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Humans have taught computers to execute complex calculations, to control

manufacturing plants and even to send rockets into space. But will a

computer ever be able to marvel at the beauty of a rose, appreciate the

pleasant sound of a symphony or even understand the most basic of human

emotions'?

-The Outer Limits,

Mind Over Matter
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Abstract

This thesis details the use of a programmable logic deyice to increase the playing

strength of a chess program. The time-consuming task of generating chess moyes

is relegated to hardware in order to increase the processing speed of the search al­

gorithm. A simpler inter-square connection protocol reduces the number of wires

between chess squares, when compared to the DEEP BLUE design. With this inter­

connection scheme, special chess moyes are easily resolyed. Furthermore, dynamically

programmable arbiters are introduced for optimal moye ordering. Arbiter centrality

is also shown to improye moye ordering, thereby creating smaller search trees. The

moye generator is designed to allow the integration of crucial moye ordering heuris­

tics. With its new hardware moye generator, the chess program's playing ability is

noticeably improyed.
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Résumé

L'objectif de ce mémoire est d'accroître la force d'un programme d'échecs en concevant

un générateur de coups matériel. Pour atteindre cet objectif, des circuits numériques

(hardware) sont utilisés pour augmenter la vitesse de calcul de l'algorithme de recher­

che. Le patron d'interconnexions des cases requiert moins de signaux comparative­

ment à DEEP BLUE, tout en permettant une gestion simple des coups spéciaux

(prise en-passant, roque, etc.). L'ordonnancement des coups est amélioré grâce à

l'introduction d'arbitreurs programmables. La centralisation des arbitreurs contribue

aussi à améliorer l'ordonnancement des coups, ce qui réduit la taille des arbres de

recherche. Le générateur de coups permet l'intégration de plusieurs heuristiques cru­

ciales. Après avoir remplacé la version software du générateur de coups par une

version hardware, la force du programme d'échecs est nettement améliorée.
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Chapter 1

Introduction

For centuries, humanity has been fascinated by the game of chess. The mere fact

that chess has been around for so long is a testament to its mystique. A simple set of

pieces being maneuvered on an 8x 8 array of squares can, for sorne, become a lifetime

vocation. Throughout its history, different cultures have had variations on the rules

and pieces of chess. Today's commonly accepted rules were first proposed in 1851 by

Howard Staunton. These rules, along with many other aspects of chess, are governed

by the Fédération Internationale des Échecs which was created in the 1920's.

With the technological revolution taking place during the middle of the twentieth

century, it was inevitable that chess and computer technology would become inter­

twined. However, the idea of a chess-playing machine was put into practice during

the early 1800s. The Great Chess Automaton was a large box with gears and me­

chanical parts inside. The audience was made to believe that this machine could play

a game of chess. The only catch was that a human operator was hidden inside the

box working the machinery. Real chess-playing machines started appearing in the

1960s with the introduction of the microprocessor. However, the key tree-searching

algorithm to be used was introduced in 1950 by Claude Shannon. In Programming a

Computer for Playing Chess [63], Shannon explained his strategies for tree searching.

For search-based algorithms, computing the best move for a given position involves

trying different combinations of moves for both sides up to a certain search depth.

In a search tree representation, anode is a chess position and a branch is a move.

For simplicity in this thesis, "move" will be used in place of the proper chess term:

"half-move". The term ply is often used to denote a level in the search tree. When

anode is not expanded, it is referred to as a terminal node. To attempt to predict

the expected value of the large sub-tree continuing beyond that point, an evaluation

function assigns a score to each terminal node. When these scores are backed-up to
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the root node, we know which move leads to the greatest gains. The complete tree

cannot be explored because of the large branching factor and the exponential nature

of the tree.

Thus, a computer program that traverses a search tree of possible moves requires

a function that can output the chess moves for any node reached during the search.

In this thesis, custom digital circuits will be shown to generate moves faster than a

software move generator. A faster move generator yields a faster progression through

the search tree. Given a fixed amount of time, a deeper search tree improves the

quality of the proposed best move.

In this thesis, the hardware move generator was designed, tested and integrated

to a fully-functional chess program. The hardware move generator is faster than the

software move generator and thus increases the program's playing strength by 150 to

210 chess rating points, depending on the metric used (absolute versus relative ratings

respectively). The program fairs well against players rated below the expert skilllevel.

Subsequent improvements necessary for master or even grandmaster performance are

stated in Sections 5.5 and 6.2.

1.1 Move Generator History

In 1977, the BELLE chess system was entered in the World Computer Chess Champi­

onship in Toronto. Unbeknownst at the time, this marked the beginning of a 20-year

period that culminated in the defeat of the reigning world chess champion. The

BELLE chess program was the first to use custom digital circuits to increase its play­

ing strength [12, 22]. The most time-consuming operations performed in a chess

program are move generation [47] and positional evaluation. The first version of

the hardware-augmented BELLE utilized a hardware move generator. Subsequently,

other time consuming procedures such as alpha-beta search control, positional eval­

uation and a transposition table controller were implemented in silicon. With its

new hardware, the 1980 version of BELLE was able to increase its search speed from

200 positions per second to 160 000. BELLE won the 1980 World Championship in

Austria and was the dominating force in computer chess for many years.

The original BELLE hardware move generator was to serve as a starting point for a

new, more powerful chess project. A doctoral student at Carnegie Mellon University,

Feng-Hsiung Hsu, started CHIPTEST in 1985. A single-chip, 3-micron VLSI move

generator was built and interfaced to a rudimentary chess program. After micro­

coding the search engine in 1987, CHIPTEST-M was able to search 500 000 positions

2



per second. At the 12th International Joint Conference on Artificial Intelligence in

Australia in 1991, the project had increased in size to twenty-four custom processors

and an IBM RS-6000 CPU. This system, named DEEP THOUGHT II, was able to

search 6 to 8 million positions per second. Parallel processing of the alpha-beta

search algorithm was now becoming commonplace. The computer that defeated Gary

Kasparov in 1997, DEEP BLUE, had 30 IBM RS-6000 SP processors coupled to 480

chess chips [47]. With a computational speed of 200 million moves per second, full

search depths of 12 plies were reached, with sorne extensions reaching 40 plies.

Another hardware chess project also originated from Carnegie Mellon University.

In the early 1980s, a 64-chip move generator was designed and later became part of

the HITECH chess machine. Each of the 64 chips was responsible for computing moves

that land on a given square of the chessboard. The performance of the move generator

was equivalent to BELLE'S, but with better move ordering [23]. The HITECH machine

went on to tie for first place in the 1986 World Computer Championship and the 1989

ACM North American Computer Championship. Aside from its ability to evaluate

175 000 positions per second, HITECH also introduced hardware pattern recognizers

in its positional evaluation. HITECH attained the Senior Master title and was one of

the strongest artificial chess players in the world from 1985 to 1988.

As its title indicates, the Chess-Oriented Processing System (CHEOPS) was also

developed as a custom chess-playing machine. The core of CHEOPS is a custom built,

16-bit CPU designed specifically to execute chess instructions. The Chess Array

Module, along with controlling logic, is responsible for generating chess moves. The

CHEOPS system was integrated to the TECH II and MACHACK chess programs but

no performance results are given [44]. CHEOPS was developed at the Massachusetts

Institute of Technology during the late 1970s.

This project will focus on the design of a hardware move generator. One aspect

common to the four previously mentioned chess machines is that the three principal

components of a chess engine are implemented in hardware: positional evaluation,

search control and the move generator1
. Functional details of the move generators

used in these designs will be given in Chapter 3.

Perhaps the most intriguing move generator of an is the human brain. When

looking at a given chess position, experienced players are not even conscious of the

move generation part of a chess "calculation". Pieces are shuffied around in one's

imagination in an attempt to find a clever offensive or defensive plan. When Shan­

non introduced his chess algorithms, it was clear that a computer would be used to

1Positional evaluation is not done in hardware in CHEOPS.
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generate moves and thus traverse a tree of possible outcomes. Ever since the first

computer chess programs appeared, one constant in all of them has been the presence

of the move generation function.

Even though humans and machines do not play chess in the same manner, the

computer program must also have a function that generates the chess moves in any

given position. In a software implementation, this is a fully sequential process. The

board is scanned and when a piece belonging to the side to move is found, another

loop is executed. In the case of a queen located in the middle of an empty board,

a loop in each of the eight directions is necessary. This seriaI computation is not

very efficient. Bit-boards have been used to try to profit from the implicit parallel

computation of Boolean operations. Piece locations for aIl types of pieces are encoded

as 64-bit numbers. In concert with pre-calculated attack tables, bit-wise operations

are used to speed-up move generation. However, many instructions still need to be

applied sequentially in order to obtain usable moves. The next step is therefore to

use custom hardware that is specifically designed to generate chess moves.

When comparing a computer to a human, the human searches far fewer combina­

tions of moves but benefits from a huge positional evaluator: his neural network. This

is why novice players usually get severely beaten by chess programs. Their neural net­

work (brain) is not trained to detect and evaluate chess positions and with their slow

search processing, they are easily defeated. This is like trying to beat a processor in a

multiplication contest. However, as the human neural network is trained, it starts to

compete with the computer. As shown in the Kasparov versus DEEP BLUE matches,

humans are capable of defeating massive searched based machines. However, the

hardware used in chess machines continues to advance rapidly, whereas the hardware

used in the human brain has remained essentially the same over generations.

1.2 Thesis Overview

The projects mentioned in the previous section were built using discrete logic chips

and/or Application Specific Integrated Circuits (ASIC). In this project, the hardware

maye generatar is built using a programmable lagic device. An FPGA, or Field Pro­

grammable Gate Array, is an integrated circuit composed of an array of logic cells

[70]. The routing lines have interconnect matrices to direct signaIs anywhere through­

out the device. Hence, a design instance corresponds to a particular configuration of

routing matrices and logic cells. A digital design is uploaded into the FPGA, at which

point the desired circuit becomes functiona1. This process can be repeated at will and

4



does not involve any subsequent material costs. Therefore, a circuit can be tested

as the design steps progress, something not possible with ASICs. In this project,

the FPGA move generator was used in real-world situations during the final design

stages. This fiexibility led to important modifications that facilitated integration to

the chess program.

With increasing performance and higher gate-counts, FPGAs are slowly replacing

ASICs or even custom ICs. In this project, the FPGA will be used to improve

computer chess playing skills by increasing the processing speed of the alpha-beta

search-tree algorithm used in computer chess. Specific FPGA architectural features

will be used to improve the design of the chess move generator. It will be shown

that an FPGA chess accelerator can successfully be used in an area traditionally

reserved for ASICs, without the lengthy turnaround time, and at a fraction of the

cost. Ease of re-programmability and on-chip RAM make FPGAs an ideal target for

this application. The acceleration of combinational, search-based algorithms is not

restricted to chess and can be applied in many different situations. One example of

this is hardware-accelerated Boolean satisfiability.

The proposed FPGA move generator is integrated to MBCHESS, the author's

chess program [15]. This program was developed prior to the design of the FPGA

move generator and is based on commonly accepted computer chess concepts. Pre­

sentation of how computer chess programs work and MBCHESS is given in Chapter 2.

The reader wanting to know more about computer chess programming may consult

Chapter 9 of How Computers Play Chess [49]. In Chapter 3, previous move generator

designs are surveyed. The proposed FPGA move generator is presented in Chapter 4.

Throughout this thesis, the name CODEBLUE refers to the FPGA hardware move

generator. MBCHESS by itself refers to the original software-only chess playing pro­

gram and MBCHESS-CODEBLUE refers to a modified version of MBCHESS that uses

the CODEBLUE hardware move generator. The key metric used to evaluate the per­

formance of the design involves playing MBCHESS-CODEBLUE against MBCHESS

in order to determine the improvement in chess rating. Both programs will also play

independently on the Internet in order to be able to compare their absolute ratings.

These and other results are presented in Chapter 5.
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Chapter 2

Background

Before describing hardware move generators, a presentation of the commonly used

chess algorithms and heuristics is in order. It is crucial to understand in which context

the hardware move generator is to be used before proceeding with the design. Fur­

thermore, the hardware move generator presented in Chapter 4 is used in MBCHESS,

the author's fully functional chess program. In Section 2.1, the core tree-searching

algorithm is be presented. An overview of the positional evaluation function is given,

as weIl as details concerning two important speed-increasing heuristics: the transpo­

sition table and the killer heuristic. Quiescence search and iterative deepening are

also introduced in this section. The effect of heuristics on move ordering and move

generators is explained in Section 2.2. Particularities pertaining to the MBCHESS

program are detailed in Section 2.3. A presentation of the FPGA technology used

to implement the CODEBLUE hardware move generator is given in Section 2.4. To

complete the chapter, a formula used to quantify chess rating differences is derived

in Section 2.5.

2.1 Chess Algorithms and Heuristics

The three critical components of chess engines were mentioned in the Introduction.

These are: move generation, positional evaluation and search control. A conventional1

chess program or a hardware chess machine must implement these three components

with either program code or digital circuits. Search control corresponds to the mech­

anism used to traverse the search tree of possible moves (alpha-beta algorithm of

Section 2.1.1). Once a leaf node is reached, a score is assigned using a positional

1As opposed to a neural network chess engine.
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Chess engine
Board [----------------------------------------------------------------------------1

POOitiOO

I
l J

Best move&
best score

Figure 2.1: Chess engine block diagram. The move generator is implemented In

hardware.

evaluation function such as the one overviewed in Section 2.1.2. At each node, the

move generator is responsible for returning the next unexplored move. MBCHESS

is a fully software chess program. In MBCHESS-CODEBLUE, the move generator

is relegated to hardware for improved performance. The hardware move generator

corresponds to the grey block in Figure 2.1.

In this section, the key components of a chess-playing program are explained.

Other than the ones presented here, many other heuristics are used in modern chess

programs such as Schaeffer's history heuristic [60] and null-move depth reduction

[8, 31]. However, only the ones used in MBCHESS will be explained. An overview

of the different components used in computer chess is introduced in Figure 2.2. Not

shown in the figure is the positional evaluation performed at each quiescent node

(Section 2.1.5). Other than iterative deepening, each of the topics presented in this

section is visible in the figure.

2.1.1 Nega-Max Alpha-Beta Search Aigorithm

The basic search mechanism used in chess programs is the alpha-beta depth-first

search for the best move [40]. Variants and improvements to the basic alpha-beta

algorithm are abundant, sorne of which are detailed in [3, 55, 56, 57, 59]. The parallel

alpha-beta algorithm, as was used by the multiprocessor DEEP BLUE machine, has

also been explored [46, 52]. Furthermore, a tree-splitting method based on neural

networks has been developed in [41]. The proper explanation of the alpha-beta algo­

rithm begins with the min-max search algorithm shown in Figure 2.3. In the example

tree shown at the right of the figure, circle nodes have the player to move and square

nodes have the opponent to move. Leaf nodes are always evaluated as seen from the

root node player's point of view. The opponent picks moves leading to the minimum

7



Depth = 0, root node

Legend:
(I):Positional evaluation

of board position

1:Chess move

0: Board position

Transposition Table
0= @=... 0=...

0= empty 0=

0= 0=...

(1)= 0=... 0=...

0= 0=... emR

0= 0=... (1)= .

0= @=... @= .

(9 =... empty 0 = .

empty 0=... (1)= .

0=... (1)= (1)=

Quiescence
search

............1 .

Move --Vt++H-'

generation

Full-width
search
horizon

Depth = 3

Figure 2.2: Computer chess components and search trees.

scores and the player selects moves leading to maximum scores (best position). The

tree is searched in a depth-first manner, from top to bottom as indicated by the

vertical arrow. After searching the min-max tree with this algorithm, the program

knows which move is the best, as well as the corresponding best score.

The min-max algorithm can be re-written in a simpler form, where the distinction

between the type of node (min or max) is not necessary. The algorithm negates the

score returned by each subtree and always maximizes the score, hence the nega-max

designation. In this algorithm, the position is evaluated as seen from the side to move

at the terminal node. This formulation is much easier to work with when integrating

move ordering heuristics. In this chapter, player refers to the side to move in the

root position, and opponent refers to the adversary. In the search trees shown in

this chapter, branches emerging from the root node correspond to moves by the chess

program. Moves emerging from nodes at the first ply are moves from the opponent,

and so forth. It should be dear that the search procedure plays out moves for both

sides and only the resu1ting best-move is actually played on the chessboard by the

program.

A pivotaI improvement to the min-max algorithm was introduced in 1958 by

Newell, Shaw and Simon [50]. Upon doser inspection of the nodes processed in a

8



1: FUNCTION: MINMAX(depth)
2: if depth = max_depth then
3: return EVALUATEPOS(position)
4: if max node then
5: best f- -00

6: else
7: best f- 00

8: for i f- 1 to # moves in position do
9: make move i

10: score f-MINMAx(depth + 1)
11: unmake move i
12: if max node then
13: if score> best then
14: best f- score
15: else
16: if score < best then
17: best f- score
18: return best

G Maxnode

[;] Min node

Figure 2.3: Min-max algorithm and example tree. The min-max algorithm reveals a
best score of 3 and that the best move for the side to play is move a. The EvaluatePos
function is from the root-player's point of view.

1: FUNCTION: NEGAMAx(depth)
2: if depth = max_depth then
3: return EVALUATE(position) {Evaluate from side-to-play's point of view}
4: best f- -00

5: for i f- 1 to # moves in position do
6: make move i
7: score f- - NEGAMAx(depth + 1)
8: unmake move i
9: if score> best then

10: best f- score
11: return best

Figure 2.4: Nega-max algorithm, a simpler version of the min-max algorithm.
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min-max search, certain branches (moves) can be disregarded without affecting the

outcome of the search procedure. In Firure 2.3, the reader should verify that omitting

to expand moves h, i, k and l is completely safe. This can be done not because we

know that the scores shown are not returned but rather because whatever their value,

the backed-up value at the root node is not affected. Another explanation of these

cutoffs is that the player will never choose a continuation in which a move tried by

the opponent leads to a position inferior to the worst move played by the opponent in

a previously searched continuation. Thus, in the non-promising continuation, once a

refutation is found, the remaining moves do not need to be expanded. These cutoffs

can occur at many levels in the search tree. The doser these occur to the root node,

the larger the savings. This pruning algorithm can be categorized as a branch-and­

bound optimization technique. When a branch cannot affect or improve the solution

to the problem, it is not expanded and the search space is reduced. In branch-and­

bound algorithms, a bound is used to help decide whether a branch should be explored

or not.

The search tree from Figure 2.3 was arranged to create the most cutoffs possible.

Rad the mayes been searched in a different order, fewer or no nodes would have been

removed. With one move ordering being better than another, what constitutes the

best move ordering? Once more, using the example tree from Figure 2.3, it can be

shown that if each node orders its moves from best to worst, the minimal alpha-beta

tree will result. Because the search tree is traversed in a depth-first order, terminal

scores are not known in advance when selecting a move at anode. Move ordering

represents a much worked-on topic in computer chess and the quest for the minimal

tree is ever ongoing. A commonly used heuristic involves searching capturing moves

first.

The alpha-beta algorithm is shown in Figure 2.5 (adapted from [59]). A math­

ematical analysis of the alpha-beta algorithm is shown by Knuth in [40]. When

compared to a min-max search tree with the same number of nodes, the minimal

alpha-beta tree is twice as deep because of the cutoffs performed. A factor of two

in search depth is very significant, given the exponential nature of the search tree.

This sizeable reductian in average branching factar enables pragrams ta search deeper

thereby playing stronger chess. Cansequently, the much needed maye ordering places

an additional requirement an the design of the hardware move generator. Another

requirement is alsa deduced: the maye generatar should return mayes individually sa

that no generated moves are wasted when cutoffs occur.

The condition "if score > best" in the nega-max and nega-max alpha-beta
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1: FUNCTION: NEGAMAXALPHABETA(depth,a,,6)
2: if depth = max_depth then
3: return EVALUATE(position)
4: best +- -00

5: for i +- 1 to # moves in position do
6: make move i
7: score +- - NEGAMAXALPHABETA(depth + 1,-,6,- max{a, best})
8: unmake move i
9: if score > best then

10: best +- score
11: if best > ,6 then
12: return best
13: return best

Figure 2.5: Nega~max alpha-beta algorithm. The condition "if best > (3" is the
mechanism used to perform cutoffs.

Table 2.1: Piece values used in MBCHESS.

algorithms implies that among the best equal valued subtrees, the first subtree's

value will be returned and also that the move leading to this subtree will be part of

the best line of play. Conversely, if a 2:: was used, the last of the best equal subtrees

would be kept as the best line of play. In the nega-max alpha-beta algorithm, a cutoff

is also referred to as a beta cutoff because it is this bound that causes the search to

prematurely backtrack. The algorithm used in MBCHESS is the NegaScout version of

alpha-beta developed by Reinefeld [59]. The NegaScout alpha-beta algorithm will be

presented in Section 2.1.3, simultaneously with the integration oftransposition tables.

