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Abstract

Arabidopsis thaliana (L.) Heynh. genotypes limited in

their ability to mount either octadecanoid-dependent

induced resistance (IR–) or systemic acquired resis-

tance (SAR–) were used to characterize the roles of

these pathways in plant–herbivore interactions. Molec-

ular and biochemical markers of IR were analysed in

plants subject to herbivory by caterpillars of the beet

armyworm, Spodoptera exigua Hübner, which had

either intact or impaired salivary secretions since

salivary enzymes, such as glucose oxidase, have been

implicated in the ability of caterpillars to circumvent

induced plant defences. Transcript expression of

genes encoding laccase-like multicopper oxidase

[AtLMCO4 (polyphenol oxidase)] and defensin

(AtPDF1.2) showed salivary-specific patterns which

were disrupted in the SAR– mutant plants. The activity

of octadecanoid-associated anti-nutritive proteins,

such as LMCO and trypsin inhibitor, showed similar

patterns. Gene and protein changes parallel plant

hormone levels where elevated jasmonic acid was

observed in wild-type plants fed upon by caterpillars

with impaired salivary secretions compared with

plants subject to herbivory by normal caterpillars. This

salivary-specific difference in jasmonic acid levels was

alleviated in SAR– mutants. These results support the

model that caterpillar saliva interferes with jasmonate-

dependent plant defences by activating the SAR

pathway.

Key words: Caterpillar, cross-talk, gene expression, induced

resistance, plant–insect interactions, salivary elicitors,

Spodoptera exigua.

Introduction

Plants defend themselves against the diverse onslaught
of pests and pathogens by both general and specific

induced defences (Walling, 2000; Kessler and Baldwin,
2002; Bruce and Pickett, 2007; Kessler and Halitschke,
2007). During feeding, wounding of leaf tissue by
caterpillars induces the biosynthesis of oxylipin phytohor-
mones, such as jasmonic acid (JA), which results in

general octadecanoid-dependent induced resistance (IR)
(Farmer et al., 2003; Delessert et al., 2004; Halitschke
and Baldwin, 2005). Plants also target their defence
responses specifically against the herbivorous insect

(Kessler and Halitschke, 2007). In Nicotiana attenuata
Torr., genes differentially expressed in response to her-
bivory by three different caterpillar species showed similar
expression profiles (Voelckel and Baldwin, 2004); how-
ever, the plant’s overall transcriptional response to

the two generalist noctuid caterpillar species, Heliothis
virescens Fabricius (tobacco budworm) and Spodoptera
exigua Hübner (beet armyworm), was more consistent
than the response to the sphingid specialist, Manduca
sexta L. (tobacco hornworm). Similarly, even though
the Arabidopsis relative, Boechera divaricarpa (Nels.)
Löve, showed overlapping transcriptional patterns in
response to herbivory by caterpillars of the crucifer
specialist Plutella xylostella L. (diamondback moth) or

the generalist Trichoplusia ni Hübner (cabbage looper),
numerous genes were regulated in distinct patterns that
indicated interactions between the octadecanoid/ethylene
or octadecanoid/salicylic acid (SA) pathways, respec-

tively, resulting in species-specific responses (Vogel
et al., 2007). Presumably, the ability of the plant to
modify defence responses to target the herbivore lies in
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the recognition of caterpillar-related elicitors or other
signals which are detected by the plant.
After grinding leaf tissue with their mandibles, cater-

pillars use oral secretions to transport food into their
mouthparts. These oral secretions, which are comprised of
regurgitant and labial and mandibular saliva, contain
a milieu of potential elicitors that are recognized by the
plant and shape its defence response. Treatment of
wounded corn seedlings or tobacco with volicitin, which
is found in the insect regurgitant, induces the synthesis
and release of volatiles that lure predators or parasitoids of
the herbivorous caterpillar to the plant (Alborn et al.,
1997; Turlings et al., 2000; Kessler and Baldwin, 2001,
2002). Labial saliva of some caterpillar species contains
oxidoreductases, such as glucose oxidase (GOX), which
may enable the insect to circumvent induced plant
defences (Musser et al., 2002, 2005).
The basis of GOX action is believed to be through the

activation of phytohormone pathways which interact and
modify the plant’s typical responses (Rojo et al., 2003;
Zhu-Salzman et al., 2005; Fujita et al., 2006; Torres et al.,
2006; Bodenhausen and Reymond, 2007). In response to
wounding or caterpillar herbivory, the rapid biosynthesis
of octadecanoids leads to jasmonate-dependent IR
(Devoto and Turner, 2003; Howe, 2004; Halitschke and
Baldwin, 2005; Wasternack et al., 2006). In systemic
tissues, JA and its isoleucine-conjugated form, isoleucine-
JA, activates the SCFCo1 ubiquitin–proteasome-mediated
degradation of the jasmonate ZIM domain (JAZ) protein,
which negatively regulates the master transcription factor
MYC2, leading to the induction of JA-dependent plant
defences (Devoto et al., 2002; Xu et al., 2002; Chini
et al., 2007; Dombrecht et al., 2007; Thines et al., 2007).
Another potential target of the SCFCo1 ubiquitin–proteasome
is histone deacetylase which adds a layer of epigenetic
regulation to JA-responsive gene expression (Devoto
et al., 2002). However, production of hydrogen peroxide
by caterpillar salivary oxidoreductases is believed to
interfere with these responses by acting as an upstream
signal to the production of hormones, such as ethylene, or
activation of signalling proteins, such as NPR1 (non-
expresser of PR genes 1), which attenuate octadecanoid
responses (Winz and Baldwin, 2001; Spoel et al., 2003;
Pieterse and van Loon, 2004; Fobert and Després, 2005;
Foyer and Noctor, 2005; Lou and Baldwin, 2006).
NPR1 is part of the systemic acquired resistance (SAR)

