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ABSTRACT

Engineers frequently use physical scale models of hydropower intakes to assess and minimize the occurence

of harmful free surface vortices. The impact of surface tension, viscosity and turbulence on the scaling

behaviour of the vortices is examined here using an analytical free surface vortex model developed from

measurements in a laboratory-scale hydropower intake. First, the effect of surface tension on the free surface

depression is computed using a finite-difference model over a wide range of depression scales and shapes. The

impact and scaling behaviour of surface tension are found to be qualitatively different depending on whether

the depression is dimple- or funnel-shaped. The influence of viscosity on scaling predicted by the analytical

vortex model contradicts trends recorded by previous authors, which suggests that additional processes such

as turbulent diffusion may play a significant role at larger scales. Scale effects due to the interplay of viscosity

and turbulence require further investigation, whereas those due to surface tension are fairly easily quantified

and predicted.
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Free surface intake vortices: Scale effects due to surface tension and viscosity

1 Introduction

Free surface vortices upstream from hydropower intakes occasionally cause serious problems in

plant operation and it is common practice for engineers to use laboratory-scale physical models

to assess and optimize proposed intake designs to maximize flow uniformity and steadiness and

minimize the occurrence and intensity of vortices. Detailed measurements in a physical model of a

simplified intake (see Fig. 1) were used to develop an analytical vortex model based on Burgers’s

(1948) vortex model that predicts the vortex’s characteristic radius ro, bulk circulation Γ∞ and tip

depth h0 (maximum depth of the free surface depression produced by the vortex) in terms of the

intake velocity Ui and relative intake submergence s/d (Suerich-Gulick, 2013). s is the submergence

of the intake pipe and d is its inner diameter. This analytical model is used here to examine and try

to quantify how scale effects due to surface tension, viscosity and turbulence affect the translation

of vortex characteristics from a laboratory-scale model to the full-scale prototype.

It is widely recognized that the dominant parameter influencing vortex intensity is the

Froude number (Quick, 1962; Jain, Raju, and Garde, 1978; Anwar, 1983; Chang and Prosser, 1987),

defined as Fd =Ui/(gd)1/2 or Fs =Ui/(gs)1/2, where g is the gravitational acceleration. Since the

exact dependence on Froude number varies with the intake configuration and geometry (Knauss,

1987), it is common practice to assess and optimize proposed intakes using laboratory-scale models

operated at Froude similitude such that FM = FP, where FM and FP are the laboratory model and

prototype values, respectively (Quick, 1962; Chang and Prosser, 1987). Since water is used in the

laboratory model, it is impossible to match the Weber (W) , Reynolds (R) and Froude numbers

simultaneously, leading to uncertainty about scale effects which has yet to be fully resolved (Tastan

and Yıldırım, 2010). The intake definitions for W and R are used here, using the submergence s

as the characteristic length: Ws = ρU2
i s/σ and Rs = Uis/ν , where ρ , ν and σ are the water den-

sity, kinematic viscosity, and the air-water surface tension coefficients, respectively. Some authors

define Wd and Rd using the intake diameter d instead of the intake submergence s, indicated by a

subscript.

Scale effects due to viscosity and surface tension have often been studied by documenting

how the critical condition in physical models varies with increasing Reynolds and Weber numbers.

Most authors define the critical condition for air entrainment as the operating condition at which

the tip of the free surface depression just reaches the intake pipe (Daggett and Keulegan, 1974; Jain

et al., 1978; Anwar, 1983; Odgaard, 1986; Gulliver, 1988; Hite and Mih, 1994; Möller et al., 2012).

A common approach is to try to identify a minimum W above which surface tension effects can

be neglected (Daggett and Keulegan, 1974; Jain et al., 1978; Anwar and Amphlett, 1980; Anwar,

1983), or a minimum R above which viscous effects can be neglected (Daggett and Keulegan, 1974;
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Jain et al., 1978; Anwar, 1983; Padmanabhan and Hecker, 1984; Chang and Prosser, 1987; Tastan

and Yıldırım, 2010).

