 0,1l ¢L (3.12)
p, 20 (3.13)

(i1)- the second order sufficient conditions hold ; i.e., the second denivative of the

Lagrangian with respect to x ( the hessian matrix ),

2 * &*h
H(z,¢e) = -a_‘Zg = _a__c.(x,e) + 2 lk_gf(x,e) + 2 p’__’(x’e) (3.14)
dx? kex 2 ox®

ox? ox fer, Ox

is positive definite on the sub-space

el
T-o = {y | "‘a"g(x,e)y = 0, ——I(x,e)y = 0, le L‘(x,e)} (3.15)
ox ox
- where

L(x,e) = {1l € Ly(x,e) | u, > 0} (3.16)
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Under the assumption that at least one of the constraint qualifications holds a
£=0, the first and second order optimality conditions provide sufficient means for making
(=°, A% n°) optimal at £=0. That is, we "optimize" the OPF model for e=0 by forcing the
first and second order optimality conditions to be met at this point. Besides being an
"optimal model" for €=0, our parameterized OPF must become the original OPF problem
at e=1, making it possible to use the principle of homotopy methods for its solution. To
accomplish these objectives, three relatively simple modifications are introduced in the
original OPF, to solve it both for constant and variable load. For the reasons explained
previously, the parameterized models for Phase I and Phase II are somewhat different.

Therefore, the two models are discussed separately in the next sections.

3.2.3 Paramecierized Model for Constant Load - Phase |

Let x° and A° be initial values of x and A, respectively (how to select these initial
values for the Parametric-OPF is described in section 4.3.1). By construction, we define

the parametric optimal power flow (Parametric-OPF) problem as:
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Min c(x,€) (3.17)
x
subject to
gi(x,€) = 8,(x) - (1 -€)g(x*) =0,kek (3.18)
B(x,€) = h{x) - (1 -€)AR 0,1l €L (3.19)
where
c(x,€) = c(x) - (1 - €)eg x + -;-(1 -e)wlx -~ x? (3.20)
¢ = —(x ¥ 2.,, (3.21)
kek
and

Ak =0 if B(x") <0

(3.22)
Ak > B(x%) ¥ h(x%) > 0

It is easy to see that, at €=0, no inequality constraint is active. Therefore, LICQ
(and, consequently, MFCQ) is satisfied if, at x°, the gradients of the equality constraints
are linearly independent. Provided that this condition is met, we can characterize the
optimal solution through equations (3.9)-(3.16). Using these equations we can verify that

the above parameterization achieves four objectives:

(i)- It relaxes the inequality limits according to (3.19) and (3.22) so that, at =0 they
are strictly inactive. This, therefore implies that the corresponding Lagrange
multipliers p’= 0 (See Figure 3.1).
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X1

Figure 3.1 - Relaxation of the feasible set.

(if)- It modifies the equality constraints (by essentially relaxing the load) according
to (3.18), so that, at € =0, the equalities are exactly satisfied (see Figure 3.1).

The Lagrange multipliers associated with the equalities are set to the arbitrary
value A’

(iii)- It translates the cost function by adding a parameterized linear term, so that

the first order optimality conditions (3.9)-(3.13) are satisfied at € =0 (see
Figure 3.2).

(iv)- It adds a quadratic term to the cost function, so that the second order

optimality conditions are met near e =0 for a sufficiently large w (see Figure
3.3).

For a x° that satisfies the constraint qualifications at and near ¢ =0, the second
order optimality conditions are met for a sufficiently large coefficient w (see equation
(3.20)), which makes the hessian matrix diagonally positive dominant, As the
parameter is varied from 0 to 1, the objective function, the equality and inequality
constraints are returned to their original form, so that, at e=1, the parametric
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-
....
-
o

actual obj. function

X: min of actual obj.
function s.t. the
relaxed feasible set.

0 x1

Figure 3.2 - Translation of the objective function.

o(x, €),
P | oz e=0) |
L P et e
----- x*! minimum
of the actual
obj. function.
0 X0 xe x(€)

Figure 3.3- Modification of the objertive function.

problem coincides with the original OPF. Thus, if we are able to track the initial
solution ( made optimal ) until € =1, we solve the original problem. Although the
idea is quite simple, the tracking process requires that some conditions be met
throughout the interval O<e<l1. The difficulties associated with the tracking of the
optimal solution as ¢ is varied from 0 to 1 are discussed in section 3.3.2.
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3.2.4 Parameterized Model for Load Tracking - Phase II

As was discussed in the previous section, the linear and quadratic terms added to
the objective function of the original OPF problem translates and reshapes the objective
function at (x°, A°) so the initial guess becomes optimal, whereas the parameterization of
the equalities and inequalities makes our initial guess feasible. Since the load tracking
process supposes that we already have an optimal solution for the initial load level, the
parameterization of the objective function and of the inequalities is not necessary at the
beginning of the tracking process. However, since we will assume a varizble load, the
parameterization of the power balance equations is still necessary. In this way, the starting
problem (defined for the actual load level) and the goal problem (defined for the next load
level) are related by means of the parameterization of the equality constraints.
Theoret cally, this is the only parameterization needed for load tracking. Nevertheless, the
quadratic term added to the objective function plays an important role in the performance
of a numerical solution algorithm since it makes c(x,&) more convex near £=0. For this

reason, this term is kept in the parameterized model used in Phase II.

Suppose that the vector of load levels, d, for Phase I is d° and suppose that the
next point of the load curve is d*+Ad a d'. Then, the Parametric-OPF for load tracking
between d° and d' can be formulated by,

Min c{x,€) (3.23)
X
subject to
8i(x,d(€)) = 8,(x,d° + eAd) =0, ke K (3.24)

h(x,d(€)) = h(x,d" + eAd) <0, 1 €L (3.25)
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where

c(x,€) =c(x) + (1 - e)%wlx -x°? (3.26)

and where x° is the optimal solution for the initial load level. The weighting factor, w, can

have the same or a different value from the one used in Phase 1.

The parameterization of the equality constraints becomes clearer when we
explicitly represent g,(x,d(g)), k € K, as the power balance equations for the load buses
of the power system (see Appendix A and B). If pd’, and qd°, are the real and reactive
loads at bus k for Phase I, equation (3.24) can be rewritten as;

Pk(x) - (Pdf + eAPdg)
q,(x) - (qdf + €Agd,)

8;(x,d(¢e)) = (3.27)

Therefore, for =0, the power balance equations is satisfied for the demand d°
whereas, at £=1, they are satisfied for the new demand d®+Ad. More importantly, for any
0 (& { 1, these equations are satisfied for the load level d%£Ad, that is, the optimum

is found for the entire load trajectory.

The situation of the inequality constraints is similar. The functional inequalities
representing the power generations are of the same type as (3.27). Other functional
inequalities that do not have the bus loads explicitly represented in their expressions such
as line power flows are not parameterized by €. Note that this is a significant difference
from Phase I, where the line flows have their limits parameterized. In Phase II this is not
required as the flow limits are saﬁsﬁed by the initial conditions. For this reason, it is easy

to see that Phase II is a special case of Phase I.

Thus, the tracking process in Phase II between any d=d° and any d=d’+Ad is
equivalent to a Phase I problem with load equal to d°+Ad but where the initial solution
corresponds to a load level equal to d° and meets all the inequalities.
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Since the parametric models used in the two phases will be based on the tracking

of the optimal trajectory for 0 <e<l1, we will discuss the tracking process for both models
together.

3.3 Tracking the Optimal Trajectory for 0 <e£<1
33.1 Conditions for Continuity of the Trajectories

As was discussed in the previous chapter, parametric methods are based on the
tracking of the solution trajectories defined by the homotopy function, HO(x,g), which
"connects” the initial, relaxed problem with the problem we want to solve.

As g is varied starting from 0, the corresponding optimal solutions form a set of
optimal solution trajectories that must be tracked until g=1. The success or failure of the
parametric method, therefore, depends heavily on the characteristics of the optimal
solution trajectories forined in the interval 0<e<l. More specifically, to be able to apply
a numerical method to follow the solutic. of the KT equations until the optimal solution

of the original problem, we must guarantee that, in the entire interval 0<e<1,

(1)- the KT equations can be used to represent an optimal solution for the
Parametric-OPF. Moreover, the Lagrange multipliers associated with the

equality and inequality constraints are uniquely defined;

(ii)- the solutions of the KT equations satisfy the second order sufficient
conditions for optimality;

(iif)- the trajectories are piecewise continuously differentiable (with respect to

x),

Therefore, suppose that, at some value of €, €, we know the optimum, X , then

for all ¢ in some neighbourhood around € there exists an optimal solution provided that:
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(A)- At the point X, LICQ is satisfied (this guarantees that (i) above is
satisfied [Fiacco, 1983];

(B)- The active inequality constraints remain active;
u(e)>0,1¢lL, (3.28)
(C)- The inactive inequalities are not violated;
h(x(€),€) < 0,1 ¢ L, (3.29)

(D)- The second order sufficient conditions for optimality (equations (3.14)-
(3.16)) are satisfied.

If conditions (A)-(D) are satisfied, then for all ¢ in the neighbourhood of €, the
jacobian of the first order optimality conditions (3.09)-(3.11), that is,

H(z,€) J(x,¢€)

Wz.€) = (3.30)

J(x,€) 0

is non-singular. Where

[ %8¢y |
o™ (x,€) o5
J(x,€) = 31

=9 | o,
| —a?(x’E) .

is the jacobian of the active constraints and where z = [x", A’, p",.]" [Kojima, 1980].
Then, by the Implicit Function Theorem [Garcia and Zangwill, 1981], all points z(g) =
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[x'(e), AT(g), p"Lo(e)]" that satisfy the homotopy function HO(x,g)=0 (defined by
equations (3.09)-(3.11)) are on a single continuously differentiable path through (x,€).

The basic idea of tracking the optimal trajectory is to start with a known optimum
for some ¢ and find the maximum possible increase in € which does not violate any of
the above conditions. If conditions (B) or (C) establish such a maximum, the resulting
point is called a break-point and corresponds to either the release of an active inequality
or the binding of a previously inactive inequality. The tracking process consists of
following the optimal path from one break-point to another until £=1. It is this procedure
which enables the method to systematically identify the final active set. Furthermore, the
active set throughout the path is also determined which has important implications in
understanding when and how constraints become activated or deactivated in terms of the
continuation parameter. These changes in the active set together with the non-linear
characteristic of the Parametric-OPF, can lead, however, to situations where the tracking
process cannot continue to the final solution, These situations are basically characterized
by the violation of conditions (A) or (D) above. In some of the cases where this problem
happens, there is no solution of the OPF beyond the point where the violation occurs. In
other cases, even if there is an optimum, the method fails to find it. In the next section,
we present a systematic discussion of the points of the optimal path where the tracking

process of the optimal trajectory cannot continue. Such points are called critical points.
3.3.2 Critical Points in the Tracking Process

It has been shown that, through a smart parameterization of the OPF problem,
followed by a progressive return of the parameters to their initial values, we may be able
to track any initial estimate of the OPF problem until the optimum. It ¢can be expected,
however that a non-linear problem such as the OPF presents difficulties for its solution
which, when using parametric methods, translate into loss of optimality of the solution
trajectories or into discontinuities of the feasible set. These problems are inherent in the
OPF and some of them were reported previously [Sun et al., 1984; Monticelli and Liu,
1992]. We do not have, at the present, a solution for all the cases where the parametric
method fails to find a solution, but this thesis provides insight into this important and
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difficult aspect which has, up to now, received little attention. We will classify the critical
points into seven different types. The first four types are discussed in detail in [Jongen
et al., 1986, (a) and (b) and Guddat et al., 1990] for a general nonlinear parametric
optimization problem. In addition, Poore and Tiahrt published an extensive study of the
first type of critical points [Poore and Tiahrt, 1987]. The last three types of criticzal points
are more particular to the Parametric-OPF algorithm.

Type 1: Release of an active inequality leads to 2 saddle point

Suppose that at g= €, the solution z of the Kuhn-Tucker equations satisfies the

following properties:
(i)- At X LICQ is satisfied,
(i) Lxe) o

(111)- In (3.09), exactly one of the Lagrange multipliers, ﬁp , vanishes, whereas all

the others (if they exist) p, # 0. Let,
__ h - _ .
ox ox

. e Fh -
- 131 EEay -0, UG =0, 1 e LGR, L+ pt (3

(iv)- The projection of the hessian matrix (equation (3.14)) is non-singular in
(3.32).

(v)- The projection of the hessian matrix is non-singular in (3.33).

(vi)- The derivative of h, with respect to € does not vanish.
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According to (vi), after the critical point, h, will not remain equal to zero, and
therefore can either be released (in case its derivative with respect to € is negative), or
it can be kept at its limits (in case its derivative with respect to € increases). According
to (i), (iv) and (v), the jacobian of the Kuhn-Tucker conditions (equation (3.30)) remains
non-singular both before and after h, is released. Therefore, in the neighbourhood of this
critical point we have three possible situations: (a) the solution of the KT equations
remains optimal after h, is released (that is, H has only positive eigenvalues in (3.33)),
(b) the solution of the KT equations remains optimal after h, is fixed at its limit and (c)
the solution of the KT equations loses optimality (i.e., H has one or more negative
eigenvalues in (3.33)). In the first two cases, although the trajectory is not smooth at this
point [Jongen et al., 1986 (b)], the tracking can proceed normally. In the last situation

however, the optimal solution trajectory stops at (X,€) . Thus, at this point there is at

least one descent direction, 7, for the Parametric-OPF which is associated with the
negative eigenvalue of the projected hessian. If we are able to find such a dirzction, we
can find a local minimizer X for the Parametric-OPF at € (see Figure 3.4). Of course

i # X and we can continue to follow the optimal path through the point (£,€) . This

descent direction can be found by an approach proposed in {Guddat et. al., 1990].

@HH ¢
4

h»{x, ©<0

Figure 3.4- Critical point of type 1.
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Example of type 1 critical point

Critical points of this type are often observed during the load tracking process
when the system load is decreasing because some of the previously active limits on the
system variables have a tendency to be released, thus augmenting the space of
optimization and transforming previous minimum points into saddle points. In addition,
such critical points can also occur during Phase I if we have a system with a great
number of variables. This is the case presented in Figures 3.5.a-c. In this application we
are trying to find the operating point which optimizes generation cost and voltage profile
considering that some of the line series reactances are variable (i.e., supposing that some
FACTS devices exist in the system), ( Figure 3.5.a). At £€=0.286, the reactance of line 55
is released from its minimum limit, according to the sign of its Lagrange multiplier
(Figure 3.5.b). At this point, the minimum eigenvalue of the projected hessian becomes
negative and the solution loses optimality (Figure 3.5.c). It is interesting to observe that,
beyond €=0.286, although the variable was to be released from its limit (because the
associated Lagrange multiplier became positive), the variable violates this limit, showing
that interpretation of the Lagrange multiplier as the sensitivity of the objective function
with respect to changes on the variable limit is not valid after the solution of the KT

equations loses optimality.
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Type 2: Singular projection of the hessian matrix

Now, suppose that at €= €, the solution z of the Kuhn-Tucker equations satisfies

the following conditions:

(i)- At X LICQ is satisfied.
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(ii)}- m=0foralll e Ly (F,E)

(iii)- Exactly one eigenvalue of the projection of the hessian H (equation (3.14))
on the subspace T (equation (3.32)) vanishes.

To study the behaviour of the KT set around €, first of all we must notice that
the derivative of the KT equations (3.09)-(3.11) with respect to € must satisfy, at and near

(.x-l-e-) 3

4 EJ - ﬂ_(i’i L EL (3.34)
de\ 9z oz% \de dzde
which implies from equation (3.30) that,
H(z,€ @ |
i. -= _ _ (z’e) (xse) azg — (3.35)
7e 2€) (z,€)
€ J(E,E) 0 Bzae

Now, by (lii) the matrix W(Zz,€) is singular at this point [Kojima, 1980], thus
dz/de goes to infinity as we approach (X,€). To characterize the curve of optimal

solution near this point we must impose an additional condition (iv) on the second
derivative of the Kuhn-Tucker conditions, that is,

(iv)- The second derivative of the Lagrangian with respect to z and £ does not

vanish. In addition, the third derivative of the Lagrangian with respect to z does not
vanish.

These four conditions ensure that the trajectories can locally be represented by a
parabola and that after the point (X,€) one of the eigenvalues of the projected hessian

becomes negative [Jongen et al., 1986,(a) and (b)]. See also Appendix C.
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Example of type 2 critical point

This situation is illustrated by the 5-bus system represented in Figure 3.6. In this
example we used the parametric approach to optimize the transmission losses of the
system. From Figures 3.7.a-f we notice that, as £ approaches 0.405, the minimum
eigenvalue of the projected hessian approaches O at the same time as the optimal
trajectories of the voltage magnitude and angles, as well as real and reactive power
generations reach a turning point. In this example, we are able to pass through the point
where the minimum eigenvalue vanishes and continue the tracking (i.e., reach an optimal
trajectory that reaches €=1) by jumping to another path. However, in general, it is not
possible to track the solution beyond such a critical point because of ill-conditioning
problems near the turning point. This example illustrates a case where before £=0.405
the solution trajectories of the KT equations were not optimal, whereas after €=0.405 they
became optimal. The opposite situation may also occur (i.e., loss of optimality) and we
must find other means to continue the tracking process along another path, if one exists.

As in the first type of critical point, the resolution of this case is not easy, however

one method proposed in [Guddat et al., 1990] but not tested here uses a descent direction
to search for a local minimizer X for the same €  which lies on another optimal

path. Then, starting at (#,€) the pathfollowing process can be exploited again ( see
Figure 3.8).
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Figure 3.6- Test system.
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Figure 3.7.f - Lagrange Multipliers.




THEORETICAL BASIS OF THE PARAMETRIC OPTIMAL POWER FLOW 70

(xa(€)s€)

!

Figure 3.8- Critical point of type 2.

Type 3: Jacobian of the active set is rank deficient

A point (%,€) of the solution trajectory of the Kuhn-Tucker equations is a
critical point of type 3 if the following conditions are fulfilled:

(i)- The rank of J(X,€) is incomplete and less than nv,

From (i) and (3.31) we see that there exist &, u, k € K, 1 € Ly(x,€), not all

zero such that

agk - ah; -
Ay—(x,€) + p,—(%,€) =0 (3.36)
k;x * ax ggﬂ P ax

(ii)- If the set of active inequalities LO(E,E) is not empty then all corresponding

Lagrange multipliers u > 0.



THEORETICAL BASIS OF THE PARAMETRIC OPTIMAL POWER FLOW 71

Here, as in the previous type of critical points, the matrix W(zZ,€) is singular
[Kojima, 1980]. To characterize the behaviour of the optimal solution trajectory in this

case, we need the following additional suppositions (see Appendix C):

(iii)- The second derivative of the Lagrangian with respect to z and £ does not
vanish. In addition, the third derivative of the Lagrangian with respect to z dces not

vanish,

Since the matrix W(Z,€) is singular at (X,€) as a consequence of (i), at this
point dz/de goes to infinity. By (iii), the parameter € of the optimal solution trajectory
has a (non-degenerate) local maximum and can be represented locally by means of a
parabola (see Figure 3.9). As a consequence of (i) and (ii), the Lagrange multipliers
associated with the active constraints go to infinity as we approach (x,€) [Gauvin, 1977
and Jongen et al., 1986 (b)]). It can also be demonstrated that the "lower" part of the
parabolic trajectory near the critical point (X,€) describes maximum rather than by

minimum points [Jongen et al., 1986 (b)].

As we progress along the optimal solution path toward the critical point, the

objective function c(x,g), can either decrease or increase with €. In case it decreases, it
is possible to compute a point on the "lower" side of the parabola, x_(g), with € (€
but close to €(see Figure 3.9). Then, one can start at x_, () with a descent method to
find 2 new local minimizer for the problem, say, X(e), if it exists. If the objective
function, ¢(x,e), decreases with € along the original path, then £(e) will differ from

X,..() (see Figure 3.9)), that is, we will be assured to lie on a different path. However,

in the case where the objective function increases with €, it is not possible to continue
the tracking beyond € because the feasible set in the neighbourhood becomes empty. In

this last case, therefore, by starting at x_,.(€) with any descent direction method we will
eventually return to x,,;,(€) again [Guddat et al., 1988 and 1990].
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+ ——

Figure 3.9 - Critical point of type 3.

Example of type 3 critical point

During the solution of the parametric OPF, critical points of type 3 are found
mainly during Phase IT ( where the parameter is the system load) for situations where the
system load is increasing. Since, for these cases, the objective function increases as well,
we can conclude that, beyond such critical points, the feasible set becomes empty in the
neighbourhood. As a consequence, a feasible solution, if it exists, will lie in a region of

the feasible set that is distant from the actual operating point.

A critical point of type 3 is illustrated by the same system represented in Figure
3.6 but with a different set of limits (only line flows have limits in this example). In this
application, we want to optimize the generation cost and improve the system voltage
profile. At £=0.985, the transmission limits of lines 1 and 2 are active and it is not
possible to satisfy the load connected to bus 2 even by increasing the voltages at both
ends cf the lines to reduce the transmission losses. It is easy to verify that there is no
feasible solution for this problem because as the two lines feeding bus 2 saturate, the bus
essentially becomes isolated from the network and cannot receive any additional power
to meet its load.
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Unlike the two previous critical situations where loss of optimality was the
underlying cause, this type of critical point is related to cases where there is no solution
for the OPF. It is interesting to notice that such a critical situation is a consequence of the
local structure of the feasible set thus highlighting its close relation to infeasibility. In
fact, one can understand this critical situation as a generalization of load flow infeasibility
[Galiana and Zeng, 1990). In Figures 3.10.a-f, we show the behaviour of the optimal
solution for this case. Note that the Lagrange multipliers associated with the line flows
( Figure 3.10.f ) tend to infinity as we approach €=0.985, contrary to the Lagrange
multipliers represented in Figure 3.7.£.

Voliaje Angies

Figure 3.18.c - Active Generation, Figure 3.10.d - Reactive Generation.
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Figure 3.10.e - Power Flows. Figure 3.10.f - Lagrange Multipliers.

Type 4: Number of active constraints exceeds the number of free variables by one
A point (X,€) is of type 4 if the following conditions hoid:
(1)- m+p = nv+l (i.e., the number of active constraints is equal to the number of
variables plus one). Thus, since m < nv, the total number of active inequality constraints,

p=2.

(ii)- There exist &, m, k € K, 1 € Ly(X,€), not all vanishing such that:

98 - - ok, _ _
A —2k(3, —NEE =0 3.37
e 9T L g &9 .

(iii)- In (3.37), it is assumed that all p, = 0,1 € L (X,€) .
(iv)- The gradients of the equalities and active inequalities are different from zero.

From conditions (i)-(iv) it follows that for every q € L(X,€) the set
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og, . Oh __ -
{Fgf(x,e), —a—f(x,e), kekK, leLyx,e), l#q} is linearly independent. To be able to
X X

proceed with the tracking process, we must find a h,, q € Ly(x,€) , such that, when

deleted from the active set, the new values of 1, > 0,1 € Ly(X,€) , l#q and h <0 (Note

that after deleting h, from the active set, it is not necessary to test the projection of the
hessian since the dimension of x is equal to the number of active inequalities and
equalities). If there is no such inequality function, h,, the feasible set becomes empty
beyond {x,€). To find the correct inequality to delete from the active set a method, such

as the one proposed in Appendix D, can be used.
Example of type 4 critical point

A type 4 critical point occurs in a situation that is similar to the one found in type
3 where part of the network becomes isolated. A typical situation can be seen in an
application from the 5-bus system of Figure 3.6. In this application, the limits on the
generation at bus 1 are tightened whereas the generation limits on buses 3 and 4 are
broadened. Here we set the generation cost for bus 1 much higher than the other
generation costs and we want to find an operating point which minimizes the total
generation cost plus deviations of the voltage profile from normal. At €=0.949, qg,, pg.,
V, and V, are at their maximum values and V, is at the minimum. When qg, reaches its
maximum, the number of active constraints (equals to 13) becomes greater than the
number of variables (equals to 12), thereby reaching a type 4 critical point. Figures
3.11.a-f shew the optimal trajectories for this case. In this example, it was possible to
continue the tracking beyond £=0.949 by releasing pg, from its maximum limit at the
same time that qg, was fixed at the minimum. The occurrence of this critical point can
be explained by the difference that exists between the generation costs of buses 1,2 and
4. Because the cost of generation is much smaller at bus 4, the optimization process will
make pg, generate its maximum permissible amount. However, because of a reactive
problem at bus 3, it is not possible to find an operating point inside the feasible limits of

the problem. Therefore, the progiam is forced to use the more expensive generation of bus
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1. Note in Figures 3.11- b,d and f that the Lagrange multipliers have a discontinuity in
their values across the critical point.
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Figure 3.11.a - Voltage Magnitudes. Figure 3.11.b - Lagrange Multipliers.
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Figure 3.11.c - Active Generation. Figure 3.11.d - Lagrange Multipliers.
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Figure 3.11.e - Reactive Generation. Figure 3.11.f - Lagrange Multipliers.

The last two types of critical points are important in our study because they may
coincide with the feasibility limit of the OPF which in Phase II corresponds to the
maximum loadability limit. The method used here, since it tracks the optimal solution
from one break-point to another (i.e., no multiple changes in the active set are permitted)
is capable to point out clearly where the bottlenecks are situated in the transmission

system by checking for critical poinis of type 3 or 4.

In addition to the critical situations described above, during the tracking process
other conditions may occur that prevent the tracking method from proceeding toward e=1.
Most of these situations can be described as a combination of two of the different types
of critical points discussed previously. Because of their nature, it is difficult to propose
"jumps" to other sets of local minimizers when thes= critical points occur. T' -oughout the
solution of the Parametric-OPF we also encountered some points of this mixed kind.
There are basically 3 different "composed” critical points which, as with types 1 to 4, are
classified here by the type of violation they lead to in conditions (A)-(D) (see page 14):

Type 5: Two or more active inequalities released at the same £

At this type of critical point, (X,€), the following conditions hold:
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(i)- LICQ is satisfied.
(ii)- Ly(x,€) * o

As in type 1, here we have,

(x, )+ Y Ak (x 9+ Yy p,—(x €) = (3.38)

kek leLy

(ii1)- In (3.38) two or more (r) Lagrange multipliers associated with active
inequalities vanish. Assume that p=0, 1=1,...r

(iv)- The second order sufficient conditions for optimality (equations (3.14)-(3.16))
are met.

(v)- The derivatives of the inequality constraints h,, i=1,...,r, with respect to € are

different from zero.

By (iii) we see that, at this critical point, two or more inequality constraints can
be released. Foilowing the release of some combination of these constraints, the projected
hessian may remain positive definite, that is, the critical (x,€) may remain optimal, or
the projected hessian may become indefinite, indicating loss of optimality. If the critical
point loses optimality after the h; are released other combinations may be attempted to
continue the tracking. The problem here, therefore, is to determine which constraints to
release, a combinatorial problem whose solution by trial and error is computationally
expensive. This is specially problematic in OPF since, normally, the constraints being
simultaneously released are of the same type {e.g., limits on reactive sources

geographically close to each other) and the release of one of them is almost certain to
affect the others.
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. Type 6: Two or more inequalities to be fixed at the same €
A critical point (x,€) is of type 6 if the following conditions hold:

(i)- At (x,€) LICQ is satisfied. Hence as for the previous types,

ac,=— agk - ahl -
o3, B, Sze =0 3.39
ax(x R zze;r M ox (x.€) + 1§° & ox (%:¢€) -39)

(i)- In (3.39) p,; ) O foralll € Li(x,€)

(iii)- There exit r inequalities k,(X,€), i & Ly(X,€) simultaneously reaching their

limits.
. (v)- The derivatives of h, i=1,...,r, with respect to € are different from zero.

At this point, unless one or more of the inequalities reaching their limit are fixed,
multiple violations of the optimality condition C ( page 14) will occur for & > €. Thus,
one or more of these inequalities must be fixed. If the new jacobian J (formed by the
previously active constraints plus the new ones) has full rank and no new violations
occur, then (X,€) will remain optimal in a neighbourhood of the critical point. As in

type S, this is a combinatorial problem.

Critical points of type 6 are often followed by critical points of type 5 in the
tracking process. The power system configuration can play an important role in such kinds
of critical points. Figure 3,12 illustrates one such possible situation. At bus 2 of this
system, a synchronous condenser and a static compensator supply reactive power to the
network and they tend to increase or decrease their VAr outputs in unison. Depending on
their operational limits, these components may have to be fixed at the same value of &.

. Even if they are not to be fixed at their limits at the same &, changes in the active set
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may occur throughout the tracking process which force both variables to be released at
the same point. This is the case depicted in Figures 3.13.a-b, where the Lagrange
multipliers associated with a shunt compensator and a synchronous condenser connected
at the same bus reach zero at £=0.88. Other trivial cases would be transmission limits on
parallel lines or generation units connected to the same bus (in applications where
generation cost is not considered). Although sometimes it is possible to resolve these
critical situations by introducing small changes in the limits of the problem data, in
general we must rely on heurnistics to find the correct combination of active constraints

and continue the tracking,

2 synchronous cond.
AN -0

)
—--En-t

i
1)

generator shunt comp.

Figure 3.12- Configuration for critical points of type 5 and 6.
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Type 7: Release of an active inequality leads to a singular projected hessian

This is a special case of Type 2. It is assumed here that at (X,€), the following
conditions hold

(i)- Conditions (i)-(iv) and (vi) of critical points of type 1 are satisfied

(ii)- For all ¥ as defined in (3.33), exactly one eigenvalue of jrg—%(:{ E)F
X

vanishes.

This situation indicates that, at some €, when a n, reaches zero and the
corresponding inequality constraint is released, the problem has multiple solutions. For
our problem, this situation has been found to occur at the end of the tracking process and
it indicates that, although the weighting factor associated with the quadratic term of the
objective function was able to force the solution of the KT equations to be optimal for
all 0<e<l, near ¢=1, a new variable is released and the final optimal solution is not
unique. As with critical points of type 1 and 2, this type of behaviour is typical of
problems where the degrees of freedom are very high (i.e., where the number of free
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variables is very large compared to the number of active constraints), and, moreover,
where not all variables are present in the objective function. An example would be the
optimization of the voltage profile considering all real and reactive sources free ( within
limits ) as depicted in Figure 3.14.a-c. In these figures, we show the optimal trajectories
of variable shunt compensator, b,;, for 0<e<l. At g=1, when b, is released from its
minimum limit, the minimum eigenvalue of the projected hessian vanishes, characterizing
the existence of multiple optimal solutions. For this situation, a descent direction of
improvement cannot be found ( in contrast to what occurs in type 1). Figure 3.15 shows
a geometrical interpretation for this type of critical point.

. o it e e e e iy i ot 4t mma ]

.........................................................................

Figure 3.14.c - Minimum Eigenvalue.
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he(x)=0

Figure 3.15- Critical point of type 7.

Table 3.1 below presents the 7 different types of critical points and the
corresponding types of violation of conditions (A)-(D).
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Table 3.1- Summary of critical points,

T I Y ST T

Yiolation

Consequence

The Lagrange multiplier

1, associated with an

active inequality, h.,
vanishes.

tracking, there must be a jump to another optimal

After h, is released, the projection of the hessian
has one negative eigenvalue. To continue the

path for the same value of €.

Projection of the hessian
of the Lagrangian, H, on
the null space of J has a
vanishing eigenvalue.

W is singular.

Quadratic tuming point of the XT trajectories. To
continue the tracking, there must be a jump to
another optimal path. If the critical point occurs
at e=1, there exist multiple optimal solutions.

LICQ is violated; J has
incomplete rank.

W is singular.
Quadratic turning point of the KT trajectories.
The Lagrange multipliers p,, 1 € L, go to infinity.
If the objective function is decreasing near the
critical point, it might be possible to jump to
another optimal path to continue the tracking.
Otherwise, the feasible set becomes locally empty
beyond the critical point.

h,=0,p ¢ L, Ifh, is
introduced in the feasible

set, the number active
constraints is bigger than
the number of variables.

J has incomplete rank if h, is fixed at its limit.
In case some previously fixed inequality can be
released, there is a discontinuity in the optimal
trajectories of the Lagrange multipliers and the
tracking can proceed. Otherwise, the feasible set
becomes locally empty beyond the critical point.

Two or more Lagrange
multipliers associated with
the active inequalities
vanish at the same .

Combinatorial problem: which inequalities to
release.

Two or more inequality
constraints reach their
limits at the same €.

Combinatorial problem: which inequalities to fix
at the limit.

Special case of type 2.
n,=0, p € L, and after h,
is released the projection

of the hessian H has a

e

vanishing eigenvalue.

If the critical point occur at € { 1, the solution
path loses optimality and it is not possible to find
a direction of descent to continue the tracking. If
the critical point occurs at £=1, the problem has

multiple solutions.
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3.4 Stability of the Feasible Set

As can be seen by the formulation of the Parametric-OPF, each new value of the
parameter € defines a new OPF problem. As & is varied from 0 to 1, a family of
problems is created. This family connects the initial (relaxed) problem to the problem we
want to solve, In the previous section, we discussed the various types of critical points
of the KT equations that can occur during the tracking process and showed that some of
them are related to the collapse of the feasible set. This brings us to the concept of
structural stability of the feasible set M(g) (equation (3.4)).

