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A potential flow theory
for the dynamics of cylinder arrays in cross flow
By - M.P. PATIDOUSSIS, D. MAVRIPLIS+ and S.J. PRICE

Department of Mechanical Engineering, McGill University

817 Sherbrooke Street West, Montreal, Québec, Canada

The full unsteadyvpoﬁential flow solution for fluid flowing
across a bank of cylinders’has been obtained. The potential function
is expanded into a Fourier series and the boundary condition of imper-
meability is applied at the moving cylinder surfaces. By extensive
testing and cross-checking it is shown how previously obtained solufions
are in error and, thus, that the present work is belieVed to be the first
complete and correct ﬁnsteady potential flow solution for the prqblem at
hand. Tbe effect of fluid viscosity is incorporated scolely as a phase
lag between the sfeady—state lift and drag coefficients on each cylinder
and its respective motions. By incorporating the aerodynamic forces
obtained from this modified potential flow theory in a stability analysis,
the threshold for fluidelastic instability is predicted. Comparison with
experimentally observed thresholds is encouraging, given the high level
of idealization of the theory and the accuracy of present day semi-empirical

prediction methods.

TPresently with Syncrude Research, Syncrude Canada Ltd.,
P.0. Box 5790, Edmonton, Alberta, Canada.
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1. Introductién

Arrays of cylinders, in various geometrical arrangements (figure 1,
are commonly found in a variety of industrial equipment; e.g., in heat exchangers
and steam generators in the form of tubes containing the primary fluid flow and
subjected to an external cross flow by the secondary fluid. Such systems have,
for a long time néw, been known to be subject to a number of interesting and,
from the practical viewpoint, undesirable flow-induced vibration phenomena; yet,
the state of understanding of'the fluid mechanics and of the fluid-structure
interaction mechanisms associated with these phenomena is still quite primitive
(Paidoussis 1980, 1981).

It is now generally accepted that there are three types of vibration
of cylinder arrays, induced by cross flow: (i) due to buffeting, (ii) due to
flow periodicity in the interstitial flow, sometimes reinforced acoustically,
(iii) the so-called fluidelastic instability. This latter, which is the subject
of this paper, is a self-excited aeroelastic phenomenon, involving. coupling be-
tween the flow field and cylinder motions. At a given threshold flow velécity;
energy transfer from the flowing fluid to the cylinders leads to amplified os-
cillations — i.e., to an instability in the linear sense. The amplitude of these
oscillations is generally large, often resulting in inter-cylinder impact and,
hence, eventually to failure. From the practical point of view, fluidelastic in-
stability is by far the most serious vibration problem in heat exchange equipment
(Paidoussis 1980). Moré to the point, there is considerable interest at the
fundamental level as to the underlying mechanism associated withkthis phenomenon.
(It is unfortunate, perhaps, that the severe financial and safety repercussions
of failure and shut-down of large power-generating facilities, caused by fluid-
elastic instabilities, have created a demand for instant predictive design tools

for avoiding them; as a result, in the now voluminous literature on the subject,
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empirical ad hoc studies greatly out-number the few attempts to gain understand-
ing at the fundamental level.)

Several models have been proposed for the mechanism underlying fluid-
elastic instability. Roberts (1962, 1966) demonstrated the existence of a Coanda-
like, jet switching/coalescence mechanism in the separated flow behind a staggered
double row array, associated with streamwise motions of alternate cylinders, and
showed that this is capable of producing large-amplitude self-excited oscillations.
Although Roberts' elegant analytical model correlated well with his own experi-
mental data, the existence of bistablebjets is considered to be limited to spe—
cific array geometries; in any event, the model has not been extended to deal
with multi;row arrays.

Connors (1970) generated a semi-empirical, quasi-static model for a
single row of cylindérs, based on a position~dependent mechanism, and involving
the use of measured aerodynamic 1ift and drag coefficient data — both in the
equilibrium configuration and in "deformed" configurations, with some’ cylinders
displaced in the streamwise or cross-stream directions. Connors found that, for
certain patterns of inter-cylinder displacements, energy may be extracted from
the fluid over a cycle of cylinder oscillations; when this exceeds the internal
dissipative energy in the cylinders, then instability will develop. This model
was later elaborated upon and conceptually extended to multi~row arrays by
Blevins (1974,1976). Connors, and Blevins, obtained a simple relation for the
critical flow velocity, Ué, for the onset of fluidelastic instability, namely

md }%

_=K{E—D7

s (1)

where 0 is the fluid density, D and m are, respectively, the diameter and mass

per unit length of the cylinders, and f and § are the frequency and logarithmic
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decrement of vibration of the cylinders. ' The dimensionless "reduced velocity',
U/fD, and "mass-damping parameter', m8/pD?, arise quite commonly and naturally
in many aerocelastic studies. Nevertheless, it should be stressed that in this
case all the fluid mechanics of the problem are contained within the empirical
factor K. Equation (1) gained widespread acceptance because of its simplicity,
as well as success in some cases, and a great deal of effort has subsequently
been devoted to empirically developing "more reliable" and '"more appropriate”
(for different array geometries) values of K, separating m/pD2 from § and ad-
justing the exponents on each in equation (1), etc. (Pettigrew et al. 1978,
Weaver & El1 Kashlan 1981, Paidoussis 1981).

Tanaka & Takahara (1981) rejected Connors' quasi-static hypothesis
and obtained good agreement between their own experiments and theory, by measur-—
ing the full unsteady fluid dynamic forces oncylinders in a water tunnel and
using them in a linear analysis — which bespeaks of the high quality of their
measurements.

Whereas the above mentioned work has been more or less successfﬁl in
determining the critical flow velocities for design purposes, it offers little
insight into the actual physical phenomena taking place. It ought to be mentioned
that Connors' analysis implicitly supposes that the aerodynamic stiffness terms
. play a predominant réle in inducing the instability. This is in contrast to aero-
dynamic-damping-induced instabilities, e.g., in Den Hartog's (1932) much praised
quasi-static model for galloping of iced transmission lines. With this observa-
tion in mind, Price & Paidoussis (1982,1983) proposed a similar quasi-static
flutter mechanism for a double-row array, into which measured aerodynamic stiff-
ness and damping coefficients are incorporated. The critical flow velocity is
found to be dependent on, among other things, array geometry, Eluid/cylinder

density ratio and inter-cylinder modal pattern. The relationship for UC/fD is
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more complex than that of equation (1), and this theory is in agreement with a
number of experimental obser&ations.

Chen (1983a,b) suggests that two different mechanisms are responsible
for fluidelastic instability: in liquid flow, given the low flow velocities neces-
sary for precipitating the instability, the ratio of cylinder vibrational velocity
to the mainstream flow velocity is high, and hence the prevailing mechanism is one
,of flutter by negative aerodynamic damping; in gaseous flow, on the other hand,
the Connors-Blevins mechanism predominates, which is an aerodynamic-stiffness-
controlled mechanism involving at least two degrees of freedom. His analysis
requires knowledge of the unsteady fluid force coefficients; using Tanaka &
Takahara's (1981) data, Chen's results compare favourably with experimental data
in both liquid and gaseous flow cases. Recently, Lever & Weaver (1982) proposed
yet another model,4ig which fluidelastic instability is presumed to be a unique
mechanism arising from interstitial flow redistribution, éssociated with and
lagging behind cylinder motions. The results obtained agree remarkably with
Chen's, despite the fundamental differences in the two models, as well as with
experimehtal trends for some array geometries; nevertheless, some important dis-—
agreements also arise (Paidoussis 1983, Heinecke & Mohr 1982).

Flow visualisation experiments by one of the authors (Mavriplis 1982),
as well as earlier work by Wallis (1939), have shown that for some array geomet-
ries the wakes behind the cylinders are‘quite nafrow, especially when inter-cylin-
der spacing is small — as sketched in figure 1(a). The presence of adjacent cyl-
inders éeems to deflect fluid into the wéke of upstream cylinders, minimizing the
kregions of rotational flow and resulting in surprisingly potential-like flow dis-

tributions. Hence, it is rather tempting and not so outrageous to try analysing
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the system as if the flow were entirely inviscid.']L Dalton & Heifinstine (1971)
arrived at an inviscid solution by considering each cylinder as a doublet in uni-
form flow, plus the appropriate image doublets due to mutual interaction of the
cylinders, thus obtaining an infinite-series ﬁelocity—potential function. How-
ever, their analysis becomes over-laborious for systems of more than a few cylin-
ders, aﬁd singularities arisé for closely spaced cylinders; moreover, in their
work no attention has been given to the question of instabiiities. Balsa (1977)
solved the potential flow problem for a general array of cylinders in cross flow
by utilizing matched asymptotic expansion techniques. A model for predicting
static instability (divergence) iskalso presented, although the dynamic (flutter)
instability is not given any attentioﬁ. Comparison between theoretical and ex—
perimental results is-very limited.