Independence from surface tension effects in experiments has been reported at Wd values

above 120 (Jain et al., 1978), 600 (Padmanabhan and Hecker, 1984), and 748 (Möller et al., 2012),

while Anwar (1983) reported persisting surface tension effects for Ws values up to 1.5× 104 for

dimple depressions and up to 4× 104 for air core vortices, which have deep narrow funnels that

reach far below the free surface. Tastan and Yıldırım (2010) observed that limiting values for R

and W depend on both flow and geometrical conditions in experiments. Using theoretical analysis,

Odgaard (1986) concluded that surface tension effects should be negligible for Wd > 720. Other

authors have examined surface tension effects by numerically computing the profile of the free

surface depression by the finite difference method or analytical or series approximations (Yıldırım

and Jain, 1981; Andersen et al., 2006; Stepanyants and Yeoh, 2008a; Ito et al., 2010).

Reynolds number dependence has been observed to decrease asymptotically with increasing

R (Daggett and Keulegan, 1974; Jain et al., 1978; Anwar, 1983; Chang and Prosser, 1987), suggest-

ing viscous effects may be negligible beyond a threshold R value. Suggested minimum values for

R range from 4×104 to 1.4×105, depending on the geometry and the Froude number, using var-

ious definitions of R (Daggett and Keulegan, 1974; Jain et al., 1978; Anwar, 1983; Padmanabhan

and Hecker, 1984; Chang and Prosser, 1987; Tastan and Yıldırım, 2010). Detailed data needed to

explain this trend are lacking.

Greater understanding of the processes driving scale effects should help engineers to inter-

pret vortex observations more appropriately or estimate correction factors when the laboratory-scale

model does not meet recommended W and R values. This scenario occurs for particularly large pro-

totype intakes and/or when the model must include a significant stretch of the upstream river reach

to capture approach flow conditions.

Odgaard (1986) proposed that the asymptotic R trend is due to turbulent mixing that en-

hances the effective diffusivity in the vortex core. He models the intake vortex using Burgers’s

(1948) vortex model in combination with a simple eddy diffusivity model. Burgers’s model as-

sumes that the radial profiles of the azimuthal Vθ (r) and radial Vr(r) velocities in the vortex are

constant along the vortex axis z and that the axial velocity Vz(z) is independent of r and varies

linearly with z:

Vθ (r) =
Γ∞

2πr

[
1− exp

{
−(r/ro)

2}] , (1)

Vz(z) = az, Vr(r) =−ar/2, (2)

ro = 2(ν/a)1/2, a = ∂Vz/∂ z, (3)

where r,θ ,z are the radial, azimuthal and axial cylindrical coordinates with z aligned with the vor-

tex axis pointing down from the free surface, and Vr,Vθ ,Vz are the corresponding velocities. The
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gradient a is a constant with units s−1, Γ∞ (units m2s−1) is the bulk circulation of the vortex, and

ν (units m2s−1) is the kinematic viscosity of the fluid. Burgers’s model is based on the hypothesis

that a stable vortex with a constant vorticity and Vθ (r) profile along the vortex axis is produced by

an equilibrium of axial stretching ∂Vz/∂ z and radial viscous diffusion. Detailed measurements of

the velocity field of a free surface intake vortex suggest that the model captures the basic vortex

structure quite well (Suerich-Gulick, 2013) even if some subtle discrepancies exist.

Odgaard (1986) suggests that momentum mixing in the vortex caused by turbulence in-

creases the effective viscosity νeff at larger scales. He replaces ν in Burgers’s expression for ro

(equation 3) by νeff = ν +νT, and assumes that the eddy diffusivity νT scales as νT = χΓ∞, follow-

ing Squire (1965), with the non-dimensional constant χ = 6× 10−5. The resulting model predicts

Jain et al.’s (1978) critical submergence measurements fairly well (Gulliver, 1988). Hite and Mih

(1994) follows the same approach.

