1 2 3 4 5	4	This is the accepted version of the following article: DEMERS-POTVIN, A.V. & LARSSON, H.C.E. (2019) Palaeoclimatic reconstruction for a Cenomanian-aged angiosperm flora near Schefferville, Labrador. Palaeontology, 62, 1027-1048. https://doi.org/10.1111/pala.12444
6 7 8 9	-	
10 11 12 13	6	
14 15 16 17 18	8	
19 20 21 22 23	10	
24 25 26	12	Palaeoclimatic reconstruction for a Cenomanian-aged angiosperm flora near Schefferville, Labrador
27 28 29 30 31	14	
32 33 34 35 36	16	
37 38 39 40 41	18	
42 43 44	20	by ALEXANDRE V. DEMERS-POTVIN ^{1,2} * and HANS C.E. LARSSON ^{1,2}
45 46 47	22	¹ Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, QC, Canada;
48 49		² Redpath Museum, McGill University, 859 Sherbrooke Street W., Montreal, QC, Canada;
50 51 52	24	e-mails: alexandre.demers-potvin@mail.mcgill.ca; hans.ce.larsson@mcgill.ca
53 54 55 56 57		*Corresponding author
58 59 60		Palaeontology

26 ABSTRACT

	An understanding of local and regional climate trends is essential to investigate
28	the remarkable angiosperm radiation that happened during the Albian-Cenomanian
	transition. However, many of the inland depositional environments pioneered by the first
30	modern angiosperms are poorly represented in the fossil record. Eastern Canada in
	particular has a very poor Mesozoic record. In this paper, we present the first multivariate
32	palaeoclimate analysis (CLAMP) for the environment of a geologically isolated woody
	dicot dominated flora found in the Redmond no.1 mine, Labrador, near Schefferville,
34	with an estimated Cenomanian age. It reveals that the Redmond flora would have
	experienced a mean annual temperature of 15.1 ± 2.1 °C, one of the coolest recorded for
36	North America at this time. These results confer the Redmond no.1 site a warm temperate
	and fully humid climate with a hot summer, in accordance with previous qualitative
38	palaeoclimate estimates. This flora fits smoothly into palaeolatitudinal MAT gradients
	that use other Cenomanian-estimated North American floras. Despite an inland setting,
40	the climate analysis does not recover a significantly higher degree of seasonality than the
	sites to which it is compared, which agrees with established climate equability models for
42	the Cretaceous and Paleogene. This study also introduces 15 new morphotypes
	discovered in recent fieldwork. The eventual description of the species they represent
44	may refine our dating estimates for the Redmond Formation. A greater understanding of
	the depositional environment and of the natural history of these angiosperms is required
46	to improve this community's characterization, along with estimates from other proxies.
	Key words: angiosperms, Cenomanian, palaeoclimate, MAT, Redmond Formation

Page 5 of 58

48	The Albian-Cenomanian transition in the middle of the Cretaceous period
	witnessed ecological and evolutionary changes that laid the foundations of modern
50	terrestrial communities. Not least of these is the radiation of the angiosperms from the
	disturbed or early successional settings that had witnessed their evolution for the previous
52	30 Myr (Doyle and Hickey 1977; Crane et al. 1995). After thriving as lowland riparian
	and estuarine weeds (Royer et al. 2010), early angiosperms underwent a spectacular
54	ecological diversification and expanded their geographical range into more stable inland
	environments, often coinciding with the decline of established groups such as conifers,
56	pteridophytes, ginkgoaleans and Benettitales (Retallack and Dilcher 1986; Lupia et al.
	2000; Coiffard <i>et al.</i> 2012).
58	Many of the hypotheses that attempt to explain this floral turnover revolve around
	a combination of biotic and abiotic factors. In certain modern environments, angiosperms
60	are known to have a higher competitive ability than other plants due to higher
	productivity under high nutrient concentrations (Berendse and Scheffer 2009). This
62	competitive ability may have led to positive feedbacks with increased fire regimes during
	the Albian-Cenomanian transition as global atmospheric pCO_2 and temperatures
64	increased (Bond and Scott 2010). These abiotic changes may also have induced a positive
	feedback with photosynthetic capacity through an increase in venation complexity, which
66	is correlated with an increase in wood hydraulic efficiency and the appearance of the first
	angiosperm trees (Philippe et al. 2008; Feild et al. 2011). This remarkable radiation can
68	be explained in part by co-evolution with pollinating insects such as Hymenoptera and
	Lepidoptera (Grimaldi 1999), but also by an understanding of global and regional
70	climatic trends. The latter can be detected in the foliar physiognomy.

		Despite a constant flow of newly described palaeofloras from across the world,
72	2	some regions, such as eastern Canada, remain poorly represented in the fossil record. The
		southern half of the palaeocontinent of Appalachia is well represented by coastal and
7-	4	estuarine floras ranging in time from the Barremian to the Cenomanian (Newberry 1886;
		MacNeal 1958; Doyle and Hickey 1977), and changes from the Albian to the Turonian
7	6	are represented by floras from the western coast of Laramidia (Miller et al. 2006; Jonsson
		and Hebda 2015). In comparison, very little is known of Appalachia's northern inland
7	8	ecosystems. Early palaeolatitudinal climate gradients established for Cenomanian North
		America were almost totally restricted to low palaeolatitudes around 30°N (Wolfe and
8	0	Upchurch 1987), though updated gradients are complemented by recently studied floras
		from Alaska (Spicer and Herman 2010).
8	2	An enigmatic angiosperm-dominated flora from Labrador may provide insight
		into this poorly studied part of the Cretaceous world. Soon after its discovery alongside a
8	4	few insect impression fossils during iron ore prospection near Schefferville, it was
		biostratigraphically correlated with North American Cenomanian-aged floras, though no
8	6	detailed description was ever published (Dorf 1959, 1967). So far, no other Mesozoic
		angiosperm floras have been reported from eastern Canada. This would also make it one
8	8	of the earliest known woody dicot floras to flourish far inland, alongside assemblages
		from central Alaska's Yukon-Koyukuk basin (Herman et al. 2016), Siberia's Vilui basin
9	0	(Spicer et al. 2008), and the Winton Formation of central-western Queensland (Fletcher
		et al. 2014). A quantitative palaeoclimate estimate using leaf margin analysis (LMA) has
9	2	already been obtained for the Labrador flora and was compared with coeval floras to the
		North and South (Armstrong 1993; Miller et al. 2006). However, this univariate method

94	for palaeoclimatic reconstruction is fraught with limitations (Greenwood et al. 2004;
	Peppe et al. 2011; Li et al. 2016), and estimates from this site have been based on a
96	limited dataset.
	In this paper, we present the first palaeoclimatic reconstruction founded on the
98	Climate Leaf Analysis Multivariate Program (CLAMP) (Wolfe 1993; Spicer 2006) for
	this locality. The morphological diversity of the flora under study has also been expanded
100	by the recent discovery of new leaf morphotypes on the field. These results are integrated
	to data from approximately coeval Cenomanian North American floras and refine our
102	understanding of climatic trends at this ecosystem's local scale and at a broader
	continental scale.
104	
	GEOLOGICAL SETTING OF THE LABRADOR CRETACEOUS FLORA
106	The angiosperm flora that is the object of this study is preserved in the Redmond
	Formation, a sedimentary unit named after the Redmond no.1 mine, located 16 km south-
108	southeast of Schefferville (Dorf 1967) at a latitude of 54°41'N and a longitude of
108	southeast of Schefferville (Dorf 1967) at a latitude of 54°41'N and a longitude of 66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the
108 110	
	66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the
	66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the only known exposure of the formation in a very complex geological setting. It contains
110	66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the only known exposure of the formation in a very complex geological setting. It contains clastic minerals constituting three distinct lithologies, although almost all fossils have
110	66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the only known exposure of the formation in a very complex geological setting. It contains clastic minerals constituting three distinct lithologies, although almost all fossils have been found in a single one: a fine-grained, evenly banded ferruginous argillite with a very
110 112	66°45'W, close to the Quebec border (Fig. 1). This abandoned iron mine contains the only known exposure of the formation in a very complex geological setting. It contains clastic minerals constituting three distinct lithologies, although almost all fossils have been found in a single one: a fine-grained, evenly banded ferruginous argillite with a very pronounced umber colour and a 60% red hematite content (Blais 1959). Before iron ore

	m wide, and up to 183 m deep containing sterile argillite and iron-rich 'rubble ores',
113	8 which was in turn overlain by a 3 to 5-m overburden of glacial deposits (Dorf 1967;
	Séguin 1971). The argillite in the thin bed has a finer grain size, a darker colour, and a
120	much higher abundance of well-preserved fossils, than the surrounding sterile argillite.
	Hypotheses concerning the depositional environment of these fossils have yet to
122	2 be tested. The most widely accepted one proposes a shallow lacustrine setting based on
	very fine grain size, a very thin lamination, and well-preserved soft tissues such as leaf
124	and wing venation in fossilized plants and insects (Blais and McMahon 1958; Blais
	1959). These characteristics distinguish low-energy freshwater systems such as lakes
120	from higher-energy fluvial/deltaic systems in which soft-bodied organisms are more
	likely to be decomposed (Behrensmeyer and Hook 1992, pp.42-43). Blais (1959) states
123	8 that the high alumina content displayed in the argillite is indicative of a lateritic
	palaeosol, a soil type usually formed in tropical to subtropical climates (Craggs et al.
130	2012), although this evidence alone is barely sufficient to suggest a hypothesis. Historical
	fossil collections for the site contain angiosperms leaves representing at least 27 species,
132	2 which are the main focus of this study, along with at least 1 lycopod, at least 4 true fern
	species (spread among Polypodiales and Gleicheniales), and at least 4 conifer species
134	4 (Dorf 1959, 1967; Armstrong 1993; Fig. 2). Along with an assortment of insect species
	(Carpenter 1967; Emerson 1967; Ponomarenko 1969; Rice 1969; Fig. 3), these fossils
130	offer a glimpse of a lakeshore environment surrounded by an angiosperm-dominated
	mixed mesophytic forest.
13	The Redmond basin is underlain disconformably by stratified iron ores found in
	jaspoid and carbonate-silicate cherts that are part of the iron-rich Sokoman Formation,

Page 9 of 58

2 3 4	140	deposited around 1,878 MA in the Paleoproterozoic (Conliffe 2016). The Sokoman is
- 5 6		underlain by the Ruth Formation, composed of ferruginous shale (Blais 1957, 1959).
7 8	142	Together, they are part of the Kaniapiskau Supergroup, the geological unit that
9 10		constitutes the Labrador Trough, a 48-km wide folded and faulted geosyncline containing
11 12	144	sedimentary and volcanic rocks that stretches for approximately 1,120 km along the
13 14 15		border of northeastern Quebec and western Labrador (Blais 1957; Zajac 1974; Conliffe
16 17	146	2016), and along the eastern margin of the Archaean Superior Province (Conliffe <i>et al.</i>
18 19	140	
20 21		2012).
22	148	The Labrador Trough has been formed by two main orogenic events : a period of
23 24		folding in the late Precambrian (between 1,500 and 1,250 MA), and a later one for much
25 26 27	150	of the Mesozoic that probably led to the opening of the North Atlantic ocean between 250
28 29		and 200 MA (Tremblay et al. 2013; Conliffe 2016). The Redmond basin is likely the
30 31	152	remnant of a graben: this folding and down-faulting continued after the deposition of the
32 33		Redmond fossiliferous argillite bed giving its steep dip of 45° to the east (Blais 1959). As
34 35	154	this tectonic activity increased the graben's depth, it was progressively infilled with
36 37 38		muddy sediments containing dead leaves and insects (in the case of the Redmond
39		
40 41	156	Formation), and/or rubble ores of clastic origin mixed with fallen trees (Blais and
42 43		McMahon 1958). Similar basins were reported in the French, Burnt Creek and Ruth Lake
44 45	158	mines, located 4 km West of Schefferville. In Ruth Lake, entire lignitized tree stumps
46 47		were found in a breccia 30 m below ground surface, some of which reach almost 1 m in
48 49 50	160	diameter (Usher 1954). Nowadays, they are also out of context because of the mining
50 51 52		activities that followed their discovery.
53		
54 55		
55		

162	The presence of a megafloral assemblage in the ferruginous argillite bed provides
	the only relative dating estimate for the Redmond Formation itself. Dorf (1959)
164	conducted a biostratigraphical correlation with already known North American floras and
	found that it was most similar in composition to the Raritan, Dakota, and Tuscaloosa
166	formations, which are all considered of Cenomanian age, between 93.9 and 100.5 MA
	(ICS Chronostratigraphic Chart, v 2018/8; Fig.1).
168	Based on the interbedding between the clays and the rubble ores, Blais (1959)
	concluded that the latter must have been of similar age (Late Cretaceous) and included
170	them in the Redmond Formation. Assuming its dating is correct, this makes it the only
	known exposure from the Mesozoic era in the Quebec/Labrador Peninsula. The
172	sedimentary unit in closest spatial and temporal proximity would be northern Ontario's
	Albian Mattagami Formation (White et al. 2000).
174	While the age of the argillite formation is already poorly constrained, that of the
	surrounding rubble ores is even more debatable. The interbedding noted by Blais (1959)
176	only proves that some of the leaching happened during the Cretaceous (Conliffe et al.
	2012; Conliffe 2016). The implied long duration of fault movement and resulting rubble
178	ore formation restrains us from including the entirety of the region's rubble ores in the
	Redmond Formation (contra Blais, 1959). This makes it impossible to correlate the Ruth
180	Lake wood to the insects and leaves found in the Redmond no.1 mine's ferruginous
	argillite, and so renders the tree stumps' cell structure unsuitable as an alternative
182	palaeoclimate proxy (Carlquist 1977; Wolfe and Upchurch 1987) for Cenomanian eastern
	Canada.
184	