Chen (1978) tackled the same problem, solving the Laplace equation in
terms of infinite Fourier series, subject to the impermeability boundary con-
ditions at the surface of each cylinder. Examples of predicted inertial aero-
dynamic damping and stiffness terms are presented, and they are found to compare
poorly with experiments. A full stability analysis is also given, but no results
are published. However, a theoretical error was discovered by the authors in
Chen's work, as will be discussed later, raising questions as to the validity of
the results.

The aim of this paper‘is to explore further the capabilities and limi-
tations of potential flow theory for dealing with the problem at hand.‘ This is
believed to be the first wholly correct formulation of»the problem in terms of
potential flow theory, in which the errors in previous analyses have been cor-

rected and the theory has been tested along the way in every conceivable manner.

In the case of axial flow about cylinders and cylinder arrays, where rotational
flow regions are rather small, potential flow theory has been eminently success-
ful in predicting the dynamical behaviour and stability characteristics of the

system (Paidoussis 1966a,b; 1979).
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2. Formulation of the flow field

The analysis to be presented is, in principle at least, Qalid for all
array geometries; however, because of the narrowness of the wakes in the so-called

"normal triangular" configuration of figure 1(a), it is expected to be most suc-

cessful for that geometry and especially when the cylinders are closely spaced,
i.e., when s_/D is small. Figure 2 defines the various geometrical parameters,
as well as the coordinate systems used: one inertial set, (ri,ei), centred on
each cylinder at its position of equilibrium, and another moving with each cylin-
der, (ri,@i), in addition to the central inertial Cartesian and polar systems,
(x,y) and (ro,eo).

It is assumed that the flow field is represented by the potential
function 9, with one component due to the mainstream cross flow and the other
due to the presence/motion of each cylinder j, i.e.,

K
¢(r,0,t) = Uro co;(eo-wo) + .Z ¢j(r,9,t), (2)
j=1
where K is the numbér of cylinders in the system. As ® must satisfy the Laplace
equation, it is convenient to express the ¢j's in terms of Fourier series; thus,
for the jth cylinder
© pt+l

¢. = L

n=1 r!
J

{a, cosnb' + b, sinnb'} (3)
n ] jn 3

¢ g . . f s
in terms of the moving coordinate system centred on that cylinder, where it is
noted that ¢j+0 as rj+®. The total velocity potential, ¢, must satisfy the con-
dition of impermeability at the surface of the cylinders, i.e.,

du, v,

90 = 1 ' 1 .1 .
ari r£=R = 5c cos@i + s 81n6j , i=1,2,...K, %)

where u, and v, are the Cartesian displacements of cylinder i in the x- and y-
directions, respectively. The constants ajn’ bjn are determined through applica-

tion of this boundary condition, and to facilitate this endeavour the following
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expansions are found useful:

K 'c)uK avz '
ajn - Kzl{ OCjnﬂ (SE"" v coswo) + anﬁ 652_ - U Slnwo)}’

K BuK avz o (5)
bjn = KEl‘{éjnl 52_ - U COSIpo) + Bjnﬂ (SE~'" v Slnwo)}’

so that the task now becomes to determine ajnﬁ to djnﬂ'

Before applying the boundary conditions, however, all the ¢j must be
expressed in the moving coordinate frame centred on each of the cyiinders in turn.
Thus, for the jth potential to be expressed in the coordinate frame associated
with the moving cylinder i, one may use the vectorial relationship rﬁexp(iej) =
riexp(i@i) - Rijexp(iwij), as is evident from figure 2 when points A and B coin-
cide, where non-subscript i=v/-1; this, raised to the power -n and expanded into
a convergent Taylor series about ri/R£j=O (vide Paidoussis & Suss 1977, Mavriplis

1982), after considerable manipulation leads to

cosnb! 0 (-l)n(n+m—l)! rim :

—_1 . 5 " cos[md! - (n+m)y’, ] (6)
't m=0 m! (n-1)! R' ™H * +
J 1]

- , ; n . . .
and to a similar expression for 31nn65/r3 . With the aid of these expressions,
- ¢, in equation (3) is transformed into the (ri,ei) coordinate system, and one

finally obtains

oo n+1

- \l . 1

$ = UrO cos(@o-wo) + I ) {ain cosnei + bin s1nnei}
n=1 r!
i
K © & (=1)%(n+m-1)! g% pr™
+ % 7 z. iﬁ. {a.n cos[m@i - (m+n)¢£.]
§=1 n=1 m=0 m! (n-1)! Rijm J J
_ . v [ ;
bjn 81n[m6i (m+n)¢ij]} s (7

where the starred summation excludes j=i.
Substituting equation (5) into (7) and thence applying the boundary

conditions (4), after lengthy manipulation and extensive use of the orthogonality
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of cosm@i and sinm@i, the following implicit expressions for the coefficients

i £ d:
ujnﬂ to Sjnz_are finally found: . ..

(-m)a,_, + Jgfl m:z_ol 6l i {ocjm@ cos () ¥ ) + 6, sin((nri—n)lpij)} =8, 8.0
(m)6,_, + J% mgl 6l {ocjm/@ sin(Grm)p) ) - 8. cos((mfn)d)ij?} -0, .
()v; p t jgi mgl G { Yime COS(GRVL) + B o sin((m+n)¢ij)} =0,
(—n)BinK + jgi mgl G&nij { ijﬁ sin((m+n)¢£j) - Bjm£ cos((m+n)W£5)} = dnl 512’
fori=1, 2, ..., Kand £ =1, 2, ..., K,andn =1, 2, ..., ® , where

o - -D" (atm-1)! , R )n+m (o)

mnij  (n-1)! (m-1)! (Rij

and énl is Kronecker's delta. This represents 2K sets of 2Kx» coupled equations,
with as many unknowns. Truncating the series at appropriate values of m and n,
the coefficients a, ,, ..., &, may clearly be determined numerically.
inl jnl
Once ¢ is determined, the surface pressure on each cylinder at its

position of equilibrium may be obtained from the unsteady Bernoulli equation

) - 90 1
P . =P [at + 2 YQ'YQJr!=r,=R ? (10)
r,=r_, =R i7i
i i
and hence the aerodynamic forces acting on cylinder i are
27 2m
H. =-:/. P’ RcosB, 46, , V, = i/ﬁ Pl, . RsinB, 46, (11)
i r.=R i i i r ,=R i i
0 i 0 i

in the x- and y-direction, respectively. Evaluation of equation (10) would,
at first sight, appear to be quite straightforward; however, if sufficient care
is not exercised, it may lead to erroneous results, as discussed in the next

section.



3. Evaluation of the unsteady pressure field on the surface of the cylinders

In a previous study (Chen 1978), the 39/9t term in equation (10) was
found to yield only inertial terms — i.e., terms proportional to Bzuz/atz,
32V£/8t2. However, velocity-dependent terms (aerodynamic damping terms) also
arise from 39/9t, but this was not realized in that previous analysis through
failure to use the moving coordinate frames (rg,eé), rather than those fixed
at equilibrium, (rj,ej).

The manner in which these velocity-dependent terms arise may be il-
lustrated by considering the simple case of a single cylinder in inviscid cross
flow. This system may be represented by either (i) a stationary doublet in
kuniform flow, with a complex potential function F(z) = Uz +,UR2/z, or (ii) a
- moving doublet in otherwise stationary fluid, where F(z) = UR2/[z‘~ z(t)] and

r(t) =-Ut. The surface pressure distribution in both cases is found by applying

0,1 ,
o = ~P {5 + 570.70} + const. (12)

|
with ¢ = Re{F(z)}.
Now, in the first case, the potential function is time-independent

and, hence, 3%/5t = 0. Evaluation of V§.V® then leads to the well known result

1.2 . 2
P 4=R = 3 U°(1 - 4 8in"0) + comnst., (13)

where it may be shown that the constant represents P, the static pressure
far away.
In case (ii), if it is assumed that the doublet passes through the

origin at t = 0, one obtains V0.V® = Uz. Thus, if (8@/8t)t=0 is neglected,

z=R
then, in spite of the fact that there is no acceleration of the cylinder, the

correct pressure distribution cannot be obtained. In fact, it may be shown that

(8@/8t)t=0 = —U2c0326, thus leading once more to equation (13), provided that

10



11

the terms in (12) are correctly interpreted.

