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ABSTRACT

This thesis considers a method for computing skeletal representations based on

the average outward flux (AOF) of the gradient of the Euclidean distance function

to the boundary of a 2D object through the boundary of a region that is shrunk.

It then shows how the original method, developed by Dimitrov et al. [17] can be

optimized and made more efficient and proposes an algorithm for computing flux

invariants which is a number of times faster. It further exploits a relationship between

the AOF and the object angle at endpoints, branch points and regular points of

the skeleton to obtain more complete boundary reconstruction results than those

demonstrated in prior work. Using this optimized implementation, new measures

for skeletal simplification are proposed based on two criteria: the uniqueness of an

inscribed disk as a tool for defining salience, and the limiting average outward flux

value. The simplified skeleton when abstracted as a directed graph is shown to be far

less complex than popular skeletal graphs in the literature, such as the shock graph,

by a number of graph complexity measures including: number of nodes, number of

edges, depth of the graph, number of skeletal points, and the sum of topological

signature vector (TSV) values. We conclude the thesis by applying the simplified

graph to a view-based object recognition experiment previously arranged for shock

graphs. The results suggest that our new simplified graph yields recognition scores

very close to those obtained using shock graphs but with a smaller number of nodes,

edges, and skeletal points.
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ABRÉGÉ

Ce mémoire propose une méthode pour calculer des représentations squelettiques

en fonction du flux moyen décrit par le gradient de la fonction de distance Euclidi-

enne aux limites d’un objet 2D qui rétrécit. La méthode originale développée par

Dimitrov et al. [17] est ensuite optimisée afin de calculer des invariants de flux plus

rapidement. Une relation entre l’AOF et l’angle de l’objet aux extrémités (aux points

de branches et des points réguliers du squelette) est exploitée afin d’obtenir une re-

construction plus précises des limites de l’objet par rapport aux travaux précédents.

En utilisant cette implémentation optimisée, de nouvelles mesures de simplification

de squelettes sont proposées selon deux critères: l’unicité d’un disque inscrit comme

un outil permettant de définir la saillance, et la limitation de la moyenne du flux á

l’extérieur. Il est démontré que le squelette simplifié, abstrait par un graphe orienté,

est beaucoup moins complexe que des graphes squelettiques conventionnels men-

tionnés dans la littérature, tel que le graphe de choc. Les mesures de complexité

de graphe comprennent le nombre de nuds, le nombre de bords, la profondeur du

graphe, le nombre de points du squelette et la somme des valeurs du vecteur des

signes topologiques (TSV). La thèse se finit en appliquant le graphe simplifié au

problème de reconnaissance d’objets basée sur la vue, préalablement adapté pour

l’utilisation de graphes de choc. Les résultats suggèrent que notre nouveau graphe

simplifié atteint des performances similaires à celles des graphes de choc, mais avec

moins de nuds, de bords et de points du squelette plus rapide.
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CHAPTER 1

Introduction and Background

Visual shape analysis plays a fundamental role in perception by man and by

computer and allows for inferences about properties of objects and scenes in the

physical world. Although the problem of form analysis is not always mathematically

well defined, researchers have tried to tackle by dividing it into more particular tasks

which are easier to solve. Once these subproblems are solved, the solutions can be

put together to solve more complex visual shape analysis problems.

One of the essential steps to solve these subproblems is to find a good represen-

tation for a shape. It is obvious that some information is lost when a 3-D real world

object is projected onto an image plane. This makes the task of finding a robust

image-based description for an object’s shape challenging. Moreover, developing a

geometry to outline the representation in mathematical notations is non trivial.

One of the important ways to recover the shapes of objects in 2D and 3D in

computer vision is to develop skeletal or medial representations. In 1967 Harry Blum

[7] opened this new chapter in computer vision by introducing medial loci, which were

later generalized to skeletons [8], [9], [10]. After that, mathematicians and computer

scientists developed these initial ideas and further extended them to describe objects

in 2D and 3D images. This chapter presents background material on this subject

and is organized as follows: In the following subsection, we focus on the problem

of object representation in computer vision. We then review some of the existing
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methods for computing skeletons in the literature. Afterwards, in Section 1.4, we

survey different approaches to handle instability in the computation of skeletons.

Finally, in Sections 1.5 and 1.6, we go over the problem of medial graph abstraction

and shape matching by reviewing some of the popular approaches in the literature.

1.1 Object Representations

One may ask what features a reliable object representation method should have.

A feature that has been always sought is the ability to cover a domain of more

general examples. Therefore, the potential to cover a bigger class of instances is an

important factor. In addition, it should be possible to extract parts and subparts

from the shape representation. In many applications, the mathematical description

of the model needs to deform to fit a different setting which requires the description to

preserve its fundamental elements in the presence of some deformations. Dimitrov

[19] enumerates some of these benchmarks and suggests the following constraints:

Completeness, Hierarchy, Invariance, Noise, Metric, and Language.

Contour based representations of outlines for object recognition, which are a

popular choice for categorization/recognition using shape information alone, can use

either boundary information or boundary information combined with information

about the interior of the object. Contour-based approaches use boundary informa-

tion to extract features that define an object. The Boundary of an object can be

broken into parts using a specific measure, or can be used as a whole to derive

some feature vectors. Since small variations in the boundary are captured through-

out these methods, noise is destructive, and some regularization such as Gaussian
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smoothing must be utilized. Moreover, defining a notion of a shape part is difficult

with representations that exploit just boundary data.

In the region-based approaches, the interior of an object is taken into account,

which eases the task of describing parts. In addition, these approaches have the

advantage of using topological information of an object structure to define relations

between object parts. The biggest problem with region based approaches is that

they have a lot information to handle in comparison with contour-based approaches.

Based on different specifications of a visual shape problem, a number of rep-

resentation methods have been developed in these two categories. Medial represen-

tations are one of the popular choices because they take and combine assets from

both contour-based and region-based approaches. Medial representations or skele-

tons were firstly introduced by Blum [7] in 1967, along with the process of generating

the medial axis based on his well known grassfire analogy. Here the boundary is set

on fire and the front advances inward at a constant speed, and as fire fronts meet,

skeletal points are created. (see Figure 1–1 ).

