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ABSTRACT .

This thesis presents a new << adgptive control with
+ Yecursive identification >> scheme for H@scrgte time sto-
chastic linear systems. Our scheme has thékﬁollowing pro~ . '

perties when applied to an unstable system with unknown

parameters. -

(1) The adaptive cqgtrol part of our algorithm ségbilizes

and asymptotically optimizes the system. .,

(2) The feedback control law is such that it is subj@ct to
a random disturbance so that the resulting controi&signals

possess an important "persistency of excitation " pioperty.

This results in strongly consistent estimates of thefsystem

parameters being produced by the recursive parameter esti-

mation (AML) part of our algorithm. ,

S

The above results are subject to an inverse stability as-
ion on the deterministic part of the system, a positive
real condition on the stochastic part, and a hypothesis on the
irreducibility of the system representation. Our znalysis

the scalar (unit delay and general delay) and multi-

covers bo

variable (unit delay) cases.
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. . (iii)
SOMMAIRE . T

Cette th2se pré&sente et analyse une nouvelle mé&thode

permettant de faire simultanément la commande adaptative et

_1l'identification récursive des syst@mes stochastiques linéaires

3 temps discret. Notre algorithme possdde les propri&tés -
suivantes lorsqu'il est appliqué 3 un syst@me instable dont les

paramé@tres sont inconnus. Y

(1) Le syst@me est stabilis& et sa performance optimisé&e par

1l'algorithme de commande adaptative.

/

(2) La loi de commande de ce régulateur &tant perturbe par.
1'addition d'un signal al&atoire, les signaux de contrdle.

. qui sont généré€s poss&dent une importante propriété& dite
"d'excitation persistante”. En conséquence, des estimés
convergents des param@tres du systéme sont produits par

1'algorithme récursif d'estimation des paramétres (AML).

Ces résultats sont sujets 3 une hypothése de phase
minimalé quant 3 la partie déterministe du syst2me, une condition
de passivité quant & la partie stochastique, et une hypothésé
d'irréductibilité en ce qui concerne le mod&le du systsme.

’

La th&se analyse le cas univariable (délai quelconque)

et le cas multivariable (délai unité).
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. o CHAPTER I ‘ h Lo

INTRODUCTION I

This thesis is conc¢erned with the "adaptive control"
problem of linear stocﬂastic discrete time systems. Since the
expression "adaptive control” is often employed i; differént
contexts and therefore may lead to some confusion, we specify imme-
diately that we shall congider the "param;ter adaptive control
problem”. This problem consists in the design of a re-
gulator for a plant whose parameters are not precisely known. ?hg
customary usgbe of the term adaptive - which we also adopt - implies
that satisfactory re§ulation‘would be possible if the.parameter '
values were known. If one's lack of precise knowledge of the plant ‘
involved some other information, for instance structural data éon-
cerning the plant, then one would have another type of adaptive
control problem, in this case a "struétural adaptive control problen”.
Interpreted in this way we see that there is no definitive adaptive :

control problem, but rather adaptive versions of previouslj}defined

control problems.

)

Parameter aéaptive control theory and its applications have been
an object of study within control engineering for maﬁy years.. For a
sample of this work we refer the-reader to the list of references
[rﬁ-lSJ drawn from publications which have appe;red over the last
thirty years. In particular, for the case of discrete time para-

meter stochastic adaptive control, we mention the seminal paper of

'isgram and Wittenmark [6] that introduced the self-tuning regqulator.

-
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It was not L{ntii relatively recently, however, that there began

to appear complete analyses of the stability of various adaptive
feedi:ack schemes which stood upon acceptable hypotheses. . To i:e;
specific, ‘during the)pe'riod 1978-1980(there appeared trea%:ments

of the deterministic scalar continuo time parameter case in
[16-18], the deterministic (scalar and multivariable discrete time
parameter gases in [18;19] and [20] respectively, and the stochastic

multivariable discrete time parameter case in (21] .

In order to procéed we need to‘ be more precise about the riesu].ts:
contained in (21]. This paper considers systems of the form
ﬂa(Z)Y = zdb(z)u + cl(z)w (assuxging for the moment that the reader xs’
Vfamiliar with t.ixis notation). It estébli%the egéistence of

adaptive control laws for such linear stochastic discrete time un-
%

stable systems where the parameters and noise variance are unknown.
A |

These control:laws sthbilize the system in the sense that the input pro-

cess u and the output process y are both sample mean square bounded.

‘Furthermore the dystem is optimized in the sense that the sample

mean square of the deviation of the output from a bounded deter-
* +
ministic demand process y converges to the prediction, error of the

system when this is computed using the true values of tht parameters.

' In the adaptive control schemes of [21] and the related work
{22-27], the control laws analysed employ eithe;:' a type of stochastic
approximation parameter estimation algorithm [21,22,27] or modified
least squares algorithms [23-26]. None use the techniques (referred

to as monitoring) which project parameter estimates into regions

-
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for adaptive control and one for system identification, which

N

‘which corgespona to a stable System, an operation requiring certain

a priori information about .the s¢stem parameters. Thé conditions
for these control algorithms to perform as dgscribed consist of re-
latively weak assumptions on the system noise process W, an inverse
asymptotic stability hypothesis on the deterministic pért of the

system, and some- form of positive real condition on the stochastic
. E - ’

‘part. o

Despite somé partial results (see e.g. [23;26])none of the

control algorithms described above have Been shown to produce con-

sistent parameter estimates.

The contribution of this thesis is tq extend the results of
. 4

. Goodwin, Ramadge and Caines (21] by showing that there exist asymp-

totically optimizing adaptive control algorithms which, in addition,
generate consistent estimates of thelparameters of the system which
is being regulated. To the best of the author's knowledge, it is
the first result of this type. The reader is referred to [28,29]
for results of a distinct but analogous type concerning the adaptive
control and identification of a completely cbserved discrete time

parameter Markov process with finite parameter set.

A.new << adaptive control with recursive jdentification >>

gcheme is pxesentéd. It consists of two recursive algorithms, one

operate simultaneously on the system being considered. More spe-

cifically, the following result is established:

. f -
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Let the control law of [21] be subject to a white noise
disturbance or dither signal resulting in what is termed a
"continually disturbed control" (introduced in [30}). Then the

resulting system behaviour is such that T ‘
.
(1) The degradation of the asymptotically optimal performance

of the system is given by the addition of a term equal to the
variance of the dither signél. '
" (2) The resulting control process is "pe:gistenély exciting”

in that the limit of the sample covariance of a particular re-

’ gregssion vector is positive definite w.p.l.

o

{3) It is possible to use, in parallel,a second recursive
parameter estimation algorithﬁ (called the AML algorithm ([31})
which produces strongly consistent estimates of the paramaters

appearing in the polynomials a(z),b(z),c(z).

4

The results (1), (2),(3) are, of course, subject to a set of

hypotheses which are described in detail in the main body of the

"thesis. In the author's opinion, the only restrictive hypotheses

are, first, that structural information about the system is available
in the form of knowledge of the orders of a(z),b(z),c(z) and the
delay d, second, that the c{(z) polynomial gsatisfies some form of
positive real cond}tion,’and third, the inverse stability assumption

on the deterministic part of the system. However, these hypotheses/-

-reflect the current state-of-the-art in the theoretical analysis of

adaptive control’ and parameter estimation methods. The subiect of |
/

‘adaptive control of non-minimum phase systems is.still only partially

.

‘




. of the system, and in Chapter IV we prove the important "persistency

' treated in the literature and, at present, positive real conditions

4f

are ubiquitous in the analysis of recursive stochastic algorithms

(see e.qg. [32]).

This thesis is organized as follows: , _
In Chapter II,we state in a formal way the aiﬁﬂﬂne control problem .
under consideration and then briefly recall the main results of [21].
In Chapter III we qive’a description of the "continually disturbed

control actions” method and analyse its effect on the performance

of excitation" property of this method. Chapter V contains the
unified theorem describing the joint use of the (stabilizing and
asymptotically optimizing) control laws together with the AML para-

meter estimation algorithm in the scalar unit delay case.

Chapter VI extends the previous results to the scalar general
delay-colored noise case, and Cﬁiﬁéer VII to the multivariable
unit delay-colored noise case. The extension of the algorithm of (21]
to the multivariable case is done using a technique described in [39].
It seems it is the first time tHat such a technique is employed in
deriving multivariable Qersions of stochastic adaptive control

algorithms.

We also carry out in the same manner the derivation of the

multivariable AML algorithm and give, in Appendix D, a complete

proof of its almost sure convergence.
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* THE ADAPTIVE CONTROL PROBLEM

2.1 = S&stem model

-

In this thesis we are-concerned with the adaptive control
and recursive identification of (scalar) linear time-invariant
finite dimensional systems which we represent (see e.g. [39] )

in their autoregressive moving average (ARMA) form, i.e. we

Pconsider systems of the form

v

a(z)f = éib(z)u + c(z)w,

with initial conditions given at t = 0, where 2 ig the unit backward

shift operator, and where u,w and y denote the input, disturbance

3

and output proceséés of the system.

’

In chapters II to V of this thesis, we will restrict our
analysis to the unit delay case, i.e. d = 1. Hence, the system S

under consideration will be deécribed by: .

v

(z)y = zb(z)u + c(z)w (2.1)

aring in (2.1) aré defined as follows:

1}

The polynomials ap

a(z) = 1+ a,z +Ki:A+ a z, . .
- m |

b(z) = bo-+blz + ..t+ bmz ' b0 % 0
$ £

c(z) = 1 + clz)+ -t cpz .

y
b

¢
U™
eay

We adopt the following assumptions about the structure of

£

the sy,stem S:

,«
P R

N v o
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(s1) c(z) and b(z) are asymptotically stable polynomials i.e.
all zeros lie outside of the closed unit disk. ‘

(82) le(z) - % ] is strictly positive real for some a >0, i.e.,

recalling the definition of a strict positive real function (see

e.g. [36]): x
(1) [c(z) = %-]has no poles in {z: [z ] ill};

-

(trivial here since c(z) is a polynomial)
(ii) c(ele) + c(e_ie) -a>0 ¥o € [0,27] .

Concerning these.- assumptions we make the following remarks:

/ o}

(i) If the process c(z)w is wide squse st%tionary and w is a
stationary orthogonal process then c(é) can be“taken to be stable
withéut loss of generality.

‘(iiﬁ It will be seen that it is necessary to assume that b(z) is
'asymptotically stable because we are going to consider the {asymptotic)
minimization of a cost function only invelving y, not u.

(1iii) The positive reality assumption is indeed a substantive
one but, at present, conditions of this type seem inevitable when

one .wishes to ensure the convergence of recursive schemes (see [37]).

all random variables appearing in this thesiswill be defined

upon an underlying probability space (Q,B,P).

Let n = max(n,m+l,%) and let x; denote the initial condition
é ‘
{Ygreees¥ g 7 Ugreeesu_gi Woreeoow o} for (2.1).

B et s i A ity 5 T B R
- - P -
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We take x, to be a random variable defined on (Q,B,P) and
” {w,it > 1} to be a stochastic process on (9,8,P). Let F_ denote
the o-field generated by x_ ,and,for t > 1,let F. denote that
generated by {x_,w,,w,,...,w }; then our initial hypotheses on

the disturbance process w are as follows:

(Wl) All finite dimensional distributions of Xq and the w process

are mutually absolutely contihuous with respect to Lebesgue measure.

(W2) Ew |F _,)=0 a.s. t >1
2 o W2
W3) Ew_|F, _))= ¥ a.s. . t>1
1 ¥ o2
(W4)  lim sup & ) we <= a.s.
N + t=1

These assumptions imply that w is a martingale difference

| process of constant (conditional) variance and finite power.

2.2 ~ Control objective

The control objective is as follows: design a feedback
control algorithm for S, with only n and observations on y and u
\s input data, that (i) stabilizes the system, in the sense that
ﬁ and y shall have a.s. sample mean square bounded trajectories,
ﬁnd (ii) asymptotically optimiées its behaviour, in the sense
that given a sequence y* the sample mean square error between y

and y* is minimized.

The hypothesis on the target sequence y* is
(T1) y* is a bounded, deterministic (i.e.{Q,¢} measurable)

sequence defined on t > 1.

S
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The loss function we use is % éElE(yt"y:?zlrt;l); it\
is a result Qf thé analysis in [21 Jthat the control law described
below yvields a limit as N + » for this expression which is equal
to the quantity Yz. We stress that y2 is the loss incurred by
3st55m’s minimum variance control algorithm [6] when it is applied
to a system of the form (2.1) with b(z) asymptotically ‘stable,w,u,y
wide sense stationary and the coefficients of a(z),b(z),c(2)

known (i.e., available for the design of the regulator ).

The control problem we treat is an adaptive one because

u ,t > 1, is not permitted to be an explicit function of the co- 3
efficients of a(z),b(z),c(z) and y2, but only depends on these

qupntities through the observations {yl,...,yt} and {ul,...,ut_l}.,

The specification of our feedback control algorithm is such

that it depends only upon n,m,%,d4, and the feedback control action

i
u, . t > 1, is required to be measurable only with respect to the ( \

e ‘
o-field of past observations i.e. that generated by {yo} , in 1

case t = 1, and by {yl,...,yt} together with {ul,...,ut_l}, in

Vr e e

case t > 1. Hence, reasoning inductively, we see that u, is measur- ‘
#

able with respect to the o-field generated by {yl,...,yt}, which ) =

} , for all t > 1. \

we denote F{yl.;..,yt
!

The control algorithm that was proposed and analysed in [21] 1

consisted of two parts: first, a stochastic approximation parameter

identification algorithm, and second, an algorithm computing the
control action. The parameterheO that is estimated in' the al-
gorithm is the vector of coefficients appe%ring on the right hand
side of (2.2) below. This expfession gives the éredicted deviations

%* .
of y from the sequence y computed using the true model (2.1):




A

v e 0w (e v =g . e e e -

-10-

A * A * A *
(Yep1 "Yeser) ¥ W —¥) + oo Feplye mo) = Yo g4d)

¢T(4§Y

« *

4

* %* *
. (Vpreo eV g pe1?Bg e Beamp1 P Vere o "Yeofe1) 80 = Yeun

5

where we have used (2.2) to define the vector ¢(t), where §t denotes

E:yt[Ft_l) for t > 1 and where (2.2) is initialized with x, €Fg

and hence the recursion has constant coefficients. (See the proof
of Theorem 3.1 for a detailed derivation of a generalized form of .

v

equation (2.2).)

&
&

* .The control action gi&en below is that which would give a
minimum variance control action if 6, were available for the :
design of the control algorithm. To be specific,the control

action defined by (A3) alane,with 8(t) = eo, is the minimum variance
control action; the adaptive cont;ol alg?rithm operates by

estimating 6 and substituting the estimate into (A3).

ADAPTIVE CONTROL ALGORITHM

Take {8(1),..., 8(n)} and {ul,...,uﬁ} as arbitrary

functions of the observations; then set

A ' -

' = 8 (t~ _a__ - - -1y T8 (¢-
(A1) B(t) = 8 (t=~1) + TTE=T) ¢(t-1) [y, - o(t=1)7"6(t-1)],

E)O,t?_;l"‘lr

: i , .
(A2)  r(t) = r(t-1) + ¢ (£)o(t), r(l) =...=r(@) =1, £t > a+1

| b * -
& (A3)  oT(B)B(E) = y,_ . , £ > n+l

U S - T T T s ST it v B m}!-?
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(Notice that this algorithm starts at t = n + 1 when all the
g . ‘

necessar? initial conditions are available).
\

Equation (A3) implicity defines the feedback control law

which is explicitly given by
L [8, (E)y, + ... +0=(t)y, =
1 t "7 'n Yen+1

u
C e A
6 Il(t)

+ eﬁ+2(t)ut_l-k... +ezﬁ(t)“t-ﬁ+1

* A * a *
Yeel 7 Coge1 (B)¥e---m 83p(0)ye f4q]
(2.3)

"t > n+l, a.s.

By virtue of (Wl) division by zero in (2.3) is a zero
,probability event.
The behaviour of S, subject to the hyrotheses stated earlier

and the adaptive control algorithm just described, is given by

Theorem 2.1 [21]
\
Let S satisfy the structural assumptions (S1) and (S2),

the assumptions (W1l)-(W4) concerning the disturbance process w,
Let the control actions u be generated

and let y* satisfy (Tl).
by the control algorithm described by (Al), (A2),(A3).

Then, the specification of the algorithm via (Al), (A2), (A3)
requires only the structural data on the ARMA system S given

' by the integer n and u, is F{yl,...,yt} measurable for t > 1.




~

Further, the input-output sample paths of S when

generated by (Al), (A2),(A3) satisfy:

. 1 N 2 .
lim sup & ) Y < * a.s.
N +» t=1
v -
lim sup’% ) ui < o
N4+ o t=l

N .

1 * 2
m £ ¥ Ely_ -y )SIF,_) =%
Now N 5 t e’ V-l ,
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CHAPTER III

[y

ADAPTIVE CONTROL USING CONTINUALLY . ,

DISTURBED CONTROLS

3.1 1Introduction

In general, the parameter estimation parts of the adaptive
control algorithms developed to this day do hot produce congis-
tent (i.e. convergent) system parameter estimates. This is true

for both stochastic approximation type and least squares type

‘;lgorithms. In fact, to the best of the author's knowledge, in

all the results on the convergence of the system and/or predictor
parameter estiﬁates, some form of persis;ency of excitation (see
Chapter 1IV) is assumed to be satisfied; however, nothing guarantees
that the inputs generated by adaptive control algorithms are

persistently exciting. (See e.g. [261].)

In an initial step towards the analysis of the behaviour of
the parameter estimatesin the adaptive control scheme of Chapter II,
Caines [30] studied the éffect of adding disturbances to the control

action u by injecting a "dither" signal into the. controller part

of the algorithm. 2Aas in [30], we will call such controls "continually

disturbed controls”". We will see in Chapter IV that these distur-

bances play a crucial role in the convergence of the identification

part of our schene.

In this chapter, we restate the main result of [30] and give

its (new) complete and detailed proof.More specifically, we
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érovide an analysis of the degradaéion of the performance of

the adaptive cqntrol scheme of Chapter II when the controls suffer

a diéturbance involving an exogenous noise process. We then pre- _
sent a new corollary. These results constitute foundations for

the analysis which follows in the next chapters.

3.2 - Modified adaptive control algorithm

-~

The ' so-called continually disturbed controls result from the
injection of an exogenous noise process € into equation (A 3) and ¢
(the regression vector); we shall use the notation (AD3) and ¢D in
the following to denote this disturbed case. The recursive iden-
tification part of the algorithm, (Al) and (A2), remains unchanged

except that we employ ¢D instead of ¢ . :

i
4oV ok n e - e T etk g Nermon w w s  gene m on

[22
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* ADAPTIVE CONTROL ALGORITHM WITH CONTINUALLY DISTURBED CONTROLS

Take {g(l),.... o(n)} and {ul,...,uﬁ } as arbitrafy

£
N
-«

% functions of the observations {yl,...,yﬁ}: then, for t > n+l,
¢ .
¢ set, .
& - M OQ /
£ - A A a D D T A .=
: (a1) - 8(t) = 8(t-1) + Fpy o (=D ly, - ¢T(e=D7 e(t-1)), a0
i‘ (a2)  r(t) = r(t-1) + ¢2()T P(t), TQ) =...=r(@ =1
! "D D,..T A ot
L(AT3) ¢ (t)” e(t) = Yisp * €
& ‘ AN
g
¢ / where
‘%‘ A 4
H 0P (L) A (Ys oYy maqslyrons, Uy =
’ 2 Werere¥eone1 Bt o Ueanel’
* *®
Ty e em e gy Y e gT, e >R (3.1)
and where the process ¢ will be defined below. o ]
Thus, u is explicitely given by \ e
, ‘ N N R ) ) <') ¥
=% - - 1 ~ A- - ~- ) :
T % T [0 (B)yy +oee +OR (L)Y _mun + Ogup(Bduy g +.-.

‘ . n. . T .
*o O (RU Ry T ey * &)
;: . ,oon * &
1 , R " - . ] ‘

fn v g% . P . 1 :
- - i - s P T - i R oy "?»)n;"
x



@ € is8 an exogempus noise process defined upon the underlying pro-
) bability space (Q,38, p). Denoting by G, the o-field generated
h ' by {x ,wl,.ffhwt,sl,..., et}, the following assumptions will be

.made concerning w and e:

’ (WP1) All finite dimensional distributions of x_ aftd the w
and £ processes are mutually absolutel, continuous with respect

to-Lebesgue measure.

(WP2) Ew |G, _;) = O a.s. t>1 :
2 : 1
(WP4)  lim sup ; Z w < » a.s. (as before) - -
‘N + o t=] .
(E1) Be |G, _;) = 0 a.s. t>1
- 2 .
(E2) Ee, [G,_;)' = Wl a.s. t>1
: n ) .
é (B3) - EBe 6 ) <K< a.s. t>1.
; We point out immediately that the last three assumbtions
¢
3 (E1), (E2), (E3) imply, by Lemma A.2.in Appendix A, the following
é ergodic type result for ¢ : R S I
N : '
1 2 2 ’
3 1il!l by Z € =°u a.s. ‘(3.3)‘ °
s N+ao Neap ¢ :
‘ (the raison d'étre of assumption (E3) LS'aolely to ensure the
validity of equation (3.3).) : .C o

; We now present a generalization of Theorem 2.1 in the case
: . of continually disturbeq controla. (In fact, the proof of the
_ cfollowinq Theorem also applies for Theorem 2.1 when the process ¢

is identically zgfo.)

~ .

[N S0 ey ,‘3.3.(.% o :a.w v 3
: T}""ﬁ g Tl
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’ @ Theorem , 3.1.

Let s satisfs: the structural assumpt(ions (s1) and (s2),
the assumptions (WDJ.) - (‘.?Dil) concerning the disturbance pr;-ocess
w and let y* satisfy (Tl). Let the control actions u be generated
by the control algorithm described by (Al), (A2) ,(ADB) with the

exogenous noise process ¢ satisfying (El) - (E3).

® Then,the input—outpu% sample paths of S satisfy:
1 N N M'J' 2 N '
f lim sup & )) yt < o' a.s. (3.4)
N +» t=]
—
. g ) o
1 2
limsup § } uf < = a.s, (3.5)
N+ t=] B - .
L 2 2 ;
Nie t?_ Yy -Ye) l g-1' T Y :
° - D
( Remark 3.1: Notation ¢ . :

. m(z)
We shall use the usual mixed notation "t = anlz) Et to
denote the generation of the output Process N from the input
process £ via the ARMA scheme n n, +...+mnn, = mfl +...+mE .,
t >0, (n and m being respectively the degrees of n(z) and m(z))

s

together with initial conditions at t = 0.