MATERIAL AND METHODS

186 Fossil collection and identification

	The fossils used in this study were collected from the Redmond no.1 mine over
188	five separate occasions: the first in September 1958 for Princeton University (Dorf 1959;
	Rice 1969), which now resides at the Yale Peabody Museum of Natural History (YPM) ;
190	two for the Geological Survey of Canada (GSC) (G. Gross, 1960 and D.C. McGregor,
	1961); one in 2013 by the Musée de paléontologie et de l'évolution (MPE); and a joint
192	expedition between the MPE and the Redpath Museum (RM) in August 2018, in which
	the first author participated. On the 2013 and 2018 expeditions, the fossils were surface
194	collected on spoil piles scattered around the now flooded mine since the original bed had
	long been destroyed by mining activities. Alongside new leaf specimens, new insects
196	were discovered, including the first aquatic nymphs reported from the site, as well as
	more complete aquatic coleopteran specimens (Figs 3A, 3C; Demers-Potvin and Larsson,
198	in prep.). The 2013 expedition also produced ichnofossils of bioturbators moving along
	the water bottom (Fig. 3F). A survey of neighbouring mines in 2018 did not reveal any
200	exposed fossil-bearing argillites similar to those found in the Redmond no.1 mine.
	The YPM collection is the only one in which an attempt to identify the flora was
202	made before this study. Its classification was undertaken by Leo J. Hickey; the notes he
	left with the YPM specimens were consulted by the first author to guide our subsequent
204	identifications. A total of 177 specimens have been assigned to 46 morphotypes using
	leaf architectural characters (Hickey 1973; Ellis et al. 2009). The identification of most of
206	the morphotypes in this study agrees with the species identifications originally performed
	by Hickey. However, 15 morphotypes are based on new leaf forms discovered in the

20	08	2013 and 2018 expeditions, and one is based on a specimen observed at the GSC
		(Demers-Potvin and Larsson 2019). Each has been assigned a morphotype quality index
2	10	(MQI), ranging from 0 to 7, that expresses the completeness of the specimens on which it
		is founded (see Harris and Arens 2016 for details). The argillite tends to fracture
2	12	conchoidally, which means that leaves found along bedding planes are often fragmentary.
		The ensuing loss of morphological characters introduces much uncertainty in the
2	14	attribution of a specimen to a given morphotype. For this reason, many of the leaf
		fragments collected could not be integrated into the analysis.
2	16	A summary of the morphotypes is presented in Table 1. Photographs of the
		morphotype exemplars are presented in Figs 4-7. GSC, MPE and RM specimens were
2	18	photographed with a Sony a6000 camera with an FE2.8/50 macro lens, and YPM
		specimens with a Nikon D7100 camera with a 50mm macro lens. Measurements used in
22	20	the descriptions were made on Fiji (Schindelin et al. 2012). More complete descriptions
		are found in Demers-Potvin and Larsson (2019).
22	22	
		Palaeoclimatic Reconstruction
22	24	One way of estimating a palaeoecosystem's climate using biological proxies is to
		infer it from the physiognomy of its fossil leaves. A positive correlation in many extant
22	26	floras between the percentage of species with untoothed margins and their habitat's mean
		annual temperature (MAT) was first proposed by Bailey & Sinnott (1915, 1916), and
22	28	later became the basis for the univariate method of leaf margin analysis (LMA) (Wolfe
		1979; Wing and Greenwood 1993; Wilf 1997; Greenwood 2007). Based on the
23	30	observation that leaf physiognomy responds to multiple environmental factors (Dolph
		1 Palaeontology
		raiacontology

Page 13 of 58

2		
3 4		and Dilcher 1979), a more complex palaeoclimate reconstruction model, the Climate Leaf
5 6	232	Analysis Multivariate Program (CLAMP), was developed by Wolfe (1993) and
7 8 9		subsequently refined (e.g. Spicer 2006; Yang et al. 2015). This is the first time that the
9 10 11	234	Redmond flora's climate has been estimated with this method. Every CLAMP analysis on
12 13		a fossil assemblage is based on two spatially related modern datasets. The first is a
14 15	236	physiognomic calibration dataset composed of extant floras from sites worldwide that
16 17 18		have been scored for the same character states as fossil sites. Every physiognomic
19 20	238	calibration dataset has its corresponding meteorological calibration dataset in which, in
21 22		the most common configuration, 11 climate parameters found to be correlated with leaf
23 24 25	240	physiognomy have been measured on each site or derived from standard global gridded
26 27		data. The data from physiognomic and meteorological dataset matrices is united in a
28 29	242	Canonical Correspondence Analysis (CCA) (ter Braak 1986). The morphotypes of a
30 31		given fossil site are then scored using the same protocol as the modern sites. This
32 33 34	244	positions a fossil leaf assemblage passively in the physiognomic space formed by leaves
35 36		from extant calibration vegetation, leading to quantitative predictions of palaeoclimate
37 38	246	parameters at the time of fossil deposition. Further details on the method can be found on
39 40 41		the CLAMP website (Spicer 2006; Yang et al. 2011, 2015).
42 43	248	To ensure a sufficiently high statistical precision for the results, a minimum of 20
44 45		fossil morphotypes (Wolfe 1993), with a scoring completeness greater than 66% (Yang et
46 47 48	250	al. 2011), is recommended. After its 46 morphotypes were scored, the Redmond flora
49 50		displayed a CLAMP scoring completeness of 65% (see scoresheet in Demers-Potvin and
51 52	252	Larsson (2019)). The matrix was analyzed using the CLAMP Online tool (Spicer, 2006,
53 54		accessed September 27 2018; Yang et al., 2011). A preliminary CLAMP analysis was
55 56 57		
57		

254	made using global calibration files (PhysgGlobal378 and HiResGRIDMetGlobal378, $n = 1$
	378 sites), which positioned the Redmond flora well away from sites in cold climates
256	(Spicer 2006). Extraneous evidence of an environment that did not experience a freezing
	period comes from the occurrence of an entomofauna in which some taxa are
258	predominantly associated with tropical to subtropical climates, such as a medium-sized
	phasmatodean (Rice 1969; Brock 2004, p.222; Fig. 3B), a termite (Emerson 1967;
260	Grimaldi and Engel 2005, p.241; Fig. 3D), and a snakefly belonging to the extinct family
	Alloraphidiidae (Carpenter 1967; Grimaldi and Engel 2005, p.339; Fig. 3E).
262	A more definitive analysis was performed using the Physg3brcAZ calibration
	dataset derived from temperate Northern Hemisphere sites ($n = 144$). Climate calibrations
264	were made using both the gridded (GRIDMet3brAZ) and ungridded (Met3brAZ)
	meteorological datasets to compare results between the two sampling methods. While the
266	ungridded dataset is based on calibration vegetation sites, the gridded dataset attempts to
	correct for the lack of climate stations close to potential calibration vegetation sites at low
268	latitudes by using a $0.5^{\circ} \ge 0.5^{\circ}$ grid of global interpolated climate data based on the
	dataset of New et al. (1999) (Spicer et al. 2009).
270	
	RESULTS
272	The CLAMP results for the Redmond no.1 site are presented in Table 2. The first
	CLAMP analysis for this locality presents a MAT of 15.1 ± 2.1 °C. The results from
274	gridded and ungridded datasets are statistically indistinguishable, in accordance with
	Spicer et al.'s (2009) tests.

Page 15 of 58

2 3 4	276	Not only does the palaeoclimate data from the Redmond flora yield invaluable
5 6		information on the environment of a region otherwise devoid of Cretaceous fossils, but
7 8 9	278	the site would have occupied a palaeolatitude estimated at 48.8°N (van Hinsbergen et al.
9 10 11		2015 <i>a</i> ; Table 3). This means it is the most northerly site from eastern North America to
12 13	280	present an early Late Cretaceous angiosperm flora, since the age of Greenland's Atane
14 15		Formation is questionable (Wolfe and Upchurch 1987; Boyd 1993). This palaeolatitude is
16 17 18	282	poorly represented in the eastern North American Cenomanian angiosperm fossil record
19 20		(Miller et al. 2006). The climate parameter values of the Redmond no.1 site were then
21 22	284	compared with coeval North American Cenomanian floras (Table 3). Comparative mean
23 24		annual temperature values from leaf-margin analysis (LMAT) were obtained from entire-
25 26 27	286	margin frequencies of 12 sites compiled by Miller et al. (2006). The original LMAT
28 29		estimates for the Redmond Formation were calculated by Hickey & Armstrong (1998),
30 31	288	those for the Raritan, Patapsco, Dakota, Woodbine and Dunvegan formations were
32 33 34		calculated by Wolfe and Upchurch (1987), and that of Chandler, Alaska, was calculated
34 35 36	290	by Parrish and Spicer (1988).
37 38		Comparative CLAMP values were obtained from GRIDMET3BR analyses of
39 40	292	three sites: Tuscaloosa, Woodbine (Spicer and Herman 2010), and Nanushuk (Herman et
41 42 43		al. 2016). Additionally, two floras from the Dakota Group (age Cenomanian) were scored
44 45	294	for CLAMP estimates (see Methods) to increase the Cenomanian site sample size. One of
46 47		these floras was collected in Fort Harker, Ellsworth Co., Kansas, during separate
48 49	296	expeditions (Lesquereux 1892), and is now curated at the Yale Peabody Museum of
50 51 52		Natural History (YPM). After examination, it was divided into 92 morphotypes with 89%
53 54	298	completeness. The other, found in Rose Creek, Jefferson Co., Nebraska, was scored from
55 56	_/ 0	
57 58		
59		1

published descriptions (Upchurch and Dilcher 1990) into 18 morphotypes with 68% completeness. The CLAMP scoresheets for these additional floras are provided in Demers-Potvin and Larsson (2019). The MAT data from Table 3 was then plotted against palaeolatitude with separate regressions for the LMA and CLAMP estimates on Fig. 8. For each site, palaeolatitude estimates were obtained from van Hinsbergen *et al.* (2015a), using the reference frame of Torsvik et al. (2012) (see van Hinsbergen et al. (2015b) for more details). We still deem the LMA-based implied regression a necessary comparison because it is based on a larger sample size than the CLAMP-based regression. The R² values and regression equations are presented in the legend to Fig. 8. DISCUSSION The dominance of medium-sized angiosperm leaves in the Redmond assemblage, as well as the presence of insect taxa accustomed to mild or warm climates, led to qualitative hypotheses predicting a warm temperate to subtropical climate (Blais 1959; Dorf 1959). According to the updated Köppen-Geiger climate classification system (Kottek *et al.* 2006), the region's coldest month mean temperature (CMMT) of $7.8 \pm$ 3.4°C is between the -3°C and 18°C values that define warm temperate climates, its disparity in precipitation between the three wettest and three driest months is nonsignificant, and its warm month mean temperature (WMMT) exceeds 22°C. A marked disparity of more than 15°C between CMMT and WMMT, along with a growing season of 8.4 ± 1.1 months, is indicative of a moderate seasonality. The growing season would have been far longer than that of more extreme environments such as Late

Page 17 of 58

1 2		
2 3 4	322	Cretaceous Alaska's polar deciduous forests (Herman et al. 2016), which is not surprising
5 6		considering the Redmond Formation's intermediate palaeolatitude and coincidentally
7 8	324	long photoperiod. These quantitative results confer the Redmond no.1 site a warm
9 10 11		temperate and fully humid climate with a hot summer (Cfa) (Kottek et al. 2006), which
11 12 13	326	confirms the initial qualitative hypotheses. This precision in climate classification was
14 15		attained in part because of the multivariate nature of CLAMP.
16 17	328	Contrary to the LMA used in previous work on the Redmond Formation
18 19 20		(Armstrong 1993; Hickey and Armstrong 1998), CLAMP encompasses 12 more leaf
20 21 22	330	physiognomic characters that demonstrate a response to climate parameters. These
23 24		additional variables provide more insight into an extinct ecosystem's seasonal cycle and
25 26	332	photoperiod (Herman <i>et al.</i> 2016). By acknowledging the covariation between many leaf
27 28		traits and multiple environmental factors (Dolph and Dilcher 1979), CLAMP assumes
29 30 31	334	that a climate signal can be obtained from more correlations than the single correlation on
32 33	551	which LMA is founded (Wolfe 1993; Spicer 2006; Yang <i>et al.</i> 2015). Conversely, leaf
34 35	336	margin analyses of floras found in freshwater settings (the most common depositional
36 37	550	
38 39	220	environment) are more susceptible to confounding factors such as soil hydrology
40 41 42	338	(Kowalski and Dilcher 2003), overrepresentation of toothed-margined species in riparian
42 43 44		settings (Burnham et al. 2001) and evolutionary history (Greenwood et al. 2004; Little et
45 46	340	al. 2010; Peppe et al. 2011). CLAMP also has an advantage over climate analysis
47 48		methods based on more continuous leaf character states, such as Digital leaf
49 50	342	physiognomy (Royer et al. 2005; Greenwood 2007; Peppe et al. 2011), since it has been
51 52		thoroughly tested for a longer time, and its uncertainties better addressed and understood
53 54 55	344	(Wolfe 1993; Spicer 2006; Yang et al. 2015). Despite the fact that a single character (leaf
56 57		
58		

margin) still explains >80% of the variance in MAT (Wing and Greenwood 1993; Wilf 1997), the CLAMP results from the gridded dataset remain the most accurate ever produced for the Redmond flora.

Sampling uncertainties. The completeness score of the Redmond flora is just below the recommended threshold of 66%, so information loss for some characters may affect the results. The fragmentary nature of many of the new morphotypes – often represented by only one RM specimen – takes a particular toll on the completeness of the dataset. When they are removed, it rises to 80%. Unsurprisingly, the morphotypes with the highest sample size (8 and 26) are also those that display the highest phenotypic plasticity (Figs. 4I-L, 6D-F; Demers-Potvin and Larsson 2019). Conversely, the small sample size of most morphotypes (91.3% represented by fewer than 10 specimens; see Table 1) means that much of the phenotypic plasticity characteristic of Cenomanian floras is not detected in the fossil assemblage (Spicer, pers. comm., 2019), which may lead to over-splitting of morphotypes in the presence of newly acquired specimens with new morphological character combinations. It has been demonstrated that incomplete preservation has a particularly detrimental effect on the accuracy of palaeoclimate estimates derived from sites with many singletons (Royer et al. 2005), as is the case for the Redmond flora (Table 1). At least, the high number of singletons leads to a morphotype diversity that is much higher than the recommended minimum (see Methods). Demers-Potvin and Larsson (2019) discuss the erection of these new morphotypes, but a more detailed description of potentially new species is necessary to resolve their status.