pathway which is activated in plant pathogen defence
(Dong, 2004; Pieterse and van Loon, 2004). Upstream
molecules in this pathway, SA and reactive oxygen
species (ROS), positively affect each other’s production
in a feedforward mechanism that leads to the oxidative
burst and, ultimately, the hypersensitive response (Chen
et al., 1993; León et al., 1995; Durrant and Dong, 2004).
The disulphide bridges of the cytosolic oligomeric NPR1
protein are reduced as cellular redox changes alter the

glutathione redox status and/or biosynthesis (Després
et al., 2003; Mou et al., 2003; Ball et al., 2004; Senda
and Ogawa, 2004). Monomeric NPR1 enters the nucleus
and binds to TGA transcription factors, leading to SA-
dependent gene expression (Kinkema et al., 2000; Fan
and Dong, 2002; Després et al., 2003; Mou et al., 2003;
Blanco et al., 2005; Wang et al., 2006). However, NPR1
also interferes with the IR pathway, either by inhibiting
octadecanoid biosynthesis or by preventing degradation of
JAZ or histone deacetylase proteins, or by activating
transcription of AtWRKY transcription factors which
repress JA-responsive genes (Devoto et al., 2002; Xu et al.,
2002; Spoel et al., 2003; Li et al., 2004; Beckers and
Spoel, 2006; Miao and Zentgraf, 2007). Therefore, cross-
talk between SAR and IR pathways may be mediated
through the production of hydrogen peroxide by caterpil-
lar salivary enzymes, leading to activation of NPR1 and
subsequent interference with IR-dependent induced plant
defences.
This study used Arabidopsis thaliana (L.) Heynh. plants

with mutations in the IR or SAR pathways to elucidate the
involvement of caterpillar saliva in mediating the cross-
talk between these signalling pathways. Chloroplast lip-
oxygenase2 (LOX2; EC.1.13.11.12) catalyses the second
step in octadecanoid biosynthesis. Therefore, Atlox2 is
impaired in its ability to mount IR in response to wound-
ing; however, plants still show constitutive, basal octade-
canoid levels (Bell et al., 1995). The SAR– double mutant
is unable to produce functional proteins of non-race spe-
cific disease resistance1 (NDR1-1) and NPR1-2 (Zhang
and Shapiro, 2002). The plasma membrane-associated
NDR1-1 protein interacts with the negative regulator
RPM1-interacting protein (RIN4) to enable downstream
SA/ROS-dependent defence responses to proceed
(Shapiro and Zhang, 2001; Day et al., 2006). NPR1-2
functions downstream of NDR1-1, and the activated form
of this protein interferes with jasmonate-dependent defence
responses (Glazebrook et al., 1996; Beckers and Spoel,
2006; Wang et al., 2006). The Atndr1-1, npr1-2 SAR–

double mutant is unable to accumulate hydrogen peroxide
or SA when faced with pathogen challenge (Zhang et al.,
2004). Therefore, hydrogen peroxide produced by cater-
pillar feeding will not enhance SA biosynthesis, and any
resultant changes in cellular redox potential should not
lead to NPR1-mediated inhibition of the IR pathway in
these SAR– plants.
Typical markers of the IR pathway in Arabidopsis, such

as AtLOX2, defensin (AtPDF1.2), trypsin inhibitor
(AtTI), and laccase-like multicopper oxidase [LMCO
(polyphenol oxidase)] (Bell and Mullet, 1993; Creelman
and Mullet, 1997; Koiwa et al., 1997; Penninckx et al.,
1998; Cipollini et al., 2004), were monitored in these
mutant lines to determine if caterpillar saliva is involved
in the cross-talk between the IR and SAR pathways.
Wound- and JA-inducible LOX2 is part of a feedforward
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cascade that rapidly leads to elevated JA biosynthesis
during plant defence signalling (Bell and Mullet, 1993;
Sasaki et al., 2001; Wasternack, 2007). The antimicrobial
peptide defensin (AtPDF1.2) is another marker of JA-
dependent gene expression (Penninckx et al., 1998). TI and
LMCO are anti-nutritive defences mounted by the plant
(Duffey and Stout, 1996; Felton, 2005). As caterpillars
feed on the plant, LMCOs oxidize diphenolics present in
the leaf tissue to highly reactive ortho-quinones, which
covalently modify free amino and sulphydryl groups on
dietary proteins preventing their digestion and absorption
by the caterpillar (Duffey and Stout, 1996; Wang and
Constabel, 2004; Mayer, 2006; Pourcel et al., 2007).
Serine proteinase inhibitors, such as TI, lower the nutritive
quality of the diet by inhibiting caterpillar proteinases,
such as trypsin, impairing protein digestion (Koiwa et al.,
1997; Zavala et al., 2004; Wu et al., 2006). In this study,
the effect of mechanical damage or caterpillar herbivory
was determined on levels of AtLOX2, AtPDF1.2, and
AtLCMO4 transcripts, AtTI protein levels, and the enzyme
activity of AtLCMO.
Another tool to determine the influence of caterpillar

saliva on plant defence responses involves the cauteriza-
tion of the spinneret. In the beet armyworm, S. exigua,
labial saliva is secreted through the caterpillar spinneret
during feeding (Musser et al., 2002). Burning this spin-
neret impairs labial salivary secretions but does not impact
herbivory (Musser et al., 2002; Bede et al., 2006).
Therefore, Arabidopsis plants (parental wild type, and IR–

or SAR– mutants) were subjected to one of four treatments
(control, mechanical damage, and herbivory by caterpillars
with intact or impaired salivary secretions), and the
resultant effect on IR was monitored at the molecular and
biochemical levels.