The idea behind the parameterization of the OPF and the tracking of optimal
solutions is based on the fact that the problem defined for a small parameter variation is
close to the problem for which we have a solution and, therefore, a numerical method is
able to easily find the new optimum. In this way, even if we start from an initial point
which is very distant from the final solution, by solving a sequence of problems that are
close to each other (even if the initial an the final one are very different) we are able to
eventually reach the optimum. The efficiency of the method, however, is entirely
dependent of the fact that a small perturbation on the parameter does not cause abrupt
changes in the feasible set. In other words, we want to guarantee that a problem P(g) is
equivalent to all slightly perturbed ones. If this happers, P(g) is said to be structurally

stable.

The importance of structural stability becomes clear in the example below.

Suppose that we want to solve the following optimization problem:

Min x (3.40)
b 1
subject to
€X = 0 (3.41)

-10 < x <10 (3.42)
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The feasible set of this problem is M(g)= {0} if € = 0 and M(e)= [-10,10] if ¢
= 0. Also, the optimal solution x(g)=0 if € # 0 and x(g)= -10 if € = 0. Thus, as € varies
in the neighbourhood of 0 the solution changes drastically.

Although the example above illustrates a very unlikely situation, loss of stability
can occur in practical applications of parametric optimization. During the solution of the
Parametric-OPF, situations of loss of structural stability are known to occur, and in all
cases it prevented the tracking process from continuing. A forma! definition of structural
stability is as follows:

Definition [Guddat et al., 1990]: The feasible set M(g) is said to be structurally
stable at (X,€) if there exists a neighbourhood O of (¥,€) such that for every (£,€)

€ O the corresponding set M(&) is homeomorphic with M(€).

Note: Two subsets A, B — R are said to be homeomorphic if there exists a
bijective mapping ®: A—>B (i.e., ® is both one-to-one and onto ) with both ® and @'
continuous.

From what is written above, it can be seen that structural stability implies that if
X € M(€), we are always able, using P, to reach a point £ € M(&) in the
neighbourhood (and vice-versa). This is the basic supposition behind the tracking process.
Without structural stability, as € is varied from 0 to 1, we cannot reach 1 because, at
some point (say €,), we will not be able to find a mapping that connects our present
optimal solution with the optimal solution of the OPF problem defined for some €, ) €,.

An interesting real-life example to illustrate the concept of structural stability can
be formulated for the same 2-bus system of Figure 2.1 of the previous chapter. Suppose
now that we want to minimize the voltage profile deviation form 1 p.u. imposing a

maximum limit on the voltage magnitude E. The problem can be formulated as
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Min -%[(E S 1P+ (V- 17

subject to

VEsind

= pd(e)
xl

-V? + VEcos$
xl

= gd(e)

E < 1.05

The new Lagrangian function is

1 2 . 1 VEsind
= —(FE-1 —_ -1 -
2 - 117 2oy )HA,(pd(e) o )
R lq(qd(e) +V2'—":f°ﬁ§] + pg(E - 1.05)
and the KT equations are
ol VEcosd VEsind
o ., A -0 (343)
9% 7 xl A xl
_qgg - _ _ Esind (2V - EC(E&) - 3.44
7 V-1-4, ~ + A P 0 (3.44)
of -~ _ . _ ., Vsnd _ ., Veosd _
-é-E = 1 }-pT lq o +|.IE =0 (3'45)

- pd(€) =0,V 4, (3.46)
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2
4 *;;E“’sa - qd(e) = 0,V 3, (3.47)
H(E -~ 1.05) = 0, py 2 0 (3.48)

For pd(s) and qd(e) defined as before, at £=0, E=1 p.u. and V=1 p.u is the
(trivial) optimal solution, therefore, by (3.48), pz=0 and we can solve the problem as it
was previously solved. When E reaches the maximum limit (at €=0.62 from Figure 2.2),
we can continue to use equations {2.31) and (2.32) to calculate V and & , but the

expressions of the Lagrange multipliers will change. Solving (3.43) and (3.44) for A, and
A, (and remembering that E=1.05) we have:

y o 21 - Vsinb

(3.49)
7 2Vcosd - 105
2 = xl(1 - V)cosd (3.50)
¢ 2Vcosd - 1.05
Finally, from (3.45),
pp=1-105+ 1 -V (3.51)

2Vcosd - 1.05

The behaviour of V and E as the system load is varied can be calculated as in the
previous chapter for E < 1.05, and using the algorithm above when E reaches 1.05. The
optimal trajectories of V and E for this example are represented in Figure 3.16. Note that
V has a sharp decrease after E is fixed at its limit. Beyond £€=0.97 the solutions of
equation (2.31) are complex, which means that there are no real values for V for this load
level. At this point the feasible set loses its structural stability. Note that, when E=1.05,
the OPF becomes a load flow and that the structural stability limit is, in reality, the point

of voltage collapse. At €=0.97, there is a bifurcation on the optimal trajectory of V and
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two different values for this voltage can be found.
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Figure 3.16- Loss of structural stability.

From the definition, we can see that structural stability of the feasible set is a
local property (i.e., a set is said to be structurally stable around some specific point).
Because the OPF is a non-convex problem the assurance of structural stability for all €
€ [0,1] is impossible for all study cases. As we discussed in the previous section, in the
optimal solution trajectories that we must track in order to reach the final solution,
critical points may occur and there is no guarantee that the tracking process can continue
until €=1. Some of these critical points are mathematically associated with loss of
structural stability; and, from a practical point of view, associated with physical limits
present in the generation-transmission system under study. The question is, therefore, how
to characterize loss of structural stability and how to physically interpret this loss during
the tracking process. Because structural stability is a characteristic of the feasible set, we
can expect that it is connected with some of the constraint qualifications presented in
section (3.2.2). The MFCQ is strongly related with structural stability. If a feasible set is
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compact’, then it is structurally stable if and only if MFCQ is satisfied in all its points
[Guddat et al., 1986]. Now, consider two OPF problems that are continuously connected
by means of the parameter €, ¢ € [0,1]. All variables present in the OPF model are
bounded by maximum and minimum limits, therefore the feasible set M(g) for a specified
¢ is bounded. In addition, by the form of the constraints, it can be seen that the feasible
set M(g) is closed. Then, we can say that there is a compact set A containing the feasible
set M(¢) for all € € [0,1]. Now, if MFCQ is satisfied at every point of M(g) for all € €
[0,1], then the final feasible set M(1) is homeomorphic with M(0). Conversely, if the
topological structure of the set M(1) differs from M(0), then, for some & € [0,1], at some
x € M(g), MFCQ must be violated.

To ensure that M(0) is structurally stable, consider the following arguments. In the
Parametric-OPF problem (equations (3.17)-(3.22)), at €=0 all inequality constraints are
relaxed, thus, to guarantee that the initial feasible set M(0) is stable, our initial guess x°
must be such that the jacobian of the equality constrains has complete rank and that there
exists a @ such that J(x°,0).@ = 0. The first condition implies that the jacobian of the
energy balance equations for the load buses is of full rank ( see OPF model in Appendix
A), a condition which is normally satisfied if x° is a typical load flow solution. The
second condition is satisfied by construction beczuse, initially, the number of variables
in the OPF miodel is normally much bigger that the number of the equality constraints
(remember that no inequality is active at this point). As the tracking progresses towards
1, however, there is no guarantee that MFCQ will be satisfied. Since near every (x,€)
where conditions (A)-(D) are fulfilled, there is an optimal solution of the Parametric-OPF
(see section 3.2.1), then the only way in which the feasible set loses its stability is if some
of the critical points described above occur. It has been demonstrated that only at points
of type 3 or type 4 (where all u, in (3.37) are greater than zero and, consequently, no
inequality can be released) is the feasible set not stable [Jongen et al., 1986, (b)]. This is
not surprising since both critical points occur when the active feasible set does not have

a good structure. The example discussed when we presented type 3 of critical points is,

1

A set A is said to be closed if every point that is arbitrarily close to A is a member of A. A set A is

compact if it is both closed and bounded (that is, if it is closed and contained within a sphere of finite radius)
[Luenberger, 1984).
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therefore, an example of loss of structural stability, whereas in the example of type 4
stability is preserved. These examples as well as the last one give a good idea of what
loss of structural stability means in the physical model. It dees not mean loss of
“easibility (in the strict sense) but, as in the load flow model and its so-called point of
voltage collapse, loss of stability indicates that operation (optimal or not) near such a
point is not stable to parameter variations.

The characterization of the regions where the changes in the feasible set with
respect to parameter variations are continuous (regions of structural stability) can be of
great importance. To see this, take for example the behaviour of the optimal solution of
the OPF problem as the system load varies. If the optimal operating point is near an
unstable point, any variation on the load level will cause an abrupt change in the optimal
operating point which cannot be accomplished in the operation. Also, in special cases, the
variation of the load can lead even to the nonexistence of an optimal or feasible solution.
In an on-line environment the assurance of structural stability is vital to guarantee a
reliable operation of the power system.

Although there exists a significant amount of publications concerning structural
stability, most of them are theoretical. Researchers started to introduce some of the
theoretical results in non-linear optimization algorithms in the last decade (sce, for
example, [Fiacco, 1983]), however, these early implementations included mostly
sensitivity analysis. Only recently, with the study of critical points in parametric
optimization, some of the theory regarding structural stability could be formalized in a
more applicable manner.

Recently, there have been some studies of the sensitivities of the OPF solutions
to small changes in bus loads, flow limits, bus voltage limits and other OPF constraints
[Venkatesh et al., 1992]. In addition, the question of infeasibility of the OPF problem has
been gaining considerable attention in the past years because the recognition of unfeasible
cases is a necessary characteristic of any OPF package [Stott et al., 1987; Sun et al,,
1988]. Nevertheless, a systematic study of OPF feasibility and structural stability has not
been done yet. This is a little surprising, since there have been many studies coriceming
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concerning the bifurcation {voltage collapse) regions of the load flow solutions, but, from
the study of critical points, it is easily seen that the study of stability regions for the OPF
problem is not trivial. Nevertheless, the discussion of structural stability raises an
interesting question regarding the optimal operation of a power system: is it more
desirable to establish a "structural stability region” or a "feasibility region" for the OPF
problem?

3.5 Conclusion

The theory associated with the Parametric-OPF is both rich and difficult. The
parameterization provides means for a greater understanding of the OPF problem. At the
same time, it highlights the difficulties associated with the problem itself, being able to
differentiate the obstacles that have been encountered by researchers for the solution of
the OPF. The OPF continues to be a difficult problem and this is reflected in the various
kinds of "critical points" of the optimal solution trajectories. In spite of all the difficulties
associated with the process of tracking an optimal solution, the discussion presented
throughout this chapter gives us a basis to draw important conclusions conceming the

approach:

(i)  The Parametric-OPF allows us, in principle, to solve the OPF problem from any
initial solution und to exactly track a pre-specified load curve;

(ii)- The parameterization provides means of solving the OPF problem in a systematic

way, without using heuristics to find the optimal active set;

(iii)- The approach can give us a very good understanding of the different kinds of
problem that exist in the OPF solution, and, more importantly, permits the analysis

of cases where an optimal solution cannot be found,

(iv)- Since the method is able to differentiate the various causes for the interruption of
the tracking process, it gives us means of suggesting solutions for some of the
critical points;
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(v)- Inparticular, the approach permits the definition of regions of structural instability
for the OPF problem, which is a generalization of the concept of voltage collapse
region for the classical load flow problem. This has special importance during the
load tracking, since it can define a (local) maximum loadability limit for the
system under study, thus providing valuable information about the system "weak

oints", where improvements (e.g. new reactive sources) must be introduced.
p P g

The theory presented in this chapter, therefore, demonstrates that the parametric
approach, can be very useful for the solution and analysis of the OPF problem. In view
of the potential of the approach, an aigorithm for the solution of the Parametric-OPF was
implemented. The details of the implementation are discussed in the next chapter.



CHAPTER 4

PARAMETRIC-OPF SOLUTION ALGORITHM

4,1 Introduction

The solution algorithm for the Parametric-OPF was formulated mainly with the
intent of systematically controlling the changes in the optimal feasibie set, thus making
it possible to exactly track the solution trajectories and to detect critical points. In a
summarized manner, after the initialization is carried out (transforming the initial solution
guess into an optimal solution) the Parametric-OPF algorithm can be subdivided into two
main steps: (i) the increment on the parameter ( creating a new OPF problem) and (ii) the
solution of this newly formulated OPF. The performance of the algorithm, therefore,
depends on a good implementation of the two steps. A detailed description of the

methodology is given in this chapter.

From all aspects involved in the tracking process discussed in the previous chapter,
it can be easily seen that the parametric approach is able to very clearly identify,
differentiate and analyze the main difficulties that have been encountered by researchers
in solving the OPF, namely variations of: loss of optimality, loss of feasibility and ill-
conditioning. These difficulties are reflections of the different types of critical points of
the optimal trajectory. Up to now, no solution has been proposed for all the types of
critical points that may appear during the tracking process. Therefore, solution algorithms
for the critical points are not included in the implementation of the method and, as 2
consequence, the Parametric-OPF algorithm is not able to arrive at the optimal solution
in all cases. Nevertheless, we are able to detect multiple optimal solutions or even reasons
for non-convergence of the method by analyzing the different critical points.

94
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4.2 Detailed Modelling and Optimality Conditions

The [')arametric algorithm implemented in this thesis is based on the tracking of
the homotopy function defined by the KT conditions for the Parametric-OPF. In order to
better explain the implementation, we will introduce a more detailed formulation for the
Parametric-OPF where the functional inequalities and limits on the decision variables are

represented separately.

Let I denote the index set of decision variables and N the index set of functional
inequalities. Additionally, let I(x,c) be the set of active limits on decision variables and
Ny(x,) be the set of active functional inequalities. Throughout the derivation, we will call
a variable which lies strictly within its limits, x™™ x. {x™ i € I a free variable. Let
I{x,e) be the set of free variables and N; be the set of inequality constraints not at the

limit. These index sets will be used to derive the Parametric-OPF algorithm.
4.2.1 Problem Definition and Optimality Conditions for Phase I

In Phase ], it always possible to define a vector x° which is inside its operational
limits. To ensure that the functional equalities and inequalities are satisfied at x° an
appropriate parameterization is implemented as discussed below. Note that x° is already
within its limits and does not need to be included in the parameterization. Similarly, the
parameterization is such that there are no binding functional inequalities. The Lagrange

multiplier associated with the equality constraints A’ can assume any value.

Thus, for a pair (x°A°) which satisfies the conditions above, we define the

Parametric-OPF for Phase I as,
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Min ¢(x,¢€) (4.1)
subject to
8.(x,€) =g - (1 -€)g(x" =0,ke kK (4.2)
h,(x,€) = b (x) - (1 - €)Ak, <0, n €N (4.3)
X sx sxiel (4.4)

where c(x,€) is defined in equations (3.20) and (3.21) of the previous chapter, h(x,£)
R!*™*D n e N, represents the functional inequalities (the reactive generation and the
active power flows) (see Appendix A for a detailed definition of all problem variables and
constraints). The parameter € assumes values from 0 to 1.

Splitting equation (4.4) into two inequalities x > x™” and x £ x™*, and associating
a Lagrange multiplier vector, v, with this set of inequalities, we can represent the upper
and lower limits on x together in the Lagrangian function of the problem. Note that, at
the optimum, the sign of v, must be + or - depending on whether x; is at the maximum

or minimum limit. Thus, the Lagrangian function of the problem (4.1)-(4.4) can be
defined as

g =c(re)+ ¥ agme) + ¥ Lh e+ Y vix -nT) @45

kek neN, iel

where x™=[(x"")" (x™*)"]" and { is the Lagrange multiplier associated with the active

functional inequalities (initially, the set of active functional inequalities is empty).

The KT conditions for the Parametric-OPF model of Phase I are, then:
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L _ 3 og Ok,
T L @ Y @ e -

ox Ox kek * REN, (4.6)
3 o8
(1- 6){3‘;(3#0) + kze:x J-ko—af(x") - wx -xo)} =0
0 _ 1 - 0y _
— =g(*) - (1 - €)g(x") =0,kekK (4.7)
YW
9% _p ) - (1-e)Ak, =0,neN, (4.8)
3,
d ,
% =X - x,!im =0, iel, (4.9)
h,(x) <0, ne N, (4.10)
x; < x= i €l (4.11)
{, 20,n €N, (4.12)
v, =0, ieIf
v, 2 0 for x, = x™™ (4.13)
iel,

_ ,min
v; 20 forx = x;

4.2.2 Problem Definition and Optimality Conditions for Phase II

In the same way that it was done for Phase I, a new formulation for Phase II can
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be introduced. Since we have an optimal active feasible set at the end of Phase I, the

inequality constraints for Phase II do not have to have their limits parameterized. Let d°

be the load level during Phase I. Let x° be the associated optimal solution at the end of
Phase I, that is, for e=1, and let Ad be the difference between d° and the next load

level'. The Parametric-OPF for this case is defined as

Min c(x,¢€)

subject to

8:(x,d(€)) = g (x,d° eAd) =0,k € K
h,(x,d(€)) = h(x,d° + eAd) <0, n e N

min )
xSk sxiel

where c(x,g) is defined as in (3.26).

The Lagrangian function for the problem (4.14)-(4.17) can be written as:

¢ =c(x,e) + ¥ g (xde) + T L de) + ¥ v - 5™

kek AEN, iel

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

Substituting c(x,g) from equation (3.26), the KT conditions can be expressed as

! In the implementation of the Parametric-OPF for Phase II, it was assumed linear trajectories for the system

loads. However, trajectorics that are nonlinear in € can also be easily implemented.
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92 _ 90y + (1 - e)w(x - x°)+23— (xd°+€Ad)

% o= kex (4.19)
oh
+ ¥ {—=2(x,d° +eAd) +v =0
neEN,
o = g(x,d° + €eAd) =0, ke K (4.20)
3,
g?" = h(x,d° + €Ad) = 0, n € N, (4.21)
ag
— =X - =0,i €l 4.22
v, X x5 i€l (4.22)
h(x,d° + €Ad) <0, n¢ N, (4.23)
x<x,iel (4.24)
{,20,n€eN, (4.25)
v; =0, ieIf
v, 2 0 for x; = x;™ (4.26)
i€l

_  uin
v, <0 forx =x

The models defined by (4.1)-(4.4) and (4.14)-(4.17) will be used to derive the
Parametric-OPF algorithm impiemented in this thesis. Because these models are only
slightly different, the solution aigorithms implemented for Phase I and Phase II do not
vary considerably.
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. The KT conditions for both cases can be simplified if we substitute the decision
variables at their limit, x=x, directly into equations (4.6)-(4.8) for Phase I and (4.19)-
(4.21) for Phase II. In this way, constraints (4.9) and (4.22) are implicitly satisfied.

4.3 Basic Solution Strategy

Form the relaxed problem P(e) e-O,
oy 1 i e
into an @ solution by de
Ah and the weighting factor w
(onlyforPhaseI)

o@D

. Perturb the OPF problem P(e),
incrementing the parameter € by an
amount Ae, specified so that the new
optimal active feasible set differs from
the old ane by 1 element,

Solve the newly defined OPF problem
P(e+A€),

Figure 4.1- Solution sirategy.

The formulation of the KT conditions depends on the knowledge of the active sets

No(x,e) and I,(x,€) Although for Phase I, at €=0, these active sets are empty, they change

throughout the tracking process as € is increased. The values of € where these changes

occur (break-points) must be determined so that the KT equations can be formulated and

solved. Therefore, in addition to a method for solving the KT equations, the Parametric-

OPF algorithm (both for Phase I and II) must have a strategy to find the break-points. As

. a result, the methodology used here can be decomposed into three main steps for Phase
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I and, since the initialization is not necessary, two main steps for Phase II (see Figure
4.1). The overall performance of the method depends, therefore, on the efficient solution
of the problems related to the different steps. Each step, namely, initialization, increment
of the parameter, and solution of the optimality conditions is discussed separately in the

following sections.
4.3.1 The Initialization

To initialize the Parametric-OPF algorithm four quantities need to be specified: x°,
2°, Ah and the weighting factor w.

Although any x° that satisfies x™ { x { x™* in principle can be used as an initial
guess for the Parametric-OPF solution, the choice of this vector will greatly affect the
performance of the methodology because, basically, this initial choice will define a
parametric problem that, at £=0, can be "far" or "close"” to the original problem to be
solved (at €=1). As a general rule, the closer x° is to solving the load balance equations
of the originall problem, the better. A close initial guess will translate into a smaller
number of changes in the optimal active set and, as a consequence, into a reduced
computational effort. In fact, in the tests made, a good initial choice for x could decrease

the number of changes in the active set by as much as half.

The influence of the Lagrange multipliers A° on the performance of the algorithm,
on the other hand, was found to be less significant than the influence of x°. This is an
interesting point since the choice of the Lagrange muitipliers can affect considerably the
convergence characteristics of other optimization methods such as dual methods [Rehn
et al., 1989; Santos Jr. et al., 1988). Different initial values for A° were tested (see section
6.2.2). It was found that a reasonable initialization would be to set the Lagrange
multipliers associated with the active power balance equations equal to the average of the
generation incre;11ental cost and the Lagrange multipliers associated with the reactive
power balance equal to 1. However, other values for A° can also be used without

compromising the convergence of the Parametric-OPF,
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In practice, Ah is usually selected to be the same for every violated functional
inequality and equal to the maximum violation on the inequality limits at £=0. The choice
of Ah does not significandy affect the performance of the algorithm, therefore other
choices of Ah are possible. For example, for every n € N,, Ah, can be made equal to

h,(x") minus a constant which is equal to the average of the maximum and minimum
limits of h,(x).

Finally, the weighting factor w must be carefully chosen because it reshapes the
objective function by adding to it a quadratic term depending on the deviation of the
decision variables from their initial values. A large w, therefore, will keep x close to x°
until & is very close to 1 and, as a consequence, all the changes in the active set
necessary for optimization will occur in a narrow interval of € negatively impacting on
the convergence of the algorithm.

432 Step I - Incrementing the Parameter ¢

Since we are following the optimal solution trajectory from one break-point to the
next starting from €=0, we basically increment the parameter € until the first violation
occurs among all inactive inequalities or on the sign of the Lagrange multipliers
associated to the active inequalities. As a consequence, after the increment in g, the new
OPF will have a known optimal active set and can be easily solved by any optimization
method.

Although the approach of incrementing € until the next violaton occurs is a very
conservative (and, therefore, slow) one, the choice of such an approach was based on the
fact that it is difficult to know a priori the effect that a newly fixed inequality constraint
will have in the non-active inequalities. More importantly, if we want to analyze causes
for an eventual non-convergence of the method, the precise tracking of the changes in the
optimal active set is necessary. Thus, the computational speed was compromised in order
to built a tool that is able to systematically find the changes in the active feasible set and
is more suitable for analysis studies.
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The two methods used in this work to find the next violated inequality limit
are based on:

(i)- Binary Search.
(ii)- Linear Prediction.

Binary Search

m
]

V(e)

11-

1.08 -
1.06 -
104 -
1.02 -
1-
O g 025 0375 0437 05 = €

Figure 4.2- Binary search mechanism.

The binary search mechanism is the simplest way found to predict changes in
the active set. The algorithm is quite straightforward and can be explained with the
help of Figure 4.2 above showing five typical optimal trajectories as a function of e.
These five voltage magnitudes are from the same 5-bus system example presented
in chapter 3 (Figure 3.5), all of which have a maximum limit of 1.03 p.u.. The
sequence of vertical lines denoted by €' to ¢’ indicates the values of € tried by the
binary search to localize the first break point. For each value of e, the optimality
conditions (4.6)-(4.8) are solved and the number of violations noted. When there is
only 1 violation, this is fixed at its limit. Observe that it is not necessary to find the
exact location of the break-point to stop the binary process, but simply to ensure that
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only 1 violation exists. In this example, the first break-point occurs near € =0.4 and
requires that V, be fixed at the upper limit.

Figure 4.3 illustrates, for the same example, the optimal trajectories (dotted
lines) based on the initial active set, Y,(x,0), and how these trajectories drastically
change when one variable is fixed and the active set is modified to X,...,J,> (solid
lines). This figure also shows the complete optimal trajectory with all the break-
points included. One can observe, for example, that if the initial active set were
maintained until € =1, then several voltages would have violated the upper limit of
1.03 p.u. An aggressive but non-systematic approach could have fixed all violations
at €=1, however, from the Figure, we see that this does not correspond to the
optimal solution. In fact, the optimum requires that only three of the voltages be
fixed at e=1.

]
I 1 I, I
Vie)
1.06 ;
-"ru :I:Et .
1.MJ o," n"‘:‘l / Mt -",’/‘ .,
’ LK 4‘, ./' _I.’
1.02- Vi ”;—/
;¢
/‘I ! v3 ’
;! _ \_’ ______ -
.’. vs "—“-._______‘q:‘:-
0.8 4 \ _____ e
0.96 T T T T T T T T T T T T T T T T T T T T T
€ 1

Figure 4.3- Optimal trajectories with break-points.

The binary search mechanism is very simple to implement and, in many cases,
quite efficient. However, if the number of evaluations of the system of KT equations
to check the inequality limits is very large, the binary process will be considerably
slow. For this reason, a second method of finding the optimal active set changes was
developed based on linear approximations of the optimal trajectories.
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Linear Prediction

In this method, a linear approximation of the optimal solution trajectories is used
to find the next consiraint to be fixed at the limit or the next active constraint to be
released. First of all, a linear approximation of the free variables and the Lagrange
multipliers of the equalities and active functional inequalities must be obtained. For this,
let the function A(z,€) be defined as

T
_| &« ek g k! -0 @27
A(z,€) = (z,€), o4 (z,€), 5, —(z,€), (z,e) 0

VIO

that is, (4.27) corresponds to system (4.6)-(4.9) for Phase 1 or system (4.19)-(4.22) for
Phase IL In (4.27) z = [xT,AT,(CND)T,(VID)T]T,with {n, = (s Vn € Ny} and

v, ={v, Vi € I,}.

g

The last term of (4.27), ——
v, I

, can be implicitly represented by replacing x; by x;™,

for all i € I; in the expressions of all other terms of the equation. Thus, (4.27) can be

rewritten as

T

o), L0, TG0l =0 (4.28)

A(zye) =
@) = 5 ER) I

In (4.28) the linear prediction must be made only for the free variables. By (4.13)
(or (4.26) for Phase I) the Lagrange multipliers associated with the free variables

= {v; Vi € L} are equal 10 zero. Thus, let z=[(x)",(A)7,({y)1", where

g
1

={x, Vie If}. Define
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T

arg”p(z,e) ,

Azp€) = 55 5 (4.29)

(z,€)

T2 2,6),
ax,f

A linear approximation for A(z,, €) at a point (zZ,€) can, then, be written as,

7 = A T A - -~ OA,— = ||A%| _
A(z,+Azpe+A€) = ARp€E) + {E;f(zf,e) , —a-g(zf,e)HAE] =Q (4.30)

Since, for the optimal trajectories, A(Zf,?-:') = Q and A(Ef+Az,'€+A €) =0,
oA - = oA - -
—(z,,6)Az. + —(2,,€)A€ = 0 4.31
azf(zf JAz + =~ (255€) (4.31)

The increment on z,, Az, is, thus,

Azf = ele (4.32)

where
-1
e = - %(zf,g)] Qé(gf ) (4.33)
azf de

The derivative of A(z_f,E) with respect to z; is equal to W(Z,€) defined in

equation (4.50) for Phase I or (4.53) for Phase II, whereas -aaA ('z'f,E) is given by the
€

derivative of equations (4.6)-(4.8) (or (4.19)-(4.21), for Phase II ) with respect to €, which
is given by (4.52), for Phase I, or (4.55), for Phase II.

Equation (4.32) is valid for the decision variables x; 1 € I, the Lagrange

multipliers associated with the equality constraints, A,, k € K, and active functional
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inequalities, {,, n € N,. To obtain the lincar prediction for the Lagrange multipliers v,
i € I,, we must use the KT conditions as defined for the variables fixed at the limits. For

Phase I we have, from equation (4.6):

v,o=-{_ai() E}.ag"()+2

axl“ sex T SR (4.34)
dc I agk 0 Q
1 - e){==(x" + ) E(xY - wix, -x7)

Similarly, for Phase II, from equation (4.19),

kek

I ()"‘21 (xd°+eAd)+
" (4.35)

¥y ¢, oh "(x d®+eAd) + (1 - e)w(x, x,u)}

neN, ox Iy

where vy, = {v, Viel},

Since v 5=V (x,A,C No,e), a linear approximation for v, i € I, for both Phases

I and II, will be given by

Ay, = avIo dx!, . avl dl avfo dc"o + av’o Ac (4.36)
% ox, | de a |de :14% de

where the derivatives of v are taken with respect to the free decision variables x,, i € I,

M.k e Kand £, n € N, . More explicitly, equation (4.36) can be written as,
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Avfu =rAe (4.37)
where, for Phase I,
ok
22 gy, e, “Ranl
ox, 0x; dx, x,
(N 0 (4.38)
&, Ty,
3+ ) 7w - 1)
with
- - - T Py ) _
P2 Go =Ll @ a-aws Z8NG . TN g 43
<'3.7t:4,08.1:,Jr é!x,n(').x{r ax,oax,! ax,oaxg

On the other hand, for Phase II,

h
r=-| 22 zdey, PEEAE) , —RGdE)le - wx, -2 @440)
ax,oax,j 0%y, °

Ty

with

FL == o Fo o= FETA) =
5%, aJ‘!(z,a'(t-:)) ax,ax,(x) (1-e)w ——6x,6x, (x,d(€))
v ° 7 ° 9 (4.41)
& (hnurcwo) - -
+ ——————(x,d(€))
ax,aax,!

Note that e in (4.38) and (4.40) is obtained from equation (4.33).
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Finally, a linear approximation for the functional inequalities not fixed at the limit

can be written as

h,,!(f +Ax,€+Ac€) = hN!(Sc‘,E) + 5Ae (4.42)
where
oh dx oh
s =|22@E5|—2 + Xz, (4.43)
ax,f de de

dx
Note that ?—’f in (4.43) is obtained from (4.33).
€

dh
The expression of -d—& is different for Phase I and II. For Phase I, it is equal to
€

Ath, whereas, for Phase II, it varies according to the type of inequality limit. For the

functional limits on the reactive generations, which depend directly on the load level, this
derivative will be equal to Aqd, whereas, for the active power flows, this derivative is

equal to zero because their expressions do not depend directly on € (see appendix A).

The increment in g, Ag, that yields the maximum of one violation of the

inequality limits, is then given by

Ae = min{Ae, >0,A¢,20,A¢,20} (4.49)

where

B¢, = [Ac A€, ,A¢, ], i€l ,keK,neN, (4.45)

In (4.45) we have that
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min
X -X

Ae, = = "1 if ¢,<0
e

nax
X >
Ae, = = if >0 (4.46)
i
s
e

Ag, is considered to be infinite since A can assume any value.

In addition,

re, = -2, e, @)
Ti
and
X
rey = -2 pen, (4.43)

Note that Ae, As, and Ag, can be found to be negative. In this case only the
positive values must be checked. Note also that, in (4.47), v, can assume positive or
negative values (depending on whether x; is at the maximum or minimum limit). In both
cases, howevsr, we want to check whether the Lagrange multiplier reaches zero so that

the associated variable can be released.

As a consequence of the linear approximation for the optimal trajectories, after €
is incremented by Ac calculated in (4.44), it may happen that more than one variable
violates its limits. If this situation occurs, a decrement in € may be obtained at the new
point z(g + Ag). All expressions obtained to increment € are still valid in this case with
the difference that, now, Ae will be made equal to the minimum (negative) Ae obtained
from equations (4.46)-(4.48). Also, to reduce the computational effort, only violated
quantities can be considered, thus decreasing the dimension of (4.32), (4.37) and (4.42).
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Figure 4.4 illustrates the process for two variables x, and x, whose minimum limits
are 0. In this Figure, starting from £=0, the next break-point was predicted to occur at &'
but at this point both x, < 0 and x, < 0. Thus, at the new values x,;=x,(¢') and x,=x,(g"),

a new linearization is made to decrement € until ¢* where only the limit of x, is violated.

x,(€)

x e x,(€)
0 ~€ .
p )
X G | RS UUUOIT

xi(el) b imsm e ;e m i ——————

Figure 4.4- Linear prediction.

Tests (see Chapter 6) have demonstrated that linear prediction improves
considerably the performance of the Parametric-OPF algorithm because they are not
"blind" searches, being able to find the next break-point in fewer iterations when
compared with binary search. The good performance is also due to the fact that the
trajectories between two break-points are approximately linear, as can be seen in Figure
4.3, There are, however, two important points to be considered when using a linear
prediction. The first is related to the characteristic of the curve being approximated by a
straight line. To understand this, a typical example is represented in Figure 4.5. In this
Figure, x, reaches its minimum limit (equal to 0) at &', Because of the shape of the
optimal trajectory, however, the linear predictions will yield 2 sequence of approximations
to this break-point ( &', €%, €°, etc). As the algorithm proceeds, there will be infinitely
small increments in € and, in the end, the algorithm will not be able to proceed beyond
this point. To avoid this kind of situation, the Parametric-OPF uses a convergence
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tolerance for the linear prediction. If the increment Ag is smaller than a tolerance, tol, this
increment is multiplied by a pre-specified constant ¢ and the KT equations are evaluated
at the new e+cAs. The values of the tolerance and of ¢ must be defined for each system
being tested and depend on the proximity of the break-points in the optimal trajectories.
Based on the tests made, we found reasonable per unit values of 10°< tol £ 10™ and 2<
¢ £4. A more "intelligent" (and also more computationally expensive) methodology to
solve such situations would be to make Ac equal to the average of the two minimum
increments of the set {Ae,, Ag;, As,}. A second option would be to use a mixed strategy
composed by binary search and linear prediction. In this case, a linear prediction would
be used to make an initial guess of the break point and a binary search would be applied
subsequently to define the first violation. So far, these strategies have not been

implemented in the algorithm.