2 3 4		Another sampling uncertainty has biological ramifications for the climate
5 6	368	predictions. It is assumed in this study that all angiosperm leaves recovered are indeed
7 8		woody dicots (Dorf 1959, 1967). Hickey and Armstrong (1993) classified YPM
9 10 11	370	specimens of very small size in this guild, and so the classification of morphotypes
12 13		discovered in more recent expeditions maintained this consistency. Herbaceous plants
14 15	372	have been shown to display much less consistent physiognomic responses to climate (Li
16 17 18		et al. 2016), but their effect on our results are probably trivial, because their leaves do not
19 20	374	shed, and so rarely fossilize. In turn, this statement assumes that Late Cretaceous
21 22		lacustrine palaeofloras are sufficiently similar to modern ones.
23 24	376	In any case, the more taxon-dependent data supports the woody dicotyledonous
25 26 27		nature of this flora. Table 1, Figs 4-7 and Demers-Potvin and Larsson (2019) show that
28 29	378	many of these morphotypes can reach a notophyll size class and a complex venation
30 31		pattern, which are characteristic of woody dicots. Many are comparable in size and
32 33	380	complexity to newly discovered leaves from the Turonian Mancos Shale Formation
34 35 36		which have been attributed to trees (Jud et al. 2018). This would make the Redmond flora
37 38	382	slightly older, assuming the relative dating of the formation is accurate (see Geological
39 40		setting).
41 42	384	Taxon-independent leaf economic traits could also be determined. One such trait
43 44 45		is vein density (D_v) , which has been shown to reflect life-form in angiosperm leaf
46 47	386	assemblages (Crifò <i>et al.</i> 2014) and could be quantified on a much larger sample size.
48 49		Leaves with a higher D_v have an improved photosynthetic capacity, and their
50 51	388	synchronous appearance with the oldest angiosperm wood known suggests that it was a
52 53 54	500	key adaptation to the increase in hydraulic capacity necessary to sustain such complex
55 56		Rey adaptation to the increase in hydraune capacity necessary to sustain such complex

390	organisms as trees (Philippe et al. 2008; Feild et al. 2011). This study should be the next
	step to improve the ecological characterization of each species of the Redmond flora,
392	refining our capacity to build subsequent CLAMP datasets. Most importantly, its results
	could support Dorf's (1959, 1967) hypothesis that the larger Redmond leaves belong to
394	some of the oldest known angiosperm trees.
396	Local spatial and temporal resolution. Blais' (1959) description of the Redmond
	Formation in geological context is highly valuable, since it is the only way for modern
398	workers to gain insight into the site's geological setting. Furthermore, the hypothesis of a
	lacustrine depositional environment is now confirmed after the discovery of the first
400	articulated and relatively complete specimens of aquatic insects (Figs 3A, 3C; Demers-
	Potvin and Larsson, in prep.). The argillite's fine grain size and thin laminations were
402	already indicative of a lake environment (Picard and High 1972), and so is the remarkable
	preservation state of some of the newly discovered insects (Grimaldi and Engel 2005,
404	p.42).
	However, Blais' survey did not address the site's temporal resolution since it did
406	not approach it from a palaeoecological perspective. The formation's modest depth of 1.5
	m (Blais 1959) and its lacustrine origin suggest a high temporal resolution
408	(Behrensmeyer and Hook 1992, pp.82-83). Unfortunately, Blais did not calculate
	sedimentation rates based on its laminations, nor did he map fossil occurrences along a
410	stratigraphic section, to support his hypothesis. If such a section had been produced, it
	might have been possible to infer the lake's variations in oxygen content, which could
412	have been inferred by mapping the occurrences of ichnofossils produced by benthic

Page 21 of 58

2 3 4		bioturbators (Behrensmeyer and Hook 1992, pp.42-50). In turn, insight on oxygen
5 6	414	content could have contributed to an explanation of the fauna and flora's preservation
7 8		state. It is mentioned that the bed was evenly laminated, but it remains difficult to
9 10 11	416	estimate the duration represented by each lamination in this argillite. As for the
12 13		distribution of the flora along the temporal axis of the formation, it is not specified
14 15	418	whether plants were concentrated at a few levels, or widespread along the entire
16 17 18		stratigraphic column (Dorf 1967). This means that any palaeoclimate estimate derived
19 20	420	from this flora must account for some taphonomic time-averaging. Further
21 22		sedimentological analyses of these argillite laminations, as well as a refinement of the
23 24 25	422	current relative dating estimate based on the description of new macrofossils and
26 27		palynological analyses, may provide insight on this issue.
28 29	424	As for the spatial resolution, it is quite difficult to assess, since most of the leaves
30 31 32		found in the fossil assemblage could have belonged to trees growing away from the
33 34	426	lake's vicinity (Greenwood 1992). At least, the specimen that represents Morphotype 46
35 36		might be of a more autochthonous origin (Fig. 6O; Demers-Potvin and Larsson 2019) .
37 38 39	428	This leaf displaying a peltate petiole origin is very similar to leaves from the Potomac
40 41		Group that were proposed to be floating on the water surface, a substrate where there is
42 43	430	less mechanical stress on the petiole (Hickey and Doyle 1977). On the other hand, a
44 45 46		peltate petiole origin is also encountered in leaves growing from tropical forest trees
40 47 48	432	(Jacques et al. 2015). Since its habitat is not certain and its morphotype quality is among
49 50		the highest (Table 1), we have decided to include it in the CLAMP analysis along with
51 52	434	other morphotypes whose woody dicotyledonous status is less equivocal.
53 54 55		
56 57		

2	
4	
5	
5 7 8 9 10 11 12 13	
7	
/ Q	
0	
9	
10	
11	
12	
13	
14	
15 16 17 18	
16	
17	
18	
19	
20 21	
21	
22	
23	
24	
25	
26	
24 25 26 27 28	
28	
29	
30	
31	
32 33	
34	
35	
35 36	
37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	

1 2

436	The Cenomanian Quebec/Labrador climate in a North American context
-----	--

The Redmond MAT is the coolest recorded for Albian-Cenomanian eastern North 438 America, and likely attributable to the combination of a higher latitude than other known sites and an inland location. Such conditions have been reported elsewhere at this time 440 (Spicer et al. 2008; Herman et al. 2016). Complementary CLAMP results suggest a moderate seasonality in the Redmond flora's inland setting (Table 3), though it certainly 442 was not as high as Armstrong (1993) imagined: neither the length of the growing season (LGS) nor the disparity between CMMT and WMMT are significantly different from the 444 other sites it was compared with. The MAT gradient suggests either a genuine climatic equability between inland and nearshore environments in Cenomanian eastern Canada, or locally mild riparian conditions favourable to angiosperm invasion, or both. Given the 446 global warming that was occurring during the Albian-Cenomanian transition, the latter 448 hypothesis must be considered (Arens and Harris 2015), although it can only be tested with the discovery of more exposures of the Redmond Formation in Quebec and 450 Labrador. In any case, the probable woody dicot life-form of most morphotypes indicates that they could thrive in more stable environments alongside gymnosperms by the 452 Cenomanian, which is consistent with the floral composition of approximately coeval assemblages (Spicer and Herman 2001; Spicer et al. 2002). 454 For the moment, it is more parsimonious to argue that the data agrees broadly with a trend of continental sites showing a much more equable seasonal range of 456 temperatures in the Cretaceous and Paleogene than in the present (Wing and Greenwood 1993; Spicer et al. 2008). In the Cretaceous, North America was rotated clockwise so that 458 the western landmass of Laramidia was situated further north (Spicer and Herman 2010;

Page 23 of 58

2		
3 1		Bamforth et al. 2014; Herman et al. 2016) and the eastern landmass of Appalachia (of
5	460	which the Quebec/Labrador Peninsula constituted the northern extremity) was situated
7 3		further south. It is no surprise, then, that a site that had a lower palaeolatitude in the
) 0 1	462	Cretaceous than today, coupled with a far more equable MAT gradient, had such a mild
1 2 3		climate with a long photoperiod that supported such a luxuriant flora.
4 5	464	The gradient derived from Miller et al. (2006) using LMA has a markedly steeper
6 7		slope than that derived from CLAMP (Fig. 8). In light of the previous discussion, the
8 9	466	larger sampling biases associated with LMA seem to lead to a less equable climate
20 21 22		gradient model. Not only do MAT estimates seem more accurate with CLAMP than with
21 22 23 24 25 26 27 28 29	468	LMA at the local scale, but they seem more precise at the regional scale and provide
25 26		additional information about seasonality and photoperiod.
27 28	470	additional mornation about sousonairty and photoportod.
30	470	
81 22		Limitations of regional to global palaeoclimate studies. The Albian-Cenomanian
33 34	472	transition is probably the earliest time in geological history to be suitable for
32 33 34 35 36		palaeoclimate analyses based on CLAMP and LMA, since it witnesses the advent of the
87 88	474	few angiosperm life-forms to show a relationship between leaf physiognomy and climate
89 10		parameters (Lupia et al. 2000; Feild et al. 2011). No wonder it is accurate only for sites
1 2 3	476	less than 100 Myr old (Wolfe 1993; Spicer 2006). This implies that results for a flora that
14 15		probably existed very close to this time limit must be interpreted with caution.
l6 l7	478	Since CLAMP assumes that the physiognomic response of leaves to climate has
18 19		not significantly changed for 100 Myr, it has been suggested to be more difficult to apply
50 51	480	confidently to older assemblages (Peppe <i>et al.</i> 2011). This could be a particular problem
52 53		
51 52 53 54 55 56 57		for assemblages representing ecosystems without any modern analogue, such as the
6		
7		

482	Cretaceous polar mixed deciduous forests of Alaska (Spicer and Herman 2010; Herman
	et al. 2016). Furthermore, Albian-Aptian species that have a similar morphology to Late
484	Cretaceous woody dicotyledons (Hickey and Doyle 1977) were long considered too
	evolutionarily distant to have a similar physiognomic response to climate, despite
486	evolving under the same physical and mechanical constraints as modern leaves. Since the
	Cenomanian was a time of rapid global warming, early woody dicots were thought to be
488	largely experimental forms that could not be assumed to behave similarly to modern
	forms (Spicer and Parrish 1986). If the physiognomic response of Cenomanian leaves to
490	climate displayed a strong phylogenetic signal, a better understanding of these species'
	evolutionary history could help alleviate the uncertainties in 'taxon-independent' methods
492	such as CLAMP (Little et al. 2010). However, many genera from this time interval
	display phenotypic plasticity, which could blur the phylogenetic signal. This phenomenon
494	is observed in at least two of the Redmond flora's morphotypes (Figs. 4I-L, 6D-F;
	Demers-Potvin and Larsson 2019; Spicer, pers. comm., 2019).
196	Since this assumption was made, however, many more fossil assemblages have
	been scored with CLAMP, and none of the Albian-Cenomanian floras (including the
498	Redmond flora) have plotted outside the modern calibration space to suggest a significant
	change in the climate-physigonomy relationship (e.g. Fletcher et al. 2014; Arens and
500	Harris 2015). Furthermore, a global study of the 378 CLAMP sites has demonstrated that
	biogeographic history has little effect on the observed correlations between leaf form and
02	climate (Yang et al. 2015). In light of these considerations, the validity of the Redmond
	flora for palaeoclimate estimates should be further assessed by a more formal taxonomic
504	description of the new species present among the morphotypes recognized in this study.