Materials and methods

Arabidopsis cultivation

Arabidopsis seeds [wild type (Col-0; TAIR #CS3749), IR– mutant
(T-DNA line, Atlox2 (At3g45140); TAIR #CS3748), SAR– mutant
(null mutation in Atndr1-1 and point mutations in Atnpr1-2
(At3g50600, At1g642080); TAIR # CS6355] were obtained from
the Arabidopsis Biological Resource Center (TAIR; Ohio State
University), sown in Premiere Promix BX (Premier Horticulture
Inc.) mixed with slow-release Nutricote (Plant Products; 14–14–14;
5.2 g kg�1 Promix), and grown in a phytorium growth cabinet
(light intensity 140 lE m�2 s�1 set at a 12:12 h light:dark schedule
with temperatures of 23/21 �C). Plants were bottom-watered as
needed, ;3 times per week. Three 5-week-old plants, one from
each genotype and of approximately the same growth stages, were
transplanted to larger pots (16 cm diameter). At 6 weeks, pots
were encased in a plastic chamber and 7-week-old plants, which
were between growth stage 6.2 and 6.5 according to Boyes et al.
(2001), were used for herbivore experiments.

Insect rearing

The beet armyworm, S. exigua (Hübner) (Lepidoptera: Noctuidae),
colony was reared for multiple generations from eggs purchased

from AgriPest Inc. (Zebulon, NC, USA) under defined conditions in
a growth cabinet (16:8 h light:dark; 28–40% relative humidity;
28.5 �C). Caterpillars were maintained on a wheat germ-based
artificial diet (Bio-Serv, Frenchtown, NJ, USA). Adult moths mated
and the eggs were collected to maintain the colony.

Spinneret cauterization

A subset of fourth instar S. exigua caterpillars were subject to
spinneret cauterization to impair labial salivary secretions (Musser
et al., 2002; Bede et al., 2006). Early fourth instar caterpillars were
selected, cooled on ice, and their spinneret ablated using a hot
probe. Cauterized caterpillars were allowed to recover and feed on
BioServ diet (2–4 h) before testing for salivary GOX activity
(Bergmeyer, 1974). Briefly, individual caterpillars were placed in
medicine cups containing a filter (Glass microfiber, Whatmann,
24 mm) saturated with a glucose/sucrose solution (50 mg of each
sugar ml�1; Sigma). Once caterpillars fed on the glass disc, the
presence of salivary GOX was tested by incubating the filter paper
with 3,3#-diaminobenzidine (1 mg ml�1, pH 5.8, Sigma) and the
enzyme horseradish peroxidase (2.5 U in 50 mM sodium phosphate
buffer, pH 7.0, Sigma). The presence of a dark brown precipitate
indicates that the caterpillar secreted GOX during feeding and had
normal salivary secretions. Indications of feeding on the filter disc
but the absence of the precipitate showed that spinneret cauteriza-
tion was successful. Both subpopulations of caterpillars, those with
normal and impaired salivary secretions, were separately allowed to
feed on Arabidopsis plants for 1 d prior to the experiment.

Herbivory experiment

Arabidopsis plants were subject to one of three treatments:
herbivory by caterpillars with intact or impaired salivary secretions
or remaining untouched (controls). For the caterpillar treatments, six
fourth instar S. exigua caterpillars with either intact or impaired
salivary secretions were introduced to their respective plants. As
mentioned above, plants were enclosed in plastic containers and
netting was firmly secured to the tops to prevent caterpillar escape.
After 36 h of treatment, plants were collected and prepared for
analysis. For each independent biological replicate, at least two
plants of each genotype and treatment were randomly collected for
biomass, gene expression, TI and LMCO activity, and hormonal
analyses. Arabidopsis which were flowering were discarded. Plants
for biomass analysis were cleaned, weighed, and pressed for later
measurement of dry weight. Aerial tissues of all other plants were
collected, quickly frozen in liquid nitrogen and stored at –80� C until
analysis. This experiment was repeated three times independently.

RNA extraction and cDNA synthesis

For each treatment and replicate, at least one plant of each genotype
(27 total) was rapidly ground with a mortar and pestle and total
RNA extracted using the RNeasy Mini kit (Qiagen), following the
manufacturer’s instructions. After DNase treatment [Wipeout,
QuantiTect Reverse Transcription kit (Qiagen)], the absence of
DNA contamination was confirmed using primers 5#-ATG GGT
CGT CAT CAG ATT CAG AGC AGA TAA-3# and 5#-CAT ATA
AGA GGT GTG TTA GAG ACA ATA ATA-3# which span an
intronic region. A cDNA copy was generated from 1 lg of total
RNA following the manufacturer’s protocol.

Quantitative real time-polymerase chain reaction (qRT-PCR)

Gene-specific primers were identified from the literature (Jirage
et al., 2001) or designed using AtRTPrimer (Han and Kim, 2006)
and expression analysed by qRT-PCR using a Mx3000p thermo-
cycler (Stratagene). Transcript expression was performed in
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duplicate using the Brilliant One-Step quantitative RT-PCR kit
(Stratagene), according to the manufacturer’s protocol. For each
gene, purified PCR amplicons, which were sequenced for verifica-
tion, were used to prepare a standard curve. A non-template control
was also included for every gene. Each reaction contained 13
SYBR green I, 0.375 nM ROX, 175 nM or 200 nM each of gene-
specific forward and reverse primers (Table 1), serial dilutions of
PCR amplicon or 1.25 ng of cDNA, and mastermix, which con-
tained dNTPs, MgSO4, and Taq polymerase. Thermocycler con-
ditions used were as follows: 95 �C for 10 min; 40 cycles of
annealing temperature for 1 min, then 72 �C for 30 s, followed by
95 �C for 1 min; one cycle at annealing temperature for 30 s and
95 �C for 30 s. The annealing temperatures are given in Table 1.
Dissociation curves were produced to confirm amplicon purity. Two
plate replicates were performed.
From the standard curves, gene copy numbers were estimated