I
|
i
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i
|
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]
1
I
I
I
!
J

€

0

Figure 4.5- Poor approximation of the break-point.

The second point that must be discussed in this type of search is related to the
"backwards" prediction. Because this prediction is made at points that do not satisfy the
operational limits, it may happen that, between the actual € and &+ Ac calculated by the
linear prediction, there is a critical point of type 2 ( see section 3.3.1). This situation is
represented in Figure 4.6 below. In this Figure, the new point x,(¢') corresponds to the
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value of x, at the incremented £. Because of the critical point, however, x,(¢') lies on a
different path defined by the KT equations (remember that, at critical points of type 2, the
function defined by the KT equations has a quadratic turning point). If there are other
violations at €', a new linear prediction may give an increment in €, (resulting in €°)
instead of the decrement that is sought. Since this kind of situation is related to the
occurrence of critical points in the optimal trajectories, there is no easy solution.
However, it is important to note that the critical point may not have happened if, before
the critical point, a new variable is fixed at its limit (remember that, at €', where the
linear prediction is made, the limits are not considered). This implies that, even if the
linear prediction fails, the binary search may succeed because it is not based on

approximations of the optimal trajectones.

(0

Critical Point of Type 2
\54 ¢
0 e. i ek

1G)

x,(€)

TN
i

Figure 4.6- Linear prediction with a critical point,

Based on the above discussion, a combination of the two strategies ( binary search
and linear prediction) to find the break-points of the optimal trajectories was also
implemented. In all, three strategies were used:

- binary search;

- forwards and backwards linear prediction;
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- forwards linear prediction and backwards binary search.

Among these three strategies, the last one is the most efficient if we consider
computational speed and robustness. The second strategy is usually the fastest one but it

may also fail in the backwards search whereas the first mechanism is the slowest one.

Although the third strategy discussed above presented the best performance, even
this strategy will fail in case a critical point occurs during the tracking process because,
in such situations, when there is a solution, either the trajectories themselves lose
optimality or multiple violations occur, no matter how many evaluations are made to find
the break-points. The solution for the critical points that occur in the optimal trajectories
rely on the "jumps" proposed in the previous chapter, however, as was previously

mentioned, these jumps are still not implemented in the computational program that solves
the Parametric-OPF.

It must also be emphasized that each one of the mechanisms presented here to find
the break-points can be used together with some heuristics that would immediately fix
certain types of violation that happen at approximately the same & (without new searches).
This heuristic is based on the fact that, for some types of violations, after the first
violation is fixed, the remaining ones must also usually be fixed. Similar heuristics are
presently used in any OPF algorithm based on the active feasible set strategy. This would
increase considerably the computational speed of the parametric method, but at the
expense of losing the systematic calculation of the changes in the optimal active feasible
set. As a result, the causes for the failure of the algorithm would not be so easy to
rnalyze. In fact, one of the biggest problems encountered by researchers when studying
the OPF problem is to discover the causes of occasional failure of the solution algorithms.
This is easily understandable considering that most of the solution algorithms are based
on heuristics to find the active set.

The obstacles encountered in defining the correct optimal active set are
understandable in view of the optimal trajectories depicted in Figure 4.3, where the

influence that a variable fixed at its limit has on the behaviour of the free variables is
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easily verified. In general, there is no guarantee that the fixing of a variable at its limit
will not cause additional violations. As a consequence, it is very difficult to implement

a heuristic strategy that considers all possibilities.

A final comment regarding the strategies to find the break-points must be made
concerning the load tracking phase. In normal situations, the system loads do not vary
considerably during a short period of time. This fact, when viewed by the parametric
model, signifies a small change in the optimal solution for a change in € As a
consequence, a more aggressive approach can be used during Phase II to perform the
tracking of the solution trajectories. Since the solution is not likely to vary much, an
attempt can be made initially to increase £ from 0 directly to 1. After this initial trial, if
multiple violations occur, either the linear prediction or the binary search can be used to
find the break-points,

After a successful increment in € is made ( and an optimal active set is defined)
the algorithm passes to the next stage, where the KT equations are solved and the
optimality of the solution is tested. This final stage is discussed next.

4.3.3 Solution of the Kuhn-Tucker Equations by Newton Method

Once the active feasible set is estimated, the KT equations (4.6)-(4.9) and (4.19)-
(4.22) can be easily solved by a numerical method. In this thesis, because of its quadratic
convergence characteristics, the Newton method was used to find the new candidate for
optimal solution. Applying the Newton method to the set of KT equations (4.6)-(4.8) (or
(4.19)-(4.21)), the increment in 2z, can be obtained by solving the same system represented
in equation (4.31):
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In the same way, for Phase II, in equation (4.49) we have
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(4.53)

(4.54)

(4.55)

In (4.55) the equality constraints are the active power balance equations for all

buses of the system and the reactive power balance equations for the load buses, whereas

the inequality constraints are composed by the active limits on the reactive generation and

on the power flows (see appendix A). Since the power flow limits do not depend directly

on epsilon, A(BY/A.) = 0, for n belonging to the set of active power flow limits.
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After systems (4.6)-(4.8) or (4.19)-(4.21) are solved, the new values of the
Lagrange multipliers associated with the decision variables can be obtained directly from
(4.34) or (4.35), thus assuring the fulfilment of all KT equations.

System (4.49) is very similar to the system solved by classical Newton based OPF
methods. The only important difference here is the introduction of the weighting factor

w on the main diagonal, which improves the conditioning of W(z,e) and the convergence
of the Newton iterations.

4.34 Il-Cenditioning of the Newton Method Jacobian Matrix

The derivatives present in (4.49) are considered only with respect of the free
variables. This fact, together with the changes in N, throughout the tracking process will
result in modifications on the size of this system every time any quantity is fixed or
released from its limit. As was discussed in the previous chapter, the non-linear
characteristic of the OPF problem and the changes in the optimal active set can lead to
critical situations where W(z,€} is singular. This implies also that, at points in the
neighbourhood of a critical point, W(z,€) is ill-conditioned and as a consequence, the
Newton iterations may not converge.

Ili-conditioning of the Newton matrix has been recognized as one of the biggest
problems of this method when applied to the OFF. Some strategies to avoid temporary
ill-conditioning can be found in the literature [Monticelli and Liu, 1992]. In general, we
can differentiate between two types of ill-conditioning: temporary or permanent. The first
type is caused by temporarily fixing two incompatible variables at their limits, an example
of which is shown in Figure 4.7.

Figure 4.7 represents a transmission corridor between buses k and 1. Suppose that,
at some point of the optimization process, the voltage magnitudes V, is at its maximum
and V, reaches its maximum. With both V, and V, fixed, only a considerable difference
in the voltage angles will allow the ransmission of real and reactive power between these
two buses. If, under these conditions, the transfer of reactive power is required (because



PARAMETRIC-OPF SOLUTION ALGORITHM 119

local Var sources are at a limit), this can result in an ill-conditioned matrix W(zg). If
there is a solution to such a situation, immediately the algorithm will "ask" for the release
of V.. In terms of the parameter, this implies that the break point defined by the release
of V, is at an € which is very close to the € value at which V, was fixed. The effect that
the parameter € has on the active constraints of the OPF is basically to initially relax and
subsequently return the load to its original value in an "ordered" manner. This implies that
the Parametric-OPF will allow a very small increase in the load before the voltage

magnitude V, is released.

We can view the classical Newton approach as a parametric approach for which
£=1 (always). Comparing both methods, it can be seen that the Parametric-OPF will, first
of all, find the point (that is the load) where both variables can be at their limits (that is,
the point where V, just reached its limit and its Lagrange multiplier is close to zero) and
then modify the load very little (that is, slightly increase ¢) with these two variables at
their limits before releasing V,. The classical Newton, however, will try to solve the
original problem with both voltage magnitudes at their limits. As a consequence it is
expected that the matrix W(z,g) associated with Newton will be very ill-conditioned
during the iteration where both voltages are fixed. Therefore, methods such as the one
presented in [Monticelli and Liu 1992] will be of great importance. On the other hand,
for the Parametric-OPF such ill-conditioning is much less severe due to the process of
gradually incrementing the parameter. In other words, the parametric process is less
affected by the temporary ill-conditioning than a classical Newton approach for the OPF
would be.

Now, suppose that the situation depicted in Figure 4.7 occurs during the load
tracking phase at a point where the system load is increasing. As the load increases, there
may be a need to transmit more power between buses k and | and as a consequence their
voltage magnitudes tend to increase to reduce the losses. If both voltage magnitudes reach
their maximum limits and the load continues to increase it is unlikely that any of these
voltages will be released. In mathematical terms, the ill-conditioning caused by both
voltages fixed will be permanent and eventually the tracking process will not be able to

continue. Regardless of whether the load tracking is solved via a classical Newton method
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Figure 4.7- Example of ill-conditioning.

or the parametric method, the conditioning of matrix W(z<g) will deteriorate in such cases.
This is a typical situation where we reach a critical point of type 3 or 4. If there are
enough degrees of freedom, eventually the matrix will become singular. If we run out of
degrees of freedom, one of the fixed variables must be released to continue the tracking.
If this is not possible, system {4.49) cannot be solved and the process, no matter if

govemned by the classical Newton or by the parametric method, must stop.

From the discussion of critical points in the previous chapter, it can be seen that
near critical points of type 2 or 3 (that is, in a region where the minimum is not well
defined or in a unstable region) Wze) is ill-conditioned. The above example of
permanent iIl;conditioning is related to a critical point of type 3 (note that beyond this
point there is no local solution for the problem). The causes for the other type of
permanent ill-conditioning, related to the existence of multiple solutions, are mainly a
consequence of a poor formulation of some OPF cases. This situation may occur in cases
where there are too many control variables to be optimized (e.g. a bus with both variable
synchronous condenser and shunt reactor). In some cases it is possible to bypass this
problem by fixing some variable at an appropriate limit or by combining two variables
into one. In general, however, unless the formulation of the case under study is improved,

it is not possible to find a unique optimal solution [Stott et al., 1987).
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4.4 Algorithm Flow Chart

The parametric algorithm for the solution of the QPF is summarized in Figure 4.8.
In the solution algorithm, the strategies for incrementing € will depend on the type of
search used and also on the operational mode (Phase I or II). For the binary search, the
initial (tentative) increment in € is constant and equal to Ae®. For Phase I, the value of
Ac®, will depend on the system being tested. During Phase II, for systems with an
approximate linear behaviour Ae®=1 whereas for systems with problems of voltage
instability Ae® { 1. Conversely, when using linear prediction, the value of Ae will vary
between iterations according to equation (4.44). In the same way, the decrement on the

value of € will depend on the search used.

The four cases differentiated by the algorithm when incrementing ¢ are
consequences of the strategy of making only one change in the active feasible set at a
specific parameter value. Therefore, in Case I, when there is no violation, the active set
is kept constant and € is incremented, whereas, in Case IV, of multiple violations, € is
decremented and the algorithm retums to the last acceptable solution to initialize the
tracking (thét is, a new increment in € is specified starting from the last acceptable
solution). When there is only one violation, Case II, the solution and the active feasible
set is updated and again the KT equations are solved to verify if the updated solution is
optimal. If the solution satisfies the inequality limits (Case I) the algorithm proceeds with
the new increment in €. However, if new violations occur (Case III), both the solution
point and the active feasible set must be made equal to their last acceptable values. Case
II1, therefore, occurs when a vaniable fixed at its limit causes new violations on the

inequality limits or on the sign of the Lagrange multipliers.

After every change in the active set, increment or decrement in €, the algorithm
must test for the optimality of the KT solutions. This test is associated with the test for
critical points. A.fter or at critical points of type 1, 2 or 7 the solution of the KT equations
loses optimality. Near or at critical point of type 2 or 3 matrix W becomes ill-conditioned

and Newton inethod does not converge. Additionally, the KT equations cannot be solved
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beyond critical points of type 3 (for increasing objective function) or 4 (when it is not
possible to release any inequality) because the feasible set becomes locally empty. Finally,

an active feasible set cannot be analytically defined at critical points of type 5 or 6.

Figure 4.9 depicts the flow-chart of the Parametric-OPF for both Phase I and II.
Initially, for tne load level d° Phase I is solved starting from an initial guess z°
Subsequently, the algorithm returns to the main loop ( represented in detail in Figure 4.8)
for every new load level d', j € [, inter]. In this process, the final solution for a load
level is used as a starting point for the tracking of the optimal solution in the next load

interval, which considerably increases the computational speed of the method.
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4.5 Conclusion

Although it can be used in two different scenarios (constant or variable load),
the Parametric-OPF algorithm is basically the same for both cases. This characteristic is
a consequence of the concept of parameterization of an optimization problem and its
usefulness is significant, as can be seen in the study of the OPF. Although the algorithm
relies on the Newton method to solve the KT conditions, some of the difficulties
associated with this method, namely the problem of temporary ill-conditioning and the
problem of correctly defining the optimal active feasible set, are successfully overcome
by the Parametric-OPF. The mechanisms used by the algorithm to find the optimal active
feasible set are quite straightforward and systematic. As a consequence, the tuning
necessary to apply the algorithm to different test cases is small and the method is
reasonably robust. As a conclusion, we may say that the Parametric-OPF offers a
flexibility and a robustness that is not easily encountered in OPF algorithms.

In the next chapter we make use of the flexibility of the parametric approach to

do some special studies in the optimal operation of a generation-transmission system.



CHAPTER 5§

SPECITAL APPLICATIONS OF THE PARAMETRIC-
OPF

5.1 Introduction

From what was discussed up to this point, is easy to see that the Parametric-OPF
permits the analysis of the influence of every parameter existing in the OPF model. This
fact indicates that the Parametric-OPF can be a useful tool to perform some special
studies on the optimal operation of generation-transmission systems. In this chapter, we
make use of this special characteristic to study three particular aspects of economic and
secure operation of power systems. First of all, the method is applied to the simulation
of loss of lines during load tracking. Next, it is shown that the method is good for
sensitivity analysis, being able to provide the Bus Incremental Costs and the System
Incremental Cost throughout the interval of load variation. This is useful for making
economic decisions in bus load management or power transactions. Finally, the algorithm
is used to analyze the behaviour and influence of FACTS devices in the optimal operation
of a power system under fixed and varying load conditions.

5.2 Simulation of Line Contingencies

The first special application of the Parametric-OPF is in contingency analysis. The
simulation of contingencies is important to identify vulnerabilities in the power system

to the loss of some component.

126
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The strategy adopted by the Parametric-OPF for the study of line outages during
the load tracking phase is based on the alternate use of the two different parametric
models of Phase I and Phase II. If during the load tracking, at a specific load level d’, a
contingency occurs, the last optimal solution found by the algorithm loses both its
optimality and its feasibility. To continue the tracking, it is necessary to use this last
solution as an initialization for 2 Phase I procedure that will find the optimal operation
point for that specific load level. After finding the optimal solution, the algorithm returns
to the load tracking mode. Figure 5.1 illustrates the process. To simulate contingencies
during Phase I, one applies the Phase I algorithm to the modified network starting with
the optimum point before the contingency.

optimal .
path
2 |
x1
1 [ — :
| line -
i Phase 1
befare |
fault |
!
|
!
0 dd d

Figure 5.1- Simulation of contingencies,

The simulation of loss of lines is done by the modification of the impedance
matrix Y defined in Appendix B. The method used is the classical one, very similar to
that used by Monticelli [Monticelli, 1983].
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5.3 Sensitivity Analysis

The calculation of the optimal operating states alone does not provide all necessary
information about the operating conditions of a generation-transmission system. The
knowledge of the sensitivities of the optimal solution to any parameter variation can be
of great value when considenng transmission transactions or upgrades in the system.
Ideally, an optimization method must be able to provide us with information regarding
the sensitivity of the operating condition with respect to any change in the model
parameters without expensive additional calculations,

The Parametric-OPF method is capable of providing the trajectories of sensitivities
of the optimal cost with respect to changes in system load or to the variable limits, In
particular, during the load tracking (Phase II), the trajectories of the bus incremental costs
and of the system incremental cost corresponding to all points of the load curve can be
obtained without any additional calculation. These quantities are very helpful when

dealing with energy transactions.

In recent years, there has been considerable discussion concerning the unbundling
of the services provided by the utilities. Under regulations adopted recently by different
countries, power utilities may have to live with energy exchanges with numerous non-
utility generators as well as to accept wheeling transactions throughout its network. As
a consequence of these changes in the policy of energy supply, there have been many
discussions about how to cost such transactions. These costs can be classified into four
categories [Shirmohammadi et al., 1991]:

- Operating cost: production cost due to generation redispatch and rescheduling

resulting from the transmission transaction;

- Opportunity cost. benefits of all transactions that the utility foregoes due to
operating constraints that are activated by the transmission transactions {cost of
lost opportunities);



SPECIAL APPLICATIONS OF THE PARAMETRIC-OPF 129

- Reinforcement cost: capital cost of new transmission facilities needed to

accommodate the transmission transaction,

- Existing system cost: the allocated cost of existing transmission facilities used

by the transmission transaction.

The type of transmission transactions also vary according to their duration and
continuity. Thus, some transactions take place over a period spanning several years while
others are of shorter duration. Also, the transactions can be classified as "firm" (that is,
continuous or not subject to discretionary interruptions) or "non-firm". The above
mentioned four cost components vary with the type of transaction. For non-firm
transmission transactions, there is usually no need to consider the reinforcement cost and
the existing system cost when calculating the total cost. The reinforcement and existing
system costs are associated with general improvements of the system network and
therefore are subject to planning studies over a long term horizon. The opportunity and
operating costs, however, are associated with daily operation of a power system and must
be considered in most types of transmission transactions. The opportunity cost, itself, is
partially due to unrealized savings in production cost if the utility cannot bring in cheaper
energy as a result of operating limits, In addition, the opportunity cost is also caused by
the unrealized contribution to the cost of the existing system by potential firm transactions

that could not be made because of operating constraints.

The transmission transactions cost components can all be obtained with the help
of OPF algorithms since they suppose optimal operating conditions for the system under
study [Shirmohammadi at al., 1991)]. In this thesis, however, we will restrict ourselves to

the study of operating cost only.

The marginal operating cost incurred by energy transactions is affected not only
by changes in load and generation but must also take into consideration system security,
VAr requirements and voltage profile limits. For this reason, an analytical tool suitable
to address these issues is the OPF. LP based OPF algorithms [ Fahd and Sheblé, 1992]
and sequential quadratic programming based OPF algorithms which also consider security
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constraints [ Mukeni et al., 1992] have been proposed to estimate the marginal operating
cost associated with wheeling or non-utility generation. Although this marginal cost can
be obtained by comparing the OPF results with and without the possible transactions, a
faster method is based on the use of the bus incremental costs.

The total marginal cost of transacted power can be estimated as follows

AC = Y BIC,Ap, (5.1)

ieQ

where AC is the marginal operating cost of the transaction, Q is the set of all buses
involved in the transacticn, BIC, is the bus incremental cost at bus i and Ap; is the
change in the net real power injection at bus i due to the transaction. The change in the
net injection is positive if the transaction involves a change in load and negative if it
involves a change in generation. Equation (5.1) can also be extended to include bus

incremental costs associated with VAr changes.

The adoption of a parametric approach to calculate AC may be quite helpful
because the method exactly tracks the load curve and, therefore, is able to provide the
trajectories of the bus incremental costs and of pg for an entire interval of load variation.
The bus incremental costs can be easily obtained by the method using information that
is already available throughout the tracking process, as is shown in the following
paragraphs.

The sensitivity of the objective function with respect to changes in the active load
at bus i is called the incremental cost of busi (BIC,). From the parameterized model used

in Phase II, represented in Chapter 3 (equations (3.24)-(3.27)), these quantities can be
represented as

dc(x,€) _ _0
opd, dpd,

BIC, = e(x) + —e)-;-wlx ~-x°P (5.2)
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They are interpreted as follows: " Fixing the value of €, let the load at bus i vary
arbitrarily keeping all other bus loads constant.” Thus, in the above partial derivatives, €

is treated as a constant parameter.

The objective function represented in (5.2) is a function of x. Therefore,

dc _ Fc ox
= 53
dpd, Ox dpd, (53)
From the KT conditions (see equation (3.10)) we know that
aTc(x,e) E dy e 22 argk(x €) E " arhl(x'e) (5.4)

kck iet, ox

Substituting (5.4) into (5.3) therefore gives

de(x,€e) _ gy (x.€) ox _ Fhy(x,€) ox 5.5
“opd, ,&" ax  opd, ,§o Mo opd, &)

or

de(x,€) _ 'E 3, 28e(3) agt(x,e) oh(x,€)

] (5.6)
dpdi kek apd lely ¥ apd.-
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From equation (A.42) we have, for all k € K,

gt(x’e) = pgk - Pk(Vsaaag¢st) = Pdk (5'7)

Thus, Og, /0pd, vanishes for all k=i and is equal to 1 for k=i. In the parameterized model,
the Lagrange multiplier associated with (5.7) is o, (see equation (A.42)). Also, from the
parameterized model we have that Jh, /8pd= 0, V 1 (see equations(A.44)-(A.51)).
Consequently,

dc(x,€) _ _

) «, (5.8)

As was explained in the previous chapter, the parametric algorithm uses the
Newton method to obtain the optimal solutions for every new problem defined after an
increment in the parameter €. As a consequence, the Lagrange multipliers associated with
the equalities (that is, the real power balance equations of every bus of the system and
the reactive power balance equations for the load buses), as well as the Lagrange
multipliers associated with the active inequalities are automatic by-products of the
algorithm. During Phase II, an increment in € is in reality an increment in the load buses
(see section A.3.1) and the algorithm exactly tracks the load curve. Therefore, the
Parametric-CPF is able to provide the Lagrange multiplier optimal trajectories for the
whole interval of load variation and the exact of trajectories of the bus incremental costs

are also known with no extra calculation.

In addition to the extra operating costs due to the increase of active load, cases
may happen where the incremental cost of transmitting additional reactive power must
also be considered [ Li and David, 1993]. Although reactive generation is not explicitly
present in the cost function, it affects both real line losses and voltage magnitudes and
therefore its influence on the final cost may be not negligible. Tc take into consideration

this additional operating cost, one can extend the definition of marginal cost of transacted
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power to the reactive transacted power. In this case, in equation (5.1), the real power
balance is substituted by the reactive power balance and the bus incremental cost is
defined as the increment on the total cost due to an increment in the reactive load, that

is,

_Odc(xe) _ 0@
dqd, dqd.

BIC/, o) + (1 —e)-;-wurx" P (59)

where BIC"; is the increment in the total cost due to a unit increment in qd,

As with the bus incremental costs associated with real power, the trajectories of
BIC' can be easily calculated by the parametric algorithm. In the Parametric-OPF model
used during Phase II, the reactive power balance at the load buses as well as the
functional inequality defined for the reactive generation are dependent on qd ( see
equations (A.43) and (A.44)). Thus, the BIC' will depend on the Lagrange multipliers
associated with the reactive power balance equations, f3, (defined only for the load buses)
or on the Lagrange multipliers associated with the limits on qg, p™ =[(p"™")", (p™*)']".

Following the same steps as hefore,

, B, , ifiisa load bus (5.10)
BIC:' T ] im
p; , ifiis a generation bus

where, p™ will be equal to zero if none of the limits on qg; are active, positive if

qg=qg™" and negative if qg=qg "

Besides being used in (5.1), the vector of (active) bus incremental costs, BIC, is
also necessary for the calculation of the system incremental cost. While the bus
incremental costs give us an idea of the effect on the total cost of generation of a unit
increment of load at each bus, the system incremental cost tells us the effect that an

increment in the total system load has on the total generation cost. The system
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incremental cost serves as a reference value when discussing power transactions. As a
general rule, a utility would not consider selling power for a price that is inferior to its
system incremental cost. However, this rule is not always valid if line flow limits are
active and transmission losses are high because it may happen that the system incremental
cost is higher than some bus incremental costs. In such cases, it would be possible to sell
energy through those buses for a price inferior to the system incremental cost and still
make a profit. Knowing the bus incremental costs provides new information that can be

used by utilities to buy and sell power in a more economical manner taking into account

all types of constraints.

The system incremental cost is defined as ,

SIC = de(x,€)

d( § pdi] (5.11)

i=1
or, if we call pd,, the summation of the active loads of all buses,

_de(x,€)
SIC = =~ —2 5.12
dpd, (5.12)

The total cost, ¢(x,€), in (5.12) is a function of all the OPF model vanables, x,

which in turn are functions of pd,, through the load vector pd. Thus, SIC can be rewritten
as

sic - &¢ 9x dpd (5.13)
dx opd dpd,,

Now, since, from equation (5.3), we have
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e &% _ pror 5.14
5% 9pd BIC (5.14)

then, for an increment Apd in the active load vector and an increment Apd,, in the total

load, the system incremental cost is written,

1

tot

SIC = BICTApd (5.15)

During the load tracking, equations (5.8), (5.10) and (5.15) define the trajectories
of BIC, BIC' and SIC. Since the Parametric-OPF precisely tracks the load variation,
these trajectories correspond exactly to all points of the load curve. Note that these
quantities correspond to the changes in the (parameterized) objective function caused by
changes in the loads.

So far, the discussion about sensitivities was restricted to the influence of the
(parameter) system load. Although these sensitivities are directly related to the question
of transmission transactions, they alone do not provide a complete picture of the system
optimal operating point. Basically, all parameters existing in the OPF mode] affect the
optimal solution {(and the optimal cost). The second type of parameter that must be
considered is the operating limit. The sensitivity of the objective function to changes in
the limits of both functions and variables can give us valuable insight about bottlenecks
in the power system, where considerable savings could me made if improvements were

introduced.

Representing an inequality constraint in the Phase II Parametric-OPF model as

h(x,de)) s ™ (5.16)

we want to calculate the sensitivity of the objective function to changes in h*™®, ST;:
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ST, = ac(xl;f) __ 90
ok;

—lc(x) + (1 —e)—;-wx-—x° P (5.17)

i
As in the previous calculations, in (5.17),

d¢c _ Jc ox
on™ 0% gp!=

(5.18)

Substituting the values of &¢c/0x into (5.18) and following the same steps as
before yields

de(x,€) _ _

oy B; (5.19)

Therefore, the sensitivities of the optimal operation cost to changes on operating
limits depend on the negative of the Lagrange multipliers associated with these
inequalities. Since the approach provides the trajectories of the Lagrange multipliers, no
additional calculation is needed to obtain these sensitivities.

As a conclusion, we may say that the parametric method yields valuable additional
information about the optimal operation of the generation-transmission system. Because
the full nonlinear OPF model is used, in the values of the sensitivities are included both
active and reactive related constraints (that is, MW, MVATr, voltage magnitudes, tap
settings, phase shifters and power flows limits). Thus, if the method is used together with
a load forecast algorithm, a very good approximation of the bus incremental costs and

system incremental cost can be obtained.
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5.4 Representation of FACTS Devices in the OPF Model

The last special application of the Parametric-OPF is to study the behaviour and
influence of FACTS (Flexible AC Transmission System) devices on the optimal operation

of a power system.

The operation of a transmission system is described by physical laws (the Kirchoff
Laws) which limit the degree of control that can be exercised on such systems. Basically,
the avatilable controls apply to generated power and to changes in the system topology.
In addition, the span of the control actions is severely limited by other constraints (e.g.:
the amount of reactive power in the network must be carefully chosen so that the
phenomenon of voltage collapse does not occur; or the disconnection of a line must be
made so that it does not lead to overloaded lines in the region). This plus the fact that,
at every instant, it is necessary to assure an equilibrium between generation and demand,
transform the control of a power system into a difficult task. In recent years, the increase
in load demand has not been accompanied by a corresponding growth in the existing
transmission facilities. The expansion of the transmission networks has been restricted by
cost and/or more general economical or environmental issues. This discrepancy between
the growth of power demand and the generation-transmission networks has given rise to
problems that were not a concern in the past, increasing further the difficulties associated
with an appropriate control of the system [Le Du, 1992].

It has, therefore, become necessary to operate existing transmission systems at load
levels beyond the design limit, as well as to transmit power over longer distances. These
factors motivated research on new mechanisms of control that came to be known as
FACTS devices. Contrary to more commonly used control devices (e.g. phase-shifting
transformers), FACTS devices are electronically controlled based on thyristor (or GTO)
technology which has a much higher operating speed and broader controllability
[Hingorani, 1991]. This technology offers utilities the ability to control power flows in
their transmission routes and to allow transmission lines to be loaded closer to their
thermal limitz without compromising security. FACTS devices presently being developed
or conceived are [Le Dy, 1992]:
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. - variable series compensators;
- thyristor-switched phase shifters;
- generalized phase shifters/voltage regulators.

So far, some studies have been made on the impact of variable series capacitors
using the load flow model [Maliszewiski et al., 1990] or the linearized OPF model
[Taranto et al., 1992].

The model for the FACTS devices used in this thesis is represented in Figure 5.2.
It is basically a variable transformer tap and/or phase shifter in series with a variable
reactance. This represents a type of device which does not yet exist but which
demonstrates the potential capability of a very general FACTS technology which includes
devices such as thyristor-controlled variable series capacitors as a special case. We wanted

here to investigate how such a device could be optimally controlled by an OPF.

YA I Vi
k ' 1
T };’ ZAJ
pl

Figure 5.2- FACTS devices model.

. For the OPF studies, the FACTS device variables are subjected to minimum and

maximum limits, with the reactance supposed to vary from capacitive to inductive (that
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is, a positive maximum limit and a negative minimum limit). The variables present in the
FACTS model (that is, the series reactance and the transformer complex turns ratio) are
directly represented in the parametric algorithm. Thus, the optimal trajectories of these
variables are known both in Phase I as in Phase II, as well as the Lagrange multipliers
associated with their operating limits (that is, the sensitivity of the optimal cost to the
operating limits),

To help the reader understand the motivation for the choice of this general FACTS
device consider the following discussion. For extra high voltage systems, the power
transfer across a line connecting buses k and | of a transmission network can be

approximated by the expression

V.V,
pl = —i—l—!sin(ak— 8) (5.20)

where V, and 8, are the voltage magnitude and angle of bus k, V, and §, are the voitage
magnitude and angle of bus | and x! is the series reactance of the line.

An increment in the transmitted power, therefore depends on the voltage
magnitudes and angles of the connected buses and on the reactance of the line. Therefore,
the control of the power flow can be done by the modification of the voltages, the
inductive reactance, x| or the relative phase angle (5, - §,). While the inductive reactance
sf the transmission line can be reduced by changing the conductor, the idea is to
introduce an external component to vary xI according to the operation needs. The
introduction of a device such as the one represented in Figure 5.2 can provide the required
control. By varying the phase shifter angles and the series reactances it is possible to
increase or to limit the power flow on the line without causing great changes in the
operating points of the variables in neighbouring buses.

The power flow through the FACTS device represented in Figure 5.2 is written
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LAY
pl = “tlsin(s,-3,+4) (521)

where the complex turns ratio t is given by,

¢ = gelt (5.22)

and where V, and 8, are the voltage magnitude and angle of bus k, V, and &, are the
voltage magnitude and angle of bus | and x1 1s the variable series reactance.

Thus, by appropriately choosing a, ¢ and xl, one can control the power flow.
Because these quantities affect both with the real and reactive power in the network, an
OPF algorithm is the correct tool tc be used to study the impact and controllability of the
FACTS devices in steady-state operation. In this study, the questions we want to answer
regarding the FACTS devices are:

- How difficult it is to control such devices via an OPF algorithm?
- What is the influence of such devices have on the control of line flows?
- To what extent can they increase the loadability limit of a transmission system?

- What is the influence can they have on the total operating cost?

To answer these questions, the Parametric-OPF was used to study the FACTS
devices in different test systems under fixed and varying load conditions.

Two important factors must be kept in mind when studying the optimal behaviour
of FACTS devices. First of all, the network power injections depend on the admittance
matrix (that is, on the inverse of the reactance of the lines), therefore, the derivatives
appearing in the Newton method will be sensitive to changes in the series reactance (see
Appendix B). Second, the introduction of a new variable xl on the OPF problem increases

the already large optimization space, which may increase the occurrence of saddle points.
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For these reasons, it can be expected that the optimal control of FACTS devices via an
OPF algorithm is not an easy task. The tests performed did indeed confirm this point. The
convergence of the Newton iterations proved to be slow and there were also cases where
optimality was lost during the tracking process (occurrence of critical points of type 1 or
2). In spite of these difficulties, the parametric algorithm was able to answer all the above

questions. The results are summarized in the next chapter.

5.5 Conclusion

The use of an optimization algorithm in the operation of a transmission system is
valuable not only because of the resulting optimal operating states. Ideally, an
optimization must be able to provide us with information regarding the behaviour of the
operating condition in case of changes in the conditions defining the problem. In addition,
it is desirable that an optimization approach yield some insight into the optimal behaviour
of the control variables. With the parametric approach, it is possible to gain a good
understanding about the system operation in case of changes in the network topology, in
the load demand and in the operational limits. While the simulation of contingencies is
important to define a more secure operating state, sensitivity analysis is essential for
making economical decisions. Throughout the load tracking, the approach provides us
with the trajectories of the sensitivities of the total cost with respect to changes in the
system load or in the operational limits. With this information, the cost of iransmission
transactions can be easily evaluated. In addition, it becomes easy to identify expensive

bottlenecks in the system, whose elimination could produce important savings.