The proposal that νeff increases with Γ∞ would appear to contradict past results that radial

turbulent fluctuations are suppressed by flow rotation (Bradshaw, 1973; Spalart, 1998; Jacquin and

Pantano, 2002; Suerich-Gulick, 2013) and that the spreading rate in the case of wing tip vortices

is governed by viscous diffusion rather than by turbulent mixing (Zeman, 1995). However it is

possible that that radial turbulent diffusion is suppressed to a lesser degree at larger scales, as both

Γ∞/ν and R increase. Increasing eddy diffusivity would produce a gradual decrease in the relative

contribution of molecular viscosity ν to the effective diffusivity, until ‘viscous effects’ become

negligible at Rd values on the order of 105 (Odgaard, 1986). Although our measurements indicate

that that the contribution of turbulent mixing to radial diffusion of the vortices is negligible under

the operating conditions examined (Suerich-Gulick, 2013), the maximum νT values from Odgaard

(1986)’s model would only reach half the molecular viscosity, producing a 22% increase in the

core radius ro (equation 3). This is comparable to the variation in ro observed experimentally in

Suerich-Gulick (2013).

2 Method

2.1 Experiment

A laboratory-scale model of a simplified low-head hydropower intake is constructed with two tall

pier-like plates mounted perpendicular to the downstream wall of the channel, one on each side of

the intake opening, as shown in Fig. 1. Each pier produces two vortices in its wake: a submerged

vortex with one end connected to the channel bed, and a free surface vortex with one end connected

to the free surface. The other end of each vortex is drawn into the intake pipe. We study a range of

vortex intensities, ranging from an imperceptible dimple to a funnel vortex that regularly entrains

air bubbles. The details of the experimental setup and the eight operating conditions studied are

described in Suerich-Gulick (2013).
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Figure 1 (a) Vertical section and (b) isometric views of the laboratory model (dimensions in cm),

adapted from Suerich-Gulick et al. (2014).

A high-speed video camera is used to simultaneously record the particle trajectories of the

free surface vortex produced by the right pier (defined looking downstream) and the profile of the

free surface depression it produces. The profiles of Vθ (r) and Vz(z) are then computed using particle

tracking velocimetry (PTV) and Burgers’s profile (equation 1) is fitted to the measured profiles. The

results are presented and discussed in Suerich-Gulick (2013). In this paper, we numerically compute

the free surface depression that should be produced by the measured velocity profile Vθ (r) including

surface tension, and we compare it with the actual free surface depression recorded at the same time

as the velocity. Once we have ascertained in this manner that the numerical model predicts the free

surface depression with sufficient accuracy, we do a parametric study using the numerical model

to gain insight into the relative impact of surface tension for different shapes and scales of the free

surface depression.

2.2 Free surface profile computations

At small scales, surface tension can significantly reduce the depth of the free surface depression pro-

duced by the vortex. This effect is highly nonlinear since it both modifies and is controlled by the

local curvature of the free surface. We examine the scaling behaviour of surface tension by numeri-

cally computing the depression profile h(r) with (hσ ) and without (hn) surface tension over a wide

range of vortex intensities produced by different combinations of Γ∞ and ro. The evolution of the

relative difference δ ≡ ∆h/hn,0 between the profile tip depths is examined, where ∆h ≡ hn,0 −hσ ,0

(Yıldırım and Jain, 1981).

The free surface profile is controlled by the equilibrium of the forces exerted by gravity,

centripetal acceleration and surface tension. Following Andersen et al. (2006), Stepanyants and

Yeoh (2008a) and Ito et al. (2010), we use Laplace’s model (Laplace, 1807) that surface tension
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reduces the pressure across the air-water interface by l2
σ κ(r), where κ(r) is the local mean curva-

ture of the air-water interface and l2
σ = σ/(ρg) is the squared characteristic length of the air-water

interface. The resulting radial profile of the depression hσ (r) is given by

hσ (r) =
∫ r

∞

(
Vθ (ŕ)2

gŕ
− l2

σ κ(ŕ)
)

dŕ, (4)

(Andersen et al., 2006). A constant value for lσ of 2.73 mm is used here, which corresponds to

a clean air-water interface at 15◦C. The variations in lσ associated with the range of experimental

temperatures (13 to 15 ◦C) are negligible compared to those that might be caused by impurities in

the water or floating on the free surface. The kinematic energy associated with Vz and Vr would

slightly increase the depth of the depression, but this contribution is negligible compared to that of

Vθ (Odgaard, 1986). We assume that the curved path of the vortex axis entering the intake pipe

has a negligible impact on the free surface depression, but it might be more signficant for shallower

submergence values or a different geometry.