Thus, it has been shown that 30/3t is important in determining not only
aerodynamic inertial (acceleration) terms, but also velocity~dependent terms. As
the cylinders in the problem at hand are moving, moving reference frames must be
utilized; the various terms in equation (10) may be taken at equilibrium in all
cases, except for the 99/9t term which is evaluated at equilibrium after the dif-
ferentiation (with respect to time) is performed. More explicitly in differenti-
ating equations of the form of (7), terms such as cosnei/ri and- the ajnﬂ’ Bjnﬁ
implicit in the ajn’ bjn’ must be considered to be time—dependént.

The Y@.Y@ term in equation (10) yields additional aerodynamic damping
forces,+ as well as the steady 1lift and drag forces due solely to thé cross flow.

In addition, there will be terms dependent on the displacement of each and every

cylinder, i.e., the aerodynamic stiffness terms.

FEvaluation of the 9%/3t term

Expanding the sine and cosine terms of equation (7), 0%/3t, evaluated

. . . 3 » . - 1 = ] = '= '= ‘
at the cylinder equilibrium positions (i.e., Rij Rij’ wij wij’ LT, ei‘ei), may be

written as

© n+1
%9-= r R (2, cosnbB, + b, sinnb.)
t o=l r in i in i
i
o cosnfb' \ sinnb!' \’
+ Z Rn+l a. <*__1> + b. (.__.*l) g
-1 in \n in |
= r' r!
i i

K © o +1
+oox 3y D (n-1t RD
j=1 n=1 m=0 m! (n-1)! R&D

m - .
-+ i .
r, 3{ajn cos(m+n)1,l)ij bjn 51n(m+n)wij}cosn@l

1]

+ . ' - s ) .
{ajn 31n(m+n)wij bjn cos(m+n)wij}81nnﬁi

T

T . . ,
Of course, equation (10) gives the pressure, which only when integrated through
(11) leads to forces. It is, however, convenient to thus identify the terms

which eventually lead to these forces.
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s e w5 D™y R
j=1 n=1 m=0 ‘m! (n~1)! R??“

X {ajn cos(m+n)1pij + b,

. 'm Ty ¢
in 31n(m+n)wij} (ri cosnﬁi)

. _ Jm 'y -
+{ajn 31n(m+n)lpij bjn cos(m+n)¢ij} (ri 31nnﬁi)

K © o n+l n+1
— f .
+ ooy LD (@ R}n+n+1 Ry, 14
5=l o=l w=0 m! (a-D! Rj, J

X {ajn cos(m—l—n)tpij + b, 31n(m+n)wij}cosnﬁi

+—§ajn 81n(m+n)wij - b, cos(m+n)wij}81nnﬁi

Jn
K © n n+l
+ 3%y oy LD @m)! R —r." .
j=1 n=1 m=0 m! (u-1)! RO.° * 4

1]
X {_ajn s:‘Ln(m+n)L,D:,Lj + bjn cos(m+n)wij}cosn@i
' (14)
+~{ajn cos(m+n)d)ij + bjn sin(m+n)wij}sinn@i .
where ( )" = 3( )/ot.
Each of the dotted terms has to be evaluated separately. Thus, using

equation (5) one may write

K , K
. L ” : _ . v, - Usi ,
fn = 5y e e Fryng Tl 0 E D8, @y - Ueosh )+ vy, Gy - Ustnp ], (19)
where
K ' .
“int Tl [0y p/0upn) e+ (Bay o/8v,0) 4y, ] (16)

and a similar expression for anﬂ' Clearly, terms proportional to Uﬁz and Uﬁz
arise, i.e. damping terms which were neglected in the aforementioned previous

analysis. Theklengthy manipulations necessary for obtaining éjn and Bjn’ which
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also necessitate the evaluation of éij and ¢ij are outlined in Appendix A. - The

(da, ,/%u,,), etc., terms are given by the implicit equations
jnl’ TR , ,

3 K oo 30, 96,
_n(-—_-..»alllnﬁ) + XY %G {(—i“—z-) cos (mtn)y, T+ ( Jn,z) Si“[(“‘*“)‘”ij]}

¢ j=1mer ™Y LT up Pup " et
BSinﬁ K au'nﬂ aajnﬁ _
g (——20C * —nty . ; =
) 2 Gy { () siallminyy T () conl(mmdy 1] = 0, g

where Pinlﬁ" Qin[ﬁ' are given in Appendix A, with similar expressions for the
rest of the Upy~ and VK,—derlvatlves of ajnﬂ’ Bjnﬁ’ anﬂ and Gjnﬂ'. Furthermore,
éij and'l})ij are given by equations (A.2) and (A.3), respectively.

Next, in order to evaluate the dotted terms in the second and fourth

summations of equation (14), the terms of the type cosn@i/ri and '™ cosm@i

must first be expressed in terms of the stationary frame (ri,ei). This is done
in a similar manner to that used to obtain equation (6), but the expansion is made

about Ri/ri = 0, yielding

cos nf! % (m-1)! Rim+n
_*_—T—i =¥ COS[me. - (m_n)w!] s
r! i i
i m=n (n-1)! (m-n)! r,
m (_l)m—n m! Rim-n r,n
4 LI . — '
ri cos mGi nzo 2l (o) cos[nGi + (m n)wi] s

and similar expressions for the sine terms. Differentiating with respect to time
and evaluating at Ri=0, i.e. at equilibrium, gives

\ v ety -(n+l) ., R
(cos n@i/ri ) = nr R} cos[(n+l)6i wi] R
17)

L ry" - _ -1 = - 1
(ri cos mei) mr Ri cos[ (m 1)9i + Wi] >

where it is further noted (figure 2) that

) v . DY v o
Ri cos wi Bui/Bt and Ri sin wi Byi/at . ~(18)
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Hence, with all the dotted quantities evaluated, 3&/9t may be found.

The contribution to the forces on the cylinders due to this term, denoted by

Hil) and Vil), are somewhat simplified — after lengthy manipulation — due to

orthgonality of the trigonometric functions and are given by

K
1 2 1), . (2), . (L), (2), .
o g D e e o o) v
(19)
K L
1 2 3 c(L),5(2), =(1) 5(2)) .
Vi ) - om ﬁil (A, 6, + B, ¥,] + oUR Zzl{ {Cip+C Fap+ {D;p 055 } Vz}’

where the superscript (1) denotes terms arising from time derivatives of a,B,Y,0
and (2) denotes those arising from co-ordinate-~system movement. The constants
Aiﬂ’ Biﬁ’ etc. are given in Appendix B. It is noted that in Chen's (1978) previous

analysis all the terms involving ﬁ{ and ﬁz are absent.

Evaluation of V0.V® term

The flavour, intricacy and requisite care in the derivation of the
terms in equation (10) may be appreciated from the foregoing evaluation of
02/9t. 1In the interests of brevity, therefore, the details of the derivation
of the Y@.Y@ term will not be présented here. The interested reader is referred
to Mavriplis' (1982) and Chen's (1978) work for details.

It may be shown that the contributions of V®.V® to the drag and 1lift
(2)  (2)

forces on cylinder i, denoted by Hi s Vi , are

K
(2) c(3) (3)
= oU’R Cp, *+ PUR I +D;
oy £=1{ ir Y K}

(20)

K
(2) _ .2 =(3) . =(3) .
V., " = pUR CLo. + pUR I Ciﬂ up, + Doy 'YK} s
i £=1
where C and C are the steady drag and 1lift coefficients and C(B) _(3)
Do. LO, /@ g see 1/@

are coefficients of additional velocity~dependent terms, expressions for which

are given in Appendix B.
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Evaluation of the stiffness forces

The stiffness forces represent the changes in the steady lift and drag
on the cylinders as they are displaced. Assuming that they may be linearized,

the contribution to the 1lift and drag forces may be expressed by

K

3) _ 2 { |
H, = pUR X oC 3 + (3C 0 s
i T PUR 00 [0 u, ¢ (e, fav) vp}
) (21)
) = ov’r 3z {aac, sau) u o, sav) v ),

where the partial-derivative terms are given in Appendix B; fof detailed deri-
vations the reader is referred to Mavriplis' (1982) work.