Pxroof of Theorem 3.1. . ’ .

Part 1. We begin by motivating the choice of the regression vector

and establish an important raelation using the filter equation.

-




’ T =18~

@ The system equation (2.1) can be written in its prediction

: form:,

-

C(2)AYpy1Weyy) = (c(2) -a(z))y, +b(2)u, £ > 1,

with initial condition x - (Since d = 1 this is just a transpogi~"

tion of (2.1)). Subtracting c(z) (Y:-i-l +et) from each side, we
obtain )

. . * '
. c(z) [Yt+l -Yt+l -wt'l-l - Et] = (cl = al)yt te.o ¥ (Cﬁ °aﬁ)yt-5+l

+ bout+ .o +b!-l-l ut'-ﬁ*'l
el @"
* * .
g B RS Unh il L AR Ry
~ . — * -
- D, T R ,
3 . | . E ¢ (t) "8, - (yt,,,1 + e,) | (3.7)

where the veqéors o2 (t) and @, are defined as follows:

- 4
D X * * T
OTLEY = (Yoo o¥p Ra1Uerd s Vpangrr T et epg) oo =W npg *eelg))
' ' (3.8)
. y eo = (cl- all'..’cﬁ "aﬁ, bopon-"b;i-l, cl,‘..,CE)T . (3.9)
N 3
Denoting the control error yﬁf’— y: as e, and defining:
z, de = W~ €y | (3.10)
7 - we have from (3.7): o
ﬁ . q ’ D,.T * \ ‘ .
i _ cl(z)z, = ()70, = (Yy4q * st). t>1. (3.11)
- v ‘
¢ “

-

. -
¢ 1

f oy

L, 7
¢

wmgn pel Y - a Sy
PO ey IR - BT O o g IO ) LR . Y
pens 4 . § i At I ook ongh tc%;ﬁh%gm‘r‘ Chathds 5 i s * e
v . ey - fpre pe B LT D R I B N
N . 2 AR 2 .7 R
'

.o
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But, from (AD3)r Y:+1 + e = ¢D(t)T§(t); hence, defining .

o(t) 4 oce) - 6, we obtain the following crucial relation:

~

clryz, = - 00Tl exdE+1, (3.12)

it i e e aie i o - T RO
.

Since x, € G, for t > 0, w. ) =¥y, ~ Ey,,,16.) for

AT M T

i *
t > 0; therefore, Z, = =Ygl +Eyt+1|6t) - €, and hence z_ is 6,

measurable, which we write as z, & Gt' It follows that Eztht) =Z,.

¥

a

Part 2. In this section, we establish an important property

TS T AR TR, S

of the algorithm. In the analysis to follow we take t > n+1,

and note that all the required initial conditions have been

e

R

specified.

Substituting (AP3) in (Al), we have:

IR St SRR
.

~ ~ a D , .
o(t) = 0(t-1) + TE=D ¢ (t~1) [et - Et_l] . (3.13)
Let V(t) A 8(t)T8(t) then

.

VE) = V(e-1) + Har a(t-1)TeP(e-1) (e -w, ~e, 1"

2a ~ T.D

+ =2 Pe-1)T g (1) (e me,_ mwy)?
r(t-1)
y )
Y+ 2wle mwme ) W (3010
0 \g & 3
Vi atapremare PR
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‘Q

Taking conditional expectations and wr?fting b(t-1) A-é(t-l)TttD(t-l) ¢
-2

o e - 28 .. a D, \TD,_ 2
EV(t) |6, ,) V&l)-Hgﬂbwlﬂbij:E:F¢(tD¢(tD§?l
|
| “ a2 . D, ..T.D 2 -
¥ = ¢ (£=1)"¢" (t-l)y . (3.15)
r{t-1) o o
. 5 5 \ P .
from (W 2), (W 3) and Z,1 € Gt-l . q
So, noting that ] -
: Lee-nTP -y
r(t-l@ - .

we have

-~

1y - _2a _ _ (a4
BV(E) [6,_;) g V(e-1) - P2y b(e-1) - 1870l 2 3z

. 2 Co
zZ,_; =2
- t=l a - D T D 2
- pa -5, + ¢ (£=1)"¢ (t-1)y~ a.s. (3.16)
r{t-1) r(t—l)2

where p is a small positive constant chosen so that

[c(z) - EL%rP]

is positive real. The existence of such a p is assured by the strict -

——

positive real condition (S2).

Now let . :
h(t-1) a b(e-1) - {258, (3.17) . -

Recalling egquation (3.12) and the definition of b(t-l), we have

h(t=1) = [c(z) = 2521z . (3.18)

\
-~
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1

Equation (3.16) can now be written as

az?
paz, 1

2a

a2 ) .
v =2 P e-nTPe-n ¥2 ais. (3.19)
r(t-1)
Let us define
- t . i
s(¢) =2a ] h(3-l)zy , +K, 0 <K<w ,
j=n+1 ]
N t>n+1 (3.20)

where K is a positive quantity depending upon X, that ensures
S(t) > 0 for all £ > n+1. The existence of K follows from the

positive real condition (S52) (see for instance the proof of the

Positive Real Lemma given in Lemma A.4 of Appendix A).

Now define the non-negative random variable
S(t) ‘ =
Z(t) = V(t) + m t 3n+l (3.21)
So .
- S (t)
B2(£) |6, ;) = EV(0)[6,_)) + 1Ty
S(t-1) pazi-l
S A U = & S 5 §)
al D T.D 2
+ 5— ¢ (t=1) "¢ (t-1) ¥ a.s.,
r{t-1) ) .

where we have used (3.19) and (3.20).

o
. - . )
R i : g - ]
T . N ;

. . .
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‘E‘ Next, since r(t-2) < r(t-l), we obtain the important "near-
super-martingale” inequality
paz2 ‘ -2
EZ(6) [G,_p) <V(E-1) i:::%; r(tji) v =2 P e-1)T P (e-1) ¥
r(t~1)
pazi—l a2 o, . .TD 2 |
< Z2(t-1) - ETE=1) + r(t—1)2 ¢ (t=-1)"¢ (t-1) ¥° a.s.
(3.22)

Since {r(t); t > 1} is a non-decreasing sequence and

o2 () ToP (&) + r(t-1) = r(p)

it follows that

o2 (3-1) ToP (5-1)

<1l/r(l) =1

j=n+1

r(j-1)

Applying an extended form of the convergence theorem for positive

super-martingales (see e.g. [21,31]) to (3.22) we obtain

Z(t) » Z(») a.s. with E{Z(®)} < » ,

and - 2
paz,

1 r(t)

He- 8

t

Now since pE # 0 we conclude

(3.23)

Our objective is now to establish the important relation

1 Y2
lim & ] 2y =0 a.s. (3.24)
t=1

N + o

We shall consider two cases depending upon the behaviour of r(t)

as t » » and will divide the sample space accordingly. (In [21]

-

only the second case was considered).

N ’

3
““ kAR R B
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i) Let H = {w € Q: 1lim r(t)? o }; in that case, from the

t+ o
definition of r(t) in (A2), we have lim ¢ (t) ¢D(t) = 0 which
t+ «
implies that lim ¢ (t) = 0. We also know, from'the defini-

t* w
‘tion of Z(t) in (3.21) and the fact that 2Z(w«) is finite, that

Ay

é%ﬁjﬁup V(t) < » a.s. and so 1lim sup Eé(t)ﬂ < © a.s.

t > o
Hence, recalling equation (3.12) and the stability condition

[

(S1) on c(z), we conclude lim z, = 0 for almost all w € H;
t*+ =
consequently N
lim = ¥ z2 = 0 for almost all w € H (3.25)
N> o =1 ©

as required.

(ii) Let H' A @ /H; in that case, we can apply Kronecker's

lemma to (3.23) because r(t) - « ags t + = (see e.g. [42]))

This yields ) ’ ' !

lim zz = 0 for almost all w € H'  (3.26) g
N o £ t=1

1 i

We show in part 3 of this proof that 1lim inf —T— > ¥ >0

N <+ o -
a.s. on 2 . Then, from (3.26) we have that |
1 ¥ 2 ]
lim < ] zi =0 for almost all w € H', (3.27)

N + t=1 . i

In conclusion ,(3.24) has been shown to hold a.s. on H and H'

and hence holds a.s. on Q as required.

% >0 a.s on Q which was

needed to establish (3.24) above. At the same time we prove the

N
Part 3. We now prove l%?+inf TTH) >

stability property.(3.4) - (3.5) of the algorithm.

ot e i v - . v N s piisonie g+ 3
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25

L ? y2 . <3 ? z2 + M', a.s. for all N > N, ()
— — . . r
T e BT 3 =51
‘for some random Nl(m). Hence,
1 ’2’ Z 4 E‘
= Yo, <= ) z_  + M., a.s. for all N > 1, {(3.31),
N 4, "t =§  5;% 7 73

-4~
First, using assumptions (51) and (WD4), it may be shown

that (see e.g. Lemma A.5 of [21] ) there exists Kl,Kz(m) botgv
&

positive and a.s. finite such that

L I§u2<5.1. bz]yz + K ¥N >n+1 (3.28)

n <«

Using the definitions of r(N) and ¢D(t) together with
assumption (Tl) and equation (3.3) it follows that for K3,K4(m)

positive

(3.29)

N 2 )
_Z Yieep + Kyo ¥N >n+1 .
n

w & H, r(N) <K for all N and for

r (N)
N

We remark that for

+ 0 and so 1lim inf ﬁ’-ﬁ) >0 .

N »+ o«

some K(w) < = ., This implies

w

Turning to H' we proceed as follows:

c s ' * .
by definition, Zo_y S Y TYg T W — € i hence, by (Tl)

1

4

2 4 2
Y < RF
1 t+l N £=1 t

2]

N
2
Elet

-2

N

)

t=

(WD4) and (3.3), the quantity

1 ¥ 2

M. A M,+2 (4 1im sup . = w, (w) + 4u7)
3 =72 N o N tzl t

From

is positive

and a.s. finite and is such that

v r b o e ws e LI e
.
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where M, denotes the supremum of MQ3 and the values taken by
the last two terms in (3.30) over the interval (1,N;(w)). Hence,

using (3.29) and (3.31) we have -
c N ,

r (N) < 1% ) zi + C,, a.s. N >1. (3.32)
- t=1

where Cl,Cz(m) are both positive *real and a.s. finite.
/
Following Solo's suggestion (private correspondence) we rewrite

(3.32) to obtain, see .also [22],

N .
2 N \

So, from (3.26) for any & >0

1< ( &) +C, sy for N> NJ(w a.s.on 8 . (3.33)

! 1 L
‘Hence, for 1 > 6§ >0,

t

lim inf 7N) > (é-S) >0, a.s. on H',
N +m T 2
and since the same was true on H, Lo . '
. . N
lim inf -r—my > 0, a.s. oh 0 ’ (3.34)

N =+ \

as required in Part 2.

P

'To establish the stability relations (3.4) and (3.5), we

remark that (3:34) implies that

lim sup HE < a.s. (3.35)

N-+®
and so from the definition of r(N),




(]

~26- .
&
. %
N
: . 1 2
limsup = ] vy, .< = a.s.
N + o N t=1 t
and 1 N 2 . ’
limsup 5 ] ug <= a.s.
N+ t=1 5y

as required.
L]

. N
Part 4. Consider the property (3.24) 1lim %- ) z: = 0 now

N-+oo " t=]
established almost surely on @ . By the definition of Y

. * -
€ =Yy ~Y, = Z,_; +tw, +e,_, hence

2 2 2. 2 '
Ee IGt_l) =Elz _ +wWy+te (t22 W+ 22, e +2W 6 4] IGt-l)

_ 2 2, 2
= Pl Y e t22 38 (3.36)

by (WP2) and (WP3).

LN . 1 » |t o as
But | tzl Ze16e-1] S| F L €gy| *O0u=0 as.

(3.37)
as N +~ » by (3.24) and (3.3 ).

Therefore forming the Cesaro sums of (3.36) and invoRing (3.24),

(3.3) and (3.37) we obtain the desired result:

b *) 2 2

2|Gt-l) = vy~ +q a.s. 0

Z+

N .
lim ¥ E(y,
N+ o t=1

Notice that the degradation of the asymptotically optimal
performance of the system is given exactly by the addition of the

variance of the "dither" signal.

e e ek
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HCorollary 3.1.

If in the statement of Theorem 3.1 assumption (W'D4) is replaced

v

by the following condition on the fourth moments of w:

.‘

=

Ew4|G

. ) < P < o a.s. t>1 , (3.38)

t-1

then the loss function can be reduced to the more simple form:

N =
lim 3 ) (v, -~y 2 =y v ays. (3.39)
N+o" =] :
N . i D
~ Proof of Corollary 3.1.: ’ ‘
N N *
" lim % ) (yt-'y;)2 = lim % ¥ ei
N+e" t=] . . N+ v
. =1 ’ .
N
=z .1 2
= lim 3 ) (z,_ +w_+ €__q)
Ne ol BTl T Ceel
N N N
1 1 2 1l 2
= limg Jz, . +limg Jwi+limz | e
NooN pag 81 gl N 2°E Ntx-l t-1
1 ‘f 1 ‘g 1 ‘Z‘
+ 21lim = z w, +2 1lim = z € +2 lim = w, &
ool g2y E-1Ye O QIO N (1) Fe-1%em1 T O T N (L Vel
2 . 2 1 ’f ‘
= v+ p° + 21lim = W E, _ (3.40)
N>w N gy €1 .

where the last line is obtained by a combination of (3.24),(3.38)

(3.3), Lemma A.2 and the Cauchy-Schwarz inequality. Now Wy

is a centered sequence i.e. a martingale difference process which

is G_ adapted, since w e, _, € 6 and Ew e, /6, _;) =0 a.s.

N t t
Let a v X e?
KN"t:===1;:7t.

P
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T TIORMLINGIE TREARR TATTARITRT ST e e e
'

0

1 2
EX |G, ) =E ] e 16, ;)
Xy!10§-1 oly o2 St!%1 |
2
1 2
-E({ ep + )[G ) :
t_lT '2' N-1 >
° 2
= Xy-1 o
T 1L .2
Since 2 Sy U <@ a.s., we can apply the maitingale
1 N
convergenge theorem which shows that + X, Z < o a.s.
kg X t,l'*z
ags N » o
4
Now, we have '
T 1 2 2 s 2 ‘
¥ Euwes .|6._,) = J € < w a.s.
t,;i:! £t e-1'"t-1 el1 fi t-1 N

by the above result. .

Hence, applying Lemma A.l in Appendix A to the centered sequence

WeEp_ 1 We obtain the following result:
1 tg
lim = W, € = (- a.s.
N+wN pmp t E-1

' Therefore, (3.40) reduces to the required result:

il A SR

N -/
1 *2 2. 2 -
NawN i Yt Y
Remark 3.2. ‘ '

‘A similar extension can be done for Theorem 2.1, i.e. assuming

instead of (W4) that Ewi [Ft_ ) < P < =, then the loss function

can be simplified-to 1lim % (Ye yt)2 = Y? a.s.

N+ = t=1
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<}. ' . CHAPTER IV

PROPERTIES OF CONTINUALLY DISTURBED CONTROLS

4.1 - Introduction

wvié‘mgptioﬁéd in the last chapter that the addition of a
disturbance prgcess € to the control action plays a crucial role
in the identffiditionapart of our schenme. As we will prove in.
this chaoter,such is the case because the presence of this '
disturbance proééés ensures that the so-called "persistency of

excitation" condition is satisfied.

Cr 1 This condition is a common one in the study oé the
convergence of identification methods (see e.g. ([31]-[341]):
together with other hypotheses on a éygtgﬁ, it is known to ensure
the convergence of prediction error and maximum likelihood estimates
of the system parameters (see e.g.[39}). It is generally specifi:d
in terms of the limit of the Cesaro sum of outer products of some

1

regression vector, i.e. /

Nor o o 1
lim ] ¢7(£)¢ (t) ", where ¢~ (t) usually consists of
N-+» tw]l

2=

. \\\ .

past inpuf,output and disturbance values; this limit is required

to be positive definite for the persistent excitation property

»
3

to hold.

Pty

TR AT TR s’ pped L AR E IR "
T v . . Ld '
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B4

G‘ 4.2- The persistent excitation property of continually

+

disturbed controls

In ,this “sectio\ig, we present new results concerning the
: \
adaptive control alg‘grithm in the case of continually disturbed
controls, Our objecfzive is to prove that such controls yield

P

the persistent excitation property

%

N i
dm g ] eTwelwT =8> 0 a.s., (4.1) "
NrwDN =1

where ¢I(t) is a regression vector that will be specified later.

Once we have established that (4.l1) holds we are in a position
to show that the system parameter Ss' denoting the coefficients
of the polynomials a(2), b(z), c(z) defining the system ‘S.in L

(2.1), can be consistently estimated.

In order to prove the required result, it is necessary to )

introduce new assumptions concerning:

@

- (1) the ergodicity of the noise sequencesw and e; -
*
(ii) - the cross Cesaro summability of the demand sequence y ;

(iid) " the identifiability condition on the system, which is

©

the coprimeness of a(z) and b(z):

2 (iv) . the positive real condition for the AML recursion used

,

inthapter V, which is the strict positive reality

1 1
of I ~.3"

Therefore, for convenience, we restate all the hypotheses

o

made on the system S and the exogenous noise process ¢ in a more
compact form, taking into account the implications of the new

assumption (i) above. . 4

-, .
¥
i

. £ " 1» % 29
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LIST OF HYPOTHESES: .
(I) b(z) is an asymptotically stable polynomial i.e. all

Q zeros lie outside of the closed unit disk; )
(II) [: ] is an ergodic process; ]
, W ‘ . ) )

L . (1) E{c1.16,4) =0 ass. t3>1; -
; ‘ 2 . .
: ’ w ; Y, Y .
E (Iv) E[_ ], [WSItIGt_1)= [ ] uz] a.s. r\t,ﬁl ;
! Ve

(V) All finite dimensional distributions of X, and the [ Z]

AT

process are mutuaq.ly absolutely continuous with respect
to Lebesgue measure;

(V1) y* is a bounded, deterministic (i.e.{¥,¢} measurable) sequence

T defined on t > 1; o .
(VII) For all pairs of integers k,% the'limit
) . N . !
f -7 lim L Z y* kY* ) exists almost surely and depends upon ~
’ N-+ QN t=] t-k7t- i ‘
- - the difference k-{ ;

"

(VIII) a(z) and b(z) have no common factors;
. o . - _ :
- (IX) c(z) -~ a/2 is strictly positive real for some a > (0, and

£ 2 B R Ay M BT TENATTRITRTEAEAT T T AT AT AT R e T
.

c(z) is an .asjrmptotically stable polynomial;
- (X) E%'z') - %‘- is strictly positive real. N 0
(We wilt see later that (X) implies ‘(I{) .)

By ergodicity of the noise sequences, we have:

’é <| H
% 1 ¥ 2 2 2 2
; limz ] wl = Ewl = E(EwS| 6 ) = v a.s. (4.2)
E N+oN ¢ € 1 | 1' "o O
3 and N - )
1 2 2 2 2 »

3 linm = €, = BeTs= E(Ec G) = yu a.s. (4.3)

N+oN t-z-l t i 4 1| o

To specify ¢I, we rewrite the system equation (2.1) in

the form: ¢




1 ! I . T° . ’ ¢
. Yo = ¢ (t-1) Ps +w (4.4)
where
o ~ T )
98 é_ (al,...,an, bofo--'bm, cl’o-o'cz) (4.5)

is the vector of system parameters and
\

\ \
T

b
¢ (t) _A_ (‘yt,...,-yt_n+1,ut,..-,ut_m,wt,...,Wt_2+l) (4:6)

-

is the " identification" regression véctor appearing in the
persistent excitation condition for the convergence of thg AﬁL
recursion (see [31]).

Itﬁmust be borne in mind that the positive definite pro-
perty of 1lim 1 g ¢I(t)¢I(t)T that we establish in an %npnt—

N+w N ta)
output property of t)e ystem S while it is subject to adaptive

control via algori (Al),(AZ),(AD3).

We shall adopt the notation

©

ML M2 M3
N T
REauml | oT(el(T= [ M2 M4 M5 (4.7)

where the sub-matrices Ml to M6 respectively have dimensions

nxn, nx (mtl), n x & ,(m+l) x (m+l), (m+l) x & and & x & -

»

w

corresponding to the three parts of ¢I.
Also, it follows from hypothesis (VI) and (VII) and'nerquqe\

'theorem that

N 2T
=1 * * 1 - ~1(2~k)0 . *, 18
lim = Y B e [~ e drR (e™") a.s. (4.8)
Mo N tE]_Yt—k -2 2w )

0

wi T FA T oy ' Lo ol e P P
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(}: ‘ for all k,% and for some positive (Hermitian in multivariable
, . :
case) non-decreasing function R on:[0,27].

It will be convenient to adopt the notation:

L1 N e w

%
(R;), . A lim Y Yeo:iYe (4.9)
(R'), . A lim & %‘ *oadz) Lt ] ‘ (4.10)
BRI AN L Yemi IB(2) (Teraey .
(Re). . A lim & %’ 2zl oro g atz) Yo (4.11)
34,5 200N 4 B(2) Yeel-il ' oB(z) Yerl-) y
when the indicated limits exist. )j"

We now state a general result which, under the stated hypotheses,
establishes the existence of all the limits appearing in (4.7) and

provides analytical formulae for these limits.
Lemma 4.1 ,

P Let [:] be a stochastic process satisfying (II),(III),

*
(IV), let y be a deterministic process satisfying (VI),(VII),

and let z be such that 1lim L g z:'= 0 a.s. Further, let.

N+oN =]
al(z),...,a4(z); dl(z),...,d4(z) be asymptotically stable moniec

polynomials and let bl(z),...,94(z),c1(z),...,c4(z) be arbitrary

(s
polynomials. Then \.

' w [ by(2 by(z)  bylz) , b,(z) \T
| i @ YA s, @ Y a2
Nlimm 3 tzl a, (z a, r ag 4 £

. ¢, (2) c,(z) cy(z) » c,l(2)
I 2 B Y ) - £ - P € i
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a

O

2 (2m bl(ele)cl(e-ie) 2 2T bz(eie)cz(e"ﬁ) i
( m a; (™), (e ) o5 ajle)d (e™)
27 e (eie) dR*(eie)c (e-ie) ’ -
%ﬂ f 2 16 ~10 2 ' 0 1 (4.12)
° a3(e )d3(e )

-34-

Proof of Lemma 4.1l: Given in Appendix B.