2 3 4		This constraint leads to another, where Cenomanian angiosperm sites with a
5 6	506	diversity of woody dicot morphotypes sufficient for CLAMP scoring are rare, as is the
7 8		case in North America (Wolfe and Upchurch 1987; Miller et al. 2006). This inevitably
9 10 11	508	leads to systematic time-averaging of different sites, for instance in the case of our
12 13		palaeolatitudinal MAT gradient. Since the global climate in the Cenomanian was
14 15	510	changing quite rapidly, and since many of the sites used (such as Redmond no.1) have a
16 17 18		very poor stratigraphic control, a gradient for this age contains especially large
19 20	512	uncertainties. In this regard, the discovery and scoring of new palaeofloras (Jud et al.
21 22		2018) remains an essential aspect of palaeoclimatology based on biological proxies.
23 24	514	
25 26 27		CONCLUSIONS
28 29	516	This is the first palaeoclimate estimate for the environment of the Redmond flora
30 31		to use a multivariate method (CLAMP). At the local scale, its results confirm previous
32 33 34	518	hypotheses according to which 'early' Late Cretaceous Quebec/Labrador would have
35 36		experienced a mesothermal humid climate with a hot summer and offer a small glimpse
37 38	520	of an environment that – to our knowledge – has been very sparsely preserved in the
39 40		fossil record. Together, they contribute significantly to our understanding of Cretaceous
41 42 43	522	eastern Canada, in the hope of refining the testing of hypotheses on the angiosperms'
44 45		remarkable radiation.
46 47	524	The CLAMP results support a general Cretaceous and Paleogene trend of inland
48 49 50		environments having a climate as equable as that of coastal environments. However, such
50 51 52	526	comparisons at the regional to global scale with sites from the same age bin with poor
53 54		stratigraphic control must be treated cautiously, since they can lead to systematic time-
55 56		
57 58		

528	averaging that confounds observed palaeolatitudinal climate trends. This is especially
	concerning for periods of rapid climate change such as the Albian-Cenomanian transition,
530	and it leads us to favour the detection of such climate trends at a more local scale to gain
	more insight on the radiation of the angiosperms. We acknowledge that the Redmond
532	Formation does not have an ideal geological setting to support palaeoecological
	investigations, which is regrettable considering the scientific importance of one of the
534	oldest inland angiosperm floras known. The Labrador Trough must be prospected further
	in the hope that more of this mysterious palaeoecosystem can be revealed.
536	Beyond palaeoclimate estimates, this study also contributed to an expansion of the
	morphological angiosperm diversity from the Redmond no.1 site, with the addition of 16
538	new morphotypes. Their formal description is essential: a more complete flora
	(complemented by an eventual study of the palynoflora) refines biostratigraphical
540	correlations to estimate its age, and some species may increase broad-leafed tree diversity
	in the fossil record at a time in which they were radiating. The ecological characterization
542	of the community must also be refined, either by studying leaf economic traits such as
	leaf vein density to gain insight on many morphotypes' life-forms, or by increasing our
544	understanding of this flora's depositional environment. In turn, this will define much
	more clearly the assemblage that can be tested in future palaeoclimate estimates based on
546	biological proxies. An estimate from an alternative geochemical proxy, such as clay
	weathering, could also support the study that has been presented here.
548	
	Acknowledgements. The authors wish to thank M. Cournoyer for providing access to the
550	Musée de paléontologie et de l'évolution's (MPE) collections at the very start of this
	 530 532 534 536 538 540 542 544 544 546 548

Page 27 of 58

2 3 4		project, and who accompanied the first author in the field in August 2018. Thanks are
5 6	552	extended to N. Sheppard and M. Chartier for their assistance in this fieldwork, and to the
7 8		McGill Subarctic Research Station in Schefferville, QC, for the accommodation it
9 10 11	554	provided. We also thank A. Howell for providing Redpath Museum (RM) accession
12 13		numbers to recently collected specimens on such short notice. As for specimens
14 15	556	examined during research travels, S. Hu is graciously thanked for providing access to the
16 17		paleobotany collections at the Yale Peabody Museum of Natural History (YPM), as well
18 19 20	558	as S. Butts and J. Utrup for providing access to the YPM's invertebrate palaeontology
20 21 22		collections, and M. Coyne for providing access to the Geological Survey of Canada
23 24	560	(GSC) collections. We acknowledge the contributions of JP. Guilbault, P. Bédard and J.
25 26		Letendre for their initial collection efforts for the MPE alongside M. Cournoyer at the
27 28	562	Redmond no.1 mine back in 2013. Finally, the authors wish to thank the editors, B.
29 30 31	0.02	Lomax and S. Thomas, as well as R. Spicer, D. Greenwood and E. Bamforth for
32 33	ECA	
34 35	564	improving this paper with their reviews. This research was supported by funding from the
36 37		Fonds de recherche Nature et technologies Québec (FRQNT), a National Geographic
38	566	Society Early Career Grant, the Northern Scientific Training Program (NSTP), a Redpath
39 40 41		Museum Class of 66 Award, and the Canada research chair to HCEL.
42 43	568	
44 45		DATA ARCHIVING STATEMENT
46 47	570	Data for this study (including CLAMP scoresheets and a morphotype catalogue) are
48 49 50		available in the Dryad Digital Repository:
50 51 52	572	https://datadryad.org/review?doi=doi:10.5061/dryad.bg7pd54 [please note that the data
53 54		
55		

2	
3	for this paper are not yet published and this temporary link should not be shared
4	
5 6 5	without the express permission of the authors]
7	
8	
0	
10 5'	76
11	
12	
13	
14 15	
15 16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55	
56	
57 58	
58 59	2
60	2 Palaeontology

1		
2		
3	578	REFERENCES
4	0,0	
5 6 7	580	ARENS, N. C. and HARRIS, E. B. 2015. Paleoclimatic reconstruction for the Albian- Cenomanian transition based on a dominantly angiosperm flora from the Cedar
8 9	582	Mountain Formation, Utah, USA. <i>Cretaceous Research</i> , 53 , 140–152. ARMSTRONG, T. B. 1993. A Palaeoclimatic Interpretation of a Cenomanian Inland
10 11	584	Flora from Schefferville, Quebec, Canada.Unpublished Senior Thesis, Yale University, 108pp.
12 13 14	586	BAILEY, I. W. and SINNOTT, E. W. 1915. A Botanical Index of Cretaceous and Tertiary Climates. <i>Science</i> , 41 , 831–834.
15 16	588	——————————————————————————————————————
17 18	590	BAMFORTH, E. L., BUTTON, C. L. and LARSSON, H. C. E. 2014. Paleoclimate estimates and fire ecology immediately prior to the end-Cretaceous mass
19 20 21	592	extinction in the Frenchman Formation (66 Ma), Saskatchewan, Canada. <i>Palaeogeography Palaeoclimatology Palaeoecology</i> , 401 , 96–110.
22 23	594	BEHRENSMEYER, A. K. and HOOK, R. W. 1992. Paleoenvironmental Contexts and Taphonomic Modes. <i>In</i> BEHRENSMEYER, A. K., DAMUTH, J. D.,
24 25	596	DIMICHELE, W. A., POTTS, R., SUES, HD. and WING, S. L. (eds.) <i>Terrestrial Ecosystems through Time</i> , The University of Chicago Press, Chicago,
26 27	598	121 pp. BERENDSE, F. and SCHEFFER, M. 2009. The angiosperm radiation revisited, an
28 29 30	600	ecological explanation for Darwin's 'abominable mystery'. <i>Ecology Letters</i> , 12 , 865–872.
31 32	602	BLAIS, R. A. 1957. Occurrence of upper Cretaceous (?) tree leaves Redmond Mine, province of Labrador, Canada
33 34	604	———. 1959. L'origine des minerais crétacés du gisement de fer de Redmond, Labrador. <i>Le Naturaliste Canadien</i> , 86 , 265–299.
35 36 37	606	——— and MCMAHON, D. J. 1958. The Cretaceous flora associated with the iron deposits of the Knob Lake district, Canada.
38 39	608	BOND, W. J. and SCOTT, A. C. 2010. Fire and the spread of flowering plants in the Cretaceous. <i>NPH New Phytologist</i> , 188 , 1137–1150.
40 41 42	610	BOYD, A. 1993. Paleodepositional setting of the Late Cretaceous Pautût Flora from West Greenland as determined by sedimentological and plant taphonomical data.
42 43 44	612	Palaeogeography, Palaeoclimatology, Palaeoecology, 103 , 251–280. TER BRAAK, C. J. F. 1986. Canonical Correspondence Analysis: A New Eigenvector
45 46	614	Technique for Multivariate Direct Gradient Analysis. <i>Ecology</i> , 67 , 1167–1179. BROCK, P. D. 2004. Phasmida (Stick and Leaf Insects). <i>In</i> HUTCHINS, M.,
47 48	616	GARRISON, R. W., GEIST, V., LOISELLE, P. V., SCHLAGER, N., MCDADE, M. C., OLENDORF, D., EVANS, A. V., JACKSON, J. A., KLEIMAN, D. G.,
49 50 51	618	MURPHY, J. B., THONEY, D. A., BOCK, W. J., CRAIG, S. F. and DUELLMAN, W. E. (eds.) <i>Grzimek's Animal Life Encyclopedia</i> , Vol. 3. Gale,
52	620	Detroit, 9 pp. BURNHAM, R. J., PITMAN, N. C. A., JOHNSON, K. R. and WILF, P. 2001. Habitat-
53 54	622	related error in estimating temperatures from leaf margins in a humid tropical
54 55	022	
55 56		forest. American Journal of Botany, 88, 1096–1102.
57		
58		
59		2

2	
3	
4	
5	
3 4 5 6 7 8 9 10	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17 18	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

60

624	BUTLER, R. J., BARRETT, P. M., KENRICK, P. and PENN, M. G. 2009. Diversity
	patterns amongst herbivorous dinosaurs and plants during the Cretaceous:
626	implications for hypotheses of dinosaur/angiosperm co-evolution. JEB Journal of
	Evolutionary Biology, 22, 446–459.
628	CARLQUIST, S. 1977. Ecological Factors in Wood Evolution: A Floristic Approach.
	American Journal of Botany, 64, 887–896.
630	CARPENTER, F. M. 1967. Cretaceous Insects From Labrador 2. A New Family of
020	Snake-Flies (Neuroptera: Alloraphidiidae). <i>Psyche: A Journal of Entomology</i> , 74,
632	270–275.
052	COHEN, K. M., HARPER, D. A. T. and GIBBARD, P. L. 2018. ICS International
634	<i>Chronostratigraphic Chart 2018/08.</i> International Commission on Stratigraphy,
034	
(2)	IUGS. Downloaded from www.stratigraphy.org on 15 December 2018.
636	COIFFARD, C., GOMEZ, B., DAVIERO-GOMEZ, V. and DILCHER, D. L. 2012. Rise
(20)	to dominance of angiosperm pioneers in European Cretaceous environments.
638	Proceedings of the National Academy of Sciences, 109, 20955–20959.
	CONLIFFE, J. 2016. Geology and Geochemistry of High-Grade Iron-Ore Deposits in the
640	Kivicic, Timmins and Ruth Lake Areas, Western Labrador. Current Research.
	Newfoundland and Labrador Department of Natural Resources Geological
642	Survey, 26 pp.
	——, KERR, A. and HANCHAR, D. 2012. Iron Ore. Mineral Commodities Series.
644	Newfoundland and Labrador Department of Natural Resources Geological
	Survey, 15 pp.
646	CRAGGS, H. J., VALDES, P. J. and WIDDOWSON, M. 2012. Climate model
	predictions for the latest Cretaceous: An evaluation using climatically sensitive
648	sediments as proxy indicators. Palaeogeography, Palaeoclimatology,
	<i>Palaeoecology</i> , 315–316 , 12–23.
650	CRANE, P. R., FRIIS, E. M. and PEDERSEN, K. R. 1995. The origin and early
	diversification of angiosperms. <i>Nature</i> , 374 , 27–33.
652	CRIFÒ, C., CURRANO, E. D., BARESCH, A. and JARAMILLO, C. 2014. Variations in
	angiosperm leaf vein density have implications for interpreting life form in the
654	fossil record. Geology, 42, 919–922.
	DEMERS-POTVIN, A. V. and LARSSON, H. C. E. 2019. Data from: Palaeoclimatic
656	reconstruction for a Cenomanian-aged angiosperm flora near Schefferville,
000	Labrador. Dryad Digital Repository. Downloaded from
658	https://datadryad.org/review?doi=doi:10.5061/dryad.bg7pd54.
000	DOLPH, G. E. and DILCHER, D. L. 1979. Foliar Physiognomy as an Aid in Determining
660	Paleoclimate. <i>Palaeontographica Abteilung B</i> , 170 , 151–172.
000	DORF, E. 1959. Cretaceous flora from beds associated with rubble iron-ore deposits in
667	the Labrador Trough. Bulletin of the Geological Society of America, 70 , 1591.
662	
661	———. 1967. Cretaceous Insects From Labrador I. Geologic Occurrence. <i>Psyche: A</i>
664	Journal of Entomology, 74, 267–269.
666	DOYLE, J. A. and HICKEY, L. J. 1977. Pollen and Leaves from the Mid-Cretaceous
666	Potomac Group and Their Bearing on Early Angiosperm Evolution. In Origin and
(())	<i>Early Evolution of Angiosperms</i> , Columbia University Press, New York, 67 pp.
668	ELLIS, B., DALY, D. C., HICKEY, L. J., JOHNSON, K. R., MITCHELL, J. D., WILF,
	P. and WING, S. L. 2009. Manual of Leaf Architecture. Cornell University Press,

Palaeontology

1		
2		
3	670	Ithaca.
4		EMERSON, A. E. 1967. Cretaceous Insects From Labrador 3. a New Genus and Speci
5	672	of Termite. (Isoptera: Hodotermitidae). Psyche: A Journal of Entomology, 74,
6	0,1	276–289.
7	674	FEILD, T. S., BRODRIBB, T. J., IGLESIAS, A., CHATELET, D. S., BARESCH, A.,
8 9	0/4	
9 10		UPCHURCH, G. R., GOMEZ, B., MOHR, B. A. R., COIFFARD, C., KVACE
10	676	J. and JARAMILLO, C. 2011. Fossil evidence for Cretaceous escalation in
12		angiosperm leaf vein evolution. Proceedings of the National Academy of Science
13	678	of the United States of America, 108 , 8363–8366.
14		FLETCHER, T. L., GREENWOOD, D. R., MOSS, P. T. and SALISBURY, S. W. 201
15	680	Paleoclimate of the Late Cretaceous (Cenomanian–Turonian) Portion of the
16		Winton Formation, Central-Western Queensland, Australia: New Observations
17	682	Based on CLAMP and Bioclimatic Analysis. <i>PALAIOS</i> , 29 , 121–128.
18	002	GREENWOOD, D. R. 1992. Taphonomic constraints on foliar physiognomie
19	601	
20	684	interpretations of Late Cretaceous and tertiary palaeoeclimates. <i>Review of</i>
21	60.6	Palaeobotany and Palynology, 71 , 149–190.
22	686	GREENWOOD, D. R. 2007. Fossil angiosperm leaves and climate: from Wolfe and
23		Dilcher to Burnham and Wilf. Courier Forschungsinstitut Senckenberg, 258, 93
24	688	108.
25		GREENWOOD, D. R., WILF, P., WING, S. L. and CHRISTOPHEL, D. C. 2004.
26	690	Paleotemperature Estimation Using Leaf-Margin Analysis: Is Australia Different
27		PALAIOS, 19 , 129–142.
28	692	GRIMALDI, D. A. 1999. The Co-Radiations of Pollinating Insects and Angiosperms in
29	072	the Cretaceous. Annals of the Missouri Botanical Garden, 86 , 373–406.
30 21	694	——————————————————————————————————————
31 32	094	
33	(0)(New York.
34	696	HARRIS, E. B. and ARENS, N. C. 2016. A mid-Cretaceous angiosperm-dominated
35		macroflora from the Cedar Mountain Formation of Utah, USA. Journal of
36	698	<i>Paleontology</i> , 90 , 640–662.
37		HERMAN, A. B., SPICER, R. A. and SPICER, T. E. V. 2016. Environmental constrai
38	700	on terrestrial vertebrate behaviour and reproduction in the high Arctic of the La
39		Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 317-32
40	702	HICKEY, L. J. 1973. Classification of the Architecture of Dicotyledonous Leaves.
41	,	American Journal of Botany American Journal of Botany, 60, 17–33.
42	704	——————————————————————————————————————
43	704	Evolution. <i>Botanical Review</i> , 43 , 3–104.
44	700	
45	706	and ARMSTRONG, T. B. 1998. A mid-Cretaceous (Cenomanian) Flora from
46		Interior of the Canadian Shield in Western Labrador. American Institute of
47	708	Biological Sciences, 49 (26.8).
48		VAN HINSBERGEN, D. J. J., DE GROOT, L. V., VAN SCHAIK, S. J., SPAKMAN,
49	710	W., BIJL, P. K., SLUIJS, A., LANGEREIS, C. G. and BRINKHUIS, H. 2015a
50		Paleolatitude.org: A Paleolatitude Calculator for Paleoclimate Studies model
51	712	version 2.1. Paleolatitude.org. Downloaded from http://www.paleolatitude.org/
52		13 February 2019.
53 54	714	,,,, BIJL, P. K., SLUIJS, A., LANGEREIS, C. G. and
54 55	/ 17	BRINKHUIS, H. 2015b. A Paleolatitude Calculator for Paleoclimate Studies.
56		DRINKHUIS, II. 20150. A raitolalluut Calculator for raitochillate Studies.
57		
58		
50 59		2

