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[1] We investigate the convergence properties of the nonlinear solver used in viscous-
plastic (VP) sea ice models. More specifically, we study the nonlinear solver that is based on
an implicit solution of the linearized system of equations and an outer loop (OL) iteration (or
pseudo time steps). When the time step is comparable to the forcing time scale, a small
number of OL iterations leads to errors in the simulated velocity field that are of the same
order of magnitude as the mean drift. The slow convergence is an issue at all spatial
resolution but is more severe as the grid is refined. The metrics used by the sea ice modeling
community to assess convergence are misleading. Indeed, when performing 10 OL
iterations with a 6 h time step, the average kinetic energy of the pack is always within 2%
of the fully converged value. However, the errors on the drift are of the same order of
magnitude as the mean drift. Also, while 40 OL iterations provide a VP solution (with stress
states inside or on the yield curve), large parts of the domain are characterized by errors of
0.5–1.0 cm s�1. The largest errors are localized in regions of large sea ice deformations
where strong ice interactions are present. To resolve those deformations accurately, we find
that more than 100 OL iterations are required. To obtain a continuously differentiable
momentum equation, we replace the formulation of the viscous coefficients with capping
with a tangent hyperbolic function. This reduces the number of OL iterations required to
reach a certain residual norm by a factor of �2.
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1. Introduction

[2] Most sea ice dynamic models currently used in the
community are based on a viscous-plastic (VP) formulation
[Hibler, 1979]. The numerical schemes introduced over the
years to solve the nonlinear sea ice momentum equation with
a VP formulation can be broadly divided into two categories:
the schemes that involve an implicit solution of the linearized
system of equations and an outer loop (OL) iteration [e.g.,
Hibler, 1979; Tremblay and Mysak, 1997; Zhang and Hibler,
1997; Lemieux et al., 2008], hereafter referred to as VP
models, and the ones that are based on a fully explicit time
stepping scheme [e.g., Ip et al., 1991; Hunke and Dukowicz,
1997]. The original VP model [Hibler, 1979] is based on a
modified Euler time step and a successive overrelaxation
(SOR) solver. In this procedure, the nonlinear solution is first
approximated by advancing the approximate solution to the
middle of the time step by solving the linearized equation
with an SOR solver. The nonlinear viscosities are then
updated, the water drag is linearized using the newly calcu-
lated velocities, and the new linearized system of equations is
again solved with the SOR solver. This process can be
repeated (pseudo time steps) to improve the convergence of
the approximate solution. Subsequent numerical improve-

ments to the original VP model mostly concentrated on the
linear solver [e.g., Oberhuber, 1993; Zhang and Hibler,
1997; Lemieux et al., 2008]. Overall, these VP models share
one common feature: their numerical scheme produces an
approximate solution of the nonlinear momentum equation
by solving implicitly (or partly implicitly) the linearized
momentum equation a few times per time step. They might
however differ in the terms treated explicitly or implicitly and
in the method used to solve the linearized equation.
[3] While the convergence properties of linear solvers used

in sea ice models are documented, those of the nonlinear
solver have received relatively less attention. Some authors
observed a slow response of VPmodels to changes in forcing.
In the original VP model, Hibler [1979] showed that for a
change in forcing, several (daily) time steps are required to
attain equilibrium despite the fact that observations show a
nearly instantaneous response (a few hours) to changes in
forcing [Hunke and Zhang, 1999]. He recommended the use
of a small time step compared to the scale of temporal
variability of the forcing field. Ip [1993] and Zhang and
Hibler [1997] have demonstrated that a single modified Euler
time step does not lead to a VP solution; that is, a solution for
which all the stress states lie either inside or on the yield
curve. To get a VP solution, they propose to repeat the
modified Euler time step many times per time step. Zhang
and Hibler [1997] refer to pseudo time steps as the number
of times the modified Euler time step is repeated within a
time step.
[4] More recently, Hunke and Zhang [1999] have demon-

strated the slow transient response of a VPmodel (which uses
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only the modified Euler time step and the previous time step
solution as the initial guess) to changes in forcing. For
example, in a case study of a low pressure system crossing
the Arctic Ocean, they have shown that the VP model takes
multiple (4 h) time steps to develop a cyclonic motion in the
sea ice velocity field. The very slow response of the VP
model is attributed to the fact that with a single modified
Euler time step, the linearization causes the viscous coef-
ficients to lag in time the forcing specified [see also Hunke
and Dukowicz, 1997].
[5] As mentioned by Hunke [2001], many authors did not

heed the advice about the convergence problem and used the
model with a 1 day time step and daily varying winds [e.g.,
Hibler andWalsh, 1982;Riedlinger and Preller, 1991]. Some
authors however recognized the problem and used many
pseudo time steps to improve the level of convergence of the
approximate solution [e.g., Geiger et al., 1998; Kreyscher
et al., 2000].
[6] In a paper where the value of the sea ice compressive

strength parameter P* was estimated from observations,
Tremblay and Hakakian [2006] pointed out the two very
different P* estimates derived in modeling studies by Hibler
and Walsh [1982] (P* = 27.5 kN m�2) and Kreyscher et al.
[2000] (P* = 15 kN m�2). In both studies, the optimal P* is
obtained by minimizing the error between the buoy trajecto-
ries and the simulated drifts. Moreover, a larger P* in the
work by Hibler and Walsh [1982] is required despite the fact
that the magnitude of the surface wind stresses are nearly half
as those used by Kreyscher et al. [2000]. Tremblay and
Hakakian [2006] suggested that the discrepancy might in
part be explained by the fact that the two models are not
iterated to the same level of convergence: the model ofHibler
and Walsh [1982] used a single modified Euler time step
while Kreyscher et al. [2000] used 30 pseudo time steps (in
both cases a 1 day time step is used).
[7] Up until now, the convergence of the approximate

solution has been assessed bymany authors using the average
(or total) kinetic energy of the pack [e.g., Ip, 1993; Zhang and
Hibler, 1997; Lemieux et al., 2008]. The states of stress have
also often been used to evaluate the convergence of the
approximate solution [e.g., Zhang and Hibler, 1997; Arbetter
et al., 1999; Hunke and Zhang, 1999]. In this case, it is
assumed that convergence is reached once all the states of
stress lie either inside or on the yield curve. The specific goals
of this paper are to revisit the numerical convergence of VP
models, to determine the errors associated with various
approximate solutions, to evaluate the metrics used by the
sea ice modeling community to assess convergence and to
investigate ways to improve the convergence properties and
efficiency of VP sea ice models.
[8] The elastic-viscous-plastic (EVP) model developed by