The special characteristics of the parametric approach also makes it a suitable tool
to analyze the impact and steady-state optimal behaviour of new control mechanisms, In
this thesis we used the Parametric-OPF to study the influence of FACTS devices. The
method allows the direct representation of the variables present in the model, also
providing the sensitivity of the optimal cost to changes in the operational limits of the
variables existing on the FACTS model.
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With this chapter we finish the description of the basic Parametric-OPF algorithm
and of the special applications of the method. The results of the simulations performed
in different test systems for Phase I and I, as well as for the special applications
described in this chapter are presented in the next chapter.



CHAPTER 6

TESTS RESULTS

6.1 Introduction

The implementation of an OPF algorithm to solve real-life examples demands a
cousiderable amount of time. If we consider that the number of variables existing in a
real-life example is on average three times the number of buses in the network, then it
can easily be seen that problems with more than two thousand variables are not unusual.
This, together with the nonlinear (non-convex) characteristic of the problem are key
factors of the difficulties associated with implementing an OPF algorithm. In these
applications, the use of sparsity techniques or other procedures which can improve the
computational time are a necessity. As a consequence, the interval of time between the
conception of a new OPF method and the implementation of an algorithm that is efficient
enough to be used by the power utilities can be of several years.

Although the parametric approach has been previously used in simplified
formulations of the OPF problem, this thesis presents the first implementation of a general
(nonlinear) parametric OPF algorithm. The main objective of this thesis was therefore to
investigate the potential of this general OPF approach. The implementation of a
commercially acceptable tool was not one of our objectives.

In this chapter, to analyze the performance of the approach, we first discuss the
computational aspects of the Parametric-OPF algorithm. This is done by presenting the
results of tests made in different systems considering different initial conditions, solution
strategies for finding the optimal active set and objective functions. Next, we turn our

143
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attention to the behaviour of the OPF solution during Phase I and II, considering
contingencies as well as analyzing unsolvable cases. In addition, some results on
sensitivity analysis are presented, emphasizing some aspects of economic transactions.
Finally, some test results with FACTS devices are analyzed.

6.2 Computational Aspects

The Parametric-OPF was implemented in a SUN Sparc 10 workstation using
MATILAB version 4.0. In the implementation, we took advantage of the facilities provided
by MATLAB, specially the sparse matrix and the matrix manipulation facilities. However,
in the Parametric-OPF algorithm, no higher level MATLAB functions such as the
optimization toolbox or nonlinear equation solvers were used. Such higher level functions
were programmed from basic functions. The MATLAB sparsity techniques used in the
implementation are designed for a general mathematical problem, therefore, they do not
take full advantage of the particular characteristics of the OPF problem. In addition, it is
important to note that MATLAB is an environment rather than a programming language.
As a consequence, the computational time of the MATLAB implementation of our OPF
algorithm could almost certainly be sharply improved with other implementations using
computer languages such as C or Fortran.

The Parametric-OPF method was tested in power systems of up to 118 buses under
fixed and variable load conditions. The transmission and generation data of the systems
used can be found in Appendix E.

In all the results shown, the termination criterion for the convergence of the

Newton method was fixed at 10° p.u. for the errors on the first order optimality
conditions.

The first group of tests presented in this section are organized as follows. For
every one the three strategies used to find the optimal active set, that is, (i) binary search,
(ii) forwards and backwards linear prediction and (iii) forwards linear prediction combined
with backwards binary search, the method was tested with three different objectives: (a)
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generation cost plus voltage profile deviation from normal, (b) transmission losses, (¢}
voltage profile deviation from normal. Combinations of these objective functions were
also tested but are not included here for lack of space. Each simulation was carmied out
considering two different values for the initial guess of the optimum vector of decision

variables, x°, namely, flat voltage and an approximate AC load flow solution'.

The second group of tests verifies the influence of the initial guesses of the vector
of Lagrange multpliers A° on the convergence of the algorithm. In these tests, different
values of A° were combined with the objective functions (a) and (b) described above
while using binary search to find the active set.

The third group of tests analyzes the influence of the weighting factor w on the
convergence of the algorithm. Here, some of the previous tests were repeated with a
different value of w. For these tests, forwards and backwards linear prediction was used
as the strategy to find the active set.

In the next group of tests, we analyze the influence of active line flow limits on
the overall convergence of the Parametric-OPF by repeating some of the previous tests
with more restrictive power flow limits. For these tests, only strategy (iii) was used to
find the break-points of the optimal trajectories.

Finally, the convergence characteristics of the Phase I algorithm are tested
considering variable series reactances. Here, some of the tests previously carried out with
the binary search strategy were repeated.

Some of the tests conducted on Phase I of the algorithm were repeated in the load
tracking phase { Phase II ) in order to compare their respective computational effort. In
these comparative tests, only the 34-bus and the IEEE 118-bus systems were used. The
objective function was the transmission losses.

! Since the algorithm does not parameterize the limits on the decision variables, any variable, which in the
load flow solution is outside its limits must be modified in order to satisfy the constraints.



TESTS RESULTS 146

6.2.1 Tests With Different Types of Predictors and x°

The results presented in this subsection are for Phase I only, This study is not
required for Phase II since the initial condition here is defined by the results of Phase 1.
The results presented here are related to four test systems of varying sizes, total load and
reactive power levels. For every system, the tests with each mechanism uéed to control
the changes in the active set are shown in a different Table. The first Table shows the
results using the binary search mechanism, In the tests shown in the second Table,
forwards and backwards linear prediction was used. Finally, in the third Table all tests
were made with linear prediction forwards plus binary search backwards. The tests with
binary search were done for two different Ae® in order to verify the sensitivity of the
method to this quantity. In all tests, the initial Lagrange multipliers associated with the
real power balance equations were set to the average of the generation incremental cost

whereas the Lagrange multipliers associated with the reactive power balance equations
were made equal to 1.

In the Tables below, an e-iteration is any of the main looos present in Figure 4.8,
A trial g-iteration is defined as one where no changes in the active feasible set are
implemented, in spite of existing violations (Cases IIT and IV of Figure 4.8). Normally,
after a trial itzration, the value of € is decreased until only one single violation occurs.
A good e-iteration is defined as one where the active feasible set could be kept constant
or successfully updated ( Cases I and II). The number of iterations of the Newton method
associated with all e-iterations, NR-iter., is also presented in the Tables. The column Time
per s-iteration shows the average computational time of an g-iteration in seconds, while
the column Total time indicates the total computational time excluding initialization or
the output. Finally, Flat and L. flow indicate whether the initial guess, x°, is equal to the
flat voltage profile or an approximate load flow solution.

The results for the 14-bus system are summarized in the next three Tables. For this

network, in each Newton iteration, a system of a maximum of 53 equations must be
solved.
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Table 6.1- 14 bus system - binary search.

S KA
Time Total
Case X° # Good | # Good | # Trial | # Trial | pere- | Time
g-iter. | NR-iter.| e-iter, | NR-iter. iter, (sec.)
(sec.)
w=1 Flat 13 39 2 9 5.18 933
w,=100
Aev=1 | L. Flow j 12 35 1 7 5.09 8145
w=1 Flat 9 27 4 19 5.03 84.88
w;=100
Aew=2 | L. Flow | 8 23 3 17 5.44 76.27
wy=1 Flat 22 85 6 24 5.30 174.93
w=10
Ac=,1 | L. Flow | 20 62 3 11 4.79 134.13
w,=1 Flat No convergence of the NR method for € 0.8 due to ill
w=10 conditioning.
AsP=2
L. Flow | 16 47 4 15 477 119.28
wy=1 Flat 25 89 11 42 5.15 226.95
w=10
Aev=.1 | L. Flow | 22 81 11 40 5.17 2173
wy=1 Flat 19 62 11 45 5.12 184.5
w=10
Ae®=2 | L. Flow | 18 59 12 45 5.06 197.56
i TR Ty T T TR T

The first thing to be noticed in Table 6.1 is that, although a larger Ac* generally
led to a decrease in the number of good e-iterations, the number of trials increased. In
the case of loss minimization (4th case in Table 6.1), the larger Ac™ even prevented the
process to converge. This shows that a compromise exists between the value of the default

increase in the parameter and the overall performance of the method.

Comparing the number of good Newton iterations presented in the three tables, is
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Table 6.2- 14 bus system - linear prediction.
# Good # Trial Time Total
Case x’ #Good | NR- | #Trial | NR- per E- time
e-iter. iter. g-iter iter. iter. (sec.)
(sec.)
w=1 Flat 10 26 1 4 5.89 82,53
=100
s L. Flow | 12 33 0 0 6.31 94.70
wy=1 Flat 15 39 6 24 6.37 165.65
w=10
L. Flow | 19 59 2 7 6.36 165.46
W= Flat 17 46 3 17 6.41 166.78
10
" L. Flow | 16 38 3 15 637 | 165.66
Table 6.3- 14 bus system - linear prediction & binary search.
# Good # Trial Time Total
Case x° # Good | NR- # Trial NR- per &- time
e-iter. iter, g-iter iter. iter. (sec.)
(sec.)
w,=1 Flat 12 33 1 4 5.54 88.75
w,=100
L. Flow | 12 33 0 0 6.03 90.50
W= Flat 16 45 6 24 5.80 157.20
=10
i L. Flow | 19 59 2 7 597 | 155.23
w=1 Flat 17 46 4 21 5.56 150.16
10
ki L. Flow | 22 60 4 18 570 | 18835

also noticeable that this number is smaller for the linear prediction forwards and
backwards, indicating that this mechanism provides the best prediction for the break-
points, From the number of trial iterations, it can be seen that it is easier to minimize the
generation costs plus voltage profile deviation from normal than to minimize transmission
losses or the voltage profile deviation alone (probably because of the good convexity of
the generation cost function). Also, note that the CPU time per €-iteration is smaller for
the binary search since this mechanism does not require the additional calculations needed
by the linear prediction. The total CPU time in the binary search, on the other hand, can
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be larger than the CPU times of the other strategies due to the better performance of the
linear prediction. For these examples, although the number of trial iterations for the
second strategy was the smallest, the best CPU times were obtained with the third
strategy, suggesting that the computational expense of a backwards linear prediction is not

worth using.

The following Tables 6.4-6.6 summarize the results for the 30-bus network. For
this example, in each Newton iteration, a system of a maximum of 118 equations must

be solved.
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Table 6.4- 30 bus system - binary search.

——— —————————— T e TR R T SYPET TR
Time Total
Case X? # Good | #Good| # Trial | # Trial { pere- | Time
g-iter. | NR-iter.| e-iter. | NR-iter. iter. (sec.)
(sec.)
w=1 Flat 13 39 3 11 8.10 186.38
wy=100
As?=.1 | L. Flow | 13 37 7 27 8.88 231.00
w,= ' Flat 9 25 7 26 8.47 203.36
w;=100
As?=2 | L. Flow | 9 25 9 35 9.19 220.77
w,=1 Flat 23 80 20 72 8.39 453.25
w=10
Ae®=.1 | L. Flow | 15 46 5 19 9.73 272.72
w,=1 Flat 19 56 20 71 8.07 403.71
w=10
Ae?=2 | L. Flow [ 12 34 9 42 10.61 307.83
wy=1 Flat 24 77 9 34 8.54 341.98
w=10
AeP=1 | L. Flow | 19 68 2 8 10.29 277.83
w,=1 Flat 20 54 11 46 8.38 318.48
w=10
As?=2 | L. Flow | 16 50 5 22 10.30 288.55

The tests with different strategies using the 30-bus network suggest that the binary

search mechanism becomes comparatively less efficient for a larger network. This is
mainly due to the increase in the number of trial e-iterations (and associated NR
iterations) which does not compensate for a smaller CPU time per e-iteration. For this
network, the second mechanism of tracking the active set was found to be the most
efficient one in terms of CPU time and number of good &-iterations. In addition, x° was

found to have a stronger influence when using binary search because it yielded a
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. Table 6.5- 30 bus system - linear prediction.

# Good # Trial Time Total

Case x’ #Good | NR- | # Trial | NR- per &- time

e-iter. iter, g-iter iter. iter. (sec.)

(sec.)

w=1 Flat 11 24 0 0 9.02 153.48

w100 [ Flow | 11 21 0 0 8.34 141.93

w,=1 Flat 19 49 3 9 8.45 270.58
=10

w=1 L. Flow | 16 42 2 6 1023 | 255.77

wy=1 Flat 20 55 3 13 10.69 31022

Wm0 Flow | 15 41 1 4 9.99 219.88

Case x° # Good | NR- # Trial NR- per £- time
g-iter. iter. g-iter iter, iter. (sec.)
. (sec.)
w,=1 Fiat 11 24 0 0 8.86 150.70
wsm100 1 Flow | 11 22 0 0 8.70 147.98
w=1 Flat 20 52 3 9 9.03 298.08
w=10 L. Flew | 20 56 2 6 9.63 279.43
wy=1 Flat 20 55 3 13 9.63 279.53
w=10
L. Flow | 15 41 1 4 10.80 237.65

considerable difference in the number of trial iterations between the flat and load flow

starts.

The following Tables 6.7 - 6.9 show the resuits for the 34-bus system. For this
example, in each Newton iteration, a system of a maximum of 147 equations must be

solved.
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Table 6.7- 34 bus system - binary search.

Time Total
Case X° # Good | # Good | # Trial | # Trial | pere- | Time
g-iter. | NR-iter.| ¢-iter. | NR-iter. iter. (sec.)
(sec.)
w,=200 | Flat 62 210 82 341 6.20 1176
w,=1000
w=10 | |, Flow | 39 171 48 314 8.17 956
Ac'?=05
w,=200 | Fiat 61 204 119 528 6.50 1458
w,=1000
w=10 11, Flow |34 149 71 463 8.40 1137
As'P=1
w,=1000| Flat 78 272 177 750 6.30 2098
w=20 &
w=600 |y, Flow |51 231 57 319 7.60 1150
Ae*?=,05
w,=1000 | Flat No convergence of the NR method for £ 0.9 due to ill-
w=20 & conditioning.
=600
N oy | L. Flow | 45 206 74 451 7.7 1268
Ag*=1
wy=1000 | Flat At £~0.48 critical point of type 4.
w=10
Ae*=05 | L. Flow | 33 145 18 81 6.74 445
w;=1000| Flat At £~0.48 cntical point of type 4.
w=10
As*=1 | L. Flow | 24 92 19 87 6.53 379

The 34-bus system is characterized by high levels of reactive power and voltage
instability. In spite of its relatively small size, this system posed the greatest difficulties
for the convergence of the Parametric-OPF algorithm. This is noticeable from the CPU
times shown in Tables 6.7-6.9. For this system, only the case of minimization of

generation cost plus voltage profile deviation from flat was successfully solved by all
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Table 6.8- 34 bus system - linear prediction.

m_ A A T T YT T
Time Total
Case x° # Good | # Good | # Trial | # Trial | per¢- time
g-iter. | NR-iter. | e-iter | NR-iter. | iter. (sec.)
(sec.)
w,=200 | Flat 74 224 6 19 7.31 885
w;=1000
w=10 L. Flow |39 164 3 17 10.02 691
w,=1000 | Flat 94 302 9 28 7.50 1222
w=20 &
w=600 |L.Flow |62 351 12 51 93 1036
w,=1000 | Flat At g~ 0.42 critical point of type 4.
=10
w=1 L. Flow |24 68 11 50 731 365.68
ry search.
— -
Time Total
Case x° # Good | # Good | # Trial | # Trial | per ¢- time
e-iter. | NR-iter. | e-iter | NR-iter.| iter. (sec.)
(sec.)
1w=200 |Flat |7 241 7 23 721  |894
wy=1000
w=10 |L.Flow 43 183 3 17 9.08 663
w,=1000 | Flat 96 313 6 19 7.00 1129
=20 &
w=600 |L.Flow |71 377 14 56 8.80 1076
w,=1000 | Flat At €20.42 critical point of type 4.
10
i L. Flow |27 94 7 39 683  |321

strategies for the two adopted initial solutions. The minimization of transmission losses
starting from flat voltage profile could not be done using As=0.1 because of ill-
conditioning of the Newton method matrix, H. Since a smaller increment in € solved this
problem, this is a case of iil-conditioning which does not occur with small increments or
when linear prediction is used, showing the better precision of this last approach when
compared with the binary search. The difficulty of the minimum loss problem also led to



TESTS RESULTS 154

different values of the weighting factor, w, depending on the initial guess. When x° is
made equal to the flat voltage, w=10 is enough to guarantee a initial optimal solution and
good convergence of the Newton process; however, for x° equal to the approximate load
flow solutior., w=600 must be used to assure the success of the tracking process. The case
of minimization of the voltage deviation from normal also posed difficulties. Because the
optimization space for this test system is considerably larger than the one of the 30-bus
network, the occurrence of saddle points increases. This is the case with the optimization
of the voltage profile. When all variables of the problem are free, at €=1 we have a
critical point of type 7. Thus, to be able to perform the optimization, some of the
vartables had to be fixed. For the case shown in Tables 6.7-6.9, qg(18), qg(27), b(18) and
b(27) were fixed at the minimum. Although this recourse made possible the optimization
process, it also created another problem for the tracking: the appearance of a critical point
of type 4 in the optimal trajectory originated at x° equal to flat voltage. In such situation
a strategy such as described in Appendix D may be useful to permit the continuity of the
tracking process, but even when the tracking can proceed, the computational time is much
higher than in normal cases.

A comparison of the computational times and number of trial iterations shows
once more the better performance of the strategies based on forwards linear prediction.
In addition, when comparing the number of NR iterations of Tables 6.8 and 6.9, it can
be seen that the forwards and backwards linear prediction provides a better guess for the
break-point. In spite of this fact, the computational time of the third strategy (forward
linear prediction and backwards binary search) is smaller in half of the cases studied due
to the smaller CPU time per - iteration.

The results of the tests made with the IEEE 118-bus system are summarized in the
next three Tables. For this example, in each Newton iteration, a system of a maximum
of 490 equations must be solved
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Table 6.10- 118 bus system - binary search.

- D T T TR LT C L R T T
Time Total
Case X° # Good| # Good| # Trial | # Trial | pere- | Time
g-iter. | NR-iter.| e-iter. | NR-iter. iter. (sec.)
(sec.)
w,=1 Flat 31 110 24 120 16.30 1242
wy:-1000
w=10 |y, Flow| 33 179 47 532 29.80 | 3064
Ae*=05
w,=1 Flat No convergence of the NR method at £+0.90 due to ill-
w,=1000 conditioning.
=10
Aw;.p= 1 L. Flow| 26 131 64 685 31.00 3508
w,=1000 | Flat 74 263 133 700 17.30 4565
{ w=10 &
w=100 1y, Flow| 86 445 214 2081 [27.00 | 10224
Ae=,05
‘ w,=1000 | Flat | 80 294 86 444 1670 | 3724
w=10 &
w=100 |} Flow| 92 491 158 1582 | 2740 | 8852
Ae™®=.025
w,=1000 | Flat At e~l trajectory loses optimality and newton method does not
w=10 converge (type 2 of critical points).
Ae*=,08 . . . .
L. Flow| At €=0,99, qg,; is released from its min. limit and the
trajectory loses optimality (critical point of type 1).
w,=1000 | Flat At e~1 trajectory loses optimality and newton method does not
w=10 converge (type 2 of critical points).
Ae™=.025 . ] C .
L. Flow| At €=1, qg,; is released from its min. limit and the trajectory
loses optimality (critical point of type 1).

The comparison of the results shown on Tables 6.10-6.12 shows the better
performance of the second and third strategies. The difference in CPU time between the
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Table 6.11- 118 bus system - linear prediction.
Time Total
Case x’ # Good | # Good | # Trial | # Trial | per ¢&- time
g-iter. | NR-iter. | e-iter | NR-iter, iter, (sec.)
(sec.)
w=1 Flat 34 110 0 0 15.58 858
w,=1000
w=10 | L. Flow (39 208 3 36 24.0 1491
w,=1000 | Flat 87 286 3 17 17.1 2482
w=10
L. Flow |97 492 10 132 26.2 4669
w,=1000 | Flat 44 121 2 38 15.6 1156
=10
W= L. Flow | At =1, the problem loses optimality (critical point of type 1)
and Newton method does not converge.
Table 6.12- 118 bus system - linear prediction & binary search.
Time Total
Case x # Good | # Good | # Trial | # Trial | pere- time
g-iter. | NR-iter.| ec-ite~ | NR-iter. iter. (sec.)
(sec.)
w=1 Flat 36 118 0 0 15.12 847
w,=1000
w=10 L. Flow |40 219 2 25 24,70 1534
w,=1000 | Flat 92 302 7 30 16.5 2567
=10
i L. Flow |102 510 11 137 23.40  [4349
w,=1000 | Flat 47 134 2 44 16.70 1286
10 . .1 . .
W= L. Flow |At g=1, the trajectory loses optimality (critical point of type 1)
and Newton method does not converge.

binary search based Parametric-OPF and the other two implementations tends to increase
with the number of buses and with the type of objective function. For this system, the
default increment on € again proved to be a key factor for the convergence of the strategy
using binary search. In addition, the large number of variables here, led to the occurrence
of a critical point of type 7 in the case of optimization of the voltage profile. To be able
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to optimize the voltage profile, the active generations in ail buses except for the slack bus
had to be fixed, thus solving only the reactive OPF problem. Even with this simplification
of the optimization problem, the binary search mechanism was not successful. Because
the last change in the active set occurs at €=0.9997 (a transformer tap is fixed at the
maximum limit), the Parametric-OPF using default increment in € equal to 0.05 or 0.025
did not make this last change in the optimal active set before reaching £=1. As a result,
when € is made equal to 1, the proximity of a critical point of type 2 causes the failure
of the Newton method. Since the linear prediction based approach could determine all
necessary changes in the optimal active set before reaching £=1, this approach could
reach the final solution.

The strategy based on forwards and backwards linear prediction was found to be
computationally more expensive for half of the cases tested, in spite of yielding a smaller
number of e-iterations and Newton iterations when compared with the mechanism based
on the combination of linear prediction and binary search.

The importance of a good initial solution is noticeable in the tests with this last
network, specially for the binary search. Particularly, in the problem of minimizing the
voltage deviation from 1.0 p.u., for the 118-bus system, a bad choice for x° (far from the
flat voltage profile) also led to the failure of the tracking process even when the strategy
was based on linear prediction.

It is interesting to note that for some of the tests, the computational time of the
34-bus network was not very different from those of tests with the 118-bus network,
suggesting that the performance of the method deperds not only on the size of the
network but alse on the reactive power level and on how heavily loaded the network is.

As a general conclusion, we may say that the overall performance of the binary
search is worse than that of the linear prediction, specially for larger and/or more complex
systems. Unfortunzaeely, not all cases have an optimal solution and a reformulation of the
problem was nccessary when testing the method on the last two networks (34 and 118).
Even if there is an optimum, in some cases the method is not able to find the solution of
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the problem, which shows the importance of a careful choice of x° and Ae™. In spite of
this fact, the method can differentiate the various causes for failure and an eventual
solution for the various types of critical points which may appear in the optimal

trajectories may increase considerably the robustness of the Parametric-OPF algorithm.

Although, during Phase I, the tracking process can be very slow due to the number
of changes in the active set ( which directly influences the number of good and trial €-
iterations), the tracking process was found to be much faster during Phase II. In Table
6.13 the average number of s-iterations and Newton iterations are represented for the 34-
bus system and the 118-bus system when minimizing the transmission losses in the load
tracking mode. In these tests the mechanism composed of linear prediction forwards and
binary search backwards was used to control the changes in the optimal active set. The
load curve being tracked is presented in Figure 6.2. The load decreases, at first, until 86
percent of the total load and, subsequently, increases until 120 percent of the total load.
The load variation between the intervals was either 2 or 1 percent. For the 34-bus system,
1 percent of load variation corresponds to a change in 198.6 MW in the total load,
whereas for the 118-bus system, 1 percent of the total load is equal to 42.2 MW. This
difference in the total load, together with the high level of reactive power of the 34-bus

system, are the main reasons for the similar computational times of the tests.

As can be seen by comparing Tables 6.9 and 6.12 with Table 6.13, the total CPU
times of Phase I, for both test systems, are approximately 10 times the average CPU time
Jfor Phase II. In fact, the computational times obtained for Phase II are not prohibitive in
an on-line environment, indicating that, although the Parametric-OPF can be slow when
solving the initial OPF problem (with fixed load ), it has great potential in the optimal
tracking of a load curve.

6.2.2 Tests With Different A°

The choice of the initial Lagrange multiplier associated with the equality
constraints was arbitrary, Their influence on the convergence of the method was found

to be smaller than the influence of x° In the Tables below, are shown the results of tests
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Table 6.13- Results for Phase 1L

Average | Average | Average | Average | Average | Average

System Case | Good e-| Good | Trial e- | Trial |time per| total

iter. | NR-iter. iter. | NR-iter, | e-iter. time

(sec.) (sec.)

134-bus [w,=1000 |13 42 2 7 634  |116.63
w=20

118-bus | w,=1060 |7 26 1 5 17.31 143.12
w=10

done with different A° in three different systems. In the cases presented in the first Table,
the objective was to minimize generation cost plus voltage profile deviation from normal,
In the case of the second Table, the objective was to minimize transmission losses. In all
tests only the binary search mechanism was used to determine the break-points and the
initial guess was considered to be an approximate load flow solution (the same used for
the tests presented in section 6.2.1). In these tests, the Lagrange multipliers associated
with the real and reactive power balance equations («t” and B°, respectively) were varied
independently. Here, a "sparse” formulation of the Parametric-OPF problem was used. In
this model, the reactive generations are also considered as decision variables (not as
functional inequalities) and line flow limits are not considered. In addition, the cost
coefficients are different from those used in the previous tests. As a result, the
computational times related below are on the average smaller than those presented in the
previous Tables (6.1-6.9). However, the influence of A° for both the compact and sparse
formulations is similar, In the Tables below, o’ and B° are the optimal values of these
Lagrange multipliers for =1 whereas ™ and B correspond to the usual initialization for
these Lagrange multipliers (that is, & equal to the average of the generation incremental
cost and B° equal to 1),
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Table 6.14- Optimization of generation cost plus veltage profile with different A°.

# # # |# Trial | Total
System Case «’ B® |Good | Good | Trial | NR- | time

e | NR- € iter. | (sec.)

iter. | iter. | iter.
mmm—_

14-bus |w=1, w,=100, |a&* p 12 32 0 0 34
system | a’= .43, =1, .
o = -5, p.z 01 | & B 12 33 0 0 35
Ae=0.1
-43 0 12 27 0 0 29
0 0 12 26 0 0 29
2 1 12 36 0 0 32
30 bus |w=1, w,;=100, o B 14 40 10 4] 107
system | a”=-2, p"=1, ; .
x’=-6p=5 |& p 13 57 7 42 143
Ae=0.1
. 0.2 0 15 35 10 26 90
0 0 15 34 10 25 84
2 1 17 55 15 75 151

34 bus |w=1, w;=200, |a&” B 55 201 |64 284 522
system |w=10, ¢“=-12,

pr=1, &"= -158, | & g 59 [331 |61 394 721

p'=13

Ae=0.05 -12 0 57 |199 |63 273 513
0 0 58 1159 |63 230  |453
2 2 53 |264 [65 |369 [660

From the Tables 6.13 and 6.14 it can be seen that the influence of &° and f° is

smaller than the influence of x°. Although their values affect the convergence of the

Newton method, the number of €-iterations is not affected in most of the cases. In

. addition, it is interesting to notice that making a° equal to the average of the generator
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. Table 6.15- Minimization of transmission losses with different A°.
mmm 1

# # # 1# Trial | Tetal

System Case af B° ! Good|Good| Trial | NR- | time
g- | NR- | e&- iter. | (sec.)
iter. | iter. | iter.
14-bus |[w,=100, =5, o™ B 13 36 4 24 56
system |o0”= -43, B"=1, — -
a’~-110, B~ 0 | B No convergence of NR method for
As=0.1 e=.1
-43 0 13 38 4 16 50
0 0 13 38 4 14 48
2 2 13 39 4 46 81

30 bus [w,=100, w=10, [a B 15 44 18 167 193
system |a®=-2, B*=1, - -
a'x-112, = -1 |@ B 17 55 23 346 329

=0.1
-0.2 0 18 44 22 62 126
. 0 0 18 43 22 61 123
2 2 15 40 18 95 141

34 bus |w,=100, w=10, |o~ B 46 |194 |75 |420  [558
system |a’=-12, =1,

o'~ -1030, o p* 46 |730 |66  |1901 [1947

B~ 9.7

As=0.05 -12 |0 43 |167 [76 [359  [501
0 0 44 {136 (76 [246 |413
2 2 45 (283 |76 (727 (830

incremental costs is not the best possible choice even when minimizing the generation
costs. Similarly, making the values of a° and B° equal to their optimal values was the
worst initialization for all tested systems (!!) and minimization criteria, whereas a°=0 and

B°=0 were the best choices.
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6.2.3 Tests With Different w

To assess the influence of the weighting factor associated with the parameterized
quadratic term, some of the tests presented in section 6.2.1 were repeated with a different
value for w. For this new set of tests, the objective was the minimization of transmission
losses while forwards and backwards linear prediction was used to find the break-points.

Also, in all tests x° is equal to the flat voltage profile,

Table 6.16- Tests with different weighting factors, w.

System |Case # Good |# Good |# Trial |# Trial |Time Total
€-iter. NR-iter. | e-iter. NR-iter. | per iter. | time
(sec.) (sec.)
14-bus |w.=1, 21 430 2 53 21.38 598
w=1 '
w,=1 15 K1) 6 24 6.37 166
w=10
30-bus |w,=1 16 220 3 11 24.38 658
w=1
w=1 19 49 3 9 8.45 270
w=10
|:3¢—1-bus w,=1000 | 100 322 9 33 7.20 1277
w=40
w,=1000 |94 302 9 28 7.50 1222
w=20
118-bus |w,=1000 |72 251 8 47 17.30 2368
w=200
w,=1000 |87 286 3 17 17.10 2482
w=10

Table 6.15 shows that the influence of the parameterized weighting factor, w, is
in some cases, considerable. For the 14-bus and 30-bus systems, smaller w's yielded a
great increase in the number of Newton iterations and consequently of the CPU time,

whereas a faster convergence of the program was obtained by choosing a smaller w for
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the 34-bus network and a larger w for the 118-bus network. Since this term affects the
characteristics of the problem under study, its best value would be a balance between the
desirable convexity (and consequently, better convergence of Newton method) and the
desirable perturbation of the original problem, which will bring, as a consequence, an

increase in the number of g-iterations.
6.2.4 Tests Considering Line Limits

In all tests presented previously, no line limit was activated during the tracking
process. To assess the influence of such constraints on the performance of the Parametric-
OPF some tests were repeated with active line limits. In all cases, the mechanism
composed of linear prediction plus binary search was used to find the optimal active set
with the initial guess of x equal to the flat voltage profile. The results are presented in
Tzble 6.17. In this Table, pI* represents the power flow on that specific line without

imposing any limit, whereas pl is the limited power flow.

The results of Table 6.17 show that the existence of active power flow limits
increases considerably the computational time of the Parametric-OPF. Because of the
adoption cf restrictive limits on the active generation, for the 14, 30 and 34 bus systems,
only mild enforcements of line flows did not lead to critical points of type 3 or 4. Note
that the largest increase in the number of iterations and computational time occurred for
the 34-bus network, again showing the great difficulties of operating the system, specially
when a limit on power flow is imposed. As a result, for all test systems, the final CPU

time increases when power flow limits become active in the optimization process.

6.2.5 Tests Considering FACTS Devices

Finally, the influence of Flexible AC Transmission Systems (FACTS) on the
convergence of the method was analyzed by repeating some of the previous tests. In this
study, only the binary search mechanism was used to obtain the break-points of the
optimal trajectory. The initial solution was made equal to the approximate load flow
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Table 6.17- Tests with active line flow limits.

System |Case Line |# # # # Trial | Time |Total
flow |[Good |Good |[Trial |NR- per time
limit, |e-iter. {|NR- g-iter. {iter. iter.

iter.
14-bus  |[w,=1, Inmact, |10 26 1 4 5.89 32
w;=100
PL=0.62 | Active |19 55 3 10 702|232
pl,*=0.66
30-bus w,=1 Inact. |11 24 0 0 9.02 141
w,=100
pl,=0.71 Active | 14 37 1 4 10.42 (250
pl,"=0.75
34-bus w,=200 Inact. |74 224 6 19 7.31 885
w;=1000
w=10
pl,,= -16.1 Active | 137 494 38 151 8.90 2358
pl1201= '15.2

118-bus | w;=1 Inact. |34 110 0 0 15.58 858
w;=1000
w=10
pl,= -1.5 Active [ 37 122 1 5 15.70 |926
pli, = -2.1

solution and the initial Lagrange multipliers associated with the equality constraints are

the same used in section 6.2.1.

Table 6.18 shows a significant increase in the total CPU time when variable series

reactances are considered in the optimization. Besides the increment in the time per £-

iteration, the number of iterations also increase, specially for the 34-bus and 118-bus
networks. The difference in CPU time between cases with and without FACTS devices

increases when the number of devices augments, mainly because the number of Newton

iterations increases. Eventually, the optimization is only possible with the adoption of a

large parameterized weighting factor, w, which makes the problem more convex and

improves the performance of the Newton method.
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Table 6.18- Tests considering variable series reactances.