60

3	716	<i>PLOS ONE</i> , 10 , e0126946.
4		JACQUES, F. M. B., SHI, G., SU, T. and ZHOU, Z. 2015. A tropical forest of the middle
5	718	Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities.
6 7		Review of Palaeobotany and Palynology, 216 , 76–91.
8	720	JONSSON, C. H. W. and HEBDA, R. J. 2015. Macroflora, paleogeography, and
9	720	paleoecology of the Upper Cretaceous (Turonian?–Santonian) Saanich Member of
10	722	the Comox Formation, Saanich Peninsula, British Columbia, Canada. <i>Canadian</i>
11	122	Journal of Earth Sciences, 52 , 519–536.
12	724	JUD, N. A., D'EMIC, M. D., WILLIAMS, S. A., MATHEWS, J. C., TREMAINE, K. M.
13	124	and BHATTACHARYA, J. 2018. A new fossil assemblage shows that large
14	726	angiosperm trees grew in North America by the Turonian (Late Cretaceous).
15	/20	
16 17	720	Science Advances, 4, eaar8568.
17	728	KOTTEK, M., GRIESER, J., BECK, C., RUDOLF, B. and RUBEL, F. 2006. World Map
19	720	of the Köppen-Geiger climate classification updated. <i>Meteorologische Zeitschrift</i> ,
20	730	15 , 259–263.
21		KOWALSKI, E. A. and DILCHER, D. L. 2003. Warmer paleotemperatures for terrestrial
22	732	ecosystems. Proceedings of the National Academy of Sciences, 100, 167–170.
23		LESQUEREUX, L. 1892. The Flora of the Dakota Group: A Posthumous Work.
24	734	Monographs of the U. S. Geological Survey, 17.
25		LI, Y., WANG, Z., XU, X., HAN, W., WANG, Q., ZOU, D. and JORDAN, G. 2016.
26	736	Leaf margin analysis of Chinese woody plants and the constraints on its
27 28		application to palaeoclimatic reconstruction. GEB Global Ecology and
28	738	<i>Biogeography</i> , 25 , 1401–1415.
30		LITTLE, S. A., KEMBEL, S. W. and WILF, P. 2010. Paleotemperature Proxies from
31	740	Leaf Fossils Reinterpreted in Light of Evolutionary History. PLOS ONE, 5,
32		e15161.
33	742	LUPIA, R., CRANE, P. R. and LIDGARD, S. 2000. Angiosperm diversification and
34		Cretaceous environmental change. In CULVER, S. J. and RAWSON, P. F. (eds.)
35	744	Biotic Response to Global Change, Cambridge University Press, Cambridge, 15
36		pp.
37 38	746	MACNEAL, D. 1958. Flora of the Upper Cretaceous Woodbine Sand in Denton County,
39	/ 10	<i>Texas.</i> Academy of Natural Sciences.
40	748	MILLER, I. M., BRANDON, M. T. and HICKEY, L. J. 2006. Using leaf margin analysis
41	740	to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. <i>Earth</i>
42	750	and Planetary Science Letters, 245, 95–114.
43	/30	NEW, M., HULME, M. and JONES, P. 1999. Representing Twentieth-Century Space–
44	750	
45	752	Time Climate Variability. Part I: Development of a 1961–90 Mean Monthly
46	754	Terrestrial Climatology. Journal of Climate, 12 , 829–856.
47	754	NEWBERRY, J. S. 1886. The Flora of the Amboy Clays. <i>Bulletin of the Torrey</i>
48 49		Botanical Club, 13 , 33–37.
49 50	756	OGG, J. G., AGTERBERG, F. P. and GRADSTEIN, F. M. 2004. The Cretaceous Period.
51		In GRADSTEIN, F. M., OGG, J. G. and SMITH, A. G. (eds.) A Geologic Time
52	758	Scale 2004, Cambridge University Press, Cambridge, UK; New York, 39 pp.
53		PARRISH, J. T. and SPICER, R. A. 1988. Late Cretaceous terrestrial vegetation: A near-
54	760	polar temperature curve. <i>Geology</i> , 16 , 22–25.
55		PEPPE, D. J., ROYER, D. L., CARIGLINO, B., OLIVER, S. Y., NEWMAN, S.,
56		
57		
58		

1		
2		
3	762	LEIGHT, E., ENIKOLOPOV, G., FERNANDEZ-BURGOS, M., HERRERA, F.,
4 5		ADAMS, J. M., CORREA, E., CURRANO, E. D., ERICKSON, J. M.,
6	764	HINOJOSA, L. F., HOGANSON, J. W., IGLESIAS, A., JARAMILLO, C. A.,
7	766	JOHNSON, K. R., JORDAN, G. J., KRAFT, N. J. B., LOVELOCK, E. C.,
8 9	766	LUSK, C. H., NIINEMETS, U., PEOUELAS, J., RAPSON, G., WING, S. L. and
9 10	768	WRIGHT, I. J. 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. <i>New Phytologist</i> , 190 , 724–739.
11	/08	PHILIPPE, M., GOMEZ, B., GIRARD, V., COIFFARD, C., DAVIERO-GOMEZ, V.,
12	770	THEIRTE, M., COMEZ, D., CINTARD, V., CONTARD, C., DAVIERO-COMEZ, V., THEVENARD, F., BILLON-BRUYAT, JP., GUIOMAR, M., LATIL, JL., LE
13 14	110	LOEUFF, J., NÉRAUDEAU, D., OLIVERO, D. and SCHLÖGL, J. 2008. Woody
14 15	772	or not woody? Evidence for early angiosperm habit from the Early Cretaceous
16		fossil wood record of Europe. <i>Palaeoworld</i> , 17 , 142–152.
17	774	PICARD, M. D. and HIGH, L. R. 1972. Criteria for Recognizing Lacustrine Rocks.
18		Society of Economic Paleontologists and Mineralogists Special Publication, 16,
19 20	776	108–145.
20		PONOMARENKO, A. G. 1969. Cretaceous Insects From Labrador. 4. A New Family of
22	778	Beetles (Coleoptera: Archostemata). Psyche: A Journal of Entomology, 76, 306-
23	700	310.
24 25	780	RETALLACK, G. J. and DILCHER, D. L. 1986. Cretaceous angiosperm invasion of
26	782	North America. <i>Cretaceous Research</i> , 7 , 227–252. RICE, H. M. A. 1969. An Antlion (Neuroptera) and a Stonefly (Plecoptera) of Cretaceous
27	782	Age from Labrador, Newfoundland. <i>Geological Survey of Canada, Department of</i>
28	784	Energy, Mines and Resources, Paper, 68–65 , iv + 1-11.
29 30	/01	ROYER, D. L., MILLER, I. M., PEPPE, D. J. and HICKEY, L. J. 2010. Leaf economic
31	786	traits from fossils support a weedy habit for early angiosperms. American Journal
32		of Botany, 97, 438–445.
33	788	, WILF, P., JANESKO, D. A., KOWALSKI, E. A. and DILCHER, D. L. 2005.
34 35		Correlations of climate and plant ecology to leaf size and shape: Potential proxies
36	790	for the fossil record. American Journal of Botany, 92, 1141–1151.
37		SCHINDELIN, J., ARGANDA-CARRERAS, I., FRISE, E., KAYNIG, V., LONGAIR,
38	792	M., PIETZSCH, T., PREIBISCH, S., RUEDEN, C., SAALFELD, S., SCHMID,
39 40	704	B., TINEVEZ, JY., WHITE, D. J., HARTENSTEIN, V., ELICEIRI, K.,
40 41	794	TOMANCAK, P. and CARDONA, A. 2012. Fiji: an open-source platform for biological-image analysis. <i>Nature Methods</i> , 9 , 676–682.
42	796	SÉGUIN, M. K. 1971. Discovery of Direct-Shipping Iron Ore by Geophysical Methods
43	770	in the Central Part of the Labrador Trough. <i>Geophysical Prospecting</i> , 19 , 459–
44 45	798	486.
45 46	120	SPICER, R. A. 2006. CLAMP. Downloaded from
47	800	http://clamp.ibcas.ac.cn/CLAMP Home.html on 13 April 2018.
48		and PARRISH, J. T. 1986. Paleobotanical evidence for cool north polar climates
49	802	in middle Cretaceous (Albian-Cenomanian) time. Geology, 14, 703-706.
50 51		——— and HERMAN, A. B. 2001. The Albian-Cenomanian flora of the Kukpowruk
52	804	River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant
53		communities. Cretaceous Research, 22, 1–40.
54	806	and 2010. The Late Cretaceous environment of the Arctic: A
55 56		quantitative reassessment based on plant fossils. Palaeogeography,
50 57		
58		
59 60		2 Palaeontology
60		

3	808	Palaeoclimatology, Palaeoecology, 295 , 423–442.
4		SPICER, R. A., AHLBERG, A., HERMAN, A. B., KELLEY, S. P., RAIKEVICH, M. I.
5	810	and REES, P. M. 2002. Palaeoenvironment and ecology of the middle Cretaceous
6 7	010	Grebenka flora of northeastern Asia. <i>Palaeogeography, Palaeoclimatology,</i>
7 8	812	Palaeoecology, 184 , 65–105.
9	012	SPICER, R. A., AHLBERG, A., HERMAN, A. B., HOFMANN, CC., RAIKEVICH,
10	814	M., VALDES, P. J. and MARKWICK, P. J. 2008. The Late Cretaceous
11	014	
12	017	continental interior of Siberia: A challenge for climate models. <i>Earth and</i>
13	816	Planetary Science Letters, 267 , 228–235.
14		SPICER, R. A., VALDES, P. J., SPICER, T. E. V., CRAGGS, H. J., SRIVASTAVA, G.,
15	818	MEHROTRA, R. C. and YANG, J. 2009. New developments in CLAMP:
16		Calibration using global gridded meteorological data. Palaeogeography,
17	820	Palaeoclimatology, Palaeoecology, 283 , 91–98.
18		TORSVIK, T. H., VAN DER VOO, R., PREEDEN, U., MAC NIOCAILL, C.,
19	822	STEINBERGER, B., DOUBROVINE, P. V., VAN HINSBERGEN, D. J. J.,
20		DOMEIER, M., GAINA, C., TOHVER, E., MEERT, J. G., MCCAUSLAND, P.
21 22	824	J. A. and COCKS, L. R. M. 2012. Phanerozoic polar wander, palaeogeography
22 23	021	and dynamics. <i>Earth-Science Reviews</i> , 114 , 325–368.
23 24	826	TREMBLAY, A., RODEN-TICE, M. K., BRANDT, J. A. and MEGAN, T. W. 2013.
25	020	Mesozoic fault reactivation along the St. Lawrence rift system, eastern Canada:
26	020	
27	828	Thermochronologic evidence from apatite fission-track dating. <i>GSA Bulletin</i> , 125 ,
28	0.00	794–810.
29	830	UPCHURCH, G. R. and DILCHER, D. L. 1990. Cenomanian angiosperm leaf
30		megafossils, Dakota Formation, Rose Creek locality, Jefferson County,
31	832	southeastern Nebraska. U.S. Geological Survey bulletin, v.1915, 1–55.
32		USHER, J. 1954. Brown « Coal » in the Labrador Trough; Abstract. Bulletin of the
33	834	<i>Geological Society of America</i> , 6 , 99–101.
34		WHITE, T. S., WITZKE, B. J. and LUDVIGSON, G. A. 2000. Evidence for an Albian
35	836	Hudson arm connection between the Cretaceous Western Interior Seaway of
36 37		North America and the Labrador Sea. Geological Society of America Bulletin,
37 38	838	112 , 1342–1355.
39	050	WILF, P. 1997. When are leaves good thermometers? A new case for Leaf Margin
40	840	Analysis. <i>Paleobiology</i> , 23 , 373–390.
41	0+0	WING, S. L. and GREENWOOD, D. R. 1993. Fossils and fossil climate: the case for
42	040	
43	842	equable continental interiors in the Eocene. <i>Phil. Trans. R. Soc. Lond. B</i> , 341 , 242, 252
44	0.4.4	243–252.
45	844	WOLFE, J. A. 1979. Temperature parameters of humid to mesic forests of Eastern Asia
46		and relation to forests of other regions of the Northern Hemisphere and
47	846	Australasia: analysis of temperature data from more than 400 stations in Eastern
48		Asia. U.S. Geological Survey Professional Paper, 1106 , 1–37.
49	848	——. 1993. A Method of Obtaining Climatic Parameters from Leaf Assemblages. In
50		US Geological Survey Bulletin 2040, U.S. Government Printing Office, 73 pp.
51 52	850	——— and UPCHURCH, G. R. 1987. North American nonmarine climates and
52 53		vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology,
55 54	852	Palaeoecology, 61 , 33–77.
55	002	YANG, J., SPICER, R. A., SPICER, T. E. V. and LI, CS. 2011. 'CLAMP Online': a
56		171100, 0.00000000000000000000000000000000
57		
58		