The alpha-beta algorithm will be labeled ALPHA-BETA throughout the thesis.

2.1.2 Positional Evaluation Function

As mentioned in the Introduction, evaluation of terminal nodes is done in order to

predict the value of the subtree continuing beyond the terminal node. This function

(labeled POSITIONAL) is dominated by the material on the chessboard. To allow

sufficient resolution without resorting to floating point calculations, the value of a

pawn is set at 100. The piece values used in MBCHESS are outlined in Table 2.1.

Since integer values are used, the smallest positional effect is one percent of a pawn.
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Table 2.2: Sorne of the positional terms used in MBCHESS.

Situation Value Situation Value
Doubled pawns -8 Pawn on home row of column e -16

Pawn on penultimate row 50 Pawn on row 4 or 5 of column e 6
Queen moved during opening -8 Piece attacking e4, e5, d4 or d5 3

Knight on row 1 or 8 -4 King-side bishop on home square -5
Square radiated by queen 1 Queen-side bishop on home square -3
Square radiated by bishop 1 Vertical square radiated by rook 1

Forfeit king castle -30 Castle king side with 2 of 3 pawns 12
Forfeit queen castle -15 Castle queen side with 2 pawns 7

The positional evaluation used in MBCHESS is quite basic. Examples of positional

terms used in the program are given in Table 2.2. The positional factors are summed

and added to the material value. This final score is signed according to the side to

move, as required by the nega-max form of the search algorithm. Furthermore, a

random number between - 2 and 2 is added to the returned score to ensure a certain

randomness of play by the program. This is labeled the RANDüM property. With

this feature, the chess program virtuaIly never plays the same game twice. If the side

to move has no legal moves and its king is not in check, a score of a is returned to

indicate stalemate. If the side to move has no legal moves and its king is in check, a

score of -30 000 is returned to indicate checkmate.

Positional evaluation functions are complex and time consuming to develop. The

positional function used in MBCHESS is relatively simple. Many improvements could

be made to increase the strength of play, most notable of which is the addition of

king safety. More details concerning the creation of suitable positional evaluation

functions can be found in [27, 42, 68], as weIl as in the workings of CHESS 4.5 [26]

and DEEP BLUE [21].

2.1.3 Transposition Tables

Other than the stack space required for N plies, the alpha-beta algorithm requires no

memory to operate. One important use of memory concerns transpositions: different

sequences of play that result in the same position. For example, from the initial

position, the sequence of moves e4-e5-d4 and d4-e5-e4 have the same resulting board

position. The first time the position is reached in the search tree, the calculated

score is stored in the transposition table (T-TABLE). The second time the same

position is reached, no work needs ta be done and the score is taken from the table.
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'Iranspositions also occur at different depths in the search tree. As with beta cutoffs,

the doser a successful table lookup occurs to the root node, the larger the savings.

The transposition table would not be very efficient if entire chess positions needed

to be stored in the table. Furthermore, finding random positions in the table would

be time consuming. To solve these two problems, the Zobrist algorithm is used [71].

The Zobrist algorithm involves converting the chess position into an x-bit hash-key.

In MBCHESS, x = 64. Because the transposition table has less than 264 entries, the

n lower bits of the hash-key are used as the hash-index. Therefore, a transposition

table has 2n entries. To compute the hash-key, a 64-bit random number table is con­

structed. The table has a unique random number for each piece-square combination

(12x64). Supplemental values also exist for castling rights, en passant captures and

the side to move. The hash-key is obtained by an XOR of all piece-square and board

state random values. The hash-key can be easily updated when a move is made. This

simply involves an XOR with the source piece-square value and another XOR with

the destination piece-square value. The Zobrist algorithm achieves almost perfect

distribution throughout the hash table and can be used in many other fields where

hashing is performed.

Because there are much more than 264 possible chess positions, many chess posi­

tions can map to a single hash-key. Because of the relatively slow processing speed

of chess programs, the probability of this causing a problem is very small. This is

referred to as a hashing erroI. A hashing collision occurs (much more frequent) when

two chess positions are mapped to the same hash-table entry. For example, with a

hash-table consisting of 220 entries, a program searching 100 000 positions per second

would fill up the table in 10 seconds. When collisions occur, a replacement scheme

determines which of the two positions contains the most important information. More

information concerning replacement schemes can be found in [20]. 'Iransposition ta­

bles are also explored in [18, 19, 45].

In MBCHESS, a hash entry consists of:

1. The 64-bit hash-key;

2. The score of the position;

3. The depth of the corresponding subtree;

4. The best move found if this is not a terminal node (TT-SUCC-MOVE);

5. A flag to indicate if the score is exact, upper-bound or lower-bound.
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The best-move is used to influence move ordering when the stored information is not

sufficient for a direct look-up. For example, if the position has been found in the

table but the required depth is larger than what was searched when the position was

stored in the table, the best move from the hash-entry will be searched first. For

maximum alpha-beta efficiency, move generators must aUow for this rearrangement

in move ordering.

As indicated in Section 2.1.1, the NegaScout alpha-beta algorithm will now be pre­

sented (Figure 2.6). This algorithm is adapted2 from [59] and includes the necessary

instructions to use a transposition table. The caU to the Evaluate function has been

replaced by the quiescence search function, which will be explained in Section 2.1.5.

The UpdateTT function is also shown in Figure 2.7.

2.1.4 The Killer Heuristic

As with the transposition table's suggested move, the killer heuristic is another im­

portant move ordering improvement (labeled KILLER). With this heuristic, moves

that have caused beta cutoffs elsewhere in the search tree, at the same level, are

searched first. The goal of the kiUer heuristic is to improve move ordering in order

to reduce the number of positions searched in the alpha-beta algorithm. An example

of a position where the kiUer heuristic is effective is shown in Figure 2.8 [27]. After

most moves from black, white's fork is still valid (Nc7 in the diagram). It is there­

fore advantageous to remember the move Nc7 and retry it at other positions after

each of black's move at the root node. For example, after black's a6 move, white

eventuaUy finds that Nc7 is a kiUer move. After each of black's pawn moves, white

can successfuUy play the kiUer move. If this move is played first, the beta cutoff

occurs right away and the resulting subtree is smaUer. For the example position from

Figure 2.8, MBCHESS-CODEBLUE searches 30 849 nodes when executing a four-ply

search (POSITIONAL and ALPHA-BETA activated). When the kiUer heuristic is

added, this number is reduced to 18 042 nodes, a 41.5% reduction. The heuristic is

not as effective in aU chess positions. On average, its use can reduce search tree sizes

by approximately 10% to 20%.

Killer moves can be implemented by two different methods. The first method, as

shown in [48, 67], involves maintaining a kiUer slot for each ply. This array is external

to the search procedure. In MBCHESS, kiUer moves are implemented differently.

Each node maintains the kiUer move for its children nodes. Once a child node finds

2The "fail-soft refinement" from the referenced algorithm is omitted.
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1: FUNCTION: NEGASCOUTALPHABETATT(depth,a,,8)
2: if position found in hash_table and depth of hash entry good enough then
3: if hash_entry.flag = exact or

(hash_entry.flag = lowerbound and hash_entry.score > ,8) or
(hash_entry.flag = upperbound and hash_entry.score < a) then

4: return hash_entry.score
5: if depth = max_depth then
6: best f- QUIESCENCESEARCH(depth,a,,8,NULL)
7: UPDATETT(best,a,,8,NULL)
8: return best
9: best f- -00

10: n f- ,8
Il: for i f- 1 to # moyes in position do
12: make moye i
13: score f- - NEGASCOUTALPHABETATT(depth + 1,-n,- max{a, best})
14: if score> best then
15: if n = ,8 then {if first moye being tried}
16: best f- score
17: else
18: best f- - NEGASCOUTALPHABETATT(depth + 1,-,8,-score)
19: besLmove f-moye i
20: unmake moye i
21: if best > ,8 then
22: exit for loop {beta cutoff!}
23: n f- max{a, best} + 1
24: UPDATETT(best,a,,8,besLmove)
25: return best

Figure 2.6: NegaScout alpha-beta with transposition tables algorithm.

1: FUNCTION: UPDATETT(best,a,,8,besLmove)
2: if best > ,8 then
3: flag f- lower _bound
4: else if best < a then
5: flag f- upper_bound
6: else
7: flag f- exact
8: if hash_table[position] is empty or replacement is adyantageous then
9: WRITEHASHTABLE(best,jlag,besLmove)

Figure 2.7: UpdateTT function used in Figure 2.6.
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Figure 2.8: Killer heuristic example diagram, black to play. White's forking move
(Nc7) is the killer move.

a move that causes a beta cutoff, this move is stored in the parent 's killer slot. The

child's siblings have access to the stored killer and can use it to improve their move

ordering. The idea for constructing killers in this manner was obtained from Green

Light Chess [25]. With this technique, multiple killer moves can be stored in different

regions of the tree. However, rediscovering a recurring killer move can be costly.

The killer technique used in MBCHESS was found to be slightly better than the

first method mentioned, however, more experimentation is needed to confirm this.

The killer suggested-move also represents a rearrangement in move ordering. Besides

allowing a killer move to be executed first, the hardware move generator must also

support verifying that a killer move is legal in a given position.

2.1.5 Quiescence Search

Quiescence search is a second level of tree searching that is executed when the full­

width search horizon is reached. This second level search aims to continue to expand

certain branches until a quiet position is reached (one where virtually no capturing

moves exist). A simple but computationally expensive quiescence algorithm would

involve searching aH captures at a node and calling the quiescence search function re­

cursively. At each node, the side to move is given the choice of making any capturing

move or accepting the positional evaluation as is. Once the position is deemed stable,

the positional evaluation function is called to assign a score to the leaf node. Quies­

cence search is an integral part of any successful chess program. A general quiescence

search procedure is given in [9].
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1: FUNCTION: QUIESCENCESEARCH(depth,a,(3,square)
2: best ~ EVALUATEO {Capturing moves also generated}
3: if best > (3 or no capturing moves found then
4: return best
5: if square -=J NULL then
6: remove captures that do not land on square
7: for each capturing move i do
8: an alpha-beta search that calls

QUIESCENCESEARcH(depth,-(3,- max{a, best},destination square of i)
9: return best

Figure 2.9: Quiescence search function used in Figure 2.6.

In MBCHESS, the quiescence search operates as follows. When calling the quies­

cence function from the main search function, aIl destination squares where the player

to move can make a capturing move are retained. After making any capturing move

to one of these squares (during the first ply of quiescence), the quiescence function is

called again. This time, the destination square for the move that was just executed is

used to restrict further iterations of quiescence to moves that capture on this square

only. This quiescence function is particular to MBCHESS and has not been found in

the chess literature. This quiescence system was developed to limit the large amount

of time spent in quiescence search.

The capturing moves necessary for quiescence search are easily generated within

the positional evaluation function. The positional evaluation function presented in

Section 2.1.2 scans each piece in each possible direction in order to quantify the squares

or pieces attacked. Capturing moves are easily identified with relatively low overhead.

The quiescence function used in MBCHESS is shown in Figure 2.9. Transposition ta­

bles are not used in quiescence because the searches are restricted to capture searches

and thus are not full-width alpha-beta searches.

A quiescence function that searches too many moves will reduce full-width search

depth at the expense of deeper extensions. Conversely, a quiescence function that does

not search capturing exchanges deep enough will prevent the evaluation function from

accurately assigning a score to a leaf node. In the current version of MBCHESS, this

quiescence scheme represents a good balance between search effort and search exten­

sion quality. In quiescence search, the move generator must be capable of generating

capturing moves first. Another important property of a hardware move generator has

therefore been stated.

Another selective searching procedure involves singular extensions [5, 6]. When
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1: FUNCTION: ITERATIVEDEEPENINGO
2: best f- NEGASCOUTALPHABETATT(l,-oo,oo)
3: besLmove +- first move from best Hne of previous search.
4: n f- 2
5: loop
6: best +- NEGASCOUTALPHABETATT(n,-oo,oo)
7: if search interrupted because no more time left then
8: exit loop
9: besLmove f- first move from best line of previous search.

10: n f- n + 1
11: return besLmove

Figure 2.10: Iterative deepening algorithm. The NegaScout alpha-beta search func­
tion is shown in Figure 2.6.

one or more moves are found to be significantly better than the other moves at a

node, they are searched one ply deeper. Singular extensions can occur at different

levels in the tree, thereby producing selective searching in important regions of the

search space. These types of extensions were used in the DEEP BLUE project and

were found to play a key role. Selective extensions could be added to a future version

of MBCHESS.

2.1.6 Iterative Deepening

The advantage of depth-first searching is that a smaIl amount of memory is required.

However, in the context of a timed chess game, selecting the proper search depth

for a single search becomes very difficult. The size of the tree is not known and the

average branching factor varies according to the stage of the game and the board

position. To remedy these problems, iteratively deepening alpha-beta searches are

caIled (labeled IT-DEEP). The apparent inefficiencies of repeating portions of the

search tree are not as detrimental as they might seem. First, when the search of

depth N is started, many positions from the "N - 1"-deep search are present in the

transposition table and are used to improve move ordering as weIl as provide lookups,

when possible. Secondly, because of the exponential nature of the tree, the search to

depth N requires reasonably more time than the previous searches from 1 to N - 1.

When the aIlotted time for a move is elapsed, the search to depth N (in progress)

is interrupted. The best-move found so far cannot be used because the search tree

was not completely finished. Therefore, the best-move from the previous search to

depth N - 1 is used.
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Table 2.3: Move ordering in MBCHESS-CODEBLUE (best-first).

Order Type of move
1 Transposition table's suggested move
2 Killer heuristic's suggested move
3 Direct Checking moves
4 Discovered Checks
5 Capturing moves in MVV/MVA order (includes capturing promotions)
6 Non-capturing promotions
7 Non-capturing moves

From the iterative deepening algorithm shown in Figure 2.10, a simple optimiza­

tion concerning the alpha and beta bounds becomes possible. Aspiration search,

or windowing, involves tightening the alpha and beta values of the current itera­

tion around the previous iteration's best score. A narrower alpha-beta window im­

proves the efficiency of the alpha-beta algorithm. In MBCHESS, this was not found

to improve search speed and was not implemented, however, more experimentation

would be needed. When taking the windowing concept to the extreme, the Memory­

Enhanced Test Driver (MTD) algorithm is obtained. The algorithm is based on zero­

width searches that are repeated until the returned best score stabilizes. Aspiration

search and the MTD algorithm are described in more detail in [67] and [55, 56, 57]

respectively. With both of these algorithms, when the score returned from a search

faIls outside of the alpha and beta bounds, the position must be re-searched with

different bounds.

2.2 Move Generators and Move Ordering

Move generators, whether software or hardware, must generate chess moves in a best­

first order. The goal is to achieve minimal-sized alpha-beta search trees and thus

search the same depth in faster time. In Section 2.1.1, the importance of good move

ordering was emphasized. In this section, the ordering of moves and the effects of the

T-TABLE and KILLER heuristics on move ordering are outlined.

An example of move ordering is given in Table 2.3. This ordering corresponds to

the moves used by MBCHESS-CODEBLUE during fuIl-width searching (as opposed

to quiescence search). The capturing moves are generated in order of most-valuable­

victim / most-valuable-aggressor (MVV/MVA) , contrary to the typical ordering of

other hardware move generators. A large portion of the move generators shown in
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Chapter 3 follow the most~valuable-victim j least-valuable-aggressor (MVVjLVA)

ordering. The reason for this change in move-ordering is given in Section 5.2.

In quiescence search, the move ordering follows priorities 5 and 6 from Table 2.3.

Priority 5 is modified to obtain the MVVjLVA ordering (the explanation for this is

also given in Section 5.2). Selective extensions that follow checking moves could be

added in the future.

In MBCHESS, move ordering is simpler than what is shown in Table 2.3. No

distinction is made between direct or discovered checks. Furthermore, no distinction

is made between types of aggressors, hence the MVV ordering for capturing moves.

A large disadvantage of the software move generator is that al! moves have to be

generated for priorities 3 to 7. When a beta cutoff occurs, aIl unused moves have

been uselessly generated. One of the advantages of the hardware move generator is

that aIl moves are generated individuaIly; no unused moves are wasted when a cutoff

occurs.

In both programs, when the current position is found in the transposition table

and the stored information does not cause an immediate score lookup, the best move

stored in the table entry is searched first. Because the positions match (verified with

the hash key), this move does not need to be verified and requires no move generation.

If the returned score causes a beta eutoff, no moves have been generated.

When the killer heuristic indicates a suggested move to try, it must be validated

in the current board position. In MBCHESS, only the moves for the killer piece are

generated for this validation. If a eutoff occurs for the subtree corresponding to the

killer move, no other moves have been generated. In MBCHESS-CODEBLUE, only

the moves that land on the killer move's destination square are first generated.

An important distinction must be made regarding the legality of chess moves.

AIl the move generators described in this thesis generate pseudo-legal chess moves.

The moving player's king could potentially be in check after making any one of the

pseudo-legal moves. This simplifies the move generator design considerably. In order

to expand legal moves during the search procedure, once a move has been made, it

is verified for legality. If the moving player's king is in check after the move is made,

it is not searched and the next move is examined. In this way, the moves not used

because of a beta cutoff have not wasted computing power in order to be verified for

legality.

Move ordering and heuristics represent a research topie on their own. More experi­

mentation would be necessary to fully validate the move ordering used in MBCHESS­

CODEBLUE (Table 2.3). Furthermore, the design of the hardware move generator
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imposes certain limits on how move ordering could be re-arranged. For example, one

could argue that discovered checks are better than direct checks. This would involve

interchanging priorities 3 and 4 from the table, something not feasible given the actual

design. For further reading, a thesis on move ordering can be found in [67].

2.3 MBChess Extras

In this section, miscellaneous details concerning the MBCHESS program are given.

For this section, the term MBCHESS also refers to MBCHESS-CODEBLUE because

both programs are essentially identical, except for move generator issues. Here are a

few supplemental details pertaining to MBCHESS:

1. The internal-node counter includes terminal nodes. Also included are nodes

that lie on the full~width search horizon, before they are extended with the qui­

escence function. The quiescent-node counter includes quiescent nodes deeper

or equal to the first level of quiescence. Node counts are used in Chapter 5 for

benchmarking;

2. There is no opening book in MBCHESS. Use of an opening book is empirically

beneficial, however, no time has been spent to implement this feature. We

believe that a program should first be able to play well by itself before being

injected with two hundred years of human expertise in openings;

3. MBCHESS can be instructed to spend x amount of seconds for each move.

The smart time option prevents the next level of iterative deepening search to

be undertaken when less than half of the allotted move-time remains. More

complex time controls allowing the total game-time to be properly distributed

would increase the program's performance;

4. Repetition draws are detected only in the first two plies of search. This prevents

the program from directly playing a drawing move or prevents the opponent

from directly playing a drawing move when this is advantageous. A much better

repetition draw detector would involve hashing and would be performed at each

node in the entire search tree;

5. Check extensions (CHECK-EXT) are performed to a maximum of two plies

beyond the intended full-width search depth. The quiescence search is never

called when the side~to-move'sking is in check. When a check extension occurs,
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the subtree rooted at the given node has its maximum-depth parameter incre­

mented. Because of the full-width depth increase on the subtrees, a selective

check extension would be more efficient;

6. Deep thinking was initially part of the MBCHESS program but was not com­

pleted for MBCHESS-CODEBLUE. This option allows the program to search

each of the opponent's moves while he/she is pondering their next move. A

preliminary best-line of play, as weIl as the positions stored in the transposition

table, can be used to improve move ordering for the computer's turn.

2.4 FPGA Architecture and Requirements

In this section, an overview of the device used to implement the CODEBLUE move

generator is presented. The Field Programmable Gate Array (FPGA) is a user­

reconfigurable logic device. It can be used to implement custom-designed digital

circuits, limited only by the size and speed of the device being used. The FPGA is

an ideal prototyping platform costing much less than mask-programmed gate arrays.

The part can be programmed on-site; no fabrication delays or large non-recurrent

engineering costs are incurred. Sorne families of FPGAs are also targeted for mass

production. These are usually lower-capacity parts that are only available in large

quantities. The logic capacity of FPGAs is measured by the number of logic cells

on the die. A logic cell is typically composed of a small lookup table followed by a

fiip-fiop. FPGAs from different companies or even from different families from the

same company have differences in the architecture ofa logic cell. This makes the

comparison between FPGA capacities more difficult.

Using computer aided design tools, the user's source code and/or schematics are

converted into a bit-file that is uploaded into the device. Once the programming of

the device is complete, the desired circuit becomes functional and the part can be

used for its intended purpose. In this project, VHDL is the input method used to

code digital circuits. The "V" in VHDL signifies Very High-Speed Integrated Circuit

and HDL signifies Hardware Description Language.