System | Case Mode # Good | # Good | # Trial |# Trial | Time |Total
g-iter. | NR- g-iter. |NR- per time
iter. iter, iter (sec.)
(sec.).

14-bus |w,=1, Fixed 23 68 4 14 4.70 151
+w=50
As=0.1
test with | Variable |24 72 5 26 5.97 209
xl,

30-bus |w,=1 Fixed 26 73 21 70 7.16 444
w=30
Ag=0.1
test with | Variable | 25 70 18 65 8.88 515
xl,

34-bus |w,=1000 |Fixed 38 309 177 765 6.2 2069
w=50
Ae= 0.05
test with | Variable | 94 352 172 796 8.3 2811
xly

118-bus | w,=1000 ] Fixed 74 263 133 700 17.30 | 4565
w=10
Ag= 0.05
test with { Variable |87 303 165 851 18.9 5894

xly N - ]

With this, we finish the discussion of the computational aspects of the Parametric-
OPF algorithm. In the next section we present results that are related to the general

aspects of the optimal operation of a generation-transmission system.

6.3 Studies on the Optimal Operation of a Power System with the
Parametric-OPF.

The use of an optimization program in the active and reactive power optimal
dispatch is not trivial. The amount of time that must be spent in introducing an OPF
package into an engineering environment has given rise to discussion about the possible

savings that can be achieved by operating a generation-transmission system near the
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optimum. In addition, the fact that nonlinear based OPF algorithms are not always able
to find a solution to the problem of optimal operation the power system has made even
more difficult their acceptance by the utilities. The question that has been in researchers'
mind is that, since the load flow algorithm is nowadays considered a robust tool and, for
this reason, videly used in power utilities, and since there has been great developments
in optimization methods in the past decades, why is it so difficult to solve the OPF
problem? How to differentiate between an unsolvable case and a case where the algorithm
fails to find a solution? These appear to be questions that need to be answered before

discussing the possible benefits of having an OPF package in a control centre.

Following this discussion, we here start the discussion of some aspects of the
optimal operation of a power system by studying the behaviour of the optimal solutions
of the Parametric-OPF problem. Later on, we discuss the benefits of opiimal steady state

operation.

6.3.1 The Behaviour of the Optimal Power Flow Solutions under Parameter

Variations

The first aspect to be analyzed here is related to the difficulties encountered in
solving the OPF problem. Because the parametric approach dismembers the problem
through the use of the model parameters, it is useful in the study of the optimal behaviour
of the solution trajectories both for Phase I and Phase II. To make this analysis, we show
in Figures 6.1.a-6.1.i the optimal trajectories of some chosen variables of the 34-bus
system and their corresponding Lagrange multipliers. These trajectories correspond to the
problem of minimization of transmission losses starting from the flat voltage profile. The

results are presented in per unit for a 100 MVA basis.
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Figure 6.1.a- Voltage angles - Phase L.
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The first noticeable aspect of the solution trajectories is the almost linear behaviour
of the voltage angles and active power generation compared with the very nonlinear
behaviour of the voltage magnitudes, reactive generation and shunt compensators, This
is in accordance with the general knowledge that a reasonably good approximation for the
active OPF sub-problem can be achieved with linear models whereas for the reactive
sub-problem linear models do not yield reliable results. In addition, this confirms the high

level of reactive power and voltage instability of the 34-bus system.

The optimal trajectories of the Lagrange multipliers also give us valuable
information about the behaviour of the optimal solutions throughout the optimization
process. Specially for the voltage magnitudes and static compensators these Lagrange
multipliers show a very erratic behaviour, thus indicating that the “tendency" of such
variables to stay fixed changes even with an incremental change in €. As an example of
such behaviour, we refer to Figure 6.1.f where the Lagrange multipliers of the voltage
magnitudes are depicted. By the values of some of these Lagrange multipliers we can see,
first of all, that the nptimal voltage magnitudes are extremely sensitive to parameter

variations, thus some of these voltages (fixed at the minimum) at some point of the
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tracking have their Lagrange multipliers smaller than -3000 while other voltages (fixed
at the maximum) have their Lagrange multipliers larger than 2000. ‘Also notice the
behaviour of the Lagrange multipliers of the voltages at bus 19 and 31 around £=0.9.
These two buses are interconnected and as a result their voltage have more or less the
same behaviour (see Figure 6.1.b). During the tracking process, Vg is the first to be fixed
at its maximum, and the sharp increase of its Lagrange multiplier indicates that such a
limit 1s very severe. However, as soon as V;, reaches its maximum limit, there is an
abrupt change in the trajectory of the Lagrange multiplier associated with V,,, indicating
that these two voltages cannot be fixed at the limit at the same time. Later on, the
optimization process "asks" that V,, be fixed once more at its maximum. As a
consequence, V,, has to be released almost immediately ( as indicated by the abrupt
change on the trajectory of its Lagrange multiplier). This sort of behaviour is not
uncommon for variables of the reactive OPF sub-problem and it is a very good indication
of the difficulties that have been encountered by researchers to solve the OPF. Because
of such behaviour, the definition of an optimal active feasible set is a complex task and
a wrongly chosen active set can lead tc ill-conditioning of the Newton matrix (in this
example, it is not possible to increase € directly to 1 with these two voltages fixed at

their maximum and solve the problem because the Newton method does not converge).

In the same way that the parametric approach is able to give us a very good
insight into the behaviour of the OPF variables during the optimization process, this
method also provides valuable information regarding the behaviour of the optimal solution

under variation of the system load.

The next Figures show the optimal solution trajectories of variables of the 34-bus
system during Phase II. The objective function used in the tracking is again the
transmission losses and the same variables represented in Figures 6.1.a-6.1.¢ are depicted.
During the load tracking the Parametric-OPF followed the load curve represented in
Figure 6.2. In the process, all the loads of the systsm are multiplied by the same load
factor (Figure 6.2) which implies that they have different increments. For the 34-bus
system, the minimum load thzt can be attained starting from the optimal solution of Phase
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Figure 6.2.- Load factor.

I is equal to 86% of the total load whereas the maximum load that can be supplied is
equal to 104% of the total load. Below the minimum limit, the optimal tracking cannot
continue without a "jump" to another optimal trajectory because of the occurrence of a
critical point of type 1 (saddle point) after the release of a previously fixed variable. The
maximum load limit, on the other hand, is defined by the existence of a critical point of
type 3 on the optimal trajectory, indicating the loss of structural stability and that the
feasible set becomes locally empty beyond this limit. Note that for the 34-bus network,
1% of the total load corresponds to 198 MW.
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From Figures 6.3.a-6.3.f, the more nonlinear characteristic of the reactive
sub-problem is very noticeable. However, even this part is considerably more linear than
it was for Phase I, resulting in a much faster tracking process. It is interesting to notice
as well that, for this example, the voltage magnitudes decreased with the load, instead of
increasing. This fact is due to the excessive amount of VAr power in the network for low
loads. If we allow the shunt compensators to be more inductive, thus absorbing the VAr
excess, the voltage magnitudes would drop less with the load. Another interesting fact is
the behaviour of the reactive generations, indicating the fine tuning necessary to maintain
optimality during the tracking.

Throughout the tracking process, the optimization algorithm kept the shunt
compensators constant leaving the optimal control of the voltage magnitudes to the
synchronous condensers or generators only. As the load decreases, these var sources
cannot keep the voltage magnitudes near the ideal value of 1.0 p.u. and there is a voltage
drop in all network. For this system, at low loads it is necessary to disconnect some of

the transmission lines in order to keep a good control on the variables.

Notice in Fig. 6.3.f that the bus incremental costs decrease at low load, at the same
time remaining more or less the same value for all buses of the system. As the load
increases however, some of the bus incremental costs increase more than others,
indicating the effect of the higher transmission losses on these values.

6.3.2 Assessing the Effectiveness of Optimizing

To assess the importance of the optimization during the load tracking, the results
shown above ( Figures 6.3.2-6.3.f ) were compared with the results of the load tracking
where the objective function was the minimization of the deviation of the current solution
from the optimum at 100% of the load. This objective function was chosen to give an
idea of the difference in costs between an arbitrary solution which respects all operation
limits and an optimal solution in the sense of minimum losses. The results of this second
load tracking are shown in Figures 6.4.a-6.4.e below. Also, to have an idea of the savings

obtained when tracking the load curve following the minimum loss criterium, the total
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active power generated for the minimum loss case (Case I) and for the minimum
deviation from an initial solution case (Case IT) are represented in Figure 6.5. In addition,
Figure 6.6 depicts the MW difference between the total generations of each case studied.
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Figure 6.4.a- Voltage angles - feasible solution.
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The comparison of the optimal trajectories of Case I and case II shows, first of all,
that the voltage drop which occurs at low load levels is due to a feasibility problem rather
than because of the optimization process. In addition, one can notice the difference of the
optimal trajestories of the active and reactive generations for cases I and II. While for
Case II, all active generations and most of the reactive generations decrease with the load,
during Case I this behaviour is not observed and the optimal trajectories are more

"erratic”, thus indicating the tuning necessary to optimally track the load.

Figure 6.5 depicts the total active generation for cases I and II. As can be seen,
the difference is very small, even diminishing at low load levels and high load levels, thus
indicating the greater difficulty to perform the optimal operation. This small difference
in the absolute value of the total generation was expected since the difference between
the cases is due to the transmission losses, which normally is of the order of 2% of the
total load.

[ o)
[l

Total Active Generatlon (pa.)
b
|
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0 Time (hs. 23
Figure 6.5- Total active generation for cases I and JIL

Figure 6.6 represents the difference in MW between the total generations of Case
I and Case II. This difference varies from 30.8 MW, at 86% of the total load, until 89.3
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MW at 94% of the total load. It is smaller at low load levels and high load levels
indicating the reduction of the optimization space. Considering that the cost of building
new generation is approximately 4x10°$/kW [Yamayee and Bala Jr., 1994], the capital
savings will range from 1.2x10°$ to 3.6x10%°$. This gives a good idea of the savings
provided by optimally operating ( that is, operating with minimum loss ) the 34-bus
system. Although the absolute value of the losses is very small when comparing to the
total load, the savings can be substantial, which justifies the use of an OPF algorithm in
on-line operation. These savings will be even greater if one considers fuel or operational

costs,

100

Figure 6.6- Difference in total generation of cases I and II

Compared with the system incremental cost, SIC, the bus incremental costs (BIC's)
represented in Figure 6.3.f offer @ more precise idea about the cost involved in an energy
transaction. In Figure 6.7, we compare some of the BIC's with the system incremental
cost for the 34-bus network during the load tracking. For this example, at high load levels
BIC, and BIC, are higher than the system incremental cost (SIC) whereas BIC,; and
BIC,, are lower than the SIC. At low load levels, however, the inverse occurs (that is,
BIC, and BIC, are lower than SIC and BIC,; and BIC,, are larger and SIC. Such
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Figure 6.7- System incremental cost & bus incremental costs.

behaviour can be understood if we consider that buses 7 and 8 are situated far from the
generating units whereas the opposite occurs with buses 15 and 21. Thus, the transmission
losses will yield larger incremental costs at buses 7 and 8 at high load levels and smaller
incremental costs at low load levels. For buses 15 and 21, on the other hand, the changes
in the transmission losses are very small, therefore they are not very much affected by the
variation of the total load. As a result, when considering transmission transactions in this
network, both the location of the buses where the transaction occurs and the actual load
level of the system have special importance.

6.3.3 Optimal Steady State Behaviour under Line Contingencies

The simulation of line contingencies is important for a definition of an optimal
secure operating state. Although, presently, the Parametric-OPF algorithm is not able to
solve the secure OPF problem [Carpentier, 1987), possible violations in line flow limits
due to line contingencies can be corrected by the algorithm. A single line contingency
seldom leads to an "infeasible" OPF case (or, more specifically, to a structurally unstable

case), but there are situations where resulting violations in the line flow limits cannot be
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corrected, specially if the limits of the active generation present in the neighbourhood of
the fault are very tight. Even in the cases where these violations can be corrected, the
loadability limit of the system may be reduced. The next Figures show some selected
trajectories of the 118-bus system before and after the loss of one its lines during the load
tracking process. In the resulting network after the line outage, power flow viclations
occur and this fact has a considerable effect on the behaviour of all variables of the
system. In this example, line 86 is taken out during the load tracking at a load level that
is 4% above the initial load. The optimization criterion used in the test is a combination
of generation cost and voltage profile deviation from normal. The load curve is increased
by 1% between each interval of time. Due to the outage of line 86, the power flow limits
of lines 81 and 107 become active. After the line outage and the resulting violations are
corrected by applying Phase I, the load tracking proceeds until the load reaches 7% above
the initial values. A{ this point, the occurrence of a critical point of type 3 prevents the
tracking to proceed beyond a load level of 7% above the initial one. On the other hand,
without the line outage and the power flow violations, the optimal tracking may proceed
until the total load is 12% above the initial value. The results are in p.u with a 100 MVA

basis.
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Figure 6.8.a- Voltage angles - Phase II with line contingency.
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Figure 6.8.e- Shunt compensators - Phase II with line contingency.
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Figure 6.8.f- Transformer tap settings - Phase II with line contingency.
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Figure 6.8.h- Power flows - Phase II with line contingency.
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The first aspect to be noticed is the very linear behaviour of the optimal
trajectories during the tracking, showing the more linear characteristics of 118-bus
network when compared with the 34-bus network, Also notice that the line outage does
not cause extreme variations in the voltage magnitudes and angles, shunt inductors and
phase shifter angles. Transformer tap settings and real and reactive generation experience
larger variations. Note that all the variable displayed in the above figures are in a region
close to the line outage. As the load is increased towards 8% above the initial value, some
of the optimal trajectories approach a quadratic tuming point and, at the same time, some
Lagrange multipliers assume very large values. This behaviour indicates the proximity of
the critical point of type 3 which occurs in a region where the objective function is

increasing thus demonstrating that the loadability limit was reached (see Figures 6.9.a-
6.9.d).
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Figure 6.9.a- Voltage magnitudes near critical point of type 3.
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Figure 6.9.d- Objective function near critical point of type 3.

In the test discussed above, the loadability limit of the 118-bus network was
determined by the limits imposed on the power flows of line 81 and 107. The FACTS
devices were designed to help the power dispatch in special situations such as this.
Therefore, next, we analyze the behaviour and performance of the FACTS devices in the

same scenario described above.
6.3.4 Studies with FACTS Devices

In an attempt to increase the loadability limit of the system considering the loss
of line 86 (approximately 4% less than with the line in), we introduced a FACTS device
in each line where the power flow limits are active. The FACTS devices simulated in this
case consist of variable series reactances. The devices are supposed to be able to vary the
lines reactances by ¥ 50%. The same test represented in Figures 6.8.a-6.8.h and 6.9.a-
6.9.d was repeated with the FACTS devices in the network. The results are shown below.
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Figure 6.10.a- Voltage angles - Phase 1I with FACTS devices.
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Figure 6.10.i- Power flows - Phase II with FACTS devices.

Figures 6.10.2-6.10.1 show that the introduction of FACTS devices on lines 81 and
107 compensates for the severity of the line constraints and enables the tracking process
to continue until the total load is 11% above the initial value (that is, the same as without
a line outage). As the total load approaches 12% above the initial value, the violation of
another line constraint (on line 24) causes the occurrence of a critical point of type 3 in
a region where the objective function is increasing. The theory tells us that beyond this
load level the feasible set is locally empty. This test demonstrates that such devices are

able to enlarge the loadability limit of a system in cases where a contingency occurs.

The presence of FACTS devices in lines 81 and 107 changes the amount of real
and reactive power in the region where the line outage occurs. When the FACTS devices
are not present, all pg's in the neighbourhood ( that is, pg., . pgss » PEss » PEss » P8 and
Pgs: ) reach their maximum limit whereas when the FACTS are introduced, only pg;,,
PEs, PEss» PEq, are at the maximum, indicating that more power can be transferred from
the neighbouring areas of the network. As a result, the tracking can proceed normally
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until a higher load level and the loadability limit is defined by the operating limits of
another area of the system. This shows that such devices can be used to increase the

power transfer capability of a transmission network.

The total initial load of the 118-bus network is equal to 4216 MW. The difference
in demand that can be satisfied in the first case (with no FACTS devices) and the second
case (with two FACTS devices) is approximately equal to 4% of the total load, or 168.64
MW. Considering that the capital cost of generation is equal to 4x10°$/kW, the savings
in generation will be approximately equal to 6.7x10°8. This savings will increase if the
operational costs are also considered. Presently, the cost of a FACTS device varies from
50 to 100 $/kVA, depending on the maximum power flow that the device can withstand
[Hingorani, 1993]. The maximum power flows in lines 81 and 107 are equal to 70 MW,
therefore, the price of a FACTS device for one of these lines will vary from 3.5x10°% to
7.0x10%$, which yields a total investment varying from 7.0x10$ to 1.4x107$. This justifies
the use of the FACTS devices.

Although the FACTS devices may be important for the transmission of power, the
optimal control of the variables existing in the FACTS's model proved to be difficult
when the system under consideration has a larger amount of reactive power and total load.
This is translated in an increase on the number of iterations (see Table 6.1) and/or in the
values needed for w to assure an initial optimal solution and a good convergence of the
Newton method. A typical example is the case of minimizing generation cost plus voltage
profile deviation from 1.0 p.u. for the 34-bus system. Supposing a maximum power flow
of 20.2 p.u. for lines 36, 37 and 38, the problem was solved, at first, supposing no
FACTS devices and, next, with one of such devices in each line with a limiting
transmission capacity. The FACTS were represented by a variable phase shifter { with ¢
varying from -0.1 rad to 0.1 rad ) connected in series with a reactance which varies the
original value of the line reactance in £50%. In both cases the Parametric-OPF was able
to arrive at the optimal solution, but because of very restrictive active generation capacity,
in order to respect the transmission limits imposed, considerable adjustments of the
* decision variables is necessary, specially on the voltage magnitudes. The total generation
cost for the case without FACTS devices ( 1.504x10°$/h ) was almost the same as the
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total generation cost for the case with the FACTS devices, 1.498x10°$/h. The difference
in active gerieration was only 62 MW however a large difference was observed in the
optimal voltage magnitudes. Figure 6.11 shows that the use of FACTS devices improved
considerably the optimal voltage profile of the 34-bus system considering the line limits
described above.

The optimal control of the 3 FACTS devices included in the 34-bus system proved
to be a difficult task. Whereas, for the test with no such devices the weighting factor w
was made equal to 10, in the presence of FACTS devices this weighting factor had to be
above 5000 to assure an initial optimal solution and a good convergence of the Newton
method. With the increase in the number of FACTS devices, there is a considerable
increase in the number of iterations and larger w's must be used. This can be an obstacle
to the optimization of the FACTS variables for larger generation-transmission systems

with heavy load and/or high levels of reactive power.
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Figure 6.11- Optimal voltage magnitudes with & without FACTS devices.
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6.4 Validation of the Results

The results provided by the parametric algorithm were compared with the optimal
solution given by a general nonlinear optimization package. Two problems defined with
a fixed load were also solved by the nonlinear optimization toolbox of MATLAB 4.0
which is based on sequential quadratic programming. The initial solution guess, x°, was
made equal to the flat voltage profile for the 14-bus system and equal to a load flow
solution for the 30-bus network. Since Phase II is a simplification of Phase I, the tests
were not repeated for a varying load.

The problem of minimizing the generation cost plus the voltage profile deviation
from 1.0 p.u. was solved for the 14-bus and 30-bus systems using both the Parametric -
OPF and the optimization toolbox. The tests were made supposing the transformer tap
settings fixed and equal to 1.0 p.u..Tables 6.19 and 6.20 show the results for the 14-bus
system and 30-bus system, respectively.

The comparison of the results for Phase I show very small differences in the
optimal solutions for both the 14-bus system and the 30-bus system. In both cases, the
Parametric-OPF provided a slightly better solution. However, if x° is made eaual to the
flat voltage profile, the performance of the optimization toolbox deteriorates for the 30-
bus system, yielding an optimal cost of 30.03958, indicating its dependency of the optimal
solution on the initial guess. The proximity of the solutions obtained by the different

methods validates the Parametric-OPF results.

In all tests made, the choice of x° did not affect the quality of the solution
provided by the Parametric-OPF. Although the solution trajectories vary substantially for
different x°, different initial guesses did not lead to different optima, which is an

interesting characteristic of the Parametric method.
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. Table 6.19- Comparison of results - 14-bus system.
[P TS R e e |

14-Bus System

Parametric-OPF Optimization Toolbox

Bus Optimal Cost: 23.9530% Optimal Cost: 24.9091%
5 V [ pg | g8 | D 5 V | pg | ag | b
1 0 1.0260(2.7607]-0.2500{ © 0 1.031312.7587(|-0.2101| ©

2 |-0.1145(1.0084| 0 |03372] O [-0.1129(1.0122] 0O {0.3148
3 |-0.2608|0.9928] 0 [0.4000] O |[-0.2581|0.9960] © |0.4000} O
4 [-0.2122|0.9918| O 0 0 []-0.2096|0.9945| 0 0 0
5 1-0.1821]0.9951} O 0 0 1(-0.1798|0.9982| © 0 0
6 |-0.2887|1.0102] O {0.2400| O |-0.2864;1.0113] 0O }0.2400( O
7 [-0.2734(1.0028| 0 0 0 |-0.2704|1.0029| ¢ 0 0
8 1-0.2734|1.0001} 0 |-0.0154] 0 |-0.2704]|0.9998| 0 [-0.0177 O

. 9 1-0.3049|1.0118] © 0 |0.4173]-0.3019(1.0107| © 0 10.3939

10 ]-0.3077|1.0038| 0 0 0 ]-0.3048|1.0031} 0 0 0
11 1-0.3010}1.0033 0 0 0 }-0.2983{1.0036| © 0 0
12 1-0.3054]0.9957 0 0 |-0.3030|0.9967| O 0 0
13 {-0.3074{0.9918| © 0 0 ]-0.3049|0.9926| 0 0 0
l 14 1-0.3254[0.9841} © 0 0 |-0.3226(0.9839| © 0 0
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Table 6.20- Comparison of results - 30-kus system.

~ 30-Bus System
B Parametric-OPF Optimization Toolbox
w Optimal Cost: 27.8658% Optimal Cost: 27.8683%
8 v Pg | gz b 8 v pg | q¢ | b
1 0 {1.0500(2.8449(-0.2509f 0 0 (1.0500{2.8285/(-0.2529) 0O
2 |-0.1090}1.033210.1838|0.5000{ 0 1-0.1083]1.0334/0.1992}0.5000| ©
3 ]-0.1502(1.0168] O 0 0 |-0.1497|1.0169} O 0 0
4 |-0.181411.0095| 0 0 0 1-0.1808;1.0096| © 0 0
5 ]|-0.2668}1.0055] 0 |0.4000| O |-0.2660|1.0057| 0 |04000| O
6 |-0.2125|1.0057| © 0 0 |]-0.2118]1.0058 0 0 0
7 }-0.2440{09978| 0 0 0 |-0.2433|0.9980 O 0 0
8 |-0.2259|1.0064] O |[0.4000| O }-0.2253711.0066] 0 |0.4000| O
9 1-0.2706(1.0163 0 0 0 1-0.2700|1.0163 0 0 0
10 |-0.3013|1.0069| 0 0 |0.1900}-0.3007|1.0069| © 0 10.190
11 |-0.2706|1.0473| O }0.1559| 0 |]-0.2700|1.0469} 0 |0.1542| 0
12 -0.2886(1.0153| 0 0 0 |[-0.2880{1.0154{ 0 0 0
13 |-0.2886}1.0474] © 10.2400| 0 ]-0.2880|1.0474| O 0.2400] O
14 |-0.3052|1.0003| © Y 0 |-0.3046]1.0003| © 0 0
15 |-0.3068|0.9960! 0 0 0 |-0.3061{0.9961| O 0 0
16 ]-0.299211.0043| 0 0 0 |-0.2986]1.0043| © 0 0
17 }-0.304611.0006| O 0 0 |-0.3040]/1.0006] © 0 0
18 |-0.3180(0.9872| 0 0 0 |-0.3174]09872] 0O 0 0
19 1-0.3210(0.9853| 0 0 0 1-0.3204|0.9853| © 0 0
20 |-0.317210,9899| 0O 0 0 |-0.3166]0.9899] © 0 0
21 }-0.309710.9938} 0 0 0 ]-0.3090)0.9938| © 0 0
22 1-0.3094|09943| 0 0 0 [|-0.3087|0.9943} 0 0 0
23 |-0.3136(0.9859{ © 0 0 |-0.3129{0.9859| O 0 0
24 |-0316110.9811| O 0 ]0.0430]-0.3154|0.9811| © 0 ]0.043
25 ]-0.3074(0.9773} © 0 0 1-0.3068|0.9774] © 0 0
26 ]-0.3154(09589| 0O 0 0 |-0.3147|0.95%01 O 0 0
27 |-0.2972(0.9839| 0 0 0 |-0.2965|09840| 0 0 0
28 -0.2236(1.0023| 0O 0 0 ]-0.2229(1.0024] © 0 0
29 }-0.320410.9632| 0 0 0 ]-0.3198{0.9633| 0 0 0
30 |-0.3372|0.9512| © 0 0 |-0.3365|0.95137 O 0 0
__L““_
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6.5 Conclusion

The Parametric-OPF approach proved to be a flexible and reliable method. For
Phase I, in spite of the larze computational times required, the method enables the
resolution of the OPF problem without the recourse of numerous heuristics to find the
optimal feasible set. The method was able to find the optimal solution of different test
systems, including a very nonlinear network and could track a load curve efficiently
during an interval of time. In all cases tested, the optimum did not depend on the
mitialization, which is a good measure of the reliability of the approach. Although, for
some cases the Parametric-OPF was not able to solve the problem, changes in the strategy
to find the optimal active feasible set or changes in some initial parameters enabled the
finding of an optimal solution (when a single optimum exists). The many difficulties
associated with the optimal operation of a generation-transmission system are easily
visualized with the parametric approach, specially the occurrence of multiple solutions or
unfeasible cases for the OPF problem. Since these difficulties can be differentiated,
separate solutions can be proposed for each one, in this way augmenting the reliability
of the method. However, it is important to realize that some of the difficulties existing in
the parametric approach are inherent in the OPF problem itself and their resolution will
benefit other OPF methods. Some of the difficulties that were highlighted by the
parametric method are closely related to the optimal operation of a power system ( for
example, the loss of optimality or structural stability during the load tracking ), and wne

successful adoption of a on-line OPF package depends heavily on their resolution,

Because of its high computational time, the present implementation of the method
is not suited to be used in large systems. A more powerful version of the Parametric-OPF
will certainly depend on the usage of 2 faster and more intelligent strategy to find the
optimal active set. The challenge here is 10 conceive such a strategy without recourse to
heuristics, which could compromise the positive characteristics of the method (namely,
the ability to differentiate the various causes for failure and to provide a good
visualization of the optimal behaviour of a generation-transmission system). In addition
to this necessary improvement, the development strategies for resolution of the critical

points are also crucial, even more so if we think about on-line applications to track a
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varying load. This represents a meaningful change in the present way of studying the OPF
problem. Nowadays, researchers are mostly concermned with a fast solution of the problem
for a fixed load and very little attention was given to the fact that the load varies with
time and well posed problems can become unsolvable because of these changes in the
system load ( unsolvable either because of the inexistence of an optimum or the
inexistence of a feasible solution that can be attained without drastic changes in the
control variables ). This is in fact the meaning of the critical points: the loss of optimality
or local feasibility that can occur due to changes in the total load. On-line

implementations of an OPF method must be able to deal with such situations.

Even though the Parametric-OPF was not used in real size systems, the tests made
proved that the approach provides a very good understanding of the optimal steady state
behaviour of a power system. The studies made showed the potential benefits of the

optimal operation of a power system in normal operation or considering line outages with
or without FACTS devices.

Finally, the tests made with a different optimization method in two different
networks validate the optimal solutions provided by the Parametric-OPF.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

7.1 Introduction

This thesis has presented a first implementation of a generalized parametric
optimization method to solve the full nonlinear OPF problem. The parametric approach
has the characteristic that it can generate a set of optimal solution trajectories rather than
a single solution. The main motivation for the use of such an approach was to analyze the
behaviour of the optimal solution trajectories during the optimization process, This study
showed that, besides providing an innovative means to solve the OPF, the parametric

approach also gives a completely new understanding of the problem itself.

The parameterization embeds the OPF model into a broader class of problems
characterized by the range of variation of the parameter. Using this formulation, the
behaviour of the optimal solution with respect to a change in any parameter existing in
the model can be studied. As a direct consequence, a formulation of the OPF problem
valid for both fixed or variable load was possible. In addition an algorithm which can be
used in both cases was implemented. Generally speaking, one could study the behaviour
of the optimal solution with respect to any parameter of the OPF with basically the same
algorithm.

204
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7.2

thesis:

Summary of Results

The following are the main results obtained from the research performed in this

The parametric approach enables the solution of the OPF problem (in principle)

starting from any initial solution and permits the exact tracking of a pre-specified
load curve.

The parameterization gives us a means of solving the OPF problem by
systematically tracking the changes in the optimal active set by either a binary

search or a linear prediction method.

As a result of the systematic tracking, the approach is less subject to problems of
ill-conditioning of the Newton matrix, W.

In spite of being slow, the Parametric-OPF algorithm is robust. It was tested
successfully in different transmission systems for fixed and variable load and,
when tested for different initial points, the method always arrived at the same
optimum. The results were validated by an optimization‘ algorithm based on

sequential quadratic programming.

The method permits the visualization of the optimum trajectories created during
the solution process, which gives valuable insight about the behaviour of the OPF
solution both for both fixed and variable load. From this characteristic and from

consideration (2) above it follows that:

a The approach permits the identification and prediction of the "critical
points" existing in the optimal trajectories. The differentiation of these
critical points is useful to the identification of unsolvable cases and, in a

more broad perspective, is important for a good understanding of the
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optimal steady-state behaviour of a power system in a varying load

environment.

b. Regions of structural stability could be identified by the method. These
regions may be of great importance in practice because they represent
intervals of variation of & for which there is a continuous change in the

feasible set.

Seme conclusions can be drawn about the behaviour of the optimal

_(')

trajectories: (i) these trajectories are fairly linear between break-points; (ii)
clearly the trajectories of the active OPF subproblem are more linear
compared with those of the reactive subproblem; (iii) this nonlinear
behaviour of the reactive subproblem is mainly due to changes in the
active feasible set and (iv) it is evident that there is a linear vartation of

the OPF variables for a small variation in the system demand.

d. Useful information can also be obtained from the optimal trajectories of
the Lagrange multipliers associated to different variables. The changes in
their trajectories give an idea about the influence of a newly fixed variable
on the "tendency" of other variables to stay at their limits. In particular,
ihese trajectories show the great sensitivity of the reactive subproblem

variables to changes in the active set.

e. The trajectories of the Bus Incremental Costs and of the System
Incremental Cost as a function of the load can also be provided. These
trajectories show that the cost of supplying additional demand depends
both on the total system demand at a specific time and on the location of
this additional load. Moreover, the study of these sensitivities show that
the Bus Incremental Costs proyide more reliable information regarding the

actual cost of supplying additional load at different buses.

6. The fairly linear characteristics of the optimal trajectories between break-points
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7.3

accounts for the good performance of the linear prediction based approach
implemented in this thesis to follow the changes in the optimal active feasible set
throughout the tracking process.

The studies regarding FACTS devices show that they can be important to increase
the loadability limit of a network and also to improve the quality of the optimal
solution.

Recommendations for Future Research

The following are some points that could be investigated to continue the work that

has begun with this thesis:

The CPU time of the Parametric-OPF is still prohibitive for on-line use. To
improve the performance of the algorithm it is important to conceive faster
strategies to define the optimal active feasible set that would not compromise the
systematic search made by the algorithm. In addition, faster solvers for the system
of KT conditions could be tested, perhaps with sparsity techniques designed
specifically for the OPF problem.

A new implementation of the Parametric-OPF in a compilable language is

necessary to enable tests with real-size transmission networks.

The on-line use of this method is also conditioned to the resolution of the critical

points that can occur in the optimal trajectories when the load varies.

The study of critical points might also be important to formulate a sound
theoretical basis for the problem of feasibility of the OPF and Secure-OPF.

There are some aspects of the tracking process still not fully understood. We could
not disprove the existence of "cycling" in the algorithm (i.e., the existence of

variables that continuously are fixed at their limit and subsequently released
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delaying the tracking process ). An investigation of such an aspect is advisable.
Another point that bears investigation is the observed invariance of the optimal

solution given by the method for different starting points.

Until today no attempt was made to represent discrete variables in parametric

approaches. Further research is also needed is this area.

Among the interior points optimization methods being developed today is a
pathfollowing method. Interior points methods have shown a computational
performance comparable to LP based algorithms in the resolution the OPF. It
would be interesting to see the performance of such an interior point pathfollowing

method in the parameterized OPF problem.

Additional studies can also be made regarding the influence of FACTS devices in
the optimal steady-state operation of a power system. New ( more realistic) models
can be tested and more extensive simulations can be carried out to assess the

influence of such devices.



APPENDIX A

FORMULATION OF THE OPF PROBLEM

A.1 Mathematical Model for the OPF Problem

K Network

pg * jag C —
= Sk(vs 6: 4, ¢’ﬂ)

P + jady 5

N

Figure A.1- Power balance at bus k.