In all the foregoing it has been assumed that pressure fluctuations
on the surface of the cylinders are generated instantaneously; i.e., it has
been presumed that there is no phase difference between cylinder displacements
and the pressure field, otherwise known as the quasi-static assumption. Yet,
it has been shown that phase lags do arise in the’problem at hand — at léast
in the model propbsed by Roberts (1962,1966). In that work, Roberts evaluated
the finite time necessary for the inter-cylinder fluid jets to adjust to reposi~
tioning of the cylinders, as Well as the resulting change in the cylinder wake
(or ”bubblé”) pressure. Here, the phase lag may be thought to be related to vis-
cous effects more generally, i.e., to the lag that the cylinder wake experiences
in adjusting to cylinder motion. In terms of the mean flow velocity U and cylin~
der diameter D, this time lag should be proportional to D/U, and hence the phase
lag angle X should be proportional to fD/U, where f is the frequency of oscil-
lation (c¢f. Lever & Weav?r 1982, White 1979).

Thus, although viscous forces per se will not be calculated and used
in this analysis — having been assumed to be of secondary importance at the out-—

set of this paper — one important effect of these forces will be incorporated in
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the analysis, namely the phase-lag effect discussed above, which modifies the
quasi-static forces. The analogy of the aerofoil could be invoked here: the vis-
cous forces in that case are small and may be neglected; yet they have a very
important effect in determining the structure of the flow and modifying the in-
viscid forces — hence determining the Kutta condition.

If the cylinders oscillate harmonically only in the cross-stream direc-

(3) L(3)

tion, such that Vp = Gp sin(wt+¢p), then the forces Hi s Vi will also vary

harmonically, but lagging by a phase angle Y, so that

K
(3) _ .2 ~
N = pU R L (E)CDOi

3 v sin(wt+d +Y),
o / vp) vp sin(w ¢p X)

which may be re-written as

(3) - pU R Z (3¢ } (22)

o ./va) {cosx Vo + Eiﬁx-vp

Do
i

(3)

and similarly for Vi The generalization to more general motions is self-

evident, yielding

K
g¢d - oU°R pzl {[Eip cosX u + F,  cosX vp] + [Eiﬁ (siny/w) ﬁp + ?ip (siny/w) Vp]}
3 _ 2 5 fr= - . .
Vi = pU'R pzl {[Eip cos¥ up + Fib cosxyvp] + [Eip (sinx/w) ﬁp + Fip (siny/w) Vp]}

(23)

h E. = A = —. = 7 = .
where ip (BCDOi/Bup), Flp (SCDOi/va), Elp (BCLOi/Bup) and Fip (BCLOi/BVP),
and where the cylinders have been assumed to oscillate harmonically. Hence, yet

another set of velocity-dependent forces, of the form of the second terms of

equation (23), emergef related to this phase lag.

JrPhase lag is well known to have an important effect on stability in aero--
elasticity. Thus, in addition to the aforementioned work by Roberts (1966)
and recent work by Lever & Weaver (1982) on the problem at hand, vide the
importance of phase lag — albeit due to mechanisms different than the one
proposed here -in\flutter of aerofoils (Bisplinghoff, Ashley & Halfman 1955;

Dowell et al. 1980) and of overheéd transmission lines .(Simpson & Flower 1977).
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4. The equations of motion and their solution

If each of the cylinders is considered to be a simpie beam, then the

equations of motion may be written in the form

Bqui du, 32ui K 9 azuﬂ 32V£
e U T fl{p“R (A0 567 * Byy 5027
du v
£ "¢ 2 2
TR [C:‘Lz?t“fDiz e JtPURIE,u +F V£]}+ pURCDoi’
(24)
aqvi Bvi ‘ Bzvi K % _ anK
Bmr Tea T o L {D“R [Asp 307 * By 57 )
+ pUR [C g ﬂ]+ v’R [E .+ B ]}+ o o, 1,2 K
0 il 3t it 3t 4T P i %t Fip vy p Lo Ih2 - K

where EI, c¢c and m are, respectively, the flexural rigidity, internal (viscous)

damping and mass per unit length of each cylinder; the right-hand sides of the

equations are, respectively, H, = Hgl) + ng) + H§3) , V, = Vgl) + ng) + VSB),
’ i i i i i i i i
where the component terms Hil), Hiz), etc. have been derived in section 3 — in

general also containing phase-related terms of the form introduced in equation
(23).
The solution of the linearized form of equation (24) is achieved by

the modal analysis method (Bishop & Johnson 1960), where

rep (B U (2), (25)

™ 8

™8

u/()’ 1 q,@p(t) wP<Z) ’ V»K =

1

p %

where the wp(z) are the orthqgormal set of beam eigenfrequencies of the cylin-
ders 'in vacuo. Substitﬁting into (24), invoking the orthogonality of the
wp(z), and trﬁncating the series at an apbropriate value of p, one eventually
obtains a set of equations which may be written in matrix form as follows:

Mi+Ca+KRa=0, (26)
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where a = {S’E}T' Transforming this into a standard eigenvalue problem, the 2K
eigenvalues of the system may be obtained, which permits one to assess stability
of the system with varying U.

The detailed form of g, 9 and E will not be given here. Suffice it
to say that when (26) is written in dimensionless form, the following dimen—
sionless quantities will be involved: the mass parameter m/pDz; the logarith-
mic decrement, G, of the cylinders in vacuo; the reduced velocity U/fD, where
f = w/2m ie the first-mode in vacuo frequency, w being the corresponding radian

frequency; the frequency ratio Ep = wp/w, where wp is the radian frequency of

the pth mode.

5. Testing the theory

Thekintricacy of the algebraic manipulations of section 3, no less
than the desire to assess the success of the theory in reproducing some well
known results, made it imperative to test the theory prior to embarkiﬁg on a
full scale stability analysis.

Apart from verifying that some obvious symmetry conditions imposed
by various cylinder geometries are indeed reproduced in the calculated force
coefficients,‘various other éimple tests were also conducted. Thus, the flow
at’zero incidence (wo = 0 — see figure 2) across a particular array was re-
produced by rotating the array through an angle wo and imposing an angle of
incidence wo to thekflow.

It was then attempted to compare the various fluid force coefficients
in equations (19)-(24) to those obtained by other analyses. The virtual (added)
mass coefficients Aiﬁ’ Kiﬂ’ BiZ’ Eiﬁ were compared to those obtained’by Chen

(1975,1978), Suss (1977), Paidoussis & Suss (1977) and Dalton & Helfinstine (1971).
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The coefficients were found to agree to within three significant figures for
the first two, and to within two significant figures for the third one, as il-
lustrated in table 1. The steady 1lift and drag coefficients were also compared
to some available theoretical results by Chen and Dalton & Helfinstine,in table
1, displaying similarly good agreement.

The portions of the damping coefficients due to the Y@.Y@ term in
Bernoulli's equation, i.e., Ciz), Eiz), Diz), 5£%), which have also been obtained
by Chen (1978), were compared in the case of a five-cylinder system. Some
selected results are shown in the upper part of table 2, where agreement is
found to obtain to three significant figures.