Instead of focusing on specific internaI details of the FPGA used in this project,

general requirements for a suitable FPGA will be indicated. Someone wanting to

implement this design on another family of FPGA need only ensure that the following

criteria are met. The first requirement concerns the dock speed of the FPGA. The

FPGA must operate at a sufficiently high dock speed to allow the bus interface logic
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Figure 2.11: Simplified CLB diagram in Virtex devices. Carry logic and routing were
removed for simplicity.

to operate correctly. In this case, the bus frequency is 33 MHz. InternaI design

logic can operate at a slower or faster rate, or even at the same clock frequency with

multi-cycle stalls in state machine's states.

The second requirement concerns la standards. The FPGA must support the

signaling standard of the bus it is connected to. In this case, the FPGA pins can be

explicitly configured to support the SV, 33 MHz signaling protocol of the main bus

used on the host computer's motherboard. It goes without saying that the FPGA

package must have sufficient user-available la pins to implement the necessary con­

nections to the bus.

The third requirement involves logic capacity. The FPGA must have sufficient

logic resources to allow the design to fit into the FPGA. Ideally, the FPGA should

have at least 10% to 20% of its logic unused. This allows for extra f1.exibility in

placement and routing and can result in a faster design (as opposed to a fully-Ioaded

FPGA).

The final requirement involves the ability to use a logic-cell's lookup table as

random access memory (RAM). This form of distributed RAM is essential when im­

plementing memory-based move masking, a topic which will be covered in Section 4.5.

A simplified view of a Configurable Logic Block (CLB) is shown in Figure 2.11 so

that the reader may have a better idea of the building blocks used to construct the

move generator. Although this schematic corresponds to a Virtex device manufac­

tured by Xilinx [70], most FPGAs are based on this type of architecture. The Virtex
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CLB is composed of two Slices, which are in turn each composed of two logic cells.

The device used in this project has an 84x56 array of CLBs. Not shown in the figure

is another multiplexer allowing direct access to the fiip-fiop's D input. Carry logic

and routing were also removed for simplicity. The basic logic gates are created by

programming the appropriate values in the lookup table (LUT). Thus, any four-input

logic function is directly constructed with 1 LUT. The F5 and F6 multiplexers are

used to create five-input and six-input combinatorial logic functions. The fiip-fiop

can be bypassed when creating asynchronous circuits. InternaI CLB routing config­

uration is accomplished by programming various multiplexers. Inter-CLB routing

is accomplished by programming interconnect matrices that control horizontal and

vertical routing lines. All this configuration information is stored in static-RAM bits

distributed throughout the FPGA. This implies that when the FPGA is powered-up,

it must fetch its configuration bit-stream from an external source. This is typically

stored in a programmable read-only memory chip located near the FPGA on the

development board.

In Virtex devices [70], the BlockRAM is a 4096-bit synchronous memory. It can

be configured for single-port or dual-port usage with variable widths of 1, 2, 4, 8 or

16 bits (with associated depths of 4096 to 256). In the device used in this project, 28

blocks are available. Dedicated routing helps to route signaIs to these blocks, which

are constrained to each side of the chip. In contrast, DistributedRAM allows a LUT

to be used as RAM. One LUT can implement a 16x 1 (l-bit wide) synchronous or

asynchronous memory. Two LUTs can combine to create 32xl, 16x2 or 16xl-dual­

port memories.

In this thesis, the emphasis is aimed at what the FPGA can be used for rather than

a technical analysis of digital design with FPGAs. For the same reason C language

has abstracted machine-Ievel instructions away from the programmer, VHDL has

abstracted circuit-Ievel details of digital design. Nevertheless, for the same reason

that the knowledge of machine-Ievel instructions yields more optimized C programs,

knowledge of the underlying FPGA architecture is important when creating high­

performance digital circuits.

2.5 Chess Ratings and Formulas

In this section, a presentation of the principal formula used to calculate a rating

difference between two chess participants is derived. A confidence interval around the

estimated rating difference is also calculated. These formulas are used in Section 5.4
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Table 2.4: USCF chess rating categories

Rating Category
2500+ Grandmaster

2200-2499 Master
2000-2199 Expert
1800-1999 Glass A
1600-1799 Glass B
1400-1599 Glass G
1200-1399 Glass D

to determine the increase in chess rating resulting from the addition of a hardware

move generator to MBCHESS.

Chess ratings are calculated in order to numerically quantify the skill of a chess

player. The most popular ranking is the ELü system, developed by professor Arpad

E. Elo. The best players in the world have a ranking of approximately 2800 whereas

beginners have a ranking of approximately 1200 points. Table 2.4 shows the dif­

ferent categories in chess rankings and their associated ratings [47]. In Section 5.5,

MBCHESS-CODEBLUE will be evaluated in absolute terms and will be ranked ac­

cording to the categories mentioned here.

In order to determine the chess rating difference between two players, a formula

expressing the rating difference as a function of win-ratio must be derived. As a start­

ing point for the demonstration to show how to obtain such a formula, an assumption

on the strength distribution of chess players is made. This assumption states that

the player's strength distribution follows the normal distribution3
. In order for this

assumption to be more clearly understood, a quote from A Comprehensive Guide to

Chess Ratings [28] follows .

. . . suppose that every player brings a box containing many numbered slips

of paper when sitting down to a chess game. Each number represents the

player's potential strength during the game. This collection of values will

be called a player's "strength distribution". Instead of actually playing a

chess game, each player reaches into the box and pulls out a single piece

of paper at random, and the one containing the higher number wins. In

effect, this model for chess performance says that each player has the

ability to play at a range of different strengths, but displays only one of

these levels of ability during agame. Naturally, this procedure favours

3This is Ela's assumptian which is reparted in [28].
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the person who carries a box that contains generally higher numbers, but

of course this does not necessarily imply an automatic victory. This is

analogous to chess where a better player usually wins, but not always.

Therefore, assuming a normal strength distribution, the area under the normal curve

represents the probability distribution of a chess player's performance. Given this

model, a chess player's strength distribution X p is given by X p rv N(J-lp, IJ";). Here,

J-lp represents the player's rating, IJ"; represents the variance of the rating parameter

and N represents the normal distribution funetion. The opponent's performance

distribution is X opp rv N(J-lopp, IJ"~pp)' The performance distribution of the player

against his opponent is shown in Equation 2.1.

(2.1)

Using the subtraetion property of normal distributions, D also follows a normal dis­

tribution.

(2.2)

(2.3)

Therefore the probability of the player winning the game against his opponent is the

area under the positive portion of the D normal curve. An example where J-lp = 2000

and J-lopp = 1800 is shown in Figure 2.12. In the left side of the figure, the strength

distributions of the player and his opponent are superimposed. In the right of the

figure, the D curve resulting from the application of Equation 2.2 is shown. In this

example, IJ"p = IJ"opp = 200. From the right side of Figure 2.12, the area under the

curve where x > 0 is larger than the area under the curve where x < O. This indicates

that the probability of the player winning against his opponent is higher than 1/2.

This is in agreement with the ratings given: J-lp > J-lopp, 2000 > 1800.

Obtaining the exact probability of the player winning the game involves integrating

Equation 2.2 from 0 to 00. This is shown in Equation 2.3. For simplicity, IJ"; + IJ";pp

is replaced by IJ"2 and !lJ-l is equivalent to J-lp - J-lopp' Therefore, when using the !lJ-l

symbol, the rating difference is seen from the point of view of the player and not the

opponent.

P(D > 0) = 100

N(!lJ-l, IJ"2)dx

The probability of the player beating his opponent, "P(D > 0)", will hereafter be

labeled We , the winning expectancy for the player. Using the definition of the normal
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Figure 2.12: Example showing two strength distributions: f.Lp = 2000 and f.Lopp = 1800.
The resulting performance distribution D is shown at right.

distribution function, this probability is given by Equation 2.4.

(2.4)

However, the goal of the calculation is to obtain a formula that gives the rating

difference as a function of winning expectancy We . This should involve solving for

!:1f.L in Equation 2.4. However, because no analytical solution exists, another function

will be used in place of the normal distribution. ls it to say that all the previous work

shown here has been rendered useless? The answer is no, a similar procedure can be

re-done when considering that each player's strength distribution follows the extreme

value distribution. The proposed calculation is beyond the scope of the thesis; the

procedure will continue with the logistic distribution curve for the following reason: for

the combination of two players' extreme value distributions, the logistic distribution

is shown to be virtually equivalent to the normal distribution [28]. The logistic

distribution function is given in Equation 2.5. This function also has the property of

unit area below the curve.
x-rne-(3-

f(x) = 2

13 (1 + e xii

rn

)

Where:

• m is related to the normal distribution mean by: m = f.L;

• 13 is related to the normal distribution variance by: 132 = ;2 (j2.

(2.5)

Figure 2.13 shows the similarity between the normal distribution and the logistic
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Figure 2.13: Normal and logistic distributions (Œ = 1 and (3 = 0.6).

distribution. Both curves are practically identical, henee the use of the simpler logistic

distribution formula.

As stated in the previous paragraph, when considering the differenee distribution

D, the logistic distribution function can be used in the same manner as the normal

distribution function. In this case, Equation 2.4 becomes Equation 2.6.

(2.6)

After calculating the definite integral in Equation 2.6, Equation 2.7 is obtained.

(2.7)

Equation 2.8 is obtained when changing base e for base 10.

(2.8)

Upon doser inspection of Equation 2.8, the standard deviation appears hidden in the

term In(lO),6. The United States Chess Federation uses a value of In(lO)(3 = 400 in

order to realistically model rating differenees [29J. Renee Equation 2.9.

(2.9)
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Where:

• 6.f-l is the rating difference seen from the players point of view;

• We is the probability of the player winning the game (winning expectancy).

The logistic distribution has successfully been used in place of the normal distribution.

Solving for 6.f-l in Equation 2.9 is now possible; equation 2.10 is obtained.

(2.10)

For example, 6.f-l > 0 indicates that the player is stronger than his opponent. How­

ever, in order to calculate the rating difference, the wining expectancy must be known.

The exact value of W e is obtained when an infinite number of games are played. For

the competition proposed in Section 5.4, a finite number of games will obviously be

played therefore, We will be approximated. Let Wr denote the approximated value

of W e . Thus the win-ratio Wr can be expressed by Equation 2.11.

X
Wr = ­

n

Where:

• x is the number of games won by the player;

• n is the total number of games played.

(2.11)

The number of games won, x, follows a binomial distribution. In order for the ap­

proximation of W e to be valid, W r must comply with the Bernoulli Trials criteria [7].

The following is a summary of these criteria, applied to a chess competition between

two players.

• The result of a game must be either a win or a loss;

• n games are played and the number of victories is counted by x;

• The probability of a win is the same for each game of the experiment;

• The games are independent and non-exhaustive.

Therefore, by substituting Wr for We the formula expressing the estimated rating

difference between the player and his opponent as a function of win-ratio is obtained.
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Figure 2.14: Rating difference vs. win-ratio.

This is equation 2.12.

(2.12)

For exampIe, if the player wins three out of four games, he is rated 191 points stronger

than his opponent. Figure 2.14 shows the behavior of Equation 2.12. In addition, if

a player wins half the games, he is equal to his opponent and has a rating difference

of 0 points.

Because the winning expectancy (We ) is approximated with the win-ratio (Wr ),

an errar margin will be calculated to show the accuracy of the rating difference, given

the finite number of games pIayed. The variance of Wr is given in Equation 2.13.

VAR (Wr ) = VAR (~) = ~2VAR(X)

The variance of x is detailed in Equation 2.14.

(2.13)

(2.14)

From Equations 2.13 and 2.14, the standard deviation of Wr is derived in Equa­

tion 2.15.

(2.15)
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Next, with a confidence interval of a=95%, We can be expected to be contained in

the interval shown in Equation 2.16. In this equation, the value of z!:! is obtained
2

from the table of the reduced and centered normal distribution [7].

Wr ± Z!:!OW2 r
(2.16)

The z value that corresponds to ~ = 0.475 is shown to be 1.96. Thus the final

error margin formula showing the interval in which We is expected to be is shown in

Equation 2.17.

(2.17)

An interesting property of Equation 2.15 is that when n ---t 00, (J" ---t O. Combined

with Equation 2.17, the error margin around Wr is reduced to O. Asymptotically,

Wr tends to We , confirming what was stated previously. However, it is important to

consider the limitations of the confidence interval from Equation 2.17. If (J"Wr is large

and Wr is close to 0 or 1, it is possible that the confidence interval will overflow the

o to 1 interval allowed for the win-ratio. Thus, as the bounds get closer to 0 or 1,

they begin to diverge once converted into chess rating bounds because of the vertical

asymptotes at Wr = 0 and Wr = 1 (see Figure 2.14). Equations 2.17 and 2.12 are used

in Section 5.4 to measure the results of the MBCHESS-CODEBLUE vs. MBCHESS

competition.
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Chapter 3

Previous Hardware Move

Generators

In this chapter, previously designed hardware move generators are reviewed. Im­

portant themes are exposed, sorne of which are exploited in the proposed design.

Section 3.1 details three move generators that were successfully designed but were

never used in competition-level chess machines. Two fundamental communication

techniques are the foundation of move generators shown in this chapter. These are:

brute force interconnect and propagation through squares. The HITECH move genera­

tor, based on the first of the two themes, is presented in Section 3.2. In Sections 3.3

through 3.5, the evolution of the propagation method is shown. The propagation

method is the basis on which the proposed FPGA move generator is built; design

details are presented in Chapter 4.

The alpha-beta algorithm was presented in Section 2.1.1. Two important char­

acteristics must be present in hardware move generators. First, when a beta cutoff

occurs, the remaining branches at a given node do not need to be explored. Thus,

in order to be efficient, the move generator must be able to generate moves one at a

time independently. In this way, no unused moves are wasted when a cutoff occurs.

This implies that a node must "remember" what moves it has generated so that when

the search returns to it, the next unexamined move can be calculated [22, 33, 35].

Second, as seen in Section 2.1.1, the move generator should return moves in a prede­

termined order, in order for the alpha-beta algorithm to be effective. In the following

move generators, both these guiding principles are implicit goals. These principles

are labeled move masking and move ordering. All the move generators presented in

this chapter rely on the implicit parallel structure of digital circuits to increase their

performance.
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Figure 3.1: Pins and X-ray attacks. The white bishop is pinned to the white king
because of the black queen. The white rook has an X-ray attack through the white
knight.

3.1 Cheops and Others

In this section, move generators that were not used in complete chess machines are

shown. Even though these designs did not participate in mainstream computer chess

competitions and that no game-playing performance results are given in the key

papers, it is nonetheless important to explore the ideas presented.

3.1.1 Berkeley Chess Microprocessor

The Berkeley Chess Microprocessor (BCM), was developed by J. Testa and A. De­

spain at the University of California, Berkeley [66]. The BCM is a 200 000 transistor,

1.2 micron CMOS integrated circuit. The chip incorporates a move generator, a basic

positional evaluator and search control. No mention of any heuristics such as those

given in Section 2 is given. The performance is rated at 3 million moves per second.

In the design, each square has a six-bit adder that can be used for many purposes.

The adder can sum the values of attackers to influence move ordering. It is specu­

lated that this move ordering is better than the MVV/LVA move ordering presented

in Section 2.2. The adders can also be used to calculate the mobility and square

control of pieces for the evaluation function. Other features include the detection of

pins and X-ray attacks. Pins and X-ray attacks are illustrated in Figure 3.1. These

types of situations are detected with the help of a pin-enable control line that allows

attack signaIs to pass through pieces.
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Even though few details are given concerning the move generator, the underlying

architecture seems to be based on the BELLE move generator. The terminology used

is consistent with the BELLE move generator presented in Section 3.3. The BCM's

move ordering was shown to be better than MVV/LVA because of the use of adders.

The inverse of MVV/LVA priority is also possible however no application for this is

mentioned. The move generator presented in Chapter 4 uses programmable-priority

arbiters for optimal move ordering during fuU-width and quiescence search. As for

move masking, a 25-level tag stack is used to enable or disable a piece from being an

attacker or a victim. This keeps track of which moves have been generated at each

ply. It is important to note that when a piece is deactivated, it continues to block

attack signaIs from the rest of the board.

In this move generator architecture, two cycles are needed to obtain a move. In

the first cycle, signaIs are generated in the directions in which the piece can attack.

The goal is to find a victim. In the second cycle, the victim generates signaIs in aU

directions looking for possible attackers. Section 3.3 will describe in further detail the

propagation of attack signaIs through neighbour squares. An interesting feature is

also mentioned in which both attackers and victims send out signaIs simultaneously.

Squares from which an aggressor could attack a victim can therefore be located.

No further details or applications are given, however the key procedure for generating

checking moves in Section 3.5 and Chapter 4 has discreetly been stated. The "priority

logic" most likely corresponds to an arbitration tree used to select a square from

the board when move selection is made. The adders used on each square are a

good foundation on which to build a hardware positional evaluator. Again, many

themes seen in this section were only briefly introduced; further details are given in

Section 3.3.

3.1.2 VM* (Schaeffer et al.)

In the early 80s, A VLSI Legal Move Generator for the Game of Chess was designed

at the University of Waterloo [62]. The chip was in fabrication at the time of writing

of the referenced paper. Expected performance was evaluated at 350 000 moves per

second with a clock frequency of 3 MHz. To begin the analysis of the problem to be

solved, important properties of chess moves are indicated:

• Row, column and diagonal independence refers to the fact that given a certain

direction, activity on aU other paraUel directions does not affect the moves on

the given row, column or diagonal;
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• Move uniqueness refers to the fact that given a certain direction, only one piece

can land on a given square.

The principal communication method used in VM* is the propagation method. A

message is allowed to propagate from one square to the next until it is obstructed by

another piece. The basic building block of the VM* machine is the square machine.

The square machine is a circuit with five ports: A) input port, B) output port, C)

legal move output port, D) occupant input port, E) global information input port.

Each square machine can propagate signaIs in one direction. Therefore, each square

must have 8 square machines for the 8 directions and another 8 for knight moves.

The output port is in aIl likelihood not used for knight moves because knights are

not sliding pieces. Each square machine is connected according to its appropriate

direction. The global control port and occupant port are wired in common for a chess

square.

To compute a chess move, the board position is distributed throughout the chess

machine using each square's occupant port. Each square machine then updates its

output and legal move ports. Propagation delays determine the time needed to obtain

a chess move; the worst-case propagation delay is seven square machines. At this

point, it is important to realize that the amount of circuitry needed to implement the

proposed design is rather large. For such reasons, the VM* design was modified to

reduce the number of square machines needed and to obtain a manageable circuit.

The first modification made to reduce the amount of resources necessary is to make the

input/output ports bi-directional. With a global direction signal, half the number of

square machines are needed. Two cycles are required given these bi-directional lines.

The simplification can be taken a step further when considering a square machine

that communicates with four other square machines. In this case four cycles are

necessary. Another step yields an eight way square machine requiring eight cycles.

Hence, two square machines are used for each square: one for knights and the other

for non-knight pieces.

With these modifications, the circuit is smaller but still represented a fair amount

of resources given the 8 x 8 chessboard. Another simplification of hardware entails the

reduction of square machines to one for each row. Each square machine has its own

state machine that sequentially applies the value in each square of its corresponding

row. The chessboard thus becomes an array of square cells where each location is

seen as a four-bit occupant register. Generating moves in the left-to-right direction

involves reading the square cells from left to right; the opposite is done for right-to­

left moves. The total amount of square machines is reduced to eight. It is important
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to note that with the modification proposed here, the design is no longer based on

the propagation-through-squares technique.

The proposed modification does not support vertical moves. To avoid using an­

other eight square machines for the eight columns, flexible horizontal and vertical

routing allows the square cells' values to be sent directly to the row square machines.

For diagonal moves, the procedure is more complex. Instead of creating diagonal

routing, vertical shifting of the output latches of the square machines is introduced.

Reading the rows and columns in the proper order will create the effect of reading

a diagonal. Knight moves are also handled within this context: the order in which

rows and columns are read is modified according to knight squares.

Because of the row, column and diagonal independence property stated previously,

it would seem as though the moves that are generated by the VM* are pseudo-Iegal

moves, rather than fully "legal" moves. Pseudo-Iegal moves are moves that potentially

leave the moving side's king in check. When considering legal moves, the row, column

and diagonal independence property is not true. For example, a piece may be pinned

by an enemy piece on another parallel row, column or diagonal, thus preventing it

from moving. AIso, no explicit mention of why the generated moves are completely

legal is made in [62]. Nevertheless, it is important to mention that 350 000 moves per

second is an encouraging result, given the technology used in the early 80s and the

partial non-parallelism of the design. In the VM* design, parallel processing of eight

rows is used to gain a performance advantage. Very Large Scale Integration (VLSI)

or outrageous amounts of discrete logic chips (see the BELLE design) are used to

obtain 64 square parallel processing. These move generators are covered throughout

this chapter.

3.1.3 CHEOPS

The third move generator covered in this section concerns the CHEOPS project devel­

oped by J. Moussouris et al. [44] at the Massachusetts Institute of Technology. The

Chess-Oriented Processing System (CHEOPS) is designed as a general chess-program

accelerator that implements a hardware move generator and alpha-beta search con­

trol. The chess program is then free to deal with the application of chess knowledge.