The output of applying a grassfire process on an object is a structure called the

Medial Axis Transform(MAT) which is a set of medial points within an object along

with their distances to the boundary. Since the grassfire process is applicable to all

bounded shapes, the MAT is to be considered as a comprehensive representation in

visual shape problems. In this thesis, the medial axis is chosen to be the object

representation approach. The geometry and methods of computing the medial axis

are discussed in the following sections.
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Figure 1–1: LEFT: Iterations of the grassfire process. RIGHT: The resulting skele-
ton.

1.2 Geometry of Medial Representations

The medial representation is an approach that tries to describe an object as a

set of the singularities or quench points of the grassfire transform. These form medial

curves about which the outline of the object is locally mirror symmetric. Each point

in the interior of such a curve is the result of collision of two distinct boundary points.

This set is a union of the centers of the spheres that touch the boundary in two or

more locations. In other words, a skeleton consists of a set of points lying inside the

shape of an object with the property of having more than one closest point from

the boundary. In this section we will discuss the mathematical geometry of a medial

axis of an object and we will introduce some notations for the medial representation

which will be used frequently later through this thesis.

Definition 1.2.1. Assume an n-dimensional object denoted by Ω with its connected

closed boundary denoted by ∂Ω ∈ Rn. A closed disk D ⊂ Rn is a maximal inscribed
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disk in ∂Ω if D ⊂ Ω and for any another disk D′( 6= D) such that D′ ⊂ ∂Ω then

D′ ⊂ D.

Definition 1.2.2. Let Ω be an n-dimensional object in Rn. The Blum medial locus

or skeleton, denoted by Sk(Ω), is the union set of all points representing centers of

maximal inscribed disks contained ∂Ω.

The term Skeletal point is used to refer to a point on the skeleton of a given

shape of an object characterized by a location p associated with radius r, object

angle θ, direction of the unit tangent vector T, and corresponding boundary points

b±1 at that point:

θ = arccos

(
−
dr

ds

)
(1.1)

where s is the arc length along the medial curve.

The projection Π(x) is the set of closest points on the boundary ∂Ω to x, or

Π(x)
△
= {q ∈ ∂Ω : ‖x− q‖ = min{‖x− q‖ : q ∈ ∂Ω}}. For a skeletal point p, the

projection set Π(p) is equal to the set of points from the boundary touched by the

maximal inscribed disk centered at p (see Figure 1–2).

r

p
T

b+1

b-1

θ

Figure 1–2: Local geometry of a maximal inscribed disk centered at the skeletal
point p with radius r and the object angle θ. The maximal inscribed disk touches
the boundary at two points b±1 (Π(p) = {b+1,b−1}) (adapted from [35]).

5



Another definition of the medial axis is given by the set of interior points of

a shape with more than one corresponding closest boundary point in the sense of

Euclidean distance. This definition is known as “Maxwell set” definition of the medial

locus [28]. According to this definition, each skeletal point p ∈ Sk(Ω) must have at

least two closest boundary points (|ΠΩ(p)| ≥ 2).

Assume a computed skeleton Sk(Ω) ∈ R2 for a 2-dimensional object Ω. Each

skeletal point p on this skeleton can have one, two, or more skeletal points as its

neighbors. In chapter 2, a method of skeletonization in R2 is discussed and each

skeletal point is labeled as one of three different types depending upon the number

of neighbors that it can have: regular points, junction points and end points. Figure

1–3a shows these different types on a given shape. Properties of these different types

are reviewed in detail in chapter 2.

E1
E2

E3

E4
E5

E6

J1

J2

J3

J4
Ri

(a)

χ2
χ1

χ3

χ4

χ6

χ5

χ7

χ8 χ9

(b)

Figure 1–3: LEFT: Different types of a skeletal point are shown on the skeleton for a
shape representing a head. Ei’s drawn in red represent endpoints, Ji’s drawn in blue
represent junction points and all other skeletal points Ri are regular points. RIGHT:
Skeletal branches of the same medial axis are represented as a set of χi’s.
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From a different point of view, the Sk(Ω) consists a set of single segments called

skeletal branches that join to each other at branch points and form the complete

skeleton. A skeletal branch denoted by χ is a set of contiguous regular points from

the skeleton that lies between a pair of junction points, a pair of end points or and

end point and a junction point,

χ = {p1p2 ... pk−1pk}, (1.2)

where all points other than the ends are regular points. In Figure 1–3b skeletal

branches of a shape are illustrated.

A full skeleton representation is a union of all skeletal branches:

Sk(Ω) =

n⋃

i=1

χi, (1.3)

where n is the number of skeletal branches. It is obvious that except for the case

that the skeleton is a single skeletal branch, all skeletal branches share at least one

junction point with another skeletal branch.

1.3 Computing Skeletons

In the past decades, there has been a lot of interest in developing new algorithms

of skeletonization for computer vision and shape analysis applications. A wide variety

of methods have been suggested which explore boundary information in order to come

up with medial loci which closely represent the real skeleton, therefore, discretizing

the boundary is the first step for many of these approaches. A big challenge which the

skeletonization algorithms face is the sensitivity of their final medial representation

to the extracted boundary information (e.g. [12], [29], and [30]). Consequently, a
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fine representation of the boundary is a necessity for all skeletonization arrangements.

Most of the time, the goal is not to find the exact locations of medial loci, but rather

to find nearby points which are fairly close to the real skeleton with the topology of

the skeleton being stable. The concern to find a stable medial branching for a shape

comes along with the mentioned goal. The challenge exists and efforts to address

this issue have led to many different methods of skeletonization. It is not possible

for us to review all the existing approaches, but here we list four popular categories

of methods.

1.3.1 Thinning Approaches

The first category of approaches proposed to compute skeletons is based on using

topological thinning to generate medial loci. The general idea behind these methods

is to reduce object volume gradually to get a thinned shape in the form of a skeleton

([33],[20]). These ideas are usually implemented iteratively, and in each iteration

an external volumetric layer of the object is peeled away from the shape. At the

final phase, the remaining locus of voxels represents the medial locus. Since in these

algorithms the topology of the main shape will not change and the original shape is

maintained, their output representations are good means for object recognition and

classification. They are also very efficient in the sense of computation time. Figure

1–4 provides an example of a skeleton generated by a thinning approach.