1		
2		
3 4	854	new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. <i>Palaeobiodiversity and Palaeoenvironments</i> , 91 ,
5 6	856	163.
7		,,, ARENS, N. C., JACQUES, F. M. B., SU, T., KENNEDY, E.
, 8 9	858	M., HERMAN, A. B., STEART, D. C., SRIVASTAVA, G., MEHROTRA, R. C., VALDES, P. J., MEHROTRA, N. C., ZHOU, ZK. and LAI, JS. 2015. Leaf
10 11	860	form-climate relationships on the global stage: an ensemble of characters. <i>Global Ecology and Biogeography</i> , 24 , 1113–1125.
12 13	862	ZAJAC, I. S. 1974. The stratigraphy and mineralogy of the Sokoman Formation in the
14		Knob Lake area, Quebec and Newfoundland. Geological Survey of Canada
15	864	<i>Bulletin</i> , 220 , 1–159.
16		
17		
18 10	866	
19 20		
20 21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31 22		
32 33		
33 34		
35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54 55		
55 56		
50 57		
<i></i>		

58 59

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
2 3 4 5 6 7 8 9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

	FIG. 1. Situation of the Redmond Formation in geologic time and in space. (A)
868	Geological timescale placing the Redmond Formation in the context of major Cretaceous
	environmental trends. Absolute ages based on the ICS International Chronostratigraphic
870	Chart (Cohen et al. 2018). Timing of oceanic anoxic events from Ogg et al. (2004).
	Relative diversity of major plant groups based on Butler et al. (2009). (B) Location of the
872	Redmond Formation near Schefferville in Labrador (54°41'N, 66°45'W). Exposures of
	the Sokoman Formation based on Conliffe (2016).
874	

Palaeontology

2	
3	
4	
5	
6	
7	
4 5 7 8 9 10	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
30	
31	
31 32 33 34 35 36 37 38	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	

876	FIG. 2. Some representatives of the non-angiosperm organisms preserved from the
	Redmond ecosystem. (A) Two young curled fern fronds (Gleicheniales), RMPB
878	2018.18.30. (B) Partial leaf of the cupressaceous conifer Widdringtonites subtilis Heer,
	YPM 30546. (C) Partial leaf of the pinaceous conifer Abietites longifolius (Fontaine)
880	Berry, RMPB 2018.18.29. (D) Isolated fern frond attributed to Asplenium angustipinnata
	Fontaine (Polypodiales), YPM 30541. (E) Partial leaf of the cupressaceous conifer
882	Sequoia gracillima (Lesquereux) Newberry, YPM 30529. Plants identified by Hickey
	(notes left alongside specimens). Scale bars 1 cm. Images adjusted for brightness and
884	contrast.

2 3	886	FIG. 3. Some invertebrate remains indicative of the Redmond Formation's palaeoclimate
4 5		-
6 7		and depositional environment. (A) Almost complete undescribed mayfly nymph
8 9	888	(Ephemeroptera; Hexagenitidae), MPEP 1156.5. (B) Folded wings of large phasmatodean
10 11		Palaeopteron complexum Rice 1969, GSC 22189. (C) Articulated scutellum and elytra of
12 13	890	undescribed water beetle (Coleoptera; Adephaga; Hydradephaga), MPEP 702.4. (D)
14 15 16		Isolated fore wing of termite (Hodotermitidae) Cretatermes carpenteri Emerson 1967,
17 18	892	YPM 223802. (E) Isolated fore wing of snakefly (Alloraphidiidae) Alloraphidia dorfi
19 20		Carpenter 1967, YPM 223803. (F) Ichnofossil of unknown burrowing benthic
21 22	894	invertebrate, MPEP 702.41. A, C and F represent autochthonous remains from a
23 24 25		lacustrine depositional environment; B, D and E represent allochthonous remains
26 27	896	indicative of a warm palaeoclimate. Scale bars 5mm unless specified otherwise. Images
28 29		adjusted for brightness and contrast.
30 31		
32		
33 34		
35		
36		
37		
38 39		
40		
41		
42		
43		
44		
45		
46 47		
47 48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58 50		
59 60		Palaeontology
00		

Page 39 of 58

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23 24	
24	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

898	FIG. 4. Representative specimens of the angiosperm morphotypes from the Redmond
	Formation. Morphotype 1 ('Andromeda' novaecaesarae Hollick): (A) YPM 47190.
900	Morphotype 2 ('Andromeda' parlatorii Heer): (B) YPM 30413. Morphotype 3 ('Aralia'
	groenlandica Heer): (C) YPM 30445, (D) YPM 30384. Morphotype 4 (Araliopsoides
902	cretacea (Newberry) Berry): (E) YPM 47191. Morphotype 5 (Celastrophyllum
	albaedomus Ward): (F) YPM 47192. Morphotype 7 (Cissites formosus Heer): (H) YPM
904	47247. Morphotype 8 (Cissites platanoidea Hollick): (G) MPEP 702.53, (I) YPM 30423,
	(J) YPM 30428, (K) YPM 47248. Morphotype 6 (Celastrophyllum brittonianum
906	Hollick): (L) YPM 47246. Morphotype 10 (Daphnophyllum dakotense Lesquereux): (M)
	YPM 30492. Morphotype 9 (Crassidenticulum n. sp. Indet): (N) YPM 30471. Scale bars
908	1 cm. Images adjusted for brightness and contrast. For more information on each
	morphotype, see Demers-Potvin and Larsson (2019).
910	

1
-
2
3
4
5
6
7
, 0
8
9
10
11
12
12
15
14
15
16
17
19 19
10
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
20
21
22
22
23
24
25
26
27
28
20
29
30
31 32 33 34 35 36 37
32
33
34
25
22
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	FIG. 5. Representative specimens of the angiosperm morphotypes from the Redmond
912	Formation. Morphotype 11 ('Densinervum' kaulii Upchurch & Dilcher): (A) YPM
	30448. Morphotype 12 (Dicotylophyllum n. sp. Indet): (B) YPM 30465. Morphotype 13
914	('Diospyros' primaeva Heer): (C) YPM 47249. Morphotype 14 (Dryandroides lancelota
	Knowlton): (D) YPM 47294. Morphotype 15 (Dryandroides n. sp. Indet): (E) MPEP
916	609.6. Morphotype 16 (Ficus berthoudi Lesquereux): (F) YPM 47296. Morphotype 18
	(Liriodendropsis simplex (Newberry) Newberry): (G) YPM 45137. Morphotype 19
918	(Magnolia amplifolia Heer, Magnolia speciosa Heer): (H) YPM 30401. Morphotype 17
	(Liriodendron simplex Newberry): (I) YPM 30484. Morphotype 20 (Magnolia n. sp.
920	Indet): (J) YPM 30405. Scale bars 1 cm. Images adjusted for brightness and contrast. For
	more information on each morphotype, see Demers-Potvin and Larsson (2019).
922	

Page 41 of 58

Palaeontology

1	
ר	
2	
3	
4	
2 3 4 5 6 7 8 9 10	
6	
7	
8	
0	
3	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
32 33 34 35 36 37	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

	FIG. 6. Representative specimens of the angiosperm morphotypes from the Redmond
924	Formation. Morphotype 21 (Menispermites obtusiloba Lesquereux): (A) YPM 30521.
	Morphotype 22 (Menispermites trilobatus Berry): (B) YPM 30516. Morphotype 23
926	('Platanus' heerii Lesquereux): (C) YPM 30517. Morphotype 26 (Sassafras acutilobum
	Lesquereux) : (D) YPM 30375, (E) YPM 30390, (F) RMPB 2018.18.27. Morphotype 25
928	(Salix newberryana Hollick): (G) YPM 47303. Morphotype 28: (H) RMPB 2018.18.9.
	Morphotype 24 ('Platanus' shirleyensis Berry): (I) YPM 30392. Morphotype 27
930	('Sterculia' lugubris Lesquereux): (J) YPM 47299. Morphotype 31: (K) RMPB
	2018.18.13. Morphotype 29: (L) YPM 47300. Morphotype 30: (M) YPM 47301.
932	Morphotype 33: (N) MPEP 702.59. Morphotype 46: (O) MPEP 1177.9. Scale bars 1 cm.
	Images adjusted for brightness and contrast. For more information on each morphotype,
934	see Demers-Potvin and Larsson (2019).

1 2		
2 3 4	936	FIG. 7. Representative specimens of the angiosperm morphotypes from the Redmond
5 6		Formation. Morphotype 32: (A) YPM 30500. Morphotype 38: (B) GSC 104192.
7 8 9	938	Morphotype 35: (C) MPEP 702.58. Morphotype 36: (D) MPEP 609.1. Morphotype 34:
10 11		(E) MPEP 702.39. Morphotype 37: (F) MPEP 702.115. Morphotype 41: (G) RMPB
12 13	940	2018.18.2. Morphotype 39: (H) RMPB 2018.18.28. Morphotype 45: (I) MPEP 1152.27.
14 15		Morphotype 42: (J) RMPB 2018.18.20. Morphotype 40: (K) RMPB 2018.18.4.
16 17 18	942	Morphotype 43: (L) MPEP 1151.5. Morphotype 44: (M) MPEP 1154.5. Scale bars 1 cm.
19 20		Images adjusted for brightness and contrast. For more information on each morphotype,
21 22	944	see Demers-Potvin and Larsson (2019).
23 24 25		
25 26		
27 28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		<i>,</i>
59 60		4' Palaeontology

Page 43 of 58

60

1		
2 3 4		FIG. 8. Implied palaeolatitudinal gradients of mean annual temperature for a Cenomanian
5 6	946	age bin (93.9 - 100.5 MA) based on two palaeoclimate estimate methods: CLAMP (this
7 8 9		study) and LMA (reproduced from Miller et al. (2006)). Palaeolatitudes calculated from
9 10 11	948	van Hinsbergen et al. (2015a). In the following list, each flora is succeeded by its
12 13		estimated palaeolatitude and the source of its palaeoclimate estimate. Raritan (36.4°N)
14 15 16	950	(Wolfe and Upchurch 1987); Patapsco (36.4°N) (Wolfe and Upchurch 1987); Tuscaloosa
17 18		(31.7°N) (Spicer and Herman 2010); Woodbine (37.4°N) (Wolfe and Upchurch 1987
19 20	952	(LMA); Spicer and Herman 2010 (CLAMP)); Rose Creek (40.2°N) (this study); Fort
21 22 23		Harker (Dakota) (39.0°N) (Wolfe & Upchurch, 1987 (LMA); this study (CLAMP));
24 25	954	Redmond (Redmond) (48.8°N) (Hickey and Armstrong 1998 (LMA); this study
26 27 28		(CLAMP)); Dunvegan (58.4°N) (Wolfe and Upchurch 1987); Chandler (78.0°N) (Parrish
29 30	956	and Spicer 1988); Nanushuk (79.5°N) (Herman et al. 2016). Minimum and maximum
31 32 33		palaeolatitude estimates for each point projected as error bars. Abbreviations for the
33 34 35	958	methods used are as follows: Climate Leaf Analysis Multivariate Program (CLAMP),
36 37		Leaf Margin Analysis (LMA). Regression equations – LMA $y = -0.3228x + 35.415$, $R^2 =$
38 39 40	960	0.8576. CLAMP y = -0.1412x + 23.109, R ² = 0.8515.
41 42		
43 44 45		
43 46 47		
48 49		
50 51 52		
53 54		
55 56 57		
57 58 59		4
60		4 Palaeontology

2		
3	962	TABLE 1. Summary of woody dicotyledonous morphotypes used for a palaeoclimate
4 5		
6		estimate of the Labrador's Cenomanian Redmond ecosystem.
7	0.64	
8	964	
9 10		
10		
12	966	TADIE 2 Summary of pologoglimate personator estimates from the Climate Leaf
13	900	TABLE 2. Summary of palaeoclimate parameter estimates from the Climate Leaf
14		Analysis Multivariate Program (CLAMP) for the Redmond no.1 site.
15 16		Analysis Multivariate Program (CLAM) for the Redmond no.1 site.
17	968	
18	700	
19		
20	970	TABLE 3. Palaeoclimate estimates for late Albian-Cenomanian North American floras
21 22		
23		using CLAMP and LMA.
24		
25	972	
26		
27 28		
29		
30		
31		
32		
33 34		
35		
36		
37		
38		
39 40		
41		
42		
43		
44		
45 46		
47		
48		
49		
50		
51 52		
53		
54		
55		
56 57		
57 58		
58 59		A°
60		4 Palaeontology

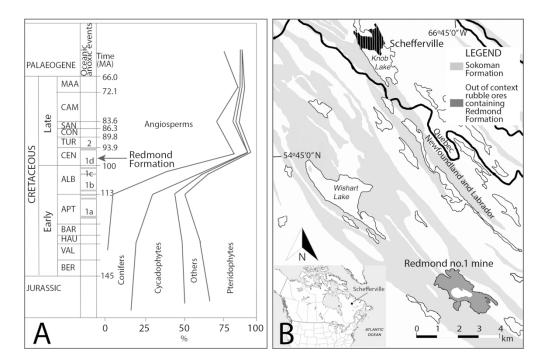
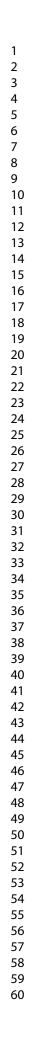



FIG. 1. Situation of the Redmond Formation in geologic time and in space. (A) Geological timescale placing the Redmond Formation in the context of major Cretaceous environmental trends. Absolute ages based on the ICS International Chronostratigraphic Chart (Cohen et al. 2018). Timing of oceanic anoxic events from Ogg et al. (2004). Relative diversity of major plant groups based on Butler et al. (2009). (B) Location of the Redmond Formation near Schefferville in Labrador (54°41′N, 66°45′W). Exposures of the Sokoman Formation based on Conliffe (2016).