The search control portion of the design is accomplished with a CPU based on a 16-bit

ALU with 16 accumulators. This processor is specifically designed to execute chess

algorithms. When running the alpha-beta algorithm, no mention of move ordering

heuristics is made.
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The chess array module is an array of random logic that implements non-numerical

chess operations, most important of which is move generation. Similarly to the CODE­

BLUE move generator that will be presented in Chapter 4, low-Ievel chessboard op­

erations are externally accessible through micro-instructions. The 8 x 8 chess array

module can also be used to see if a king is in check or to see if any capturing moves are

possible. Each square is built using approximately 12 TTL DIP (dual inline package)

chips. The move generator has two main operations. In the first mode, a square is

designated as the destination square. Each square has its own signal to indicate if it

contains a piece that can attack the destination square. Conversely, a square can be

designated as the source piece. In this case, each square's signal indicates if it can be

reached by the source piece or not. These two modes could be useful in the following

cases (not mentioned in the referenced paper):

• When the MVV/LVA move ordering is desired, destination square based move

generation is used. The destination square is cycled from queen to empty

squares, accomplishing the MVV portion (Most-Valuable-Victim);

• When generating moves for a discovered check, source based move generation is

used. Assuming that discovered checks cannot be directly generated and that

only their locations can be identified, the discovering piece must be scanned to

find its possible moves. The discovering piece is therefore tagged as the source.

Additional state bits can instruct the move generator to find only capturing moves

or to differentiate pawn captures from piece captures l
. Another control bit is used to

set the entire board as the destination squares in order to quickly determine if any

captures exist. The propagation communication technique is used in this design to

handle sliding pieces, however, no architectural details are given.

The square lines must be properly analyzed to generate the next move. This

is accomplished with hardware DO loops that scan the square lines. With the last

square's coordinates, the next active square line can be determined. In the CHEOPS

design, the squares are scanned in raster order. Could move ordering be improved

if raster order were replaced by a center-prioritized pattern? This question will be

answered in Section 4.4. An interesting data representation is created whereby a

memory keeps track of where each piece is located and another memory keeps track

of the piece contained on each square. In such cases, the advantage of quickly accessing

data more than compensates for the extra work involved in managing both memories.

1In chess terminology, a pawn is not considered a piece.
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A chess move is encoded as two 16-bit words, one for the source square and moving

piece and another for the destination square and captured piece. Only the current

move at each ply is stored on the PDL (the PDL is a 1024-word stack). When the

search returns to a node, the previously searched move that is currently in the stack

is used to help generate the next move. Also present on the stack is an alpha or beta

value used in the search, along with castling and en-passant state bits. One bit in the

opcode determines if the instruction is a CPU instruction or a chess module micro­

instruction. As a result, a chess program can use special chess-hardware instructions

directly in its source code, a practical combination.

Computer-Aided Design (CAD) played a key role in the construction of the

CHEOPS hardware. A template drawing of a chess square circuit was first created.

Macros were then used to replicate the circuit for the entire chessboard, indexing

signal names according to square locations. Edge effects were handled with other

macros. In the CODEBLUE VHDL design, the synthesis software automatically sim­

plifies the edge squares. For example, a corner square has only three neighbours

instead of eight. The CAD tools were responsible for generating net-lists, which were

used to control automatic wire-wrapping machines. The CHEOPS chess machine was

completed in a surprisingly-short one and a half man-years of work. At the time of

writing of the referenced paper, CHEOPS was being integrated to the MACHACK and

TECH II chess programs.

3.2 Hitech

The HITECH chess-machine [12] is based on a hardware move generator developed

by Carl Ebeling and Andrew Palay at Carnegie Mellon University [23]. This move

generator is the only one based on the brute force interconnect communication tech­

nique mentioned at the beginning of the chapter. The move generator is built using

64 identical chips, one for each square of the chessboard. Each chip is packaged in a

40 pin DIP and is fabricated with a 2-micron NMOS process. The move generator is

capable of generating 500 000 moves per second and when used in conjunction with

the HITECI-I machine, 175 000 positions per second can be searched. HITECH was the

first artificial chess player to obtain the U.S. Senior Master rating (>2400).

The underlying principal on which the HITECH move generator is built is that

of computing the subset of the ever-possible moves that are valid for a given chess

position. The set of ever-possible moves is approximately 4 000 for each side and

indicates the upper bound on the number of different moves that can ever be produced
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on a chessboard. Each ever-possible move detector can be seen as a function that

maps part of the chessboard (approximately 260 bits) to a true or false signal. Move

generation then involves selecting from the moves that are true, in a proper order. In

a typical middle-game position, 40 to 50 of the ever-possible 4 000 moves are valid.

Even though a given function uses only a few bits from the chessboard to compute

its move, 8 000 such circuits are needed. Tens of thousands of gates connected by

tens of thousands of wires to the chessboard bits is unfeasible using the technology

of the early 80s. The problem is not the large amount of logic resources but rather

the large amount of communication resources. The chessboard bits also suffer from

excessive fanout. The solution to this problem involves replicating the board state

for each square. Therefore, each square has its own copy of the chessboard and can

calculate moves on its own. A multi-Ievel priority circuit is used to obtain the next

best move from the entire set of ever-possible moves that are asserted (true). This

circuit also performs the proper ordering of moves required by an efficient alpha-beta

algorithm.

Because of the replicated chessboard, an event bus must be used to communicate

changes in board state to each square. The set of ever-possible moves is divided

into 64 blocks, sorne of which have the maximum 77 ever-possible moves to decode

(ignoring the side to move). For example, the e4 square has 77 possible sources: 8

king, 27 queen, 14 rook, 13 bishop and 7 pawn moves. For an ever-possible move to

be asserted, it must cornply to the following three criteria:

• The origin condition stipulates that the proper piece must be present on the

source square;

• The destination condition requires that destination square be empty or that it

contains an enemy piece. This distinction is important for pawn moves versus

pawn captures;

• The sliding condition requires empty squares between source and destination

squares for queen, rook, bishop and two-square pawn advances.

These three conditions imply that the generated moves are pseudo-legal, as are aH

the moves returned by the move generators shown in this chapter.

The interconnect pattern of a chess chip is detailed in Figure 3.2. In this example,

the chess chip is assigned to the b3 square and is therefore responsible for generating

moves that land on b3. The chess square connections that do not coincide with board

squares are disabled. Because each chip is identical, logic was not optimized. Each
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Figure 3.2: HITECH chess chip interconnect pattern. The chip shown here is assigned
to the b3 square (marked with a *). The type of piece capable of attacking the
destination square is shown in each source square.

chip is assigned to a different square of the chessboard by programming a destination

address register.

Each square's move signaIs are sent to a priority encoder in order to find the

highest valued move. The value of a move is calculated using three factors: the

value of the moving piece, the value of the captured piece (if any) and the safety

of the destination square. The safety parameter takes into account the number and

color of pawns controlling the destination square. If no pawns have control of the

square, the next lowest valued piece is used. The priority encoder of a square follows

the least~valued~aggressor(LVA) ordering scheme. Therefore, capturing with lowest

valued pieces is preferable to capturing with higher valued pieces. The value of a

move is stored as a six-bit priority number. A square computes its best move given

its location (destination square) and submits it to the voting network. Each square

submits its six-bit move value to the voting network, where the best move is selected.

When a voting tie occurs, each square's unique six-bit id is used to break the tie.

This six-bit id is preset into each chip during the initialization phase. Adjusting the

six-bit id to prioritize moves to the center of the board would be a clever way of

implementing arbiter centrality (Section 4.4), however this is not mentioned in the

referenced paper.

Because of the depth-first nature of the search algorithm, each chess chip must be

able to save and reload the context of move generation at each ply in the search. The
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index of a move is a number between 1 and 80 and represents the number of the ever­

possible move corresponding to a given move. The priority encoder can be instructed

to ignore the first N encoder inputs (moves). Because the move index is stored along

with the move itself, the previously generated move at each ply is sufficient to mask

aIl previous moves, thus generating the next, un-searched move. The design also

offers the possibility to test the validity of killer moves and transposition table moves.

Each chip obviously has the necessary logic to make and unmake moves on its local

board.

3.3 Belle

The first hardware chess-playing machine to compete in a computer chess tournament

was the BELLE machine [22]. BELLE was developed at Bell Laboratories by Joe

Condon and Ken Thompson. The first hardware version had 25 chips and competed in

the 1977 World Computer Chess Championships. A larger BELLE machine composed

of 325 chips placed first and second in the 1978 and 1979 ACM Championships. This

machine incorporated hardware positional evaluation, hardware transposition tables

and a hardware move generator. The next version of BELLE integrated alpha-beta

search control and utilized an astounding 1 700 discrete logic chips. This machine

was completed in 1980 and was able to search 160 000 positions per second, much

better than the 200 positions per second searched by the purely software BELLE.

In BELLE, the chessboard is an 8 x 8 array of combinationallogic blocks. The main

hardware structure in BELLE deals with the communication between chess squares.

Each square has a transmitter, a receiver and a four-bit piece register, denoting the

current occupant. A given square is only connected to its eight neighbours, except

for knight lines that must pass over neighbouring squares. The empty squares are

responsible for propagating sliding-piece lines along the different directions. Aggres­

sor pieces activate their appropriate transmit lines, given their piece types, whereas

victim squares receive incoming attacks and apply for arbitration. The two major

communication blocks are the transmitter and the receiver. Each square has one of

each. This design is the foundation of the progapation through squares communication

technique mentioned in the chapter introduction. The move generators presented in

the remainder of this chapter, along with the CODEBLUE move generator designed

in Chapter 4, are based on BELLE.

A chess move is a transfer from a source square to a destination square. To

construct a move, two cycles are executed. First, a find-victim cycle locates the
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Table 3.1: BELLE arbitration priority values.

Priority Level Find-victim (FV) Find-aggressor (FA)
(highest) 1 Queen Pawn

2 Rook Knight
3 Bishop Bishop
4 Knight Rook
5 Pawn Queen

(lowest) 6 Empty King

destination square and then a find-aggressor cycle locates the source piece. During

the find-victim phase, aIl pieces belonging to the player-to-move will activate their

transmitters. AlI opposing pieces and empty squares send the output of their receivers

to the arbitration network. Once a most-valued victim (MVV) is selected, the find­

aggressor cycle executes. Here, the victim found in the first cycle transmits as the

union of aIl piece types and the moving pieces' receivers arbitrate to select the least­

valued aggressor (LVA), ordered from pawns to kings. This produces the MVV/LVA

move ordering. The find-vietim (FV) and find-aggressor (FA) cycles each require

250 ns to complete.

The identification of the square with the highest priority is done with a two-Ievel

priority tree. Priority values for find-vietim and find-aggressor cycles are outlined

in Table 3.1. From this table, the most-valuable-vietim / least-valuable-aggressor

move ordering scheme should be apparent. Each priority level corresponds to a single

asserted line of the six lines connected to the square's arbiter. Not shown in the

table is the priority level associated with "nothing to arbitrate". In this case, none

of the lines are activated and the square has nothing to contribute. The first level of

arbitration is done on a block of 4x4 squares; the second level selects one of these

subgroups.

As for the move-masking capabilities of BELLE, 64 bits (one for each square) are

dedicated to mask aggressors exhausted for the given victim, or mask fuIly searched

victims (a square is either a victim or an aggressor). This is accomplished by sending

the output of the mask memory to the receiver where it is used to disable the six

signaIs sent to the arbiter (priority network). Because of the depth-first search, a

stack of 64 levels is used to memorize these mask bits. This move masking method

is used in the proposed design (Chapter 4). It is therefore pertinent to clarify the

move generation procedure with an example. In Figure 3.3, aIl the moves from the

chess position are returned sequentiaIly. Depth first searching has been removed for
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Move generator steps:
1) FV locates the white queen.
2) FA locates the black pawn.
3) "axb2" is returned, black pawn is disabled.
4) FA locates the black bishop.
5) "Bxb2" is returned, black bishop is disabled.
6) FA fails to find aggressor for white queen.
7) White queen disabled, aIl aggressors re-enabled
8) FV now locates the white pawn.
9) FA locates the black bishop.
10) "Bxe3" is returned, black bishop is disabled.
11) Moves to empty squares follow...

Figure 3.3: BELLE move generation example, black to move. Details of each cycle of
move generation and the effects on the move masks are given.

simplicity. In the chess diagram of the example, it is black's turn to play: black pieces

are aggressors and white pieces are victims.

In BELLE, special chess moves such as castling, en-passant pawn captures and

pawn promotions are handled by additional random logic distributed throughout the

design. Pawn promotions are detected with a special PRO-ONLY fiag. When this

fiag is activated, the receivers and transmitters are limited to pawn moves to the last

row. Because promotions seldom occur, a single find-victim + PRO-ONLY cycle

is executed to determine that no pawn promotions exist. The use of this special

instruction ensures that pawn promotions are well placed in move ordering. The

CODEBLUE move generator does not use a special instruction for pawn promotions

(Sections 4.4 and 4.6). The BELLE design has introduced the propagation through

squares communication scheme as well as memory-based move masking. These, along

with the find-victim and find-aggressor instructions, are utilized in the CODEBLUE

design.

3.4 Deep Thought

Aside from HITECH, another hardware chess project originated from Carnegie Mellon

University. The initial phases of the DEEP BLUE chess machine (Section 3.5) were

CHIPTEST and DEEP THOUGHT [21]. CHIPTEST first played in 1986 and was based

on a hardware move generator. Its search speed was rated at 50 000 nodes per

second. In 1987, CHIPTEST-M incorporated micro-coded hardware search control
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Figure 3.4: DEEP THOUGHT square array and move generation sequence. The trans­
mitter (TX) and receiver (RX) interconnections of a chess square are visible at left.
The principal cycles of recursive searching are shown at right.

and was able to search 400 000 nodes per second. With DEEP THOUGHT came

multi-processor alpha-beta search. In this section, the hardware move generator

used in DEEP THOUGHT is reviewed.

Designed by Feng-Hsiung Hsu in 1985 and 1986, the DEEP THOUGHT move gen­

erator is a single-chip, 3-micron CMOS integrated circuit capable of generating two

million moves per second [33]. When reviewing previous designs prior to the DEEP

THOUGHT design, the BELLE approach was believed to offer better potential for map­

ping to VLSI than the HITECH design. With this assumption, the receiver/transmitter

structure introduced in the BELLE design was used as a starting point for the DEEP

THOUGHT move generator. The same two requirements for a hardware move gener­

ator have not changed: generate moves one at a time, given a pre-determined move

order. A third requirement is introduced, given the importance of quiescence search.

The move generator should be capable of generating capturing moves first. Because

of the MVV/LVA move ordering exhibited by the BELLE design, generating capturing

moves first is implicitly accomplished. The LVA ordering is also stated as being ideal

in quiescence search.

Once again, an 8x8 array of chess square circuits is used. However, because this

design fits on a single chip, edge-effect optimizations are performed. The same find­

victim and find-aggressor cycles shown in the BELLE section are used to generate

moves. The chip is also capable of making and unmaking moves to allow it to follow

the recursive depth-first search algorithm. A simplified fiow chart of this process

is illustrated in the right portion of Figure 3.4. For simplicity, move masking was
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Figure 3.5: DEEP THOUGHT transmitter circuit. Attack signaIs are generated and/or
propagated depending on the state of the inputs at left.

not shown. Combined with the example given in Figure 3.3, the move generation

procedure should be getting clearer. Making and unmaking moves is accomplished

by writing the appropriate values in each square's piece register. In the left portion

of Figure 3.4, transmitter (TX) and receiver (RX) connections for one of the 64 chess

squares are shown.

When entering a node for the first time, aH aggressors and victims are enabled.

From Figure 3.4, the first cycle executed is the find-victim cycle. If this is successful,

a find-aggressor cycle is executed. If the find victim cycle cannot locate a victim,

aH victims have been searched and move generation is finished. In such a case, the

move leading to the current position is unmade and the search backtracks to the

previous ply. Given a successful find-victim cycle, the find-aggressor cycle locates

the attacking piece and the move is now ready to be made. Aggressors are masked

as they are found until aH aggressors for the given victim have been returned. When

the find-aggressor cycle fails to locate an aggressor, the victim is disabled and aH

aggressors are re-enabled. The next un-searched victim is located with a new find­

victim cycle.

The circuit responsible for generating the attack signaIs used in the find-victim

and find-aggressor cycles is the transmitter. The block diagram of the transmitter

circuit is shown in Figure 3.5. The manhattan keyword is used to describe the hor­

izontal and vertical directions. WTM is a signal indicating if it is white-to-move
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and OP is the signal indicating either the find-victim or find-aggressor cycles. The

transmit logic can be seen as a six-bit ROM with seven outputs. In the find-victim

cycle, the seven outputs of the transmit logic are asserted according to the resident

piece type (or empty). If a pawn occupies the square, both pawn moves and pawn

captures are signaled. However, in the find-aggressor cycle, the seven outputs are as­

serted as if a super-piece was located on the square. The super-piece represents the

union of aH piece-types and is necessary to reach out to any possible aggressors. The

pawn capture is not asserted if the square is empty. Conversely, the pawn move is not

asserted if the square is occupied. The Ray multiplexer is responsible for propagating

incoming sliding piece signaIs if the square is empty or generating the source piece's

signaIs if the square is a manhattan andjor diagonal capable piece. Pawn signaIs are

sent in the proper direction (upjdown) with a direction demultiplexer2 . Furthermore,

in the DEEP THOUGHT paper [33], the pawn move and pawn capture outputs are

mistakenly drawn as single lines. The demultiplexer is responsible for sending pawn

information either up or down, hence two outputs for both types of pawn attacks.

This correction is made in Figure 3.5.

Transmitter signaIs are received and decoded on each square via the receiver circuit

shown in Figure 3.6. The receiver is responsible for sending the appropriate priority

signaIs to the arbitrations network. The receiver does not need to know from which

direction it was hit. Therefore, each direction is grouped according to each signal

type as shown at the left of the figure. A priority signal is asserted if the proper

conditions are met. In the find-victim cycle, a hit from any direction and type will

cause a priority level dependant on the square's piece value (empty is also permitted).

Pawn moves are more constrained: a pawn move hit will only be signaled if the square

is empty and a pawn capture hit will only be signaled if the square is occupied. In

the find-aggressor cycle, the type of hit must match the capabilities of the resident

piece. The victim piece is generating the union-piece and receivers must indicate

if they have a piece that can reach the victim. For example , if a rook gets hit in

the diagonal direction by the super-piece victim, it should not be signaled as a valid

aggressor. How did this victim previously get tagged if the rook never transmitted in

the diagonal direction? In the example given here, one or more other attacker pieces

must have hit the victim during the previous find-victim cycle. As was the case in

BELLE, the MVVjLVA move ordering is obtained by inverting priority levels; this is

visible in the receiver figure. Illegal board positions are signaled with a 64-input OR

gate used to detect when a king is attacked.

2In [33] this is erroneously referred to as a multiplexer.
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Figure 3.6: DEEP THOUGHT receiver circuit. Attack signaIs are decoded and priority
signaIs are sent to the arbitration logic. First level arbiters and masking logic are also
visible.

In DEEP THOUGHT, the first level arbitration is done on rows of squares and the

second level selects between rows. A first-level arbiter is visible in Figure 3.6. Once a

square is disabled by bit masking, it no longer participates and other squares with the

same priority continue the voting process. This process continues until aIl possible

moves are generated.

The transmitter and receiver circuits shown here are essentiaIlY the same as in

BELLE. However, the process of masking victims and aggressors is completely differ­

ent in the DEEP THOUGHT architecture [33]. Instead of using a 64-bit stack of 64 lev­

els, as was the case in the BELLE design, mask bits are calculated from the previously

generated move at a node. This masking method eliminates the need for memory,

at the expense of logic and decoders. In the VLSI design of DEEP THOUGHT, this

approach was advantageous [35]. In the CODEBLUE design, arbitration and square

masking will be customized for FPGAs and will be presented in Sections 4.4 and 4.5.

Each square's piece register is dual-ported for maximum speed. The arbitration

and masking buses are also used to update the piece registers when moves are made

and unmade. Extra logic is added to the third and sixth rows to handle double

square pawn advances. The first and eighth rows are also modified to support pawn

promotions. Castling and en-passant moves are accomplished by loading shadow

pieces and testing the state of the move generator (king in check and find-victim
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priority). As in BELLE, a promotion-only flag is used to detect pawn promotions.

This cycle is not executed when there are no pawns on the penultimate row. With

a faster, single-chip design, how can the hardware move generator be improved?

Section 3.5 follows with the DEEP BLUE move generator.