The mean local curvature κ(r) is given by

κ(r) =−1
2

{
hr

r[1+(hr)2]1/2 +
hrr

[1+(hr)2]3/2

}
, (5)

where hr and hrr are the first and second derivatives of h with respect to r respectively (Andersen

et al., 2006). The first term on the right is the curvature about the horizontal axis (perpendicular to

the page in a 2D section of the profile such as Fig. 4a and the second term is the curvature about the

vortex’s (vertical) axis of rotation. The free surface profile has a positive (concave) horizontal axis

curvature at the vortex tip, then some distance beyond r > ro it passes through an inflection point

and the horizontal axis curvature becomes negative (convex). The surface tension force thus pushes

the interface upward in the core portion of the vortex and pulls it down very slightly just outside the

core.

Since our primary goal is to get a larger view of trends in surface tension effects over a range

of shapes and scales rather than to obtain the exact shape of the depression, the free surface profile

is computed by directly substituting Burgers’s relation for Vθ (r) from equation (1) into equation (4):

hσ (r) =
∫ r

∞

{
Γ 2

∞
4π2gŕ3

[
1− exp

(
−(ŕ/ro)

2)]2 − l2
σ κ(ŕ)

}
dŕ, (6)

This approximation neglects the effect of the free surface depression on the velocity field and hence

indirectly on the depression itself as well. Stepanyants and Yeoh’s (2008b) results suggest that this

approximation produces a negligible error in δ in the case of a mild dimple depression and an error

of 26% for an extremely deep, funnel-type depression with a nominal free surface depression slope

ζ ≡ hn,0/ro = 110. This is judged to be an acceptable level of error for the purpose of this study.

Equation (6) is discretized along r by central differences and an equilibrium profile hσ (r) is

computed numerically for the given ro and Γ∞ by gradually decreasing ro from a large value (which
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produces a very shallow depression) to the desired ro. Funnel vortices are characterized by a large

peak in surface curvature at the tip (r = 0), requiring a large relaxation factor and smoothing of the

computed curvature profile hσ (r) between each iteration to suppress oscillations there.

3 Analysis and discussion

3.1 Surface tension effects

The free surface profile code is first tested using the free surface and velocity profiles mea-

sured and computed by Andersen et al. (2006) for a moderate funnel of nominal depression slope

ζ = 15 and the results compare very well. The code is then tested by computing the free surface

depression from the measured velocity profiles in our experiment, where surface tension effects are

significant, and comparing the computed tip depth h0,comp to that recorded in the film segments.

Figure 2a shows each measured tip depth h0,exp compared to the tip depth h0,comp computed

using equation (6) with Γ∞ and ro obtained by fitting Burgers’s profile (equation 1) to the measured

Vθ (r) profiles. The shape of the datapoints indicates the intake velocity Ui and the shade indicates

the relative submergence s/d. The horizontal error bars show the spread between the two values

of hσ ,0 computed from ro and Γ∞ obtained from the two fitting methods, and the symbols show the

mean. Although the spread is somewhat large for some points, the agreement is close enough to

indicate that both the method used to measure the azimuthal velocities and Burgers’s model used to

describe the measured profiles are suffiently accurate to predict the free surface depression from the

velocity measurements.

The code is then used to compute the free surface depression with and without surface

tension produced by Burgers’s vortices with a range of Γ∞ and ro values. As shown in Fig. 2b,

the results reveal that the relative surface tension effect δ scales very differently depending on

the shape of the depression, which is quantified here using the nominal depression slope ζ . The

transition between the dimple and funnel modes occurs around 1 < ζ < 10, depending on the scale.

For dimple-shaped depressions corresponding to ζ ⪅ 1-10, δ becomes independent of ζ , while for

funnel-shaped depressions (ζ ⪆ 1-10), δ varies with both the scale and shape ζ . Furthermore, the

data show that for a given scale ro/lσ , the relative surface tension effect δ is much more significant

in a dimple than in a funnel vortex, as obtained by Yıldırım and Jain (1981).