The total fluid damping coefficients Ciﬂ’ Diﬂ’ Eiﬂ’ Biﬁ cannotvbe ‘
verified, as no other such results are available in the literature. However,
some simplified cases may be verified by a specially constructed quasi-static
analysis. Thus, if all cylinders move with the same velocity @ and ¥V in the
%~ and y-directions, the array configuration remains unchénged, as the wh@le
array is displaced as a unit. Without giving details of the analysis here,
which follows the pattern of Den Hartog's (1932) quasi-static flutter analysis;

suffice it to say that the unsteady drag and 1ift forces on the cylinders are

found to be given by

Hi PUR {-choi 4, + (cLoi + acDoi/aoc) vi}

<
I

PUR {fchoi Yy + (_CDoi + SCLOi/Bu) Vi} ’

with u, =u, v, =v fpr all i, and o = ¥v/U. The BCLO./Ba and BCDOi/Ba terms

arise because, under the effect of the imposed motion, the array is not totally

symmetric vis-a-vis the mean flow; i.e., the angle o effectively corresponds

to —wo. Agreement between the results obtained by the potential flow analysis
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and this quasi-static approach was found to be excellent, the individual terms

agreeing to within four significant figures. This represents an important fea-

ture of this analysis, as previous analyses in fact do not pass this simple test.
It must nevertheless be noted that, in the above case where the array

is moved as a unit, there is no inter-cylinder motion. Hence, only the

Ciz), Di%) types of termé in equation (19) are verified, and it would be de-
sirable to test independently the terms of the type Cié), Di%), which are as-

sociated with the djnﬂ’ Bjnﬁ’ anﬂ’ éjnﬂ terms (see equation (16)). To this
end, the/ghanges to the ajnﬂ to Gjnﬂ’ i.e. the Bajnz/auz. etc.,, have been cal-
culated by displacing each cylinder by a small amount Au at theiinput stage

of the computér program and recalculating all the ajnﬂ to 6jn£ coefficients at
each step, thus obtaining Banz/Bu ¢ = Aajnﬁ /Au,,. This somewhat inelegant
and approximate evaluation of the Bajnz/au , and other similar terms permitted
the eventual evaluation of the Ci%?—type of terms. Comparisons of these terms
with those obtained analytically by the potential flow analysis are illustrated
-in table 3. Acceptable agreement is obtained; most of the discrepancies are
thought to arise from the finite step size of Au (or Av).

In spite of all thé above testing, the theory still did not agree
with that of Balsa (1977). Regardless of cylinder array configuration, the
present analysis yields zero‘diagonals in the Ciﬁ and Biﬁ sub-matrices, while
the diagonal of the Diﬂ sub-matrix is non-zero and equal to the negative of
the Eiﬁ diagonal. Physically, this implies that the motion of any one cylinder
in an array produces a force on itself which is perpendicular to its mofion,
and precludes the possibility of any self-damping forces on the cylinder in the
direction of its mztion. A cylinder can, however, produce damping forces in

any direction on the other cylinders regardless of its motion. This

result disagrees with that obtained in the work of Balsa (1977). By constructing
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inner and outer region canonical potentials for a cylinder array and matching

them asymptotically, Balsa arrived at the result that the motion of any one

cylinder in the array produces no net damping force on itself in either direc~
i i.e. the diagonals of all sub-matrices C, C. D, D., are zero.

tiom, the & ig’ Tig? Tig’ Tik

After the extensive testing performed on the present analysis, it is felt that

.l..

the fault must lie in Balsa's work rather than in this analysis.' Balsa's ex-

pansions are expressed in powers of €, where € = D/sp is the inverse of the
pitch ratio. In performing the asy;ptotic matching, three inner terms and

four outer terms are used. However, for pitch ratios of order 1.5, the fourth
term in the expansion, 84, is approximately 0.2. Hence, at first View,‘it
seems Balsa may have neglected significant higher order terms. (In fact, the
diagonals of Diﬂ’ Eiﬂ which vanish in Balsa's analysis are always substantially
smaller than unity in the present analysis.) However, the above is only a
possible explanation of the inconsistency between the two analyses, and the
matter has not been pursued further.

Nevertheless, to ensure that the present analysis is not in error,
the method of Dalton & Helfinstine (1971) was employed to calculate’the damping
terms in the simple case of a row of two cylinders normal to the flow. The
method consists of constructing the complex potential function by considering
one doublet for each cylinder moving in still fluid, plus its image in the
neighbouring cylinder, which is required ﬁo maintain a circular streamline at
the neighbouring éylinder boundary, plus the images of the images and so on.
For the two cylinders at a pitch ratio of 1.5, a total of six doublets was

employed (i.e., up to "third order"), since the third-order images were about

1% of the strength of the original doublet. The complex potential function

fAlthough it is realized that neither truly represents the physics of the
situation, as an oscillating cylinder will be subjected to a damping force

due to its own motion.



was obtained through a specially written computer program and its time deriv-
ative calculated by first evaluating the complex potential on the moving cylin-
der boundaries at two different times and then dividing the difference by the

time step. It is noted that for the particular geometry considered in this

test, the Ciﬁ and Biﬁ sub~matrices vanish and only the off-diagonal terms of
the Diﬂ and Eiﬂ sub-matrices need be considered. As may be seen in table 4,
both the virtual (added) mass coefficients and the damping terms due to the
time derivative of the potential function are found to be in good agreement
with those obtained by the present analysis. Hence, it may now.be ésserted
that Balsa's (1977) work must be in error.

Finally, the stiffness coefficients (equation (23) with ¥ = 0) were
also calculated/By diréctly noting the changes in steady lift and drag co-
efficients on each cylinder as various cylinders in the array were displaced.
This is the method employed by Chen (1978). His results, as weil as those
ébtained in this work by displacing the cylinders, compare favourably with
the stiffness coefficients calculated by the expressions developéd in the
present paper, as may be seen in the lower half of table 2.

Having tested all parts of analysis, it may now be stated that, to
the authors' knowledge, it is the first complete and correct potential~flow

.f.

solution for cylinder arrays in cross flow.

2

fHere a distinction ought to be made between Chen's (1978) and Balsa's (1977)
solutions, which have been shown to be in error (in section 3 and here),
and Dalton & Helfinstine's (1971) solution, which is not; this latter,
however, is limited to calculating inertial and steady lift and drag

coefficients, and is difficult to extend beyond that. "

22
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6. Calculations and results

Computations were largely confined to seven-cylinder arrays of the
type shown inset in figures 3 and 4 — mainly for economy, as computational costs
increase sharply with the number of cylinders in the array. Nevertheless, these
arrays were considered to be sufficiently large and their geometry sufficiently
general to exhibit all salient features of larger systems.+ As virtually all
the experimental data to which the theoretical results will be coﬁpared are for
arrays with 1,3 < sp/D < 1.5, computations were made with the two extremum values.

In the calculations, the experimentally reéasonable value of § = 0.01
was used, and m/pD2 was varied £rom 0(1) to 0(105), the lower vaiue corresponding
to light cylinders in dense (liquid) flows and the upper one to heavy cylinders
in gaseous flows. H

The only other parameter which needs be selected is X. It is recalled
that this phase angle, whiéh is attributed to viscous effects, has been intro-
duced empirically, and that at present no means is available for calculating it.
It was nevertheless shown that ¥ should be a function of the inverse of the re-
duced velocity. Thus, guided by the observed range of the critical U/fD for
fluidelastic instabilities, extenmsive calculations were conducted with X = 0°,
10° and 30°, as shown in figures 3 and 4; the effect of X is more extensively
discussed later in conjunction with'figure 5. For high values of U/fD, a low
value of ¥ would be expected, and vice versa.

The calculated theoretical dimensionless critical flow velocities,
Upc/fD’ for the onset of fluidelastic instability are shown in figures 3 and 4,
where they are compared to the experimental data available from various sources.

S

It is noted that the interstitial, so-called "pitch" flow velocity, Up’ is used

+Indeed, calculations of the critical flow velocity for twelve-cylinder

arrays differed by only -3 to —4% from those of seven-cylinder arfays.



24

to define its critical counterpart Upc’ rather than the free-stream one, U,
where Up = U[sp/(sp—D)].§ Here it should be noted that although it was con-
sidered desirable to segregate the data for 'mormal" and "parallel" triangular
arrays, in figure 3 and 4, respectively, because of the inherently different
wake structures involved (figufe 1), the theoretical values are only slightly
different in the two cases, as this theoretical model does not recognize these
wake-related differences.

One important feature of the theoretical results is that although
those presented in figures 3 and 4 are strictly for 672\0.01, they are none-
theless representative of the results for other values of 6. For example, in
the case of sp/D = 1.5, m@/pD2 = 10 and X = 30°, Upc/fD is 38.2 and 36.2 for
§ = 0.01 and 1, respectively; these differences are smaller for larger mcS/pD2
and vice versa.. Hence, although m/pD2 and/é are independent parameters,

Upc/fD is much more dependent oﬁ/their product, m6/pD2, than on either separately.
This agrees with Chen's (1983b) findings and is contrary to Weaver & El Kashlan's
(1981).