using Mx3000p MxPro v3.20 software. Actin (AtACT2) expression
has been shown to be constitutive when Arabidopsis plants were
subject to osmotic stress or treated by methyljasmonate (MeJA) and
SA, and, therefore, was used in these experiments as the reference
gene (Stotz et al., 2000; Dufresne et al., 2008). AtACT was stably
expressed within a genotype and not affected by treatments (wild
type, P¼0.53; IR– mutant, P¼0.99; SAR– mutant, P¼0.22)
(Brunner et al., 2004). Normalized gene expression of AtPDF1.2,
AtLOX2, and AtLMCO4 was calculated. Within a genotype,
transcript expression differences were statistically determined by
one-way analysis of variance (ANOVA) using SPSS version 15
(SPSS Inc., Chicago, IL, USA).

Protein extraction

Arabidopsis plants were ground in liquid nitrogen using a mortar
and pestle. To 50 mg of plant material, ice-cold extraction buffer
(0.1 M sodium phosphate buffer, pH 7.0 containing 0.1% Triton X-
100 and 7% PVP) was added, vortexed, and centrifuged (5 min at
17 310 g), and the supernatant was transferred to a clean 1.5 ml
microcentrifuge tube and placed on ice (Wang and Constabel,
2004). Detergent (0.1% Triton X-100) in the extraction buffer is
necessary for LMCO activation (Yoruk and Marshall, 2003). For
the assay of LMCO activity, broad-spectrum proteinase inhibitor
solution (Sigma; final concentration 13) was added to the extraction
buffer (Yoruk and Marshall, 2003). Samples were used immediately
to assay TI or LMCO activity.

Trypsin inhibitor assay

Analysis of trypsin levels as described by Lara et al. (2000) was
modified for a 96-well plate format (Corning, flat-bottomed wells).
Briefly, bovine trypsin (0.5 lg, treated to reduce chymotrypsin
contamination, Sigma) was incubated with either soybean TI (Type
1S, Sigma; concentration range 0.05 ng to 50 lg) or protein extract
at 37 �C with gentle rocking. After 30 min, the trypsin substrate N-

benzoyl-DL-arginyl-b-naphthylamine (BANA, Sigma, 3.1 mM final
concentration) was added and allowed to incubate for an additional
hour with gentle shaking. To stop the reaction, 2% HCl was added.
The reagent p-dimethyl-amino-cinnamaldehyde (Sigma, final con-
centration 0.24% in ethanol) reacts with b-naphthalene which is
released from BANA through trypsin-catalysed hydrolysis. The
product was visualized at 540 nm in a microplate reader (BioTek
Synergy HT microplate reader). Controls of TI in the absence of
trypsin (blank) as well as trypsin in the absence of TI were
included. The standard curve, blanks, and controls were performed
in duplicate. All samples were analysed in triplicate. After sub-
traction of the blank, TI levels in plant samples were calculated
from the log of the standard curve using Graphpad 4.0 (Prism).
The pH of the caterpillar gut is extremely alkaline (Schultz and

Lechowicz, 1986; Dow, 1992). Protein structure and stability
studies have also indicated that both trypsin and TIs are extremely
stable over pH and temperature ranges (Simon et al., 2001; Garcia
et al., 2004). In this study, TI standard curves were initially
compared using 1 M borate buffer, pH 9.3 and sodium phosphate
buffer, pH 7.0, and a difference was not observed. Therefore,
analysis of plant material was conducted in the sodium phosphate-
based extraction buffer to allow comparisons with the literature.

Laccase-like multicopper oxidase enzyme activity

AtLMCO (EC 1.10.3.2; polyphenol oxidase) (McCraig et al., 2005;
Cai et al., 2006) activity was assayed according to Espı́n et al.
(1997) adapted to a 96-well format. To triplicate sample extracts or
tyrosinase from mushroom (Sigma, 50 U), N,N-dimethylformamide
(Sigma, final concentration 0.1%) and 3-methyl-2-benzothiazoli-
none hydrazone hydrochloride monohydrate (Sigma, final concen-
tration 0.2 mM prepared in methanol) were added. These chemicals
act to stabilize the reactive quinones generated through the LMCO
reaction to prevent them from inactivating the enzyme activity.
After the addition of dopamine hydrochloride (Sigma, final
concentration 35 mM), enzyme activity was monitored at 30 s
intervals for 5 min at 476 nm at 35 �C using a multiplate reader.
Enzyme-free and boiled controls were included.
Many plant laccases are latent, requiring activation by protease,

such as trypsin, in the caterpillar gut or, in the laboratory, using
SDS in the extraction buffer (Yoruk and Marshall, 2003).
Activation by SDS requires a neutral pH; therefore, these LMCO
activity assays were conducted at pH 7.0 (Sellés-Marchant et al.,
2007). Trypsin-mediated activation has a broader pH range and,
presumably, occurs in the extremely alkaline caterpillar gut (Schultz
and Lechowicz, 1986; Dow, 1992; Wang and Constabel, 2004).