Figure 3a shows that once the limiting dimple shape is reached (towards the upper right of

the graph), δ converges to a unique function fσ for the different Γ∞ values that depends only on the

scale ro/lσ :

fσ (ro/lσ ) =
[
exp(−0.44(ro/lσ )2)+1.9(ro/lσ )1.6]−1

, (7)

which at large scales (ro/lσ ⪆ 3) tends towards a straight line δ ∼ (ro/lσ )2(−0.9) ∼ (ro/lσ )−1.8. Con-

versely, when δ is plotted in Fig. 3b as a function of the product (ro/lσ )2ζ = rohn,0/l2
σ , the curves

collapse at large values (corresponding to the funnel shape) to a straight line of slope δ ∼ (rohn,0/l2
σ )

−0.6.
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Figure 2 (a) Correspondence between the measured and computed tip depths. (b) Relative surface

tension effect as a function of the depression scale and nominal slope, adapted from Suerich-Gulick

et al. (2014).

The dashed lines in Fig. 3a-b indicate lines of constant bulk circulation Γ∞, while the solid lines in

Fig. 3b indicate lines of constant scale ro/lσ .

These trends can be compared to the scaling behaviour of the local curvature κn,0 of the

free surface at r = 0 in the absence of surface tension (equation 5) in the limits ζ ≪ 1 (dimple) and

ζ ≫ 1 (funnel). If r is assumed to scale with ro, hr with ζ and hrr with hn,0/r2
o, then equation (5)

produces κn,0 ∼ hn,0/r2
o for the dimple and κn,0 ∼ r−1

o for the funnel. If it is further estimated that

δ ∼ κn,0l2
σ/hn,0, this produces the scaling behaviour δ ∼ (lσ/ro)

2 for the dimple and δ ∼ l2
σ/(rohn,0)

for the funnel (the relation used by Odgaard (1986) in his analysis). So the same essential scaling

behaviour is produced by the computations and the theoretical analysis, except that the slopes of the

computed trends (-1.8 and -0.6 for the dimple and funnel respectively) are weaker than those (-2 and

-1) produced by the rough theoretical analysis. Stepanyants and Yeoh (2008a) also obtain δ ∼ r−2
o

for the dimple. The difference between our numerical result and that of Stepanyants and Yeoh

(2008b) might be due to simplifications in the velocity profile model used here, or to the different

solution methods, since Stepanyants and Yeoh use a series solution with analytical functions to

approximate the shape of the tip instead of computing a discretized profile. However it seems

quite possible that the difference in slopes between our computed trend and the present theoretical

analysis is due to physics rather than numerical error, since the theoretical analysis does not capture

the non-linearity of the process by which surface tension changes the shape of the free surface

depression, which in turn affects the magnitude of the surface tension and so forth.

To understand these trends, we examine how the computed shape of the free surface de-

pression is modified by surface tension and how that effect depends on the initial shape and scale
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Figure 3 The influence of (a) scale and (b) the combined scale and shape on the relative surface

tension effect.

of the depression. Comparison of the profiles in Fig. 4a computed with surface tension (dashed and

dotted lines) and without (solid line) shows that surface tension acts differently on different regions

of the profile depending on the shape of the depression. Within a given scale (ro/lσ =0.3) there is a

much stronger relative reduction of the depression hσ/hn,0 for the dimple vortices (ζ ⪅ 20) than for

the funnel vortices (ζ ⪆ 20). Surface tension acts strongly over a much larger radius in the dimple

vortex (up to r/ro ≈ 2) than in the funnel vortex where the effect is restricted to an inner region

r/ro ⪅ 0.5 that shrinks as the funnel gets deeper. In the funnel vortices, surface tension appears to

essentially clip off the tip of the depression, thereby significantly diminishing the spike in curvature

at the tip that characterizes funnel vortices. This can be seen in Fig. 4b, which shows the curvature

profiles κσ (r/ro) that correspond to the free surface profiles in Fig. 4a. In the absence of surface

tension (solid line), roκ for ζ =350 reaches a peak of 510 at r = 0. Figure 4c shows that surface ten-

sion has much less effect at a larger scale (ro/lσ = 1.5) in both the dimple (ζ ⪅ 5 here) and funnel

vortices. The profiles for the two lowest values of ζ in Figs. 4a and Figs. 4c coincide, indicating

that the dimple shape limit has been reached, where δ becomes independent of ζ .