Another important feature of the results is that the use of Up in
preference to U has achieved the effective collapse of the theoretical results
(in the two cases of sp/D of 1.3 and 1.5), except for low values éf md/pDz, as
shown in figure 3.

| The theoretical Upc/fD for x = 10° and 30° correspond to oscillatory
instabilities and are thus, directly comparable to the experimental data, whilst
those for ¥ = 0° are associated with divergence, which is a non-oscillatory in—
stability. Hence, it is quite clear that viscous effects and the lag they in-

troduce between cylinder displacement and the fluid forces thereby generated

§This is done partly because Up is physically more meaningful and-is the
velocity conventionally quoted in the literature, and partly because it

has been found to partially collapse the experimental data for different s /D.
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are quite important iﬁ the development of fluidelastic instability.

For x = 10° and‘30° the frequency at UpC of the mode becoming unstable
is close to its value at Up = 0, which agrees with experimental observations
(Paidoussis 1980,1981); e.g., for x = 30°, mG/pD2 = 10, 6§ = 0.01, sp/D.= 1.5,
the ratio of the former to the latter frequency is 0.996. It should neverthe-
less be noted that this does not hold for large §; thus,vfor § = 1 and otherwise
the same parameters as above, this frequency ratio is 0.597.

Comparing the theoretical results to the experimental data, it is
noted that theory overestimates the critical flow velocity for instability
roughly by a factor of three, for x = 30°, and nearly five, for X = 10° — in an
average sense, as the experimentél data display a very large spread in theﬁ—
selves.§ Here it should be no;ed that it would be reasonable to compare the ex-
perimental data at large m@/pD2 to smaller ¥ than those for small mé/pDz, as
the former are associated with higher values of Upc/fD; this would make agree-
ment for large m(S/IJD2 (gaseous flows) rather worse than for small ones (liquid
flows).

One of the reasons why this theory overestimates Upc/fD, especiélly
at high mG/pDZ, is that it does not take into account the presence of wakes and
wake—interference effects on the aerodynamic stiffness coefficients, which
normally render the aerodynamic stiffness matrix asymﬁetric. As shown elsewhere

(Price & Paidoussis 1983) asymmetry of this matrix, which effectively means that

It is noted that the experimental Upc/fD and mG/pD2 in many cases are calculated
with values of f, m and § in fluid, rather than in vacuo as was done in the theory.
Moreover, it was found not usﬁally possible, through insufficient information,

to convert such experimental data to their in vacuo counterparts; this conversion
would have resulted in moving the data points concerned to the left and a little
lower in the case of low mG/pD2 (liquid flow), but would hardly affect those with
high mé/pD>.



-

26

the static force field is nonfconservative, has a strong destabilizing effect on
the system. This effect ié entirely absent in this anaiysis, where this matrix
is symmetric. |

It is of interest that the trend in the theoretical Upc/fD with in~
creasing m(S/pD2 is similar to that shown by the experimental data, especially
if Upc/fD for ¥ = 30° is associated with small mé/pD2 and that for x = 10° or
less for large mﬁ/pDz-— for the reasons mentioned earlier. The theoretical
results indicate that Upc/fD o (md/pDz)n, where n is in the range of 0.4 to
0.6 almost throughout, whereas it is currently suggested that for‘small m(S/pD2
this exponent should be considerably smaller than 0.5 (Chen & Jendrzejczyk 1978).

Of course, the question arises as to how sensitive are the theoretical
results presented thus far to the value of the parameter X. As shown in figure
5, they are not so sensitive — at least in the range of 5° < x.< 160°.: For
X < 5° approximately, however, the critical flow veloqity for lightly damped
systems increases sharply as X = 0° is approached. (Atx = 0°, as previously
mentioned, the very nature of the instability is different.) This effect is
nevertheless attenuated by higher damping, as shown. For X = 180°, no in—A
stability is found at all; the situation here is similér to that for x = 0°,
except that the signs of all flow-induced stiffness terms are reversed. Finally,

for 180° < x < 360°, the results (not shown) mirror closely, but not exactly,

those in figure 5, as expected.

Considering the drastic simplifying assumptions that have been made
in the theory, the most serious of which is to ignore the wakes — the existence
of viscous effects being recognized only through the introduction of the phase
lag x — it is remarkable that the theoretical values of Upc/fD for y = 30° or
10° are as close to the experimental values as they are. Of coﬁrse, prediction

of the critiqal flow velocity to within a factor of 3 or .5 is not satisfactory.



27

Nevertheless, this lack of success should be viewed in the context of existing
semi-empirical analytical models, relying heavily on measured force coefficient

..I.

data, which are capable of prediction to just within a factor of 2.

One current controversy is concerned with whether one flexible cylin-
der surrounded by rigid ones does become unstable for high mé/pD2 — it being
generally accepted that it does for low m@/pD2 (Lever & Weaver 1982, Chen 1983b,
Paidoussis 1983). Calculations conducted for one flexible cylinder surrounded
by six rigid ones shpwed that, according to this theory, the flexible cylinder
does become unstable for all mcS/pD2 — but at higher critical flow velocities

(by 30 to 75%), as compared to the system with seven flexible cylinders.

TIn considering the success, or lack thereof, of this theoretical model in terms
of predicting Upc/fD much more emphasis should be placed on figure 3 than on
figure 4, for the reasons stated at the outset. The fact that agreement between

theory and experiment is similar in the two cases could well be fortuitous.
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7. Conclusion

A potential flow £heory has been presented for the dynamics, and
more épecificélly the fluidelastic instabilities, of staggered arrays of cylin-
ders in cross flow. The theory is purely analytical, except for the empirical
parameter ¥, which is a measure of the phase lag between displacement of the
cylinders and the 1ift and drag forces generated on them — due to viscous ef-
fects, otherwise neglected. ‘

All analytical parts of the theory were carefully checked and com-
pared to previous work. It was shown that previous formulations by Chen (1978)
and Balsa (1977) must be erroneous — the first by direct proof; the second by
inference; hence, to the authors' knowledge, this is the first wholly correct
formulation of the problem in terms of potential flow theory. In one sense,
this is considered to be the major accomplishment of this work, as it permitted
the assessment of the limitations of potential flow thedry for predicting the
dynamical behaviour of the system.

The most important finding of this work is that if viscous effects
are neglected altogether, then the only form of instability possible is divergence,

which is a static, non-oscillatory instability. Hence, having established the

prominence of the viscous effeéts, it was considered desirable to take them
into account, albeit empirically. Although no attempt was made to determine
the viscous forces per se, one important effect of these forces was.introduced:
the_phase lag X. It was found that, with reasonable values of this phase lag,
theory predicts the occurrence of oscillatory instabilities; moreover,.the
predicted characteristics of the system and the threshold of instability are
remarkably close. to the measured ones— remarkably, that is, considering the
dégree of idealization entailed in the analytical model.

The above suggests that a useful direction for future research could

be to attempt the analytical modelling of viscous forces on the cylinders and
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hence the determination of the phase lag inherent therein.

It is nevertheless recognized that ideal flow theory is not the most
suitable fluid mechanical tool for a successful theory for the problem at hand,
because of the importance of the wakes — even on the quasi-static aerodynamic
stiffness coefficients. Thus, unless wake interference effects are accounted
for, the essential non-conservativeness of the force field (in the static sense),
which is known to have a strong destabilizing influence on the dynamics of the
system, is not recognized.

Finally, it might be useful to discuss this theoretical model in the
context of other, recently published theories. Price & Paidoussis' (1983)
theory requires the measurement of the static forces on the cylinders in various
‘displaced positions, and Tanaka & Takahara (1981) and Chen's (1983b) theory
requires the measurement of the dynamic forces over a range of flow velocities —
a difficult and tedious task. Lever & Weaver's (1982) theory requires three
empirical inputs and is otherwise analytical; it is, therefore, more comparable
to this theory, which involves but one empirical parameter. As expected, the

more empirical input introduced in the analytical model, the more "successful"

it becomes in terms of prediction of fluidelastic instabilities.
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Appendix A: FEvaluation of some terms in equation (14) for 9¢/9t

Equation (16) gives the expression for ajnﬁ; similar expressions may
be written for anﬂ’ Bjnﬂ and Sjnﬁ' The procedure for evaluation of these

quantities will only be illustrated through the first.