,’
Let us define the sequencesof coefficients o and R as the

impﬁlse responses of the transfer functions %%;} and %%%% '
afz) . v j clz) . v 3 . .
i.e. oY ) ayz° and gy 1 B2 as identities in z.

j=o j=o
We now have

Lemma 4.2.
R »

o

Subject to the hypotheses (I) to (IX), the sequence
{¢T(t), t > 1} defined viq (4.6) with u given be(Al).(AZ),(AD3),

with undefined terms in ¢I(l),..., ¢T(ﬁ-l) arbi%rarily assigned,

O <

satisfies
I LR TR R D DR R ‘
R A lim £ [ ¢ ()¢ (t)" = Ry + Ry + R, a.s. (4.13) 3

= Now N 1 3 4

( o= ;

J 1
where 'the matrices Ri,Rg and Ri have simple structures and are %
explicitely given in the proof (equations (4.21),(4.34) and (4.35)). 1

.

Proof of Lemma 4.2.

The proof technique is to decompose the regression vector - .
¢I(t) defined in (4.6) into its various components. The analysis

is then straightforward since we can employ Lemma 4.1. N

@ \

N
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First, from the definition of the process z in (3.10),

we can write

* ) * .
Yo TY¥p T8 TVt By TV T e, - (4.14)

Also, the inverse stability of the system permits us to

write
a. = 2(2) - cfz) o '
. t bhsyu& b(z) "t+1 \
- a(z) * a(z) - c(2)
= blz) esd * Ze ¥ cel ¥ Blm) e+l - (4419

-

I T
Therefore' ¢ (t) _A_ [-yt,:.-’-yt'—n"'l’ut'.‘. ,Ut_m,wt,. .. 'wt-f,""l] §
can be expressed as the sum of four vectors (of the same dimension
(n+m+1+2) x 1) which will be denoted by ¢7(t),..., 5(t):
I 1 I I I _
() = ¢l(t) + ¢2(t) + ¢3(t) + ¢4(t) =

- . 1T T T
Yy ] T%g-1 Wy AN |
:* ‘. . . N (n)
Yeon+l TZ¢on Ye-n+l “€¢t-n
a(z) _* ( a(z) a(z)=-c(z) a(z)

b(z) Ye+l B(z) %t — blz) “t+l blz)ct

. . + : + . r :
aéz) Y* a(i) z a(z)-cik)w a(z) . (m+1)
b(z t-m+l b(z) “t-m b(z) .  t-m+l b(z) “t-m
0 0 w 0
: : € . (2)
0 0 w 0
t=L+1 ‘
] e — el ] ) b —
(4.16)

[
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It can be easily seen by a direct applicationrof Lemma 4.1
that R' consists only of the sum of the limits of three (Cesaro

sums) of outer products, namely

RT A Lim ¢ z pT ey ete)T

\‘« N+ « t=1

) L 1] Idwelo?

= lim = «b (t)cb (t) +1im = ¢ (t)4> (t) +1im = (t) ¢, (t)

1 N+wN ¢ 1 1 N+°°N 3 3 N mN tal 4
' a.s. (4.17)
We now define the following matrices

*
*
R2={(R)l,] 0_<__1_<_n-1,05_j_<_m}nx(m+l) (4.19)
* . . N
R, = {(R3)1’3 0<ic<m 023 <m 1) x (ml) (4.20)

where the (R;)i j's were defined in (4.9),(4.10) and (4.11).
r ’ N

The expression of the first limit in (4.17) is then given by

R -R, 0
T4 1im 2 Z¢ () ol(e) T '
R —
1 =Nt el 2171 1 -R, R4 0 (4.21)
0 0 0 -

Turning our attention to the last two limits in (4.17),

we obtain by Lemma 4.1 that

N 2 2T,
1 i(r-k)e
limz Jw,_ w _, =1 [ . e de
NowN goy E-F t-k 27
o
0 if r#k
= 2 a.s. (4.22)

Y if r =k .




i
£

o

-37=

A similar result is true for e :
gﬂ

1im = & [ el (rk)B4q
N+ = T

?
€ €
£=1 t-r " t-%k

-

- a.s. (4.23)
u if

N

The case when the polynomials are not unity but %%%% or

a(z)-c(z)
Z

ILemma 4.1, we have that:

is treated as follows . First, from

1 ? alz) a(z)
lim = [ e,._ 11 €, 1 =
N oN £=1 b(z) “t-r''‘b(z) "t~k
2T . .
ie . -16)
L ale ) y2eilr=k) ale 49 as.  (4.24)
b(e™") b(e ™)
. is . . . . a(z)
Since e lies within the radius of convergence of 5(z)

(recall that b(z) is asymptotically stable) the power series
ie o

expansion 2121§l = Z amelm6 is valid, and so the right-
b(e™") m=o
hand side of (4.24) becomes
2 2r - '
%F ) amelme)( } a,et® yel (F-K)8 49
m=0 j=o J
o)
27 .
:suz @ 2 . . ei(m—jﬂ:-k)ftde
=1 mj ;
m=0 J= 0
s N

i e n e e o e o~
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2 2 '

u I oo, u Z & _rai when r-k < 0

-k >
T N A when r-k > 0

the exchange of the integration and the double summation being

justified by the fact that the integrand is a bounded function

of 6 ¢ [0,2m] . Combining the two expressions above we get

-]

1 Y oa(z) a(z) 2
lim = = .S. 4.25
N N t.z-l[b(z) R I T pzo %pp+fr-k| 2-S- | )
)%early, using the same line of argument, we have that i
.1 a(z)-c(z) a(z)-¢c(z)
;i?mﬁ X [ 5(z) “et+l-rll 51z Yt+l-k | ,
2 v ‘
- ' - .S, 4.26
YL T %) Cpr k] T Porfrky) 20 (4.26)
® ij0 _ c(el®)
where {Bj; j > 0} was defined by '£ Bj e = i .
j=o b(e™")
Proceeding in the same manner, -
N ~
1 - -—-—zaf{z)
lim - ) 0
N+ ol e23 €t-1-r 'b(z) t- k! \
I 1(r+1 -k} 8 a(e ) ae
27 w1 0
5 b(e™ ")
- 2 (2w o e i
- %F [  oll(x+l-k)e ) s ciibgg
o) J=o
2 27 .
- %Tr' Z I a ol (r+1l-k=3)8 44
j=o o

e i OO RIS | Kk ety o <

s - —_— . - ——
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] ( ' 2
‘ - ‘ O when r+l-k > 0

. a.s. (4.27)
0 otherwise

and similarly,
a(z)-c(2)

N
L1
bl‘immﬁ tzlwt—r[ b(z)  “t+l-k!

when r+l-k > 0
a.s. (4.28)

2
Yl k41 ™ Broksl)

0 otherwise

We now have found general expressions for all the elements
appearing in the last two limits of equation (4.17). We define
the matrices F,D,E,B and B whose elements correspond to the

right hand side of expressions (4.25) to (4.28) respectively:

=]

0 when i < 0.

"

where it is assumed that ay E Bi

{
| FA{( ) aa xt)pr 0<r<m0 <k <m (4.29)
} peo P PHx-k|'r/k - - T T (m+l) x (m+l)
%
j o
DA {(pgo(ap-sp)<°‘p+|r*kl-8p+|r—k|)r,k’0irim'of—kim}(nﬂ-l)x(m-bl) o
| (4.30) *
%
s ~ L EA {la__ ,.q) + 0 <r<n-1,0 <k < m} . (4.31) :
% B A {(a__ “Borat) /0 <r<n-1,0 <k <m} . (4.32)
; - r-k+1 r-k+1l'r,k = n x (m+l)
J
J B A {(a -8 ), 10 <xr < 2~1,0 <k < m} (4.33)
-— — - - — —— ’ — — 3 . bl
% r-k+1 r-k+l'r,k g x(m+1) |
;
1
?

o
4




- .- v - - Ao § e A AR R 8 rsae vmw o PPN .

] : i
Therefore, it follows that“we can write
N y I -B -1
Ry & Lim & ] ¢30)el()T = 2 n 2\ s
N+ =1 -B D B
N T
in,, B )
and
I -E 0
N n
Rp A limd §oegwegeT = [ (4.35)
N+ = t=1 -BE F 0 *
0 "0 0
where
Im,lé {Diag 1}nx 2 (1's starting from the top left).

Inconclusion, we have proved the required result,

I_ I I I
R™ = R + R3 + R}

regression vector given in (4.16). [a]

a.s., by applying Lemma 4.1 to the decompoged

(Notice that Lemma 4.2 is subjeét to all the hypotheses (i.e.

N . ,
(I) to (IX)) because we need %- ) zi + 0 a.s.; a result which }
t=1

PR R

is a consequence of the adaptive control algorithm.)

: 3

o

B . e T RN,
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Remark 4.l.

If we do not use continually disturbed controls, i.e. we
use (A3) instead of (ADB), the matrix Ri in (4.13) vanishes, for

this is equivalent to setting w2 = 0.

The main result of this section is obtained by analysing the

matrices appearing in (4.13).
/

Theorem 4.1.

Let the system S defined in (2.1), the noise process w,
. * ’
the exogenous noise process & and the demand sequence y satisfy
hypotheses (I) to (IX). Consider control actions u generated by

the control algorithm described by (Al), (A2), (ADB). Then with

N i
‘¢I'defined in (4.6) lim % 2 ¢I(t)¢I(t)T = RI >0 a.s.
. N+ o ta}
with Y > 0 ja.s. if w2 > 0. . o

(Recall that the regression vector used in the adaptive

control algorithm is still‘$D#'¢I. In fact, we can prove that,

N
T s
we also have that lim % ) 0P ()P (£) Texists and is positive
N—+owo™ f=]

definite a.s.) v

\
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Proof of Theorem 4.1.

As may be seen from the proof of Lemma 4.2, the three

matricg§~R{,_g§ and Ri in (4.13) correspond to the limits of

Cesaro sums of outer products of filtered versions of yv*, & and ¢

respectively *;.e. ¢i,¢§ and ¢§ in (4.16)). Therefore, each one

is positive seni-definite because, for any N, and any sequence

*,; t >1} inR

t
N N ' N _
T 1 T \L T T 1 T 2
Vol oxx, h == Y ATxx A=z (Ax)° >0, ¥ € RV,
N £=1 tt N\t"l t't N t"Z’l t 1

The séme igs true for the upper left corner blocks of Rg and Ri

which we denote M, and Mp: . . $2

~

I

analyse the particular structure of Mo and/R3 .)

integratio (agtinst powers of eie) and the infinite summatic.)n
(valid by Fubini‘i} theorem), and use the orthogonality of {ele}
against Lebesgue measure; in fact, this is merely quuivalent to
reb?rn/ing to the integrai expressions in equalitids (4.23),(4:24)

and (4.27)).

e ettt e ey air ot R
' ©
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Q - 27 -
. Mg = %—,—,- j Belf) :ils'e(e)s:(e»'“’)T =
A ,
3
-1
_eif \
i(n-1)8 ) :
1 (7] geifyeit w2ae [-1,...,-e"itn-100 \
T f ’ . -i0) 40 ©  -imd ~iB, ie]
° eie s(eie)e ig g(e et ... ,e
:.mes(exe) ie
. where Exéie) is defined ;mplicit abov; and s(eie) A‘Eigéil
o ' ‘ Y “ ble 9) '
? A a, -
Suppose that (/W\ :
AT Mg A = 0 for some non-zero A of appropriate

dimension. From the spectral representation, this is equivalent to

2 27
= f AT Etel®) pe 1T rde =0 or

o]

4

wy

21" .
f INT Eel®)]%d0 =0  for some A # o0 .
Q

c1§arly. this will be true if and only if

°

AT mel®) =0  for all ¢ [0,27] that is

_ i o .i(n-1)8 18, -i8 imd 46, 18
¥6 £ {0,27]
'@ - ¥ w""}}hm" I’f; ?f;’;?‘:’

e T S R T SN [ e
Pl Y j‘&"’k’";}"—é‘ C“‘t“?’*ﬁ*i‘i* Gty ! e ‘
e EE ORI A . , R
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Q ' To show this:cannot hold for A # 0 we distinguish- two
0 ' as e
cases:
(i) 1f Al = v *§n+m+l =0, then we are left with
Ay or Ay etfe e e 0 o unich implies Ay=..=A =0

and hence contradicts the assumption that X # 0; .

(ii) in the other case, the conditigg)can be rqv}ritt{en as

i(n-1)8 : : is . - ine
11+...+Ane _ s(@:I.Q) . 1+ale +... + ane
- . 18 .
) ime e ie ie ime
) An+1+"'+}‘n+m+le 9 e (13°+b1e +...+bme )

'

IS

which is also impossible because by assumption (VIII) a(z) and
b(z) have no common factors“, and the (monic) numerator on

the right hand side is of higher degree than the one on the left. .

¥
4

Therefore, we conclude that MF is a positive definite

matrix.

<

. Now, consider the non-zero vector of dimension (n+m+l+g) x 1
2

k = Ellpoooi AP' 0,...,0, ll,.--' APJT ‘
‘ ; ’ Cf ﬂ 5
\ where p = min(n,2). . . )

Returning to the expression of R§ given in (4.34), we can see that
T -4
A

R§ A = 0, and &perefore we conclude thit Rg is not a positive 4
h -

AN

definite matrix. v . ,

The proof of the theorem now proceeds  from the -following easy-

to-prove result (where the blocks have appropriate dimensions):

M N P , ‘
if (Q R S) is a positive semi-definite matrix and

- T U v
W X M+W. N+X P
O V and (Y' z) are positive definite matrices, then{ Q+Y R+Z S |-
: ) ., \T7 ~U v

" is positive definite.
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P - ; M N P ' . ‘
We assgociate RI + RI withi Q [ - and
1 3 R
. T j v
W X y I I : ’
Mg with v g’ but we know that Rl" + R3 is positive semi-
definite with the lower right cornelr block eqgual to Iz and that Mg
' is positive definite. Therefore, e theorem conclusion follows
immediately, namely, . ) '
- N l
REaum & § ofwelwT>0 .. as |- : o
- N+ o t=] ; !
‘ ‘ 4
Y ¢ —— K S ;;‘: 41‘: A2
|
'+ ’ g
;
- (‘ 1} +
\ !
/ .
f
¥
/ %
s El
“ o
N
/ z -‘f.. -
P : &
! ' - i - o o ~ :
| SO
- \_‘ -
# . L i
e” <
£ - L Y
: . 1
R A T R B P

LA N b,



-46-

s

"4.3 ~ Three important remarks

( ,;?‘ \Rgmark 4.2.: The demand sequence ’
: 1 Yoo 1,71
Wa proved in Lemma 4.2 that ‘lim = § ¢ (t)¢ (t)
=N

I I

exists and is a.s. equal to Ri+ nR3 + R4 , and in the proof of Theorem

4.1 we showed R§ was pogsitive semi-definite but not positive definite.
* v

Now, R:{ is due to the demand sequence 'y and Ri to the exogenous

disturbance e ; so the only way to force the reguired persitency

. ' R
of excitation without using this disturbance is to choose y

* *
© R _R " . ~
is such a way that 1.'1‘ f is positive definite. Clearly
. ‘Rz \R3

y constant or a ramp, typical choices in applications,will not

provide this necessary condition. .

In fact one can interpret the "continually disturbed contxol”
method of Chapter III as a"continually disturbed demand sequence"
method. This is true since the control law equation-is (aP3) :
¢D(t)T§(t)= y;_l te, i here the right-hand side can be
viewed as a new demand sequence consistning of a fixed part to

' which is added a small’ dither. _But, for consistency, the loss

¢ . function should then be defined as
lim LY t% Ely -—(y*+s )]2|G )-'72 a.s ;
— . L) 4

Now N2y o Tt e T Feel t-1

in the author's opinion , this is a less appealing formulation -

than the one presented in Chapter III.

Remark 4.3: The c(z) = 1 case J >

It may be worth mentioning that in the cf z)= 1 case, the

expression for RI reduces to
* *

Jdof B R\ . ofTn F 2f In
* * Y1 .7 H T
-8, =R, B D - F




Y YL

but all the conclusions of Theorem 4.2 and Remark 4.2 still
I -B o
’T‘ ) is not positive definite. To

-B D
see this, apply to analysis of Mg in Theorem 4.1 to M, . This shows

apply because MD A

M, is not positive definite because =X # 0 such that

AL+ .. i(n-1)6 ; ‘
1hre- e e =X ate!® —cel®) _ 1 aei®a
Apap® oo P A ymag® " el b(el?) e"? b(e>?)
~
. - “‘\_.__’(
a, + ...t anei(n 1)9
= - 155 ¥'6 €[0,21]
boi'- cea +bme
Remark 4.4: The orders of the polynomials \

"“\The polynomials a(z), b(z) and c(z) were defined in Chapter II

withiorders n, m and ¢ respectively. However, as was mentioned

in that chapter, the adaptive control algorithm depends only upon

n A'max(n,m+1,2). The reason why we have used n,m and 2 in the ,
definition of ¢I(see (4.6)) instead of continuing to use n, is
to obtain more "natural" identifiability conditions. In fact, one

could define

I N - T
¢ (t) é_ (-ytl"'l Yt'ﬁ*‘l'ut"..’ut-!-'-l""l’wt'...’w -n+l)

v

and carry on the p}.'oof of Lemma ;1.2 easily;it would even be simpler

|
becauge all the sub-matrices would be square. However, in order

to ensure the positive definite property of RI, one would have to

assume in the proof of Theorem 4.1 the following additional identi-

fiability condition :"deg c(z) < max{deg a(z),deg b(z) + 1} ". The
author has preferred to use the more familiar set-up (i.e. with
n,m,%) in order to avoid such a condition.

I ~
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4.4 - Summary t

It may be worth gummarizing the important points of
this chapter. We have proved that when the system § of (2.1)
ig subject to adaptive control via a'lgori-th!.n (&), (A2), (AD3)
of Chapter III the persistent excitation condition for the con-

vergence of the AML algorithm (see next chapter) is satisfied.

The use of continually disturbed controls is a sufficient condi~

tion for this p‘roperty to hold, and a necessary one for many
* “
typical choices for the demand sequence y .

o However, in order to prove this result, we had to strengthen
the assumptions of Chapter III; in particular we required @ ~
- the etrgodicity of the joint process [:] 7

~ the identifiability condition on the system: a(Zz) and b(z)

coprime .

et et
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CHAPTER V

e

STOCHASTIC ADAPTIVE CONTROL WITH RECURSIVE SYSTEﬁ\u—w~

IDENTIFICATION

o ST TR T TR 5 s -

“

~

5.1 - System identification with the AML algorithm

f

+

Results concerning the convergence of recursive algorithms
for system parameter estimation have been reported in the last

few years by, amongst others, Ljung (see e.g. [32]), Solo (see

SRR EReTN e T

e.g. [31] ) and Hannan (se€e e.9.'[35] ). In particular, Solo [31]
proved that provided a certain positive real condition is satisfied,

the AML recursion converges (without monitoring) for stabledﬁ//

AL

systems. Sin generalized this result to the case where the data

+
o~

R

is prefiltered in order to weaken the positive real condition

¢

(see Theorem 3.5.1 in {23 ] ). But, in both proofs, a persistent

\ excitation condition of the form

IR i
,

N
lim % ) ettt =r >0 a.s.
N+wl =1

i)

is required to be satisfied. As seen in the last chapter, such

a condition is satisfied for the adaétive control scheme presented

" -

in this thesiswhen continually disturbed controls are used. Hence,

CORIRTR R T @

if a separate recursive algorithm of the AML type is used in

conijunction with the adaptive control algorithm (al), (A2), (AD3)

ey TR R BRI

then the convergence of the identification algorithm is assured.

AN R TR

D

PO MU b T SRR T e e o T DR

v e - .. e e nie
A < S e ST e e A i e = % e
i S N N e
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1

Concerning the analysis in“[23] and [31] we make two points:first,
the convergence of AML has been pr&ved only for asymptotically
stable a(z) in the system S, and this is not required for the
convergence of the adaptive contreol algorithm nor for the veri-
ficatfon of the persistent excitation condition; second, the
positive real condition for the AML algorithm is stroncer than that
for the adaptive algorithm and so this is imposed as an additional
assumption.(See below.) |

But, the interesting point is that the only necessary

stability requirement in Solo's proof [3l] is simply a saiiple

mean square boundedness of the inputs and outputs, i.e.
1 ¥ 1 N 2
‘lim sup T I oup <o a.s. and limsup g ] Yy <o a.8.
N+ w» t=1 N+ t=1" -

conditions which are indeed satisfied by our adaptive control
algorithm (see (3.4) and (3.5) in Theorem 3.1). Therefore, the
"two-recursion - scheme", as depicted in Figure 5.1, is also appli-
cable for unstable a(z), by virtue of the stabilizing property

of (al),(a2),aR3).

Before presenting the unified statement of adaptive control
with recursive identification, we stress that it can be shown
(see Lemma A.3 in Appendix A) that the positive real condition
reguired to be satisfied for the convergence of the AML recursion,

1 1 : , . .
namely ( S12) 5 ) strictly positive real, implies the two

other hypotheses we assumed for c¢(z) which were ((IX) in Chapter IV):




o
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P

(i) c(z) is an asymptotically stable polynomial ;

(ii) [(c(z) - g—] is strictly positive real for some §\> 0.

This explains why in the statement of Theorem 5.1 hypothesis (IX)
is omitted. .

Finally, it should be pointed out that Sin[23-24] developed
an adaptive control algorithm based on least squares (called
"Modified Least Squares") with a positive real condition identical
to that of the AML algorithm. However, the particular structure
of Sin's algorithm appears to make it di‘fficult to cl}eck a per-

sistent excitation condition.

5.2 -= Unified statement of main result

The following result is obtained by combining theorems

3.1, 4.1, lemma 4.2, and the results of [31}.

Theorem 5.1

Let the system S defined in (2.‘1) , the noise process v,
the exogenous noise procéss ¢ and the demand sequence y* satisfy
hypotheses (I) to (VIII) and (X) (see Chapter IV).

Let S be subject to adaptive control with "contJ:.nually
disturbed controls" by use of the recursive algorithm described
by (A1), (a2), (aP3).

Let also S be simultaneously the object ofk'kecursive iden—
tification by use of the following AML algorithn/\ (as in 1311).

!