3.5 Deep Blue

In 1996, a descendant of DEEP THOUGHT, named DEEP BLUE, played a six-game

match against the world chess champion and lost four of the six games [21]. Neverthe­

less, it was an encouraging result and showed that chess machines were now close to

beating the best player in the world at his own game. DEEP BLUE utilized 216 chess

chips and was able to search 50 to 100 million positions per second. One year later,

the machine used in the rematch would prove to be too strong for Gary Kasparov.

With 480 chess chips and a search speed of 100 to 200 million positions per second,

DEEP BLUE II won the match by a score of 3.5 to 2.5. Each chess chip is identi­

cal and incorporates the three following aspects of computer chess hardware: search

control, positional evaluation and the move generator. Because the move generator

is essentially the same in both DEEP BLUE machines, no distinction between DEEP

BLUE and DEEP BLUE II will be made. The DEEP BLUE II move generator added

the possibility to generate moves that attack the opponent 's pieces.

The first major improvement introduced by the DEEP BLUE move generator solves

the problem of generating checking moves separately. This can be used to search forc­

ing lines more efficiently during quiescence search. In MBCHESS-CODEBLUE, this

feature is used to prioritize checking moves in the full-width-search move ordering.

To generate checking moves explicitly, two transmitters are used, as well as a receiver

with twice the number of inputs [35]. During the find-check phase, the pieces for the

side to move activate their find-victim transmitters and the opposing king activates

its find-aggressor transmitter. The find-victim transmitter is hardwired to transmit

according ta the resident piece's capabilities whereas the find-aggressor transmitter is

hardwired to transmit the union of all piece types. Squares that register appropriate

hits from opposing sides will indicate a square from which a piece can check the enemy

king. In this thesis, these squares are referred to as pivot squares; the cycle is called

the find-pivot cycle. The second cycle necessary to generate the checking move is

most likely a find-aggressor cycle where the pivot square radiates as the super-piece;

however this was not documented in the referenced papers.

An example of a find-pivot cycle is given in Figure 3.7. The white bishop on
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Figure 3.7: DEEP BLUE find~pivot cycle example. The intersection of diagonallines
on the two pivot squares (grey squares) indicate a square from which the white bishop
could check the opposing king.

d3 can check the black king on e8 with two different moves. The king activates

its find-aggressor transmitter and the bishop activates its find victim transmitter.

For simplicity, only knight and sliding piece signaIs are drawn for the union-piece

emanating from the black king. When signaIs from opposite players align correctly

on a square, a pivot square is detected and the destination portion of the move is

obtained. The source portion of the chess move is found using a find-aggressor cycle

from a pivot square. Extra constraints are needed for this to function correctly;

details are given in Section 4.3. Receivers have two sets of inputs in order to accept

signaIs from both types of transmitters simultaneously. During the ordinary non­

checking move~generation cycles, each transmitter is used in its respective cycle (the

find-aggressor transmitter is used during the find-aggressor cycle and the find-victim

transmitter is used during the find-victim cycle).

The published papers contain few details concerning DEEP BLUE's checking move

generation [21, 35]. In the DEEP BLUE find-victim transmitters, two sliding-piece

signaIs are transmitted in each of the eight directions [36]. However, in [35], it appears

as though only one signal is transmitted in each direction. The two signaIs aIlow

pivot squares to diiferentiate queens from bishops when being hit in the diagonal

directions, as weIl as to differentiate queens from rooks when hit in the manhattan

directions. Figure 3.8 shows an example position of this situation. The transmitter

interconnect pattern used in the CODEBLUE design and implications for checking

moves are detailed in Section 4.3.
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Figure 3.8: Checking moves: the e4 pivot square can differentiate a queen from a
bishop using two signaIs. The queen hits the e4 square from the southwest diagonal
Hnes. A queen reaching the pivot square causes a check whereas a bishop does not.
The e4 square is the white square immediately to the left of the white knight.

The chess square interconnect pattern used in the CODEBLUE design utilizes

fewer inter-square wires than the DEEP BLUE design. In DEEP BLUE, the number

of wires needed to connect a square to its neighbours is shown in Table 3.2. For piece

propagations throughout the chessboard, a fully-connected square has 68 inputs and

68 outputs. These values will be used in Section 4.3 for comparison with the proposed

design. The find-victim transmitter used in DEEP BLUE resembles the transmitter

shown in DEEP THOUGHT (Figure 3.5). The only exception is the doubled manhattan

and diagonal outputs mentioned previously (this explains the "16"s in the table). In

the DEEP THOUGHT transmitter, even though the king output is not labeled as an

eight-bit bus, the king signal is sent to its eight neighbours, thus representing eight

wires. The number of bits of the output function, in this case one, should not be

confused with the various destinations for the signal, in this case eight. The same

analysis applies to the pawn capture signaIs: a two-bit bus is shown, one wire for

north captures and one for south captures. Both directions are needed in order to

support both color pawns. In this case, the north capture signal is sent to the north­

west and north-east squares. This explains why four pawn capture wires are shown

in the table.

The arbitration network and move masking are very similar to what was described

in DEEP THOUGHT. However, an interesting quote from a recent DEEP BLUE paper

[21] reveals an interesting move ordering issue.
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Table 3.2: Number of chess-square connections in DEEP BLUE.

Chess-square interconnects OUT IN
Find-Victim signaIs (Transmitter) (Receiver)

Pawn move, 1 north (N), 1 south (S) 2 2
Pawn capt., N-East, N-West, S-East, S-West 4 4
King, aH directions 8 8
Knight, aH directions 8 8
Queen, rook, bishop, aH directions 16 16

Find-Aggressor signaIs (Transmitter) (Receiver)
Pawn move, 1 north (N), 1 south (S) 2 2
Pawn capt., N-East, N-West, S-East, S-West 4 4
King, aH directions 8 8
Knight, aH directions 8 8
Queen, rook, bishop, aH directions 8 8

Total 68 68

The chess chip uses an ordering that has worked well in practice, first gen­

erating captures (ordered from low-valued pieces capturing high-valued

pieces to high-valued capturing low-valued), foHowed by non-capturing

moves (ordered by centrality).

Centrality was mentioned in Section 3.2 as a potential improvement to the HITECH

move generator. No further implementation details are given as to how this centrality

is accomplished in DEEP BLUE. The other centrality theme mentioned in the paper

deals with positional tables and should not be confused with hardware move ordering.

Details concerning CODEBLUE centrality will be given in Section 4.4.

3.6 Summary of Characteristics

To complete the present chapter, a summary of the move generators presented in

Sections 3.2 to 3.5 is presented in Table 3.3. Each of the fields in the table also applies

to the CODEBLUE move generator and should become obvious once Chapter 4 is read.

Other themes recurrent in most or all of the previously mentioned designs are:

1. Computer-aided design was used in many different forms to aid the creators in

the fabrication and the design of their complex digital circuits;
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Table 3.3: Summary of move generators.

HITECH BELLE DEEP THOUGHT DEEP BLUE

Year: 1983-1990 1973-1980 1989-1995 1996-1997
Communication brute force propag. propag. propag.
technique: interconnect through through through

squares squares squares
Move ordering dynamic MVVjLVA MVVjLVA MVVjLVA
based on: square values
Move masking: last-move stack last-move last-move

decode (memory) decode decode
Can generate checking no no no yes
moves separately?
Can generate yes yes yes yes
captures only?
Check evasion mode: yes no no yes

2. Each design was infiuenced by the fundamental property of chess moves which

involves moving a piece from a source square to a destination square;

3. AH the move generators presented here were designed to return pseudo-legal

chess moves. Sorne authors refer to these as legal moves. Pseudo-legal moves

were explained in Section 2.2;

4. Special chess moves are handled by a combination of software routines and/or

extra random logic distributed throughout the appropriate squares of the chess­

board.
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Chapter 4

Hardware Move Generator Design

This section presents the design of the CODEBLUE move generator, including FPGA

issues critical to the move generator architecture. The fundamental principle of prop­

agation through squares is maintained. However, a more efficient method of propa­

gating piece information is introduced. In Section 4.1, a summary of design goals and

characteristics is made. In Sections 4.2 and 4.3, chessboard and chess square opera­

tions are detailed. Arbiter design and move masking follow in Section 4.4 and 4.5. A

brief explanation of how special chess moves are implemented is given in Section 4.6.

The state machine that controls the chessboard is overviewed in Section 4.7. The bus

interface controller used to connect the hardware move generator to the computer's

main bus is considered in Section 4.8. Synthesis and implementation of the move

generator circuits is the topic of Section 4.9. As a final section to this chapter (Sec­

tion 4.10), the integration of the CODEBLUE move generator to the chess program is

discussed.

4.1 Design Goals and Characteristics

The general goal of the project was stated in the Introduction. In Chapter 3, previous

move generators were explained. Sorne important themes shown therein are exploited

in this design. Performance evaluation of the CODEBLUE move generator is presented

in Chapter 5. A crucial first step in the design process is to outline important goals

and characteristics that must be supported by the hardware.

• The design must return chess moves in the best possible order (best first). This

was mentioned in Section 2.2. A deviation from the MVV/LVA ordering is used

in CODEBLUE. A small improvement is obtained when using the most valuable
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victim / most valuable aggressor (MVV/MVA) move order , during full-width

search. Results that support this are presented in Section 5.2. As seen in

Section 2.1.1, proper move ordering reduces the size of the search tree. This has

the same effect as making the hardware faster;

• The move generator must support the use of software move ordering heuristics

as weIl. In this case, the killer heuristic and transposition table require specific

operations from the move generator. This is explained in Section 4.7;

• The hardware design should intrinsically be the fastest possible. This includes

reducing propagation delays and reducing the number of logic levels required

to implement a given logic function. These optimizations are done once the

architecture and circuit design are done;

• Prior to optimizing the coded circuits, the choice of design architecture must

also be made to utilize the fewest logic gates as possible. The same concerns are

also targeted at limiting the amount of routing resources used by the design.

4.2 Chessboard Representation

The chessboard is an 8x8 array of chess-square circuits. The chess square circuit

is detailed in Section 4.3. In this section, chessboard-Ievel considerations are given.

Contrary to the brute force interconnect communication method, the propagation

method impHes that a chess square is only connected to its eight (or less) neighbours.

Knight Hnes are the only exception to this rule. Neighbour square communication

and knight Hnes can be seen in Figure 4.1. It is important to note that the arrows

shown in the figure do not imply two sets of buses between chess squares. A bus is

a transmitted signal and and received signal, depending on the point of view. For

example, each of the arrows emanating from the c3 square is seen as received signal

for each of the squares at the end-points of the arrows. The inverse observation can

be made for the g7 square: each of the received signaIs is a transmitted signal from its

origin square. Each square is connected according to the pattern shown in the figure.

Edge squares obviously do not have as many interconnects as center squares. The

details of the five-bit neighbour bus and two-bit knight bus are given in Section 4.3.

These busses are used to indicate that a given chess piece radiates an attack in a

given direction. The capabilities (type) of piece determine which Hnes are asserted.

Operations that target a particular square can select the intended square using
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Figure 4.1: Chessboard signaIs. Each square is connected to its immediate and
knight-reachable neighbours.

Table 4.1: Common signaIs to all squares.

Bus or Signal # Bits Purpose
state-mode 3 Current instruction to perform (see Table 4.2).
mask-mode 2 How to affect the mask bits (may depend on the square-

select pairs, see Table 4.2).
white-to-move 1 White to play (1) or black to play (0).
write-bus 4 Four-bit piece value to be written into a square (if SS1 is

asserted). This bus is also used to update the five-bit depth
register (the 5th bit is sent through white-to-move).

one of two square-select pairs. The first pair, 881, has two 3-to-S decoders, one to

select a row and another to select a column. A square is selected when both row

and column signaIs are asserted. The second square-select pair, 882, is similar to

881 with the addition of an enable control signal. In this case, 882 can be used

to signal optional information to a square. For example, when an en-passant pawn

capture is possible, the victim pawn is informed of this via 882. Global information

such as state-mode, mask-mode, white-to-move and the write-bus must be routed

to all squares. These signaIs are explained in Table 4.1. The fanout required by these

signaIs is unacceptably large, due to the 64 chess squares. To reduce signalloading and

delay in an FPGA implementation, buffers are added to drive groups of eight squares.
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Table 4.2: State-mode and mask-mode instructions.

Instruction Value Description
state-mode
SM_FV 000 find-victim
SM.2P 001 find-pivot
SM_FA 010 find-aggressor
SM-.IDLE 100 do nothing
SM_DAAA 101 disable-almost-aIl-aggressors (the square selected by

SS2 is not disabled)
SM_W 110 write piece register
SM_WD 111 write depth register
mask-mode
MM_EAV_EAA 00 enable aIl victims / enable aIl aggressors
MM_DV_EAA 01 disable victim (selected by SS1) / enable aIl aggressors
MM_DA 10 disable aggressor (selected by SSl)
MM_NO_CHANGE 11 mask bits unchanged

Proper constraints must be added to prevent the buffers from being removed during

synthesis. The "Keep" command is used in the constraints file to preserve input

and output signaIs connected to the buffers whereas the "don't touch" attribute is

used to preserve the buffer components themselves. To make better use of the mode

busses, the fifth mask mode (MM_DAAA) was instead coded in the state-mode bus

and was labeled SM_DAAA. This is used to generate moves for discovered checks

and is explained in Section 4.7. The find-victim and find-aggressor instructions were

explained in Chapter 3. The find-pivot instruction was also introduced in Section 3.5.

In DEEP BLUE, masking and arbitration buses are also used as piece register

read/write buses [35]. In this design, the write bus is used to write piece values to

the different squares. The piece to be written is sent to an squares, however, only

the square selected by the first square-select pair (SS1) writes the piece into its piece

register. Another select pair is also used to clear a square's piece register. Thus,

making and unmaking an ordinary non-capturing move requires one cycle. Castling

moves, en-passant pawn captures or unmaking capturing moves require an extra cycle.

The depth register is used to control the move-masking memory depth. Each square's

depth register is simultaneously updated with the write-depth-register instruction.

This occurs during initialization and also when the search depth is incremented or

decremented as a result of a move being made or unmade.

An important feature of the move generator is that piece registers do not need to

be read when making and unmaking a move. This decreases the amount of routing
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Figure 4.2: Block diagram of a chess square.

resources needed and increases the speed of the design. However, an open-Ioop design

of this nature is more difficult to debug than a closed-Ioop design. In an open-Ioop

design, reading the state of the chip after an operation was performed cannot be used

to find errors. In this case, obtaining an open-Ioop design is only possible when the

moving piece and captured piece (if any) are stored as part of the move word. The

bit-fields of a move word are detailed in Section 4.7.

4.3 Chess Square - Minimizing Interconnects

In this section, the chess square circuit and related interconnections are analyzed.

Any output signal encountered is assumed as being implemented by a logic function

dependant on a given number of inputs. A block diagram of a chess square is shown

in Figure 4.2. L-shaped arrows in the transmitter (TX) and the receiver (RX) are

two-bit knight buses; straight arrows are five-bit neighbour buses. The thick black

arrow from the receiver to the transmitter is used to symbolize that when the square

is empty, the transmitted signaIs for sliding pieces are the propagation of the received

signaIs. A few exceptions involving the propagation of king and pawn bits are used to

solve special chess moves; this is shown in Section 4.6. When the square is not empty,

incoming attack signaIs are blocked and the generated signaIs for the resident piece are

instead transmitted. Each square also receives the signaIs indicated at the top-Ieft of
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Table 4.3: InternaI extended piece ward.

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Color Row/column Diagonal King Pawn Knight

Neighbour bus: yi yi yi yi yi
Knight bus: yi yi

the figure. The dashed lines show two of the many connections between transmitters

and receivers. One of the 32 first-level arbiters and one of the 16 second-level arbiters

are also visible.

During normal move generation, the transmitter outputs of a square obey the

find-victim and find-aggressor behaviors discussed in Chapter 3. The transmit lines

must have the property of additivity: the union of all pieces must also be capable of

being broadcast during the find-aggressor cycle. To achieve this goal, an extended

piece word of six bits is decoded from the four-bit piece register. The bit fields are

presented in Table 4.3. For example, 111000 represents a white queen and 011111

represents a victim square radiating the union piece. Bits 1 through 5 are sent to the

square's eight neighbours, hence the neighbour bus designation. The knight bit and

the color bit (bits 0 and 5) are sent to the knight-reachable squares, hence the knight

bus designation. These buses are visible in Figures 4.1 and 4.2.

As a result of using these busses, the chess square circuit does not need two

transmitters and double input receivers, such as DEEP BLUE. With the proposed

interconnect protocol, a chess square has fewer connection than in the DEEP BLUE

design. In Table 3.2 from Section 3.5, it was shown that a DEEP BLUE chess square

has 68 input wires and 68 output wires. In the CODEBLUE design, this is reduced

to 56 inputs and 56 outputs. Eight neighbour busses and eight knight busses imply

a total of 8 x (5 + 2) = 56 connections. The reason for the apparent inefficiency in

the DEEP BLUE connections can be explained by the fact that the design allows for

certain input combinations that are not possible. For example, during a find-pivot

cycle, a square cannot simultaneously receive a piece propagation from the enemy

king and from an aggressor piece in the same input direction. Doubling the inputs

and outputs can be avoided if the color bit is used to differentiate between aggressors

and victims on the input bus of a given direction. Remembering the move uniqueness

property expressed in the VM* (Schaefer et al.) move generator could not be more

pertinent at this point.

During normal find-victim and find-aggressor cycles, input piece color is unnec-
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essary. However, during the find-pivot cycle, opposing colors that align properly on

the pivot square will indicate a checking move. These inter-square busses also cre­

ate a more uniform interconnect pattern and maximize information distribution. The

find-check operation is therefore a find-pivot cycle followed by a find-aggressor cycle.

To prevent this find-aggressor cycle from generating moves that are not checking

moves, a four-bit find-aggressor-enable memory in each square inhibits the piece

type outputs according to the previously executed find-pivot cycle. For example, if

the previous find-pivot cycle found a checking move along a diagonal line, the rook

output will not be asserted during the find-aggressor cycle from this pivot square.

Even if a rook can land on the pivot square, it is not a checking move because of the

diagonal-check constraint found during the find-pivot cycle. This four-bit memory

has a depth of 32 in order to function correctly given the depth-first search-tree

algorithm. Because the king cannot be an aggressor for a checking move, the king

output does not need a disable bit. This allows the memory to be reduced from five

bits to four bits in width (see Table 4.3). For simplicity, the find-aggressor-enable

memory is not shown in Figure 4.2.

When an aggressor piece occupies the pivot square, the find-aggressor cycle is not

executed. This situation corresponds to a potential discovered check. In such a case,

the move returned indicates a square from which a friendly piece could un-block the

checking lane. For circuit optimization reasons, discovered check pivot squares are

generated after direct checking moves. In order to obtain a full move for a discovered

check, destinations for the pivot piece must be generated. In these cases, a special

mode allows all other friendly pieces to be disabled, thereby generating only moves

for the selected piece (SM_DAAA, disable almost all aggressors). A few exceptions

exist where the discovering piece does not open the checking lane: a pawn move with

a vertical checking lane or a pawn capture when the checking lane is diagonal (in the

direction of the pawn capture). These rare exceptions affect only move ordering and

are not resolved.

It is important to note that checking moves do not follow the MVV/MVA move

ordering that is implicitly exhibited by the move generator. Therefore, when entering

a node for the first time, a loop to find checking moves will first be executed. The mask

bits will mask off generated moves in a non-regular manner (when a pivot square is

exhausted, it will be marked as finished). When entering the normal move generation

loop, if the mask bits are not reset, non-checking moves that land on former pivot

squares will not be generated. The solution to this is to reset the mask bits between

the two phases and ignore checking moves when they are generated during the normal
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phase.

Because the generated moves are pseudo-Iegal, a verification of the king-in-check

status is performed after a move is made. This is accomplished with a 64-input OR

gate that combines the king-in-check status of each square. This logic gate is visible

in Figure 4.2. During the first find-victim cycle of a new illegal node, the output

of the OR gate informs the state-machine that an aggressor can capture the victim

king, hence the illegal position. The software then backtracks and generates another

move. In reality, the 64-input OR gate is constructed with 16 + 4 + 1 = 21 LUTs (a

LUT has four inputs). The use of the 64-input OR gate could be avoided if the king

was added as a possible victim during find-victim arbitration. The king would have

the highest priority and once a new node is reached, the first find-victim cycle would

identify an attacked king. This was not done in CODEBLUE because the three-bit

arbitration bus has its eight possible values assigned. This can be seen in Table 4.4

of Section 4.4. The idea for this optimization was proposed by Evans [24].