1.3.2 Distance Map Methods

The distance map, also known as the distance transform, is one of the popular

object representation approaches. In a distance map representation, each pixel is

labeled with the distance to the nearest point from the boundary. Whether the
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Figure 1–4: An example of skeletonization with a thinning approach. The algo-
rithm has been applied on a binary image and the resulting connected skeleton is
shown. The figures above were generated by the thinning skeletonization package
implemented by Zhengguo [40].

considered pixel is inside or outside of the object’s boundary, the distance labels can

be positive or negative. Methods computing skeletons based on the distance map

usually carry out the following steps:

1. The boundary of the input object (Ω) is computed (∂Ω).

2. Assuming a distance metric (e.g. Euclidean distance), a distance map represen-

tation (D) is derived for the given object based upon distances to the computed

boundary. The distance map must satisfy the condition that boundary points

get zero distance (p ∈ ∂Ω→ D(p) = 0).

3. The distance map (D) is explored to find candidate skeletal points.

1.3.3 Voronoi Diagram

To understand methods which use the Voronoi diagram to extract the medial

axis, we briefly review this construction. The Voronoi diagram is a configuration

between a set of points and the space around them. Give a finite set of points
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such as {p1, p2, . . . , pn}, the following rules are used to divide the space into a set of

partitions {S1, S2, . . . , Sn} where each space Si is associated with a particular point

pi.

• Si is associated with point pi, therefore pi ∈ Si

• Representing the union of all spaces as M =
⋃n

i=1 Si, the following rule is

applied:

Si = {x ∈M |distance(x, pi) ≤ distance(x, pj) for all j 6= i}

As an example see Figure 1–5.

 

 

Figure 1–5: Examples of Voronoi diagrams. LEFT: Voronoi Diagram of 12 randomly
generated points. RIGHT: Voronoi Diagram of points sampled from the boundary
of a shape. The internal portion of the Voronoi Diagram approaches the skeleton
as the boundary is sampled densely. These figures are generated using algorithms
implemented in MATLAB.

Kirkpatrick et al. were the first to propose methods for skeletonizing arbitrary

n-line polygonal figures using generalized Voronoi diagrams [22]. Approaches using

Voronoi diagrams first generate a set of sampled points from the boundary of a
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given object, then make the skeleton based on the Voronoi diagram of that set (e.g.

[37], [31], and [2]). When the set of input points for Voronoi is sampled from a shape

contour, then the relationship between the Voronoi diagram and the skeleton becomes

visible. As shown in Figure 1–5, by increasing the number of sampled boundary

points the internal Voronoi edges converge towards skeletal points. Topologically,

when the gap between sampled boundary points goes to zero, the remaining diagram

represents a rather complete skeleton ([11]).

One of the advantages of Voronoi diagram approaches is that the generated

skeleton in connected. Besides, the reconstructed shape from the skeleton is very

close to the original one, which means that a duality criterion is being addressed by

such approaches. Due to these properties and considering the fast processing time,

Voronoi diagram approaches are good candidates for skeletonization in many visual

shape problems. One of the key points to get an accurate medial representation in

this category of skeletonization methods is to sample points of the bounding contour

as finely as possible.

1.4 Finding Instabilities

Deploying the MAT (Medial Axis Transform) in problems of computer vision

requires stable computation of the skeleton. As previously mentioned, many skele-

tonizations methods suffer from instability such that small deformations can change

the branching structure of the output. This challenge suggests that attention should

be paid to the problem of characterizing instabilities on a medial axis. This section

reviews methods which address this problem. We first start with a definition for
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stability and instability in the context of analyzing skeletons, and later review some

of the basic approaches suggested in the literature.

1.4.1 What is Ligature?

In stability analysis of the medial axis, the main question is what key attributes

should a reliable shape representation have and how we can go from an informal defi-

nition to a topological one which is also mathematically justifiable? There have been

different studies in the literature which have investigated this subject analytically

([31],[32],[4], and [36]).

The notion of ligature was introduced by Blum [8] for the first time in 1973.

He defined finite length fragments of the medial axis that were generated from a

single boundary point as ligature parts. This definition can be extended to include

all sensitive portions of the skeleton which are not topologically stable in the presence

of small deformations of the shape. Generally, ligature structures include parts of

the medial axis that form loci from the skeleton that are associated with concave

chunks of the boundary of the shape. If the boundary of that object is reconstructed

upon the remaining salient parts of the medial axis, the new boundary would be

approximately the same as the original one.

Different approaches have been proposed in the literature that try to identify

points and segments that are more likely to be unstable. These methods try to reduce

the defect of ligature points by pruning the skeleton to get a set of reliable parts that

can be organized later into a data structure suitable for visual shape problems. In

the following sections, we review some of the topics and themes which are closer to

the subject of this thesis.
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Semi-Ligature

(a) Semiligature

Full-Ligature

(b) Full ligature

Figure 1–6: Examples of Semi-Ligature and Full-Ligature Parts (adapted from [4]).

1.4.2 Blum’s ligature analysis

In this subsection we review Blum’s ligature idea [8] by analyzing the behavior

of curvature of boundary points. August et al. [4] formulated this problem in the

context of perceptual shape abstraction. The algorithm makes a set of all concave

corners on the boundary with local minimum curvature (denoted by V ) at the firs

step. Then, for each skeletal point p that has two closest boundary point Π(p) =

{a, b}, one of the three following conditions are applied:

1. p is non ligature: V does not contain either a or b (a /∈ V , b /∈ V ).

2. p is semi-ligature: Either a or b is in V and the other one is not (a /∈ V , b ∈ V

or a ∈ V , b /∈ V ).

3. p is full-ligature: Both a and b belong to V ({a, b} ∈ V )

Simplifying the above statement, we may label portions of thes medial axis that

correspond to at least one concave corner, a ligature part (See Figure 1–6).

The results of Blum’s ligature are promising since they highlighted points with

low level of representation information. Despite the important contribution they
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have made, the proposed method suffers from a serious problem of local sensitivity.