(See figure 5.1).
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8 (t) = 8o (t=1)+ P(t=1)y(t-1)e'(t) , t > A+l ©(5.1)
-1, _ o-1 T - -
P~ lt) = Pl (e-1) + w(E)yT (L) , P(R)= I, t > n+l (5.2)
t ,
e'(t) =y, - v’ (e-1)8g(t-1) Lt >h 41 (5.3)
where
T
w‘t) = [_Yt,..ol‘yt_n+1, ut,n--'ut_m'nt'.-s'nt-2+1] (5 4)
and
=y, - YT(t-1)8(t) (5.5)
nt Yt S . \ .

Then the resulting sample paths of u, y and §S are such that

the following properties hold:

Stability v
N -
. 1 2 * 2 2

N -]
1 * 2.5 2 2 2
lim = L uf = (RY) + Yer) e =81+ [} o) a.s,
N 2 3'0,0 p=g P P p=0 P

Asymptotic Optimality

o1 _oh 2 2 2
lim ¥ 21 (yt yt) = y° + u a.s.

Strong Consistency

A L] T
lim SS(N) = 0g A (al"‘"an'l'?o"“’bm’cl""'cﬂ.) a.s.
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IDENTIFICATION
ALGORITHM

(5.1) = (5.5)

EXTERNAL
DISTURBANCE

SYSTEM S
a(z)y =zb(z) +c(z)w

ADAPTIVE CONTROL
ALGORITHM

-I[----.y* DEMAND

(A1) - (a2) - (aP3)

SEQUENCE
n £
A DISTURBANCE )
PRIORI INTERNALLY . .
KNOWLEDGE GENERATED 5

Figure 5.1:

Two-recursion-scheme which stabilizes and
asymptotically optimizes the system S, while

producing a consistent estimate of its parameters. =
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CHAPTER VI

THE GENERAL DELAY CASE

7
v

*

6.1 - Adaptive control scheme

\

In this chapter, we generalize the results of chapters
IIT,IV and V to the cased >1. We will treat directly the
"eontinually disturbed controls" case and assume, for the moment,
the stochastic set-up of Chaptér III. A multiple recursion
algorithm will be used and the convergence analysis will necessitatg
the introduction of a new positive real condition. Specifically,
we consider ARMA systems of the form

I4

' Sd: a(z)y = 24 b(z)u +c(2)w (6.1)

with initial conditions at t = 0, where the polynomials a(32),

b{(z), c(z) are defined as in Chapter II and it is assumed that

the delay d is known. This time, we define n A max(n,m+d,R).

From the division algorithm [4l], we can write

c(z) = £(z) a(z) + z%(z) (6.2)
where £(z) = £, + ... + fd_lzd_l '
_ n-1
g(z) = g, + ... + gz 12 .

Using (6.2), the system equation (6.1) can be written in its

d~step ahead predictor form A

/ .

c(z) [y ,q - £(2)w  41=9(2)y, + B(2)u, (6.3)

-

where g(z) and B(z) = f(z)gﬁz) are polynomials of order n-1-
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We define the new process
da-1

v =2fw
cbo Ktk

BY, |Gp_g)

edy, T = £(z)w, - - (6.4)

which, from (WDZ) and (WD3), has the following properties

o

Ev, IGt_d) = 0 ' a.s. t>ad " (6.5)
d-1 . :
2 2 2
Evil6,_g)= v kzo £ a.s.t>d (6.6)

(We recall that the stochastic hypotheses of Chapter III are
still in-force, except otherwise stated.) Subtracting

c(2)[y,,q *+ €,] from each side of (6.3) we obtain

* »
?(z) (Yerq ~Yesra ™ € ~Vigl = 9(2)y  +B(2)u, - c(z)[yt+d + el

‘ - - = 'D T _ * )
c(z) le  q=Verq ™ E¢l $U(E) 7o, = dyfg &) (6.7)
where
¢D(t) = (y Yy, = u U =
tlaoo, t-n+1’ t’-n.’ t-n-.'l’
* i * T
= gager P Eeap) s = Tpggay Y ELF))T (6.8)
and
- - - - T .
90 = (gol---rgn__ll Boro--p Bn_l' Cl’...,cn) . (6.9)

3

#°(¢) and 8, have dimension 3n x 1). <
As before, it is evident that the c¢ontrol error €red would
achieve its optimal value Vesg T Ee (for minimum variance control)
*
if 90 was known and the feedback law ¢°(t?eo = Y.,q * €. Was employed.

This motivates the choice of the following algorithm:
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MULTIPLE RECURSION ALGORITHM

, Take {8(1),..., 8(n+d=1)} and {u;;...,uz , ,}as arbitrary

\\\ functions of the observations {yl';"'yﬁ+d-1}’ then set
AN ,
N > . a D D T 4
(Agl) 08(t) = 6(t=d) + ——— ¢ (t-1) ly, - ¢ (t=-d) 8(t-a) 1
N : r(t-d) 1

a>0, t>n+d

(i\éz) T(t) = T(t-d) + 6°t) TP (t)

" r(t) = ... = r(n+d-1) = 1, t > n+d f}
~ * . -
ag3)  LwerTem) =yl g+ g t>n+d . O

We ndte that (A4l) to (Ad3) 7Etually represent d-interlaced

algorithms each of which is similar to the unit 3€lay algorithm

of Chapter III. The same algorithm was used in [4l] and was

proved tc converge -(“undisturbea“'case, i.e. /2 0) for c(z) = 1,

A similar version where only (Ad2ﬁ i @éd was proved to o

converge for c(z) # 1 in [22]; howgver, the proof technique used

in [22 ] is not well-suited to treat\the "continually disturbed

controls". Hence,we shall try to generalige the results of [21]for

cl(z) # 1.

The convergence analysis will requirg the following positive
real condition on c(z) in replacement of (82):
(Sd2) onsider a system described by/éhe moving average polynomial
function {c(z) - %] with input { x(t)} ; we will assume that there
exists a fixed non-negative number K, depending only upon the
initial conditions, such that for allxt and all input sequences
{x(t),t >1} .

. P
- P N S . S
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v _a+p . ‘
3 j=X=1 [(c(z) - === Xe_ia ]xt_jd +K>0

for some a > 0 and some p > 0, where [t/d] denotes the largest

integer M such that dM < t. We will refer to this condition as

the "d-step strict positive reality of c(z) - g— "

(This condition can be seen as a special case of the time-

DR e e e g e

varying version of the positive real lemma (see e.g. [30] ); it
is stronger than the (ordinary) positive real condition (S2) used
in the firs;'part of thisthesis, and & neceséary condition for
©its validity'is 4 < deg c(z).) It is unsatisfactory in that the

‘ condition is given in terms of a(deterministic) sample path pro'f

[l

perty and not an algebraic condition on c; to find such an algebraic

[

! condition’is an open problem. ‘ \

- With the aid of assumption (Sd2) we can generalize the results
1 of Theorem 3.l1.For convenience and to facilitate the analogy with

Theorem 3.1, we use the set of hypotheses of Chapter III.
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Theorem 6 - l = o o ) . ~ ‘\()

Let 54 satisfy the structural assumptions (S1) and (342),
the assumptions (WD].) - (WD4) concerning the disturbance process
w and let y* s'atisfy (Tl). Consider control actions u generated
by the control algonthm described by (Adl) (AdZ) (Ad3) with the .

excgenous noise process et satisfying (E1) - (E3).

"rhen, the input-output sample paths of S satisfy:

lin sup 3 2 <o a.s. _ © (6.10)
N+ o tal ) ~,
lim sup = }: W o<w /(.s. , : (6.11)
New N gayt ’ A
N s a-1 '
1 * 2 2 2
im g | E(y, -y ¢/| G,_,) =y 7 f£ + u° a.s. (6.12)
N N L Bl ! Pe-a ko K ,
' W]
\

i X

PP
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Proof of Theorem6.1. 1 U

We begin by defining a new- process z :

t
-~ ‘ 2y beLe = Viea " S (6.13)
. } .
« " (where vy is defined in (6.4))
and remark that. zy is G measurable since ¢ € G, -and |
L
®rid T Vesa = “Yesa * EViuq |6,) €6, . Substituting (6.13) and
(Rg3) in (6.7), we have '
ST D =
c(zlz, =~ 8(8)" ¢ (t) ' t > n+d (6.14)
' * (recall that 6(t) A 6(t) - eo). As before, we also define
& b(t) A - a(e)T ¢P(e). .
: _, In the analysis to follow, we proceed as in the proof of
: Theorem 3.1;we take t > n+d and note that all the required initial
conditions have been specified. We shall analyze each of the inter-
]
lg‘ced algorithms separately. From (Adl) and (Ad3) ’
’ 5 ey a D
‘ cs Bft) = 8(£%d) + —— ¢ (t-d) [e_~- €, 5] .
L3 L r(t—d) t ‘E d s 0
Consider V(t) A 8(t)T 6(t). ‘ '
Vit) = V(t-d) + -_-—2-:‘-7 8(t-a)T 4P (t-d) (e -v, - e  q]
@ r(t"d B ; \\
- s 22~ T D : ’
. " + 25— 8 (t-d) " ¢ -(t-d) [v.] ‘
~ r(t-d) o
[ &2 DT Dy 2
+ - p-(t=d) " ¢ (t-d) [(e _~v_ = €, _3)
L r(t-—d)2 t 't t-d
. N 114 2 !
+ 2 (e, - v, - et-d) + vtO] (6.15)
- °
g @ x -
e . o&io

q

IR ¢ S e AT ST i
PRV SN APRE R £ NS S S LA DR ok M A e




Now, ‘

5 EV(t) |6, q) = V(t-d) - =—

a-1

+ =B 4P (£-a) T4P (t-a) v 2 I £2

D T D 2
-z ¢ (t=d) ¢~ (t-a)z _ (6.16)

Iy

from (6.5) and (6.6).

oP (t-a) T¢® (t-a)
r(t-d)

Noting that <1 we have -

-

2a ~ (a+ .
EV(t) |6, _4) < V(t-d) - {b(t-a)- ‘250 Zea) 2e-g

T (t-d)
= =2 d-1
- L2 g2 B Pie-ayTePre-a)y? ) £
r(e-a) 79 F(e-a)t ko

f

where p is a small positive constant chosen so that [c(z) =~ éi%iL]
is "d~step positive real". The existence of such a p is assured by
"agssumption (sdzo.

_ From the definition of b(t) and (6.14),

b(t-a) - (240 7 = jc(z) - 238y (6.17)

5

and so

w
o -

’ 2a -
EV(t) |6 _.) < V(t-d) - =< _a+
t-d Teea) (0@ =250z gz g

4

- -2 ' a-1.

. pa . 2 . _a ¢D(t—d)T¢D(t-d)72 g2
T(t-a) T4 F(t-a) kZO k
(6.18)
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From (Sd2) P

-

a+p

[t/d)
S(t) é 2a { [(C(Z)* - "'7"" )zt"jd] zt"jd + -IS. 2. 0

j=1

for all t and for some K > 0. Consequently, adding — L S(t)

to each side of (6.18) and denoting

z(t) & v(t) + —E)_ ve obtain
r(t-4)
' a 2
EZ2(t) |6, _4) < z(t-a) - 22— 2%

.4
By

since

S(8) . 228 ((c(z)

a+p
- — ~ =—5=lz _a} 2.0
7 (t-a) % (t-d) - 2 7 7emd” Teed

and r(t-2d) < r(t-d).

<

°f <I>D(nd+K)T ¢ (nd + K) 1
n=o r (nd +K)? T r(x)

+ =2 — P (t-a) TP (e-ary?

r(t-da)

4l 5 (6.19)
\ £
Xk ;
k=0

S (t~d)
r(t-d)

/

J

for each 1 < K < d, we may apply the martindale convergence

theorem to {Z(nd+K), 6 . .

i n >0} for each K,

1 <K<d and

conclude that Z(dn + K)~+ ZK(w) a.s. as n + o and since 0 < pE < w

that
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. ) 22
nd +K )
n=o r(nd+K) < ° a.s. 1< K<a. \
Summing over K yields
© 22
i < ® a.s.
t=1 r(t)

We define r(t) = r(t-1) + ¢°(0)TP(t) ¢ > 7 + 4,
r(l) = ... =r(n+d-1) =1 (as in (A2)) which is necessarily.

greater than or equal to r(t) for each t > 1; therefore we may write

2
Z¢

—— K ® a.s. . (6.20)
t=1 r(t)

L]

as we obtained in the proof of Theorem 3.1l(equation (3.23)).

Arguing precisely as in that proof (end of part 2 and part 3)

-we obtain
. ' :
lim & ¥ zi =0 a.s. (6.21)
N+ N =1
and
= limswp F o a.s. : (6.22)
« N+eo .

It should be noted however that in the definition of z, w is
replaced by v; nevertheless, the previous argumentation

N
is still valid because 1lim sup L ) w2 < » a.s. (assumption (wD4))
N+ @ N g=1 © .

N
implies that 1lim sup % ) vi < o a.s.-.
N » o t=1

The theorem conclusions (6.10) and (6.11)follow immediately

from (6.22). Finally, in analogy'with Theorem 3.1 ,(6.21) implies

N da-1
1 *, 2 2 2 2
lim = J E(y,-y)°|G _) =v° | £ +u a.s. 0
N+w N gay E T T ted k=0 ¥ "

|

4

}

i
,
I3

} ,
i

&

T4
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Corollary 6.1.

54
If in the statement of Theorem 6.1 assumption (WP4)

>}§ replaced by the following.condition on the fourth moments

{

of w:

.

4 ,
Ew[G._,) <P <w a.s. t>1 (6.23)

then the 1loss function can be reduced to the more simple form:

N a-1

.1 * 2 2 2 2

1lim = J (Y. -y )% =¥ Y O£ +u a.s. o
N+ro N 577t ¢ k=0 K

o, '




e e
4 [N ’

R N

D

dyn W ame e

Wv B
A

.1 B9 2
lim ¢ ) w, = v° a.s. Therefore,
. N+ = t=1
N N
.1 2 .1
lim & ¥ =1limz J (fw_ +...+fw )2
NooN ¢21 t jow N ¢2) Ot a“t-d+1
d-1 '
= y? ¥ fi a.s. , (6.26)
k=o
by (6.24).
It then follows that -
lim & 2 (y *ﬂ = lim & ?(z +v,_+e )2 :
NomN o5y Tt Yt Now N gy t=d7 t7 Ft-d
a-1 i
= 72 ¥ fi + uz a.s.
k=0
where the last line is obtained by a combination of (6.21),(6.26),

Proof of Corollary 6.1.

We first point out that using the same technique which

was used in the proof of Corollary 3.1 to prove that

N
.1
lims } w_.e_ . =0 a.s., we can prove that: .
PR b Vet
1 N
lim = w, .w, . =20 a.s. 1if i # 3 (6.24)
Now N & e-i"e-3 J :
?
lim w, ... =20 a.s. 1if 0 < j < d-1 . (6.25)
N+°°Nt=lt-]td - - .

By Lemma A.2, the new hypothesis (6.23) implies that
o

(3.3), (6.25) and the Cauchy-Schwarz inequality. o

— N . T e iy SN 4 ep 1y
. ' R
. —




ST TR e DR TR, e oo o

APt g e o it ST

arrom e S R

.

6.2 - Persistent excitation proverty and recursive identification

As “in Chapter IV, we want to show that the persistent exci-
tation condition for the convergence,of the AML recursion is
satisfied when the adaptive control algorithm is~in operation.
The regression vegtbr appearing in that condition will be denoted
by ¢I. To specify ¢I(t), we remarkqthat the system equation (6.1)

can be written as

(6.27)

= 1 T ¢
Yo = ¢ (£-1) 85 + Wy

I s T
0 (t) A (=¥ reeer=Yingg rUpage1r et Pemdeml e s o s Wil gy)

SR dd gk L

t \

N (6.28)

(6.29)

T
GS A'(al'--- ’an, bb'o-l' bm' CI,..-, CQ)

Notice that (6.28) reduces to (4.6) when d = 1, and that BS

is the same as in (4.5) . Therefore, the required condition is -

N
Lnmz I sfwelwT >0 aus. :
N+ « t=1

Notice that ¢I(t) has dimension (n + m +1 +2) x 1.

As was the case in Chapter IV, it is necessary to introduce
at this stage new assumptions on the system Sd' Since these new
agssumptions are the same as those mentioned in Chapter IV, we will
use, for convenience,the list of hypotheses of that chapter(i.e.
hypotheses (I) to (X)). As one would expect, the only difference
is the replacement gf (IX) by (sdz)' the new "d-step strict positive

real" property of [c(z) - ; ]. Obviously (X) does not imply




\\\d, - B e e e

\ '
(;f (SdZ), and this' timeé the unified statement of our result will

unfortunately include two different positive real assumptions.

Now, under the same hypdtheses as those of Chapter I
with the exception of (Sdz) instead of (IX) and the new miitiple-
recursion algorithm usea for adaptive control, the proof of the
persistent excitation property is a straigthforward extension of
the results of Chapter IV. This is summarized in the following

theorem.
-

Theorem 6.2. (Generalization of Theorem 4.1)

Let the system Sd defined in (6.1), the noise process w,
the exogenous noise process ¢ and the demand sequence y* satisfy
hypotheses (I) to (VIII) and (Sd2). Let the control actions u be
generated by the multiple recursion algorithm described by
(Agl), \a42), (843). Consider ¢' defined in (6.28); then

lim & )b t)th(t)T exists and is a.s. positive definite. O
N+ N £21
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Proof of Theorem 6.2 .

prove Lemma 4.2 and Theorem 4.1.

"R
We begin by decomposing the regression vector )

I _ _ T
¢ (t) hand ( yt'-.., yt-n+l’ut—d+l'-..'ut"d"m"'l,wt'...’wt-2+l) -
This time

*
Ye = Yy *te, =y vz, gt EZIw +oe g
|
and 5§
a = afz) - c(z) o
t = b(zy Yerd T bB(z) "t+d
= a(z) . * a(z)f(z) - c(z)
5(z) We+a T Ze T 6l 7 b(z) Vird
which gives the following decomposed form for ¢I(t):

1 I I I I _

¢ (t) = ¢1(t) + ¢2(t) + ¢3(t) + ¢4(t) =
p— — ] T P
e "r -
~Ye ~Z._ g -f(z) We “€p_d
(n) : . : :
*
Yeon+l #t-d-n+l —E(Z)w_h4
a(z) * a(z) z a(z) f(z)-c(z),
b(z) Ye+1 b(z) Zt-d+l bz o t-1
{m+1) : : E
a(z) _* a(z) z a(z)f(z)—c(glw
b5(z) Ye-m+] |b(z) “t-m-d+l 5(2) t-m+1
0 0 Wy
®) : . 5
0 0 We-241
b onal h - —_— = |

Cre s AR SR ERITITRTIRMAGTT Y AT R s

The proof employs the same téchniques which were used to

PRDIPUREINIPPR PRI S Ll ol
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As before,Lemma 4.1 tells us that the only non-zero contri-
1 1

butions in R™ A lim = Z ¢ (t)¢ (t)T will come from
—N+wN t=

I 1

R™ A lim 3 ¢ (t)¢ (t)

St Z 1'% r

I 1l I 1

Ry & lim 2¢ (t)oT(t)T and R A lim = Ecp el e)T .

3 T Niw Ngmp 3 773 M LRSI

Comparing to the proof of Lemma 4.2,we see that Ri and Ri are

unchanged, but that Rg will be modified because of the .presence
of £(z). Nevertheless, R§ will still be positive semi-definite

and therefore we can conclude that RI = RI + RI + RI

1. 3 4 >0 a.s.

because the argumentation in the proof of Theorem 4.1 remains valid.
(The detailed expression for Rg is more complicated than

‘the one given in eguation (4.34) for the unit delay case.

However, the expression for the central sub-matrix, co¥responding

to D in (4.34), is given by (4.30) provided the coefficients oy in

that equation are replaced by the new coefficients Ej; where, in

analogy with {aj} and {Bj} , the sequence{Ej} is defined as the

impulse response of the transfer function a(z)f(z) , i.e.

b(z) !
a(z)f(z) _ ) iy
= g.z7 .)
b(z 3=0 J ]
O .
s
h*2
e
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@

Remark 6.1.

The particular structure of Rg becomes relevant if we want
o
to determine whether or not the disturbance e is necessary to

*
ensure the positive definite property of RI when v 1is constant

P T TSR
D 10 0 5 R o PRI i s

or varies linearly. It will be so if Rg is not positive definite,

as it is the case when d = 1. It can be shown that necéssarx
conditions for Rg > 0 are: |
AN (i) .4 > 2

§

(ii) {zdg(Z) = a(z)f(z) - c(z)} and {b(z)} coprime

5 e a«.mm@%“"‘ymfd .-
.
p

(iii) c(z) and £(z) coprime.

Since we mentioned at the beginning of this chapter that (SdZ) is

valid if and only if 4 < ¢ , the disturbance e will be necessary

*
to ensure“persistent excitation when y is a constant or a ramp.

N
Remark 6.2.

The comments concerning the orders of the polynomials concluding

T B e A AT IR TR G N et

I section 4.3 (Remark 4.4) are still relevant (with minor modifications).

1 Specifically, if one wanted to continue to %use n A max(n,m+d,R%),

eekibh

one would have to define

I ' T
(b (t) é (-yt,--.,"yt_ﬁ_l_l, u '.."ut"ﬁ""l' wt!"'lwt_ﬁ.‘_l)

(dimension 3n x 1) and assume the following additional identifia-
bility condition:

"deg c(z) < max{deg a(z),deg b(z) + d} " .

“«
b
-

Y

1
(W
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6.3 - Unified statement ~ general delay case.

As we did in Chapter V, we summarize the results of this

chapter in the following theorem.

Theorem 6.3.

-

Let the system S, defined in (6.1), the noise process w,
' *
the exogenous noise process ¢ and the demand sequence y satisfy

hypotheses (I) to (VIII), (X) and (SdZ).

Let S, be subject to adaptive control with "continually

disturbed controls" by use of the multiple recursion algorithm

described by (Adl).(AdZ),(Ad3).

Let also qdbe simultaneously subject to recursive identification

by use of the following AML algoritim (as in [31]):

85(t) = Bg(t-1) +P(t-1y y(t-Lie' (t), t > A+l :
P le) = Pl (e-1) + witdvT(®) , P@) =1I,t>hn+l,
et (6) =y, ~vT(t-1)8g(t-1) , t>h+l

where

T
W(F) S FTEEEN) FEFNS FL NP FE LERRT L W0 Neet P VAR IR R

and
T ~
Mg = Y, - ¥ (E-1)8 ().
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Then the resulting sample paths of u, y and 85 are such that -

the following properties hpld:

Stability
N < a-1 -
. 1 2 * 2 2 2
lim S ] y: = (Ry) + ¥ ] £51 #q a.s.
Now N t=1 t 1°0,0 p=0 P
1 ‘Z’ 2 : 2, § 124
lim u, = (R + Y°[ (5. - 8B
N+ ﬁ't-l t 3&0’0 ,  p=0
oo AR
+ u [ E 2] a.s.
pm0 P ’

° Asymptotic Optimality

N . d-1
lim & J (v, -y~ v2I £1 42 a.s.
N-~+oo tqﬁ ) k=0 .