Hunke and Dukowicz [1997] is based on a fully explicit time
stepping scheme. With this approach, there is an extra elastic
term in the constitutive equation which allows for a larger
sub–time step using a fully explicit time stepping scheme.
This elastic term does not represent the physical elastic stress.
It is an artificial term introduced in order to relax the stability
condition with a fully explicit time stepping scheme. The
study of the convergence properties of the EVP model is kept
for future work.
[9] This paper is not intended to provide the accept-

able magnitude of errors (which is probably application-

dependent) for VP models but rather to document the
convergence properties of VP models and suggest ways for
improvements. It is structured as follows. In section 2, a
review of the sea ice momentum equation with a VP
formulation is given. In section 3, we describe the nonlinear
solver. In section 4, we describe the model and the forcing
fields used for the simulations. In section 5, we present results
on the convergence properties of the nonlinear solver. In
section 6, considerations are given to explain the slow
convergence of the approximate solution. Concluding
remarks and a description of future work are given in
section 7.

2. Sea Ice Momentum Equation

[10] The two-dimensional sea ice momentum equation is
given by

rih
Du

Dt
¼ �rihf k � uþ ta � tw þr � s� rihgrHd ; ð1Þ

where ri is the density of the ice, h the sea ice thickness, f the
Coriolis parameter, u the horizontal sea ice velocity vector,
ta the wind stress, tw the water drag, s the internal ice stress
tensor (r � s is defined as the rheology term), g the gravity
and Hd the sea surface height. Following Tremblay and
Mysak [1997], the sea surface tilt is expressed in terms of the
geostrophic ocean current. Using a simple quadratic law with
a constant turning angle, ta and tw are expressed as
[McPhee, 1975]

ta ¼ raCdajugaj uga cos qa þ k � uga sin qa
� �

; ð2Þ

tw ¼ rwCdwju� ugwj u� ugw
� �

cos qw þ k � u� ugw
� �

sin qw
� �

;

ð3Þ

where ra and rw are the air and water densities, Cda and Cdw

are the air and water drag coefficients, and ua
g and uw

g are
the geostrophic wind and ocean current. Because u is much
smaller than ua, u has been neglected in the expression for
the wind stress.
[11] With a VP formulation, the constitutive law can be

written as [Hibler, 1979]

sij ¼ 2h _�ij þ z � h½ � _�kkdij � Pdij=2; i; j ¼ 1; 2; ð4Þ

where dij is the Kronecker delta, _�ij are the strain rates defined
by _�11 =

@u
@x, _�22 =

@v
@y and _�12 =

1
2

@u
@y þ

@v
@x

� �
, _�kk = _�11 + _�22, z is

the bulk viscosity and h is the shear viscosity. Following
Hibler [1979], the pressure term P (yield strength in isotropic
compression) is parameterized by the following equation:

P ¼ P*h exp �C 1� Að Þ½ �; ð5Þ

where P* is the ice strength per meter, A is the sea ice
concentration and C is the ice concentration parameter, an
empirical constant characterizing the dependence of the com-
pressive strength on sea ice concentration.
[12] The rheology term (r � s) depends on the yield curve

and the flow rule, through the formulation of the bulk and
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shear viscosities. In the following, we use the elliptical yield
curve with a normal flow rule [Hibler, 1979]. In this case, the
bulk and shear viscosities are given by

z ¼ P

24 ; ð6Þ

h ¼ ze�2; ð7Þ

where D = [( _�11
2 + _�22

2 )(1 + e�2) + 4e�2 _�12
2 + 2 _�11 _�22(1 �

e�2)]
1
2, and e is the ratio of the long axis and the short axis

of the elliptical yield curve.
[13] In the limit where D tends to zero, equations (6) and

(7) become singular. FollowingHibler [1979], the values of z
and h are capped at maximum values of zmax = (2.5 � 108)P
and hmax = zmaxe

�2. z and h are also limited to minimum
values of zmin = 4 � 108 kg s�1 and hmin = zmine

�2 in order
to avoid potential numerical instabilities [Hibler, 1979].
Equations (6) and (7) therefore become

z ¼ max min
P

24 ; zmax

� �
; zmin

� �
; ð8Þ

h ¼ max min
P

2e24 ; hmax

� �
; hmin

� �
: ð9Þ

[14] A scale analysis of equation (1) for a time step of
6 h shows that the acceleration term is at least one order of
magnitude smaller than typical wind stress values. For this
reason, we neglect the acceleration term when a time step of
6 h is used. (Inertial and tidal oscillations are not included.)
We have verified that solving the steady state momentum
equation does not affect the conclusions presented in this
paper. As we will see, the slow convergence is caused by the
rheology term. Additional experiments are performed with
a 30 min time step. In this case, the acceleration term is
included (the advection of momentum term is however
neglected) [Zhang and Hibler, 1997].

3. Numerical Scheme

[15] Because of the water drag term and especially the
rheology term, equation (1) is strongly nonlinear. Indeed, sea
ice resists virtually no load when the motion is divergent
while it can resist large loads when convergence is present. At
any given time step, the equation is linearized using an ini-
tial guess velocity field. The linear system of equations is
then solved using the preconditioned Generalized Minimum
RESidual (GMRES) method until a predefined convergence
criterion is satisfied. The new solution is used to update the
viscosities and ju � uw

g j in the water drag term. This process
is repeated multiple times (OL) until a chosen convergence
criterion is met for the nonlinear equation or until a fixed
number of OL iterations have been performed. Note that there
are two convergence criteria: one for the linear problem (that
might change from one OL iteration to the next) and one for
the nonlinear problem. In this paper, we refer to the linear
convergence criterion as the tolerance.
[16] The momentum equation is discretized using finite

differences. The u and v components of the velocity are

positioned on the Arakawa C grid. A Dirichlet boundary
condition is applied at an ocean-land boundary (u = 0) and a
Neumann condition at an open boundary (i.e., the spatial
derivatives of the components of velocity in the normal
direction with the open boundary are chosen to be zero).
For stability, the pressure P is set to zero at the open
boundaries [Dukowicz, 1997]. Close to model boundaries,
proper left and right difference schemes are used in the Taylor
series expansion to evaluate the spatial derivatives. At the
kth OL iteration, the u and vmomentum equations are written
as

@

@x
h ukl
� �

þ z ukl
� �� � @uk

@x

	 

þ @

@y
h ukl
� � @uk

@y

	 


þ @

@x
z ukl
� �

� h ukl
� �� � @vk

@y

	 