Protein assay

Levels of soluble, extracted protein were measured by Bradford
assay (Pierce) at 595 nm in a 96-well format (Bradford, 1976). A
standard curve was generated using duplicate samples of bovine

Table 1. Primers used for qRT-PCR expression analysis

Gene Forward primer (5#-3#) Reverse primer (5#-3#) Annealing
temperature
(�C)

Amplicon
size (bp)

Reference

AtPDF1.2 (At2g2620) CGGCAATGGTGGAAGCA CATGCATTACTGTTTCCGCAA 59 79 Jirage et al.
(2001)

AtLOX2 (At3g45140) GTCCTACTTGCCTTCCCAAAC ATTGTCAGGGTCACCAACATC 57 160 Designed using
AtRTPrimer

AtLMCO4 (At2g38080) AGGTCCCACAATCTACGCACGA CCATCCCGTTCTCACTTGTCTCACA 58 115 Designed using
AtRTPrimer

AtACT2 (At3g18780) ACCAGCTCTTCCATCGAGAA GAACCACCGATCCAGACACT 338 Dufresne et al.
(2008)
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serum albumin (dilution range: 0.35–6.9 lg). Leaf extracts were
analysed in triplicate. Blank controls consisted of Bradford reagent
with extraction buffer.

Estimation of leaf loss due to caterpillar herbivory

Dry weights of the vegetative tissue from two replicates of each
genotype and treatment for each experimental replication were
measured to determine the estimated leaf tissue removed by
caterpillar herbivory (n¼6).

Hormone analysis

Foliar levels of JA and SA were analysed by high-performance liquid
chromatography electrospray tandem mass spectroscopy (HPLC/ES-
MS/MS) at the Plant Biotechnology Institute of the National
Research Council of Canada. Three biological replications of wild-
type or SAR– plants subject to herbivory by caterpillars with either
intact or impaired salivary secretions were frozen in liquid nitrogen.
Plant material was ground to a fine powder in liquid nitrogen.
Extraction of ;300 mg samples was performed by adding 3 ml of
methanol:water:glacial acetic acid (90:9:1, by vol.) extraction
solution and the internal standard [100 ng of 3,4,5,6-d4-2-
hydroxybenzoic acid and 50 ng of 2,2-d2-jasmonic acid dissolved
in 15% acetonitrile in water+0.1% formic acid (Galka et al., 2005)].
Following sonication (5 min) and incubation on an orbital shaker
(4 �C, 5 min), samples were centrifuged (17 310 g, 10 min) to
pellet the debris. The supernatant was transferred to a clean tube
and the pellets were re-suspended in 2 ml of the extraction solution.
Sonication, extraction on the orbital shaker, and centrifugation were
repeated. The supernatant was combined with the initial extracted
volume and the pellet was re-suspended in 1 ml of methanol. The
extraction step was repeated a third time. After the supernatants
were combined, methanol was evaporated under a constant stream
of nitrogen. A 2 ml aliquot of 0.1 M NaOH was added to the
residual water phase and neutral components were removed by
extraction with 3 ml of dichloromethane. After phase separation, the
water layer was transferred to a clean tube. The dichloromethane
layer was re-extracted with 0.1 M NaOH (2 ml). Both aqueous
layers were combined and acidified with 5% aqueous HCl on ice
followed by the partitioning with 1 ml of ethyl acetate:cyclohexane
(1:1, v/v) solvent mixture. The organic phase was collected and the
water phase was extracted a second time with 0.5 ml of ethyl
acetate:cyclohexane mixture. The organic fractions were pooled and
the solvent was evaporated under a constant stream of nitrogen.
Prior to mass spectrometric analysis, the samples were reconstituted
in 100 ll of 40% HPLC-grade methanol in 1% aqueous formic
acid, which contained 100 ng of 1,2,3,4,5,6-13C6-2-hydroxybenzoic
acid and 50 ng of 12,12,12-d3-jasmonic acid to monitor instrument
performance.
SA and JA analysis was carried out by HPLC/ES-MS/MS

utilizing an HP1100 series binary solvent pump and autosampler
(Hewlett-Packard) coupled to a Quattro LC� quadrupole tandem
mass spectrometer via a Z-spray� interface (Micromass, Man-
chester, UK). The analytical HPLC column was a Zorbax Rapid
Resolution 2.1350 mm 1.8 lm column (Agilent Technologies).
Mobile phase A comprised 1% formic acid in HPLC-grade water;
mobile phase B comprised HPLC-grade methanol. Sample volumes
of 5 ll were injected onto the column at a flow rate of 0.20 ml
min�1 under initial conditions of 40% B, which was maintained for
3 min, then increased to 90% B at 3.1 min, and held until 10 min.
B was decreased to 40% by 11 min and held until 20 min for
column equilibration before the next injection. The analytes were
ionized by negative-ion electrospray using the following conditions:
capillary potential 2.5 kV; cone voltage 30 V; desolvation gas flow
600 l h�1; source and desolvation gas temperatures, 120 �C and
350 �C, respectively. Analytical procedures analogous to those

reported in Ross et al. (2004) were employed to determine the
quantities of SA and JA in the plant extracts. Briefly, analysis
utilizes the Multiple Reaction Monitoring (MRM) function of the
MassLynx v3.5 (Micromass) control software wherein the instru-
ment monitors the loss of a neutral CO2 moiety from the depro-
tonated parent ion during collision-induced dissociation (CID). The
transitions monitored for the standards as well as undeuterated
analytes are m/z (mass-to-charge ratio): 137>93 for SA, 141>97 for
d4-SA; 143>99 for 13C6-SA; 209>59 for JA; 211>61 for d2-JA; and
212>59 for d3-JA. The resulting chromatographic traces are
quantified off-line by the QuanLynx v4.0 software (Micromass)
wherein each trace is integrated and the resulting ratio of signals
(undeuterated/internal standard) is compared with a previously
constructed calibration curve to yield the amount of analyte present
(ng per sample).