Strong Consistency

lim Gs(N) = es A (al,...,a 'bO'...'b ’cl'...'ckLT a.'o

Nox “ .

-
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CHAPTER VII . ..
. ' A ¢
THE MULTIVARIABLE CASE |
’7:\1)' Introduction
’ The purpose of this chapter is to generaiize the unified result

of Chapter V to multiple-input multiple-output (MIMO)systems. One of
the few results to this date on the convergence of "multivariable dis-

crete time stochastic adaptive control"” algorithmsis the one presented

@

in {21]. 1In that paper, the model considered is of the form
a(z)y = zBiz)u+ C(z)w where a(z) is a scalar polynomial and B(‘z):

arld C(z) are p x p matrices whose entries aré scal‘ar polynomials.

(We use the same notation as before for the processes y,u,w,' although
s N

in this chapter they will be p x 1 vectors.) 'The MIMO algorithm

analysed in [21] consists of p recursions, and only the unit dela&

case is treated.

h Y

'I;he MIMO algorithm of [21] c¢can easily be modified to in~ .

corporite continuali}'disturbed controls. However, a problem arises
in the identification part of our scheme. On ‘one hand, because of
the particular model considered (with a(z) a scalar polynomial),

a rather undesirable type of positive real condition is required"

to be satisfied for the convergence of the AML, recursion. On the
other hand, if a new generic model of the form A(z)y= zB(z)u + C(z)iv,
with A(z) a matrix, is adopted for identification purvoses, the ,
corresponding "cont;:ol model", requiring a scalar polynomial to

operate on y, will be of the form Adj{A(z)]A(z)y = 2Adj[A(z}B(z)u

+ Adj[A(2)] C(z)w. In that case, [a(z)]I=[ detA(z]II= AdjlA(z)] A(z)

-
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C; . . ané the new f(z) = Adj[\A(z)]B(z) are not coprime and gonse-~
. ‘ quently the identifiability condition fails to hold which pre-
' “ }7yents us from having persistency of exgitatién.
¢ For these reasons, the approach adopted is to directly
generélize‘the adaptive control and AML algorithms to the vector
case using the technique presented by Caines in (39] (used for

least squares in that book). We consider MIMO systems described

by models of the form: .

- ' ' S:°  Afz)y = zB(z)u + C(z)w .

i :

The recursions will now include a vector of parameters containing
- ~ .
- \ . ) :
all the elements of the matrices A(z),B(z) apd C(z), and a matrix
of regressors. Thus, multiple recursions algorithms are avoided

when the delay is equal to one.

A In the next sections, we derive the MIMO-adaptive control

and MIMO-AMI algorithms and then state the gederal version of

ARSI ST G 1y SN LR TR Ny < |
i

our main result. The convergence proofs are given in Appendices

‘v
[

é and D since they are straightforward generalizationsof the

R o e
-

. . proof of Theorem 3.1 (for adapg;ve control), and Solo's proof in

. - [311 (for AML). We shall treat for simplicity the unit delay

o

case, but we stress that extension to d > 1 is possible when the

. positive real condition is strengthened as in the previous chapker.

L3
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7.2 - Multivariable adgptive control

Consider multivariable linear time-invariant finite

dimensional systems described by the ARMA model:

‘ TN |
- S: A(z)y = zB(z)u + C(z)w X* (7.1)
with initial conditions given at t = 0, where y,u and w are-

- p * 1 vectors and A(z),B(z),C(z) are p x p matrices whose entries

are scalar polynomials in z, and are defined as follows:

= - ‘ n \’
A(z) Ip + Az + ... tAg ,
£ 'B(z) =B, +Byz+ ... +B2" , (7.2)
. - L
= +
é ‘ C(z) Ip Clz + + sz

¢

iWe define n A max(n,m+l,%) and p 4 3np. Instead of
1 - referring to two sets of assumptions as we did previously (ohe

for the adaptive control part alone, the other for the combined

‘control-identification scheme), we prefer to state immediately

: the complete list of assumptions that we need for the final re-
% ) sult of Section 7.4. As before, let F_ = G_ denote the o-field
generated by X and for t > 1 Ft and Gt denote respectively )
those generated by {xo,wl,...,wt} and {xo,wl,...,wt,sl,...,et}ﬂ

where € is the (p x 1) "dither" process.

TR
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LIST OF HYPOTHESES

(M)  (a) det B(z) #0 , lz| <1 |

<
(b) det C(z) #0 , lz] <1
Y
; (M2) [:] is an ergodic process; \

(M3) All finite dimensional distributions of x_ and the [:]
process are mutually absolutely continuocus with respect

to Lebesgue measure;

W

(M4) E[e]tht-l)\ =0 a.s. t>1
r o wd
mMs)  E[Y) [wT el |G ) = . .> 0 a.s. t> 1;
€ ¢ t'e-1 0 M -
2px2p

l

*
(M6) y 1is a bounded, deterministic (i.e.{Q,¢} measurable)},

p x 1 vector sequence defined on t > 1;

.1 ¥ o« &T .
(M7)  lim = ] ¥, . Y., exists almost surely for all pairs

N+o N g3
of integers and depends upon the difference k-{ ;

(M8) TIdentifiability condition: A(z) and B(z) jre left coprime
and are row-reduced (i.e. A and § have full rank);

y T > o1

M9) c(ef®)"L 4 c(ei®

for some p > 0 and for all 6 € [0,27] . 0
Remark 7.1.

By definition, a matrix rational transfer function Z(z) is

strictly positive real if and only if (see e.g. [36]):




hal-S e

- positive real.
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has no poles in ({z:|z| < 1}; LY

(11)  z(ei®) + 2T 5 ¢

(i) 2(2)
for all 8¢ [0,27m] .

1

When z(z) = [c(z) ! - %—], (M1)b implies (i)  (notice that the

converse is not true in general), and therefore (M1l)b and (M9)

1

are sufficient conditions for [C(z) — - %] to be strictly

¢

Remark 7.2.

It is necessary to state only one positive real assumption
because by Lemma A.3 (Ml)b and (M9) imply:

[Cc(z) - -;—I] is strictly positive real for some a > 0 .

(We refer the reader to the "Remark on Lemma A.3" in Appendix A.)

The system equation (7.l) can be transformed to its (one step -

ahead) predictor form

C(Z) [yt+l—wt+l] = [C(Z) - A(Z)]yt+l + B(Z)ut

and subtracting

C(z) [Y:+l + et] from both sidgs we obtain

C(z) [e g ~Weyp ™ gl = (C(z) -A(z)]yul + B(z)u,

i

- C2) [Yppy * € 1 (7.3

SRR

t
right hand side of (7.3) can be written as

i *
where e, 4 Ye - Y is the p x 1 control error vector. The

3
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;1'5-:1 o !-).El ’ Fl-z-l -
(Ciy =R, )y, _s + B,u,__. - C. Iy . +e,_:_q]
i=5 i+1 i+l t-1 iZo i7¢€~-1 izo .1_+l t~-1i t-i-~1
. :
[Yepy * €] - “

This suggests the following definition for the predictor parameters

vector: .

. ﬁk
. 1 1 1 1 1 1 1 1 ”
eo é. [Cl-Al’...,CE—AK, BO’---’BB_I' Cl,...’cﬁ’.."

- (7.4)

P_ P P_ P P P P 12
ci-al,....CE - a2, BD,...,BZ , C},...,cB

where the superscripé in A;, for example,denotes the i-th row
(1 x p) of the p x p matrix Aj. Hence, eg is simply the list of

the p rows of {Cj ~Ays By 3, Cyr lcJ < n} one after the other.

We then define the regression vector

T T T . ..T
Qd’(t) _A_ [Ytl---lyt_ﬁ+ll ut""’ut—5+1’ Q
) * T * T T
. - (Yt + et_l) '...’-(yt-ﬁ"'l + et_ﬁ) ] (7'5)
pxl
and the regre$sion matrix .
¢(t). 0
X(t) A1, ® ot) = ¢ (t) (7.6)
0 ¢ (t) pp x p »
where ® denotesthe tensor product.
Using these definitions, we rewrite (7.3) as \
T * 1
Clz)[eyy) = Weyy = €p] = X(B)7 0 = [Yyyy + €] (7.7)
PxDP Pxp Pxpp Ppx1 pxl '

- e o
—r

P T e e
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o (:~ , We see that (7.7) is of the same form than (2.2), (3.7) and
‘ . . T, _ %
(6.7). The minimum variance control would be X(t) 00 = Yeey t €y
| if 60 was known. Therefore, our adaptive control algorithm will

f be a simple generalization of (Al),(AZ),(ADB) to the wvector case.

MIMO ADAPTIVE CONTROL ALGORITHM

Take {5(1),..., 6(5)} and {ul,...,uﬁ } as arbitrary functions
' of the observations {yl, .o ,yﬁ} and initialize r(l) =...=r(n) =1;

]
\ then, for t > n+l, set q

~ a T 2 =
6 (t-1) + =D X(t-1) [Yt - X(t-1)" 8(t-1)], a>0

i

| @My e(e)
. (AM2)  r(t) = r(t) + Tr[X(t) X(t)]
(AM3)  X(£)T8(E) =y, , + . .
= Y T %

(Tr [F] denotes the trace of the matrix F.)

e

7.3 - Identification of multivariable systems using the AML algorithm

|
\

i

It is possible to derive a multivariable version of the AML

recursion of Solo [31] using the same technique as in section 7.2.

P

To begin with, we write p A p(n+m+1+ 2] and, in analogy with

- (7.4), define a vector of syéﬁeﬁ parameters

1 1 1 1 1 1
85 4 (AYreeesBys BgreoosBrsIClreeusCy yunn 7.8) i
T *
p P gP P P P .
Al,...’An' Bolno.'Bm' cl’...'cf,]ppxl

vt

. | »

%
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where as before the superscript denoteSthe rows of the matrices.

The "identification" regression vector (sée (4.6)) will be

T ]T

T ¥eony1r Y

I T T T T
t -Y .. .
¢ ( ) é, [ yt rut__m

,Wz,...,w
P Xl

and the corresponding regression matrix

o7 (t) 0

xTe) a1 x ol(t) = et | (7.10)

P . I
0 (L) po x p
These definitions allow us to rewrite (7.1) in the more useful form:

o

- _13yT
Ye = X(e=1)7 85 + w _ (7,11)

p*l PpPXpp po;< 1 px1

But, as we recall from section 5.2, the regression vector of

the AML recursgsion is defined with the residuals (or a posteriori
efrors) in place of the prediction errors. Let n denote the re-

siduals process; we define

(7.12)
p X1 ' 3

T T T T T T 47
q)(t) -A_ [-yt,,...,-yt_n,‘_llutlnol-'ut_ml T)t'---, nt_2+l]

and
9(t) 0
V(L) A 1, @ elt) = Telt) ‘ (7.13) ;

0 To(t) j
s Pp X P ) 3

Consequently, the AML algorithm will be:




-

N P

MIMO-AML ALGORITHM

Take {es (l)po-., BS (n)}l {el,-..,eﬁ} and {r\l,---, na} as

arbitrary functions of the observations{ Yyreeoe¥or ul,...,ua}

and initialize P(1) = ... = P(n) = I; then, for t > n+1, set
B (t) = Bg(t-1) + P(t-L)y(e-De, ‘ (7.14)
p(e) L= pee-1)Th 4 pierp(e) T (7.15)
e, = ¥, - u(t-1)TBg(t-1) (7.16)
ne =‘yt - y(e-1Tog(t) | ~tan
0
From (7.14), we have
ne = [, - .\Ji(t—’l)T P(t-ly(t-1)le_ . (7.18)

We remark that P(t) is a pp x pp matrix, and w(t)TP(t)w(t)

ap xp matrix. - \

For the sake of completeness, we now present in this

: " ;

thesis a theorem which gives sufficient conditions for the con-~
vergence of the above algorithm. Since the proof is a_ straight- g

forward generalization of [31], it is given in Appendix D.

In his proof,Solo uses many results derived from the matrix

inversion lemma. All of them have equivalents in the vector case,

SRR

although the proofs may be more complicated. In Lemma D.1 of

Appendix D we present the generalized versions of these results.

e L. e e — e e e e
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C,‘ Theorem 7.1. s

Let the system S of (7.1) satisfy the following assumptions:
(a) w is an ergodic martingale difference process satisfying

el Feog) =0 ©a.s. t>1 (7.19)

T =
- , oEwtwtlFt_l) = T a.s. t>1 (7.20)

Ew

when Ft denotes the o~field generated by {xo,wl,...,wt}

o

(b) S is asymptotically stable in the sense that

. N
’ linsup & Iy i? <o a.s. (7.21)
£ N +o t=1 :
1 ¥ 2 '
lim sup & ] llul® <« a.s. ©(7.22)
N+ o t=1 .
¢ (e (:(ej‘e).l + C(e—ie)‘T ~I> pI. for some p > 0 and
for all 6 e [0,27] _ (7.23a)
and \
det C(z) # 0, |z] < 1. (7.23b)
(This clearly implies that (ciz)”t - %] is strictly ° :
positive real.) / ]
1 ¥ o1 1.0 . )
(d) lin & ] ¢ ()¢ ()" =R >0 a.s. (7.24)
N+w N oga] i

where ¢X(t) is defined in (7.9)
(persistent excitation condition).

Then, the algorithm (7.14) to (7.17) converges almost surely, i:g.
. . i

lim 6 (N) = 8; 4., (7.25)

N -+ o
A"

a
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7.4 - Main result - multivariable case

Theorem 7.2.

Let the system S described by (7.1),the noise pEocess W,
*
the exogenous noise process e and the demand sequence y satisfy

hypotheses (M1) to (M9) of section 7.2.

-~ 2 /

Let S be subject to adaptive control with "continually distur-

bed controls" by use of the recursive algorithm (AM1), (AM2),(AM3).

Let also S be simultaneously the object of recursive identi-
fication by use of the AML algorithm (7.14) to (7.17).. (Refer
to Figure 5,1.)

Then the resulting sample paths of u, y and 55 are such

e et e et s g —————

that the following properties hold (new notation is defined in e el
the proof): , T e

lim 3 ? 1y 12 = Tel(RY), 4 T + ) 8 (7.26)

lm ;T = r a. . .

el L 21'0,0

1 ¥ 2 * T T
j =T 4T - -
éi: ﬂtzsl Ilutll r[(53)0'0 [on(g_p _B_p) (g_p Bp))
ST
+ Ml ) o ll a.s. (7.27)
on—p—p

. 1 N * 2

lim & ) Iy, =y I° = T[T + M] a.s. (7.28)

N t=1

o //1
~ o °
1im 6_(N) = 8 a.s. (7.29)
Now. S s
> ; ! D

Proof: Given in Appendix C.
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‘i , ‘ . CHAPTER VIII

CONCLUSION
s —_—

8.1 - Discussion of the results

In this thesis, we have presented a combined adaptive
control and system identification algorithm which, to the best
of our knowledge, is the first one to simultaneously carry out

\

these tasks for an initially unknown stochastic system S. The
g

two-recursion~-scheme was adopted because only partial results

were obtained concerning the behaviour of the estimator B (t)

generated by the stochastic approximation algorithm (Al,(AZ),(AD3).

It appears that the behdviour of 8(t) can be very compli-
cated, reminiscent of the "chaotic"” moéions appearing in the
mathematical theory of dynamical systems [4§]. However;,we know
that the estimation error vector{g(t); t > 1} converge@ into the
surface of a sphere of fixed rand;m radius around the origin.
Specifically, I8(t)l% + Z(») a.s. as N + = , with E[Z(=)] < = (see

e.g. the proof of Theorem 3.1 for the definition of Z(t)),and

. . N - ~
- 1im 1 2 le(t) - g(t-m)|{ = 0 a.s. for finite m. But, it appears
. N+w N =1 ] ) . N .
‘ that some sort of averaging of {8(t), t > 1} (for example T y}oelE))
t=1

may be necessarnyo create a consistent estimator.

The reader will have noticed that in the scalar case, two
sets of assumptions we used throughout the thesis: (S1)-(S2),

(T1) - (T2) , (WP1) - (WP4) , (EL) -(E3), and (I)-(X). Such a procedure

[ReTS————T_ AL
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was chosen to emphasize the fact that the assumptions required
for the convergence of the édaptibe control algorithm alone are
less restrictive than those required for the convergence of the
combined adabfive control-recursive identification algorithm.

G . %
Concerning these assumptions,we notice that although they

nlay seem restrictive,\they-reflect, as we said in the introduction,
the current state-of-the-art of the theory. Foréxample, it is
quite natural to assume that one must know the degree of com-
plexity of a system if oneﬁWishes to (asymptotically) achieve

the same performance with an adaptive control algorithm as the

one achieved when the system parameters are known.

”
-

Many authors have tried to relax the positive real assumptions
(see e.g. [23,37]). However, it should be noticed that techniques

like over-parameterizationare not applicable in our case because

of the identifiabjlity c?ndition we require. In fact, identi-

fiability conditions are inevitable in any identification method.

<
El

The author believes that the extension to the general delay-
colored noise case (Chapter VI)gnd to the multivariable case s

{Chapter VII) of the algorithm of [21], and consequenély of the

an
3

main results of Chapter V, are also interesting contributions of
this thesis. 1In particular, the technique we used to rewrite the
system equation (7.1) in the form given by equations (7.7) and (7.11)

proved to be very useful in deriving the vector versions of both

the adaptive control and AML recursive algorithms. (This technique,

presented in [39], is due to D.Q. Mayne.)

TR e oa @ Ly bty
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l 8.2 - Suggestions for future work

[
8

The next logical step of this research would be to under-
take a series of numerical simulations to test the practical .
performance of the algorithLm presented in, this thesis; In addi-
tion to testing the algorithm under conéitions where, according "
to the theoretical analysis, it is supposed to perform well,
we believe it would be of prime interest to evaluate its per- ’
formance in various cases of time-varying parameters and study
its tr;cking ability. It would also be interesting to test the
algorithm on the twobrenchmark examples now being developed for tﬁe
evaluation of adaptive schemes (see [46]) . In other respects,
goncerning the results of [44], we point out that one should
not expect good performance from any algorithm wheg the assumptions

necessary for its proper cperation are violated. r

e
Adapti‘.\ve control in general has been appliﬂed successfully

in many practical situations (see e.g.‘ le] .[45]) . However,
efforts to elaborite the theory og adaptive control are still
justified! Important research topics are: o~
—/Improvement of the applicability of current adapti\:re vontrol

algorithms by trying to relax the, more restrictive assunlptions,

namely 1:,he inverse stability assumption and the positive real «

assumption. . , . .
- Generalization to time-varying parameters, an "ultimateq

objective " of parameter adaptive control. The case where

the parameter process is a convergent martingale has been

S A i i
- -
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treated successfully by éaines in [30]1. The results of \
this paper may constitute the first steps. towards a séochastic
control theory for systems with non-convergent randomly

. R ‘

-

' varying parameters.
)

_Elimination of the necessity of a multiple recursjion
algorithm in the general delay case (scalar and multivariable).
A single adaptation algorithm would be more appropriate for

practical inplementation . We refer to reader to the recent work .

- of Fuchs on that problem ([50]. In fact this, together with.

a derivation of a d > 1 multivariable predictor which is

©

consistent with our identifiability conditions on

{A(z) ,de(;) ,C(z)}, is probably needed to obtain a completely

n

gengral "multivariable, 4 > 1, C(2) ¥ 1" a?apta—t;ion-with-—, : \

identification result. ) . .
0 : , , <

e e ey e

[

i

- Replacement of the two-~recursion-algorithm presented in this
thegis by a single recursive algorithm which would c&r;:'y dut {
both the adaptive control and sys,éem identification tasks. The i

author believes that such an algorithm would have to be of the

>

o e Crmm—Ta r—— T —————_—— T T

¢
d

léast squares type.
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Lemma A.l. - (Neveu [40] pp.148-150 )

APPENDIX A

Let {xt;Ft,t € Z,} be a centered sequence of scalar

random ‘variables and let %t} be {F 1:} adapt?d. .
a Y ¢ S LZ Extlet_'l) < o a.s.,
t=0 ¢t
1 N :
then l_j;n;ﬁ tgl X, = 0 a.s. o
N ‘ A “
& ® <

-

LK
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- Q _ Lefima A.2. , . .
L ‘ x4 Let {xt:Ft,’t €Z_} 'be a martingale difference process )
j . satisfying Extlet_l) = o . - , v
§ N ° v .
4 4 .1 ¥ 2
If Ex, lFt_l) <P <= , then limg ) xg = ¢ a.s. O
f N noeN el ‘
3 -~ J R -
B Proof. *
] . N 2 2 2 2
: Consider y, = x. - Ex IFt_l) = x_ - ¢°. Then,
g . E(x: - 02) |Ft—1) =0, i.e. Ye is a centered sequence, and {yt}
i . s {F.} adapted. Also,
- v 1 2 2.2, Tl 4 4, 4
f ) E(x. - o“)°|F__,) = ] (Ex_ |[F__,) =20" + ¢”]
- ol :2' t t-1 =1 e t ! e-1
’ -]
1 4
] < (P-0’]
t=l ?\ )
N < -,
€ \ v )
. Hence, by Lemma A.l, . ] .
. I
3 ) N ‘ ‘ !
r lim %I' ) (x: - o%) =0 a.s. -
: - N+o © t=l 7 ‘
: or N
lim % ) x: = g2 a.s. : O
T N+ t=1
ti -
a »
5\ ' .
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[

'ﬁ Lemma A.3 - SCALAR VERSION

-

It E'%'E) - %—J . is strictly positive real, then

. (i) c(z) is an asymptotically stable polynomial;

(i1) ga > 0 such that [c(z) - %] is strictly positive real.
a
! .
Proof.
g (i) from the definition of the strict positive real property;
» .. (i1) if [E%E) - %] is stricély positive real, then
1 1 1 1.*
‘et " Yl -2 0 ¥lz] =1
1 1 "
st * T L
c(z) + c*(z) > c(z)c*(2) oo
i o g >
c{z) + c*(z) > inf (@(z)e*(2)) "

Since c is asymptotically stable, then inf ( c(z)c (z)) > a
for some a > 0 and so c(z) +c (z) >a, ¥ |z] = 1 which
- implies thgt e(z) - %-] is strictly positive reall., o
\
D,

&7

\




O

. - spk T
where we take, say (a + p)I = F C(e16 ) C(

s | 4

Lemma A.3 - MULTIVARIABLE VERSION S

) A
If det C(z) ¥ 0, |z| =1, and
c(ej'e)t.l FeEe T o > pI for some p > 0 and for all
& ¢ [0,27], then the polynomial transfer functidﬁ matrix
{C(z) - %I] is gtrictly positive real for some as>o. -a
?.E-?.o_f.' r

From the second hypothesis,

v

o

1+ (c(e i T L 5 (D ¥eo e [0,27]

-1 _
2

ie I
[C(e' ) 5

wheie,p is a small positive constant. So we have

-1 ~ig, -T

ce!® " s ce™ T > 141

T T

ce!®y +ce™HT > (140 clel®) ce )T v 0,27,

Since C(z) has no poles on [z| =:1 C(z) is continuous there.