þ @

@y
h ukl
� � @vk

@x

	 


þ rihfv
k
avg � Cw ukl

� �
uk cos qw � vkavg sin qw

� �
¼ bu; ð10Þ

@

@y
h ukl
� �

þ z ukl
� �� � @vk

@y

	 

þ @

@x
h ukl
� � @vk

@x

	 


þ @

@y
z ukl
� �

� h ukl
� �� � @uk

@x

	 

þ @

@x
h ukl
� � @uk

@y

	 


� rihfu
k
avg � Cw ukl

� �
vk cos qw þ ukavg sin qw

� �
¼ bv: ð11Þ

where bu and bv are the sum of all the terms that do not depend
on uk, ul

k is the velocity vector used at the kth iteration to
linearize the momentum equation (the subscript l refers to the
linearization) and vavg is the spatial averaging of the four
neighboring v components of velocity at the u location (and
vice versa for uavg). An f plane approximation is used with
f = 1.46 � 10�4 s�1. In equations (10) and (11), Cw(ul

k) is
defined as

Cw ukl
� �

¼ rwCdwjukl � ugwj: ð12Þ

[17] When using the previous iterate for linearization (ul
k =

uk�1), Hibler and Ackley [1983] found a splitting problem
under certain free drift conditions. They observed that the
water drag terms were very different between the two steps of
the modified Euler procedure. We follow Hibler and Ackley
[1983], and express ul

k with the past two iterates as

ukl ¼
uk�1 þ uk�2
� �

2
; k ¼ 2; 3:; kmax; ð13Þ

where for k = 1, ul
1 is the initial guess velocity (u0).

[18] Because symmetry is not a prerequisite for the pre-
conditioned GMRES method, all the terms in equations (10)
and (11) are treated implicitly. The structure of the numerical
scheme is as follows:

1. Start with an initial guess u0

do k = 1, kite
2. Calculate z(ul

k), h(ul
k) and Cw(ul

k)
3. Calculate the initial residual norm (Rini

k ) of the
linearized system of equations
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4. Solve the linearized system of equations (equa-
tions (10) and (11)) for uk and vk using the
preconditioned GMRES method.

enddo
[19] We refer to this ‘‘do loop’’ as the OL. In step 4, the

preconditioned GMRESmethod iterates until the tolerance is
achieved, i.e., until the residual norm is lower than Rini

k /a(k).
When different values of a(k) are used throughout the OL
iteration process, we refer to this evolution of the tolerance as
the progressive a(k) tolerance. The number of OL iterations
performed is kite. As mentioned, a convergence criterion for
the nonlinear system of equations can also be used instead.
Note that the OL iterations are similar to the pseudo time
steps (two OL iterations correspond to one pseudo time step)
introduced by Zhang and Hibler [1997] and to the OL
iterations used by Tremblay and Mysak [1997]. The initial
guess u0 can be the previous time step solution, a zero
velocity field or the free drift solution. The preconditioned
GMRES method is described by Lemieux et al. [2008]. The
results presented here are independent of the linear solver
used (provided the linear solvers are used with the same
tolerance). For instance, one linear solver (e.g., the precondi-
tionedGMRESmethod) which requires less cpu time to solve
the linearized system of equations than another linear solver
(e.g., the stand-alone SOR solver) will imply the same num-
ber of OL iterations to solve the nonlinear system of equa-
tions (up to a certain residual norm). Tests were performed
with a stand-alone SOR solver to verify this.

4. Model and the Forcing Fields

[20] The model has a resolution of 10 km. For all the
simulations presented here, an elliptical yield curve and a
normal flow rule are used. Conclusions drawn in this paper
are believed to also apply to other yield curves and flow
rules. For instance, the convergence properties of the model
of Tremblay and Mysak [1997] exhibit similarities with
results presented in this paper (results not shown). Note that
Tremblay and Mysak [1997] used a Mohr-Coulomb yield
curve with a nonnormal flow rule. Our model has two thick-
ness categories and a zero-layer thermodynamic. More
details on the thermodynamic can be found in the work by
Tremblay and Mysak [1997]. The advection is performed
at the end of the last OL iteration with a simple upstream
scheme. A lower-resolution (110 km) version of the model
is also sometimes used to perform additional tests.
[21] The wind stress is calculated from geostrophic winds

derived from the National Center for Environmental Predic-
tion and National Center for Atmospheric Research (NCEP/
NCAR) 6 h reanalysis of sea level pressure [Kalnay et al.,
1996]. The climatological ocean currents were obtained from
the steady state solution of the Navier-Stokes equation in
which the advection of momentum is neglected, a 2-D non-
divergent field is assumed and a quadratic drag law is used.
The forcing used to derive the ocean currents is a 30 year
climatological wind stress field. The sea ice model is coupled
thermodynamically to a slab ocean model. The thermody-
namics are forced by NCEP/NCAR reanalysis of monthly
mean surface air temperature. All NCEP/NCAR reanalysis
data are found at http://www.cdc.noaa.gov/.
[22] Starting with a constant sea ice thickness of 1 m and a

concentration of 100%, the model was run for 5 years from

1992 to 1996. The fields obtained on 31 December 1996 are
used as the initial conditions for the simulations presented
here. The rheology parameters are taken as P* = 30 � 103 N
m�2, C = 20 and e = 2. Values for the other model parameters
are the same as used by Tremblay and Mysak [1997].

5. Simulation Results

[23] Convergence properties of the numerical solver can
be studied for particular time steps by performing a large
number of OL iterations. They can also be studied by
performing a fixed number of OL iterations per time step
and looking at the evolution of the solution over many time
steps. The previous time step solution is then used as the
initial guess. Zhang and Rothrock [2000] have shown that for
a fixed number of pseudo time steps, the approximate
solution approaches a VP solution as the time step is reduced.
This latter approach however involves a coupling between
the continuity/energy equation and the dynamic through the
thickness and concentration fields. We adopt here the former
approach for most of the runs. This approach allows one,
keeping the sea ice concentration and thickness fields con-
stant throughout the iteration process, to focus on the con-
vergence properties of the nonlinear solver in solving the sea
ice momentum equation.
[24] We study the convergence properties for a fixed time

step of 6 h (unless otherwise specified), 6 hourly varying
wind stress and by performing a large number of OL
iterations. The free drift (unless otherwise specified) solution
is used as the initial guess. Lemieux et al. [2008] have shown
that with a 6 h time step and 6 hourly varying wind stress,
the free drift solution, as opposed to the previous time step
solution, provides a better initial guess as it allows one to get,
more efficiently, a better converged approximate solution.
Some additional results with a time step of 30 min and using
the previous time step solution as the initial guess are also
given.
[25] Analysis were done for the month of January 1997. In