Figure (A.1) represents a generic bus k of a transmission system with all "arriving”
and "leaving" power. From this figure, it is easy to verify that the energy balance on bus

k can be represented as

209
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pgk - pdk - pt(.Vsasa’d),xI) =0
8 ~ qdk - qk(Vaasasd)sxl) + bt-V: ={

(A1)

where pg, and qg, are the generated power; pd, and qd, are the connected loads; b,
represents the variable shunt compensator, V and & are the vectors of bus voltage
magnitudes and angles, respectively; a is the vector of transformer taps; ¢ 1s the vector
of phase shifter angles and xl is the vector of variable series reactances.

The Optimal Power Flow calculation optimizes the static operating condition of
a power generation-transmission system. A scalar function is to be minimized subject to
many sparse equality and inequality constraints. The equality constraints represent the
energy balance in each bus of the network ( the basic load flow equations ) while the
inequalities represent limits on the state and controllable variables, as well as on other
dependent variables (e.g., line active flows). Since pg, and qg, are considered free within
limits, in the OPF formulation we can represent both pg, and qg, in terms of the other
variables by using equation (A.1). However, since the OPF is formulated also to optimize
the generation cost, we decided to consider pg, as a decision variable, while using
equation (A.1) to represent the reactive power injections in terms of the other variables

of the system. Considering this, the problem can be formulated in a general form as:
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nb nb nb
Min ¢ =wY cpg) + w3, pg +wy (V;-1)° (A.2)
i=1 inl i=1
subject to
pgi - pd;‘ - p,‘(V’a’a:¢st) = 0: i=ls---:nb (af) (A.3)

qd; + g(V,8,a,0,xl) - V> =0, i=1,.,ng8fx (B) (A4)

98" s q,(V,8,8,0,50) - b,V: +qd; < qg"™, i=1,..,nggnf (o pi") (A5)

P < pL(V,8,8,0,31) < pI™  i=1,,nl  (6™®0™) (A-6)
VP s ¥ s V™ isleanb  (a75) (A7)

™ < b, < b i=1,.,nb CrmR ) (A.8)
PE™ < pg, < pg™™ i=lymmb  (y75y™) (A9)
a™ <a, < a™ i=lu,nl  EPNE™) (A.10)

6 s § < G i=lunl (P00 (A.11)
A<l <A™ =l (@) (A.12)

Where

nb = number of buses in the system;
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nl = number of lines in the system;

nqgfix = number of buses with fixed reactive injection (load buses);

nqgnf = number of buses with free reactive injection;

pg; € R = active power generation at bus i;

pd; € R = active load at bus i;

qd; € R = reactive load at bus i;

b, € R = variable shunt compensator at bus i;

V € R™ = vector of voltage magnitudes;

& € R™ = vector of voltage angles;

a € R" = vector of transformer tap settings;

¢ € R = vector of phase shifter angles;

xl € R" = vector of variable series reactances;

o; € R = Lagrange multiplier associated to the active power mismatch;

B,e R= Lagrange multipliers associated with the reactive power mismatch

at the load buses;

P, P e R Lagrange multipliers associated with the minimum and
maximum limits on the reactive generation;

o 6™ e R Lagrange multipliers associated with the minimum and
maximum limits on the line flows;

™, n™ € R=  Lagrange muitiplier associated with the minimum and
maximum limits on the voltage magnitudes;

Yy oy™ e R Lagrange multiplier associated with the minimum and
maximum limits on the shunt compensators;

YL e R= Lagrange multipliers associated with the minimum and
maximum limits on the active generation;

Erin Eo% e R= Lagrange multipliers associated with the minimum and
maximum limits on the transformer tap settings;

e, ™ e R Lagrange multipliers associated with the minimum and
maximum limits on the phase shifter angles;

1o A e R= Lagrange multipliers associated with the minimum and

maximum limits on the variable series reactances;

c(pg)= aa, pg; + bb, pg’ = generation cost function of bus i.
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A.2 Parameterized Model and Optimality Conditions - Phase 1

A.2.1 Parameterized Model

Let x = [87,V7,bT,pgT,a7,07,x1T]T. The Parametric-OPF is formulated from
the model given by (A.2)-(A.12). To express the parameterized model we first introduce
a Lagrangian function composed only by the equality constraints (A.3) and (A.4). This
Lagrangian is defined at the initial guess (x°, o®, B%), supposing that the active and
reactive bus load vectors for Phase I are pd and qd, respectively:

nb 0 nb nb
= w, Y clpg) + WY pgl + w Y (V) -1)

i=1 i=1 i=l

nb
+ Y allpg’ - pd;- pi(V°,8%a°%¢%1%)] (A.13)

i=1

nggfix
+ Y Bilad+ q(V°,8%a%d%x1) - b (V))?]

i=1

Then the Parametric-OPF model can be defined as

nb nb nb
Min ¢ =w) c(pg) + w3 pg + w) (V;-1)

i=] i=1 i=1

-l ()5 (e

. (e g ag°
iz-;.(ga:]‘ (6¢i]¢' (axl,]xl‘

[(asi-zs?)2 + (V- V) + (b - + (pg, - P8/ V]

(A.14)

-

e

g
2§

nl
b2 M (CRED NCRU x!;)’]}

i=1
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subject to

P8 -pdi - p{(Vyasas¢sxl) -

(A.15)
(1-€)pg/ - pd; - p(V°,8%8%8°x%)] = 0, i=Loynb (a)
+ - bV -
qd, + q,(V,8,a,0,xl) - b,V; (A.16)
(1-€)[qd, + q,(V°,8%a%9%1%) - B)(V)?]= 0, i=1,.,nqgfix (B,)
min
a8 s q(V.8,0,0,5) - bV} +4d, A1)

- (1-€)Agg, < gg™, i=l,..magrf (p7=,pr™)

P < ph(¥,8,8,4,3) - (1-€)Apk, < ™, i=l,,nl (a7,0f)  (A18)

VP2 s V, s V™ i=lunb  (05a0) (A.19)
B < b, < BP= i=l,.mb  (yPEG) (A-20)
PE™ < pg; < P i=lunb  (YRyPT) (A21)
6™ <a s a™ i=l.,nl  (EE (A22)
O < ¢, 5 O i=l,nl (P, (A.23)

™ szl < AP i=l,nl (0,0 (A.24)
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. A2.2 Optimality Conditions

For Phase I, the Lagrangian of the parameterized problem is written

9 = sz c(pg) + sz rs; + “’32 (V,-1y

=1

ooff 888 £Le8) - ()

[ (8, 80 + .+ (b, P20 - -'gz (@ =) + o+ -xtf)*]}
o i=]

‘™Ma

¥
2

...
[

+ !Zl: ai‘pgi_ 'pdl- p,(V,G,a,cb,xl) - (1 "e)[pgio "_Pd‘ _.pi(Vosboaaosd)o!on)]}

nggfix 0 .
+ E Bl[ng+ q;(Vnaaas¢9xl)_ belz - (1- e)[qdj +qi(VO!6°,aos¢°)xID) _bj (V[o)—]l

iul

ngenf min i
o + 3 pFgd,+q(V;8,0,0,5)~bV} ~ggP™ - (1 - €)Agd)]
=1 (A.25)

MAX. -b V2 _ X _ -
+ E: Pi [qd;’fq;(V,ﬁ,a,@xI) Vi~ 98 (1 G)Aqd‘]
=l

’d - -
+ Z: Oim[Plg(Kﬁsdsdhxl) - plimn_(l 'G)Aplgl
i=1
unl
* 21: O?n:[Pli(V,ﬁ,d,d),xI) - pt;nu - (l "G)Apl[]
nb
+;1‘1=}”’“(V, Vo) +):u, (V,-v™) +Z¢, CR >+z:w. (b,-5™)
B i=t
nb

*E‘Y’tm(P& ~Pgi )*EY: (p8,-p8; )+EEJ (a;-a; )"251 (a-a/™)

i= i=1

1
nl
DR (N )+):n, (b~} >+5_:c, (-2 )+21:1 (x,-xi™)

i=1 is]
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First Order Optimality Conditions ( Kuhn-Tucker Conditions )

A feasible point x” = [(3)T,(V), (6D @2 )\ @ ), @V, &)Y (e,
belonging to the set defined by (A.15)-(A.24)) that fulfils LICQ, satisfies the necessary

conditions for optimality if it solves the following system of equations for

v' = [(@) (7, @), @™, (B ()T

Fg Fo Fa Fo Fg Fg I

o (A.26)
38 ' 8V ' ob ’dpg’ 9a’ 3  oal

min, , » . . - - _ ' - _ -
(p:m )'[qd, +q,(6°,V",a%,0°,xI") - b, (V;‘)’ g8 - (1-€)Agg,]=0 =1, mggnf (A2
(p! ).[qd[ +q;(6.sV‘sa.s¢‘5xI‘) _bi.(Vi )2 —qgi _(1 -G)A qg,’] =0
(@7 (P8, V" 0" 4" xI") - pli™™ - (1 - €)ApL] = O
‘ d -1,..nl (A28)
(07 ) [Ph(3"\V",a", 4", xI") - pI'™ - (1 -€)Apl] = 0

AN AR IR

<1,.mb (a29)
@)V -Vi) =0
mh » b'_' - bmin - 0
Wy eh =5 i=1,.,nb (A.30)
W) -5 ) =0
i : ] 0
oFy sl -pet . (a31)
() (pg -pgi™) =
EN@ -ar) = 0
o i=1,.nl (A.32)

G -a; ;) =0
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mithees? - dR0) = @
My (& -4 e tond (A33)
M )P -7 ) =0

moy (- &) = 0
(Y~ ) i=1,..,nl (A.34)
G - ) = 0

Where

(pi .). SO: (oi ) SO a(ni ) 50, (IIJ; ‘). 503 (A.35)
G ) <0, ETD) <0, () <0, (17 <0
(PT™* 20, (67" 20, (x7™) 20, (¥™)* 20,

(¥ ) 20, &) 20, (n; ) 20, (177) 20

(A.36)

and for V o, B
Second Order Optimality Conditions

A point z’ = [x", 0" ] satisfies the second order (sufficient) optimality conditions
if , at z = 2’ the hessian matrix,
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(g P2
35> doaV
Fe Fg &Y
oved ayr OVab
o P2 ¥
abov 8b?
H = 0 0 0
e FL
0add dad¥V
FL Fd
0$od dpaV
Fg P
| 0xl3%  oxIdV

1§ positive definite on the null space of the jacobian J defined as

B ) I
06 oV
99y O9gg 0gy
08 oV  db
J = oqy, Oqy, Oay,
a6 oV b
apl,,,,‘J aplNo
dd av

Fo P P
060a 060 o0daxl
Fe Fg &g
oVoa dVad dvVaxl
0 0 0 0
F& o o o
opg?
0 Fe Fe FL
dag® 0Jdadd Jdaoxl
Fe I ;Y
d¢da j¢* Iaxi
Fg Fd FY
oxlda  0xld¢  axi?]
g -8 _% _dp|
da 0% o
0 g, 0q, 9Jq
da od oxl
0 ano ano anu
da 0¢ ozl
0 aszle(J apan aplNa
da op  axl |

(A.37)

(A.38)

where the index K stands for the set of buses with fixed reactive injection, N, stands for

the set of active inequalities associated with Lagrange muitipliers different from 0 ( for

q(.) this includes all buses with generation at the limit ) and Id is the identity matrix.

Therefore, a point z=(x", v°) satisfies the second order optimality conditions if,

for y # 0 such that
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Jy =0 (A.39)

we have

yTHy >0 (A.40)

A.3 Parameterized Model and Optimality Conditions - Phase 11

AJ3.1 Parameterized Model

During Phase II the system load is supposed to vary linearly with €. For the load
tracking, the optimal solution corresponding to a specific load level d° is used as the
initial solution to track the load variation until the next level d°+Ad° Since the initial
solution is an optimal solution, it is not necessary to parameterize the objective function.
However, to improve the convergence of the Newton method, the parameterized quadratic
term is kept also during the load tracking. Since the parameterization affects the load, all
constraints of power balance on the buses of the system need to be parameterized (this
includes the power balance constraints on the load buses and the limits on the reactive
generation). The active power flow limits, since they do not depend directly on the bus

loads, are not parameterized.

Supposing that the vectors of real and reactive load associated with the initial
solution x° are pd® and qd°, respectively, the Parametric-OPF for Phase II is defined
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nb b b
Min ¢ =w Y c(pg) + w,) pg; + w, ¥ (V;-1)?

i=]

i=l i=1
nb

+ (1 - e){-‘;—" Y [(8;- 89 + (V= ViV + (B, - ) + (pg; ~p8; V]

i=]

i=1

n
+ ZY [0 -aF + @4 ¢ (-] )2]}

subject to

DPg; ~ (pd,-°+eApdf) - p(V,8,a,0,xl) = 0, i=1,.,nb

qd; +eAqd; + q(V,8,a,0,x]) - bV’ =0, i=1,.,nqgfx (B,

ag™ < q,(V,8,a,0,%1) - bV}

+

(a;)

qd; +eAgd] < gg™, i=l,..nggnf (oP™,pr™)

PP < p(V,8,0,0.50) < DI, i=lopnl (61", 6)

Vit < ¥, < V™ i=1,.,nb

b™ s b, < B™  i=1,.,nb

min

P8 < pg spg

min :
a; " <@ sa’ " =

i=1,..,nb

1,..,nl

O s ¢ s 7 i=1,unnl

™ o< xl s 2™

1,1l

(Gt vy

WP )
St i)

EFE™)

™)

(7, o)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A46)

(A47)

(A.48)

(A.49)

(A.50)

(A.51)
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AJ3.2 Optimality Conditions

The Lagrangian of the parameterized problem is written

nb nb b
L = wd clpg)+ szp& + ""32 (V,-1¥
i=1 i=] i=l

i=l

nb ni
+ (1 -e){%z[(é,—ﬁf)%..ﬁ(pgi -pgl V] + ’—2"2 [(a;-al +.. +(xl,-xl,°)2]}
(13

nb
+ Y a,(pg;- 0d) +eApd])- p,(V,8,a,0,31))
=1

i

Z 0 0 2
+ Bilad; +eAgd; + q;(V,5,a,0,x))- bV}
i1

il min 0 0 V2 _ . mmn
+ E p; Lgd; +eAqd; +q,(V,6,a,0,x0) -b,¥V; -qg; ]
= (A.52)

nagf
+ Y o™ [gd] + eAqd; +q,(V,8,a,0,x1) - bV} - g™
i=1

A ) nl

+ 2 o?’“[pl,(V,&,a,d),xl) - Plzmm] + iz-:l ofm[pl,(lf,é,a,d),xl) - Pl.[mu]

i=1
nb . . nb nb i . nb max
* L E VT B m TV - B ET) LT (0 bT)
i=1 i=} - inl
nb . . nb n . ) n max
* e+ 3 v gpe) * L BT (@) ¢ 36T (@)
I= i=1 - =
M =

a nl d - . n max
+ AP + (-9 + X aR ) + g LR CT A e

i=l i=1 i=1

First Order Optimality Conditions (Kuhn-Tucker Conditions)

For Phase II, a feasible pointx* = [(3")7,(V")%, "), (g "), @), @), &)Y
(i.e., belonging to the set defined by (A.42)-(A.51)) that fulfils LICQ, satisfies the

necessary conditions for optimality if it solves the following system of equations for

v = [(«")T, (), @22, (a2, ..., ()T, (2T
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Fe Fo Fg F2 Fe Fe Ia| _ (A53)
95 ' ov > ob ' dpg ' 0a’ 3 ' aaxl

(P7™) (g0, + € Agdl +q,(8°,V°,a" 0"\ x°) - b (V; ¥ -4g™]1 =0

. i=1,,nggnf (AS4)
(0F™"[qd] + eAqd] + g,(8°,V",a",d°\5") - b (V) - gg™1 = 0

(07 [pl,(8",V*,a",4" ") - pli™®] = @

i=1,u,nl (A5S)
(O?u)‘[Pl;{a.sV‘sa.:d’.sxl.) _Pl;mn] =0

Py -V =0
' 70 b (456)
@)V -V ) =0

min, ] min

i )‘ b _bl' ) = 0
() ] i=1,..,nb (AST)
W™ (b, - b™) = 0

Y P - .mm =0
(O ) (w8 -pgi ) el b (A58)

() (pg’ -pgi) =0

@ -a™) = 0
G Y@ -a i=1,.nl (A59)
E™' (@ -a™) = 0

minye 3¢ _ quin, _
Mm; ) (‘bi. ¢; )=0 ie1,nl (A60)
(M ) (d -4 ) =0

&Y @ -y = 0
- i=1,..,nl (A.61)
("?m)'(xli -xl;) =0
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Where

min, » min, « min, o min, «

(p; )" <0, (g ) <0,(m; ) <0, (§; ) <0, (A.62)
@) <0, G <0, (™* <0, T <0

(7™ 20, (6™ 20, (7" 20, ™" 20,

(ED 20, G20, (7 ) 20, (79" 20

(A.63)

and for V C(.i-, Bi.'
Second Order Optimality Conditions

The second order optimality conditions represented by equations (A.37)-(A.40) are
also valid here. Since the parameterized quadratic term existing in the objective function
is the same for both models, the expression of the hessian H and of the jacobian J are the
same for both Phase I and Phase II. The main difference between the two models appears
on the first order optimality conditions. These differences become clear if we derive the

expressions existing in equations {A.26) and (A.53).
A.3 Derivatives of the Lagrangians of Phase I and Phase II

The differences between the expressions of equation (A.26) and (A.53) are due to
the parameterized term linear in x that appear in the objective function during Phase I,
The expressions of the derivatives shown below are also valid for Phase II if the terms
in & are disregarded.

A.3.1 First Order Derivatives

For Phase I, the first order derivatives existing on the optimality conditions
(equation (A.14)) are:
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3 Agefis
L I AR R 5 P 1 ”‘cva,a,¢,x.t) > B, (Va,a,¢,xl)

aV = 9V i=1
nagnf q, min
“2Bb ) e (Mba b - 200hY,
i (A.64)
"B aq, max X mapz
+ Y P ==(V,8,8,0,x) - 20, bV, + —(V,8,a,0,x0)
= av, = 9V
n
+ E oy W(V’ sy §,xl) + nk - (1 —e{_ag = W(Vt Vf)]
i=1 k 1:
oY w o dp iV
= - . V,8,a,é,xl ,
55, g“'aa( 18 buxl) + 'Zl: ﬁ,aak(Vﬁa,tbxl)
& i 94; & w94
+ Z P: ———f-(V,ﬁ,a,d),xl) + E l(V 6 a!¢!xl)
i1 06, Tu1 0o (A65)
nl P nl ap )
L ‘(Va a,0,3) + 3 o= '(Va a,,x1)
i=l i=1
- (- e)[a&“’0 w(ak-ﬁﬁ)]
k
3B, = - VZ ~ P V2 :me: i YUY
k ~ (A.66)

-(1- e)[—-— - w(b,,-bf)]
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dc
ﬂ = ___(pgk)+w2+ak+n +*rf“
opg;: ng (A.67)
- -9 2 - wipg, - ped)
opg,
. nb 6 nRfix oq.
—_— = - V&, . ,.'d ‘__l' ’6’ ] ’l
min @Ii i
P Y g (badaD + 3 ‘“‘a" (V:8,0,0,x)
=1 i=1 (A.68)

i
il i=1

2 min p ml.'la i
+ Y 9 ‘(Va a,d,31) + 2: 5o (1:8,6,6:3D)
a,

P B - (1 e)[—aa-iio - w(a, - a,,)]

k

ag___” op L& 9
nf nqgnf ,
+ ’qi p:-nm(V,a,a,¢,xl) + E p?n:_dq:'(via!a!¢lxl)
i=1 =1 k (A.69)

ol d
. 2 Umin p I(V 5 a,¢,xl) + Z a:nn_a%li(y,b’a’¢,xl)
k

i
i=1 i=1

oL

5. w(¢t-¢2)]

R -Ueﬁ
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ab

2 - - Ea.a:}‘(vam,xl) 3 oL (K800
k i=1 i=1
< id dq, nggnf 3
" 3 B (PaadaD « 3 i o (Rbada)
- ! (A.70)
+£3°"’h p‘(Vﬁatbxl) f) Fae p'(Va &, x1)
e i 'h ¢ £ axlk 'y
trp g - (1w )[ago - w(xl, - 1)
k

A3.2 Second Order Derivatives:

The second order derivatives appearing in (A.37) for both Phase I and Phase II
are;

FL 2 Flap(V.d a,d),xl)] ne P (B,q;(V,8,a,$,x1)]
av.y, - des@w)- X vy, R FTA7Z

i=1

5t U)K U WAL
i=1 aVkVI i aVkV,

i=1

(A.71)
nl

RN Cw . CALEED N AL ANAED)
A7 f 3V, ¥,

i=1

- diag(2.B,.b,) - diag(2.p5 "-by) - diag(2.p7"b,) + (1 -€)w



FORMULATION OF THE OPF PROBLEM 227

FL E‘: Plap(V 8,040 "}‘35" F18,4:(V.8,8,9,x1)]
98,9, P 08,9, ~ 88,5,
S AU S e TG
= 98,5, = 35,3, (A72)
3 Flo; "ph(V;8,a,0.30)] A ATIED)
= 88,9, = 85,3,
+ (1l -e)w

Fe )"i Plap(¥,8,0,6,30] "‘)’:‘" F1B,9:(V,0,a,0,x1)]
V.5, = 3,3, - av,s,

s PpTg (V,8,a,0,2)] "B E[p™q.(V,5,a,,3D)]
+ E +

(A.73)

= av,5, Zl: av,3,
3 P P50 | o FIoph(Y:b,,6040)

o v, 5, o V.8,
PL L dig2p,V)) - diag2pl™V,) - disg2pf"V)  (AT4)
av,b,

i% =(1-¢€)w (A.75)

ab;

2
F2 o, a8 g (A.76)

apgs dpg}
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2L _ & Plep (V8,003 +"‘§82[Biq,-(V,5,a,¢,xl)]
da,q, i1 0a;q, i da,a,

) Mff PLprg,(V,8,8,0,xD)]  "EY F[p™g,(V,5,8,$,x])]
1

da,a, >

{ i da,a, (A.77)
» 3 FOTP3,00300 | o o ph (V5,004

i1 da,q, =1 da.a,
+ (1 -e)w

P9 _ ‘\"_*: P o2 (V,8,0,430] "}'3:"“ &P 18,4,(V,5,6,¢,x1)]
aakV, el aa,..V, i=1 aale,
VE Pl a:(V,8.0,0.20 "§9’ FIp7™g,(V,5,0,,xD] A78)
i1 da,V, i1 da, ¥,
, 3 ZlTP e A ATLIED
P da.V, i=l 9a,V,
Fe i": Flop(V,8,6,0.301 "‘f &[8,4,(V,8,8,0,2D)]
aal.a, i=1 aakﬁ, i=1 aakﬁl
| Pl g (Vb,a0al)] B Floi"(%,8,0,0:) &719)
iwl aaka, i=1 aakb,

. z"’: &0 pl(¥,5,a,0.50] f: F[o™pl (Y, 8,8,,31)]
i=1 aa,‘ﬁ,

i=l aa,:a,
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FL E &Flap,( /,5,6,4:30)
ad)kd)) i=1 a‘t’kd’l

Y

e F[B.q,(V,3,a,0,x1)]

= 9,0,
VE Flor g, (V80,4301 TY Flei"a,(V:5,0,4,30)
i=1 (_3¢k¢'l i=1 a¢k¢1 (A.80)
o min max
3 F Lo "pl(V,8,8,0.a0] i A AN ED)
i=1 a(bkd’[ i=1 a¢k¢g
+ (1-e)w
L _ E Flap(V:6,8,0,301 ""iﬁ‘ &18,9,(¥,3,8,4,x1)]
ad)kV; i=1l acka] i~ ad)kV;
min max
+ % azl:pi Qi(Kaias¢sxl)] + ng al[pi q.(Vlbia’¢st)] (A.81)
i=l ad)kVJ i=l a(ti;
¥ Gl A W AT
i oV, i1 94,V
Fe i”: Plap(V:5,8,0,3D1 "“f" F1p,9,(V.8,6,0,x1)]
ad)kﬁ, i=1 a‘bg-a; =1 a¢k61
s o AL DI Gt TGATT D) (A.52)
i=l a¢k51 i=l ad)tﬁ,
¥ P Lo PV, 8,803 5~ FLoPh(%,3,a,4,30)
i1 84’1;61 i1 a‘bkat
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oxL.V,

axl. 6,
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oxl,a,

& Plap,(V,8,a,0,50)]

- g 9,4,
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. nggnf az[p:_ninqi(v,a,a,¢,xl)]
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, o FL=pl(V,8,8,4.3])]

; oxl 3,

"EE P P,q,(V,8,8,,x1)]

+
,-z.l: oxla,

=Y Plo; q,(V,8,6,0,xD)]

g dxl,a,
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(A.83)

(A.84)

(A.85)

(A.86)
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- A 7 AL O A CR TG )
axlkcb, i=1 axlkd)[ i=1 axlk¢l
S G A0 R <A U AL D)
i=1 axltd), i1 ‘3-x1k¢1
3 Pior ph(V,8,a,¢)] 3 TPV, 80,00
i=1 axl ¢, i=1 oxl. ¢,
Fo i": Flap(V,8,a: 6,301 "‘f’ F[B,4:(V:8,a,0,31)]

dxlxl, p oxlxl,
" Plo; g, (V,0,0,0.2D]

u»>

i=1 axl,-‘.tl,

o3 P10 ph(V;8,8,4,3)]
i=1 axlk;cl,

+ (1l ~e)w

>

=1 axlkxll
W 62 [p:qui( V; aaas(b!xl)]

>

i=1 axl,,xl,
M Flaypl(V,5,8,0,x0))

i=1 axl,‘xl 7

The remaining second order derivatives are zero.

(A.87)

(A.88)



APPENDIX B

MATRIX FORMULATION AND DERIVATIVES

B.1 Power Injections and Power Flows in Matrix Form

The current on the line between two busses k and |, with voltages VC, and VC,,
of a system (Figure B.1) is given by

Figure B.1-Line current.

IC,, = yb,(VC, - VC) + j.b:? VG, (B.1)

where

232
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VC, = V,. .0
e = Ve U5y (B.2)
VG, = Vi.exp(j.3))
For this line, the complex power flow is, thus, represented by
S, = VC,ICy, = VC, 3l (VC, - VC;) - j.—21- VC VG b (BI)

If an ideal transformer is connected between busses k and 1 (Figure A.2), the
current starting at each bus will be

K VG 1: t VCll
ICkj Yy IC,

Figure B.2- Transformer current.

ICH = Itulz.ylﬂ.yck - t;"ylkl'VCI
IC’ == tkl'ylkl'VCk + ylk,IVC‘

(Bd)

where
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ty = Gi.exp(j.dy) (B.5)

Since IC,; is different from IC,, only one is chosen to be monitored during the
solution of the problem. Here, the current IC,; was chosen. The power flow through this

transformer will then be

1
X Yia \ .
Yiw |, .
.

— —
ICk
1 nb
ﬁy,‘ Yiob /

sh
Y= X j %eb_

m € Qy
Figure B.3- Bus current injection.
The current injection at a bus k (Figure B.3) is given by
nb nb
IC,=VC.(3+ ¥ W)+ ¥ (- y,,)VC, (®B.7)

m=1,m+k m=1, mrk

Using (B.7) a expression for the vector of current injections IC and an expression
for the vector of complex power injections S can be derived. To represent the complex
power injection in matrix form, let us first define the admittance matrix Y as
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k 1

[ .1 ,sh .

k (I, Py, + Jo=sbim) - tg¥l
M;ﬁ ki k 5" km k1Yt (B.S)
Y =
.1 s

I -t't'yl,k s ;Q (yl‘m +J.E-bh,’:)

| mes; ]

where £, and €, are the sets of all busses connected to bus k and 1 (excluding bus k and
1), respectively.

Using Y, and defining VC as the vector of complex bus voltages, the vector of

complex power injections is given by
S = VC.diag(IC*) = VC.diag(Y*.VC*) = diag(VC).Y*.VC" (B.9)
where
VC = diag(V).exp(j.8) = diag(exp(j.5)).V (B.10)

and where V and & are the vectors of voltage magnitudes and angles, respectively.

To represent the complex power flows on lines or transformers in matrix form,
first we define the bus-line incidence matrix A, the "starting bus-line" incidence matrix

Af and the "ending bus-line" incidence matrix At respectively, as
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1 if i =ifrom(j)
A= [A,.j] where A;.1-1 if i=1ito(j)
0 otherwise

| if i i {B.11)
Af = [Af;] where Af; = {0 :,J:h:m-,;;fomm
1 ¥f &= ito(j)

At = [Ag)] where At,-j = { 0 otherwise

Let b™ be the vector of line shunt reactances, Yl the vector of lines and
transformers series admittances and t the vector of complex transformer ratios. Using

matrices Af and At, the complex power flows through lines are expressed

S! = diag (AfT.VC).diag (¥1*).diag[Af - At)T.VC*
(B.12)
- j.% .diag (Af7.VC).diag (b°*) (AfT.VC")

Whereas the power flow trough transformers are
SI = diag(Af™.VC).diag (¥1°).diag (1).[Af.diag (+*) - ar)".vC*  (B13)

where

t = diag(a).exp(j.¢) = diag(exp(j.9)).a (B.14)

with a and ¢ being the vectors of transformer tap settings and phase shifter angles.

Since the second term of equation (B.12) affects only the reactive power, the

active power flows both through lines (with t=1) and transformers are represented in

matrix form as
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Pl = real {diag(AfT.VC).diag(Y1").diag(t)[Af.diag(s ") -Ar]T.vCc*}  (B.1S)

If, in equation (B.8), the transformer ratios t,, are all equal to 1, Y is a symmetric

matrix and can be expressed in terms of the bus-line incidence matrix A:

Y = A.diag(YD).AT + -;-.diag(j.abs(A).b”') (B.16)

When the transformer ratios are complex, Y is no longer symmetric. Nevertheless,

it can still be represented as a matrix multiplication of the form
Y = [Af.diag(t*) - Atl.diag(Y1).[Af.diag(t) - At]T + %.diag(i.abs(A).b"') (B.17)

Equation (B.17) can substitute Y in equation (B.9), giving an "extended"

expression for the complex power injections:

S = diag(VC).{[Af.diag(t") - At).diag (YI).[Af.diag(t) - At]T

1 (B.18)
+ E.diag(i.abs(A).b"')}‘.VC‘
or
S = diag(VC).{[Af.diag(t) - At]l.diag(Y1*).[Af.diag(t") - Af]T
(B.19)

- Ldiag(j.abs(A).b)}.vC*

This equation will be useful when obtaining the derivatives of S with respect to the

transformer ratios and series reactances.
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B.2 Derivatives of the Expressions of Complex Power Injection

B.2.1 First Order Derivative of S

The vector of complex power injections, S, can be represented concisely in terms
of the system admittance matrix and the vector complex voltages. This representation is
used here to obtain the first and second derivatives of S with respect to the voltage
magnitudes and angles. However, the derivatives of S with respect to the transformer taps,
phase shifter angles and series reactance can be obtained in a matrix form only by using

the "extended" expression for S of equation (B.19).

The real and imaginary parts of the derivatives of S with respect to the decision
variables are the expressions of the derivatives of the active and reactive injections

appearing in the optimality conditions of the problem.

The derivatives of the complex voltage vector with respect to its magnitudes and

angles are, respectively,

Ve _ & ; B.20
37 diag(exp(j.5)) (B.20)

%C- = j.diag(VC) (B.21)

Thus, the first derivative of the complex power vector with respect to the voltage

magnitude vector is expressed as

s _ . ve* | . ave
95 \Y",  yen, Y€ (B.22)
T diag(VC) 37 + diag(Y".VC") 37

or
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s _ . . "
oy = diag(VC).Y".diag(exp(~j.3)) (B.23)

+ diag(Y*.VC").diag(exp(j.3))

In the same way, the first derivative of the complex power injection vector with

respect with the voltage angles vector is given by

%:" = j[diag(Y".VC*).diag(VC) - diag(VC).Y".diag(VC*)]  (B:24)

The derivatives of t with respect to the transformer tap settings and phase shifter
angles are, respectively,

Bt

5,  dag(exp(j-9)) (B.25)
and
% = j.diag(t) (B.26)
Then, from (B.19),
S—i - “""S(VC)-ga;llAﬁdfas(tl - Af].diog (Y1) [Af.diag(¢") ~ Af]T.VC"} (B27)

or

%j. = diog(VC).| Af.diag (Y1"){diag (AfTVC*).diag (2.a)

(B.28)
- diag(AtT.VC").diag (exp(j.$))]

- At.diag(Y1").diag{Af".VC").diag(exp(-j.$))}

And, in the same way,
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as

3% dmg(VC)—&;{[Afdmg(t) - At). diag(¥1*).[Af.diag(t*) - A)T.¥VC*} (B.29)

or

gg = j.diag(VC).[At.diag(Y1")diag (AfT.VC").diag (t*) (8.30)

- Af.diag(Y1").diag (At T.VC *).diag(1)]
The conjugate series admittance of a line kl of the network, yI',,, is

. rl .o
Y= — . 3 73 - 2 (B.31)
TIH "'x"ﬂ rlu +xlu

where rl, and x), are the resistance and series reactance of line i. Thus, the derivative of

yl" will be

ayly 2yl y rig - xly (B32)

oxl,, (riZ +x12)? . (rlZ +xI%)?