'Hence, inf ATC(eie) C(e"ie)TX, A #0, 1is achieved at some

*
8" ¢ [0,27] . The infimum is positive since \Tc(e?’) = o

cgntradicts det C(eie) #0 for 6 e [0,2w].
Consequently, / | ' '

T

cel®)+ c(e7f) > (a+p)I, ¥0c [0,27]);

*
1 e*iG)T .

“

(1) In this thesis, except otherwise stated, all matricial inequa-
lities of the form M < N have the interpretation XTM\A< ATNA for all

non-zéro vector A of appropriate dimension.

-

*
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L4
ey o s
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4
L2
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' o
i
e
i. v Finally we have
%;; tc(et®) - %I] + [ce”i®T _ %I] > pI
! , )
% which proves that [C(z) - ;— Il is strictly positive real. a
i .
R »
%
£
g
t 'Remark on Lemma A.3. - -7
et Q«'
In the multivariable case, the strict positive reality of
[C(z)-l - %—] is not sufficient to imply the required asymptotic
§ stability condition on C(z) ' which is (M1)b: det C(z) # 0,
% ¢
A |z] <-1. 1In fact, [C(z)"l - %—] strictly positive real implies,
, .
; . by definition, )
C(z)-l -1= 1 Adj C(z)[I - i C(z)] analytic ix;
2 det C(z) 2
o lz] < 1. But it seems it may well happen that det C(z) has a

common (unstable) factor with every element of the polynomial
matrix Adj C(z)[I - % C(z)] . This explains why (Ml)b has to be
included in the list of hypotheses, in opposition with the scalar

case where c(z) and [c(z) - 2] are coprime and so T:ZL?T is

asymptotically stable when | E:%—ZT - %] is strictly positive real.’

Ty T T e i - o e - N ~‘ o > .' - - "m«r—’ Y‘,X,A
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Lemma A.4. (Strict) Positive Real Lemma (see e.g. [21]).

Consider the following minimal state sgace model
. %
Xppp = Ax, +B Zy, with initial condition X,

ht = Cxt‘+th .

-

If the complex valued transfer function

2(z) = C[z-lI - A]-lB + D is strictly positive real, then:

(a) there exist matrices P,L,W, with P > 0, such that

T

A"PA - P = -LLT

ATpB

T

A

for all sufficiently small p > 0 ;

? T T ? 1212 >0 & £0
(b) 2 h™z +x "Px > p z > or 2, .
=1 t "t ‘o (o] =1 t t
. 0
Proof:
‘ (a) see Hitz and Anderson [36].
(b) Consider
. ) T .
Q&Pxn = [Axn—l'+an—l] Pl Bza! '

= cf - W

pT + W'W = D + DT - B'PB

(1)

(2)

T (3)

@

A
AL ot RS 2 ot R i S kb o T i
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Q T.,T T,T T,T
= X, APAX ., + 2xn_lA PBz _, * z,-1B"PBz_ _,
> T T T T T
= X, PX,q - %Xpop LLOX +2xn_l (C"-LW]lz _, ‘

+2, 5 [D+DT-W'W- oIlz )  from (1),(2),(3)

T T T

. - - T
¥ X1 P X1 [L X1 +W zn_l] {L X1 +Wzn_:L ]
T T T
+ 2(b,_,-Dz _,] z.n_1 +2z,, [D+D" - poI] 2z 4
T T T.T
\j = X Pxn~1‘ (L xn-l+wzn-1] (L *n-1 +Wzn_1]
b T ’
+ Zhn_l zn—l - zn—l pI zn-l .
Summing from 1 to N we have
N N
T T T 2
0<x_ Px < 2 Jh_ z +x Px_ =-p ) lz_I
- n n — t=1 t7t (o] o =] t
or i
N N
T T 2
2 Jh oz +x_Px_ > o} 1z1° >0
=] t 7t o (o] =1 t
\ ™ >0 if zZy Z 0
Ld - -
T \
and xOPxo>0 since P > 0 . . a

—t
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APPENDIX B -

Proof of Lemma 4.1l:

The statement of Lemmad.l isthat if (w,e) is a stochastic

((

process satisfying (II), (III), (IV), (see section 4l2) , Lf y* is
! .
a deterministic process satisfying (VI),(VII), if z i'\s such that
\

L Igz2+o a.s. as N » and if a, (2) a,(z) A4, (z) d,(2)
3T - o I r g o2y
N L%t o1 4, 1 4
are asymptotically stable polynomials, then

1 N b@ b2 by(z) 4 b2 T c(2) ¢, (2) c3(2) 4 c,(2)
:]j:neoﬁ tZ]_[ al(z)w '32(2) € 'a3(Z)Y '__(-.)34 z 4 ]t[leZ) W, dzlz) € 'd3(2)y la"'(_j'4 z z] t

. .o . »
20 bl(ele)'cl(e ie) 2 b2 (ele) c, (e le)

2
= Diag [ - d9
% o al(eie)d.l(e ie)

- dae ,

o ayefa ™)

1 2 b3 (eie)dR* (eie) Cy (e-ie) =
— , 0] (B.1
ay (eié)d3 (e 5_@) )

We recall that the natation [g—%%iltor, equivalently, 2(:)Et

denotes the val\fxe‘\at the instant t of the process n generated by
the ARMA scheme agng +... tamn, = bog +...+ Db &, for
some n,m, where this scheme is equipped with initiall conditions
at t = 0. ¢

The analysis below of the ﬁehéviour of the Cesaro sums on the
left of (B.l) will, in each case, involve three steps: first we
show the effect of the initial conditions is asymptotically negligible,
second we prove the existence of a limit for these sums by considering
the Cesaro sums of finite reéressions and then lastly we ‘provide

formulae characterizing these limits.

I
< e i b, b P e s = i et et st e
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[W WEI

terms

We begin by treating the stochastic terms ai)pear:i.ngq ixpx.the 2 x 2
sub-matrix appearing in the top left"position of the 4 x 4 matrix
appearing inside the limit in (B.1). .

Clearly we only have to deal with terms of the form

N b(z)

N
2) w]t 1) s]t and til (aZ w]t v .

b1 Lo
2|

’ the other two terms being treated by identical arguments, gince the w
and € processes jointly satisfy (II), (III), (IV).

(Here we have dropped the subscripts for simplicity of notation.)

In order to demonstrate the asymptotically negligible effect
of the initial conditions we can treat both terms simultaneously.

We shall let v, in the second summand denote either e or w.

Since the ARMA systems above may be realized via time invariant
finite dimensional linear state space systems,the response to the
- initial conditions may be described by the addition of terms of
the form Htho, H Fx . Taking the realizations to be minimal realiza-
tions the asymptotic stability of a(z) and d(z) implies the
asymptotic stability of F and F. We shall represent the input
response of the ARMA systems in question by their associated Markow
matrix sequences denoted {MO,Ml,.. . } and {l;lo,b_il,...} respectively.
Then we obtain the follcwing description of the corresponding Cesaro
gums appearing in (B.1l):

1§ (] Y )( ] M HE x ) (8.2)
= ( w + HF x v._: +HEFx .
- k=oMk t~k o j=o0 -j t-3 ~o .

-




g

1 i ( t “l
HFx)(HE‘ x ), Z(HFX)IZ_ _s] and
Nia ' § jho —3 ] ¢
i bZ] [szw Hth go to zero a.s. as N + o«
N t-k! = S g9 .S. . ‘
t=]l k=o N =S .

. As to the second we observe that, since in either case v is an
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Now the initial condition éffects decay if the.terms
J

Again we gee that it is sufficient .tc treat the first and second

of these initial condition terms. The first term evidently

converges to zero a.s. since for some a, 0 < a < 1, K(w) > 0,

IHtho | < K(m)ctt +0 a.s.as t + « and Asimilarly for _H_fl:_‘_t;go.

k

ergodic process ‘with Elv | < = and since |M | < In" for some L > 0
& .

anda, 0 < a< 1, the sum I M.v is bounded as

. h jmo ) Ve- J
I M.v, .| < L_E ujlv_.l < L Z al|v | where the latter majorant
juo—J t-J - jao t i - Jso t-3J
1 ) .
is an ergodic stationary process with E(L 2 o3 Iyt_jl) < 15 Elv | <=

J=o0

Call this process u = {ut,t = ...-1,0,1,...} and for any € > 0

take K = K(w) so that IHth (w)] <€ for t > K. Now split the
sum 2 (HE"x ) ( I M.v, ,) at K and bound it by
N t=1 j=0 j =3 .
1 Ko ¥ (B.3)
5 }: ny| HFE x| +F tzl( Uy € . \

. \

In this expression the first term goes to zero a.s. as N + » and

the second convergesa.a.to Eu_e. Since € was drbitrary

the convergence of the second initial condition term to zero

a.s. has been established.

We conclude that in each case the difference between




[P
e T

o e e ——————— o —— 4= ‘ - - [ L P T

: L 2 [—r-T’;‘:’ . L&Y VI, (B.4)
and
L] i
= ( w, ) ( M B.5
N ta1 k=0 ek j=o0J 3 : : )

converges to zero a.s. as N + « .
It remains to show that the latter expression converges a.s.

as N+ o« . We do this by showing that the difference between

-

this expression and

tsle( kZOMkw -x) ¢ jZOijt 3 - (B.6)

2=

. can be made a.s. less than any € > 0 for all N > Ne(mi for

sufficiently large fixed K > K- Now %ﬁis difference is equal to

N t t

1 .
5 z w v '(B.7a)
, N ¢a1 k=12<+1 i) k-x+1 Vi) ‘
L ¥ 3 ]
« Ly W ) v, )" B.7b)
R B s L ’i'k t=k (
L ? § ) IZ( ) ‘
+ = ( W) ( v._ B.7
N op21  k=K+1 ek k=0 BVe-x (B.7¢)

(here upper bounds of sums are taken as 0 whenever t < K+1)
So it is sufficient to show that (B.7) can be made less Zhan € a.s.
' whenever N is greater than some Ne and K is greater than some Ke .

« For the first term (B.7a) we have the bounds

LRI
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, - S
- I ) (‘
PR i
by ( - w - )( v ) - - °
Ng=1  k=k+1 ¥ K ‘yaga Her)l \
‘ .
1 ‘f ‘E’ k| ‘ Tk
< = (L a |w,_ (L . a |ve_ ) B.8
N pa1 k=K+1 -k’ 0= k-12<+1 ol t'kl (B.8)
K+l K '
< 2a 1 o +l g Mo ¥, a.8. for all N > N, (w) . (B.9)

This follows since each of the processes ué{ut AL .} aklw
k=o -
)

ard u A {u, =

0

L™} grlvt_kl ,» £t > 1} is ergodic and so consequently
k=g

is their product . The average of this ergodic product process

‘converges to a finite quantity a.s. since

i

Tk .
E = L L E( a, jw, _|)( a Ve o)
LB By L kzo 'tk‘\‘kzo | Veak !

o L]

= LLE( } of oI .
= j=0 kzo @ lwp il TeeyDd
5 © @ K 3
. =L L aa” Elw_. | |v ;|
'—kzo j-X-o k 3 ‘ .

‘ : %
=L L 1 L Elw |} [Elvg|T)< = .
(l-a) (1 = a) '

Since (B.8) must remain less than, say, twice the modulus of 'its

limiting value for all N greater than some random ~N2(m)- (dependir_xg \‘ .-

2K+2

upon the factor 2) we get the bound (B.9). Since a + 0 as

K + «» we have established the desired property for (B.7a) .

The terms (B.7b) and (B.7¢) are obviously similar to each

other.and so we shall just deal with the first gtch term (B.7b):




. 2 vt i

' -99‘-'- ' ' . . ‘
- - o
-

.
2

1 N K Tt '
<. - by 202 Moved (L vy

k=K+1 1 .
' ¢ . .

»

{A
Zj=

N / K ") - 2 .
k K+l ,

K
< 285 e | Sl rud <2 ey <w (B.10b)
=0

a.s., for all N >N'2(m) by the ergodicity of the two,process in
(B.10a) . The bound in (B.10b) can evidentally be made less than

’

a'rbitrary e > 0 for K suitably large.

(
Since we have now demonstrated that the difference between
" the two expressions (B.5) and (B.6) can be made a.s. arbitrar}ly
. small (in the limit as N+ » ) by increasing K we may obtain the
limit of (§.4) via: the evaluation of the limits (B.6) for pach K.
. To do this we must distinguish the two cases v = w and v = ¢,

First let v = w; exchanging the finite summations in {B.6)

’

and letting N + «» vyields ’ -
"1 N K K . ) ‘ "
;._j;n; N t-znl (kzo MeWe—x) ¢ jzo Mowe y) . e
' = § If M M lim 1 %1 w w’ ;
k=0 j=o RS t=max(k,3) t'k't'j i .
b ' ‘ . ~
= lf IZ{ MM a?s a.s. 01<kj<x Y]
' k=0 j=o * ] k.3 B
. x .
by the ergodicity and orthogonality of w. ‘ e,
’
O ) v ) ‘ 1 .
) ’ : | ‘
. . .
» a ]

R P = - o . - -
AL in ks 4 ¢ .
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‘} . But (B.1l1l) may be written '
2n ) ‘
K , K .
1 [ ike, 2 -ij@
) e 7)ot (] M, e *I%ae (B .12)
. 2T k=0 M'k j=o -3

(o]

and the limit of (B.1l2) as K + = is given by

21 o g )

ike, 2 . .0

1 % (¥ e Yol ( -ij
e 37 f k=0 “x o My e ™ )as
: ‘

: ’ Y T“ bl(eie) cl(e-iG) 2 ' =
t = pong 5 de “,/ -13)
. 21 5 al(eie) 4, (e lgx

because of the uniform convergence over [0,27]of the partial sums

X ike b, (e'f
) M e, etc, to ———y4— ,’etc. We conclude that (B.13) is
k=0 ‘ (e™")

Rk

[l v

'the a.s. limit of (B .2) .

SRR

In case v = ¢ thekjoint ergodicity of w and € and

L s s 1 b(z clz
« their orthogona{lty vields 0 as the limit of 5 tzl [E%E%]t [a%i%]t .
* .

+ In the remaining case where both processes are identical ‘to £ we
i
%

)

" bz(eie) c, (e’
18)

2 dé , as "the appropriate

obviously obtain i- "
27 -18
5 az(e dz(e

limit.

*
b "Y* * %
- The [:-:y 1, [yw,ye] terms
The mixed stochastic-deterministio Cesaro sums involving w
%*
or ¢ and y need to be treated in a slightly different manner to

1

~ the joint stochastic terms that were examined above.

We first n;ed to show that o
N t t )
1 ) t * t
S (] Mv,_, +HFx)( | My .+HPFx) . (B.14)
N 121 k=o t-k 07" jmo 2l = %o

differs from
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N ot t .
(] My 0L Move 5) (B.15)

t=1 k=0 jmo 3 3
’ T

21—

/
by less than ¢ > 0 a.s. for all sufficiently large N. Here

{Mk;k > 0} is the impulse response (i.e. sequente of Markov matrices)

b, (2) b, (z) e, (2) _ ©o(2z) .
alﬁ) ’ 32(2) v &1(2) ’ or\a;z-a— resgect;vely and the asgo-

of

ciated v stands for w,e, w or ¢ , as appropriate.{gk;k > 0} denotes

c,(z) b,(z)
the impulse response of Iy °F 337-;5- as appropriate and
3 3

HthO and H F_tio denote the appropriate initial state response
represented via minimal realizations Af the corresponding transfer

functions:

*
By (VI) the sequence y is a.s. bounded and we shall denote

R *
this bound by |y |, > 0.
Following the argument used in the previous case we see.
t t
that since HF yg(w) and H F X,(w) + 0 a.s. as N~ = we only

> t
need to show (see (B.3))that the sequence of sums Z Mkv '
k=0 ¥ £k

t > 0 is bounded by an ergodic process and the sequence

t »
)) MY 4.kt 2 0 is bounded. The first case, concerning
=0
stochastic sequences, has already been dealt with in the previous
case. Since l_n_a_jl <L gj for all j > 0, for some'L >0, 0 <a <1
. .

*
and since |y5 | <ly |, for all § > 1 this is evident for se-

quences of the second type.

Having verified that (B .14) and (B.15) converge to each

other we wish to check (B .15) and

( M
N =l kﬂoMkVt-k =g -3 Y t-j) ‘ ‘ (B.16)




O

can be made to differ by less than any given ¢ > 0 for all
N >N (w) for sufflciently large K depend:.ng on ¢ .
This reduces to examm.ng an expression of the form

*
(8.7) when the appropriate substitut:.ons in (B.7) (w »v,v +y )

t .
have been carried out. Bounding ) M v, by the ergodic
k=K+1

K1, a1 7 o | and boundi 5omy

process o u_ A o v, _ an ounding g M.y ..
t k=K+1 t-k . j= +1 3% €3

Iyl 4y

by L y <L - y yields the bounds:
k=K+1 ~ - 2 ®
N t t

Zi-

| & MYk Z 1'ik Yt-k) |

0]
t=-1 k=K+1
(B.17a)

an’ .
< 2 ahEn) Ly vl

’

for all N > M (w), with this bound converging to zero as K - = . Next.

N
1
5 ( Vo) Yeor)
thzl k,Zkatk “!;Mktkl
N
k K+1
1 Te T o®lv L[ a LZ«II
£ Nt=1 kwo e=k T = K=o
| Lly .
< 2 B(L zalvkh : o< ., (B.17b)

k= 1 -2

a.s. for N > M'2 (w), with this bound going to zero as K + '=.

And finally ‘
L) O mu 00 ) myl Ol
N pa1 k=k+l Ktk t-k
. :
< 2 of? (Bu,): L lh: ;_" tB.17¢c)

a.gs. for N > M'3 (w), where we have used our usual argument for the

first term.
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We are now in a position to evaluate the limits of (B.14)

by evaluating the limit as N + » of the Cesaro sums (B.1l6)

Exchanging the finite sums and taking the limit as N + = | yields
4

N K ' K

- 1 .
lim = } ( v. 00 T . \

N +® N t=1 kzO Mk t-k jso -3 Yt-j

% K K | 1 N | )

- fkmx‘kcj)

The indicated limits on the right of (B.18) for each k,j are 0;

this is shown by the following application of Lemma A.l:

{v *

t-kY -3’ Gt-k’ t >max(k,Jj)}

is a centered martingale difference process with -

o ' o
1 2 ) Tl .2 2 %2
E(v, .Y, )76, 1.y < max(c,u )|y | <=
t=max(k,j) ? t=k” t=] t-k+1 — t=]1 :I %
' , . ﬁl N N
consequently, 1lim ¢ - ¥ Ve k¥ tes 0 a.s.
N+ =" t=max(k,Jj) J

Letting K - «»° in (B.18) yields the limit O for all the Cesaro

sums in (B.16)" and hence in (B.15) and (B.14).

The Y*Y* term;

The fact that

N b3(2) - C3(2‘) * K N * *

K..
(2 71 vl .1 vy -3 M. ( )}
N tzl ay{z) * ¢ @+ TN kzo jzo My tmnza: Oc'j)y't-kyt-:‘

can be made arbitrarily small for suffi'ciently large N and K s
verifi\ed by an obvious simplification of the stochastic-stochastic
and stochastic-deterministic analysis given above .(The bounds obtained

via the ergodic theorem are replaced by such bounds as

»
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¢ BEOE ey

T

(1 Y, )t X MV, ) |

t=1 k=K+1 =K+1

K+1 K+1 ) + 0, ag K =+ o, etc.)

L *
< = v |,

N ¢ L *
< E o (T_T!"Y |m) (_05

Now by virtue of(VII ) and the theorem of Herglotz

Cf o b e
. MM (= L)
k=0 j=o r=j N t=max(k,Jj) Ye-k¥ -3
x X Y i
. -i(5=k)6 . % 19
) I MM 3 f e +Yd dR (e™") a.s. (B.19)
= i= J L ' ‘
k=0 Jj=o0 A
But £
27 K i K
. k6, % 18 -ij8
lim I (] e ) dR (e™7) ( M. e )
RK+w 2T 5 k=0 Mk jZO - -
L bt o o™ ‘
: ket e
o °3 3 '

by virtue of .the uniform convergence of the partial sums in the
integrand on the left of (B.20) to.the functions appearing in the

integrand an the right of (B.20).

oo

At this stage we have verified the equation (B.l) for the

top left hand 3 x 3 sub-matrix of the 4 x 4 matrix appearing in

., that equation.

“

It only remains to deal with
- .

*
The terms involving [wz,e2,y z ]

—~—— ——

We proceed as before, starting from

O | /™

i
PR - o e e o i A A e M e s 8
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N t -/
lz ( 3 Mv + BFTx ) ( 2 + H FSx ) (B.21)
N t81 ko t-k ° S0 3 t' == =0
where v =w or g .
- .The principal property of the z process is of cburse that
A % Z zt + 0 a.s. as N *+ @ (see 3.24) . In -order to dispose °
t=1 '
of the diagonal term % Z (HF X ) (H F %o ) we naturally use the

- 105~ t /

t=l
asymptotic stability of F,F.

To get rid of the cross term

oy t
Z (uF* x ) ! M.z, ) (B.22)

t=1 j=o0 t-3

2=

we use seqience of inequalities

Il Y(HFx)( '{Mz

t=1 j=o0 7 *7J t=1 j=o0 t=J
] Ll
N t t
K L t 2 1 2
L 7 Z a Z QJ N ZIZt_jl
N t=1 jmo j=0
/'
L
RN K L = b % L s
: t 1 K 1 1
< —x ] «a 1 —§ . (B.23)
. ON* =1 [1-— EZ] N [ 1_,,7] (1 -a)
o
for N > Nl(w), where the third inequality follows from
t N ) .