These results clearly demonstrate that surface tension effects do not scale in the same way

for dimple vortices and funnel vortices. This qualitative difference in behaviour might partly explain

the variability in recommendations found in the literature for the minimum laboratory model size

required to avoid surface tension effects. The results also strongly suggest that empirical surface

tension scaling laws derived by studying the onset of air entrainment (ie. deep funnel vortices) must

not be directly employed to interpret vortex observations in reduced scale models of hydropower

plants, where spatial constraints are such that only dimple vortices are commonly observed.
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3.2 Scale effects associated with viscosity and turbulence

In equation(4.9) of Suerich-Gulick (2013), the range of expected tip depths hn,0,est for a

specific geometry was estimated as a function of the intake velocity Ui and relative submergence

s/d. We obtain hσ ,0,est including surface tension by adding the surface tension correction function

fσ (equation 7):
hσ ,0,est

d
=

c0(1− fσ )

(1−β )
RsF2

s

(
d
k

)3( lp

s

)2( d
c4s

− c2

)2

, (8)

with the non-dimensional coefficients c0 = 3.7× 10−5 and c2 = 0.28. c4 has two values, 1.0 and

0.6, corresponding to low and high values of Γ∞, respectively. lp is the length of each pier, k

is the distance between the piers, and RsF2
s = RdF2

d = U3
i /(νg). This expression is valid for all

the conditions examined, regardless of vortex shape, except that fσ (equation 7) is valid only for

dimple-type depressions and will overestimate the surface tension effect for funnel- and transition-

type depressions. For a more accurate correction for these latter shapes, δ can be read off Fig. 2b

for a given nominal depression slope ζ and scale ro/lσ and substituted for fσ in equation (8). The

solid lines indicate curves of constant ro/lσ .

Figure 5a shows the measured values compared with the range of values hσ ,0,est estimated

from equation (8) with ro in fσ (equation 7) estimated using β = 0. Surface tension has a minimal

impact relative to the variability associated with variations in ro and Γ∞. The predicted range of

hσ ,0,est values is shown by the boxes: the upper limit is obtained with c4 = 0.6 and β = 0.15 and

the lower limit is obtained with c4 = 1.0 and β = 0.85. Possible causes of Γ∞ variability include

as-yet poorly understood strengthening processes within the vortex, and turbulent fluctuations in the

surrounding flow. Variability in ro would appear to be mainly due here to variations in the shape of

the Vz(z) profile in the upper portion of the flow, ranging between a more linear (Vz(z) ∼ z) and a

more non-linear one (Vz(z)∼ (h− z)−1). This effect is indicated in equation (8) by the parameter β .

As discussed in Suerich-Gulick (2013), β indicates the extent of the linear profile of Vz(z): where

0 ≤ β ⪅ (1− 0.5d/s) is a proportion of the distance s from the free surface to the top of the inlet.

β = 0 indicates that Vz(z) inside the vortex follows the non-linear profile of the flow outside the

vortex, while larger values of β indicate that Vz(z) follows a linear profile in z from the free surface

over a greater distance, producing a steeper slope in Vz(z) at the free surface. In the experiment, β
is observed to fall in the range 0.15 ≤ β ≤ 0.85 (Suerich-Gulick, 2013). Turbulence in the vortex

core might also produce variations in ro by enhancing the effective radial diffusivity in equation (3).

To compare equation (8) with other results, it is reformulated in terms of the critical relative

submergence s′c for air entrainment, where the tip of the vortex depression reaches the top of the

outlet so that hσ ,0|crit = s. Substituting s′c ≡ (s/d)|crit for hσ ,0/d in equation (8) and isolating terms

in s′c produces
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s′5c
(c−1

4 − c2s′c)2
=

c0(1− fσ )

(1−β )

(
dl2

p

k3

)
RdF2

d . (9)