Applying derivatives to the values of curvature to compute a local minimum along a

discretized boundary, can be sensitive to noise and discretization artifacts. Besides,

there are cases where the topology of branching will break down the stability of the

method and will cause wrong or imprecise identification of ligature parts.

1.4.3 Boundary to Axis Ratio

Another approach to handle instabilities in a medial axis is to use the boundary

to axis (BAR) ratio, which is the ratio of the associated boundary length to that

considered medial segment length, as the interval on the skeleton shrinks to zero, is

called BAR ratio (denoted by δ).

Topologically, a precise skeleton is equivalent to its original shape. This means

that having the skeleton of an object Ω, the original can be completely reconstructed.

A question which arises is that, if we take a small fragment on the skeleton, ∆Sk(Ω),

how long is the corresponding length segment on the boundary, ∆∂Ω ? In real

applications, the BAR ratio

(
δ = lim

∆∂Ω→0

∆Sk(Ω)

∆∂Ω

)
varies according to the convexity

or concavity of the original boundary segment. The following scenarios may actually

occur for each side of the boundary with respect to the skeleton:

1. δ < 1: at the considered interval, there is a local concavity at that side of the

boundary. This suggests that eliminating such portions of the skeleton results

in a smaller portion of the boundary being lost. Therefore, these points are to

be considered as good candidates for ligature elements.

2. δ ≥ 1: at the considered location, we have a local elongated part, or a local

convexity. This suggests that eliminating the corresponding skeletal points
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results in a larger portion of the boundary being lost. Therefore, these points

are considered to be more important for shape representation than the previous

category.

An example of ligature analysis with the BAR method is shown in Figure 1–7.

The skeletal points drawn have BAR ratios bigger than a certain threshold value

between [0,1].

Figure 1–7: An example of ligature analysis using the BAR ratio on a shape of a
dog. The yellow points show parts from the boundary where the BAR ratio is lower
than a chosen threshold (δ ≤ 0.75 for this example).

Some methods of ligature analysis ([3], [24]) combine BAR ratio with other

measures, so they would be able to consider other criteria for saliency.

1.4.4 Bone Graph Analysis

One of the reliable methods reported in the literature that uses BAR analysis

is the Bone Graph ([24],[23], and [26]). This method of finding instabilities consists

of two main steps:

1. Initial Ligature Detection: After computing the skeleton of the given shape,

skeletal points that form ligature are identified as follows: First, all points that

have BAR value less than a certain threshold (less than one) are found. The

smaller the threshold the more points there are that are considered for removal.
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Second, the algorithm tries to retrieve the longest intervals from the set with

negative curvature for all points. Segments with negative curvature at both

sides are assumed as full ligature segments and ones with negative curvature

at one side are assumed as semi ligature segments.

2. Restoring Over- and Undersegmented Parts: According to the branching topol-

ogy of the skeleton and different ligature segments detected, the algorithm

looks for candidate situations, in which, branches at either side of a junction

can merge. This post-processing procedure is termed Detecting Protrusions

in bone graph analysis. The first step of detecting protrusions is the labeling

all junction points. The main intuition of labeling is to find ligature parts

extracted from intervals derived from incident branches. To achieve this goal,

Macrini et al. [26] try to formulate all the different possibilities for junction

points and derive all possible situations under which two branches can merge.

At the final stage, a dependency graph is made according to the topology of

the skeleton and the links created through the merging process.

1.5 Medial Graph Abstraction

Having reviewed methods to handle skeletal instabilities in the previous section,

we now attend to the next step which is to define a part-structure for a given object,

based on salient portions of the medial axis. We shall refer to this process as Medial

Graph Abstraction.

In mathematics, a graph is a tool to represent a set of objects where some of them

are connected to one another by links called edges. Formally a graph G = (V,E),
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consists of two elements. The first one V is a set of vertices or nodes which represents

objects, whereas the second element E is a set of edges or links between those nodes.

Each medial axis includes a number of skeletal branches connected to each other,

where each of them represents a part of its corresponding object. This means that

the medial axis representation divides objects into a union of parts. Figure 1–8 shows

a shape of dog, in which, the shape silhouette is decomposed into some connected

regions. Intuitively, to represent this shape as a graph, for each of these parts a node

is assigned and connections between parts form edges between these nodes.

Figure 1–8: A shape of a dog represented in a set of separate parts. The figure is
generated by our implementation for flux graph abstraction, which will be developed
in chapter 3 in detail.

Three different approaches that try to illustrate a medial axis as a graph are

addressed in subsections 1.5.1, 1.5.2, and 1.4.4.

1.5.1 Skeletal Graphs

Given a medial representation for a shape, a trivial approach to extract a graph

out of the skeleton is to consider a node for each skeletal branch and an edge for
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each connection between pairs of these skeletal branches:

G = {(V,E)} (1.4)

where

V = {vi|vi = χi ∈ Sk(X)} (1.5)

and

E = {(vi, vj)| where (χi ∩ χj) 6= φ} (1.6)

This approach results in a simple, but also powerful graph abstraction (Dimitrov et

al. [18]).

1.5.2 Shock Graph

Blum et al. [8] explained how skeletal points appear when the grassfire flow

algorithm is applied to the object contour. Siddiqi et al. [36] classified skeletal

points into different shock level elements according to their evolutionary appearance

as singularities or shocks during the grassfire flow. These four levels of shocks are

defined in bellow:

1. First-Order: A skeletal point is considered as a first-order shock if the radii

of inscribed maximal disks within a neighborhood around that skeletal point

changes monotonically (is increasing or decreasing).

2. Second-Order: A skeletal point is considered as a second-order shock if the ra-

dius of its inscribed maximal disk approaches a local minimum along a skeletal

branch.
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3. Third-Order: A skeletal point is considered as a third-order shock if the radii

of inscribed maximal disks within a neighborhood around that skeletal point

does not change.

4. Fourth-Order: A skeletal point is considered as a fourth-order shock if the

radius of its inscribed maximal disk is a local maximum.

Figure 1–9 shows an example of different shock orders.

4th- Order

Seed
3rd- Order

Bend

2nd- Order

Neck

1st- Order

Protrusion

Figure 1–9: Different shock types shown on an arbitrary object.