1 z ‘ 2 1 2

= z, .| <z 1 lz;]°, for t <N, .

N o t-3 N j2,'3
with the last expression less than 1 for all N > N, (w). From (B,23)
we conclude that the expression in (B,22) goes to zero a.s. as N > « .,

\
) B 7 I e i e B IR NS, iR,
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Finally, to dispose of the cross term
1 N t
5 tzl ( « Mkvt—k) H §‘_ X, .We reason exactly as in the "(w,e)"
= =0
case t’;eated earlier.
The next step is to show that
S :
= ( Vo) Mz, _.) (B.24a)
LI T kT kak+l -k v
LYo j "
+ = ( v, ) ( z2, o) (B.24b)
N4 (LM U L Pk
Y N K
+ = v, _ ) - (B.24c)
N t=l 1c=r4<+1Mk ek’ el T ek

is such that given ¢ > O‘there exists Ke > 0 and Ne (w) > 0 8.t.
the modulus of (B.24) is a.s. less than e for all N > Ne(w) and

K> K_ (sums appear in (B.24) only when their limits make them'

well defined).

It is perhaps easiest to deal with the second term (B.24b) first.

K .
The process g\ A {;I,Z & I My it ez}
k=0

w .
<

is clearly ergodic and the term (B .24b) is of the form

1 ¥ JE
% y Ay ~rMJ - J) Majorizing this term by
t=1 J j"K+l
t—- (K+1) .
K+1, 1 3 .
Lo {5 tz Itct | ( j-z=o a Izt—j—(K+1) [V} we see it is sufficient
to show that the term in braces is bounded a.s. as N +~ » . However

re-arraging this expression it is seen to be majorized by (go from

columns and rows to diagonals in the appropriate diagram):

o p v s an - - [ U — - \ - -~
:
1
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N o0
P p .K
& N jzllzj’(x+1)l( pzo o le+p|) . (B.25)
. i K €xN p K ' B ' . '
But €50 1 a 654! + 3 = 0,1,... (sum over 'forward time')
- p=0 - P

is an ergodic process with finite first and second moments. Cauchy-

Schwarz applied to (B.25) yields the bound

N b} % \
L § |, lz’s Loy 5 2
= _ = 7 . 1. |Eg
W o5h 1%3- (x4l v L, o (B.26)
for N > Nl(w).
As to the third term (B.24c) we have the bound . .
N © K
1 z K+1 P k
= a « 3 La®|v,____ ) C ] Lalz._g )
N .5 p=o . t-p- (K+1) k=0 t-k
, 1 ¥ Kox
and so it is sufficient to show that § tZ-l by k-Zo a [z g )

is a.s. bounded when u denotes the ergodic process

-]
! P g _ , . _
{p=o o ‘Vt-p-(K+l)| i t > 1} . But- exchanging finite sums
. . 1 .
this is seen to be true if 5 tzl “tlzt-k{ is a.s. bounded

-

w.,r.t. N for any fixed k.

1

This however is the case ,since,by Cauchy-Schwarz, this is bounded as

N 2 & E
1 y o < 2Euc2)l a.s. for N > N,(w).
Ntzlt

i

N

tzllzt’k!

¥ 1

N

2

Finally, we are relieved of the term (B.24a) by observing

, that, in analogy with (B.24b), it is majorized by

- N t- (K+1) . o
L™ " g Z lCt | ( jZo a ‘zt-—j-—(K+l) ) } where Ly B kgo M Ve et 2 1.

The term in braces is itself majorized by




(

\for all N > Ne' we may establish that (B.28) converges to 0 a.s.

R e
" and z,and ¢ and z,converge to 0. The y z term constitutes 1

R
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e
N o0 ® i
£ )« .
5 j,z.llzj-(K’fl‘)“ pzo & t5pl ) (8.27)

which, in turn, is bounded as in (B.26) with 5K replaced by (an
obviously defined ) Em .

The upshot oOf all this is that (B.21) is approximated a.s.
arbitrarily accurately, for all sufficiently large N and all
sufficiently large K, by

5 bit IE( ) If (B
1 ¢ - v ( M.z __.) .28)
N 5 kaoMk RS _ y

Exchanging sums, ag in all the previous cases, and then for arbitrary

e > 0 usiﬂiﬁ

* € a.s.

2
< [2E vo

as N+ » ., It follows that the same goes for (B.21)

This establishes that the Cesaro sums in (B.1l) involé?ng w

an easier version of the "v and z" case.

The [zz] term

To show that the initial condition influence in

1 N E t E t

= ( z,_, + HF x_ ) ( M.z__. +HFx)

N g=1 k=0 ek ° j=o 4 ¥71 T =70
decays to zero a.s. it is sufficient to show that




W ———
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N t
L 7 artx ¢ ! M.z__.) decays and this is true since it is
bounded as * & . .
¥
N t . L N N
K (w) Z t j ' o] 1 a3 2
o (L allz_.|) < K(w = [ .1l z,
N t=1 jmo — = ¥ - —ed N quwl “jzo Jl
- l N 2 “
here the last term decays since 5 ¥ lzjl +0 a.s. as N + » ,
j=o '

i

We then have an analysis of the familiar terms in (B. 24)

with v =-z. By the symmetry of the expression we need only treat

the first and second expressions. The second can be seen to

converge to zero a.s. if
N K . t- (K+1)
K+1 1 j . o
o § L 1a 2.y ! « 24 p- (k+1)) d0eS (Where sums make a

t=1l Jj=o p=0
- contribution when upper limits are not less than lower limits

and terms make a contribution when subscripts exceed 1l).

But this expression is seen to decay if

t- (K+1)

% tzlzt—J ( oL 3pzt-p-(K+1)) is bounded a.s. for each
J»L <3 2K This is true since it is bounded by

If of (L ? z, . z )which is itself bounded by T @.ﬁ'z

pmo = N yhy Pt-3 ftep-(kel) Ta (W 2

This last ekpression goes to zero a.s. with N.

]

For the analocg of the term

to show that

1 ? t*§K+1) k ) (t-§K+l) j - )
= ( a2 a’ zZ, .
N i21 k=0 t-k- (K+1) j=o = “t-j=(K+1)

is a.s. bounded.

212
qi Y

(B.24a) it is clearly sufficient

e - il o kot ki,




o

g ¢ e SR, v T R DGR PR

- ) e TRV X 2

£ -

R

&

S

WA AR 2y e
N

[ o

-110~-
Some combinatoric labour is required to find an appro-
priate bound for this expression. First, we bound the ex-

pression by taking the norms of all the terms and by replacing

@ and @ by o such that o ~ =max (o, o). Second, we

%tiply together the terms of the two inner summations. Then,

we replace the summation over t, t = 1,...,N, of the

q .
o |z1__+pzt | terms by a summation over the powers of a_,

m

q=0,...,2N. It can be seen that for each power g of Qo v

the maximum number of pairs of summands of the form lzt+p ztl p
for some fiﬁite p,; is always less than orequal to (g+2), for
each t, t = 1,...,N. This comes from ;the fact that for some
fixed t = K+1+r we have only powe;é. of %n less than or
equal to r; hence, the number of |zt +p ztl terms of some power
g is equal to the number of pairs of positive integers < r which
sum to g. This number is clearly < (g +2) for any r, for some

fixed q.

Thus, the expression is bounded by

2N N N~-p .
1 2 1 R
I oo 05 T lzgl+ @2y 5 [ lzy 2410
geo ™ N 43 N 2, Tivp Td
. ) i
and by an application of the (éuchy—Schwam inequality we see
N - \
that %‘f ) z;?' +0 a.s. as N + » and the summability of {gaZ g > 1}
i=1

gives the desired a.s. boundedness property.

This having been established we can exchange limit and finite
sums in

N K K
Zl( j£o M52y (kzo B e

2=

t

to obtain the desired limit O for the bottom right term of the matrix.

0}

a

W win
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APPENDIX C

+Lemma C.1l.

Consider X(t),¢(t) and r(t) defined in (7.6),(7.5) and
(AM 2); then
(@  Trixe)Txe)] = peerTe(e)
' m)  rrxw AT = aTa seTe

= % AT A Trixce) xee)F

for any p x 1 vector A
o

g .

; ) ) TE(X( 3-1)7%(3-1)] . .

; jan+l r(j-1)%

] 0
Proof.

(a),(b): these results follow directly from the definitions of

-

, ' X(t) and ¢(t). (It should be noted that these results
do not hold in general.)

Tr(X(t-1)"X(t=1)] - Trx(t-1)T X(t-1)]

rit-1)° r(t=1) r(t-2)

4 (c)

< rit=1l) - r{(t-2) - 1 - 1
- r{t-1}r(t-2) r{t=-2) r{t=-1) °

® . T : ’
Hence, po Im(x@-b) xéj'l)] < L e
: j=n+l r(j=-1) r{(n=-1)
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£

Proof of Theorem 7.2

Part l‘-

In our derivation of the multivariable version of the
adaptive control algorithm, we obtained/ the following equation J/

(see (7.7)):

T *
C(2) [et+1-wt+l- e, ] = X(¢) 8 ~[¥ey1 * &} (C.1)

-

where X(t) and 6_ are defined in (7.6) and (7.4), ‘and e, 8 ¥, - ¥

is the control error. We now definethe p x 1 and pp x 1 vectors:

Y

.

(C.2)
(t) A 8(t) - o § (€.3)

Using these definitions and equation (AM 3) of the algorithm,

-

we can rewrite (C.l) as /
o= : ‘
C(z)z, = -X(t) 0 (t) . (C$>.4) .
and we remark tixat as in the scalar case, z, is G,c measurable.

1

We also remark that by the asymptotic stability of C(z) ~, the

initial conditions of (C.l) can be neglected because their effect

decays geometrically. .
Part 2.

In this section, we establish the important property
N
1im i ) 'ztlz = 0 a.s. In the analysis to follow we take
N+ o N t=] o
£ >n+l, and note that all the required initial conditions

have been specified.

a
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Substituting (AM 3_) in’ ({AM 1) we have: .

o(t) = 8(t-1) + ey Xeelileg- e g1 (c.5)

<

~  ma S . .
Let  V(t) A 6(t)"6(t); then frome, Ee_1=(€mgp_1 " W) + we

. <
we obtain

V(E) = V(1) + 2R f(e-1)TR(E1) [ mwy =gy ;]

2a__ = T
+ TEe=1T 8(t-1) "X {t-1) [Wt]

rd

-2 - ' s

a ’ T
4+ ——— Tr{X(t_l) [(e -c - )(e - & - - )
T « S B R S
+ 2w (e, - e -w)T 4 wow ] x0T (c.6)

Writing b(t-l)? _L_\_-é(t-l)T X(t-1) and taking conditional ex-

pectations in the above equation , we get

2a T
EV(t)th_l) = V(t-1l) ~- m [ b(t=1) zt-l]
) + 2’ z, L 2 ¢(t;l)T¢(t-l) -
r:(t---l)2 t=1 el . :
+ -1-—--2-52 TEr (6 (t=1) "¢ (t=1) ] C(e.
r{t-1)°".
vfhere we have used lLemma C.l1 (a) and (b), hypothases (M4) and (MS), i

and the fact that z, _, is Gt-—l measurable.

Comparing to the proof of Theorem 3.1, we see that (C.7) is an

obvious generalization of (3.15). Therefore, after the same mani-

pulations as in the scalar case ((3.15) to (3.22)), we obtain the

0

important\“ near-super-martingale” inequality:

N




I - ey e PR

¢

ap 2
Ez(t)|G._,) 2 2(t-1) - ¢ 1) 12e.4]
~ ;2 2 ‘
+ ———— TrT 1o (t-1)1 {(C.8)
r(t-1)
’ S(t) 2a s T
a . -

where Z(t) A v(t) + ;.‘-Tl-::i—)-é' v(t) + -I‘—(-E:'FIT j-g.‘.l h{j-1) zt-l + K, t>n+l

hit-1) pbit-1) - 238L 5 = @) - @31 15

»

and where p is a small positive constant chosen so that
[C(z) - 1EJ%QL 1] is posditive real. The existence of such a p
is assured by hypotheses (Ml)b and (M9) (see Remark 7.1), and

from Lemma A.4 of Appendix A S(t) > 0 for all t > n +1.

Lemma C.1l{((a) and (c)) tells us that

o

~-18

£

a 2
e Trl 1 ¢(e-1)1
| j=n+1 r(t_l)z

, ® -2 €
/ = ) a ) TeT Tr(X(3-1)TX(§-1)] < = .
j=n+l r(t-1) P

Therefore, we can apply the martingale convergence theorem to

(C.8) and obtain (note that pa ¥ 0):

Z(t) + Z(=) a.s. as t*® , with E[2(»)] < =

and 2
Iz, _,!

t=1 r(t-1)

< ®© aQSQ (c‘g)-

Our objective is to establish the important relation

N

lim: J 1212 = 0 a.s. (C.10)"

N+ ol ¢=1 ¢

. SR -

PO it hewnl T r e rvv}%«m
. s
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5T TR WA TS W et o v v = e

(} As in the scalar case, we have to consider two cases depending
upon the behaviour of r(t) as ¢t + » , and divide the sample

space {l accordingly.

—

(i) Let H= {w € -2 : lim r(t)<o };in that case, an argumenta- -
t‘*m

tion identical to the one used in the scalar case (we
refer the reader toe the proof of Theorem 3.1) shows that
‘ lim IX(t)l2 =,0 and 1lim sup la(t)l2 < o a.s. on H.
tre t+ -1
Henfe, from (C.4) and the asymptotic stability of C(z2) ~,

|zt|2 + 0 a.s. onHast+%g and 8o

1 N 2 :
lim & ) |zt| = 0 a.s. onH (C.11)
N -0 t=1

as required.

(ii) Let H'= Q \ H; in that case we can apply Kronecker's lemma

to (C.9) which yields

N .
1 2 »
lim y 1z 1 =0 a.s. ong . (C.12)

New TV o) Tt

- o N N
We show in Pa?t 3 of this proof that liﬁ_}gf F160 >0
. a.s. on  from which we conclude )
1 ¥ 2
lim % ¥ Iztl\ = 0 a.s. on H' , (C.13)
f ) N=+ x t=1

‘The relation (C.1l0) has now been shown to hold a.s. on § as required.

A

Part 3.

2

v

For this part of the proof, the reader is referred to the

proof of Theorem 3.1, thélowly difference in the multivariable

O °
[ Q
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case being the replacement of (-)? by 1-3% for all the processes.
All the arguments are’still valid; in pa:ticular, Lemma A.S of

[21]) was proved to hold in the multivariable case in that reference.

Therefore we have

lim inf
N>«

w7 > O (C.14)
as was required in part 2 of this proof. This in turn implies that

rN) < o

lim sup N a.s. (C.15)
N+ - -]
and so from the definition of 1 (N),
N
lim sup % ) Iytl2 < ® a.s.
N> > t=1
N .
lim sup % ) lutl2 < ® a.s.
N+ = t=1

The proof of the asymptotic stability of the multivariable

adaptive control algorithm is now completed.

We will show

in part 5 that these limits exist and give their complete

expressions.

Part 4.

I

1

/

The (asymptotic) optimality of the algorithm (7.28) can now

be easily derived.

we have:

From the definitions of e(t)

~

\

and z(t-1)




/md the asymgtotic optimality of the algorithm is now established.

w
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l * 2 ~
lim = ly, -y*l
N> oo N t-zl TemYe
¥ N
1 2
= 1lim £ ) Iz +w, + e, _,1
N+ o N tsl t-l t t 1
= lim % ?I[lz 124 tw 1% + 1, 12
N o N 2t Fe-1 t t-1
T . T T '
+ 2 2oy We ¥22zp g8 1+ 2w et_l] . (c.16)

2=

N 2 .
1z 19+ 0 a.s. and so
t=1

N N 5 N 3
T 1 2 1 2
tzlzt-l -1l 2 [ﬁ tzllzt‘ll] E«' t£1 'Et-llJ

+ 0- [Tr M]® =0 a.s.

)
But we have proved that

Zir-

as N + o by hypotheses (M2) and (M5);. the same is true for

the 2z Tw term. Also, we have by (M2) and (M5):

t-1 "t
N
1 T T '
lim$ ) w. e _, = Ew' = € __
N N o2 Ve Fe-l t Ce-1 -
- = E(Ew,T e,_,| 6,_)1 =0  a.s
t t-1' “t-1 i

Hence (C.16) is reduced to

1 ¥ 2 |
lim & ) lyt - ytl = Tr [ + M) a.s.
N+ ' t=l

!
’ )
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Before going any further, we point out that the
assumptions reqﬁired to prove only the, stabilization (in
the sensé that the inputs and outputs are sample mean square
bounded) and asymptotic optimization (in the sense of (7.28))
properties of the algorithm (i.e. adaptive control without
simultaneous identification) could be slightly relaked. In -
particular, ergodicity of w and ¢ is not necessary. We refer
the reader to the statements of theorems 3.1, 6.1 and

corollaries 3.1 and 6.1.




i

Part 5.

In this part of the proof, we establish the important per-

sigtency of excitation property. As mentioned in section 7.2

(see the statement of Theorem 7.1),this condition is of the form:

.

N
lim ¢ J Tt =R >0 a.s. (C.17)
N+ t=1
where
I T T T T T T
¢ (t) = (‘ft.'...,-yt._n'.'l' ut,...,ut_m, wtfnoucwt_z-'.l) p y l
(C.18)

(recall that p A (n+m+1+4)p).

We will use the proof techniques of Lemma 4.2 and Theorem 4.1.
It should be noticed that Lemma 4.1 can be directly generalized
to the multivariable case. (To see that, consider the processes

component by component. Then the arguments in the proof of

Lemma 4.1 concerning the asymptotically negligeable effect of the
initial conditions and the existence of limits for all the Cesaro
.sums are directly applicable, taking into account hypotheses (M3}, 1

(M4), (M5), (M6), (M7) and using result (C.1l0) of part 2 of this proof.)

Since by (Ml)a det B(z) # 0, |z|] < 1, we can write:

—— * -—
ut=B(z) lA(z)[yt+l + zy + st] + B(z) l[A(z) - C(Z)]wt+l (C.19)

e ek A s Ribshe et

where we have used the system equation and the definition of Zg.

Now, decompose ¢I(t) into the sum of four vectors:




(m+l)p

=

-1 %
B(2) A(2)Y,

B(z)-lA(z)y:_mﬂr B(z)~
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——  ge— m—— —‘ \ —
“Ze-1 vt \
“Z¢en H"t—-n+l
B(z) A(z)zt Bz) [A(z)-C(z)] Wiy
- + E
1l
‘Am)thm B(z) [A(z%4ﬂz)] Wi
0 .
0 T
= ] i ha——

Applying (the generalized version of) Lemma 4.1, we get:

lim
N-+ =

= lim
N =+

+ lim =
N+ ¢

R

It is then

Z—

2

I
1

N

T eT(treT el =
t=1

Z¢(t)¢()
t=1

N
1 N
5 21 4 t)¢>4(t)

I I
+ Ry + Ry .

RI

T

+ lim
N+

AL

2¢ (t)¢> (t)
N o 3

easy to generalize the results of Lemma 4.2 and derlve

the limit expressions (7.26) and (7.27), where (Rl)0 0’ (R3)o 0,

, and g

, and B.
ay and By

(e.g.

(R )
=170,0 o

=lim ﬁ-Z Ytyt

=1

*T

are the (p X p) matr1c1al analogs of (Rl)0 o,

, B(2) -1

A(z) = Z a.z” ,
5=0

( 3)0’0I

] etc.) .

e e et i
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In view of the proofs of Lemma 4.2, Theorem 4.1 and

Theorem 6.2, we see that it is sufficient to prove that
N

. 1 I I T I
Mg 4 Nl:il N tZl bag (B oy (8)” >0 a.s. to show that R™ > 0
a.s., where
I T T -1 T -1 T
¢4S(3:) = ( E:t_l,..., Et_n,(B(z) A(z)et) reseys (B(2) A(z)et__m) )

(C.21)
is the shortened version of ¢i(t) where the last £ zero vectors

are omitted.

Diregtly generalizing the scalar process case, we write

2m
1 . i@ -ie,T
MF = 3= I E(e™") dl"e (8) Ee )
0
r~ g
..I '
-eieI
2T
- - - _‘ 3 «f
= %‘-ﬁ' I : r E feee =€ 1(n 1)eI,S(e le)Tele,
0 i(n-1)0 ‘
-e I s s .
{6 -io B T e“’]de (C.22)
S(e e
eimes(eie)e-ie /

where,E(ele) is a pn+m+ 1) x p matrix implicitely defined in

the equation and S(e’?) & B(e'®)"1a(e!®). (Recall that aF_(e) =T ao

from hypothesis (M5).)

Clearly Mg is necessarily positive semi-definite; it v{ill be

positive definite if and only if
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2w
f N et reEe*%Trae =0 (C.23)
)
for some X of dimension p(n+m+l) x 1 dimplies A = 0. This
is what we shall now prove. By positivity and continuity (C.23)
implies

AT EEer® T EetHT A =0 Vo e[0,21]

which can be written

-

. . ' . *
\[AT eer® /2 Teel® 27 = 0, wee (0,27)

since I' >10. (* denotes the complex conjugate transpose). But
. .
for any matrix P, PP = 0 implies P = 0, and so we must have

AT gt = o Ve [0,2n], (C.24) .

To facilitate the manipulations hereafter we define the

P X p(n+m+l) matrix A , composed of p copies of J\T, as in

A

A _A_ { Al!Azl"'l An+m+l] Y p times (Q.ZS) '

H s 3

A

where each Aj is p x p. The p-fold copy of (C.24) is then

written in the form
ie ‘ ,
AE(e™) =0 Voe [0,2n] (C,26)

where the right hand side is a p x p matrix of zeros. Computing

the product of matrices on the left hand side, we obtain

i i(n=-1)86 imeg ig,-1
-Al-Aze - Ane + (An+l+"'+An+m+le }B(e™")

Aet®)e™® = ¢ Vv oe[0,2n] . (€.27)

~ VI s P -

-ty




Let us define the p x p polynomial matrices

ie i(n-1)6

x(el®) = Ay + Age (C.28)

+‘O'+ Arle

and .
ig

Y (e imé

| 10
) = An+1 + AI'H'Z e + ...+ An+m+le (C.29)

so that (C.27) becomes

x(e*®) = vl Be!®) " taet®e™® wo c0,271. (c.30).
Now, consider the rational transfer function matrix

H(z) = B(z)-lA(z); H(z) is not necessarily proper, but it is

irreducible because A(z) and B(z) are left coprime. We also

know from hypothesis (M8) that A(z).and B(z) are row-reduced,

i.e. A and B, have full rank. Therefore, the matrix M(z) = [A(z)B(2)]

is also row-reduced and v, =m, 1 < i < p, where:

vy = the degree of the i~-th row of M(z).

and . ‘
m A max(n,m).