165x109mm (300 x 300 DPI)

Palaeontology

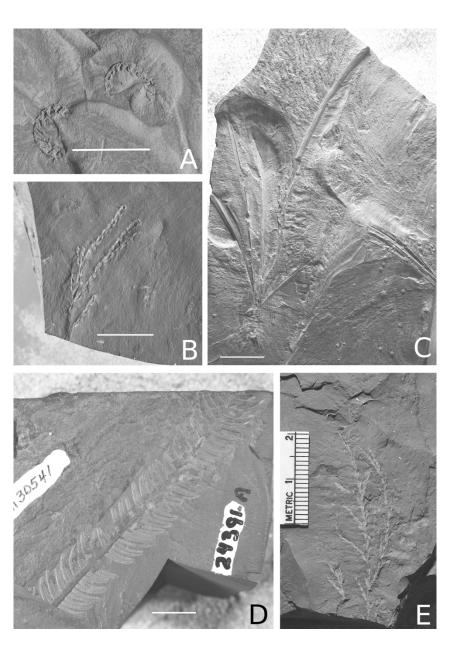


FIG. 2. Some representatives of the non-angiosperm organisms preserved from the Redmond ecosystem.
(A) Two young curled fern fronds (Gleicheniales), RMPB 2018.18.30. (B) Partial leaf of the cupressaceous conifer *Widdringtonites subtilis* Heer, YPM 30546. (C) Partial leaf of the pinaceous conifer *Abietites longifolius* (Fontaine) Berry, RMPB 2018.18.29. (D) Isolated fern frond attributed to *Asplenium angustipinnata* Fontaine (Polypodiales), YPM 30541. (E) Partial leaf of the cupressaceous conifer *Sequoia gracillima* (Lesquereux) Newberry, YPM 30529. Plants identified by Hickey (notes left alongside specimens). Scale bars 1 cm. Images adjusted for brightness and contrast.

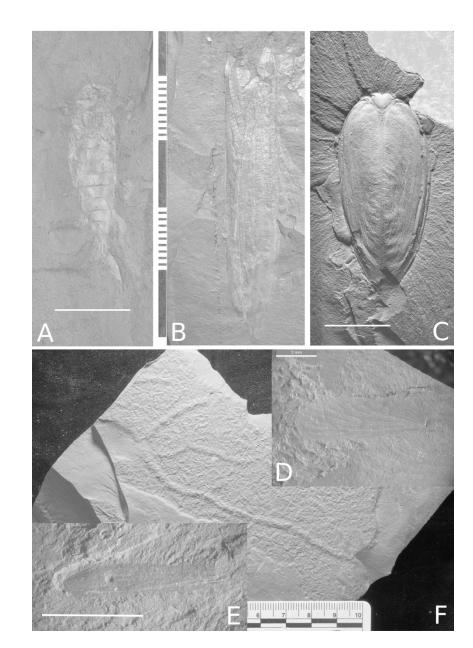
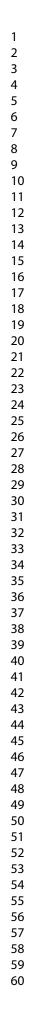



FIG. 3. Some invertebrate remains indicative of the Redmond Formation's palaeoclimate and depositional environment. (A) Almost complete undescribed mayfly nymph (Ephemeroptera; Hexagenitidae), MPEP 1156.5. (B) Folded wings of large phasmatodean *Palaeopteron complexum* Rice 1969, GSC 22189. (C)
Articulated scutellum and elytra of undescribed water beetle (Coleoptera; Adephaga; Hydradephaga), MPEP 702.4. (D) Isolated fore wing of termite (Hodotermitidae) *Cretatermes carpenteri* Emerson 1967, YPM 223802. (E) Isolated fore wing of snakefly (Alloraphidiidae) *Alloraphidia dorfi* Carpenter 1967, YPM 223803. (F) Ichnofossil of unknown burrowing benthic invertebrate, MPEP 702.41. A, C and F represent autochthonous remains from a lacustrine depositional environment; B, D and E represent allochthonous remains indicative of a warm palaeoclimate. Scale bars 5 mm unless specified otherwise. Images adjusted for brightness and contrast.

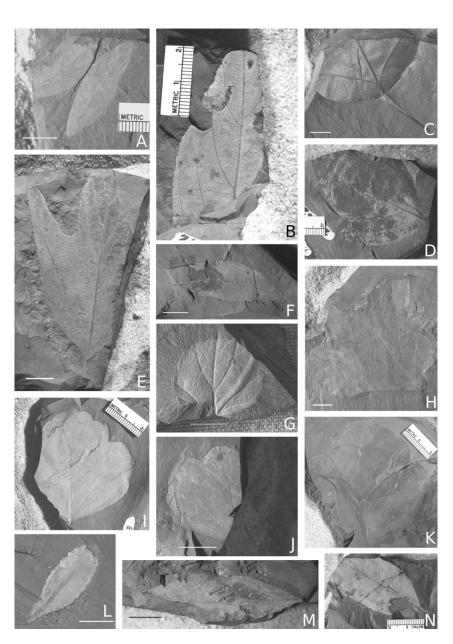


FIG. 4. Representative specimens of the angiosperm morphotypes from the Redmond Formation.
Morphotype 1 ('Andromeda' novaecaesarae Hollick): (A) YPM 47190. Morphotype 2 ('Andromeda' parlatorii Heer): (B) YPM 30413. Morphotype 3 ('Aralia' groenlandica Heer): (C) YPM 30445, (D) YPM 30384.
Morphotype 4 (Araliopsoides cretacea (Newberry) Berry): (E) YPM 47191. Morphotype 5 (*Celastrophyllum albaedomus* Ward): (F) YPM 47192. Morphotype 7 (*Cissites formosus* Heer): (H) YPM 47247. Morphotype 8 (*Cissites platanoidea* Hollick): (G) MPEP 702.53, (I) YPM 30423, (J) YPM 30428, (K) YPM 47248. Morphotype 6 (*Celastrophyllum brittonianum* Hollick): (L) YPM 47246. Morphotype 10 (*Daphnophyllum dakotense* Lesquereux): (M) YPM 30492. Morphotype 9 (*Crassidenticulum* n. sp. Indet): (N) YPM 30471. Scale bars 1 cm. Images adjusted for brightness and contrast. For more information on each morphotype, see Demers-Potvin and Larsson (2019).

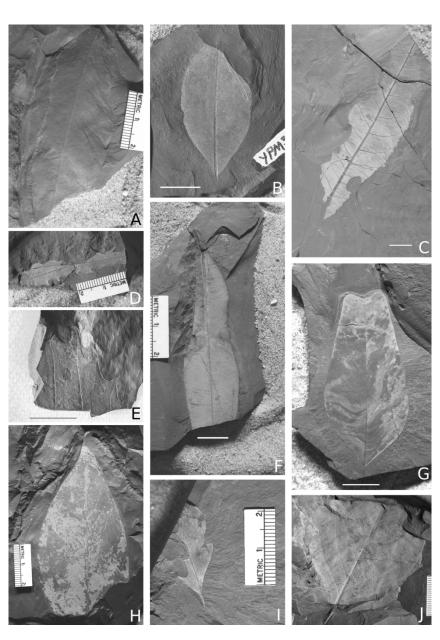
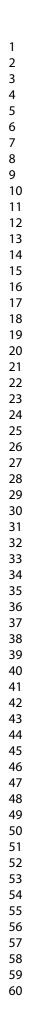
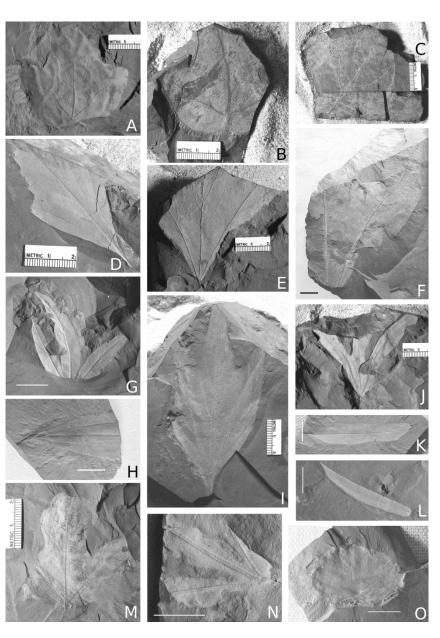
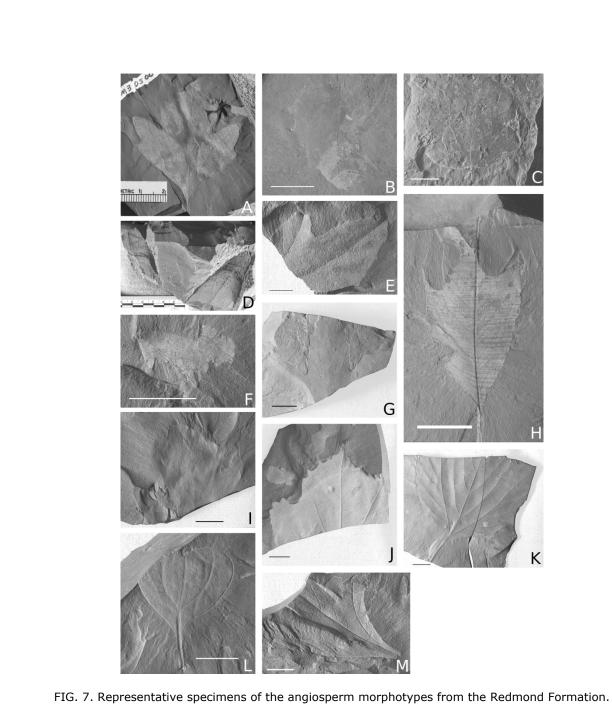
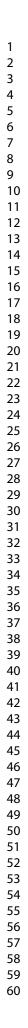



FIG. 5. Representative specimens of the angiosperm morphotypes from the Redmond Formation.
Morphotype 11 ('*Densinervum' kaulii* Upchurch & Dilcher): (A) YPM 30448. Morphotype 12 (*Dicotylophyllum* n. sp. Indet): (B) YPM 30465. Morphotype 13 ('*Diospyros' primaeva* Heer): (C) YPM 47249. Morphotype 14 (*Dryandroides lancelota* Knowlton): (D) YPM 47294. Morphotype 15 (*Dryandroides* n. sp. Indet): (E) MPEP 609.6. Morphotype 16 (*Ficus berthoudi* Lesquereux): (F) YPM 47296. Morphotype 18 (*Liriodendropsis simplex* (Newberry) Newberry): (G) YPM 45137. Morphotype 19 (*Magnolia amplifolia* Heer, *Magnolia speciosa* Heer): (H) YPM 30401. Morphotype 17 (*Liriodendron simplex* Newberry): (I) YPM 30484.
Morphotype 20 (*Magnolia* n. sp. Indet): (J) YPM 30405. Scale bars 1 cm. Images adjusted for brightness and contrast. For more information on each morphotype, see Demers-Potvin and Larsson (2019).


FIG. 6. Representative specimens of the angiosperm morphotypes from the Redmond Formation.
Morphotype 21 (*Menispermites obtusiloba* Lesquereux): (A) YPM 30521. Morphotype 22 (*Menispermites trilobatus* Berry): (B) YPM 30516. Morphotype 23 ('*Platanus' heerii* Lesquereux): (C) YPM 30517.
Morphotype 26 (*Sassafras acutilobum* Lesquereux): (D) YPM 30375, (E) YPM 30390, (F) RMPB 2018.18.27. Morphotype 25 (*Salix newberryana* Hollick): (G) YPM 47303. Morphotype 28: (H) RMPB 2018.18.9. Morphotype 24 ('*Platanus' shirleyensis* Berry): (I) YPM 30392. Morphotype 27 ('*Sterculia' lugubris* Lesquereux): (J) YPM 47299. Morphotype 31: (K) RMPB 2018.18.13. Morphotype 29: (L) YPM 47300.
Morphotype 30: (M) YPM 47301. Morphotype 33: (N) MPEP 702.59. Morphotype 46: (O) MPEP 1177.9. Scale bars 1 cm. Images adjusted for brightness and contrast. For more information on each morphotype, see Demers-Potvin and Larsson (2019).

Morphotype 32: (A) YPM 30500. Morphotype 38: (B) GSC 104192. Morphotype 35: (C) MPEP 702.58. Morphotype 36: (D) MPEP 609.1. Morphotype 34: (E) MPEP 702.39. Morphotype 37: (F) MPEP 702.115. Morphotype 41: (G) RMPB 2018.18.2. Morphotype 39: (H) RMPB 2018.18.28. Morphotype 45: (I) MPEP 1152.27. Morphotype 42: (J) RMPB 2018.18.20. Morphotype 40: (K) RMPB 2018.18.4. Morphotype 43: (L) MPEP 1151.5. Morphotype 44: (M) MPEP 1154.5. Scale bars 1 cm. Images adjusted for brightness and contrast. For more information on each morphotype, see Demers-Potvin and Larsson (2019).