the following, most of the results are for one particular time
step (6 January 1997 0000 UT). The results for this time step
are representative of the results obtained for other time steps.
All real variables were defined as double precision. All
simulations were performed on a desktop computer (2 quad
Intel(R) Xeon(R) 2.33 GHz, cache of 4096 Kb with a RAM
of 3.9 Gb). The fortran compiler is gfortran 4.1.2, 64 bits. The
optimization option O3 -ffast -math was used for all the runs.
[26] Below, we refer to errors as the difference between an

approximate solution of the velocity field and the fully
converged (FC) velocity field solution. The FC solution is
the best approximate solution as it is limited by the machine
precision. It is however an overkilled approximate solution.
A ‘‘sufficiently’’ converged approximate solution certainly
does not require such an accuracy for typical applications of
VP sea ice models. Unless otherwise specified, statistics for
the errors are calculated and results are plotted for the part of
the domain for which the sea ice concentration is higher than
50%. Also, for clarity, only one out of a 100 velocity field
vectors and one out of a 100 states of stress are shown on the
plots (for z > zmin only). Note that for all the simulations
performed, the tolerance of the linear solver (preconditioned
GMRES method) was chosen to be low enough not to limit
the convergence rate of the nonlinear approximate solution.
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The optimal a(k) were found to be a(1) = 1145, a(2) = 210
and a(k) = 200 for k greater than 2. We refer to this tolerance
evolution as the optimal progressive a(k) tolerance. Follow-
ing Zhang and Hibler [1997], we refer to a VP solution as
an approximate solution for which all the states of stress lie
either inside or on the yield curve.

5.1. Evolution of the Errors Throughout the OL
Iteration Process

[27] For the time step investigated (6 January 1997
0000 UT), the number of OL iterations to obtain the FC
solution is �10,500 (see Figure 1). The residual norm after
�10,500 OL iterations is the smallest residual norm possible
(which is limited by the machine precision). Tests performed

with the 10-km model show that typically 10,000 OL
iterations are required to reach the FC velocity field while
1000 OL iterations are needed with the 110-km resolution
model.
[28] The statistics of the errors as a function of the number

of OL iterations are shown in Figures 2a and 2b. The domain
average error (dashed curve on Figure 2a) drops relatively
quickly because large parts of the domain, characterized by
very small deformations (viscous phase), converge relatively
fast. The maximum error (solid curve on Figure 2a) however
decreases more slowly. The largest errors are located in
narrower zones of large sea ice deformations. The fact that
large parts of the domain have errors that converge relatively
quickly as opposed to the errors in narrower regions (along
large sea ice deformations as it is shown in section 5.4) is also
observed on Figure 2b that shows the distribution of the
errors throughout the OL iteration process. Figure 2b shows
that 25 OL iterations are required to have less than 1% of cells
with errors larger than 1 cm s�1. As mentioned, this paper is
not intended to provide the acceptable magnitude of errors.
The criterion for the acceptable magnitude of the errors is
probably application-dependent: for instance, the acceptable
errors for a short-term forecast of sea ice conditions is likely
to be different than for long-term climate simulations.

5.2. Metrics to Assess Convergence of the Approximate
Solution

[29] We evaluate the common metrics to assess conver-
gence of the nonlinear approximate solution. To evaluate the
convergence of the approximate solution, we compare this
solution to the FC solution. The FC velocity field and
velocity errors for different number of OL iterations are
shown on Figure 3 for 6 January 1997 0000 UT. Note that
there are regions where the sea ice concentration is higher
than 50% but for which the FC velocity vectors are very small
and therefore are not visible (e.g., in the Canadian Arctic
Archipelago). The FC average and maximum drifts on

Figure 1. Residual norm of the nonlinear system of equa-
tions on 6 January 1997 0000 UT as a function of the outer
loop (OL) iteration. The residual norm is calculated over the
whole domain.

Figure 2. (a) Domain average (dashed curve) and maximum (solid curve) errors as a function of the
number of OL iterations on 6 January 1997 0000 UT. (b) Distribution of the errors as a function of the
number of OL iterations on 6 January 1997 0000 UT. Solid curve is error� 1 cm s�1. Dotted curve is 1 cm
s�1 > error � 0.1 cm s�1. Dashed curve is 0.1 cm s�1 > error � 0.01 cm s�1.
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6 January 1997 0000 UT are 7.4 cm s�1 and 41.8 cm s�1,
respectively.
[30] We recall that in the original VPmodel [Hibler, 1979],

the numerical scheme is based on a modified Euler time step
and an SOR solver. In this case, the linearized equation
is solved twice per time step, which is equivalent to 2 OL
iterations with our approach. Figure 3b shows the difference
between the velocity field after 2 OL iterations and the FC
velocity field. Errors of the same order of magnitude as the
mean drift are present in a large portion of the domain. Errors
as large as 15 cm s�1 are found close to Svalbard and errors of
1–5 cm s�1 are present in large regions of the central Arctic.
The lack of convergence of the approximate solution is also
present in the normalized states of stress shown in Figure 4b.
Many states of stress are neither viscous nor plastic, and
are unrealistic as they lie outside of the yield curve. Note that
these results remain the same when this experiment is
repeated with a stand-alone SOR solver (as used by Hibler
[1979]).
[31] Some authors have used the average (or total) kinetic

energy (KE) of the ice pack to assess the convergence of the
approximate solution [e.g., Ip, 1993; Zhang and Hibler,
1997; Lemieux et al., 2008]. Lemieux et al. [2008] found
that when performing 10 OL iterations, the average KE of the
approximate solutions (for all the January 1997 time steps) is
always within 2% of the FC average KE. The average KE is

given by 1
N

PN
j¼1

rihj u2j þv2jð Þ
2

, where N is the number of ice-
covered grid cells (concentration larger than 50%) and u and
v are the components of velocity interpolated at the tracer
point. For the time step investigated here (6 January 1997
0000 UT), Figure 5 shows the average KE, normalized by
the FC value, as a function of the number of OL iterations.
Figure 5 indicates that in only three OL iterations, the average
KE is within 2% of the FC value. Note that for this specific
time step, the average KE after 10 OL iterations is within
0.2% of the FC value. From Figure 5, one could conclude that
the nonlinear approximate solution converges very efficiently.
This is however not the case. Figure 3c shows the difference
between the velocity field obtained after 10 OL iterations and
the FC velocity field. Even though the average KE is within
0.2% of the FC value, Figure 3c indicates that large errors, of
the same order of magnitude as themean drift, are still present
in the velocity field. Errors as large as 6 cm s�1 are found
close to Svalbard and errors of 1–2 cm s�1 are present in
large regions of the central Arctic. Again, the states of stress
confirm that the approximate solution is not a perfect VP
solution (Figure 4c).
[32] The position of the states of stress in principal stress

space (or stress-invariant space) is a metric often used by
modelers [e.g., Ip, 1993; Zhang and Hibler, 1997;Hunke and
Dukowicz, 2002] to confirm that the approximate solution