, We know that there also exists a right coprime matrix

1

fraction description (m.f.d.) of H(z) equal to N(2)D(z) —, where

N(z) and D(z) are p X p polynomial matrices of maximum degree q :

= d i
N(z) = N° + le +..s +NCI z (C.31)
= q ’
D(z) -D°+Dlz +...+Dq z (C.32)
and where .

deg det B(z) = deg det D(z) = pm. (See e.g. [43].)
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u <

CE {Notice that since H(z) is not in general proper, its McMillan
degree is not necessarily equal to deg det B(z) = deg det D(z).
wé also emphasize that it is sufficient for the purpose of this
proof to consider the general casg‘max order [N(z)] < q and
max order [D(z)] < g, without ény specific congtraints on q.

' However, it is clear that q > m.)
Hence, we have the equation ) .
B(z)N(z) - A(2)D(z) = 0 +(C.33)

‘As in [47] (see also [48]), equating the coefficients of the

various powers of z in (C.33) yields the equation:

[BO’-AO’BI'-AI’...’BE\' -Aﬁ]sa"'l = 0
where
No Nl ceven Nq 0o .... 4@
Do Dl ..... Dq o .... O \
- 5 - 0 Ny .eeewoen R0 .0 2k block rows

0 Do ss s e s Dq 0 ...0
O "o s e s veoe 0 NO e s aiNew oo Nq
0 " ® 8 0 e 0 Do . & & 00 8" p e Dq

the so~called generalized Sylvester resultant of N and D of order k.

fUndefined Bj's or Aj's when j > min(m,n) are taken to be zero.)

It is shown in [47] that

1

rank S, = (2p)k - (k=v, )
k {i=v£<k} i
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G where the vi's, the degrees of the i-;h rows of M(z) = [A(z).B(z) ],
are also called the "dual dynamical indices” of N(z) p(z)~ 1

Since v = m, 1 £1i <p, by the row-reducednéss promerty of M(z),

rank S- = 2pm -0 =2pm and therefore Sz has_full row rank.

This important property will be used later on in the proof.
(It is also clear that S, has full row rank for k < m.)
ig, -1 is

We now return to (C.30) and replace B(e” ") "A(e” ") by

‘N(e* e) D(eie)-l. The reader will have noticed that this transfor-

mation from a left (coprime) m.f.d. to a right (coprime) m.f.d., =~ =

=By B A TR S R A TR bR R SR

which is without loss of generality, enables us to rewrite (C.30)
in the more convenient form:
x(e*¥p(etel? = yv(elfNn(eth ve e [0,21] - (C.34)

El

5 T e e TTem i 12

It is easily seen, equating the coefficients of the power

ew6 on both sides of (C.34), that An+1 = 0 (because No has full

rank from (C.33) and (Ml)a). Defining the new polynomial matrix

WG SR LIS ST L

¥(z) = A, * A 21 (c.35)

n+3

...+
z + ‘ An+m+l

we have

i ib

x(eie) p(et®) = Y(e % N (e!?) or !

~
o

- v(e*®) ner?) + x(e!®) peet®) =0, wo c(0,2r].(c.36)

But, equating the coefficients of the various powers of eie

in (C.36) and using the previously defined S yields the equation:

R . [An+2' Al' n+3,A2,--., An+l+ﬁ‘l' Ai{ ]Sﬁ = 0

(where undefined Aj's are taken to be zero).

A

- d
I e i Il e - PO U ST
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But we know that S5 has full row rank, from which we immediately
conclude that ‘

Ay = A, = "',Anﬂ!wl =" 0

i.e., from the definition of A in (C.25), X = 0. Thus, &F is

positive definite and the proof of (C.17) is completed.

Part 6. :
%

(7.26),(7.27) and (C.17) now being established, a ginple

application of Thegrem 7.1 yields the last result .

lim 6g(N) = és

N+ o

a.s.

and the proof of Theorem 7.2 is co;npletea., o

.
£

#

<

E 4
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1

APPENDIX D

Lemma D.l.

1

Consider P(t) ~ and y(t) defined in (7.15) and (7.13);

P(t) can also be written 1

t T -1
P(t) = I v(v(d) j
j=1 o

Then, from the "matrix version" of the matrix inversion

lemma (MIL), we have: |
1

P(t+1) = P(£)-P{t) V(t+L)[W (t+1).TP (£) ¥ (£+1) + 191'

X (D.1)
P(E)W(t) = P(t-1)¥(t) [¥(t) P(t=1)y(t) + 1) (D.2)

T T, T -1
Y(t) " P(E)V(E)=y(t) "P(t=1) 9 (t) [Y(t) P(t=-1)P(t) +Ip] < I

P

(Notice: . . (D.3)

otice: right hand side is symmetric.)
P(E)Y (8) =R (£=1)¥(E) [T~ ¥(t) B(O)V (D)) ¢ (D.4)
. -1 } .
. Furthermore, if 1lim sup _T_g_:_(_'g)____ < o , then
- 0O
e T ROV . sy
. t=1 t
n g

¥ (£4+1) TP (&)
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Proof.

(D.1) is‘the statement of the matrix inversion lemma,

see for instance [43] p.656.

Let /q A P(t)y(t+1) [w(t+1)TP(t)W(t+l,) »{I]”1 . Then from (D.1)

P(t+1)P(8) L = 1 - gp(e+n)T

PP (8) T y(e+1) (v () Ty (2#1)] T = v (e+1) [+ T 7 - @
»

Q = [T-B(tH) (D) ™ -y (41 (+1) T wiewl) [ (641 Ty (ev1)) ™2

. Q=P+ 1) Utrl)y (t+41) Ty (+1) [ wed) Ty ey T

Q = P(t+1l)yp(t+l)

®
Substituting back the expresion of Q,

P(t+1) Y (t+l) = P(£)p(t+l) [y (t+1)TP(t)y(t+1) + 1] %

and (D.2) is established. Multiplying the above equality on the
left by w(Ell)T, the equality in (D.3)'is also established. To

prove that v (£)TR(£)¥(t) < I, we use the tensor notation and the
t

fadt that ¢(t)TM(t)¢(t) <1 when M(t) A [ ] ¢(j)¢(j)T]-l ; see [31],
C§ml .

equation (A.3) .-
From the definition of ¢(t) in (7.13),

t - S 1
P(t) = [ §J (I_®¢(3N (I_®6(3)7)) ]
i j-l P , P .

t T,-1
P(t) [Ip® I ¢(Ne (™)
=1

R _ P(t) IP®M(t') .
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S0, V() ROV (D) =(1, @ 0()T) (I, ® M(£)) (1, ® ¢(e)

¥

= I,® ¢(t)M(t)e(t) (a scalar matrix)  \
” " : ' /
. < IF,GQ 1 - )
= Ip \ N

e

and (D.3) is now completely proved.

To prove (D.4), we start from (D.3) and note that since
w(t)TP(t—l)w(t) is symmetric, so are

AT+ TR w0 ] and [T + p(0)TR(e-Lp(e) ]t 5

thus, taking transposes on both sides of (D.3)

1

V) TR e = (T+p ) Tre-1y0) 1L wie) T ce-1)y(e) .

Multiplying by =~P(t-1)y(t) and adding P(t—i)w(t)we obtain
POt-1)Y(t) [I - Y(£)TR(t)y(E)] = P(t=1)y (t)

- P-D) v () [I+p(8) TR (e-1)p(e) 1" Yo (e) TR (e-1) v (&)

ahd right multiplying by (I - ¢(t) TP(t)w(t))-l we obtain

P(t=1)Y(t) = [P(t-1)-P(t-1)Y(t)[I +W(t)TP(t-l)W(t)]-J'Wt)P(t-l)w(t) [I"!P(t)TP(t)‘#(t)] -1

Substituting for the first factor on the right hand side from N
(D.1) yields ’ \ .
P(e=1)¥(t) = P(£)¥(t) [T -~ p(t)TR(&)y(er] L

and (D.4) is established.

L
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In order to prove (D.5), we will use again‘ the properties

of the tensor product. The hypothesis of (D.5) is that

lixt::\_)gup %Tr[P(t)-ll <o , and this is equivalent to

1im sup %Tr[M(t)-ll < = Because TrlP(t)" 1] = p PrimM(e) "] . -
t+o .

Also,

! TH () BBV (E) ] = Trl(I_© ¢ (8) D) (1@ M(t)) (L @ ¢ (£)]
| P P L

: ‘ = ‘1‘r[Ip®¢(t)TM(t)¢(t) ]

=p o (t) ML) 6 (L).

T cau e R

But in [31] it is proved that if 1lim sup %— Tr(M(t) " ] <o , then
£ 0o .

a

Z -3'-:-¢(t)TM(t)¢(t) < = , Hence, we can conclude that

t=] ‘

’ I £Tr ()TR(0)Y(£)] < = and the proof of Lemma D.1
t=] '
is completed. ' 0
.
‘ /

1
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Proof of Theorem 7.1. -

Part 1.

.

Starting from the system eguation (7.11)
.

Y, = xI(;-l)T 5 + w

8 t

¥

and noting that in the expressidn for the maﬁrix y(t) defined

in (7.13) the innovations process w in XI(t) is replaced by the

residuals process n , we can write

T? S
Clzlwy =y, - y(e=1)" 0 + (C(2) - C In, (D.6)

°

since n, = y, - vit-1) T és(t) and C, = I, (D.6) becomes

= - T a
c(z)wt C(z)nt + p(t-1) es(t)

or .- :
C(z) (nt - wt) = - y(t=-1) es(f) ' (D.7{

where as before as(t) A 6 _(t) - . o

We now denote as in [31]:

A T <
8y = - y(e-1)7 B () (D.8)

= - 1 -1 &
Yo = ng - w, + 5 v (1) es(t) | (D.9)

where Gt and §t are p x 1 vectors. It follows from (D.7) that

clz) Iy, + 58,1 =qa, .

ih{f'

¢
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P

1

[C(z) — - ] is asymptotically stable and we

From (7.23 b),

N

can write (neglecting initial conditions whose effect decays

geometrically):

~

Yy

1

[c(z) ~ - (D.10)

- I,n
= 3lug

The strict positive reality of [C(z)"l - %] also implies,

by the (strict) positive real lemma (see the proof of that in

Appendix A, Lemma A.4),

£~ pe E oL,
2 Ju,y.+ K> p T lu.l (D.11)
jm1 J 73 j=1 J

Ve
where K is a positive constant (0 < K < =) depending upon the
9
initial conditions and p is a small positive constant .

We define &
s(t) A 2 ] GjT{}j + K (D.12)

i=1

{

and note that S(t) > 0 for all t > 1. (S(t) >0 ifu £ 0

-

since p > 0).

- A

e * s cdoda o,




T

Part 2.

In this part of the proof, we establish the "near-super-
martingale" inequality which will be used to prove the required

result. Using (D.4) we have

-

‘P(t-l)¢(t-l)et = P(t-Z)w(t-l)[Ip - w(t-l)TP(t-l)¢(t°1H e,

= P(t-2)y(t-1)n, : (D.13)

from (7.18). Hence, equation (7.14) of the recursion becomes
es(t) = es(t-l) + P(t~2)\p(t~1)nt . ( (D.14)

Let us define

T(t) A 8g(6)TR(t-1) " G (e) : (D.15)
From (D.i4) we have B
T(e-1) = 64 (t-1) TR (t-2) "t ig(t) - 55(1:—1)'1\;:(1:—1)n,c (D.16)
oS

e ——— e T . - e e st e Vet P R

-
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Using (D.14) and the fact that P(t-2) % = p(t-1)"% = y(t-1)y (t-1)7T,
(D.16) can be reorganized as
_ ~ o = .
T(t-1) = T(t) - Bg(t) p(t=1y (t-1) T8 (8) = 28(t) Ty (e-1)n,

+ nJlw(e-1) Tp (e-2) v (£-1) n,  (D.17)

Now, if we use (D.4), (7.18), (D.18), and the fact when M is a

square matrix and A a vector of appropriate dimension, then

h ATM A=t (ATMA] = Tr[M AAT]
;.
we obtain from (D.17), after some manipulations,

T(t) = T(t-1) + (0T (t-1) [y (=) Tag(8) + 2(n, = w)]

+ 2 [gs(t-l)Tw(t—l), + (e =w v (e TR(E-1)y (e-1) +

T T
We P (t=1) "P(t=-1)y(t-1)] Wy

~Tr{ (b (e=1) TP (=D (t=1) [ T- 4 (D) R(E=DY (=D 1)+ [ (e w,) (o] = )

2

T T T
+ 2wt(et -w, ) + wow, 1} (D.18)

We know that since the initial conditions are in Ft for t > 0,

w -Ey | F__;) and so e = w(t_l)T-gS(t_l) +Ey | Foq)

£ = Y £

is Ft-l measurable. If we use u, and y, as defined in part 1,

t
and take conditional expectations in (D.18), we then obtain

AT ~ ~ ~
ET(t)| Fo_;) = T(t-1) +E[-&. (-u_+2y +u)]|F )

t-1

+ 2Tr [¥(t=-1) TB(t-1) ¥ (t-})T]

= ey (e-1) TP (E-1)y (t-1) (19 (&=1) R(e-1)w (e-1) ] [(e,w,) (e} -wp) + 1}
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(; But the last term that is subtracted can be shown to be
non-negative since by (D.4)

1

Wit=1) TP (t=1)y (t=1) [I- (£-1) TP (t-1)9 (£=1) 1 L = y (£-1) TP (£=2) y (£-1) >0

and (et-wt)(ez-wg) +I' > 0. Therefore we have the inequality
E[T(t) + 20, 7,1 Foy) < T(e-1)+27r [ (£=1) TP (£-1)y (t=1) T] (D.19)

We now use S(t) of part 1 and define

4Ty, + K

t
T'(t) A T(t) + S(t) = T(t) + 2 )

3

mwu)+2ﬁg§t+stbn .
Adding S(t-1) on both sides of (D.19) we obtain
ET' (8)] F__y) < T'(t-1) +2Tr(p(t-1)"P(t=1)y(e-1)T] ;
dividing by t,

T'(t) T' (t-1) T'(t-1) 2 T
E=g—IFeq) < =T - tre=n t  IF [v(t-1) TR(e-1)p(t-1)T]

This is the inequality to which we want to apply the martingale

convergence theorem. But before that we must show that

ao

7 % Tr{y(t~1) P (t-1)y(t~1)T ] < » . This is done in the next
t=1

part of this proof.




{
r
5
¢
:

G .

Part 3.
From the recursion equations(7.14) and (7.15), we can write
8 (OPED 0 = (A.tDT + eF pe-1)Tre-1))p 1) L (B, (£-1) + P (¢-1) y(t=L)e, )
s s % t S t

= g (t-1) TR (£-2) "1 B (e-1) + Ky (e-1) Thg (=10 2

T T4 T T
+ ?.et wCL—l)‘QS(t-l) + e/ v(t-1) P(t-l)w(t-l)et.

{ -

=y - p(t-1)T 8 (t-
But‘ e, Y, p(t-1) estt 1) and so

_T'\__ZT__T_'\__T.
et l)es(t L * = Yo Ye 2et y{t-1)8(t-1) e, e, ;

hence

€s(t)Tp(t-1)'l

- A T -1a T
8g(t) = 8 (t-1)TP(£-2) Mo (t-1) + vy Ty,

- el [T - y(e-DTR(E-Dylt-le, .

i

Summing the above equation from 1 to t yields

£ t
~ T -1~ . . . ~
b5 (8) P (e-1) o (t) + 321 ejfr [T -9 (3-1) P (5-1)y (5-1)] e, = jz_l Yo y;+ 1850 2

]

or
t t b ~
B + T onlr-eG-DGDeG-DI T s = Ty Ty + 18gon?
J =1 I 7D S

85(t) TP (t-1)" _ ;
J=1 =

from (7.18) . (D.21)

But all the terms in (D.21) are positive and from the stability

assumption we know that

N

lim sup %]- leytll2 <@ a.8.; this implies
N+ t=1

\

e TR

Iy
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' N .
¢ limsup 3 I nJ (I- (=D R(t-Dy(e-1)17In <= aus.
' N+ t=1

From (D.3) we have 0 < w(t—l)TP(t-l)w(t-l)'< I which gives

I< [I-y(t-DTP(t-1p(e-1)]" < » ; this permits us to

conclude that
N

lim sup 3 I Ind? < a.s. , (D.22)
N+ t=1
_l N T .
We recall that P(N) = J y(t)y(t)" ; the diagonal elements
- t=1
of % P(N) } are of the form:
N N N’
1 . 1 2 1 2
AT (1) r I3 U(i) r 3 n(i) i-looo p—

!

where yt(i) is the i-th component of the p x 1 vector Yer and
similarlg‘for u, and N - Therefore, by the stability assumptions

(7.21) and (7.22), and by (D.22),

lim sup % Tr[P(N)-}]< 0 a.s. (D.23)
N =+ o .

From (D.5) in Lemma D.1l, (D.23) implies that

Tr{y(t=1) P (t-1)y(t-1) ]
1 t <

i~ 8

a.s. (D.24) !
t .

from which we can obtain the result required at the end of

part 2, namely ! -
) :

I

t=1

Tr[p(t-1) TP (t-1) ¥ (£-1)T] < ® a.s. (D.25)

(24 Lnd

Recalling the near¥super-martingale inequality (D.20):

UV ey o - e e = T e e e bt v
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*
~

T'(€) | T'(£-1) _ T'(t-1) 2
E lrt_l) <

T ‘
t=-1 T(E=D) * £ TE(v(t-1) "Pbe-1)y (£-1)T]

we see that it is now possible to apply the martingale convergence

theorem. Therefore,

T'ét) +  X(w) . a.s. ' (D.26)

where X(w) is a non-negative random variable with finite expectation,

and
t£1 % < a.s. (D.27)

However, we cannot have X > 0 because the second consequence

(D.27) of the a.s. convergence of {T'(t)/t; t > 1} would then
imply that [ 12l
t=1

- o0
£ =1 diverges a.s.like . ¥ 1, which

e=1 ¢

) ’
contradicts (D.27). Hence, we conclude immediately that ZELEL + 0
a.s. as t~+ = and since T'(t) = T(t) + S(t) and S(t) > O,

T(t) > O,
1im Z(%)

t = 0 &.S. (D028) *
t+
lim §-,-£-"=l- =0 a.s. (D.29)
t+rw

, |
These important results will enable us to prove the convergence

of 8.(t) to és in part 5 of this proof. Before that, we need to

establish another intermediate result.
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Part 4.

°

In this part of the proof, we show that

x 2
) In t® =1Trr a.s. (D.30)
t=]1

lim %
N+

L%

, First, we recall that in part 1 we have showed that (see

e

AR L MRS i A N RERT N B T

L T

AT T

T T ey YTy o

« o g e T

N
(D.11)): Ss(t) >¢C ¥ arl q, . Moreover, since [C(z) 1. I]
2% L% % 2
is asymptotica'lly stable, Lemma A.l of [21] tells us that !

N .. N
1 ytll2 ¢ +C, )) Ilutll2 . (Cl,,cz,C3 are constants and f

t=1 t=l .
0 < C1 <w , 0 < C2 <o , 0 < c3 < @ .) (D.29) then yields directly:
T
N 1 N ~ 2
‘ . lim 5 [ ful® = o0 a.s. (D.31)
’ N+ t=l .
1 Yo~ 2 '
‘lim = ] Ilytll =0 a.s. (D.32)
N+ ol t=1 ~ . '
. Now, consider n, - w_ =y, + lg .
! t t t 2 t
2 - 1.~ .2 ATA
llnt - wtil I ytll + zll utll *ougy,

so from (D.29), (D.31l) and (D.32) we have that

1]
lim & tf in, - w2 = o a.s. : (D.33) i
N*‘” N t.l t t o E |
Then, (D.30) follows direclty if we write ‘ , ’
N N -
1 2 1 2 2
5 tzl (A 5 tsz.]_["nt-wt" +2 v?t(nt we) + w h® 1
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using (D.30), (7.20) and the Cauchy-Schwarz inequality we obtain

the’ required result :

N 2
] lw,it® =rTrr a.s.
t=1

N
lim % ) ﬂntuz = lim i

N+ o =] N+enN
Part 5.

- T -1z
T(t) . e(t)Tr(e-1) "o (e)
t t + 0

Prom (D.28), a.s.

1

as t + » Therefore, if we can show that ;im inf % P(N=-1) "> 0 .

N0
a.s., we will have proved the almost sure convergence of 8(t)

tO es. \\
-1 N - .
. Consider P(N} "= ] y(t)y(t) . If the residuals n are
et S U S
replaced by the innovations w, the new matrix § X (t)X (t)
t=1

.has, by assumption (7.24), the persistent excitation property

;

N .
lim % ¥ ey feT=18r >0 a.s.
Now O tml -

If n replaces w,do we still have

lim

N+

N T
T v(t)p(e)” = I_ @ R a.s. ?
t=1 P

Z|-

4

The answer is yes. To show this, we notice that the elements
affected are of one of the two following forms:
LY

(a) =
N ey

nt(i)xt_k(j) 1<i<p, 1<3j<p,
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" N
- a . . . !

where x can be either u or y. (k is the time shift between

the two processes and |k|< max (n,m+l,2).)

But we can write

N N
. . 1 . ) e
i tzl"t“”‘t-k”’ =z tg.l““t“"“'t“” X (3) 9 ()2 4 (5)]

@

and conclude from Cauchy-Schwarz, (7.21),(7.22) and (D.33) that

the first term converges to zero ; the second term canverges to

the required limit element in R by assumption (7.24). -
1 ¥ 1 N .
(b) ﬁ'tzl ng(ng L (3) =g tzl[(ni(i) - we)n,_, (3) .

£
¢

+ow W (g (D mw () + W Wwy_ ()]

Again, it is easily proved by a simple application of the

Cauchy~-Schwarz inequality that the first two terms go to zero and

therefore
1 E’ 1 “g e ’
lim = n ()n, . (3) = lim 3 w, (L)w,__. (3)
NooN g2 t t-k NawN g1 t t-k

the required limit element in R .

In conclusion, lim % P(N)""L = Ip ®R >0 a.s. and the proof
N+ o R )
is completed since, as mentioned before, (D.28) now implies

!

1im 6_(t) = §s a.s. o

t+ ®

S

M~
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