As shown in Fig. 5b, this relation predicts that s′c scales roughly as s′c ∼AR1/6
d F1/3

d at smaller

values of R1/2
d Fd , with A2 = c0(1− fσ )(1− β )−1(dl2

p/k3). It then flattens out at larger values,

becoming less sensitive to R1/2
d Fd at deeper submergences. The two curves are produced by the two

values of c4 (0.6 and 1), and they have a singularity at s′c = 6.0 and 1.7, respectively. The shift to a

milder slope at larger Fd reproduces trends observed in physical models of vertical intakes by Tastan

and Yıldırım (2010) and of horizontal intakes by Jiming et al. (2000). It differs from the trends with

a constant slope on a log-log scale found by other researchers. Gulliver (1988) observed s′c ∼ F2/3
d

in experiments with vertical intakes, and Rao et al. (1997) derived the same relation from Yıldırım

and Kocabaş’s (1995) analysis of lateral intakes in crossflow or at the end of a channel. Jain et al.

(1978) observed s′c ∼ F0.5
d N0.42

Γ ∗ K−1 and Odgaard (1986) analytically derived s′c ∼ N1/2
Γ ∗ R1/4

d F1/2
d ,

both for flow in a cylinder, where NΓ ∗ = Γ∞s/Q is the non-dimensional circulation and K is a viscous

correction factor.

The decreased sensitivity to Fd predicted by equation (9) at greater Fd values is due to

the non-linear Vz(z) profile that roughly follows Vz/Ui ∼ d/(s− z), as opposed to the linear profile

Vz/Ui = z/s assumed by Odgaard (1986). The non-linear profile has a much milder gradient ∂Vz/∂ z

at the free surface at large submergences, which produces more diffuse and thus weaker vortices,

requiring a greater relative increase in Fd to produce an air core than at lower submergences. The

linear profile assumed by Odgaard (1986) in his model might explain why it tends to overpredict s′c
compared with observations (Jain et al., 1978) at larger s′c values in several configurations (Gulliver,

1988). It should also be noted that Γ∞ is dependent on Ui, s/d and the relative pier length lp/d

in the current experiment, whereas it is imposed using adjustable guide vanes in the experiments

considered by Odgaard (1986) and Jain et al. (1978), which should affect the corresponding scaling

relations.

Equation (8) can also be used to evaluate how the characteristics of a free surface vortex in

a laboratory-scale model operated at Froude similitude would translate to a much larger prototype

intake with the same geometry with a geometric scaling ratio α = ℓP/ℓM, where ℓM and ℓP are the

characteristic lengths in the laboratory model and the prototype respectively. Neglecting surface

tension (1− fσ ) and assuming the model and prototype are geometrically identical so that (d/k),

(d/s), and (lp/k) are identical in both the model and prototype, equation (8) becomes

h′ ≡ hn,0

d
∼ c0

(1−β )

(
d

c4s
− c2

)2

F2
s Rs. (10)

Since FM = FP, the ratio of the outflow velocities Ui,P/Ui,M = α1/2, and because water is usually

employed in the laboratory model, νM = νP and the prototype-to-model ratio of the Reynolds num-
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Figure 5 (a) Comparison of measured (symbols) and estimated (boxes) tip depths. (b) Predicted

scaling behaviour of the critical submergence.

bers is RP/RM =α3/2. If it is further assumed that the velocity profiles outside and inside the vortex

follow the same shape in the model and prototype so that {[d/(c4s)]−c2} and (1−β ) are identical

in the model and prototype, we obtain

h′P
h′M

=
RP

RM
= α3/2. (11)

This indicates that the vortex depression h′P produced in the prototype would be significantly greater

in relative terms than that h′M produced in the laboratory model if the scaling ratio α is large –

scaling ratios of 20 are common and can reach as high as 200 in some cases (Hecker, 1981). This

predicted result is due to the fact that the vicosity of the fluid is identical in both model and prototype

while circulation increases with intake size and is thus larger in the prototype.