And the derivative of § with respect to x1 will be

_a_sl = diag(VC).[Af.diag (1) - Ar).
a (B.33)

B.2.2 Second Order Derivative of S

Since the first derivatives are matrices, the second derivatives would be tensors.

To facilitate their expressions, these derivatives are obtained in terms of an arbitrary
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multiplicative vector k. Following the same steps as above we have

Ptk . 8
av*? oV

+ digg(Y".V").diag (exp (j. 3)I".k}

{[4iag(VC).Y".diag(exp(-j.5))

or

F(STk) _

o7 diag (exp(-j.8)).(Y")".diag (exp(j. d)).diag (k)

+ diag (k).diag(exp(j.8)).Y".diag(exp(-j.0))

In the same way,

(B.34)

(B.35)

i %Sazk) = -2 (). diag(¥".VC).diag (VC) - diag(VC).¥".diag(VC )"} (B36)
or
a%‘fz'—"l - _ diag(Y".VC").diag (VC).diag(k)
+ diag(k).diag(VC).Y".diag (VC") (B37)
+ diag(VC").(¥*)".diag (VC).diag(k)
- diog[(¥"Y".diag (VC).k].diag (VC")
And
PSTh) _ 9

380V oV

or

{j.[diag(Y*.VC*).diag(VC) - diag(VC).Y" .diag(VC )]k} (B-38)
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T
a;(: a.;f) = j.diag(Y".VC").diag(exp(j.3)).diag (k)

+ j.diag(k).diag(VC).Y" diag (exp(-j.5)) (B.39)
— j.diag(VC*).(Y ") diag (exp(j.8)).diag (k)
- j.diag[(Y*) .diag(VC) k] .diag (exp(-j.3))

To obtain the second derivative of S with respect to V and a, we first substitute
Y from equation (B.17) in equation (B.23). The second derivative is then represented

y—aﬂﬁ% - O {{diag(VC).[Af. diag(¢) - At].diag (V1)
a da

(B.40)
[Af.diag (") - At} diag(exp(-j.8)) + diag{[Af.diag(t) - A1)
.diag (Y1*).[Af.diag(t*) - A)1.VC* L. diag(exp(j.8)) } Tk }
or
PSR _ .
~3v3a diag (exp(-j.0))
-{[4f.diag(2.a) ~ At.diag (exp(j $))].diag [Af".diag (k).VC] (B.41)

+ Af.diag (exp(-j.$)).diag [At ".diag (k).VC]}.diag (¥1°)
+ diag(exp(j. d)). diag (k). { [Af.diag(2.a) - At.diag(exp(~j.9))]
.diag(AfT.VC")- Af.diag (exp(-j.$)).diag(At T.VC *) }.diag (¥1")

Following the same steps, the second derivative of § with respect to V and ¢ is

F(ST.k)
ovVad

.[Af.diag(t") - At.diag(t)].diag (¥1").diag[Af".diag (k). VC] (B.42)
- J.diag (exp(j. 8)).diag (k). Af.diag (At ".VC*).diag (t).diag (¥1")
+ J.diag(exp(j.3)).diag (k) At.diag (Af". VC").diag(t*).diag(Y1")

= J.diag(exp(-j.5))
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. Substituting (B.17) into equation (B.24), the first derivative of S with respect to
d can be used to obtain the expression of the second derivative of S with respect to § and
a:

2eqT
TR - 2 (1} diag(VC).{[4f.diag(t") - Ar).diag (11")
ddda da (B.43)
[Af.diag(t) - At]T }".diag(VC*) + diag{ {[Af.diag(r*) - Af] '
diag (YI").[Af.diag (1) - At]%. VC}*}.diag (VC)} Tk}
Giving
F(Sk) -
0dda
- j.diag(VC ") {[Af.diag(2.a) - At.diag (exp(j.0))). diag [Af". diag (k).VC] (B.44)

- Af.diag(exp(~j.d)).diag[AtT.diag(k).VC]}.diag(Y1")

. + j. diag(VC).diag(k).{ [Af.diag (2.@) - At.diag(exp(-.j. d))].diag (AfT.VC")
- Af.diag(exp(j.$)).diag (At T.VC")}.diag (Y1")

In the same way, the second derivative of S with respect to 6 and ¢ can be
obtained by substituting (B.17) into (B.24) and deriving for ¢:

F(STh) _
3600
{ diag(VC).| Af.diag[At T.diag (k). VC).diag (¢ ")
- At.diag[AfT.diag (k). VC).diag(2)}
+ diag(VC).diag (k). { Af.diag (At T.VC*).diag(t)
- At.diag(AfT.VC*).diag(t*)} } .diag(¥1")

(B.45)

Finally, the second derivatives of S with respect to a, ¢ and a & ¢ can be obtained
. directly from the first derivatives (equations (B.28) and (B.30)):
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CACRY I
da* (B.46)

diag(2).diag (Af*.VC*).diag(¥1*).diag[Af".diag(k).VC]

"] T

%‘%‘)ﬁl - j.diag (AFT.VC*).diag (Y1").diag[At . diag (k). VC].

(B.47)
diag(exp(-j.d)) - diag(AtT.VC*).diag(¥1").
diag [At 7. diag(k). VC).diag (exp(j. $))
and

Qz-(gg-zﬁ = diag (At%.VC*).diag (¥1").diag [Af”. diag (k). VC].

¢ (B.48)

diag(t) + diag(AfT.VC*).diag(¥1*).
diag[At7.diag (k).VC].diag(t")

The second derivatives of S with respect to xl and V, §, a and ¢ can be obtained
from (B.33). Then, for V,

F(STk) _d
oxlay oV

{{ diag (VC).[Af.diag(t) - At).
(B.49)

T
diag{[diag(t').AfT-AtT].Vc'}.diag(%’;’T']} k}

or

Ty _ o fom), o
axlav d’“g( axl ]‘{d’“gildwg(r )AfT - A7) VC* )

[diag(t).AfT - At T.diag (k). diag (exp(j. 5 )) (B.50)
+ diag { [diag (£).AfT - AtT].diag (K).VC).
[diag(2*).AfT - At T).diag(exp(~j. 8))}
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For 8,

FSTE) o’
TR W

[diag(t).AfT - AtT}.diag (k).diag (VC) (B.51)
- diag { [diag (¢).AfT - At T\.diag (k). VC}.
[diag(t*).AfT - AtT).diag(VC *)}

] {diag {[diag(¢*).AfT - AtT].VC"}.

For a,

P(ST. .
a(ja: - d’“g(aanz
diag[Af7.diag (k). VC].diag (exp(j.$)) (B.52)
+ diag{[diag(¢).Af” - At "}.diag (k). VC1.
diag (Af™.VC").diag (exp(-.j.$))}

]{dmg{[dmg(t VAT -AtTLVC "}

And for ¢,

> [] {diag {[diag(t").AfT - AtT].VC"}.

diag [Af7.diag(k).VC).diag(t) (B.53)
- diag { [diag (t).AfT - At T].diag (k). VC}.
diag (Af7.VC").diag(t*)}

The second derivative of S with respect to xl is a function of the second derivative

of YI' with respect to xl. From (B.32) we have
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o) ., | 4 1
oxl} (rlf + 352 (rl} + xE)? ®:54)
) 2.(r1% - x1%) 1
- Jj-2.xl, 2” 2” *— >
(rly + xlyY  (rly + xly)?
And, from (B.33),
T
QZLST;Q = diag{[diag(t*).AfT - AtTLVC"} .
ox (B.55)

diag { [diag (£) AfT - AtT].diag (k). VC} (-iaz—a(%—)]
X

B.3 Derivatives of the Power Flows

The active power flows through lines or transformers can be represented by the
general expression (B.15). To obtain the expression of the derivatives, first we define

St = diag(AfT.VC).diag(Y1").diag (t).[diag(¢t*).AfT - AtTL.vC*  (BS6)

The real part of the derivatives of Sl, with respect to the state variables are the

expressions needed to compute the optimality conditions for the real power flows.

B.3.1 First Order Derivatives of the Power Flows

The first derivatives of S, are:
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asl,

v
diag(AfT.VC) diag (¥1").diag (). [diag (¢ *).AfT - At T}.diag (exp(-j.5))
+ dicg(¥1°).diag(t).diag { [diag(t").AfT - AtT).VC" ).Af7.diag(exp(j.5))

(B.57)

asl,

— L = - idi T ; ). di ] VAT -AtT].di )
- J.diag(AfT.VC).diag (Y1*).diag(t).[diag(¢*).Af" - At 7].diag (VC )(B,ss)

+ j.diag(¥Y1*).diag(t).diag {[diag(¢*).AfT - At ). VC " }.Af".diag (VC)

sl _ . g VI dinot AFT VN
—5 = diag (Af".VC).diag (Y1").diag (4f".VC").diag 2.a) (B.59)

~diag (AfT.VC).diag(Y1*).diag (At T.VC*).diag(exp(j.9))

aiél = Pj-diag(AfT,VC).dmg(Yl‘)'dmg(AtT' VC‘).diag(t) (B.GO)

and

ast, . .
— = diag(4f".VC).
xl (B.61)

diag (t).diag {[diag (¢").AfT - At") VC'}'diag(%%]

which is a function of (B.32).
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B.3.2 Second Order Derivatives of the Power Flows

The second derivatives of Sl, are:

PSITk
(S4 k) _ diag(exp(—j.8)).[Af. diag(t*) - At].diag(t).
ay? (B.62)

diag(Y1").diag(k).Af".diag(exp(j.8)) + diag(exp(j. 5)).4f.
diag(k).diag(¥1").diag(t).[diag(t").Af T - At ").diag(exp(-j.3))

Pk o .
= diag(VC *).[Af.diag(t") - At].diag(t).

98%
diag(Y1*).diag(k).Af".diag(VC)- diag {[Af.diag(t") - At]. (B.63)

diag(t).diag(Y1*).diag (AfT.VC).k}.diag(VC") + diag(VC).
Af. diag(Kk).diag(¥1*). diag(t). [diag(t *).AfT - At T).diag(VC")
-diag { Af.diag(k).diag(Y1").diag(t)diag(t").Af T - AtT1.VC " }.diag(VC)

T
Eza&:%:;l == j.diag(VC*).[Af.diag (") - At].
diag(t).diag (Y1").diag (k).Af".diag(exp(j.5))
- j.diag {L4f.diag ") - Ar).diag (¢).diag (11°). (B.64)
diag (Af.VC).k}.diag(exp(-j.8)) + j.diag(VC).
Af.diag(k).diag (Y1*).diag(2). [ diag(¢*).AfT - At 7).
diag(exp(-j.8))+ j.diag {Af.diag(k).diag(Y1").diag(t).
[diag(t*).AfT - AtT).VC* ).diag(exp(j. )
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FSHE)
da® (B.65)

diag(2).diag (AfT.VC*).diag(Y1*).diag (Af". VC).diag (k)

P (S k)

329V diag(2.a).diag (AfT.VC*).diag(Y1").diag (k).Af".diag (exp(j.5))

. (B.66)
+ diag(2.a).diag(Y1").diag(k).diag (Af*.VC).Af".diag (exp(-j.5))

- diag(exp(j.d)).diag (At T.VC").diag (Y1°).diag (k). Af".diag (exp(j. 5))
- diag(exp(j. §)).diag (¥1*).diag (k).diag (Af".VC).At".diag (exp(-j.5))

CZCE e .
~55 - J-diag(2.a).diag (Af".VC").diag (Y1").diag (k). Af". diag (VC)

- j.diag(2.a).diag(Y1*).diag(k).diag (AfT.VC).Af".diag (vC*) (B.67)
- j.diag(exp(j.$)). diag (At .V *).diag (Y1*).diag(k).diag (k).Af".diag (VC)

+ j.diag (exp(j.d)).diag (Y1 *).diag (k).adiag (AfT.VC).At T.diag (VC™)

PSR , T ey . B.68
o diag (AfT.VC).diag(Y1°).diag (At 7. VC " ).diag (k).diag (t) (B.68)
F(SIk)
v (B.69)

- j.diag(r).diag (At T.VC").diag (Y1*).diag (k).Af".diag (exp (j.3))
~j.diag(t).diag (Y1*).diag (k).diag (Af".VC).At . diag (exp(-j.3))
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3o T
TNY) - diag(s).diag (4s™. VC*).diag (V). diag (k).
9$.0.3 (8.70)

AfT.diag(VC)- j.diag(t).diag (¥1*).diag (k).
diag (AfT.VC"*).At". diag(VC")

CA OIS o
6¢;a = -j.diag (AfT.VC).diag(Y1*). B.11)

diag (At 7. VC *).diag (k). diag (exp(J.$))

F(SILE)

= di - T 3s - _
sy " es(ex (- 8)[Af . diag(s") - t).

diag (t).diag (Af". VC)-diag(k)-diag(%J : - (B.T2)

+ diag(exp (. 8)).Af. diag (k).diag (1).

diag{[diag(t‘).AfT—AtT].VC‘}.diag(%]

a(S1".k)

sag - J-diag(VC").14f.diag (") - Ar).

diag (t).diag (AfT.VC )-dias(k)-diag[%%) (B.73)

+ J.diag (VC).Af.diag(k).diag (1).

ayt*]
oxl

diag {[diag(¢").AfT-AtT).VC" }.diag(
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Ptk
"a—a“é}?d'_) = diag(2.0).diag (AfT.VC*).diag (AfT. VC).

dfagck).dfag(%’—;‘{] - diag(exp(j.4)). (B.74)

diag (AtT.VC").diag (AfT. VC).dzag(k).diag(a_;”;ll]

T
Fehk -j.diag (t).diag (At T.VC*).
d$oxl (B.75)
diag (AfT. VC).diag(k).diag(%:]
T
FEh-B diag (t).diag (Af7.VC).diag (k).
dxl? (B.76)

diag { [diag(¢*).Af" - At"]. VC'}-dia-g( am‘]
oxl?



APPENDIX C

BEHAVIOUR OF THE OPTIMAL SOLUTIONS
NEAR A SINGULARITY OF MATRIX W(z,c)

When tracking the OPF optimal solutions as the parameter varies, critical points
on the optimal trajectories occur where the jacobian of the KT conditions (defined for the
active set) is singular. In addition, since in the Newton method the same jacobian matrix
is involved, near the point of singularity, the parametric algorithm is not able to find the
solution of the KT condit.ons. This is so because of the ill-conditioning of W(z¢) near
such type of critical points. In this appendix, we present some results about the behaviour
of the optimal trajectories near the singular points.

A point belonging to the optimal trajectory must solve the KT equations derived
for the Lagrangian function, &, (equation (3.9)) . These equations can be defined as

| ag dc o h
— = e _.._g Lo
3y €)= 5 @8+ (€A + = e)py,
og - . 98 =g (C1)
Y (z,€) = g(x,€) 3 (z,€) = 0
oL _
a_l-ij_o(z’e) hl,o(xse)

The behaviour of (C.1) around an arbitrary a point(z,€) is given by

3 _lwrn 22 o2, of %] - (C2)
15 [W(Z’e’ ’ %("G’M Q([de” -0

252
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where W(z,€) € Rev="x»*m*) i the jacobian of the KT conditions (that is, the derivative
of the KT conditions with respect to z) and Q() is an expression containing terms in
[dz",de]" of second and possibly higher orders. As long as at (Z,€) the jacobian of the

KT equations is non-singular, for small variations in g, the higher order term of equation

(C.2) is negligible and we can express the variation in z as

dZ = "W(E,E)‘l( azge (-Z-,E)]de (C'3)
dz0e

If, otherwise, at (Z,€), the matrix W(Z,€) is singular, the variation on the KT
solutions for-a-small variation of the parameter cannot be obtained by (C.3). To obtain

the behaviour of z near a singular point, the higher order term of equation (C.1), Q(.),

must be considered. To derive the expression of dz, first of all, note that, at (z,€) there

exists a non-zero vector v such that:

W(Z,E)v = 0 (C4)
and, since W(z,€) is symmetric,

vIW(z,€) = 0 (C.6)

Assume, for simplicity, that the null space of W(z,€) has dimension one. Then,
associatzd with W(Z,€) there also exists a range space, spanned by the nv+m+p-1

independent vectors {u;} perpendicular to v. Let these vectors be represented by the
(nv+m-+p) by (nv+m+p-1) matrix U.

The solution dz of equation (C.2) for small increments de characterizes the
optimal power flow solution behaviour near a singularity. Taking the second order term
of (C.2) into consideration we have
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.agdz] + 633 de

T
dﬁ] -lw, 22 H&] +[¢Z] - % |y (€9
0z 0zd¢ || de de Fg Fu 4

dz +

| 9z%3e dz0€e?

Let dz be represented by two components, one along the null space of the

jacobian, v, and another perpendicular to it:

dz = vdo + Udw (C7)

Substituting (C.7) into (C.6) and disregarding the term in (de)* yields,

WUde + Fe de + lazgvde}vde + [a?'gvdB]Udo + [angdm]vdB

i vdbde + 2 &g

Udwde = 0
dz%0e dz2%0e

[835-" Ud(o]Udco £ 2
9z

To solve (C.8) we neglect the terms in d6.de, do.de, d8.do and (dw)® (this step
is justified later on). Thus,

&g

dzde

de + [ﬁvde]vde -0 (C9)

az3

WUdw +

Multiplying (C.9) by v" and using (C.5) yields

which can be solved for d6:
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- - -1
do = tJ -vT it {vrlasgv]v} de (€.11)
ozde dz3

For de20, equation (C.11) has a soluton if and only if

-1
vT Gt vT a*ggv vt < 0. Additionally, around (Z,€), the optimal trajectories can
dz0e oz3

be represented by a parabola whose maximum point is (z,€).

If we substitute (C.11) into (C.9) we can find the value of do:

-1
WUde = - 2L ge + {[ﬂv]v}vr Fg {v.{(-ﬁgﬂ VH e (€12)
0z0€ az3 0z0¢€ az3

Since v =0, the vector on the right hand side of (C.12) is perpendicular to v, that
is, this vector belongs to the range space of W. Consequently {C.12) can be solved for do

giving

do = [UTW(E,© U ' UTde’ (C.13)

where

-1
;. Bd Fd r @] 4L (C.14)
dz ey de + {[ P v]v}v 320¢ {v"[ P v]v} de

As a conclusion, the behaviour of the OPF solution neat the singularity of the
jacobian of the KT conditions is characterized by:

(i)  The solution of the KT equations can be represented locally by a parabola

with maximum at (z,€).



BEHAVIOUR OF THE OPTIMAL SOLUTIONS NEAR A SINGULARITY OF MATRIX Wixe) 256

(i))-

(iii)-

(iv)-

(v)-

(vi)-

It is composed of the sum of two components vdé and Udw. The first term
has a unique direction but its magnitude is affected by d8 (equation

(C.11)).

The second term is orthogonal to the first.

The square root term also indicates the direction along which there exists

a solution.

The square root tends to dominate the behaviour near the singularity of ¥,

yielding relatively large changes in z for small changes in €.

The terms neglected in equation (C.8) are of order 2 and 1.5 in dg, while
the retained ones are of order 1. This justifies their elimination in equation
(C.9).



APPENDIX D

RESOLUTION OF CRITICAL POINTS TYPE 4

A Type 4 critical point (x,€) is characterized by the existence of more active
inequalities than free variables. Therefore, the jacobian of the active constraints, J , in this
situation has more rows than columns. Since this jacobian is rank deficient (from equation
(3.37)), we have that the matrix W(Z,€) is singular at this point, in the same way that
it occurs with type 3 critical points. Since we have more active constraints than free
variables, to proceed with the tracking process, we must find an optimal sub-set of this
set of active constraints, Because equation (3.37) holds, we can take at least one active
inequality from the active set. To ensure optimality over the remaining active set, we must
consider the sign of the Lagrange multipliers of the remaining active inequalities and the
value of the released inequality for € ) €. In other words, supposing that h, is the new
inequality that is just to become active at (X,€) and that h, is the inequality to be deleted

from the active set, we must have, for Ag > 0,

p'} > 0’ l € Lo(is_é); l#q

- - (D.1)
h(x+8x,e+Ae) <0

To derive the expressions of p; € Ly(X,€), I#q and h,, let J be the jacobian

defined for the m+p-1 constraints initially active at (X,€). From the KT equations we
have that

257
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dc,= = Aol _
a—x(x,E) + J’{p’o‘d 0
gk(f,E) =0,kekK

hy(%,€) = 0, 16 Ly(%,E)

(D.2)

where A, € R® and p,, € R® correspond to the initially m-+p-1 active constraints.

Since J is a square matrix, the first equation of (D.2) can be solved for

[loldTanoIdT]T: yielding

Aou| _ gTy-19€ = = (D.3)
[udj W75 Gse)

Since h, was the last inequality to reach its limit, we want to verify if replacing
a previously fixed inequality constraint, h,, with h; will give us an optimal active set. Let
J' be the jacobian defined after h,_ is replaced by h,, this jacobian will have the form:

[ 9g,/0x ]

0
0g,/9x 0
oh,jox 0
J = : - : (D.3)
ahqlax ahqlax - ahplax ~qth position
Oh,, /9% ¢
e
Ok, 1Ox| L

where the first term on the right-hand side of equation (D.4) is the jacobian defined for
a fixed h, ( without considering h_ ), J, and the second term is the change in the original
jacobian, AJ.
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The new set of Lagrange multipliers {A,.,", (M...)']" (defined for the new set of
active constraints), is, therefore,

[A"’“’] - [T LG (B:3)
ox

Frew

The value of the released inequality, h,, for € near € can be approximated by

- Fh oh
h (x + dx,e+de) = h (x,€) + Ldx + —2de (D.6)
e q ox de

Now, since the new set of active constraints must remain active for € near €, we

have

o8
g(x,€) , de
P (3,€)] T Jdx v o |de=0
de
which gives
g
dx = _(JI)-I Ox de (D.7)

oh,,,

ax

and where h,,, is the new vector of active inequalities.

Substituting (D.7) into (D.6) we can obtain an expression for the derivative of h,,

which must be less or equal to zero to guarantze non-violation of the maximum limit:
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N

ag
Th de ok
49 % on, (D.8)
dhq e (J9 oh__ + e de s @
de

To solve equations (D.5) and (D.8) we can apply the matrix inversion lemma for
J'. First of all, note that AJ can be represented as

AJ = rq.eqT (D.9)

where e, € R®"" is a column vector with 1 in the qz# position and zeros elsewhere and

q ox ox

Therefore, the inverse of J’ can be represenied as

Yr,e, U

WHt=Jt - L (D.10)
1 +r,(J e,
Substituting (D.10) into (D.5) we have
A‘newjl - J"old] _ (J_l)rqeqT AOld (D.ll)
Woow)  |Wau| |1+ 1], || Pos

The new Lagrange multipliers associated with the inequality constraints, p,.,, can
then be tested using equation (D.11). Note that in this equation, the only elements that
vary are the vectors r, and e,, which are defined for each h, that we try to release. Note,
as well, that on the qth position of p,,, we have the Lagrange multiplier associated with

h,, whereas, in the qth position of p ,, we have the Lagrange multiplier associated with
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In the same way, the value of the released inequality, h, can be obtained from

9g
dn = 1- Fh, - I Yre I Oe , 9k, i ®.12)
de

Once more, some cf the terms in (D.12) will remain constant throughout the

calculations; only varying h,, h,,, and r,.

new

Equations (D.11) and (D.12) can be used to test if some inequality constraint h_
can be released when h, is fixed at its limit. Equation (D.11) can be used to verify the
first condition of (ID.1), while equation (D.12) can be used to verify the second condition
of (D.1). Since, initially, there are p-1 active inequalities and since, for every trial (where
h, is substituted by h, ), equations (D.11) and (D.12) must be solved, then up to 2(p-1)

equations must be solved to find a inequality to be released when h, is fixed.



APPENDIX E

TESTS SYSTEMS DATA

E.1 Remarks

All data 1s given in per unit with a basis of 100 MVA. The power flow limits
were arbitrarily chosen. In the Tables showing the generation data, aa and bb are the cost
coefficients associated with the linear and quadratic terms of the generation cost function,

c(pgy), respectively. The constant term of c(pg;) was always supposed to be equal to zero.

E.2 5-bus System

Table E.1
Line data
Line No. From To r x1 bsh Max.
flow
1 1 2 0.0420 0.1680 0.0300 1.1600
2 2 3 0.0310 0.1260 0.0200 0.5000
3 3 5 0.0530 0.2100 0.0150 0.3000
4 3 4 0.0840 0.3360 0.0120 0.2100
5 4 5 0.0630 0.2520 0.0110 0.2780
6 _5 1 0.0310 0.1260 0.0100 0.6000
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Table E.2
Bus data
Bus No. i yo= b= | pd qd
1 0.9500 1.0500 0.000 0.000 0.6500 0.3000
2 0.9500 1,0500 0.000 0.000 1.1500 0.6000
3 0.9500 1.0500 0.000 0.000 0.7000 0.4000
4 0.9500 1.0500 0.000 0.000 0.7000 0.3000
5 0.9500 1.0500 0.000 0.000 0.8500 0.4000
Table E.3
Generation data
BusNo. | pg™ pg™™ qg”™" qg"™” aa bb
1 0.000 3.700 -1.0500 2.0500 0.500 1.000
3 0.000 2.160 -1.000 1.000 1.000 2.000
4 0.000 2.000 -1.000 1.00=(=) 0.500 0.500
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. E.3- 14-bus System
Table E.4
Line data
Line No. From To r xl bsh/2 | Max. Flow
1 1 2 0.01938 | 0.05917 { 0.0264 2.500
2 1 S 0.05403 | 0.22304 0.0246 1.320
3 2 3 0.04699 | 0.19797 | 0.0219 1.300
4 2 4 0.05811 | 0.17632 0.0187 1.100
5 2 5 0.05695 | 0.17388 0.0170 1.050
6 3 4 0.06701 | 0,17103 | 0.0173 1.050
7 5 4 0.01335 | 0.04211 | 0.u064 1.500
8 4 7 0.0000 | 0.20912 | 0.0000 2.000
. 9 4 9 0.0000 | 0.55618 | 0.0000 1.600
10 5 6 0.0000 0.25202 0.0000 1.500
11 6 11 0.09498 | 0.19890 | 0.0000 1.100
12 6 12 0.12291 | 025581 | 0.0000 1.040
13 6 13 0.06615 | 0.13027 | 0.0000 1.100
14 7 8 0.0000 | 0.17615 } 0.0000 1.600
15 7 9 0.0000 1§ 0.11001 | 0.0000 1.600
16 9 10 0.03181 | 0.08450 0.0000 1.100
17 9 14 0.12711 | 0.27038 | 0.0000 1.200
18 10 11 0.08205 | 0.15207 | 0.0000 1.200
19 12 13 0.22092 | 0.19988 | 0.0000 1.200
20 L- 13 141 0.17093 | 0.34802 0.0_003 1.200
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. Table E.5

Bus data
Bus No. yuir v b= b pd qd

1 0.95 1.05 0.0000 0.0000 0.0000 0.0000

2 0.95 1.05 0.0000 0.0000 0.2170 0.1270

3 0.95 1.05 0.0000 0.0000 0.9420 0.1900

4 0.95 1.05 0.0000 0.0000 0.4780 -0.0390

5 0.95 1.05 0.0000 0.0000 0.0760 0.0160

6 0.95 1.05 0.0000 0.0000 0.1120 0.0750

7 0.95 1.05 0.0000 0.0000 0.0000 0.0000

8 0.95 1.05 0.0000 0.0000 0.0000 0.0000

9 0.95 1.05 -0.4200 0.4200 0.2950 0.1660

10 0.95 1.05 0.0000 0.0000 0.0900 0.0580

11 0.95 1.05 0.0000 0.0000 0.0350 0.0180

. 12 0.95 1.05 0.0000 | 0.0000 | 0.0610 | 0.0160

13 0.95 1.05 0.0000 0.0000 0.1350 0.0580

14 0.95 1.05 0.0000 0.0000 0.1490 0.0500
Table E.6

Generation data
Bus No. pg” pg™™ qg™™ qg™ aa bb

1 0.000 5.000 -0.250 5.000 8.600 0.008

2 0.000 0.500 -0.400 0.500 10.500 0.040

| 3 0.000 0.000 0.000 0.400 0.000 0.000

6 0.000 0.000 -0.050 0.240 0.000 0.000

I 8 0.000 0.000 -0.050 0.240 0.000 0.000

PR el R I ke m——— kel
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E.4 30-bus System

Table E.7
I Genera_tll"on data
I Bus No. pg™" pg™™ qg™" qe™™ aa bb
| 1 0.000 5.000 -3.000 5.000 8.000 0.200
2 0.000 0.500 <0.400 0.500 10.000 0.100
5 0.000 0.000 -0.400 0.400 0.000 0.000
8 0.000 0.000 -0.100 0.400 0.000 0.000
11 0.000 0.000 -0.060 0.240 0.000 0.000
13 0.000 0.000 -0.060 0.240 0.000 0.000
Table E.8
T::::former tap data
Line No. From To a™ am
11 6 9 0.900 1.100
12 6 10 0.900 1.100
15 4 12 0.900 1.100
l 36 28 27 0.900 1.100




TESTS SYSTEMS DATA 267

. Table E9

Line data

|_Line No. From To r x1 bsh/2__ | Max. flow }

1 1 2 0.0192 0.0575 0.0264 2.5000

2 1 3 0.0452 0.1852 0.0204 1.6500

3 2 4 0.0570 0.1737 0.0184 1.6500

4 3 4 0.0132 0.0379 0.0042 1.9000

| 5 2 5 0.0472 0.1983 0.0209 1.3200

6 2 6 0.0581 0.1763 0.0187 1.3000

7 4 6 0.0119 0.0414 0.0045 1.7000

g 3 7 0.0460 0.1160 0.0102 1.6500

9 6 7 0.0267 0.0820 0.0085 1.6500

10 6 8 0.0120 0.0420 0.0045 1.6500

11 6 9 0.000 _0.2080 0.0000 1.8000

12 6 10 0.000 0.5560 0.0000 1.8000

13 9 11 0.000 0.2080 0.0000 1.6500

14 9 10 0.000 0.1100 0.0000 1.3000

15 4 12 0.000 0.2560 0.0000 2.3000

16 12 13 0.000 0.1400 0.0000 2.9000

17 12 14 0.1231 0.2559 0.0000 1.6500

18 12 13 0.0662 | 0.1304 0.0000 1.3200

. 19 12 16 0.0945 0.1987 0.0000 1.6500

20 14 15 0.2210 0.1997 0.0000 1.6500

21 16 17 0.0824 0.1923 0.0000 1.3200

22 15 18 0.1070 0.2185 0.0000 1.3200

23 18 19 0.0639 0.1292 0.0000 1.3200

24 19 20 0.0340 0.0680 0.0000 1.3200

25 10 _20_ 0.0936 0.2090 0.0000 1.1600

26 10 17 0.0324 0.0845 0.0000 1.3200

27 i0 21 0.0348 0.0749 0.0000 1.3200

28 10 22 0.0727 0.1499 0.0000 1.1600

29 21 22 0.0116 0.0236 0.0000 1.3200

30 135 23 0.1000 0.2020 0.0000 1.3200

31 22 24 0.1150 0.1790 0.0000 1.3200

32 23 24 0.1320 | 0.2700 0.0000 1.1600

33 24 25 0.1885 0.3292 0.0000 1.1600

34 _25 26 0.2544 0.3800 0.0000 1.1600

35 25 27 0.1093 0.2087 0.0000 1.1600

36 28 27 0.000 0.3960 0.0000 2.2000

37 27 29 0.2198 0.4153 0.0000 1.1600

38 27 30 0.3202 0.6027 0.0000 1.1600

39 29 30 0.2399 0.4533 0.0000 1.1600

. 40 8 28 0.0636 0.2000 0.0214 1.1600
I 41 6 28 0.0169 0.0599 0.0065 1.1600 _§
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Table E.10
Bus data
BusNo. | V=» yes b= pee pd qd
1 0.95 1.05 0.000 0.000 0000 | 0.000
2 0.95 1.05 0.000 0.0C0 0.217 0.127
3 0.95 1.05 0.000 0.000 0.024 | 0012
4 0.95 1.05 0.000 0.000 0.076 0.016
5 0.95 1.05 0.000 0.000 0942 | 0.190
6 0.95 1.05 0.000 0.000 0000 | 0.000
7 0.95 1.05 0.000 0.000 0.228 0.109
8 0.95 1,05 0.000 0.000 0300 | 0300
9 0.95 1,05 0.000 0.000 0.000 | 0.000
10 0.95 1.05 0190 | 0.190 0.058 0.02
11 0.95 1.05 0.000 0.000 0000 | 0.000
12 0.95 1.05 0,000 0.000 0112 | 0075
13 0.95 1.05 0.000 0.000 0.000 | 0.000
14 0.95 1.05 0.000 0.000 0.062 | 0.016
15 0.95 1.05 0.000 0.000 0.082 0.025
16 0.95 1,05 0.000 0.000 0.035 0.018
17 0.95 1.0 0.000 0.000 0.090 | 0058
18 0.95 1.05 0.000 0.000 0.032 0.009
19 0.95 1.05 0,000 0.000 0.095 0.034
20 0.95 1.05 0,000 0.000 0022 | 0007
21 0.95 1,05 0.000 0.000 0.175 0.112
22 0.95 1.05 0.000 0.000 0.000 | 0.000
23 0.95 1,05 0.000 0.000 0.032 0.016
24 0.95 1.05 0043 | 0043 0087 | 0.067
25 0.95 1,05 0.000 0.000 0000 | 0.000
26 0.95 1.05 0.000 0.000 0035 | 0023
I 27 0.95 1.0 0.000 0,000 0.000 0.000
| 2 0.95 1,05 0.000 0.000 0.000 | 0.000
29 0.95 1,05 0.000 0.000 0024 | 0.009
30 0.95 1.05 0.000 | 0.000 0.106 0.019 |
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E.S 34-bus System

Table E.11
s e S
Generation data

| Bus No. pg™" pe”™= qe”" qg™" aa bb
1 0.00 53.70 -3.00 10.00 7.00 0.001
2 0.00 23.20 -3.00 10.00 7.50 0.003
3 0.00 26.10 -3.00 10.00 7.50 0.003

4 0.00 47.40 -3.00 10.00 7.20 0.002
5 0.00 15.40 -3.00 10.00 7.70 0.004
6 0.00 56.00 -3.00 10.00 7.00 0.001
18 0.0n 0.00 -3.00 10.00 0.00 0.00
27 000 | 0.00 -2.00 10.00 0.00 0.00
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Table E.12.a
Line data
Line No. From To r x| bsh Max flow
1 1 28 0.00005 | 0.00269 0 120.000
2 2 23 0.00004 | 0.00643 0.1360 100.000
3 3 25 0.00010 | 0.00444 0 100.000
4 4 30 0.00003 { 0.00226 | -N.0340 150.000
5 5 11 0.00014 | 000898 | -0.0610 77.000
6 6 12 0.00014 | 0.00581 0 120.000
7 7 8 0.00008 | 0.00185 0.7380 55.000
8 7 13 0.00023 | 0.00681 2.5760 45,000
9 7 14 0.00006 | 0.00150 0.6260 102.000
10 7 26 0.00011 | 0.00314 1.3740 50.000
11 8 19 0.00009 1 0.00255 1.1230 37.000
12 8 20 0.00055 | 0.01307 5.5530 53.000
13 8 18 0.00053 | 0.01493 6.6410 46,000
14 9 10 0.00007 | 0.00172 0.6890 100.000
15 9 13 0.00023 | 0.00692 2.8010 101,000
16 9 13 0.00023 | 0.00692 2.8010 101.000
17 9 11 0.00078 | 0.02295 9.8210 30.000
18 9 11 0.00078 | 0.02295 9.2810 30.000
19 9 11 0.00094 | 002253 9.9290 31.000
20 10 12 0.00101 | 0.02434 10.878 28.000
21 10 20 0.00010 [ 0.00228 0.9530 100.000
22 11 12 0.00013 | 0.00379 1.5460 100.000
23 11 15 0.00045 | 0.01042 4.4020 67.000
24 11 15 0.00045 | 0.01042 4.4020 67.000
25 12 15 0.00048 | 0.01126 4.7660 62.000
26 12 21 0.00068 | 001517 | 6.4880 46.000
27 13 14 0.00027 | 0.00851 3.6790 82.000
28 13 29 0.00015 | 0.00426 1.3390 100.000
29 14 22 0.00009 | 0.00279 1.2250 100.000
30 15 16 0.00058 | 0.01351 5.7550 51.000
31 15 16 0.00058 | 0.01351 5.7540 51.000
32 15 16 0.00058 | 001351 5.7540 51.000
e e —————————
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Table E.12.b
Line data (cont.)