4.4 Arbiter Design - MVV/XVA Move Ordering

In order to locate the best aggressor, the best victim or the best pivot square during

their corresponding instructions, an arbitration network is used. Each square may or

may not have a value to arbitrate. An arbiter circuit is responsible for sending the

best of two squares' values to the next level of arbiters. The values in question are the

square's priority level and its coordinates, three bits and six bits respectively. Because

the chessboard has 64 squares, a six-Ievel binary tree of arbiters is required. For ex­

ample, during a find-victim instruction, arbitration priorities of attacked squares are

presented to the arbitration tree. A square that was not hit by any attack signaIs has

nothing to arbitrate. The location and value of the most-valued-victim is therefore

obtained at the output of the final arbiter at the sixth level. The priority values asso­

ciated to the different instructions are presented in Table 4.4. There are 32, 16, 8, 4,

2 and 1 arbiters on the lst, 2nd, 3rd, 4th, 5th and 6th levels of the network, respec­

tively. A binary tree arbitration structure also has shorter propagation delays than a

row/column-based topology, such as the Deep Though and DEEP BLUE arbitration

networks.

In Table 4.4, "nothing" signifies that a square was not hit by any attack signaIs.

This corresponds to the lowest possible priority. When priority level 0 propagates to

the output of the sixth level arbiter, the given instruction has not found a square or

piece. During find-victim, this implies that aIl victims have been searched and that
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Table 4.4: Arbitration priority levels.

Priority F-Vic. F-Agg. MVA F-Agg. LVA F-Pivot
7 Queen Queen King Queen
6 Rook Rook Rook
5 Bishop Bishop Pawn Bishop
4 Knight Knight Knight Knight
3 Pawn Pawn Bishop Pawn
2 Empty promotion Rook Empty
1 Empty King Queen Dise. check pivot
0 Nothing Nothing Nothing Nothing

the current node is finished. During find-aggressor, this implies that aH aggressors for

the current victim have been returned and that a new victim must be located. During

the find-pivot cycle, a priority level 0 reaching the final arbiter output implies that

no more pivot squares exist. The priorities for the find-pivot cycle are very similar

to those of the find-victim cycle. In the find-pivot cycle, direct checks that capture

high-valued victims have the highest priority. Direct checks involving the move of an

aggressor to an empty square foHow. Because discovered checks are located on pivot

squares containing aggressor pieces, discovered-check pivot squares must be returned

after aH of the direct checking moves. If this is not the case, a pivot square containing

a piece that can give a discovered check and a direct check could cause a problem: if

the discovered check is found first, the square will be disabled and the direct check

will not be generated. The foHowing direct checking moves are not generated by the

find-pivot instruction: a promotion, castle or en-passant pawn capture that checks

the opposing king. These move are instead generated during normal move generation.

Their omission affects only the move ordering and not the completeness of the move

generator.

A block diagram of the arbiter circuit is shown in Figure 4.3. The typical schematic

view of such diagrams was replaced by a text-based diagram to better illustrate the

input method used to code the move generator. Depending on the level in the binary

tree, an arbiter circuit uses between 8 and 13 LUTs each. Lower level arbiters are

optimized by the synthesis software; this is explained in Section 4.9. The arbiter

can be instructed to invert the priority levels according to the desired move ordering

scheme. For example, to create the most-valuable-aggressor ordering (MVA) during

the find-aggressor cycle, invert-priority is not asserted (logic 0). A second ordering

for the find-aggressor cycle is obtained when generating the least-valuable-aggressor
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Figure 4.3: Block diagram of an arbiter.

Priority

Coordinates

first (LVA). In this case, invert-priority is asserted (logic 1). The invert-priority

signal is not asserted during the find-victim cycle, hence the most-valuable-victim

(MVV) ordering.

In Section 2.2, it was stated that MVV-MVA ordering is used in full-width search

and that MVV-LVA ordering is used in quiescence search. The invert-priority signal

is dynamically controlled by the chess program each time a move is generated. The

programmable arbiters are thus said to perform MVV-XVA move ordering. The X

is used to denote either "Most" or "Least".

In an earlier version of the design, arbiters were distributed in a regular manner

throughout the chessboard. This pattern gave highest priority to squares at the top

right corner of the board, and lowest priority for squares at the bottom left corner. The

consequence of this is that arbitration between squares with the same priority values

have their tie broken by location. Therefore, after captures have been exhausted,

non-capturing moves are returned in order of their destination square from top-right

to bottom-Ieft. This move ordering is not optimal given the positional evaluation

function used. In the evaluation function, pieces are given higher scores for occupying

the center of the board. It was believed that re-arranging arbiters so that priority

was ordered from the center toward the edges and not from top-right to bottom-
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left would produce better move ordering. After more tests of this nature (presented

in Section 5.2), it was clear that re-arranging arbiter locations would be beneficial.

This improvement is labeled arbiter centrality. The only hardware penalty incurred

when re-arranging the arbiters concerns propagation delays. No additional logic is

required.

4.5 Move Masking

The memory resources of the FPGA used to implement the CODEBLUE move genera­

tor were briefly described in Section 2.4. DistributedRAM is obtained when LUTs are

used as random access memory. This type of memory is usefuI when small quantities

of local data need to be stored. BlockRAM is used to store larger amounts of data

that do not need to travel throughout the entire chip. The memory capability of LUTs

influences the design of move masking logic. In an FPGA, should move masking be

performed with last-move-decode circuits such as in the DEEP THOUGHT design or

with memory-based move masking such as in BELLE?

The original BELLE move masking method is shown to be the ideal move masking

scheme for FPGA move generators. A one-bit, 32-deep synchronous memory in each

square is used to memorize mask bits. This memory is shown in the block diagram

of a chess square in Figure 4.2. The memory is instantiated using the RAM32xlS

primitive and uses two LUTs. The buffered signaIs used to write piece values are

also used to update the depth register in each square. The depth register controls

the five-bit address of the move masking memory. The memory has one bit for

each ply of the search and is responsible for disabling aggressors or victims as moves

are generated. The move masking procedure is explained in the BELLE section of

Chapter 3. Because the design uses few flip~flops, each square has its own five-bit

depth register in order to decrease the amount of routing. It is very unlikely that

last-move-decode move-masking requiring fewer that two LUTs per square could be

designed in an FPGA.

With a memory-based mask-bit stack, aIl the logic implied by the DEEP BLUE

move masking decoders is unnecessary. Even with its dedicated routing, BlockRAM is

not the best solution to store mask bits in this case. Delays ranging from four to eight

ns were observed on signaIs going-to and coming-from the block memories. With local

memory, as described above, these delays are virtually eliminated. This highlights the

importance of choosing the appropriate type of RAM resource in a design. However,

the BlockRAM could be used to implement a small on-chip transposition table. This
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is analogous to the level-one cache found in conventional microprocessors.

The move making memory is controlled via the mask-mode bus described in Ta­

ble 4.2 of Section 4.2. Different instructions, such as disable-aggressor, disable-victim

& enable-all-aggressors and enable-all are used to mask moves as move generation

progresses in a given chess position. An example of move masking operations is given

in Figure 3.3. The depth of the move masking memory could be increased to support

deeper searches. In the current implementation, search depth is limited to 32 plies.

Given the limited search extensions used in MBCHESS, very few searches are con­

fronted to this limitation. However, in certain endgame positions, a maximum search

depth of 64 would be better. For simplicity, the depth of these memories was limited

to 32 in the CODEBLUE design.

4.6 Special Chess Maves

In this section, the implementation of chess exceptions is explained. The four spe­

cial moves in chess concern kings and pawns. These are castling, en-passant pawn

captures, promotions and two-square pawn advances. The five-bit omnidirectional

outputs allow pawn and king propagations to travel two squares in distance, when

necessary. Third and sixth row squares propagate the pawn bit so that the fourth

and fifth rows can see double square pawn advances. This is done in both vertical

directions in order for both the find-victim and find-aggressor cycles to detect the

pawn move. The white-to-move signal is used to ensure that the two-square pawn

advance is only valid for pawns on their home row.

Squares fl, f8, dl and d8 propagate the king bit so that castling destination squares

can signal castling moves. These square each receive the corresponding castling status

bit. If castling rights are no longer valid for a given castling move, the intermediate

square does not transmit the king bit in its transmitter. This is also done in both

the left-to-right and right-to-Ieft directions. A special trick is used to ensure that a

king does not castle through check or that a king does not castle out of check. Once

the castling move has been made, extra kings are written in the source square and in

the intermediate king-travel square. An instruction that verifies if the victim king(s)

is in check is then used to ensure the legality of the castling move. The extra kings

are obviously removed after the castling legality test. These extra procedures are

controlled by the chess program.

Horizontal pawn outputs are used for en-passant pawn captures and ensure that

this pawn exception is weIl placed in the move ordering. No extra cycles or software
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adjustments are necessary for en-passant capture generation. In reality, the chess

hardware "believes" that under certain circumstances, a pawn may capture horizon­

tally. The destination row for the move is then adjusted to point to the third or sixth

row, depending on the aggressor's color. A pawn is informed that it is an en-passant

vietim with the square-seleet-2 signaIs.

Pawn promotions must also be considered for proper move ordering. Pawn pro­

motions that capture an opponent are treated as an ordinary capture in the move

ordering. Therefore, promotions that capture a piece are automatically generated

with the other capturing moves. Pawn promotions to empty squares have a priority

level greater than a move to an empty square, but lower priority than the captures

mentioned previously. In this way, move ordering is almost ideal and does not require

special cycles for pawn promotions, as is the case in BELLE.

4.7 Chessboard State Machine

A finite state machine controls the operation of the digital chessboard. The state

machine applies the proper combinations of instructions in order to generate chess

moves. The state machine is also responsible for maintaining the FPGA's board rep­

resentation as moves are made and unmade. The state machine is clocked at the

bus interface's clock frequency so that only one clock domain is needed for the entire

chip. Therefore, depending on the instruction to perform, an appropriate number of

stalls are introduced so that propagation delays can be respeeted. Table 4.5 shows

the different commands that can be used by the chess program to control the move

generator. These high-Ievel commands are managed by the state machine. For exam­

pIe, for the generate-next-move command, the state machine may use the sequence:

find-victim, find-aggressor to locate the next un-searched move. The operation of

the chess state machine is detailed using state transition diagrams in Appendix B.

The move array mentioned in the table can be seen as a 32-level stack containing

the current move at a each depth. This is analogous to the 32-level stack used for

the move masking bit of a chess square. Once a move is generated at a given node,

it is returned ta the chess program thraugh the main bus. Data transfers are 32-bits

in width. Given the bit-fields of a chess move from Table 4.6, only one such transfer

is needed.

The "write move" command from Table 4.5 is used to expand a transposition­

table's suggested move. This move would normally be returned in its normal order

during the maye generation of the nade. Because of the re-ordering created by this
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Table 4.5: State machine commands.

Command Comment
Write piece register Four-bit piece value, one write per square
*Write board state White-to-move, en-passant and castle bits
*Reset node Reset mask bits and move at current depth
*Reset depth Depth registers in aU squares are set to a
Disable almost aU Except for the aggressor denoted by the source coordinate of the
aggressors current move
Write stan values The state machine will stan for x extra docks in the find-victim,

find-pivot and find-aggressor states. (x E [0,3])
King-in-check? Verify if victim king is in check (uses one find-victim cyde)
**Unmake move Unmake the move stored in the move array at previous depth
**Generate or write Generate the next un-searched move (normal or checking move,
move MVV-LVA or MVV-MVA) or write a given move in the move

array at current depth
**Make move Execute the move stored in the move array at current depth

*: can be combined with other * commands.
**: can be combined with other ** commands.

Table 4.6: Bit fields of a chess move.

Bits Used for
31-30 Special: when flag = 0, 00 = king in check, 10 = no moves left.

When flag = 1, 00 = normal move, 01 = castling move, la = en-
passant capture, 11 = promotion.

29-24 Source coordinate of move: three bits for x, three for y.

23-22 Promotion type (if applicable): 11 = queen, la = rook, 01 = bishop,
00 = knight.

21-16 Destination coordinate of move: three bits for x, three for y.

15 Flag: a = no move stored here, 1 = this is a pseudo-legal move.
14-12 Moving piece type: type of the moving piece (three bits), color is

deduced from the board state.
11-9 Captured piece type: type of the captured piece (three bits), color

is deduced from the board state.
8 En-passant square valid? 1 = yes, a = no.
7-5 En-passant location, x coordinate (if valid).
4 En-passant location, y coordinate (if valid): 1 = on white side of

board, a = on black side of board.
3-0 Castling permissions (both sides, king and queen side): 1 = yes,

a = no.
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heuristic, it must be written into the move stack at the current depth. This move

does not need to be validated because of the matching hash keys (see Section 2.2).

The combination of commands also allows the move to be automatically executed

after it has been written into the chip.

The killer heuristic's suggested move, however, must be validated. The move may

not be valid in the current line of play. Therefore, the move generator is "tricked"

into generating moves that land on the killer move's destination square, so that it can

be confirmed. To accomplish this, a partial move containing the destination square

of the killer move is written into the chip. This move has a flag = 1 to force the

move generator to start in the find-aggressor cycle. The aggressors are then returned

in sequence until the killer move is matched or until no more aggressors are found

for the given destination square. UsuaIly, very few cycles are necessary to determine

whether the killer move is valid or not. Because this is the first move generation to

be executed when reaching a new node, the mask bits are reset after this procedure.

The killer move is ignored when it shows up in its natural order during normal move

generation.

When the find-pivot instruction locates a pivot square containing an aggressor

piece, a possible discovered check in indicated. The move generator does not auto­

matically generate the moves for the discovered check because of the disorder that

would be created in the mask bits. However, once aIl of the discovered check pivot

squares have been returned, each discovering piece can be analyzed. Generating the

moves for such a piece involves disabling aIl of the other aggressors on the board. This

is accomplished with the SM_DAAA command on the state-mode bus. Once this is

done, normal moye generation is stared and only the moyes for the intended piece

are generated. Before moving on to another piece that releases a discoyered check,

the mask bits are reset. As was mentioned previously, the checking moves, direct

and discovered, are ignored by software when they appear during normal move gen­

eration. Had the state machine been more complex, a programmable state machine

(micro-code engine) would haye been developed.

4.8 PCI Interface

The Peripheral Component Interconnect is the main bus architecture used to connect

the FPGA to the host computer. The FPGA is mounted on a card equipped with

a PCI edge connector (see Appendix C); the only hardware resource required by the

host computer is an empty slot. The technical specification is governed by the PCI
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Table 4.7: FPGA move generator performance, 33MHz dock.

Instruction #Cycles Instruction #Cycles
dec. depth, undo move 1, 1 or 2* find-victim 3

do move, inc. depth 1 or 2*, 1 find~aggressor 3
aU writes 1 find-pivot 3

*: Normal, non-captunng moves reqmre one cycle. Castlmg moves
and unmaking captures require 2 cycles.

Special Interest Group and is described in [53]. The FPGA move generator must

therefore include a PCI interface to connect it to the computer running MBCHEss.

The interface logic is responsible for decoding read and write commands from the bus.

The interface must also support the dynamic memory mapping procedure initiated

by the PCI BIOS (Basic Input Output System) when the computer is powered-up.

As seen in Section 4.7, many different commands allow the communication over­

head to be diminished. For example, in a single read from the card, the move generator

can be instructed to undo the currently stored move, generate and return the next

move and execute that move on its hardware chessboard. This simultaneous write­

and-read is possible when part of the address is used to send a command rather than

address memory locations. Table 4.7 presents the performance obtained for a 33 MHz

clock frequency. It should be noted that the master clock for the entire design is that

of the PCI bus (33 MHz). The find-victim, find-pivot and find-aggressor states are

prolonged according to a staIl register to allow for sufficient time to account for prop­

agation delays. Because these staIls can only extend the duration of an instruction

for an integer number of clock periods, the device is not used at its maximum speed.

Before implementing programmable arbiters and arbiter centrality, the find-victim

and find-aggressor had a duration of two cycles. The one-cycle penalty associated to

these improvements is more that compensated by the better move ordering and the

smaller search trees produced.

The PCI interface was hand coded to support only the most basic operations

and uses only 135 LUTs and 85 flip-flops. Parity is generated but not tested. A

move consists of one 32-bit double-word therefore no burst transactions are needed.

Furthermore, the worst-case latency does not exceed the 16-cycle limitation described

in the PCI protocol. This occurs when the unmake-and-generate-move command is

executed and the move to unmake is a two-cycle operation. The design does not need

to issue retry and always terminates with "disconnect with data". An advantage in

not using a core for this application is that custom asynchronous handshaking signaIs
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can be created to decrease latency. Write data does not get latched in the PCI

interface (the address does) and goes directly to the chess state machine. The chess

state machine has access to the PCI address/data bus (used for write commands).

The PCI interface does, however, latch the read data from the chess state machine

before sending it out on the PCI bus. It should be noted that when the FPGA is

re~programmed, the base-address registers are re-initialized and the move generator

can no longer be accessed. Each time the FPGA is reprogrammed, the computer

must be rebooted in order for the device to be re-memory-mapped.

4.9 Synthesis and Implementation

The FPGA design was done in VHDL [54] and the chess program was coded in C.

The chip used is an XCV800-4 and the implementation tools are by Xilinx. A device

driver interfaces the FPGA mounted on the PCI card to the chess software. A C

program was created to generate the VHDL file responsible for interconnecting 64

instances of chess squares and 63 instances of arbiters. Location constraints were also

generated with this program and are used to inform the place and route tool that

the chessboard is an 8 x 8 array. This reduces implementation time and produces a

design with better performance. In this case, a 17% speed increase was obtained. It

is also advantageous to place the PCI interface near the side of the chip, close to the

ra pins. Area constraints were once again used to prohibit the placer from mixing

the chess state machine with the chess squares. Place and Route effort levels were set

to "highest" (with an extra effort level of 1); three delay-based router cleanup passes

and five cost-based router cleanup passes were also performed to increase circuit

performance. The entire design uses approximately la 100 LUTs, 350 32x1 RAMs,

800 flip-flops and has approximately 40 000 connections that must be routed. The

multi-pass place-and-route indicates that of the first ten cost tables, cost table 5

yields the fastest design. The mapper was also instructed to map logic to 5-input

functions (use F5 MUX). Because of the large amount of combinatorial delays involved

in propagating signaIs from one side ofthe board (chip) to the other, the find-victim,

find-pivot and find-aggressor instructions have a duration of three cycles in the chess

state machine. The bit-file representing the entire design is 575 KBytes in size and

requires 30 seconds to upload into the FPGA via a parallel-port upload cable. The

equivalent gate-count for the entire design is 158 221 gates.

The synthesis software automatically performs logic optimizations due to edge

effects. Because the chess square module is the same for all 64 chess squares, the in-
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Table 4.8: Maximum fanouts in the design.

Wire (net) Fanout
Clock 903
Reset 464
Eight state-mode buffer outputs (bit 0) 133 or 134 each
Eight white-to-move buffer outputs between 90 and 92 each
Eight state-mode buffer outputs (bit 2) 69 or 70 each

stantiation program assigns a logic-O to unused inputs. Unused outputs are connected

to unused signaIs. The synthesis tool removes alllogic used to produce an unused out­

put. The software also propagates the logic simplifications brought on by a constant

logic level on an input. Because of these logic optimizations, a corner square uses as

few as 77 LUTs for logic whereas a center square uses approximately 160 LUTs. The

arbiters are also simplified in this manner. The coordinates of a square are composed

of signaIs hardwired to logic-O or logic-1. These create optimizations in the first few

levels of the arbitration tree. This is the reason why most of the first-Ievel arbiters

require 8 LUTs and why fifth and sixth-Ievel arbiters require 13 LUTs.

The synthesis tool can also create different implementations of a state machine.

ln an FPGA, the most efficient coding technique is labeled one-hot. In this scheme,

each state is represented by one fiip-fiop bit. Because the state machine can only be

in one state at any given time, only one bit is asserted (hot). State transitions involve

changing which fiip-fiop's bit is active. A one-bit-per-state structure facilitates the

decoding of a state and allows better use of the abundant fiip-fiops.

The worst-case fanouts encountered in the design are shown in Table 4.8. Because

the chessboard logic cannot be pipelined, very few synchronous elements are used.

This explains the relatively small fanout of the dock and reset signaIs. In general,

fanouts exceeding 100 are not encouraged. A high fanout increases the loading on a

net and contributes to slower overall performance. One of the state-mode bits would

certainly benefit from additional buffers to help drive the many loads it is connected

to. It should be mentioned that the dock signal is driven with a specialized dock

buffer and that a fanout of 900 is by no means excessive.

ln Figure 4.4, a view of the placed design is visible. The graphical primitives

correspond to slices and LUTs. The 8 x 8 array of chess square circuits is dearly

visible. At the left of the array, the chess state machine is visible in light grey. The

PCI interface is also visible in dark grey; it is separated in two regions above and

to the bottom-Ieft of the state machine's logic. The 10 pins are also visible in the

70



Figure 4.4: Mapper view of the FPGA move generator.

periphery of the device. Horizontal and vertical routing is used throughout the chip.

Because of this, signaIs that must travel diagonally suffer from additional delays. In

addition to faster logic and routing, the diagonal routing found in Virtex-II devices

would be another advantage contributing to a faster move generator.