Through a merging process, adjacent skeletal points of the same shock order are

merged to make a node. Each node is labeled based on the shock order of its skeletal

points. The union of these nodes gives the set of vertices for the shock graph. For

the set of edges, connectivity between nodes is determined according to the order of

shocks and their topological structure in the skeleton [36]. This is closely connected

to a notion of entry-level categories for shape [36].

1.5.3 Bone Graph

The third graph reviewed in this thesis is the Bone Graph. Previously in section

1.4.4 we discussed how the bone graph analysis of ligature detection is applied on

a given skeleton. Here once the protrusion detection process is completed and also

the dependency graph is created, the merging of host branches begins. After this,
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a branch merging process is completed and the shape decomposition process is then

completed by recovering shape parts.

Like for any other graphs, we must define a set of nodes and also a set of edges

to construct a bone graph for a given shape. Each salient segment in the bone

graph is called a bone part and represents a node in the derived graph. To represent

the hierarchical relations between bones, a map of bone to bone attachments must

be made. Each attachment between a pair of bones makes an edge for the bone

graph. Attachments are according to the topology of nodes and their connectivities

on the skeleton. The parent-child relation for each edge is defined according to the

magnitude of the radius of the skeletal point closest to the ligature point from the

bones on either side of the attachment, which is a local estimate of part size and is

similar to what is used for the shock graph. Besides, each edge is weighted according

to the position of nodes and their spatial properties in the skeleton. The attachments

are formed based on particular conditions: those formed by segments that are placed

at both sides of a junction point, those formed by a merging process in ligature

analysis, or those which lie at different sides of a neck shape part. According to the

condition by which each attachment is formed, its corresponding edge is weighted by

an attribute between [−1 1].

1.6 Skeletal Shape Matching

Skeletal Graphs are good candidates to tackle the problem of shape matching.

In the previous section, we reviewed different methods of skeletal abstraction using

graphs. The first step in these approaches, is to develop a matching process between

different graphs, where a measure of similarity or dissimilarity is determined when
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the matching is done. In the following section, we review some of the skeletal shape

matching approaches in the literature.

1.6.1 Shock Graph and Bone Graph Matching

The general aim in shock graph matching [36] is to develop a matching algorithm

that can be applied to the shock graphs extracted from binary shapes. The idea is

briefly described bellow:

• First shock trees are generated according to the extracted shock graphs. Ex-

isting loops (without considering directions over edges) in the shock graphs are

eliminated by duplicating tips of loops.

• An iterative process is used to compute the largest common subtree between

the two trees.

In terms of eigenvalue characterization, the connectivity between nodes can

be represented as a {0, 1} adjacency matrix with the property that the rooted trees

extracted can have any reordering because they are invariant to similarity transforms.

For bone graphs, Macrini et al. [26] followed the same matching framework used

for shock graphs. Although this framework ignores edge attribute weights presented

in bone graphs, they carried out the comparison by partitioning bone nodes into

shock parts and building a look-alike node similarity function.

1.6.2 Path Similarity Approaches

Many approaches to the problem of shape matching fall into the group of meth-

ods in which the shapes are matched by comparing their representing graphs. But

other than these approaches, there are some reported methods in the literature that
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tackle the problem in a different way. One category of these methods are the path

similarity approaches [39], [6], [5], [38].

The general idea is to match the shortest paths that connect skeletal end points.

This is done by mapping the dissimilarity between two given skeletons to the dis-

similarity measures computed between each of the two sets of nodes. It is obvious

that for two given examples with respectively m and n nodes, a dissimilarity matrix

(C(G,G′)) is made by m × n elements, where G and G′ represent skeletal graphs

extracted from two given objects.

To compute the elements of this matrix first a matrix is computed for every two

matching nodes, (v, v′), as pd(v, v′). Each element of pd(v, v′) is a dissimilarity value,

eij , measuring the distance between two paths, one originating from v and ending at

the node with index i from graph G and the other one originating from v′ and ending

at the node with index j from graph G′. Matrix pd(v, v′) is a dissimilarity matrix

from which the best candidate paths for the matching process can be found. To

choose the best nominee, an elastic matching algorithm named optimal subsequence

bijection has been proposed and is used, which is in the spirit of other dynamic

programming algorithms. The best matching path is a sequence of nodes matched

along the matrix C(G,G′) with a matching score that is considered as a similarity

measure.

In fact, in order to obtain a similarity measure between two shapes, these meth-

ods consider the shortest path between skeletal endpoints. These shortest paths are

compared while considering that the structural graphs of different examples may

vary. Although, the shortest path descriptors can result in a precise matching for
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many examples, the approach is more of a technically engineered system than a

topologically justified method. It is unclear whether such methods are capable of

handling transformations which can change the topology of the skeleton to a great

extent. Besides, it is not well established how these methods handle the structure

where two skeletal graphs having different numbers of nodes.

1.6.3 Many to Many Correspondence Graph Matching

Most approaches proposed for skeletal graph matching in the literature are based

on a one-to-one correspondence between local elements. There is a category of match-

ing approaches that consider more elements for comparison purposes (e.g. [16], [14],

[15], [13], and [21]) when matching graphs. These techniques fall under the category

of many-to-many correspondence matching methods. The many-to-many matching

process iteratively assigns zero or more nodes from the second example to a node

considered from the first examples. Then according to the matching result a pair-

wise region abstraction procedure is applied to generate templates by combining the

matched examples.

One of the main contributions of this approach is its strength to learn class pro-

totypes, because deformations that separate volumetric nodes resulting in skeletons

with more branches and nodes are easily abstracted, are hierarchical and are learned

in the context of constructing class prototypes.