K

165x234mm (300 x 300 DPI)

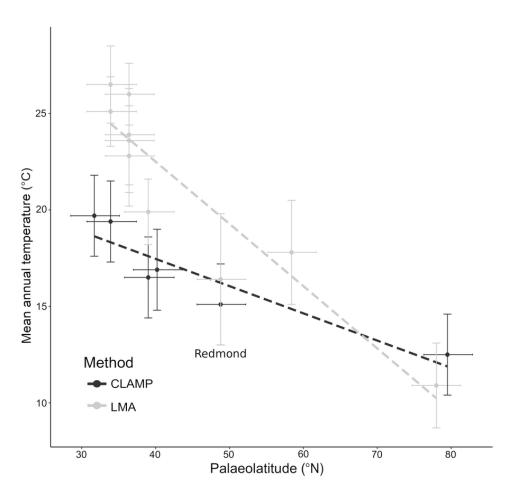


FIG. 8. Implied palaeolatitudinal gradients of mean annual temperature for a Cenomanian age bin (93.9 - 100.5 MA) based on two palaeoclimate estimate methods: CLAMP (this study) and LMA (reproduced from Miller et al. (2006)). Palaeolatitudes calculated from van Hinsbergen et al. (2015a). In the following list, each flora is succeeded by its estimated palaeolatitude and the source of its palaeoclimate estimate. Raritan (36.4°N) (Wolfe and Upchurch 1987); Patapsco (36.4°N) (Wolfe and Upchurch 1987); Tuscaloosa (31.7°N) (Spicer and Herman 2010); Woodbine (37.4°N) (Wolfe and Upchurch 1987 (LMA); Spicer and Herman 2010 (CLAMP)); Rose Creek (40.2°N) (this study); Fort Harker (Dakota) (39.0°N) (Wolfe & Upchurch, 1987 (LMA); this study (CLAMP)); Redmond (Redmond) (48.8°N) (Hickey and Armstrong 1998 (LMA); this study (CLAMP)); Dunvegan (58.4°N) (Wolfe and Upchurch 1987); Chandler (78.0°N) (Parrish and Spicer 1988); Nanushuk (79.5°N) (Herman et al. 2016). Minimum and maximum palaeolatitude estimates for each point projected as error bars. Abbreviations for the methods used are as follows: Climate Leaf Analysis Multivariate Program (CLAMP), Leaf Margin Analysis (LMA). Regression equations – LMA y = -0.3228x + 35.415, R2 = 0.8576. CLAMP y = -0.1412x + 23.109, R2 = 0.8515.

80x75mm (300 x 300 DPI)

Morphotype / systematic	No.	ML / SD	MW / SD	MQ
affinity	specimens	(mm)	(mm)	
1 Andromeda	2	33.4	9.9 / 0.7 (n = 2)	4
<i>novaecaesarae</i> Hollick				
2 Andromeda parlatorii	2	84.0*(n=1)	36.0*(n=1)	4
Heer				
3 'Aralia' groenlandica	9	57.0 / 1.4 (n =	51.3 /	5
Heer		2)	2.5 (n = 2)	
4 Araliopsoides cretacea	1	67.8	57.9	7
(Newberry) Berry				
5 Celastrophyllum	6	54.0 (n = 1)	14.8 (n = 1)	4
albaedomus Ward				
6 Celastrophyllum	2	30.6 (n = 1)	10.2 / 0.0 (n =	7
brittonianum Hollick			2)	
7 Cissites formosus Heer	3	105.0*(n=1)	95.0* (n = 1)	5
8 Cissites platanoidea	28	39.4 / 18.5 (n	41.0 / 19.8 (n =	7
Hollick		= 9)	10)	
9 Crassidenticulum sp.	8	NÁ	NÁ	2
indet				
10 Daphnophyllum	1	53.3	17.6	2
dakotense Lesquereux				
11 'Densinervum' kaulii	3	NA	NA	2
Upchurch & Dilcher				
12 Dicotylophyllum sp.	2	39.4 / 0.6 (n =	17.8 / 0.4 (n =	5
indet		2)	2)	
13 Diospyros primaeva	4	93.0*(n=1)	/	4
Heer	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
14 Dryandroides	1	91.0*	10.0*	5
lanceolata Knowlton				0
15 <i>Dryandroides</i> sp. indet	2	NA	NA	4
16 Ficus berthoudi	10	89.0*(n = 1)	25.4 / 6.3 (n =	4
Lesquereux	10	(i i)	3)	-7
17 <i>Liriodendron simplex</i>	2	23.8 (n = 1)	14.0 (n = 1)	4
Newberry	2	23.0 (m 1)	11) 0.71	-
18 Liriodendropsis simplex	9	31.1 / 13.9 (n	16.0 / 7.6 (n =	6
Newberry	7	= 4		0
5	12	,	5) $46.6/9.2$ (n -	F
19 Magnolia amplifolia Heer Magnolia speciosa	13	96.1 / 17.3 (n - 4)	46.6 / 9.2 (n = 4)	6
Heer, Magnolia speciosa		=4)	4)	
Heer 20 Magnalia an indet	Л	NT A	162/120/	А
20 Magnolia sp. indet	4	NA	46.3 / 12.8 (n = 2)	4
21.14.	1	50 <i>5</i>	3)	-
21 Menispermites	1	58.5	61.6	5
obtusiloba Lesquereux				

22 Menispermites	2	71.0* (n = 1)	69.0*(n=1)	3
trilobatus Berry		_		
23 <i>Platanus heerii</i> Lesquereux	3	NA	NA	5
24 Platanus shirleyensis	3	78.5 / 54.5 (n	42.9 / 18.1 (n =	7
Berry		= 2)	3)	
25 Salix newberryana	2	5.2 / 29.2 (n = 2)	6.0 / 0.6 (n = 2)	3
26 Sassafras acutilobum	23	54.9 / 7.7 (n =	27.9 / 6.0 (n =	6
Lesquereux		3)	3)	
27 'Sterculia' lugubris	1	NÁ	NÁ	4
Lesquereux				
28	1	NA	NA	3
29	3	NA	5.8 / 2.0 (n = 5)	4
30	1	47.4	54.7	4
31	5	NA	10.2 / 2.1 (n =	3
			3)	_
32	1	51.0	45.0	5
33	2	NA	NA	2
34	1	NA	NA	4
35	3	33.1	41.3	5
36	2	NA	NA	4
37	1	NA	16.2	5 5
38	1	NA	22.3	
39	1	NA	17.1	4
40	1	NA	NA	5
41	2	NA	NA	4
42	1	NA	NA	5
43	1	16.2	18.3	4
44	1	NA	NA	3 5
45	1	NA	NA	5
_46	1	20.2	28.3	7
Total No. specimens	177	45	66	-

Abbreviations are as follows: mean length / standard deviation (ML / SD), mean width / standard deviation (MW / SD), and morphotype quality index (MQI) (see Harris & Arens, 2016 for details). NA indicated when data was unavailable for a measurement or a calculation. * Estimates from Armstrong (1993). More information on morphotype classification can be found in Demers-Potvin and Larsson (2019).

_	Physiognomic Method Used	MAT (°C)	WMMT (°C)	CMMT (°C)	LGS (Months)	GSP (cm)	TABLE MMGSP (cm)
-	CLAMP (GRIDMet)	15.1 ± 2.1	23.1 ± 2.5	7.8 ± 3.4	8.4 ± 1.1	119.6 ± 31.7	13.6 ± 3.8
	CLAMP (Met)	15.4 ± 2.0	23.9 ± 2.7	8.0 ± 3.4	10.7 ± 1.1	153.3 ± 48.3	16.1 ± 5.2
-	CLAMP (Global378)	13.5 ± 4.0	23.7 ± 3.9	3.4 ± 6.7	9.3 ± 1.9	86.7 ± 54.9	6.0 ± 6.0
-	Physiognomic Method Used	Three WET (cm)	Three DRY (c	m) RH	(%)	SH (g/kg)	ENTHAL (kJ/kg)
-	CLAMP (GRIDMet)	68.1 ± 22.9	16.6 ± 5.9	71.9	± 8.6	8.5 ± 1.7	32.1 ± 0.8
	CLAMP (Met)	70.5 ± 20.6	27.1 ± 13.7	66.0	±11.1	7.4 ± 1.7	30.8 ± 0.6
	CLAMP (Global378)	59.8 ± 32.2	7.2 ± 13.0	57.0	± 9.3	7.4 ± 2.0	31.9 ± 1.1
	For CLAMP, all errors Spicer, 2006). 'GRIDM calibration dataset, 'M	Met' refers to estimat et' refers to estimate	es obtained from an s obtained from an	n analysis that us analysis that use	ses a temperate N es an alternative u	orth American grid	dded meteorological nerican calibration
	dataset, and 'Global37 2006; Spicer et al., 200			•			· ·
V	warmest month mean t	temperature (WMM)	T), coldest month m	ean temperature	(CMMT), length	n of the growing se	ason (LGS),
(growing season precip (Three WET), precipit (ENTHAL). See Deme	ation during three dr	iest months (Three	DRY), relative h	numidity (RH), sp	pecific humidity (S	H), and enthalpy
,				in physiognomi			
			Ρ	alaeontology			

							TABLE 3		
Flora (Formation)	P.Lat (°N) (Min; Max)	MAT reference	Method	MAT (°C) (SE)	WMMT (°C) (SE)	CMMT (°C) (SE)	LGS (Months) (SE)	GSP (cm) (SE)	
Woodbridge (Raritan)	36.4	Wolfe and	LMA	26.0 (2.7)	_	-	-	-	
	(33.2; 39.8)	Upchurch (1987)							
South Amboy	36.4	Wolfe and	LMA	22.8 (4.4)	-	-	-	-	
(Raritan)	(33.2; 39.8)	Upchurch (1987)							
Milton (Raritan)	36.4	Wolfe and	LMA	23.9 (4.6)	-	-	-	-	
	(33.2; 39.8)	Upchurch (1987)							
Malden Mtn	36.4	Wolfe and	LMA	23.6 (4.8)	-	-	-	-	
(Patapsco)	(33.2; 39.8)	Upchurch (1987)							
Arthurs Bluff	37.4	Wolfe and	LMA	26.5 (3.6)	-	-	-	-	
(Woodbine)	(30.7; 33.9)	Upchurch (1987)							
Denton Co.	37.4	Wolfe and	LMA	25.1 (3.0)	-	-	-	-	
(Woodbine)	(30.7; 33.9)	Upchurch (1987)							
² Fort Harker (Dakota)	39.0	Wolfe and	LMA	24.5 (3.9)	-	-	-	-	
8	(35.8; 42.5)	Upchurch (1987)		~ /					
⁴ Dunvegan (Dunvegan)	58.4	Wolfe and	LMA	17.8 (4.2)	-	-	-	-	
5 5 5	(55.2; 61.8)	Upchurch (1987)							
7 Chandler (Chandler)	78.0	Parrish and Spicer	LMA	10.9 (3.3)	-	-	-	_	
3	(74.7; 81.3)	(1988)	2						
Redmond (Redmond)	48.8	Hickey and	LMA	19.9 (5.2)	_	-	-	_	
)	(45.6; 52.2)	Armstrong (1998)		19.9 (0.2)					
l	(10.0, 02.2)	This study	CLAMP (G)	15.1 (2.1)	23.1 (2.5)	7.8 (3.4)	8.4 (1.1)	119.6	
2		This study	CLIMI (0)	13.1 (2.1)	25.1 (2.5)	7.0 (5.1)	0.1(1.1)	(31.7)	
Rose Creek (Dakota)	40.2	This study	CLAMP (G)	16.9 (2.1)	26.5 (2.5)	8.0 (3.4)	9.1 (1.1)	173.1 (3.8)	
	(37.0; 43.6)	This study	CERTIMI (0)	10.7 (2.1)	20.3 (2.3)	0.0 (5.4)	J.1 (1.1)	175.1 (5.0)	
5 Fort Harker (Dakota)	(37.0, 45.0) 39.0	This study	CLAMP (G)	16.5 (2.1)	23.2 (2.5)	10.2 (3.4)	9.1 (1.1)	127.1 (3.8)	
	(35.8; 42.5)	This study	CLAWII (0)	10.5(2.1)	23.2 (2.3)	10.2 (3.4)	<i>J</i> .1 (1.1)	127.1 (5.0)	
Tuscaloosa	(33.8, 42.3) 31.7	Spicer and Herman	CLAMP(G)	19.7 (2.1)	24.5(2.5)	15.1 (3.4)	10.5 (1.1)	145.6 (3.8)	
(Turanlance)	(28.5; 35.1)	(2010)	CLAWII (0)	17.7 (2.1)	24.3 (2.3)	15.1 (5.4)	10.5 (1.1)	145.0 (5.8)	
) ((20.3, 33.1)	(2010)							
1									
2									
3									
5			Palaeonto	logy					

Page !	57 of	58
--------	-------	----

1 2 3									
4 5 6	Woodbine (Woodbine)	37.4 (30.7; 33.9)	Spicer and Herman (2010)	CLAMP (G)	19.4 (2.1)	23.5 (2.5)	15.4 (3.4)	10.3 (1.1)	130.5 (3.8)
7 8	Nanushuk (Corwin)	79.5 (76.3; 82.9)	Herman <i>et al.</i> (2016)	CLAMP (G)	12.5 (2.1)	20.0 (2.5)	5.7 (3.8)	-	-
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	climate data u each modern o palaeolatitude temperature (0 www.paleolat	d errors retrieved sing the methodo calibration site as (P.Lat), mean an CMMT), length o itude.org (model	from Miller <i>et al.</i> (200 plogy of Spicer <i>et al.</i> (2 s passive (retrieved from nual temperature (MA of the growing season (version 2.1) using the Demers-Potvin and Lar	2009). All CLAM m Spicer, 2006). A T), warmest mon (LGS), and growing reference frame of	P errors are 2σ , Abbreviations for the mean tempering season precipion of Torsvik <i>et al.</i>	and are calcul or the climate p rature (WMMT pitation (GSP) (2012); for mo	ated by treatin parameters are (), coldest mor . Palaeolatitud ore details on t	g samples from as follows: oth mean les calculated of the calculator, s	n
44 45 46 47				Palaeontol	ogy				

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21 22	
22 23	
23 24	
24	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

- 46
- 47