4.10 Integration to MBChess

In this section, the integration of the hardware move generator to the MBCHESS pro­

gram is explained. As a starting point for the new chess program, named MBCHESS­

CODEBLUE, a copy of MBCHESS is made. The software move generation function

is deleted and replaced with appropriate calls to the hardware. This is a simplistic

view and does not account for the many modifications implied. The move generator

is clasely linked ta the search tree algarithm and ta the maye ordering heuristics.

Before expanding on chess program details, a brief word on the device driver is given.

The move generator is connected to the computer's main bus using a PCI in­

terface. On the software side, a device driver is responsible for translating software

commands to low-Ievel hardware events. Reads and writes are accomplished without

any protocol overhead because the PCI card is memory mapped into main address
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Table 4.9: Full-width search move ordering in MBCHESS-CODEBLUE.

Order Type of move
1 Transposition table's suggested move
2 Killer heuristic's suggested moye
3 Direct Checking moyes
4 Discoyered Checks
5 Capturing moyes in MVV/MVA order (indudes capturing promotions)
6 Non-capturing promotions
7 Non-capturing moyes

space. The device driver locates the card based on the traditional device and vendor

id, which were assigned arbitrary values. Once the driver determines that a memory­

mapped region exists (indicated by base address 0), aIl subsequent reads and writes

are simply accomplished with the equivalent of the assembler-Ievel "mov" instruction.

Thus, two functions that can read and write a double-word to the chess card are used

to communicate with the move generator. The creation of device drivers is explained

in [51].

The main difficulty encountered when integrating the move generator to the chess

program deals with the ordering of moves. The full-width move ordering used in

MBCHESS-CODEBLUE is presented in Table 4.9. The majority of the chess moves

encountered during the search are in priorities 7 and 5. Moves expanded for priorities

1 to 4 are kept in an array so that they can be ignored when they appear in the normal

move ordering (priorities 5 to 7). Generating the move for priority 1 does not involve

the hardware move generator. This move, when applicable, is read directly from

the transposition table. In Section 4.7, generating the killer move was explained.

The other moves generated during the kiIler move's validation are simply ignored.

Priorities 1 and 2 can be seen as exceptions and are not implicitly part of the move

generator's sequence. Priorities 3 and 4, however, are part of the move generation

sequence. The mask bits must be cleared after the killer move validation has been

performed. The first move generation sequence begins with a flag indicating that

checking moves are requested. The direct checking moves from priority 3 are returned

individuaIly. After the direct checking moves are completed, aIl discovered-check

pivot squares are returned before any discovering check can be generated. Each pivot

square corresponds to the source coordinate for a potential discovered check. For a

given pivot square, aIl other aggressors are deactivated and the move generator is used

to generate the moves for the pivot piece. When a pivot piece has no more moves,
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Table 4.10: Quiescence search move ordering in MBCHESS-CODEBLUE.

Order Type of move
1 Capturing moves in MVV/LVA order (includes capturing promotions)
2 Non-capturing promotions

the mask bits are cleared and the next pivot square is analyzed. This new move

generation mode shows how a destination-based move generator can be modified to

generate moves for a given source piece instead.

Once priority 4 is finished, the mask bits are once again cleared and the normal

move generation sequence is ready to begin. Priorities 5 to 7 are all part of the same

sequence and require no additional software control other than setting the arbiter

mode. In full-width search, the arbiters are in MVV/MVA mode. It should be noted

that even though the bit-fields for a chess move support the promotion of a pawn to

the four possible piece types, the hardware only returns promotions to queen. Once

the software receives a promotion move, it is responsible for generating the three other

promotions. However, the hardware has the ability to make and unmake all types of

promotions.

During quiescence search, move generation is much simpler. Gnly capturing moves

and promotions are expanded. Move generation priorities in quiescence search are

shown in Table 4.10. Priority 1 is equivalent to priority 5 from the previous table,

with the exception of the capturing order. In quiescence search, MVV/LVA ordering

is used. Because the move generator can return capturing moves explicitly, the posi­

tional evaluation function is used strictly for evaluation. This is not the case in the

software~onlyversion. It was shown in Section 2.1.5 that the generation of capturing

moves can be integrated to the positional evaluation function. When the value of the

capturing piece becomes 0 and promotions are finished, the quiescence search move

generation is finished.

The new move generation function is thus responsible for managing the state of the

hardware move generator. With the exception of pivot squares, each move is returned

individually. When a beta-cutoff occurs, no unused moves have been generated.

Functional verification of the hardware move generator was performed using the

node counter. A search performed by MBCHESS-CODEBLUE is compared with the

same search executed by MBCHESS. In any given position, searches performed by

both programs are expected to have the same number of nodes. In order to compare

two search trees performed by two different move generators, the following factors
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must be considered:

1. The search must be deterministic, i.e. not random;

2. The search trees produced must be identical in size when both move generators

are operating properly. Alpha-beta must therefore be removed in favour of a

min-max search. This is necessary because of the differences in move ordering;

3. Because move ordering is different, the transposition tables cannot be used;

4. The killer heuristic and quiescence search are not activated;

5. Errors are easier to identify when iterative deepening is not activated.

Many different positions are searched in order to ensure that the design is error­

free. Verifying a specific portion of the move generator involves selecting a starting

position from which the desired types of moves will be encountered. For example,

when a three-ply search is started from TP6 (Appendix A), many different en-passant

pawn captures occur in the search tree. If a design error has occurred in CODEBLUE,

the resulting node counts will differ. In order to reduce the likelihood of one type

of error canceling out another error, the search is performed to a depth of four or

five. This procedure was repeated in positions where castling moves, promotions and

checking moves are to appear in the search tree. Writing an algorithm to perform

a 100% functional verification would involve testing the approximately 4 000 ever­

possible moves that can be performed on a chessboard. In this case, the laws of

probability have helped to drastically reduce the testing procedure.

It should be noted that because the FPGA was physically used to perform this

functional verification, timing verification was also implicitly performed. When errors

are found, design changes are performed and testing is repeated with the corrected

design. This is not possible with an ASIe design. When a discrepancy in node counts

occurs between hardware and software move generators, the stall counters in the state

machine are temporarily augmented. This allows extra time for signal propagations.

If the error is no longer present, a timing error has been detected. If the error persists,

a functional error has been found.
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Chapter 5

Results and Performance

In this chapter, the performance improvement attributable to a hardware move gen­

erator is investigated. A large portion of the tests compare MBCHESS-CODEBLUE

with MBCHESS (hardware~accelerated vs. software-only). AlI measurements were

done using an AMD K6-2 processor operating at 450 MHz with 256 MB of PClOO

RAM. The operating system is Windows 2000. As mentioned previously, the chess

hardware consists of an XCV800-4 FPGA from Xilinx. It is mounted on a PCI card;

the PCI operating frequency is 33 MHz. The FPGA and computer system are of the

same generation and represent a suitable combination on which to perform the folIow­

ing experiments. In Section 5.1, test positions are used to evaluate the difference in

processing speed between MBCHESS and MBCHESS-CODEBLUE, given many com­

binations of heuristics. The principal metric used is the number of nodes processed

per second. In Section 5.2, the effect of key improvements on move ordering are mea­

sured using the total-nodes metric. A brief motivation to explain the high priority of

checking moves in MBCHESS is given in Section 5.3. In Section 5.4, both programs

play complete games against each other and a rating difference is calculated based

on the win~ratio. In Section 5.5, both programs play independently on an Internet

Chess Server in order to obtain absolute ratings.

5.1 Processing Speed Comparisons

The goal of this section is to benchmark the increase in processing speed obtained

when a hardware move generator is used. Different positions are searched to a fixed

depth, without any game playing switches such as iterative deepening or draw detec­

tion. The performance difference varies depending on which heuristics are activated

in the programs. Therefore, results for different combinations of heuristics will be
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Table 5.1: Heuristic abbreviations used in Table 5.2.

Code Name Description
CF CHECKS-FIRST Checks are placed first in move ordering
AB ALPHA-BETA Alpha-Beta Nega Scout algorithm
Q QUIESCENCE Quiescence search (capture search)
P POSITIONAL Positional evaluation of leaf nodes

TT T-TABLE Transposition tables used (16 MB)
K KILLER Killer heuristic (one killer)

CE CHECK-EXT Check extensions (at most 2 plies)

shown. The test positions shown in Appendix A will be used for comparison pur­

poses. These positions are a taken from two lines of play starting from the initial

position. Test positions 4, 5, 9 and 10 can be considered as middle game situations

whereas the others are categorized as opening game positions. The reason for not

having selected test positions closer to the endgame is that the programs do not

possess any particular endgame knowledge or algorithms. Furthermore, a program

must successfuHy pass the opening stage before hoping to win agame. Therefore,

the opening to middle-game is a critical phase; this is where the benchmarks will be

focused. For completeness, the endgame was found to be even more favourable to the

hardware accelerated version, for aH combinations of heuristics.

AH test positions were searched with a depth of six plies with the exception of TP2.

With a depth of 6 plies, TP2 consistently yields smaHer search trees. It is therefore

searched one additional ply in an attempt to balance the experiment. Table 5.2 shows

performance comparisons using different combinations of heuristics. MBC refers to

MBCHESS and MBC-CB refers to MBCHESS-CODEBLUE. The codes enclosed in

curly braces are abbreviations for the different heuristics. These abbreviations are

detailed in Table 5.1.

In summary, depending on which heuristics are activated, performance is increased

by a factor of 1.5 to 6 times. Before analyzing the effect of different heuristics on the

speed difference between both versions, a comment on the effect of a heuristic in abso­

lute terms is important. Each heuristic mentioned in Table 5.1 improves the playing

strength of the MBCHESS program. This is an absolute gain and aH heuristics must

be activated to make the program play at its best. This must not be confused with

the relative effect of the heuristic on the comparison being done here. In Section 5.5,

aH heuristics are activated for best results.

The first observation that can be extracted from Table 5.2 is that the FPGA
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Table 5.2: Speed comparison (L:: of TP1 to TP1ü).

{CF,AB} Total nodes Total time #Nodes/see. Speed iner.
MBC 3.765 M 76.98 s 48.91 kN/s
MBC-CB 3.597 M 12.75 s 282.16 kN/s 5.77x

{CF,AB,Q} Total nodes Total time #Nodes/ sec. Speed iner.
MBC 4.114 M 120.10 s 34.26 kN/s
MBC-CB 5.848 M 27.11 s 215.71 kN/s 6.30x

{CF,AB,TT} Total nodes Total time #Nodes/see. Speed iner.
MBC 3.903 M 67.67 s 57.67 kN/s
MBC-CB 2.663 M 10.94 s 243.40 kN/s 4.22x

{CF,AB,K} Total nodes Total time #Nodes/see. Speed iner.
MBC 3.794 M 41.00 s 92.53 kN/s
MBC-CB 3.025 M 10.59 s 285.63 kN/s 3.09x

{CF,AB,P} Total nodes Total time #Nodes/ sec. Speed iner.
MBC 6.702 M 205.74 s 32.58 kN/s
MBC-CB 6.706 M 84.65 s 79.22 kN/s 2.43x

{CF,AB,P,TT} Total nodes Total time #Nodes/see. Speed iner.
MBC 4.335 M 141.44 s 30.65 kN/s
MBC-CB 4.581 M 62.77 s 72.98 kN/s 2.38x

{CF,AB,P,Q} Total nodes Total time #Nodes/see. Speed iner.
MBC 1.016 M 303.79 s 33.43 kN/s
MBC-CB 1.197 M 195.07 s 61.37 kN/s 1.84x

{CF,AB,P,TT,K} Total nodes Total time #Nodes/ sec. Speed iner.
MBC 3.288 M 71.39 s 46.06 kN/s
MBC-CB 3.618 M 53.37 s 67.80 kN/s 1.47x

{CF,AB,P,TT,Q} Total nodes Total time #Nodes/ sec. Speed iner.
MBC 6.050 M 176.4 s 34.30 kN/s
MBC-CB 7.519 M 103.95 s 72.33 kN/s 2.11x

{CF,AB,P,TT,Q,K} Total nodes Total time #Nodes/see. Speed iner.
MBC 4.980 M 110.71 s 44.99 kN/s
MBC-CB 6.080 M 80.34 s 75.68 kN/s 1.68x
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move generator increases the alpha-beta processing speed by a factor of approxi­

mately 6x. The differences between {CF,AB} and {CF,AB,Q} can be explained by

the fundamentaIly different way that both move generators operate. The software

move generator must generate aIl moves at a time whereas the hardware move gen­

erator returns moves one at a time: no generated moves are wasted when a beta

cutoff occurs. This effect is even stronger in quiescence search when only captures are

needed. In this type of search, the software move generator must scan each piece to

find its capturing moves. In contrast, the hardware move generator implicitly returns

captures first (when checking moves are not requested). This explains the difference

between 5.77x and 6.3üx.

When comparing {CF,AB} with {CF,AB,TT}, the performance difference drops

by about 1/3. This can be attributed to the manner in which the transposition

table's suggested move is used. When board positions are found in the transposition

table and their depth value is not deep enough to be used, the suggested move (TT­

SUGG-MOVE) is tried first during move generation. Moves are only generated if the

sub-tree returning from the TT-SUGG-MOVE does not cause a beta eutoff. As seen

in Section 2.2, no moves are generated when the suggested move is first tried and a

beta cutoff results. When such cases occur, the advantage mentioned in the previous

paragraph is not present. Thus the speed difference is 4.22 x.

The same kind of reasoning can be applied to {CF,AB} versus {CF,AB,K}. In

this case, the killer heuristic is responsible for a significant reduction in the speed

difference. Once again, as seen in Section 2.2, if a beta cutoff occurs as a result of the

killer move, no other moves are generated. Therefore, in MBCHESS, only the moves

for the kiIler piece were generated (using the PieceShowPossibleMoves function). In

MBCHESS-CODEBLUE, only the moves that land on the killer's destination square

were generated. This reduces the penalty associated with having to generate aIl moves

at a time and is responsible for the somewhat lower 3.ü9x factor.

Perhaps the easiest effect to explain is that of {CF,AB} versus {CF,AB,P}. In

this case, positional evaluation is added to each terminal node in both programs. This

has the effect of adding a constant overhead in both programs and thus diminishes the

effect of faster move generation. The fact that the speed difference drops from 5.77x

to 2.43 x indicates that the positional evaluation function is more computationaIly

expensive than the move generator. Would An FPCA Positional Evaluator for the

Came of Chess have instead resulted in an even grater performance increase?

Another interesting comparison is {CF,AB,P} versus {CF,AB,P,Q}. As seen

in Section 2.1.5, when positional evaluation is activated in MBCHESS, capturing
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moves are easily calculated because of the similar scanning done in both tasks. In
MBCHESS-CODEBLUE, capturing moves used in quiescence search come from the

move generator. An interesting test would be to use the quiescence function of

MBCHESS in MBCHESS-CODEBLUE. However, because a hardware positional eval­

uator would not be designed with a sequential scanning approach, this has not been

tried. A move generator capable of generating only capturing moves first is therefore

needed. Because capturing moves are returned by MBCHESS'S positional evaluation

function at a low cost, the performance difference between both programs drops from

2.43 x to 1.84 x.

The total-nodes column from Table 5.2 also reveals a peculiar behavior. When us­

ing the {CF,AB}, {CF,AB,TT} and {CF,AB,K} heuristics, MBCHESS-CODEBLUE

searches fewer nodes than MBCHESS (9.285 M compared to 11.462 M). However, with

heuristics {CF,AB,Q} and in the second half of the table, the software-only version

searches fewer nodes (23.783 M compared to 28.843 M). This can be explained by the

sensitive nature of the alpha-beta algorithm to move ordering for a given board po­

sition. Since both programs do not have exactly the same move ordering, differences

are inevitable. For this reason, the nodes-per-second metric is more appropriate.

However, the total-nodes count must be verified to ensure that both move ordering

methods are comparable.

5.2 Move Ordering Improvements

In this section, the effects of previously mentioned improvements that affect the or­

dering of moves will be examined. First, results showing the benefits of the most­

valuable-victim/most-valuable-aggressor (MVV/MVA) move ordering method pre­

sented in Section 4.1 will be benchmarked. Second, the effects of the arbiter central­

ity improvement presented in Section 4.4 will be tested. It will also be shown that

most-valuable-victim/ least-valuable-aggressor (MVV/LVA) move ordering is benefi­

cial during quiescence search. Thus, the use of programmable arbiters that can switch

between both methods is motivated here.

Table 5.3 shows node counts for both MVV/LVA and MVV/MVA schemes during

full-width search. The arbiter location-priority (centrality) improvement was also

tested with the better of the two previous methods. This is the third set of results

in the table. It should be noted that these results were compiled with the ALPHA­

BETA, CHECKS-FIRST and POSITIONAL heuristics enabled. The test positions

used are presented in Appendix A. All ten test positions were tested with a search
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Table 5.3: Centrality and MVV/MVA improvements.

#Nodes TPl TP2 TP3 TP4 TP5
MVVjLVA 636503 3040625 271740 673401 1809676
MVVjMVA 572645 1666763 261241 720472 1539412
MVVjMVA+centrality 465356 994388 164072 707723 1205886

#Nodes TP6 TP7 TP8 TP9 TPIO
MVVjLVA 711198 1117574 1359077 2153598 487688
MVVjMVA 651647 958710 1242337 2520480 492737
MVVjMVA+centrality 353335 647381 856020 1040153 271683

Results #Nodes #Nodes/sec.
MVVjLVA 12.261 M 67.8 kNjs
MVVjMVA 10.626 M 68.8 kNjs
MVVjMVA+centrality 6.706 M 69.2 kNjs

depth of six plies with exception of TP2, which was searched with a depth of seven

plies. The first column of the results section of the table is the sum of aIl ten node

counts for each test.

Table 5.3 shows that each improvement decreases the total node count, thus pro­

ducing a smaller search tree for the same depth. This can be explained by beta cutoffs

that occur earlier in node expansion, which are the result of better move ordering. For

the ten test positions tested here, during full-width search, MVV/MVA produces a

13% smaller search tree than MVV/LVA. If this is combined with the arbiter central­

ity improvement, the resulting search tree is 45% smaller, a noticeable improvement.

It is also interesting to notice a subtle improvement in nodes/second processed as

the tree size decreases. It should be noted that because of these two improvements,

the cycle times for the find-victim, find-pivot and find-aggressor instructions were

increased from two to three. This decrease in design speed is more that rewarded by

the reduction in search tree size.

However, MVV/MVA move ordering is not consistent with the anticipated move

ordering needed in quiescence search: MVV/LVA. For these capture extensions, it is

easy to see that a capture exchange sequence is usually best performed when capturing

with the least valued piece first. Table 5.4 reveals which move ordering method is

best during quiescence search. For these results, full-width move ordering is set

to MVV/MVA, as was found previously. The heuristics aetivated are the same as

before with the addition of QUIESCENCE and T-TABLE. In quiescence search, a

9% reduction in the amount of quiescent nodes is gained when using MVV/LVA move

ordering (1.63 million nodes vs. 1.80 million nodes). Not shown in the table is a slight
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Table 5.4: MVVjLVA improvement in quiescence search.

Quiesc. moye ord.: #Nodes TP1 TP2 TP3 TP4 TP5
int. nodes 191544 781235 121626 187840 901421

MVV/MVA qui. nodes 68984 470872 71880 84118 340181
int. nodes 191605 779200 121632 187819 901589

MVV/LVA qui. nodes 65902 446943 66411 74420 319056
Quiesc. moye ord.: #Nodes TP6 TP7 TP8 TP9 TP10

int. nodes 175717 148676 581122 344639 135889
MVV/MVA qui. nodes 71527 89118 388586 82711 131428

int. nodes 175714 148674 580609 340246 134501
MVV/LVA qui. nodes 67195 62222 337546 73658 119155

Results #int. nodes #qui. nodes %quiesc.
MVV/MVA 3.57 M 1.80 M 50.407 %
MVV/LVA 3.56 M 1.63 M 45.837 %

increase in nodes-per-second processed when using MVVjLVA in quiescence search:

104.5 kNjs to 106.4 kNjs. It is also interesting to notice that the number of internaI

nodes is essentially unaffected by the choice of quiescence move ordering. In both

cases, the total number of internaI nodes is roughly 3.5 million nodes.

In conclusion, it was shown that most-valuable-victimjmost-valuable-aggressor

is better than most-valuable-victimj least-valuable-aggressor move ordering during

full-width search. However, in quiescence search the opposite is true. Therefore,

programmable arbiters that can be instructed to do either scheme are used to ob­

tain optimal performance (this concept is labeled MVVjXVA). When combining the

centrality-of-arbiters improvement with programmable arbiters, move ordering is

much improved and contributes to smaller search trees. Smaller search trees take

less time to search and with a fixed amount of time, deeper searches are possible.

Deeper searches improve the quality of play, something that will be measured in the

MBCHESS-CODEBLUE vs. MBCHESS section.