Statistical analysis

The experiment was repeated three times independently. Transcript
and hormone levels were analysed in one plant from each
experimental replicate (n¼3). TI levels, LMCO activity and soluble
protein levels, as well as the amount of caterpillar damage were
analysed in two plants from each experimental replicate (n¼4–6).
Outliers were detected using the Grubbs’ test (Prism GraphPad).
Within each genotype, data were analysed statistically by ANOVA
using SPSS version 14 (SPSS Inc.). Statistical differences were
determined using a Tukey HSD post hoc test. Significant differ-
ences in hormone levels were detected using a two-tailed Student’s
t-test.

Results and discussion

Caterpillar damage

Arabidopsis damage resulting from caterpillar herbivory
was roughly estimated by measuring aerial tissue dry weight.
Between 23% and 31% of plant tissue was removed by
caterpillar herbivory, irrespective of Arabidopsis genotype
or cauterization treatment.

Arabidopsis hormone levels

In response to caterpillar feeding, plants mount a rapid
induction of biosynthesis of jasmonate and related
octadecanoid compounds, such as 12-oxo-phytodienoic
acid (OPDA) and dinor OPDA, which together lead to the
induction of plant defence responses (Kahl et al., 2000;
Reymond et al., 2004). This may manifest itself as a rapid,
transient burst which, depending on the plant species, may
be followed by a steady increase over a period of at least
24 h (Reymond et al., 2004; Zavala et al., 2004;
Rayapuram and Baldwin, 2007). Free JA levels were
measured in wild-type and SAR– mutant plants which had
been subject to herbivory by caterpillars with intact or
impaired salivary secretions to determine if salivary
elicitors interfere with changes in phytohormone levels.
Wild-type plants eaten by cauterized caterpillars compared
with plants infested by caterpillars with normal salivary
secretions had similar SA levels [<5 lg g�1 frozen
weight, t(4)¼ –1.27; P¼0.27] but >4 times more JA [t(4)¼
–7.27; P¼0.002] (Fig. 1). Induced levels in this range
have been previously observed in Arabidopsis plants
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subject to herbivory by first instar caterpillars of the cru-
cifer specialist P. rapae (Reymond et al., 2004). The salivary-
dependent difference in JA levels observed in wild-type
plants was not seen in the SAR– double mutants [t(4)¼
–1.23; P¼0.29].
SAR– mutant plants have basal, constitutive levels of

SA which do not increase in response to pathogen attack
(Zhang et al., 2004). In response to caterpillar herbivory,
SA levels in the SAR– plants were consistently low
(<5 lg g�1 frozen weight) and salivary-specific differ-
ences were not observed in either the wild-type or SAR–

mutant plants [data not shown; t(4)¼ –1.27; wild type,
P¼0.27; SAR– mutant, t(4)¼ 1.40; P¼0.22]. These data
suggest that a factor(s) in caterpillar saliva acts directly or
indirectly as a negative regulator of JA biosynthesis by an
SA-independent mechanism.

Induced plant defences

LOX2 catalyses the second step in octadecanoid bio-
synthesis; the conversion of a-linolenic acid to 13(S)-
hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (Vick
and Zimmerman, 1976; Mueller, 1997). In Arabidopsis
and other plant species, constitutive, basal AtLOX2
transcript levels are rapidly induced in response to injury
(Bell and Mullet, 1993; Heintz et al., 1997; Zheng et al.,
2007). Also, octadecanoids may further stimulate AtLOX2
expression, leading to a transient jasmonate burst (Sasaki
et al., 2001; Ziegler et al., 2001). In wild-type and SAR–

Arabidopsis plants, caterpillar herbivory resulted in a >4-
fold increase in AtLOX2 expression (Fig. 2A); however,
due to the large variation in gene expression, significant
differences in response to treatment are not observed [wild
type, F(2,6)¼2.17; P¼0.20; SAR mutant, F(2,6)¼1.27;
P¼0.35].

Transcript AtLOX2 levels do not show caterpillar
salivary-specific regulation, yet JA levels reflect salivary
status. In the wild-type, SAR– mutant, and, to some
extent, even in the IR– mutant plants, AtLOX2 expression
levels are elevated in response to caterpillar herbivory
regardless of the salivary status of the caterpillars (Fig.
2A). This is reminiscent of a model proposed by Huang
et al. (2004) where nitric oxide is an upstream signal
leading to the activation of AtLOX2 and the repression of
AtOPDA via SA. Perhaps, wound-related nitric oxide
levels induce AtLOX2 gene expression, yet the negative reg-
ulator associated with caterpillar saliva inhibits JA bio-
synthesis downstream of this point.

AtPDF1.2 encodes the ethylene- and JA-dependent
defence protein defensin (Penninckx et al., 1998). Wild-
type plants damaged by herbivory by cauterized cater-
pillars show a >5-fold increase in AtPDF1.2 expression

Fig. 1. Arabidopsis jasmonic acid levels in response to caterpillar
herbivory. Levels of free jasmonic acid (JA) were measured in 7-week-
old Arabidopsis plants [Col-0 parental (+/+) or Atndr1-1, npr1-2 double
mutant (SAR–)] that were subject to caterpillar herbivory by caterpillars
with normal (intact) or impaired (cauterized) salivary secretions for
36 h. Bars represent the means of three independent replicates 6SE.
Within each genotype, the lower case letters indicate significant
differences (P <0.05) (n¼3).