Figure 3. (a) Fully converged (FC) velocity field on 6 January 1997 0000 UT. Difference between the
velocity field after (b) 2, (c) 10, and (d) 40 OL iterations and the FC velocity field.
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has converged. We consider the approximate solution to be a
VP solution if 99% of the states of stress are characterized by
0 � p � 1 (first stress-invariant, normalized by P) and
0 � q � f (p) + � (second stress-invariant, normalized by P)
where f (p) is the analytical equation defining the ellipse.
The parameter � is chosen to be 0.005. We find that 40 OL
iterations are needed to get a VP solution (Figure 4d). This
can be compared to Figure 4a which shows the states of
stress of the FC velocity field. After 40 OL iterations, there
are errors larger than 1 cm s�1 at some locations and large
parts of the domain are characterized by errors of �0.5 cm
s�1 (Figure 3d).
[33] The quality of the approximate solution however not

only depends on the number of OL iterations but also on the
time step compared to the forcing time scale (when using the
previous time step solution as the initial guess). Zhang and
Rothrock [2000] have shown that with a single modified
Euler time step, the approximate solution approaches a VP
solution as the time step is reduced. In some applications
(e.g., when a VP model is coupled to an ocean model), the
time step used is much smaller than 6 h. For example, a time
step of 30 min is used in the Goddard Institute for Space
Studies General Circulation Model [Schmidt et al., 2006].
This is done because the sea ice component is less compu-
tationally intensive than the ocean/atmosphere components,
and it is typically run at the ocean time step. When using such
a small time step, the changes in the forcing field (from the
atmosphere and ocean) are smaller and the previous time step
solution is a much better initial guess.
[34] To address this, we have performed an additional test

with a time step of 30 min and using the previous time step
solution as the initial guess. In this case, the geostrophic wind
field to force the model is linearly interpolated between two
6 h geostrophic wind fields. In this test, the sea ice advection

and thermodynamic are turned off in order to focus on the
convergence properties of the nonlinear solver.With a 30min
time step, neglecting the acceleration is no longer valid. The
acceleration term is therefore included. Figure 6a shows the
difference between the velocity field after 2 OL iterations and
the FC velocity field (on 6 January 1997 0000 UT). This can
be compared to Figure 3b (notice the different reference
vector). The smaller time step leads to smaller errors over

Figure 5. Average kinetic energy (KE) of the ice pack
normalized by the FC KE of the ice pack as a function of the
number of OL iterations for 6 January 1997 0000 UT. The
two dashed-dotted lines indicate the 2% criterion.

Figure 4. States of stress in stress-invariant space after (a) 10,500, (b) 2, (c) 10, and (d) 40OL iterations on
6 January 1997 0000 UT. The stresses are normalized by P. The stress invariants are p (the negative average
of the normal stresses) and q (the maximum shear stress).
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most of the domain (the domain average error is 0.41 cm s�1

instead of 1.62 cm s�1 with the 6 h time step). There are
however errors of 1–2 cm s�1 in many regions and larger
errors close to Svalbard. Figure 6b shows the difference
between the velocity field after 10 OL iterations and the FC
velocity field (on 6 January 1997 0000 UT). This can be
compared to Figure 3c (notice the different reference vector).
Again, the errors are smaller than with the 6 h time step case
over most of the domain (the domain average error is 0.11 cm
s�1 instead of 0.45 cm s�1 with the 6 h time step). As in the
work by Zhang and Rothrock [2000], we have verified that
with two OL iterations, the approximate solution approaches
a VP solution as the time step is reduced (results not shown).

5.3. Are the Errors Random or Systematic?

[35] In section 5.2, it is shown that with a time step of 6 h,
large residual errors are present in the velocity field approx-
imate solution when a small number of OL iterations are
performed. In this section, we evaluate the impact of these
errors on the mean sea ice drift. In particular, we want to
know if these errors are systematic or random. Systematic
errors are important because they create biases in the simu-
lated fields (e.g., ice export, divergence). Because the mo-
mentum and continuity/energy equations are coupled
(through the thickness and concentration fields), random
errors can still significantly affect long-term simulations.
Ultimately however, the test on the convergence should be
done in a global climate model or other models depending on
the application.
[36] In a first experiment, two simulations for the month of

January 1997 were performed: one with two OL iterations
and one with 1000 OL.We refer to the latter simulation as FC
even though we know from Figure 1 that 1000 OL iterations
are not sufficient to get a solution limited by the machine
precision. We do this because of constraints on the total
integration time. For these two simulations, the sea ice
thermodynamic and the advection were not performed. The
thickness and concentration fields are therefore the same
throughout the whole month of integration. When comparing
the monthly mean velocity fields (results not shown), the
differences are smaller than for an individual snapshot (see
Figure 3b) but they are still �1 cm s�1 over large regions of

the Arctic, with the largest errors equal to 6.7 cm s�1. This
indicates that systematic errors are present in the monthly
mean velocity field (with two OL iterations, 6 hourly varying
wind stress and a 6 h time step).
[37] In a second experiment, two simulations for the month

of January 1997 were again performed: one with two OL
iterations and one with 1000 OL. However, in this case, the
dynamic is coupled to the thermodynamic and the advection
is performed at the end of the last OL iteration for each time
step. This allows one to assess the impact of the errors in
simulating monthly mean fields.
[38] Figure 7a shows the difference between the January