5.3 Checking Maves and Move Ordering

Move ordering was shown to play a key role in the efficiency of the alpha-beta algo­

rithm (Section 2.1.1). In this section, a brief experiment shows that the choice that

was made concerning the ordering of checking moves is adequate. In Table 2.3 from

Section 2.2, it was stated that checking moves are searched before capturing moves,

after the transposition table and killer's suggested moye. The results from Table 5.5
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Table 5.5: Checking moves before capturing moves, results.

Moye ordering: #Nodes TP1 TP2 TP3 TP4 TP5
Checks before captures int. nodes 238.6 k 610.5 k 106.0 k 133.5 k 242.9 k

qui. nodes 89.6 k 250.5 k 60.0 k 64.8 k 144.2 k
Checks after captures int. nodes 240.6 k 758.1 k 104.6 k 133.3 k 242.6 k

qui. nodes 87.8 k 261.0 k 62.9 k 65.7 k 146.0 k
Moye ordering: #Nodes TP6 TP7 TP8 TP9 TP10
Checks before captures int. nodes 117.3 k 337.2 k 389.3 k 284.2 k 260.3 k

qui. nodes 40.1 k 104.8 k 219.7 k 99.9 k 168.1 k
Checks after captures int. nodes 116.6 k 334.5 k 385.8 k 282.2 k 256.3 k

qui. nodes 40.3 k 100.2 k 217.5 k 101.8 k 188.1 k
Results #int. nodes #qui. nodes total nodes.
Checks before captures 2.720 M 1.242 M 3.962 M
Checks after captures 2.855 M 1.271 M 4.126 M

indicate that when checking moves are searched before capturing moves, search trees

have approximately 4% fewer nodes. However, this is not the most important ob­

servation. In more general terms, the search trees for nine of the ten test positions

are virtuaUy the same size. When considering TP2, searching checking moves before

capturing moves reduces the number of nodes searched by approximately 20%. Other

than the test positions from Appendix A, a few other test positions were also veri­

fied for consistency. As in the test positions used here, in most situations, ordering

checking moves before or after captures produces similar node counts. In a few cases,

searching checking moves before captures reduces the number of nodes searched. The

tests were performed with MBCHESS with aU heuristics activated. A more exhaustive

test suite would be necessary to confirm these results.

5.4 MBChess-CodeBlue vs. MBChess

In this section, the increase in performance of MBCHESS-CODEBLUE will be eval­

uated by playing complete games against the original software-only version. This

testing procedure represents a better way ta establish the effects of the faster hard­

ware maye generatar. Different metrics such as nades-per-second and tatal-nodes

are important to consider, however, the actual game-playing effects are what is most

important. The advantage of having warking programs that incorporate most of the

papular chess heuristics is that results cannot be disputed for lack of realism.

Far aU games played in this section, bath programs are set to five seconds-per-

82



move. Therefore, iterative deepening is activated for reasons seen in Section 2.1.6.

Furthermore, the draw detection algorithm presented in Section 2.3 will be activated

so that repetition draws do not needlessly occur. Both programs run on the same

machine under the same conditions. The option to think on the opponent's time is not

activated thus both programs never execute searches simultaneously. Each program

has access to 100% CPU usage for its five-second time slice. The move executed

is transmitted to the opponent program using inter-process communication features

from the Win32 API. Two named pipes are used, one for each direction. When a

program is waiting for the other to transmit its move, no CPU time is wasted.

As seen in Section 5.1, the difference in processing speed is dependent on the

heuristics that are activated. Therefore, for the competition proposed in this sec­

tion, the following settings will be tested: {CF,AB,Q}, {CF,AB,TT,POS,Q} and

{CF,AB,TT,POS,Q,K,CE}. The {CF,AB,Q} setting was retained because of its large

speed difference (6.30 x). The second setting represents more realistic playing condi­

tions with the addition of transposition tables and positional evaluation. With these

two additional heuristics, the speed difference between both programs was shown to

be 2.11x. The third setting corresponds to full game playing mode; the killer heuris­

tic and check extensions are added. This is the setting that is used in Section 5.5

for Internet play. In this section, 100 games are played with each setting in order to

determine:

• the rating difference obtained with each setting;

• whether the rating difference varies with the speed difference shown in Sec­

tion 5.1.

With Equations 2.12 and 2.17 from Section 2.5, results can now be shown and a

stable rating improvement can be calculated. These two equations are repeated in

Equations 5.1 and 5.2 respectively.

SM = -400 log (~r -1) (5.1)

(5.2)

Results of the MBCHESS-CODEBLUE vs. MBCHESS competition are shown in Ta-
----ble 5.6. The calculation of !:1p., is done using Equation 5.1. For this series of games,

each game was started with the first half-move belonging to the set {e3, e4, d3, d4,
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Table 5.6: Competition results, MBC-CB vs. MBC.

Label Heuristics #Wins #Games Wr Rating Diff. !:lM

Hl {CF,AB,Q} 88 100 0.88 346.12
H2 {CF,AB,TT,POS,Q} 70 100 0.70 147.19
H3 {CF,AB,TT,POS,Q,K,CE} 77 100 0.77 209.91

c3, c4}. These different starting positions are introduced so that a variety of open­

ings can be tested. For each starting position, each program plays the same number

of games as white and black (eight each). Another four games were played from

the initial position, for a total of 100 games. Because of the RANDOM property of

the evaluation function (Section 2.1.2), the same game is never played twice. Drawn

games where both programs have equal material were not considered for the win-ratio

calculation. For example, if six drawn games are played this is considered as six half

wins, resulting in a win ratio of 3/6. If drawn games are not kept, this equality of

play should statistically yield three wins and three losses. This again corresponds to

a win-ratio of 3/6. Therefore the omission of drawn games does not affect results.

Repetition draws where one side has a material advantage were considered as wins for

the program that is up in material. The fact that this mIe, albeit non-conventional,

is the same for both programs does not affect the validity of the results. This rule was

helpful in accelerating the testing procedure. The programs do not have dedicated

endgame algorithms, nor can they detect drawn games because of insufficient mating

material. Both programs were set at five seconds per move, the default time control

for MBCHESS.

However, Table 5.6 does not reveal any details concerning the stability of the

final rating difference. It is important to consider the graph showing the evolution

of the rating difference as the number of games played increases. Figure 5.1 shows

this graph for the {CF,AB,Q}, {CF,AB,TT,POS,Q} and {CF,AB,TT,POS,Q,K,CE}

settings. It should be noted that the first few data points on all three curves are

not valid. A win-ratio of 0 causes a division by zero in Equation 5.1, which results

in a rating difference of -00. Conversely, a win-ratio of 1 causes a log(O), which

results in a rating difference of +00. In the corresponding graph, these invalid points

have a value of O. From this graph, the rating differences stabilize somewhat after

70 games. Furthermore, it becomes apparent that the choice of heuristics affects the

performance increase attributable to a hardware move generator.

Another method for evaluating the stability of the ratings shown in Table 5.6 is
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Figure 5.1: Rating difference vs. Games played.

to use Equation 5.2 to determine the error margin on Wr, for each set of heuristics.

The results are shown in Figure 5.2.

When considering exclusively the move generator portion of the search procedure,

the CODEBLUE move generator increases MBCHESS'S playing strength by 346 points.

This corresponds to the first entry in Table 5.6. This is the net effect of changing

the move generator from software to hardware. It is also crucial to mention that

the arbiter centrality improvement mentioned in Section 4.4 is in part responsible

for the large increase in strength. Because this improvement favours moves towards

the center of the board, a slight positional bias is introduced because of the effect

on move ordering. Since the granularity of the evaluation function is purely material

count (the POSITIONAL heuristic is not activated), the choice between many equal

moves will depend on the choice between ">" and ";:::" in the alpha-beta algorithm.

With the ">" used (see Section 2.1.1), the first of an equal-outcome moves will he

retained for the best line of play. Since moves are ordered from the middle of the

board to the periphery, moves that occupy the middle of the chessboard are favoured,

hence the implicit positional effect. Because this gain requires no additional hardware

resources, the arbiter centrality was not removed for the comparison.

When considering the second heuristic set-up, positional evaluation is seen as a
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constant overhead to both programs and therefore attenuates the effect of a faster

move generator, hence the 147 points in rating difference. The final heuristic set­

up shows the addition of the killer and check extension heuristics. From the last

two entries in Table 5.2, the addition of the killer heuristic was shown to reduce

processing speed from a factor of 2.11x to 1.68x. However, Table 5.6 indicates a

rating difference of 210 points, more than 60 points better than without the killer

heuristic. This contradiction could be due to the fact the check extensions were

also added in this experiment. Another explanation for this is the fact that the

test positions used in obtaining Table 5.2 do not coyer the endgame. As was stated

previously, the speed advantage obtained with the hardware move generator is even

greater during this phase of the game. It is therefore probable that many games

were won during the endgame phase, where MBCHESS-CODEBLUE's performance

increase is even stronger.

To summarize, with aIl heuristics activated, MBCHESS-CODEBLUE is shown to

be 210 chess rating points better than MBCHESS. As seen from Table 2.4, this repre­

sents a little over one full rating category. But where does MBCHESS-CODEBLUE fit

in this ranking table? AIso, is the relative rating difference obtained here consistent

with the difference in absolute ratings obtained independently for both programs?

Section 5.5 will attempt answer these questions.
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Table 5.7: Rating results, MBC-CB and MBC on FICS.

Program Final rating Rating category
MBCHESS-CODEBLUE 1844 Class A

MBCHESS 1692 Class B

5.5 Absolute Ratings

In Section 5.4, the performance improvement obtained with the hardware move gen­

erator was shown by a competition with the software-only version. In this section,

the performance difference is measured in absolute terms; both programs play inde­

pendently and obtain their own rating. For this experiment, MBCHESS-CODEBLUE

and MBCHESS playon the Free Internet Chess Server (FICS) at www.freechess.org.

Both programs have aIl heuristics activated ({CF,AB,TT,POS,Q,K,CE}). The draw

detection is activated and the RANDOM property of positional evaluation is turned

on. The time controls are mainly 12-0, which allows 12 minutes per game and 0

seconds added after each move (this is known as Fisher time). A small portion of

games was played with the 5-5 and 2-10 time settings. Since the average duration of

the game is roughly equal in aIl three cases, and that the time is the same for both

players (human opponent and program), results are not adversely affected.

Figure 5.3 shows the evolution of the rating of both programs as the number of

games played increases. As in Section 5.4, greater stability would be achieved with a

higher number of games played. However, from the graph showing rating vs. games­

played, it is apparent that MBCHESS-CODEBLUE has a rating of at least 1850.

The overall curve seems to be increasing at slow rate. Furthermore, MBCHESS'S

rating curve stabilizes somewhat at around 1700. The effect of the CODEBLUE move

generator is therefore an increase in chess playing ability of 150 rating points.

Table 5.7 shows the final ratings obtained for both programs after 65 games each.

However, the corresponding chess rating categories must be considered carefuIly. The

assumption made here is that FICS ratings are comparable to the USCF ratings

shown in Table 2.4. Given this assumption, MBCHESS-CODEBLUE is a Class A

chess program and MBCHESS is a Class B chess program. Once more, the improve­

ment brought on by the hardware move generator is noticeable. After 65 games each,

the exact rating improvement is 152 points. The RD, or rating deviation, of both pro­

grams reached below the threshold level of 80. A rating deviation below 80 indicates

that a reasonably stable rating has been attained.
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For comparison purposes, it was reported that a doubling in processing speed

increases the playing strength by approximately 100 rating points [33, 38]. From this

rough estimation, a relation between the speed increase and the rating improvement

can be extrapolated. This is done in Equation 5.3.

Where:

• Rine corresponds to the increase in rating;

• Sine corresponds to the ratio of increase in processing speed.

Solving for Sine' Equation 5.4 is obtained.

(5.3)

(5.4)

This equation should not be taken literally, nonetheless, it is interesting to evaluate

Equation 5.4 with Rne = 152 to get an idea of the speed increase provided by the
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hardware move generator, from a different point of view. This results in a speed

increase factor of Sine ~ 2.87x. This is greater than what was reported in Section 5.1.

However, the rating difference of 152 points obtained in this section is smaller than

the 210 rating difference that was reported in Section 5.4. This could be explained

by the fact that the hardware accelerated version's FICS rating could be higher with

more games played (slight positive slope in Figure 5.3). In total, the effect of the

CODEBLUE move generator can be summarized as an increase of approximately 150

chess rating points, almost a full ranking category.

The absolute ratings obtained by both programs in this section could have been

much better had the following changes been made to the chess programs:

1. Add an opening book;

2. Use a direct Internet interface as opposed to manually translating moves from

one chessboard to the other;

3. Better time control. For example, spend more time when the score varies with

each iterative deepening search (unstable position);

4. Deep thinking to profit from opponent's time;

5. Add king safety component to positional evaluation function;

6. Add null-move depth reduction.

With these improvements, MBCHESS-CODEBLUE could reach the expert skilllevel

and potentially, the master level.

In this chapter, games were played with a generally short time control. In this

section, four to twelve seconds per move were used to produce the time controls

mentioned previously. For the MBCHESS-CODEBLUE vs. MBCHESS competition,

five seconds were given for each move. This is far quicker than the three-minutes-per­

move time control normally used in tournaments. Suffice to say that it would not have

been very practical if games were to last four to five hours each, given that over 400

games were played for the results shown in this chapter. However, at three minutes­

per-move, the rating difference would probably be smaller. For example, if program A

is faster than program B by a factor which permits A to search one ply deeper than B,

the difference between a 5 ply search and a 6 ply search is greater than the difference

between a 15 ply search and a 16 ply search. As the search depth increases, differences

of one ply become less important. In such cases, positional evaluation becomes the
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Players:

o yuri (1739)
• MBCHESS-CODEBLUE (1832)
ICS Rated blitz match
freechess.org
2002.04.29

l.d4 d6 2.g3 QJf6 3.il,g2 e6 4.c4 i.e7 5.QJf3 QJc6 6.QJc3 0-0 7.0-0 e5 8.d5 QJa5
9.b3 il,f5 1O.QJe1 i.g4 11.lj/c2 c6 12.Jt,a3 cxd5 13.QJxd5 QJc6 14.QJxe7+ Ij/xe7
15.e3 lj/e6 16.QJd3 i.f5 17.lj/e2 e4 18.QJf4 lj/e5 19.1j/d2 IIfd8 20.h3 d5 21.il,b2 d4
22.exd4 QJxd4 23. i::tad1 ~xf4 24.i.xd4 Ij/xd2 25.l::txd2 i::td6 26.g4 il,g6
27.IIfd1 l::tad8 28.\tfl b6 29.~e2 J::'!e8 30.~e3 h5 31.g5 QJd7
32."txg7 l::rd3+! White resigns

Figure 5.4: Game #55, move 32, black to play. MBCHESS-CODEBLUE (black)
played Rd3+, white resigned. The loss of the white bishop on g7 is inevitable.

crucial factor. This behavior is also found in man vs. machine chess games. In blitz

matches, computers have been able to beat the best players in the world since the

early 80s1 . However, it was not until 1997 that a computer was crowned champion in

standard time controls (two hours for 40 moves).

To end the present chapter, agame played by MBCHESS-CODEBLUE on the

Free Internet Chess Server (FICS) is presented in Figure 5.4. This game was selected

because of the strength of the opponent and the final move of the game; a move that

causes the opponent to resign. Even though aH is not lost for white (opponent), in

such a close match-up this represents a sizeable disadvantage. The opponent should

have continued the game; the outcome was certainly not predetermined. White's

resignation was perhaps due to the psychological effect of losing a bishop: an effect

not present in computer chess! It is up to the reader to decide if this is an advantage

or not...

1More precisely, in 1977, a computer defeated a grandmaster in a five-minute-per-side blitz
game.
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Chapter 6

Conclusions and Future Work

6.1 Conelusions

An FPGA move generator was successfully developed to increase the plying strength

of chess programs. Although some features were specific to the MBCHESS program,

the proposed contributions can extend to many other chess programs. Rere is a short

summary of what was developed:

1. A simpler inter-square communication protocol was shown to require fewer

wires than the DEEP BLUE design. Whether the design is implemented in an

ASIC or an FPGA, a more efficient use of resources is always beneficial. The

interconnect pattern was also shown to handle special chess moves easily.

2. This design shows how traditional BELLE-style move generators can be modi­

fied to incorporate popular chess heuristics. Computer chess heuristics are an

integral part of chess programs and must also be considered when designing

chess hardware. Special instructions were designed to allow the use of the killer

heuristic and the transposition table's best move.

3. The arbiters were arranged to prioritize the center of the board when a voting

tie occurs. Arbiter centrality improves move ordering because of the center bias

found in typical positional evaluation functions. Renee, the size of the search

trees is reduced and no supplemental material resources are required.

4. Programmable arbiters which can generate least-valued-aggressors or most­

valued-aggressors first are introduced. Labeled MVV/XVA, programmable ar­

biters are used to perform the appropriate move ordering during full-width and

quiescence search. In programs that behave differently than MBCHESS, the
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ability to control the ordering of capturing moves is also an advantage, even if

the settings are different than those used in this project.

5. The design can generate checking moves separately as weIl as indicate the loca­

tion of discovered checks. In addition to the inherent destination-square based

move ordering exhibited by BELLE~style move generators, a novel addition to

the design also permits moves to be generated from a source square's point-of­

view. This source-based move generation is not limited to discovered checks.

6. In MBCHESS, the ability to generate checking moves separately was used in

move ordering. The circuitry used to generate checking moves could also be

used to perform check extensions during quiescence search. The detection of

mating sequences could also benefit from this hardware.

The design, testing and integration-to-MBCHESS phases were accomplished dur­

ing an 8-month period. The chip was used in real game-playing situations during the

final design steps, something not possible with an Application Specifie IC. The ease

of re-programmability of FPGAs coupled with the high level of abstraction provided

by the design and implementation tools have made this project possible given the

short time frame. The re-configurability of FPGAs allows a design to be modified in

the same way a chess program is modified when an opponent discovers a weakness or

when a new heuristic is added.

In more general terms, this thesis has shown how a combinatorial search procedure

can be accelerated with the use of digital circuits. As will be stated in the following

section, other portions of the algorithm can also be implemented in hardware for even

greater gains. The re-configurability of FPGAs becomes essential when considering

tasks such as hardware accelerated Boolean satisfiability and hardware accelerated

automated theorem proving. In both cases, each problem instance is dynamically

converted to a digital circuit. Once the device has been re-programmed, the algorithm

has a faster, parallei platform on which to solve the problem.

At the time of this writing, the next mainstream Ruman-Computer chess match

up is scheduled for the fourth quarter of 2002. lt will pit Vladimir Kramnik, current

world chess champion, against DEEP FRITZ. The chess hardware will consist of

a multiprocessor supercomputer with no special purpose hardware. The complete

system can calculate over 6 million moves-per-second [17]. What DEEP FRITZ lacks

in processing speed (when compared to DEEP BLUE), it makes up in chess knowledge

and optimized programming. We believe that the proposed FPGA move generator,
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along with hardware evaluation and search, could further improve the chess-playing

strength of DEEP FRITZ.

6.2 Future Work

Obtaining a higher level of performance would involve integrating the evaluation

function and search control into the FPGA. With on board transposition tables and

suitable databases, a single-chip FPGA grandmaster might be possible. As hard­

processors become the norm in upcoming FPGAs, integration of program code to the

lC will make the FPGA a complete and even more powerful solution.

The Virtex-II Pro series of FPGAs could be used ta implement a powerful, single­

chip parallel chess engine. For example, at the time of this writing, the largest Virtex­

II Pro has four PowerPC processors and 125 136 logic cells. This would be sufficient

for a four-way chess chip with four hardware move generators and four hardware

positional evaluators. Faster logic, diagonal routing and a direct interface between

logic and processors would each contribute to increasing the speed of digital chess­

playing circuits.

On the software side, many aspects of the MBCHESS program need to be im­

proved. However, the hardware move generator developed here is a solid foundation

on which to build a world-class chess-playing machine.
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Appendix A

Test Positions

The following test positions are used in Section 5.1 and Section 5.2.

TP1, white, moye 3

TP3, white, moye 8
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TP2, black, moye 5

TP4, black, moye 11



TP5, white, maye 14

TP7, black, maye 5

TP9, black, maye 11
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TP6, white, maye 3

TP8, white, maye 8

TP10, white, maye 15



Appendix B

Chess State Machine Diagrams

In this appendix, more details concerning the chess state machine described in Sec­

tion 4.7 are given. A high-level diagram indicates the relations between the different

commands that can be invoked by the chess program. Depending on the bit-field of

the command word, sorne states may or may not terminate at the idle state. In the

cases where combinations of commands are requested, state transitions may follow

the ** state transitions. A second figure showing the different instructions used for

each command follows.

**: combination of
commands

Chess finite state machine high-level diagram.
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last maye invalid
& find check

State machine and chess instructions. The "1" symbol represents "or".
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Appendix C

FPGA Development Board

FPGA Development Board.
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