Fig. 2. Transcript expression of genes encoding lipoxygenase2
(AtLOX2) and defensin (AtPDF1.2) in response to caterpillar herbivory.
Seven-week-old Arabidopsis plants [Col-0 parental (+/+), Atlox2 mutant
(IR–), and Atndr1-1, npr1-2 double mutant (SAR–)] were subject to
caterpillar herbivory by caterpillars with normal (intact) or impaired
(cauterized) salivary secretions for 36 h. cDNA was prepared from total
RNA extracted from vegetative tissue, and transcript expression was
analysed by qRT-PCR using gene-specific primers. AtLOX2 (A) and
AtPDF1.2 (B) are markers of JA-dependent gene expression (Bell and
Mullet, 1993; Penninckx et al., 1998). Bars represent the means of three
independent replicates normalized with the reference gene actin
(AtACT2) 6SE. Within each genotype, lower case letters indicate
significant differences (P <0.05) (n¼3).
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levels compared with control plants [F(2,6)¼10.29;
P¼0.012] (Fig. 2B). In comparison, herbivory by cater-
pillars with normal labial salivary secretions prevents the
induction of AtPDF1.2 transcription. Reymond et al.
(2004) observed a similar pattern where AtPDF1.2 gene
expression was induced in response to wounding but not
herbivory by S. littoralis or P. rapae caterpillars. In other
studies, P. rapae caterpillar feeding resulted in strong,
localized AtPDF1.2 transcript expression, but whole leaf
levels were too low to be detected (De Vos et al., 2006).
A caterpillar-specific increase in AtPDF1.2 expression
was observed in SAR– double mutants [F(2,6)¼5.13;
P¼0.05]; however, in comparison with wild-type plants,
a saliva-specific difference was not seen. Herbivory-
induced AtPDF1.2 expression was not observed in the
IR– mutants [F(2,6)¼1.54; P¼0.29].
Caterpillars feeding on plant leaves often face protein

limitations, in terms of quality and quantity (Mattson,
1980; Felton, 1996; Bede et al., 2007). Also, plants have
jasmonate-dependent anti-nutritive defences that interfere
with caterpillar protein digestion, such as proteinase
inhibitors, LMCO, or enzymes which deaminate essential
amino acids (Duffey and Stout, 1996; Koiwa et al., 1997;
Zavala et al., 2004; Chen et al., 2005; Felton, 2005).
LMCOs oxidize foliar polyphenolics to reactive quinones
which bind to proteins undergoing digestion in the
caterpillar gut, preventing their absorption (Duffey and
Stout, 1996; Pourcel et al., 2007). Though a recent study
has shown that, contrary to expectations, lymantriid cater-
pillars of Lymantria dispar L. (gypsy moth) and Orgyia
leucostigma Smith (white-marked tussock moth) did not
suffer negative consequences by feeding on transgenic
poplar trees with elevated LMCO levels (Barbehenn et al.,
2007), further studies are needed to ascertain the general-
ity of these observations. AtLMCO gene expression and
enzyme activity increased in wild-type plants subject to
herbivory by caterpillars with impaired labial salivary
secretions [LMCO transcript expression, F(2,7)¼8.38,
P¼0.014; LMCO activity, F(2,7)¼8.18, P¼0.015] (Fig.
3A, B). This caterpillar-specific difference is not observed
in the SAR– double mutant [LMCO transcript expression:
F(2,6)¼811.64, P¼0.009; LMCO activity, F(3,9)¼12.18,
P¼0.003]. Since this is a JA-dependent defence, treatment
does not affect transcript levels or enzyme activity in the
IR– mutant [LMCO transcript expression, F(2,6)¼1.40,
P¼0.30; LMCO activity, F(2,13)¼0.38, P¼0.695].
Upon ingestion, many plant LMCOs are latent until

activated by trypsin (Yoruk and Marshall, 2003). There-
fore, it is interesting that another common jasmonate-
dependent plant defence to interfere with caterpillar
nutritional intake are serine proteinase inhibitors, such as
TIs, which hinder protein digestion by binding to the
caterpillar digestive enzyme trypsin in the gut, thereby
reducing protein digestion (Koiwa et al., 1997; Cipollini
et al., 2004; Clauss and Mitchell-Olds, 2004; Zavala et al.,

2004). In Arabidopsis, five members of this multigene
family were induced in response to herbivory by third
instar P. xylostella caterpillars (Clauss and Mitchell-Olds,
2004). Caterpillar salivary-specific difference in TI levels
observed in wild-type plants are not seen in the SAR–

double mutant [wild type, F(2,8)¼7.33, P¼0.016; SAR,
F(3,6)¼6.90, P¼0.028] (Fig. 4). As this defence is strongly
correlated with JA levels, treatment differences observed in
the wild type and SAR– mutant plants are not seen in the
IR– mutant [F(2,13)¼0.71, P¼0.51].

Caterpillar saliva interferes with JA-dependent plant
defences via the SAR pathway

Using well-established Arabidopsis mutants subject to
herbivory by insects with intact and impaired salivary
secretions, this study presents evidence that caterpillar
labial saliva interferes with octadecanoid-associated in-
duced plant defences. JA hormone levels, AtLMCO4 and
AtPDF1.2 transcript levels, and TI and LMCO activity