1997 mean velocity field obtained with two and 1000 OL
iterations (second experiment). The average drift of the FC
solution is 5.5 cm s�1. As in the first experiment, large
regions of the Arctic are characterized by errors of �1 cm
s�1. The largest errors is 4.4 cm s�1. Simulations performed
with the 110-km resolution model show that these results are
robust and do not depend on the particular month. Figure 7a
also indicates a faster transpolar drift stream, a larger flux
through Fram strait and more convergence north of the
Canadian Arctic Archipelago (CAA) when the velocity field
is not iterated to convergence. Figure 7b shows the difference
between the January 1997mean thickness field when two and
1000 OL iterations are performed. Differences between the
two fields can be as high as a few meters in localized regions
(a few grid cells) but are capped to ±0.5 m for clarity. There
are significant differences in thickness in many regions of the
domain. For instance, the use of two OL iterations results in
more sea ice convergence north of the CAA and north of
Greenland. This creates larger thickness buildup (in yellow,
orange, and red). The anomalous advection of sea ice near the
coast causes negative thickness differences (in blue) just
north of these regions.
[39] When using a 30 min time step (and the previous time

step solution as the initial guess), two OL iterations lead to
monthly mean fields closer to the FC solutions. We refer here
to the FC solution as the solution obtained with 60 OL
iterations. Only 60 OL iterations are performed because of
constraints on the total integration time. Figure 7c shows the
difference between the January 1997 mean velocity field
obtained with two and 60 OL iterations when using a 30 min

Figure 6. Difference between the velocity field after (a) 2 and (b) 10 OL iterations and the FC velocity
field on 6 January 1997 0000 UT when using a 30 min time step.
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time step. This can be compared with Figure 7a (note
however the different reference vector). The smaller time
step leads to smaller errors over most of the domain (the
domain average error is 0.1 cm s�1 instead of 0.5 cm s�1 with
the 6 h time step and the maximum error is 2.8 cm s�1 instead
of 4.4 cm s�1 with the 6 h time step). Figure 7d shows the
difference between the January 1997 mean thickness field
when two and 60 OL iterations are performed. As in the 6 h
time step case, differences between the two fields can be as
high as a fewmeters in localized regions (a few grid cells) but
are capped to ±0.5 m for clarity. The thickness anomaly field
has similarities with the one obtained with a 6 h time step
(with large anomalies for example north of the CAA).
However, the high thickness anomaly regions are more
localized than in the 6 h time step case. Note that the
atmospheric temperatures are prescribed in this model. The
effect of the errors for a fully coupled model remains to be
investigated.

5.4. Evolution of Sea Ice Deformations Throughout
the OL Iteration Process

[40] Figures 3b–3d suggest some structure in the error
field. To gain insight into the evolution of the errors, we
compare the shear deformation field at different stages of
the iteration process with the FC shear deformation field.
Figure 8a shows the FC shear deformation field. The shear
deformation (second strain rate–invariant) is defined as

g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@u
@x �

@v
@y

� �2

þ @u
@y þ

@v
@x

� �2
r

. As seen in the work by

Maslowski and Lipscomb [2003] for a model with about
the same spatial resolution (9 km), the model simulates basin-
scale linear kinematic features (LKFs) that resemble the
observed LKFs [Kwok, 2001].
[41] The importance to properly simulate the deforma-

tions of the sea ice cover is more and more recognized [e.g.,
Hutchings et al., 2005; Kwok et al., 2008]. Shear lines,

Figure 7. (a) Difference between the mean January 1997 velocity field obtained with 2 and 1000 OL
iterations when using a 6 h time step. (b) Difference between the mean January 1997 thickness field
obtained with 2 and 1000OL iterations when using a 6 h time step. (c) Difference between themean January
1997 velocity field obtained with 2 and 60 OL iterations when using a 30 min time step. (d) Difference
between the mean January 1997 thickness field obtained with 2 and 60 OL iterations when using a 30 min
time step.
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pressure ridges and leads (LKFs) are important physical
processes affecting sea ice thickness, air-sea heat, and mois-
ture fluxes and ocean salt flux. Divergence/convergence of
the sea ice cover drives changes in the thickness. For
instance, pressure ridges are formed when convergence is
present in regions of high sea ice concentration. Leads are
created when divergence is present in the sea ice cover,
allowing new ice to form (in Winter) or heat to be absorbed
by the ocean surface layer (in Summer).McPhee et al. [2005]
have observed an intense zone of pycnocline upwelling and
measured large upward turbulent heat flux in the ocean
boundary layer in a region of important sea ice shear
deformations.McPhee et al. [2005] attributed this upwelling
to Ekman pumping associated to the localized high shear
strain rates in the sea ice velocity field. Overall, sea ice
deformations largely affect the exchange of heat, moisture
and momentum between the ocean and the atmosphere in the
polar regions. Because deformations are calculated from spa-
tial gradients of the velocity field, small errors in the veloc-
ities can have a large effect on the simulated deformations.
[42] After 10 OL iterations, the shear deformation field

roughly resembles the FC one but does not have all the
fine structure and the right spatial localization of the shear
lines (results not shown). After 40 OL iterations, the shear
deformation field is better defined and large rigid plates
(characterized by low deformations) with zones of high
deformations between them are more and more discernable
(results not shown). Figure 8b shows the difference between
the shear deformation field after 40 OL iterations and the
FC shear deformation field on 6 January 1997 0000 UT.
Figure 8b shows regions of negative and positive anomalies
of shear adjacent to the existing FC shear lines. This means
that the location of the shear lines after 40 OL iterations are
spatially off compared to the FC shear lines and not as well
defined. During the rest of the iteration process, more refine-
ment and a better spatial localization of the deformations
develop. This is also observed in the divergence field (results
not shown).

[43] To illustrate the changes in the shear deformation field
throughout the iteration process, we have calculated the
distribution of shear in a 2000 km by 2000 km square region
in the central Arctic (where multiyear ice is usually present).
The distributions on Figure 9a consist of 150 bins of the shear
deformation with intervals of 10�3 day�1. Figure 9a shows
the percentage of cells within each interval after 10 (blue
curve, KE converged), 40 (red curve, VP solution) and
10,500 OL iterations (black curve, the FC solution). These
three curves show that the distribution changes during the OL
iteration process with a shift from medium size deformations
(0.01 day�1 < g < 0.07 day�1) to smaller deformations (g <
0.01 day�1) and larger deformations (g > 0.07 day�1).
[44] We further analyze this issue of refinement of shear

lines with increasing number of OL iterations by plotting the
shear deformation along a transect crossing a shear line that
develops north of Novosibirsk island (see dashed black line
between points 1 and 2 on Figure 8b). Figure 9b shows the
value of shear deformation along this 400 km long transect
after 10 (blue curve, KE converged), after 40 (red curve,
VP solution), after 100 (green curve), and after 10,500 OL
iterations (black curve, the FC solution). Figure 9b shows that
with 10, 40 and 100 OL iterations, the definition of the shear
line and the maximum value of g are still significantly
different than the FC solution. Depending on the case (other
transects), between 100 and 500 OL iterations are needed for
the maximum shear along the transect to reach 95% of the FC
maximum shear. From Figures 8b and 9b, we observe that as
the number of OL iterations increases, the simulated sea ice
cover is more and more characterized by large rigid plates
with localized zones of high deformations between them.
[45] The impact of ‘‘poorly’’ simulated deformations