The first of equations (8) may be differentiated with respect to time
and the resulting differential evaluated at the cylinder equilibrium positions

: LI | v - : :
(i.e., rs oo Gi Gi, Rij Rij’ wij wij)’ yielding

K o)
(—n)cwinK + jz: mil Gmnij { dijACOS(m+n)wij + Gjmﬁ sin(m.-i-n)lj)ij } =
K B | m min
* (—"l) (IIH'D.) ! R . .
¥ 3 CENY (n'l)! —) { [ajmﬁ,cos(m+n)wij + 6jm£ 31n(m+n)q)ij ] Rij

j=1 m=1 RiJ
+ [ajmﬁ sin(m+n)¢ijr- 6jm£ cos(m+n)wij ]uﬁj Rij} .

(A.1)
From the diagrams below, it may be seen that

Rij = (uj—ui) cosl[Jij + (vj—vi) 51n¢ij (A.2)

and

R | ‘Lij = -(aj—ai) simpij + (\'7j~{7i) coslpij . (A.3)
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Substituting into (A.1l) yields

K [o'ed
. N . . ) _
(-n) ain£.+ ?:1 mil Gmnij { ajmz.cos(m+n)wij + 6jm2.81n(m+n)wij }
K o m) m'+n
* (1) (m'+n)! R 1 ' p '
E mEl @D @) mranrl | &rarg cos @At o F Opy e sin(mintl)y,
j=1 m= : Tk
du,, aui
x (-
at ot
R = m'+n

1]
+ 3% 1 D™ @'+n)! R o ' }
=1 m=1 (@'-1) ! (o=1) ! e {(%.n“£51n(m +n+l)wij, - éj,mtecos(m +n+l)wij,

1]

w,, v

Hence, substituting equation (16) and the equivalent expression for 6j into

nf

(A.4), one obtains an equation of the form

K oo, K o da, 38, du,,
z (-n) 5 ink + ¥ se¢ i { 5 int cos(mn)§, . + ErlE@ sin(m+n)w..} St }
£'=1 g j=1 m=1 T U cUpr o dup H
K v K o m! ‘ m'+n
. . 2 % (-1) (m'+n)! R
+ ) {terms involving } = Z z T 7
2'=1 ot =1 m'=1 (m'-1)!1(n-1)! R.m. '+n+l
ij
du,, Bui
' . ' J_.
{{uj'm'ﬂ cos(m +n+l)wij, + Gj'm'ﬂ sin(m +n+l)wij,}(8t ™ )}
v, , 3vi ;
+ { terms involving (7;§-- e } . (A.5)

Since the above must hold for all possible values of the set ﬁﬁ" v the

£

latter are linearly independent and thus equation (A.5) may be reduced to

equating the coefficients of ﬁﬂ" ﬁﬁ, on either side of the equation; thus,

a, 2 K o o0, ? a8, 2
(-n) 5 S T D e ..{?;JE—'cos(m+g)¢.. +-§~13—'sin(m+n)¢,,} =
u}ev j=/l m=1 mnilj u/e' ; 1] UK' ij
v ' (A.6)
D™ (@'4n)r R { \ T
m'El (' =131 (o=1) ! T 1 %' m' e cos (m +n+1)1pi£,+6£,m,K sin(m +n+l)wi£,}

Rig'
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and a similar expression for Suinz/av v« A different procedure must be utilized

for £'=i, but will not be presented here for brevity. Similar expressions for

the derivatives of §jpp may also be written, leading to the set

K [>]

aoLinf, % 36'n£ ’
_ : { Cant Pinty suntarnrty,} = P -
(-n) (Buzv ) + i mil mnij (auK ) cos(m+n)w + (auz, ) s:Ln(mr*-n)l,l)lJ inkl
6 K* o 98,
_ : feo - St b=
(-n) (8 Y ) + ) mil oni | ( ) s1n(m+n)¢ By, ) cos (mn)y, Q1n££ s
(A.7)
E)oc.n,K -
(-n) ( Bi ) 4+ [Similar terms as in first equation @a. 7] = Pinﬂﬂ' s
/ Bé.nﬂ _
(-n) ( 3$£,) + [Similar terms as in second equation A.7)] = Qinﬂﬂ' s ‘ (A.8)
where

T D™ @y BT . o
Pinﬂﬂ' - m'El (m"=1)! (n-1)! Rm'+n+l [aﬁ'm'ﬂ cos (m +n+l)wiﬂ' + 6£'m'£ sin(m +n+l)wi£']’

il!

Q = ; (_1)m' (m'tn)! Rm'+n [a sin(m'+n+1)y -8 cos (m'+n+1)y ]
infl’ =1 (m'-1) ! (n~1)! Rm'+n+l L'm' L ig! £'m'L , igr-’
il
and Pineer = Qneer 0 Quneer = Pinger (4.9)

for £'#i, whilst for £'=i the following must be employed:

k k
P. . = -Z* . . = - *
infi jr=1 Plnﬁj' ’ Unei j§=l Qinﬂj' . (A.10)

The set of equations (A.7) and ?A.8), separately, may be written in matrix
form and then solved, yielding Bujnz/auz,, Béjnz/auz,, etc.; with these known,

then o, s 3 , etc. are known and therefore a, and b, of equation (15).
ind jn jn

jnf
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Appendix B:  Some constants_obtained In the analysis

The constants involved in equation (19) are given by

Aip = 20470+ 8590 By = Dyqp > Ajp = 285000 Byp = 2B 05 (B.1)
where 612 is Kronecker's delta;
K da, oY,
i%? =-1m % [ 8$}£ cosl[)o + ai}z sinwo]
£=1 2! 2!
K o R n+l ol Yy ol
+ 3 L (D" a) { [-J— cosp_ + ———l—~ siny ] cos (DY, |
j=1 n=1 ij Yer ups
ad ol 3B, ol
4-[—~4L—~ cosw +-——4L—— 51nw ] 51n(n+l)w } s
Ugr K'
K 96, 9B,
(1 1
iﬂz =-m32 [ o coswo + ai g sinwo]
£=1 L' L'
(B.2)
K o 0 R n+l BQ,nK ay., 2
+ $* ¥ (-1) n(ﬁ——) {[—51—-cos¢) + ajn siny ] sin(nt+1)V, .
j=1 n=1 ij Yer ° A ° +J
08, ol 9B, 2
- [——;L—— cosw +--—4H1— siny ] cos(n+l)w }
A K
the D(l) =(1)

X and D e terms may be obtained by replacing 3/%u,, by B/BVK‘ in the

above expressions;

¢® o 3 {(-1)n n(ntl) T (~15—)n+2 [T, cos(u+2)y,, + b, sin(at2 ]} 1-8

1£ =1 b 'Riﬂ £n il fn SEOLD )wiﬁ (- iﬂ)

(2) o n R n+2
Dy, = nil{( DY n) ) [Ty, sinm+2)p,, = A, cos(n+2)y, ] }(1-611)

’ S2) _ () =) (2 '
Ciem TP 0 Dip = Cip o | (B.3)
where
K K ’

Ty, = jil [aﬁnj cosy_ + Y sinwo], Ao = jil [éﬂnj cosy  + Bﬂnj sinwO]. (B.4)
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It is of interest that for i = £, Cii) = Diz) = 0; hence, there is no

velocity-dependent force due to motion of the cylinder itself, but only due to
motion of neighbouring cylinders. Although the surface pressure distribution
on the cylinder is altered by its own motion, when integrated around the cir-

cumference it gives no nett effect; this is in agreement with single cylinder

results.
The constants involved in equation (20) are given by Mavriplis (1982)
¢ =Ty 1 fa {c* %y - 8%, sin®y - % , - D' ) i
Do n=1 f=1 n2!"ine ©°% l‘Uo ing S lpo inf inf COSwo Slnwo}
K 2 2
+ K'Z ‘{Dlinﬂﬂ' cos wo + Dzinﬁ[' sin wo +(D3in££' + D4in££,)coswO sinwo*} R
=1
T K % 2 % 2 % %
CLOi = -nil Kil {_zanZ{Ainﬂ cos wo + Dinﬂ sin wo +(Cin£ +Bin£)coswo 51nwo}
K 2 2
+ K'Z {Dsinﬂﬂ' cos wo + D6in2£"Sin wo +(D7inﬁﬂ' + D8in££,)costpo sinwo}} s
=1 ‘ ,
C(B) =X ; {26 (A¥ sinp - c* cosy )
i 4 o=1 n2 " ind 0 inf o
k
_K'El {(Dlinﬂﬂ' + Dlinl'ﬂ)coswo +(D3inﬁ'ﬂ + DAinKZ')Slnwo}} R
3) 1 o % . ok
Diﬂ =3 nil {26n2(Binz 51nwo Dinﬁ COSWQ)
. .
_K'él g(DBinﬁﬁ' + DAinK,K)coswo +(D21n££, + D21n£,£)81nw0}} s (B.5)