Fig. 3. Transcript expression and enzyme activity of laccase-like
multicopper oxidase (LMCO) in response to caterpillar herbivory.
Seven-week-old Arabidopsis plants [Col-0 parental (+/+), Atlox2 mutant
(IR–), and Atndr1-1, npr1-2 double mutant (SAR–)] were subject to
caterpillar herbivory by caterpillars with normal (intact) or impaired
(cauterized) salivary secretions for 36 h. (A) AtLMCO4 gene expres-
sion. cDNA was prepared from total RNA extracted from vegetative
tissue, and transcript expression was analysed by qRT-PCR using
AtLMCO4-specific primers. Bars represent the means of three in-
dependent replicates normalized with the reference gene actin (AtACT2)
6SE. Within each genotype, lower case letters indicate significant
differences (P <0.05) (n¼3). (B) LMCO activity. Bars represent the
average LMCO activity per mg of soluble protein of 4–6 plants 6SE.
Within each genotype, lower case letters indicate significant differences
(P <0.05) (n¼4–6).
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show salivary-specific regulation (Figs 1, 2B, 3, 4). Wild-
type plants infested by caterpillars with intact salivary
secretions did not mount the expected defence responses
which are observed when caterpillar salivary secretions
are inhibited by cauterization. This salivary-specific
difference is alleviated when the SAR– pathway is not
present.
The Arabidopsis SAR– mutant plants have a null

mutation in the gene encoding the protein NDR1-1 and
point mutations in the genes encoding NPR1 and 2
(Zhang and Shapiro, 2002). This double mutation blocks
both ROS synthesis and NPR1 function (Zhang et al.,
2004). Also, SA does not accumulate in these plants when
they are subject to pathogen attack, which was also
observed in this study (data not shown).
NPR1 is constitutively present in its cytosolic oligo-

meric form (Mou et al., 2003). A change in cellular redox
potential which, for example, may be associated with
increased ROS during plant–pathogen interactions or
caterpillar salivary oxidoreductases, reduces NPR1 inter-
molecular disulphide bonds via activation of glutathione
biosynthesis and/or altering glutathione redox status,
releasing the monomeric protein (Mou et al., 2003; Ball
et al., 2004; Senda and Ogawa, 2004). Activated NPR1
may enter the nucleus and associate with TGA- or
WRKY-type transcription factors, leading to SA-depen-
dent gene expression (Després et al., 2003; Mou et al.,
2003; Wang et al., 2006). NPR1 is also believed to
interfere with JA-dependent gene expression; however,
the mechanism by which this occurs is unclear and it may
occur by inhibiting octadecanoid biosynthesis or by
preventing the JA-dependent, ubiquitin–proteasome-
mediated degradation of the JAZ protein or histone
deacetylase, or by activating WRKY transcription factors

(Devoto et al., 2002; Xu et al., 2002; Beckers and Spoel,
2006; Miao and Zentgraf, 2007; Thines et al., 2007).
Recent evidence also supports the involvement of a gluta-
redoxin protein downstream of NPR1 which upon in-
teraction with TGA2,5,6 transcription factors binds to the
promoter region and represses transcription of JA-dependent
genes, such as AtPDF1.2 (Ndamukong et al., 2007).
In this study, the salivary-related difference in the

induction of JA-related defences is not observed in the
SAR– mutants. The small sample size, between three and
six depending on the assay, could lead to the observation
of false negatives; however, the consistency in response
supports the conclusion that a negative JA-regulatory
factor present in the caterpillar saliva mediates the
activation of NPR1, perhaps through a change in cellular
redox potential, leading to the attenuation of octadeca-
noid-associated defence responses. In wild tobacco, N.
attenuata, NaNPR1-silenced plants have blocked plant
defences and were more susceptible to caterpillar herbiv-
ory (Rayapuram and Baldwin, 2007). In the Nicotiana
system, reduced NPR1 levels are believed to affect SA
biosynthesis positively, resulting in antagonism of JA-
dependent defences. In the present study, SA levels did
not change in response to caterpillar herbivory, possibly
demonstrating species-specific differences in the regula-
tion of plant defence pathways.

Conclusion

Caterpillar elicitors, present in the regurgitant or saliva,
modify plant defence responses by affecting interactions
between signalling pathways. In response to mechanical
injury, plants mount defence and healing responses which
are primarily mediated by octadecanoid-related com-
pounds, such as JA (Léon et al., 2001; Howe, 2004).
However, other phytohormones, such as ethylene, abscis-
sic acid, nitric oxide, and auxin, and signalling proteins,
such as NPR1, can attenuate or accentuate these plant
responses by interacting at signalling nodes where it is
clear that microlocalization and equilibrium ratios play
a critical role in mediating the final cellular response
(Orozco-Cárdenas and Ryan, 2002; Gupta and Luan,
2003; Anderson et al., 2004; Huang et al., 2004; Li et al.,
2004; Lorenzo et al., 2004; Bostock, 2005; Devoto and
Turner, 2005; Lorenzo and Solano, 2005; Wang et al.,
2006; Adie et al., 2007; Bodenhausen and Reymond,
2007; Dombrecht et al., 2007; Miao and Zentgraf, 2007;
Spoel et al., 2007; von Dahl and Baldwin, 2007). One
adaptive strategy of caterpillars to circumvent induced
plant defences may be to activate these other signalling
pathways which interfere with the plant’s normal octade-
canoid responses (Musser et al., 2002, 2005). This study
raises the possibility that labial salivary enzymes secreted
onto leaves as caterpillars are feeding interfere with
octadecanoid-responsive plant defences by activating the

Fig. 4. Trypsin inhibitor levels in response to caterpillar herbivory.
Levels of the anti-nutritive protein, trypsin inhibitor, were determined in
7-week-old Arabidopsis plants [Col-0 parental (+/+), Atlox2 mutant
(IR–), and Atndr1-1, npr1-2 double mutant (SAR–)] subject to
caterpillar herbivory by caterpillars with normal (intact) or impaired
(cauterized) salivary secretions for 36 h. Bars represent means of 3–6
plants 6SE. Within each genotype, lower case letters indicate
significant differences (P <0.05) (n¼4–6).
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SAR pathway (Devoto et al., 2002; Xu et al., 2002; Després
et al., 2003; Mou et al., 2003; Spoel et al., 2003; Li et al.,
2004; Pieterse and van Loon, 2004; Fobert and Després,
2005; Foyer and Noctor, 2005; Beckers and Spoel, 2006;
Miao and Zentgraf, 2007).
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