Line No. From To r xl bsh Max, flow
33 16 30 0.00060 | 0.01411 6.0180 49.000
34 16 30 0.00060 | 0.01411 6.0180 49.000
35 16 30 0.00060 | 0.01411 6.0180 49.000
36 17 18 0.00054 | 0.01608 7.2820 43.000
37 17 18 0.00054 | 0.01610 7.2670 43.000
38 17 18 0.00054 | 0.01647 7.5980 42.000
39 17 32 0.00044 | 001311 5.8550 53.000
40 17 32 0.00044 | 0.01311 5.8560 53.000
41 17 32 0.00049 | 0.01422 6.5520 49.000
42 17 34 0.00012 | 0.00345 1.5130 100.000
43 18 19 0.00050 | 0.01513 6.8060 46.000 |
44 18 31 0.00037 | 0.01059 4.8650 66.000
45 19 22 0.00019 | 0.00551 2.4260 127.000
46 19 31 0.00016 | 0.00471 2.0640 148.000
47 20 21 0.00052 | 0.01149 4.8620 60.000
48 20 26 0.00045 | 0.01083 46110 64.000
49 20 27 0.00053 | 0.01561 6.7450 44.000
50 21 27 0.00024 { 0.00709 3.1110 80.000
51 23 24 0.00022 | 0.00622 2.8050 90.000
52 23 28 0.00032 | 0.00942 4.1280 74.000
53 24 25 0.00025 | 000706 3.1820 90.000
54 24 25 0.00025 | 0.00706 3.1820 90.000
55 24 33 0.00045 { 0.01318 5.8770 53.000
56 24 33 0.00045 | 0.01318 5.8770 53.000
57 27 34 0.00039 | 0.01155 5.1380 60.000
58 27 34 0.00039 | 0.01155 5.1380 60.000
59 28 32 0.00055 | 0.01649 7.4560 42.009
60 28 32 0.00055 | 0.01649 7.4580 42.000
61 28 32 0.00055 | 0.01649 7.5310 42.000
62 32 33 0.00007 | 0.01900 0.8560 36.000
63 33 34 0.00048 | 001387 6.3980 50.000
64 33 34 0.00048 | 0.01387 6.3 9.8_0__ 50.000
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. Table E.13

Bus data

Bus No. yoin vy pi he pd qd

] 0.95 1.05 0.00 0.00 0.0000 | 0.0000

2 0.95 1.05 0.00 0.00 00000 | 0.0000

3 0,95 1.05 0.00 0.00 0.0000 | 0.0000

4 0,95 1.05 0.00 0.00 0.0000 | 0.0000

5 0.95 1.05 0.60 0.00 0.0000 | 0.0000

6 0.95 1.05 0.00 0,00 0.0000 | 0.0000

7 0.95 1.05 0.00 0.00 320326 | 4.0382

8 0.95 1.05 0,00 0.00 278528 | 07733

9 0.95 1,05 -6,70 6.60 247537 | -6.5129

10 0.95 1.05 -3.40 3,30 91963 | -0.0082

11 0.95 1.05 -3.40 3.30 0.0000 | ©0.0000

12 0.95 1.05 -3.40 3.30 0.0000 | 0.0000

13 0.95 1.05 0.00 0.00 11,6150 | 0.4902

14 0.95 1.05 0.00 0.00 213966 | 0.1042
. 15 0.93 1.05 -6.70 6.60 24618 | 04492
16 0.95 1.05 -8.30 8.25 11464 | 02127

17 0.95 1.05 0,00 0,00 37194 | -0.7294

18 0.95 1.05 -3.40 330 { 00000 | 0.0000

19 0.95 1.05 0.00 0.00 17.4624 | -1.0848

20 0.95 1.05 0.00 0.00 78867 | -0.2046

21 0.95 1.05 0.00 0.00 47270 | 1.9766

22 0,95 1.05 0.00 0.00 80475 | 0.5300

23 0.95 1.05 -3.40 3.30 0.0000 } 0.0000

24 0,95 1.05 0.00 0.00 0.0000 | 0.0000

25 0.95 1.05 0.00 0.00 0.0000 | 0.0000

26 0.95 1.05 0.00 0.00 11,1031 | -0.4204

27 0.95 1.05 -3.40 3.30 0.0000 | 0.0000

28 0.95 1.05 -3.40 3.30 0.0000 | 0.0000

29 0.95 1.05 0.00 0.00 12.0500 | 1.1311

30 0.95 1.05 0,00 0,00 0.6000 | 0.1100

| 3] 0.95 1.05 0.00 0.00 26449 | 03130
Y 0.95 1.05 -3.40 3.30 0.0000 | 0.0000
. 33 0.95 1.05 -3.40 3.30 0.0000 | 0.0000
34 095 1.05 -3,40 3,30 0.0000 | 0.0000
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E.6 118-bus System

Table E.14
Transformer tap data
Line No. From To a™i a™*
51 86 87 0.900 1.100
58 81 80 0.900 1.100
83 65 66 0.900 1.100
89 64 61 0.900 1.100
90 63 59 0.900 1.100
143 30 17 0.900 1.100
148 26 25 0.900 1.100
173 8 5 0.900 1.100
Table E.15

I Phase shifters data

Line No. From To P =
77 69 68 -0.090 0.090
128 38 37 -0.5236 0.5236

ﬁ
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. Table E.16.a

S S e —
Line data
| _Line No. From To r x1 bsh Max. flow

1 118 76 0.01640  0.05440 } 0.01356 1.370
2 118 75 0.01450 | 0.04810 | 0.01198 1.370
3 117 12 0.03290 | 0.14000 | 0.03580 1.370
4 116 68 0.00034 | 0.00405 | 0.16400 4.055
S 115 114 0.00230 | 0.01040 | 0.00276 1.370
6 115 27 0.01640 | 0.07410 | 0.01972 1.370
7 114 32 0.01350 | 0.06120 | 0.01628 1.370
8 113 32 0.06150 | 0.20300 | 0.05180 1.370
9 113 17 0.00913 | 0.03010 | 0.00768 1.370
10 112 110 0.0247 0.06400 | 0.06200 1.370
11 111 110 0.02200 | 0.07550 | 0.02000 1.370
12 110 109 0.02780 | 0.07620 | 0.02020 1.370
13 110 103 0.03506 | 0.18130 | 0.04610 1.370
14 109 108 0.01050 | 0.02880 | 0.00760 1.370
15 108 105 0.02610 | 0.07030 | 0.01844 1.370
16 107 106 0.05300 i 0.18300 | 0.04720 1,370
. 17 107 105 0.05300_ | 0.18300 | 0.04720 1.370
18 106 105 0.01400 | 0.05470 | 0.01434 1.370
19 106 100 0.06050 | 0.22900 | 0.06200 1.370
20 105 104 0.00994 | 0.03780 | 0.00986 1.370
21 105 103 0.05350 | 0.16250 | 0.04080 1.370
22 104 103 0.04660 | 0.15840 | 0.04070 1.370
23 104 100 0.04510 | 0.20400 | 0.05410 1.370
24 103 100 0.01600 | 0.05250 | 0.05360 2.050
25 102 101 0.02460 | 0.11200 | 0.02940 1.370
26 102 92 0.01230 | 0.05590 | 0.01464 1.370
27 101 100 0.02770 | 0.12620 | 0.03280 1.370
28 100 99 0.01800 | 0.08130 | 0.02160 1.370
I 29 100 98 0.03970 | 0.17900 | 0.04760 1.370
30 100 94 0.01780 | 0.05800 | 0.06040 2.055
31 100 92 0.06480 | 0.29500 | 0.07720 1.370
32 99 80 0.04540 ] 0.20600 | 0.05460 1.370
33 98 80 0.02380 | 0.10800 | 0.02860 1.370
34 97 96 0.01730 | 0.08850 | 0.02400 1.370
35 97 80 0.01830 | 0.09340 | 0.02540 1.370
. 36 96 95 0.01710 | 0.05470 | 0.01474 1.370
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Table E.16.b

i Line data (cont.)
Line No. From To r xl bsh Max. flow
37 96 94 0.02690 | 0.08650 | 0.02300 |  4.055
38 96 82 0.01620 | 0.05300 [ 0.05440 | 1370
39 96 80 0.03560 | 0.18200 | 0.04940 |  1.370
40 95 94 0.01320 | 0.04340 [ 001110 | 1370
41 94 93 0.02236 | 007320 | 0.01876 | 1.370
42 94 92 0.04810 | 0.15800 | 0.04060 |  1.370
43 93 92 0.02580 | 0.08480 | 0.02180 [ 1370
44 92 91 0.03870 | 012720 | 0.03268 |  1.370
45 92 89 0.00799 | 003829 | 0.09620 |  2.370
46 91 90 0.02540 | 0.08360 | 0.02140 |  1.370
47 50 89 0.01638 | 0.06517 | 0.15880 | 1370
48 89 88 0.01390 | 0.07120 | 0.01934 | 1.370
49 89 85 0.02390 | 0.17300 | 0.04700 | 1370
50 88 85 0.02000 | 0.10200 | 0.02760 | 1370
I s 86 87 0.00000 | 0.20740 | 0.00000 |  2.150
| s 86 85 | 003500 | 0.12300 | 0.02760 | 1370
| s3 85 24 0.03020 | 0.06410 | 0.01234 | 1370
Y 85 83 0.04300 | 0.14800 | 0.03480 | 1370
| ss 84 83 0.06250_| 0.13200 [ 0.02580 | 1.370
. s6 83 82 0.01120 | 0.03665 | 0.03796 |  1.370
57 82 77 0.02980 | 0.08530 | 0.08174 | 1370
58 81 80 0.00000 { 0.03700 | 0.00000 | 4225
59 81 68 0.00175 | 0.02020 | 0.80800 | 2.015
60 80 79 0.01560 | 0.07040 | 0.01870 |  1.370
F 61 20 77 0.01088 | 0.03321 | 0.07000 |  2.055
62 79 78 0.00546 | 0.02440 | 0.00648 | 1370
'z 78 77 0.00376 { 0.01240 | 0.01264 1.370
64 77 76 0.04440 | 0.14800 | 0.03680 |  1.370
65 77 75 0.06010 | 0.19990 | 0.04978 | 1370
66 77 69 0.03090 | 0.10100 | 0.10380 [ 1370
67 75 74 0.01230 | 0.04060 | 0.03034 1.370 |
[ s 75 70 0.04280 | 0.14100 | 0.03600 |  1.370
69 75 69 0.04050 | 0.12200 | 0.12400 | 1.370
70 74 70 0.04010 | 0.13230 | 0.03368 | 1370
71 73 7 0.00866 | 0.04540 | 0.01178 1.370
72 71 0.0446 | 0.18000 | 0.04444 | 1370
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. Table E.16.c

Line data (cont.)

Line No. From To r xl bsh Max. flow

73 72 24 0.04880 | 019600 | 0.04880 | 1370
74 71 70 0.00882 | 0.03550 | 0.00878 | 1370
75 70 69 0.03000 | 0.12700 ) 0.12200 | _ 1.370
76 70 24 0.10221 | 0.41150 | 010198 | 1370
77 69 68 0.00000 | 0.03700 | 0.00000 | 6225
78 69 49 0.09850 | 0.32400 | 0.08280 | 1370
79 69 47 0.08440 | 027780 | 0.07092 | 1370
80 68 65 0.00138 | 0.01600 | 0.63800 | 4150
81 67 66 0.02240 | 0.10150 | 0.02682 | 1370
82 67 62 0.02580 | 0.11700 | 0.03100 | 1370
83 65 66 0.00000 | 0.03700 | 0.00000 | 6225
84 66 62 0.04820 | 021800 | 0.05780 | 1370
85 66 49 0.00900 | 0.04595 | 0.04960 |  2.055
86 65 64 0.00269 | 0.03020 | 0.38000 | 6225
87 65 38 0.00901 | 0.09860 | 1.04600 |  2.055
88 64 63 0.00172 | 0.02000 | 021600 | 4.150
. 89 64 61 0.00000 | 0.02680 | 0.00000 | 6225
D 63 59 0.00000 | 0.03860 | 0.00000 |  2.055
) 62 61 0.00824 | 0.03760 | 0.00980 |  2.055
92 62 60 0.01230 | 0.05610 | 0.01468 | 1370
93 61 60 0.00264 | 0.01350 | 0.01456 | 1370
94 61 59 0.03280 | 0.15000 | 0.03880 [ 1370
Y 60 59 0.03170 { 0.14500 | 0.03760 |  1.370
| Y 59 56 | 0.04070 | 0.12243 [ 011050 | 1370
97 59 ss | 004739 | 021580 | 005646 | 1370
} 98 59 54 0.05030 | 0.22930 | 0.05980 1.370
99 58 56 0.03430 | 0.09660 | 0.02420 { 1.370
100 58 51 0.02550 | 0.07190 | 0.01788 | 1.370
101 57 56 0.03430 | 009660 | 0.02420 |  1.370
102 57 50 0.04740 | 0.13400 | 0.03320 [ 1370
103 56 55 0.00488 | 0.01510 | 0.00374 {  1.370
L 104 56 54 0.00275 | 0.00955 | 0.00732 |  2.055
105 55 54 0.01690 | 0.07070 | 0.02020 | 1370
106 54 53 0.02630 | 0.12200 | 0.03100 | 1370
107 54 49 0.03993 | 0.14507 | 0.14680 | 1.370
. 108 53 52 0.04050 | 0.16350 | 0.04058 1.370
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. Table E.16.d

ERCVTEC s LT T T LT
Line data (cont.)
Line No. From To r x} bsh | Max flow

109 52 51 0.02030 | 0.05880 | 0.01396 1.370

110 51 49 0.04860 | 0.13700 | 0.03420 1.370

111 50 49 0.02670 | 0.07520 | 0.01874 1.370

112 49 48 0.01790 | 0.05050 | 0.01258 1.370

113 49 47 0.01910 | 0.06250 | 0.01604 1.370

114 49 45 0.06840 | 0.18600 | 0.04440 1.370

115 49 42 0.03575 | 0.16150 ; 0.17200 1.370

116 48 46 0.06010 | 0.18900 | 0.04720 1.370

117 47 46 0.03800 | 0.12700 | 0.03160 1.370

118 46 45 0.04000 | 0.13560 | 0.03320 1.370

119 45 44 0.02240 | 0.09010 | 0.02240 1.370

120 44 43 0.06080 | 0.24540 | 0.06068 1.370

121 43 34 0.04130 | 0.16810 | 0.04226 2.055

122 42 41 2.04100 | 0.13500 | 0.03440 1.370

123 42 40 0.05550 | 0.18300 | 0.04660 1.370

124 41 40 0.01450 | 0.04870 | 0.01222 2.055

. 125 40 39 0.01840 | 0.06050 | 0.01552 2.055
126 40 37 0.05930 | 0.16800 | 0.04200 [ 1.370

127 39 37 0.03210 { 0.10600 | 0.02700 1.370

128 38 37 0.00000 | 0.03750 | 0.00000 4.150

129 38 30 0.00464 | 0.05400 | 0.42200 6.225

130 37 35 0.01100 | 0.04970 | 0.01318 1.370

131 37 34 0.00256 § 0.00940 | 0.00984 2.055

132 37 33 0.04150 | 0.14200 | 0.03660 1.370

133 36 35 0.00224 | 0.01020 | 0.00268 1.370

134 36 34 0.00871 | 0.02680 | 0.00568 1.370

135 34 19 0.07520 | 0.24700 | 0.06320 1.370

136 33 15 0.03800 | 0.12440 | 0.03194 1.370

137 32 31 0.02980 | 0.09850 | 0.02510 1.370

L 138 32 27 0.02290 | 0.07550 | 0.01926 1.370
139 32 23 0.03170 | 0.11530 | 0.11730 1.370

140 31 __ 29 0.01080 | 0.03310 | 0.00830 1.370

141 31 17 0.04740 | 0.15630 | 0.03990 1.370

142 30 26 0.00799 | 0.08600 | 0.90800 6.225

| 143 30 17 0.00000 | 0.03880 | 0.96000 4.225
. 144 30| 8 0.00431 ! 0.05040 | 0.51400 6.225
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. Table E.16.e

Line data (cont.)

Line No. From To r xl bsh Max. flow
145 29 28 0.02370 | 0.09430 | 0.02380 1.370
146 28 27 0.01913 | 0.08550 | 0.02160 1.370
147 27 25 0.03180 | 0.16300 | 0.17640 1.370
148 26 25 0.00000 | 0.03820 | 0.00000 8.000
149 25 23 0.01560 | 0.08000 | 0.08640 2.055
150 24 23 0.01350 | 0.04920 | 0.04980 1.370
151 __ 23 22 0.03420 | 0.15900 | 0.04040 1.370
152 22 21 0.02090 { 0.09700 | 0.02460 1.370
153 21 20 0.01830 | 0.08490 | 0.02160 1.370
154 20 19 0.02520 | 0.11700 | 0.02980 1.370
155 19 18 0.01119 | 0.04930 | 0.01142 1.370
156 19 15 0.01200 | 0.03940 | 0.01010 1.370
157 18 17 0.01230 | 0.05050 | 0.01298 2.055
158 17 16 0.04540 | 0.18010 | 0.04660 1.370
159 17 15 0.01320 | 0.04370 | 0.04440 1.370
160 16 12 0.02120 | 0.08340 | 0.02140 1.370

. 161 15 14 0.05950 | 0.19500 | 0.05020 1.370

162 15 13 0.07440 | 0.24440 | 0.06268 1.370
163 14 12 0.02150 | 0.07070 | 0.01816 1.370

164 13 11 0.02225 | 0.07310 | 0.01876 1.370

165 12 11 0.00595 | 0.01960 | 0.00502 1.370

166 12 7 0.00862 | 0.03400 | 0.00874 1.370

167 12 3 0.04840 | 0.16000 | 0.04060 1.370

168 12 _2 0.01870 | 0.06160 | 0.01572 1.370

169 11 b} 0.02030 | 0.06820 | 0.01738 1.370

170 11 4 0.02090 | 0.06880 | 0.01748 1.370

171 10 9 0.00258 | 0.03220 | 1.2300 6.225

172 9 8 0.00244 | 0.03050 | 1.16200 6.225

173 8 b 0.00000 | 0.02670 | 0.00000 6.225

174 7 6 0.00459 | 0.02080 | 0.00550 1.370

r 175 6 5 0.01190 | 0.05400 | 0.01426 1.370
| 176 5 4 0.00176 | 0.00798 | 0.00210 2.055
177 5 3 0.02410 | 0.10800 | 0.02840 1.370

178 3 1 0.01250 | 0.04240 | 0.01082 1.370

2 1 0.03030 | 0.09990 | 0.02540 1.370

. 179
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. Table E.17.a

Bus data
Bus No. yen o= bor b™* pd _ad
1 0.950 1.050 0.000 0.000 0.510 0.270
2 0.950 1.050 0.000 0.000 0.200 0.090
3 0.950 1.050 0.000 0.000 0.390 0.100
4 0.950 1.050 0.000 0.000 0.390 0.120
S 0.950 1.050 0.000 0.100 0.000 0.000
6 0.950 1.050 0.000 0.000 0.520 0.220 |
7 0.950 1.050 0.000 0.000 0.190 0.020
8 0.950 1.050 0.000 0.000 0.280 0.000
9 0.950 1.050 0.000 0.000 0.000 0.C00
10 0.950 1.050 0.000 0.000 0.000 0.000
11 0.950 1.050 0.000 0.000 0.700 0.230
12 0.950 1.050 0.000 0.000 0.470 0.100
13 0.950 1.050 0.000 0.000 0.340 0.160
14 0.950 1.050 0.000 0.000 0.140 0.010
15 0.950 1.050 0.000 0.000 0.500 0.300
] 16 0.950 1.050 0.000 0.000 0.250 0.100
. 17 0.950 1.050 0.000 0.000 0.110 0.030
18 0.850 1.050 0.000 0.000 0.600 0.340
19 0.950 1.050 0.000 0.000 0.450 0.250
20 0.950 1.050 0.000 0.000 0.180 0.030
21 0.950 1.050 0.000 0.000 0.140 0.080
22 0.950 1.050 0.000 0.000 0.100 0.050
23 0.950 1.050 0.000 0.000 0.070 0.030
24 0.950 1.050 0.000 0.000 0.130 0.000
25 0.950 1.050 0.000 0.000 0.000 0.000
26 0.950 1.050 0.000 0.000 0.000 0.000
| 27 0.950 1.050 0.000 0.000 0.710 0.130
28 0.950 1.050 0.000 0.000 0.170 0.070
29 0.950 1.050 0.000 0.000 0.240 0.040
30 0.950 1.050 0.000 0.000 0.000 0.000
| 31 0.950 1.050 0.000 0.000 0.360 0.270
32 0.950 1.050 0.000 0.000 0.590 0.230
33 0.950 1.050 0.000 0.000 0.230 0.090
34 0.950 1.050 0.000 0.000 0.590 0.260
35 0.950 1.050 0.000 0.000 0.330 0.090
. 36 0.950 1.050 0.000 0.000 0.310 0.170
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. Table E.17.b

I

Bus data (cont.)
Bus No. v v b i pd qd

37 0.950 1.050 0.000 0.050 0.000 0.000

38 0.950 1.050 0.000 0.000 0.000 0.000

39 0.950 1.050 0.000 0.000 6.270 0.110

40 0.950 1.050 0.000 0.000 0.660 0.230

41 0.950 1.050 0.000 0.000 0.370 0.100

42 0.950 1.050 0.000 0.000 0.960 0.230

43 0.950 1.050 0.000 0.000 0.180 0.070

44 0.950 1.050 0.000 0.050 0.160 0.080

45 0.950 1.050 0.000 0.050 0.530 0.220

46 0.950 1.050 0.000 0.000 0.090 0.100

47 0.950 1.050 0.000 0.000 0.340 0.000

48 0.950 1.050 0.000 0.100 0.200 0.110

49 0.950 1.050 0.000 0.000 0.870 0.300

| 30 0.950 1.050 0.000 0.000 0.170 0.040
51 0.950 1.050 0.000 0.000 0.170 0.080

. 52 0.950 1.050 0.000 0.000 0.180 0.050
53 0.950 1.050 0.000 0.000 0.230 0.110

54 0.950 1.050 0.000 0.000 1.130 0.320

I 35 0.950 1.050 0.000 0.000 0.630 0.220
56 0.950 1.050 0.000 0.000 0.840 0.180

57 0.950 1.050 0.000 0.000 0.120 0.030

58 0.950 1.050 0.000 0.000 0.120 0.030

59 0.950 1.050 0.000 0.000 2.770 1.130

I 60 0.950 1.050 0.000 0.000 0.780 0.030
61 0.950 1.050 0.000 0.000 0.000 0.000

62 0.950 1.050 0.000 0.000 0.770 0.140

63 0.950 1.050 0.000 0.000 0.000 0.000

64 0.950 1.050 0.000 0.000 0.000 0.000

| 65 0.950 1.050 0.000 0.000 0.000 0.000
I 66 0.950 1.050 0.000 0.000 0.390 0.180
67 0.950 1.050 0.000 0.000 0.280 0.070

l 68 0.950 1.050 0.000 0.000 0.000 0.000
69 0.950 1.050 0.000 0.000 0.000 0.000

70 0.950 1.050 0.000 0.000 0.660 0.200

71 0.950 1.050 0.000 0.000 0.000 0.000

. 72 0.950 1.050 0.000 0.000 0.120 0.000
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Table E.17.c
Bus data (cont.)
Bus No. yein e poie o pd__ qd
73 0.950 1.050 0.000 0.000 0.060 0.000
74 0.950 1.050 0.000 0.000 0.680 0.270
75 0.950 1.050 0.000 0.000 0.470 0.110
76 0.950 1.050 0.000 0.000 0.680 0.360
77 0.950 1.050 0.000 0.000 0.610 0.280 |
78 0.950 1.050 0.000 0.000 0.710 0.260
79 0.950 1.050 0.000 0.050 0.390 0.320
80 0.950 1.050 0.000 0.000 1.300 0.260
81 0.950 1.050 0.000 0.000 0.000 0.000
82 0.950 1.050 0.000 0.050 0.540 0.270
83 0.950 1.050 0.000 0.100 0.200 0.100
84 0.950 1.050 0.000 0.000 0.110 0.070
85 0.950 1.050 0.000 0.000 0.240 0.150
86 0.950 1.050 0.000 0.000 0.210_ 0.100
87 0.950 1.050 0.000 0.000 0.000 0.000
88 0.950 1.050 0.000 0.000 0.480 0.100
89 0.950 1.050 0.000 0.000 0.000 0.000
90 0.950 1.050 0.000 0.000 1.630 0.420
91 0.950 1.050 0.000 0.000 0.100 0.000
92 0.950 1.050 0.000 0.000 0.650 0.100
93 0.950 1.050 0.000 0.000 0.120 0.070
94 0.950 1.050 0.000 0.000 0.300 0.160
95 0.950 1.050 0.000 0.000 0.420_ 0.310
96 0.950 1.050 0.000 0.000 0.380 0.150
97 0.950 1.050 0.090 0.000 0.150 0.090
98 0.950 1.050 0.000 0.000 0.340 0.080
99 0.950 1.050 0.000 0.000 0.420 0.000
100 0.950 1.050 0.000 0.000 0.370 0.180
101 0.950 1.050 0.000 0.000 0.220 0.150
102 0.950 1.050 0.000 0.000 0.050 0.030
103 0.950 1.050 0.000 0.000 0.230 0.160
104 0.950 1.050 0.000 0.000 0.380 0.250
F 105 0.950 1.050 0.000 0.000 0.310 0.260
l 106 0.950 1.050 0.000 0.000 0.430 0.160
l 107 0.950 1.050 0.000 0.000 0.500 0.120
108 0.950 1.050 0.000 0.000 0.020 0.010
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Table E.17.d

Bus data (cont.)

Bus No. yoin o pon b= pd qd
109 0.950 1.050 0.000 0.000 0.080 0.030
110 0.950 1.050 0.000 0.050 0.390 0.300

I 111 0.950 1.050 0.000 0.000 0.000 0.000
112 0.950 1.050 0.000 0.000 0.680 0.130
113 0.950 1.050 0.000 0.000 0.060 0.000
114 0.950 1.050 0.000 0.000 0.080 0.030
115 0.950 1.050 0.000 0.000 0.220 0.070
116 0.950 1.050 0.000 0.000 1.840 0.000
117 0.950 1.050 0.000 0.000 0.200 0.080
118 0.950 1.050 0.000 0.000 0.330 0.100
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. Table E.18.a

Generation data

Bus No. pg=” pg™™ qg™" qg™ aa bb

1 0.700 1800 | -0230 | 1150 | 6073 | 127.70

4 0800 | 2170 | -0400 | 1200 | 4890 | 78.60

6 0.400 1080 | -0500 | 0500 | 6960 | 195.60
g 0800 | 2170 | -3500 | 2200 | 7730 | 68.00

10 0400 | 2000 | 2000 | 3.400 5019 | 4597
12 0.400 1080 | 0150 | 0750 | 8030 | 19320
15 0300 | 0720 | -0800 | o400 | 15130 | 12040
18 0300 | 0720 | -0600 | 1400 [ 15130 | 12040
19 0.400 1080 | -0150 | 0750 | 13670 | 12460
24 0300 | 0720 | -0400 | 2400 | 15130 | 12040
. 25 0800 | 2170 | 2240 | 3000 | 3940 | 7840
26 1200 | 3240 | -4000 | 2250 | 638 | 69.90

| 0300 | 0720 | -0080 | 0400 | 15130 | 12040
31 0300 | 0720 | -0150 | o400 | 15130 | 12040
32 0300 | 0720 | -0200 | o600 | 15130 | 12040
EE 0.400 1080 | -0400 | 0750 | 13670 | 124.60
| 36 0.400 1080 | -1000 | 1000 | 6750 | 20660
| 0300 | 0720 | -0500 | o500 [ 15130 | 12040
| 2 0.400 1080 | -0150 | 0750 | 13670 | 124.60
46 0300 | 0720 | -0.080 | 0400 | 15130 | 12040
49 0800 | 2170 | -0240 | 1200 | 7730 | 68.00
54 0300 | 0720 | -0080 | 0400 | 15130 | 12040
1080 | -0150 | 0750 | 8030 | 193.20

0720 | -0080 | 0400 | 15130 | 12040

. 1.080 | -0850 | 2000 | 6780 | 154.60
i S L SR B T
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. Table E.18.b

Generation data (cont.)
Bus No. pg™" pg™™ qg™" qg=" aa bb

61 0.400 1.080 -1.650 1.650 67.80 154.60

62 0.400 1.080 -0.150 0.750 63.60 201.60

65 0.800 2.160 ~3.000 1.500 46,33 104.10

66 1,200 3.240 -0.450 2.000 42.13 72.93

69 1.600 4,340 -2.000 2.000 59.97 39.85

70 0.300 0.720 -0.800 0.400 15.13 120.40

72 0.300 0.720 -0.080 0.400 15.13 120.40

73 0.300 0.720 -0.080 0.400 15.13 120.40

74 0.400 1.080 -0.150 0.750 80.30 193.20

76 0.400 1.080 -0.150 0.750 80.30 193.20
77 0.300 0.720 -0.400 0.400 151.30 120.40

. 80 1.200 3.250 -3.000 2,250 31.49 76.87
85 0.400 1.080 -0.150 0.750 67.80 154.60
87 0.400 1.080 -0.400 0.750 80.30 193.20

89 1.200 2.250 -0.450 2.200 58.13 71.76

90 0.800 2.170 -2.000 1.500 48.90 78.60
91 0.300 0.720 -0.240 1.200 151.30 120.40
92 0.400 1.080 -0.150 0.750 136.70 124,60
| 99 0.300 0.720 -0.080 0.400 151.30 120.40
100 0.400 4,000 -0.480 2.400 28.20 46,20

103 0.000 4.000 -0.480 2.400 36.82 45.98
104 0.000 2.080 -0.150 0.750 136.70 124,60
105 0.000 2.080 -0.150 0.750 136.70 124.60
| 107 0.000 2.080 -0.150 0.756 67.80 154.60
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