1.7 Contributions and Outline of this Thesis

The previous subsections have reviewed several topics of relevance to medial rep-

resentations and their use in graph-based approaches to object recognition. We now

enumerate the main contributions of the present thesis. First, previous approaches
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to compute flux-based skeletons and to use them for boundary reconstruction are

not entirely complete and are computationally expensive. This thesis proposes to

address these problems by suggesting a new extended version with full boundary

representation, and by restricting the set of potential closest boundary points for the

brute-force algorithm used in computation of the distance transform. These devel-

opments are discussed in Chapter 2. Second, a new approach of ligature analysis

for simplifying skeletons, and a novel abstracted graph representation based on the

simplified skeleton is presented in Chapter 3. This ligature analysis is computed

based on a new measure of saliency based on uniqueness of inscribed medial disks

combined with limiting average outward flux value. Finally, contributions made by

this thesis and future research directions are reviewed and discussed in Chapter 4.
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CHAPTER 2

Flux Based Skeletons

This chapter begins by reviewing the computation of the skeleton using the

notion of average outward flux of the gradient of the Euclidean distance function

through a boundary [34], [19], [18], [17]. In order to be self contained we provide

necessary mathematical notation and definitions in Section 2.1. We then review the

approach of flux based skeletonization proposed by Dimitov et al. [17] in Section 2.2.

Section 2.3 then discusses boundary representation through flux based skeletons.

The original boundary reconstruction approach reviewed in Subsection 2.3.1 uses

only regular points (ignoring junction- and end points) to reconstruct the original

object’s boundary. The method is imperfect and also has the limitation of being

sensitive to local noise. To prove that flux-based skeleton is a faithful representation,

equivalent to the original object, we present a more precise method to compute a

more comprehensive boundary through the skeleton where the mentioned limitations

are addressed in Section 2.3.2.

Finally, in Section 2.4 we present a new method used to optimize the distance

function calculation on a rectangular lattice so as to make the original implemen-

tation by Dimitrov et al. [17] more practical, and then to further study its use in

boundary reconstruction.
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2.1 Definitions and Properties

This section gives the basic definitions and properties which are necessary to

understand the rest of the chapter. The reader familiar with these concepts can move

directly to section 2.1.6. In this section, we shall give precise definitions for shape,

distance transform and, in the process, we shall also introduce the vast majority of

concepts needed throughout this thesis.

2.1.1 Shape

A 2-D shape Ω is a set of geometrical loci that the projection of an object occu-

pies in 2-D space. Its boundary, ∂Ω, consists of a finite number of mutually disjoint

closed curves, each being a connected path in this space that does not intersect itself.

2.1.2 Euclidean Structure

We shall start by introducing the notation that will be used in Euclidean space.

In mathematics, Euclidean distance represents the common distance between two

points that one could measure with a ruler. The Euclidean metric d(P,Q) : Rn ×

Rn → R is:

d(P,Q) = ||P −Q||

A transformation is a mathematical function that maps a set of algebraic ele-

ments to another set, f : X → Y , where f is the transformation function, and X and

Y can be members of any spaces such as Euclidean space. Rotations, translations

and reflections include some examples of transformations.

A transformation is called rigid if the distance between every pair of points re-

mains the same. A rigid transformation can be proved to be a rotation, a translation,

or a combination of the two. Let Q ∈ Rn be a rigid transformation of P ∈ Rn, then
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there must be a rotation matrix, R ∈ Rn × Rn, and a translation vector, T ∈ Rn,

for which Q = RP + T . Note that RT = R−1 (i.e., R is an orthogonal matrix).

Shape, size and distances remain the same after a rigid transformation. Two shapes

represent the same object in Euclidean space if one of them can be transformed to

the other one by a rigid transformation.

2.1.3 Distance transform

For each point P , and a given shape Ω, a distance metric, dΩ(P ), can be defined

as follows:

dΩ(P ) = inf
Q∈∂Ω

d(P,Q).

The distance transform of a shape Ω is a signed distance function that specifies

how close a given point P is to the boundary of that shape ∂Ω:

DΩ(P ) =





dΩ(P ) if P is inside Ω

0 if P ∈ ∂Ω

−dΩ(P ) if P is outside of Ω

Assume that on the boundary ∂Ω, there exists only one point Q of minimum

distance to P (ΠΩ(P ) = {Q}). We would then define the distance function gradient

vector for point P as:

q̇Ω(P ) =
Q− P

||Q− P ||

In the case of |ΠΩ(P )| > 1, one can not define the closest boundary point uniquely,

and therefore the distance function gradient vector can not be defined for point P .

As a result, the distance function gradient vector q̇ = ∇D is not defined for skeletal
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points, because skeletal points have more than one closest boundary points according

to the “Maxwell set” definition of medial axis [28]. Except for at skeletal points, q̇

is continuous almost everywhere on its domain and it satisfies the eikonal equation:

|q̇| = 1.

Figure 2–1 shows an example of the distance function gradient vector.

Figure 2–1: A distance function gradient vector field computed based on the bound-
ary of a dog shape.

2.1.4 The Divergence Theorem

Strictly speaking, the divergence theorem relates the integral of the divergence

of a vector field within a simply-connected region to the outward flux of that vector

field through this boundary.

Assume R is a region in Rn with boundary ∂R, and F is a vector field differ-

entiable on a neighborhood of R, then the standard form of the divergence theorem

states that ∫

R

(∇.F)dv =

∮

∂R

〈F,N〉ds. (2.1)
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2.1.5 An Extension of the Divergence Theorem

Dimitrov et al. [19] extended the divergence theorem to regions that include

parts of a skeletal curve. Assume F = q̇ is the distance function gradient vector

field applied to a shape Ω, and R is an arbitrary region from the shape that includes

a part of the skeletal curve C (see Figure 2–2). They showed that the following

equation applies

∫

R

div(q̇)dv =

∫

∂R

〈q̇,N〉ds+ 2

∫

C

〈q̇,N〉ds. (2.2)

Sk(Ω)

C

R

Figure 2–2: An arbitrary region R including a branch segment of the skeleton Sk(Ω)
(adapted from [17]).

This equation will be used later in 2.1.7.