-(3)_I[00 * * ,
C. =7 z {ZSnZ(Ainﬂ coswO + Cinﬁ 51nw0)

{(D5, ppr + D5, pup)cosh  + (D7, ,,, + Dsinu,)sinwo}} ,
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=(3) _ 1 o { * * .
Di =% z 26n2(Binﬁ cos\,l)0 + Dinz 81nw0)
n=1
k
_E'El {(D7in££' + DSin’@,K)coswo + (D6in££' + D6inK'K)Slnwo}} 5
where
% * * * * %
Dlinu' - Ain/@(Ai nt1 £ Ay n—l.K') + Cinﬂ(ci o+l or T Ci n-1 K') ’

ok * * *
D2, ppr = Binp By 1 er T B nc10” T 0o @y 1 et T 05 o1 o

*

% % * .
D3, eer = Bine @y e T A ne1e” T Pine (S e T Cono1g? o

% % * %
Db, opr = BBy iy er T By n1e” T Cine®f ppr et D5 p1g? o

A% % _ ok _ % % _ak
D5; et = A5neCi ne1 et ™ €1 ne12? T CineAi mirer T AL ne1 g o
(B.6)
% * ok ok * o
D6 et = Bine®s ne1 20~ 2% no1£” T Pine®i nr1er T Bine1g? o
% * o ook % A%
D720t = BineCi nr1 et ™ €5 n-14” T Piney mb1 00 T Ap po12?
% * n® ok * _opk
D8 et = Aine P ne1r 21 no1£? T Cine®y nirer T Bi -1 e o
* g * * '
and Ainﬂ’ Binﬁ’ Cinﬂ’ Dinﬂ are related to the ainﬂ"BinK’ Yinﬂ’ Ginﬂ of
equation (8) by
A¥ = 2né B* = 2nfR + 68 .6
ink inf ’ Tinf inf nl il ?
(B.7)
c¢* = -2na - 6.6 DY, = -2ny ;
inf inf nl il ° ink ind °
as before, the doubly subscripted §'s are Kronecker deltas.
Finally, the partial derivative terms in equation (21) are given
by the corresponding'derivatives of the terms in (B;S). Thus,
aC o % *
Doy g K Cing 2 Bint 2
3 =7 I L §26 2[ 5 cos wo - 5, sin wo + etc.
u n=1 f=1 n Yo P
(B.8)
K oD1 oD2
infd' 2 YCnllt 2 }
+ E [ ™ cos wo + —5  sin wo + ... etc.]



where partial derivatives of (B.6) are also involved, and

* *
Mine . i Bine o By
ou = 2n( du ) s du = 2n( du )
Cing . e Pine o Mine |
du ~2n( ou ) du ~2n( Ju )
P p p p

with similar expressions for the vﬂ—derivatives. It is recalled that
(aainﬂ/aup) and similar terms have already been determined through equations

(A.7)~(A.10).
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/1.5 D |

Dalton &

I I
Present Helfinstine
> analysis Chen (1978) Suss (1977) - (1971)
Alq - 1.0320 - 1.0325 - 1.0328 - 1.0313%
Inertia A 0.2269 0.2265 0.2266 0.2245%
terms 12
_ B;; - 1.0320 - 1.0325 - 1.0328 - 1.0313*
(Aip = Bipg =0 _
By - 0.2269 - 0.2265 - 0.2266 - 0.2245%
+
Steady cDol - 0.3464 - 0.3493 - - 0.3474
1ift and C 0 0 - -
drag coeff. Loy

Table 1. Comparison of the inertia terms and steady lift and drag forces pre-
dicted by the present analysis with those obtained by various other authors in

the published literature.

+Obtained graphically.

%
Obtained by Mavriplis (1982), using Dalton & Helfinstine's analysis.




— & A
<:>_ l.S D
_} Present
— % analysis Chen (1978)
(3)
C23 0 0
(3)
D23 0.7478 0.747
Damping ~(3)
terms C23 - 0.9510 - 0.950
=(3)
D23 0 0
E23 1.090 1.089
F 0 0
Stiffness _23
terms E23 0 0
F23 - 1.657 - 1.650

Table 2. Certain damping terms due to the steady part of Bernoulli's
equation (V9.Vd) and some stiffness terms, obtained analytically by the
present analysis, compared with those of Chen's (1978), obtained by dis-

placing one cylinder at a time, for the five-cylinder row shown.
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1.5 D Cylinder Displacement Analytical
Method Calculation
"“'I’ Au = 0.004 D
0.3292 ~0.3258 0.3791 -0.3791
)]
iL 0.3292 -0.3258 0.3791 -0.3791
[D(l)] 0.2376 -0.2376 0.1992 -0.1992
0.2376 -0.2376 0.1992 -0.1992
Table 3. Comparison of the potential flow damping terms due to the time-

derivatives of the ajnﬂ to 6jnﬂ coefficients obtained analytically to those

obtained by displacing the cylinders and then calculating the change to the

coefficients.




> 1.>D Present Doublet (Dalton .
(:::>w_.ur. Method & Helfinstine 1971)
[Aiz] T -1.0320 +0.2269 -1.0313 +0.2245
or
[Eiﬂj +0.2269 -1.0320 +0.2245 -1.0313

1) (2)
[Dg 1+ [057]
it it 0.6550 -0.3791 0.6239 -0.3534

0.1992 -0.4751 0.1915 -0.5172

eM7 4+ 62
it il 0.4751 -0.1992 0.5172 -0.1915

0.3791 ~0.6550 0.3534 -0.6239}

Table 4. Comparison of the inertia terms and the damping terms due
solely to the unsteady part (99/9t) of Bernoulli's equation obtained
in the present analysis with those obtained by the method of Dalton &
Helfinstine (1971).

+ ; L . = - .
Off diagonals are positive for AiK’ negative for Biﬂ' Aiﬂ and Biﬁ both

vanish in this case.

*
Obtained by Mavriplis (1982), using Dalton & Helfinstine's analysis.
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Figure 1. Two types of staggered arrays of cylinders in cross flow: (a) "normal", and (b) "parallel", or
"rotated", equilateral triangular array. The dimensionless pitch ratio is defined by sp/D. Also shown are

the separated (rotational) flow regions behind two cylinders in each case.



(b)

Figure 2. (a) The system under consideration, with the associated co-ordinate
systems (x,y), (ro,eo), (rj,ﬁj), the geometric parameters Rij’ wij’ and cylinder

dispiacements u defined therein; (b) the co-ordinate systems (ri,ei),

k’ Vk.,
(r%,@j), moving with each cylinder, vis-a-vis the fixed ones, (ri,ei), (rj,ej),

and associated definitions.
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Figure 3. Theoretical critical flow velocities for fluidelastic instability, calculated for the seven-cylinder

normal triangular array shown and for § = 0.01l: —, sp/D =1.5; ——, sp/D = 1.3. Experimental data: A, Chen &

Jendrzejczyk (1981); N, Conmnors (1980);0 , Gibert et al.(1976); V, Gorman (1976); A, Gross (1975); O , Hartlen
(1974); @, Heilker & Vincent (1981); ¥, Péttigrew et al.(1978); ¢ , Soper (1980); © , Yeung & Weaver (1983);
©, Zukauskas & Katinas (1980); see also Chen (1982), Paidoussis (1983).
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Theoretical critical flow velocities for fluidelastic instabi
0.01.

Figure 4,
parallel (rotated) triangular array shown and for s /D = 1.3, § =
O, Gorman (1976); V, Hartlen (1974); A, Heilker & Vincent (1981); @, Pettigrew et al.(1978); ¥, Soper (1980);

M, Yeung & Weaver (1983); see also Chen (1982), Paidoussis (1983).

O  wWeaver & Grover (1978);

bl
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Figure 5. The theoretical effect of changing the phase-lag angle ¥ on the

critical flow velocity for fluidelastic instability, for normal triangular

arrays (sp/D = 1.5).