(which would lead to errors in the simulated heat/moisture/
salt fluxes) on climate simulations remains to be investigated.
In a recent paper,Kwok et al. [2008] found that current sea ice
models systematically underestimate deformations (particu-
larly divergence) when compared to Radarsat derived defor-
mations. We raise the question whether the discrepancy
between data and simulated deformations could be partly

Figure 8. (a) Shear deformation (capped at 0.2 day�1 for clarity) field on 6 January 1997 0000 UT for the
FC solution. (b) Difference (capped at ±0.05 day�1 for clarity) between the shear deformation field obtained
after 40 OL iterations and the FC shear deformation field on 6 January 1997 0000UT. The dashed black line
between the points 1 and 2 defines a transect along which the shear deformation is plotted in Figure 9b.
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explained by the lack of convergence of the nonlinear
approximate solutions.
[46] These results point out to the fact that the slow

convergence is related to the internal ice stress term. Indeed,
the large velocity errors are found in regions where the ice-ice
and ice-continent interactions dominate and are not observed
in regions where the ice interactions are less important (e.g.,
close to the ice edge). The water drag, the other nonlinear
term in the momentum equation is not responsible for the
slow convergence of the nonlinear solution. When treating
the water drag as a linear term (ju � uw

g j is kept constant at
10 cm s�1 in equation (12)), the slow convergence is still
present. On the other hand, when setting the viscous coef-
ficients to a constant value (z = 1� 1012 kgs�1) and keeping
the water drag nonlinear, the FC solution is obtained in only
30 OL iterations.

6. Considerations on the VP Formulation
and the Nonlinear Solver

6.1. Numerical Convergence of the Approximate
Solution

[47] A theoretical explanation for the observed slow con-
vergence is beyond the scope of this paper. The sea ice mo-
mentum equation is intrinsically a difficult equation to solve
owing to its high nonlinearity. We argue however that the
convergence properties can be improved by (1) making the
momentum equation continuously differentiable and (2) using
the Newton method for the nonlinear solver. Note that for this
former point, the rheology term in the momentum equation is
not continuously differentiable owing to the capping of the
viscous coefficients (see equations (8) and (9)).
[48] First, we replace the expression of z (equation (8))

by a smooth formulation written as

z ¼ zmax tanh
P

2
4�1z�1

max

� �
þ zmin: ð14Þ

[49] As in equation (7), h = ze�2. The two formulations
of the bulk viscosity are shown on Figure 10a on a log-log
plot for h = 1 m and A = 1. The model was run with the
new formulation for the same time step previously studied
(6 January 1997 0000 UT). The solid curve on Figure 10b
shows the residual norm of the nonlinear system of equations
as a function of the number of OL iterations when the
‘‘standard’’ formulation of z and h is used (the same curve
as in Figure 1) and the dashed curve when the ‘‘tanh’’
formulation of z and h is used (equation (14)). Note that
the FC velocity fields and deformations fields are very similar
(results not shown) with the two approaches. Other formu-
lations used in the community also result in a continuously
differentiable rheology term [e.g., Kreyscher et al., 2000].
[50] Figure 10b shows that �4500 OL iterations are

necessary to obtained the FC solution when the rheology
term is continuously differentiable as opposed to �10,500
when the standard formulation is used. This result is robust.
The number of OL iterations required to reach the FC
solution is always significantly less when using the tanh
formulation as opposed to the standard formulation. The
same conclusion applies when using the 110-km resolution
model.
[51] Second, to highlight the difference between the

Newton method and the nonlinear solver used in VP models
(referred to as the standard approach), consider the simple
one dimensional nonlinear equation:

F uð Þ ¼ z uð Þu� b ¼ 0: ð15Þ

[52] In this equation, the term z(u)u mimics the rheology
term. With a Taylor expansion and neglecting higher-order
terms, we write

F uþ duð Þ � F uð Þ þ F
0
uð Þdu: ð16Þ

Figure 9. (a) Distribution of shear deformation on 6 January 1997 0000 UT after 10 (blue curve), 40 (red
curve), and 10,500 (black curve)OL iterations. The bin interval is 10�3 day�1. The distributions are calculated
for a 2000 km � 2000 km square region in the central Arctic. (b) Shear deformation along the 400 km
transect after 10 (blue curve), 40 (red curve), 100 (green curve), and 10,500 (black curve) OL iterations.
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where the prime denotes the derivative with respect to u.
In the Newton approach, the correction du is obtained by
requiring that F(u + du) = 0. At iteration k, we then write

duk ¼ uk � uk�1 ¼
�F uk�1

� �
F

0
uk�1ð Þ : ð17Þ

Differentiating equation (15), with respect to u and substi-
tuting into equation (17), we obtain:

uk ¼ uk�1 �
F uk�1
� �

z
0
uk�1ð Þuk�1 þ z uk�1ð Þ

: ð18Þ

In the standard approach (used in all current VP models with
an implicit solver), the linearization process considers that
z 0(u) = 0. The kth iterate of the velocity is therefore

uk ¼ uk�1 �
F uk�1
� �

z uk�1ð Þ : ð19Þ

Note that for comparison with the Newton method, uk�1 is
used for the linearization as opposed to (uk�1 + uk�2)/2
(equation (13)).
[53] Both approaches (equations (18) and (19)) are fixed

point iterations as they can be written as uk = f(uk�1)
[Quarteroni et al., 2000]. However, we argue that the
common practice of assuming that z 0(u) = 0 partly explains
the slow convergence rate. Theoretically, with the Newton
method, uk converges quadratically to the solution u if uk is
sufficiently close to u and if F0 is Lipschitz continuous at u
[Eisenstat and Walker, 1994]. This is however one drawback
of the Newton method: the convergence is quadratic in the
vicinity of the solution (local convergence) but obtaining the
solution from any initial guess (global convergence) can be
difficult for some problems.