2.1.6 The Outward Flux of a Vector Field

As has been discussed previously, except for at skeletal points, q̇ = ∇D is a

continuous and differentiable vector field on the shape domain; denoted as R. The

outward flux of q̇ through ∂R is defined as

∫

∂R

〈q̇,N〉ds (2.3)
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and the average outward flux of q̇ through ∂R is defined as

AOF =

∫
∂R
〈q̇,N〉ds∫
∂R

ds
. (2.4)

2.1.7 Intrinsic Meaning of the Outward Flux

Take a shape Ω, and a bounded circular region with radius ǫ→ 0 around a point

P for the divergence theorem, and let Fǫ(P ) represent the outward flux vector field

through that circular area. Then,

Fǫ(P ) =

∫

R

div(q̇)dv =

∫ L

0

〈q̇P + δ(s),N〉ds, (2.5)

where δ(s) is the quantity function value which has been added to the center

of the gradient distance map vector field value at point P to get the value of q̇ at

neighboring points on C, and L is the length of the boundary of the neighboring

circular area. Dimitrov et al. [19] proved that when P does not lie on a skeletal

branch,

lim
L→0

(∫ L

0

〈q̇P ,N〉ds+

∫ L

0

〈δ(s),N〉ds

)
→ 0 (2.6)

and thus

lim
L→0

(∫ L

0
〈q̇P ,N〉ds+

∫ L

0
〈δ(s),N〉ds

)

∫
∂R

ds
→ 0 (2.7)

which means that the right-hand side in equation 2.5, and also its division by
∫
∂R

ds

(the average outward flux (AOF) value) goes to zero as ǫ→ 0.
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When P lies on a skeletal branch, equation 2.2 yields

∫

∂R

〈q̇,N〉ds =

∫

R

div(q̇)dv − 2

∫

C

〈q̇,NC〉ds (2.8)

where C is the part of the skeleton limited in R. Since R → 0, It can be easily

verified that the first integral on the right hand side goes to zero in the limit. Using

the proved property they showed that

∫

∂R

〈q̇,N〉ds = −2

∫

C

〈q̇P + δ(s),N〉ds = −2× (inf
C
〈q̇C ,NC〉)× length(C) (2.9)

Since R→ 0 all elements located inside R will vanish therefore C → 0 and:

lim
ǫ→0
Fǫ(P ) =

∫

∂R

〈q̇,N〉ds = −2 × (inf
C
〈q̇C ,NC〉)× length(C) = 0 (2.10)

and

AOF =

∫
∂R
〈q̇,N〉ds∫
∂R

ds
(2.11)

=
−2× (infC〈q̇C ,NC〉)× length(C)

length(C)
(2.12)

= −2 × (inf
C
〈q̇C ,NC〉). (2.13)

When the region shrinks to a skeletal point P ,

AOF = −2× 〈q̇P ,NP 〉. (2.14)

Table 2–1 summarizes the results obtained by Dimitrov et al. [17] which have

been reviewed in this subsection.
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P ∈ Sk(Ω) P /∈ Sk(Ω)
limǫ→0Fǫ(P ) 0 0
AOF −2× 〈q̇P ,NP 〉 0

Table 2–1: This table summarizes the results of the limiting behaviour of the outward
flux and AOF of the gradient of the Euclidean distance function to the boundary of
a 2D object. (Results are adapted from [19].)

2.2 Flux Based Skeletons

Based on the above results Dimitrov et al. [17] developed a flux based medial

axis computation method. The key idea behind this approach is to examine different

situations that can happen at a skeletal point. In the remainder of this section, we

will review properties that they derived and the overall method.

2.2.1 Limiting to Circular Neighborhoods

According to the results of table 2–1, the AOF value of all points not located on

the skeleton is equal to zero. Therefore, the skeletonization algorithm will look for

those points that have a non zero value of the AOF . There are three different classes

of skeletal points that altogether make for the skeleton of a given shape. Dimitrov

et al. [17] reviewed the properties of each of class by analyzing the behavior of the

AOF , when shrunk to a circular neighborhood. Assuming a shape Ω and a skeletal

point p, their results are as follows:

1. p is a regular point if the maximal inscribed disc at p touches the boundary at

two corresponding boundary |ΠΩ(P )| = 2. The computed AOF at a regular

point p is given by

lim
ǫ→0

Fǫ(p)

2πǫ
= −

2

π
sin θ. (2.15)

See Figure 2–3a.
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2. p is an end point if these exists δ (0 < δ < r) such that for any ǫ (0 < ǫ < δ)

the circle centered at p with radius ǫ intersects Sk(Ω) just at a single point (r

is the radius of the maximal inscribed disc at p). The computed AOF at an

end point p is given by

lim
ǫ→0

Fǫ(P )

2πǫ
= −

1

π
(sin θP − θP ). (2.16)

See Figure 2–3b.

3. p is a junction point ifΠΩ(p) has three or more corresponding closest boundary

points. Generically a junction point has degree 3. All other branch points are

unstable. The computed AOF at a junction point p is given by

lim
ǫ→0

Fǫ(P )

2πǫ
= −

1

π

n∑

i=1

sin θi. (2.17)

See Figure 2–3c.

These different classes of skeletal points are shown in Figure 2–3.

Sk(Ω)

b+1

b-1

θ

p
T

θ

(a) A regular point

2θ

"

p

Sk(Ω)

(b) An end point

pθ χ
θ

θ

θ
θ

θ1 1

2

2
3

3

χ

χ

3

1

2

(c) A junction point

Figure 2–3: LEFT: Different types of a skeletal point shown separately on an arbi-
trary segment of the skeleton Sk(Ω) of a given shape Ω (adapted from [17]).
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2.2.2 Computational Setup of Flux Based Skeletonization

To compute the skeleton, we need to calculate the limited average outward flux

value for all points on the shape space, and find those with non-zero AOF values.

To achieve this goal, we should first compute AOF for a circular area of radius r

around every point P

Fr(P ) =

∫
〈q̇P̃ ,N(s)〉ds

2πr
, (2.18)

where P̃ = {P + rN(s)}, and q̇ is the distance function at point P̃ . By discretizing

the circular area boundary into n equal arcs, the numerator is approximated by:

∫
〈q̇

P̃
,N(s)〉ds =

2πr

n

n−1∑

k=0

〈q̇
P̃
,N(k)〉, (2.19)

where ds is approximated by division of the perimeter 2πr by n (2πr
n
), and N(k) =

(cos(2πk
n
), sin(2πk

n
)).