This result is contradicted by observations of decreasing sensitivity to Reynolds number at

large R values (Daggett and Keulegan, 1974; Jain et al., 1978; Anwar, 1983; Chang and Prosser,

1987), as well as the high success rate of laboratory-scale modelling for predicting prototype vortex

activity in the past (Hecker, 1981; Montilla et al., 2004). The discrepancy suggests that additional

processes or changes in flow structure must come into play at larger scales. To begin with, the

laboratory and prototype intakes could have different axial profiles Vz(z), producing βM ̸= βP, and/or

slightly different flow structures outside the vortex, whereas they are assumed to be identical. If

turbulent diffusion enhances the effective viscosity controlling ro at larger scales and/or higher flow

rates as suggested by Einstein and Li (1951), Anwar (1969) and Odgaard (1986), this would reduce

the value of hσ ,0 at larger scales. To properly assess this possibility, it would be necessary to make

simultaneous measurements of the Vz(z) and Vθ (r) profiles such as those made in Suerich-Gulick

(2013), but at larger scales and R values.
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Increased turbulence in the surrounding flow might also modify scaling behaviour at higher

R values by preventing vortices from forming or intensifying, as observed by Padmanabhan and

Hecker (1984) and Tastan and Yıldırım (2010). Work on the interaction of external turbulence with

the trailing vortices produced in the wake of airplane wings indicates that its impact depends on the

length- and time-scale characteristics of both the background turbulence and of the central vortex of

interest (Zeman, 1995; Jacquin and Pantano, 2002; Beninati and Marshall, 2005).

4 Conclusion

The free surface profile calculations reveal that both the shape and the scale of the free surface profile

determine how surface tension will modify the shape and total depth of the depression. The results

suggest that the magnitude of surface tension effects in a laboratory-scale vortex can be fairly easily

estimated using the proposed correction factor. In comparison, scale effects linked to viscosity

appear to be much more difficult to explain and predict. By incorporating the non-linear velocity

profile of the flow surrounding the vortex, the proposed analytical model successfully reproduces

the decreasing sensitivity to Froude number observed experimentally by earlier authors at deep

submergences. However the model in its current form fails to reproduce the independence from

Reynolds number observed by previous authors at large Reynolds values, suggesting that additional

processes must intervene or that the flow structure may change at larger scales.

Potential changes in the flow structure at larger scales, as well as perturbations and enhanced

diffusion caused by turbulence will have to be examined more closely to better understand the

observed scaling behaviour. The proposed vortex model linking vortex characteristics to intake

geometry and approach flow is a useful tool to evaluate how different processes interact to control

vortex characteristics at both the laboratory scale and at larger scales. ***One sentence removed

here.***
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Notation

a = axial gradient of axial velocity [s−1]
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c1−6 = non-dimensional model coefficients [-]

d = intake pipe inner diameter [m]

fσ = surface tension correction function [-]

F = intake Froude number [-]

g = gravitational acceleration [ms−2]

h0 = free surface depression tip depth [m]

h′ = non-dimensional depression tip depth [-]

hr = local derivative of h w.r.t. r [-]

hr = local second derivative of h w.r.t. r [m−1]

k = distance between the piers [m]

K = viscous correction factor [-]

lp = pier length [m]

ℓ = intake characteristic length [m]

lσ = air-water interface characteristic length [m]

Nν = non-dimensional vicosity parameter [-]

NΓ∗ = non-dimensional circulation [-]

Q = intake flow rate [m3s−1]

R = Reynolds number [-]

r = vortex radial coordinate [m]

ro = vortex characteristic radius [m]

s = intake submergence [m]

s′c = non-dimendional critical submergence [-]

Ui = mean intake velocity [ms−1]

W = intake Weber number [-]

α = model-to-prototype scaling factor [-]

β = Vz linearization ratio [-]

△h = tip depth difference due to surface tension [m]

χ = eddy diffusivity scaling coefficient [-]

δ = relative surface tension effect [-]

Γ∞ = vortex bulk circulation [m2s−1]
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κ = local mean free surface curvature [m−1]

ν = water molecular viscosity [m2s−1]

νeff = effective viscosity [m2s−1]

νT = eddy diffusivity [m2s−1]

π = trigonometric constant

θ = vortex azimuthal coordinate [rad]

ρ = water density [kg m−3]

ζ = nominal depression slope [-]

Subscripts
0 = value at (r = 0)

M = laboratory model value

P = prototype value

d = value based on intake diameter

est = estimated value

n = without surface tension effect

s = value based on intake submergence

σ = with surface tension effect
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