6.2. Uniqueness of the Solution

[54] Hunke [2001] has theoretically demonstrated, for
an idealized case (no forcing), that multiple solutions can
exist with the VP formulation. In a realistic experiment, we
have observed the existence of multiple solutions. When
low values of a(k) (undersolving) are used in the tolerance
evolution, the approximate solution converges to a FC solu-
tion but this FC solution is not the same as the one obtained
with the optimal progressive a(k) tolerance. Figure 11a
shows the residual norm of the nonlinear system of equations
on 6 January 1997 0000 UT as a function of the OL iteration
when the optimal progressive a(k) tolerance (solid curve) is
used and when a constant a of 10 is used (dashed curve).
In both cases, the approximate solution is limited by the
machine precision. Figure 11b shows the velocity difference
between the FC velocity field obtained with a = 10 and the
one obtained with the optimal progressive a(k) tolerance.
[55] There are differences of O(10�2 cm s�1) in some

parts of the domain. When a > 25, the approximate solution
always converges to the FC solution obtained with the
optimal progressive a(k) tolerance. Note that this issue of
multiple solutions is not present when using the tanh formu-
lation (which leads to a continuously differentiable momen-
tum equation).

7. Conclusion

[56] We have found that the numerical convergence of the
nonlinear solver used in VP models is slow. When a small
number of OL iterations are performed when using a 6 h time
step, the errors associated with the velocity field approximate
solution are of the same order of magnitude as the mean drift.
Moreover, we have found that the metrics (average kinetic
energy of the pack and VP solution) used in the sea ice
modeling community to assess convergence of the approxi-
mate solution are misleading.

Figure 10. (a) Two formulations of the bulk viscosity z as a function of the deformationD (see equation (6)).
The solid curve is the standard formulation of Hibler [1979] and the dashed curve is the formulation with
the tanh (equation (14)). (b) Residual norm of the nonlinear system of equations on 6 January 1997 0000UT
as a function of the OL iteration when the standard (solid curve) and the tanh (dashed curve) formulation of
z and h is used. The residual norms are calculated over the whole domain.
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[57] When performing two OL iterations (equivalent to a
single modified Euler time step) with a 10-km resolution
model with a 6 h time step and forced by 6 hourly varying
wind stress, the simulated velocity field exhibits errors as
large as 15 cm s�1 and errors of�5 cm s�1 are present in large
regions of the domain. For a small number of OL iterations,
the majority of the states of stress are inside the yield curve
(viscous) and a significant amount of the stresses are unre-
alistic (outside the yield curve).
[58] It was previously shown that when performing 10 OL

iterations, the average kinetic energy of the pack is always
within 2% of the fully converged (FC) value [Lemieux et al.,
2008]. When using this criterion, we have found that the
errors on the drift are of the same order of magnitude as the
mean drift. Also, the states of stress in that case do not exhibit
a VP solution.
[59] As more and more OL iterations are performed, the

states of stress migrate from viscous states to plastic states
and the unrealistic states of stress move from outside of the
yield curve to the inside of the yield curve and its contour.
While 40 OL iterations does provide a VP solution, there are
still errors on the drift larger than 1 cm s�1 at some locations
on the domain and large parts of the central Arctic are
characterized by errors of �0.5 cm s�1.
[60] With a small time step (30 min) compared to the

forcing time scale and using the previous time step solution as
the initial guess, the quality of the approximate solution is
greatly improved when compared to the 6 h time step case
(for the same number of OL iterations). A significant im-
provement is also seen in the simulated monthly mean fields
when a 30 min time step is used.
[61] The errors in the velocity field are not random: they do

not average out with time. When performing two OL iter-
ations, the monthly mean velocity field (January 1997) has
errors of the same order of magnitude as the mean drift itself.
This lack of convergence of the approximate velocity field
solution causes sea ice buildup in some regions and thinner
ice in others.
[62] After 40 OL iterations, there are velocity errors of

0.5–1 cm s�1 concentrated along shear lines. They are

associated with large sea ice deformations occurring in
regions where ice interactions dominate. Subsequent OL
iterations cause the states of stress to slowly migrate while
remaining inside and on the yield curve. During this process,
the shear lines become better defined (with higher maximum
value of shear strain rate at the shear line and lower shear
between shear lines) and sometimes relocalize spatially in a
nearby location. This is also observed in the divergence field.
[63] In a recent paper,Kwok et al. [2008] found that current

sea ice models systematically underestimate deformations
(particularly divergence) when compared to Radarsat derived
deformations. We raise the question wether the discrepancy
between data and simulated deformations could be partly
explained by the lack of convergence of the nonlinear
approximate solutions.
[64] These conclusions are robust. The slow convergence

of the approximate solution is an issue at all spatial resolu-
tions but is more severe as the grid is refined. It also does not
depend on the linear solver used. It is the rheology term, not
the water drag term, in the momentum equation that is
responsible for the slow convergence. The convergence rate
of the approximate solution can be improved by (1) making
the momentum equation continuously differentiable and
(2) using the Newton method for the nonlinear solver. It
was also observed that this discontinuity in the momentum
equation can also lead to the existence of multiple solutions.
[65] The effect of these errors on climate simulations and

a criterion for an acceptable level of errors remain to be
investigated. Nevertheless, it appears that the development
of a more computationally efficient nonlinear solver that
would allow one to obtain a sufficiently converged ap-
proximate solution in a smaller number of iterations is
desirable.
[66] We are currently developing a globally convergent

Newton method to improve the convergence rate. In a
problem of n dimensions, F0 is the Jacobian (J), an n � n
matrix. At each Newton iteration, the system of equations
is written as J(uk�1)duk =�F(uk�1) which we want to solve
for duk. This is a matrix-free method; that is, the Jacobian
matrix never needs to be formed explicitly. Only the product

Figure 11. (a) Residual norm of the nonlinear system of equations on 6 January 1997 0000 UT as a
function of the OL iteration when the optimal progressive a(k) tolerance (solid curve) is used and when
a constant a of 10 is used (dashed curve). The residual norms are calculated over the whole domain.
(b) Difference between the FC velocity field obtained with a = 10 and the FC velocity field obtained with
the optimal progressive a(k) tolerance.
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of J times a vector is needed. However, in our problem, J
times a vector is difficult to obtain because of the complexity
of the momentum equation and mainly because of the
complicated land-ocean configuration (this is especially
difficult when using a C grid). We are developing instead
a Jacobian free Newton-Krylov method [Knoll and Keyes,
2004]. This will involve a Newton iteration (in which J is
approximated) along with the already developed precondi-
tioned GMRESmethod. To ensure global convergence, a line
search method (a backtracking method) is used [Eisenstat
and Walker, 1994]. Preliminary results show that compared
to the standard solver, the JFNK method reduces by a factor
of 10 the number of iterations required to reach a certain
residual norm.
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