2.3 Boundary Reconstruction

According to the Maxwell set definition of the medial axis, each point on the

skeleton has 2 or more corresponding boundary points. Therefore, given a mapping

between boundary points to skeletal points, it is possible to invert that mapping to

reconstruct the boundary purely from skeletal points and their properties. Dimitrov

et al. [17] attempted to do this by exploiting the relationship between regular points

of the medial axis and the object angle. In this section we will review the basic

algorithm for doing this and then extend it to obtain a more complete boundary

reconstruction by properly considering the case of endpoints and junction points (in

addition to regular points). Throughout the remainder of this subsection, we let p

represent a skeletal point on the parametrized skeleton Sk(Ω) of the given object Ω,
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which is characterized by the inscribed maximal disk radius r, the object angle at

that point θ, and the unit tangent vector tp to the skeleton at p (see Figure 2–3a).

The proceeding subsections propose methods attempting to compute corresponding

boundary points for p.

2.3.1 Boundary Representation through Regular Points with First-order

Approximation of the Tangent Vector

Dimitrov et al. [17] studied the boundary reconstruction idea by computing

the inverted map from the regular points to their corresponding boundary points,

considering that almost all skeletal points are regular except the small number of

end points and junction points at the ends of skeletal branches. Therefore, taking a

regular point namely p, they outlined the reverse transform from the skeletal points

to corresponding boundary points by

R1,2 = p+ rRot(±θ)tp, (2.20)

where R1,2 represent the two closest corresponding points. To reconstruct R1,2 from

a regular point on a parameterized skeleton using 2.20, the following parameters

of a skeletal point ought to be numerically computed: the coordinates of the point

p, the radius value r, the object angle θ, and the unit tangent vector tp. During

the skeletonization process, a parameterized skeleton is computed where each of its

skeletal points include the position p the radius at that point r, and the limiting

average outward flux value AOF . For the missing numerical value of object angle,

they proposed a numerical estimation for θ calculated based on equation 2.15 :

θ = arcsin

(
−
Fǫ(P )

4ǫ

)
.
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They also estimated the tangent vector by the slope of the line that connects the

prior skeletal point p−1 to posterior skeletal point p+1 (see Figure 2–4)

tp =
p+1 − p−1

‖p+1 − p−1‖
.

Figure 2–5 provides some results from their skeletonization and boundary reconstruc-

tion algorithms.

p

p

p

-1

+1

pt

ɑt

Figure 2–4: Estimation of the tangent vector at a skeletal point is shown using the
prior and the posterior skeletal points.

2.3.2 Full Boundary Reconstruction

As can be seen in the lowest row of shapes in Figure 2–5, the boundary repre-

sentation through regular points reviewed in 2.3.1 does not provide a full boundary

reconstruction and is incomplete. In this subsection, we extend the previous bound-

ary reconstruction approach to a more general one that includes all types of skeletal

points and gives a better numerical approximation of the parameters required for

reconstruction.

To achieve this aim, three limitations from the boundary reconstruction method

developed by Dimitrov et al. [17] are considered and addressed in our approach:
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Figure 2–5: The top level figures are binary images of some given examples. Their
derived skeletons are shown in the middle level using flux based skeletonization. The
bottom level figures provide the reconstruction results using the method of Dimitrov
et al. [17]. The small black disks represent reconstructed boundary points.

1. Sensitivity of first-order approximation of tangent estimation: The

two point stencil computation of tangent is very sensitive to discretization

effects along the skeleton, and results show that the estimation fails for many

regular points. To avoid local numerical errors, we deploy higher order methods
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for approximating the unit tangent. For those medial loci for which the two

points method fails, we use four points stencil approximation [1] given by

tp =
2

3

(
p+1 − p−1

‖p+1 − p−1‖

)
+

1

3

(
P+2 − P−2

‖P+2 − P−2‖

)
(2.21)

where p+2 and p−2 represent the subsequent and the prior skeletal points to

p+1 and p−1 respectively.

Using the second-order of approximation of tangent estimation results in a

number of newly reconstructed boundary points (see Figure 2–6).

2. Boundary points that map to an end point: The boundary reconstruction

method by Dimitrov et al. [19] does not explicitly consider the other two types

of skeletal points (end points and junction points). This decision results in a

number of circular segments missing from the boundary which map to the end

points. We present a numerical approach to recover those missing boundary

points. Assume p is an end point such as the one shown in figure 2–3b. Then,

there would be a circular arc segment from the boundary corresponding to

this skeletal point. The osculating disk at p touches the boundary along that

circular segment and the tangent vector to the skeleton at that point bisects

the angle that sees the circular arc. Let γ represent the curve of that circular

arc segment, then

γ : I → Ω (2.22)

γ (θ) = p+ rRot (θ) tp (2.23)
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Figure 2–6: Along with initial reconstructed points (results shown in 2–5) shown with
black disks, newly reconstructed points resulting from the improvement of tangent
estimation are shown with blue disks.

where I is a closed bounded interval [−θp, θp]. The coordinates of the point

p, and the radius value r are parameters that are computed during the skele-

tonization process. To compute γ, the following parameters are needed to be

computed numerically other than p, and r: the object angle θp, and the unit
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tangent vector tp. To compute the object angle, we use the equation 2.16

Fǫ (P )

2πǫ
= −

1

π
(sin θp − θp)⇒ (2.24)

−
Fǫ (P )

2ǫ
= sin θp − θp. (2.25)

It can be easily verified that the function

f(x) = x− sin(x)− C

where C is an arbitrary constant real number, has only one root. Therefore, if

we replace C by Fǫ(P )
2ǫ

, then the zero of the function f(x) becomes a numerical

estimation for the object angle at the end point p. For the tangent vector

tP , we simply use the tangent estimation of the prior point to the end point

tp = tp
−1
. Figure 2–7 shows some examples of boundary reconstruction with

results of the newly found boundary circular segments corresponding to end

points.

3. Boundary points that map to a junction point: Junction points are

also not included in the initial boundary reconstruction method by Dimitrov

et al. [19]. We compute the corresponding boundary points of a junction point

the same way that we compute the corresponding boundary points of a reg-

ular point with the difference that the tangent vectors near junction points

are approximated by their prior skeletal points on the skeleton. The rest of

the procedure is the same as that for computing boundary points for a regular

point tp = tp
−1
. Figure 2–8 shows the improvement on reconstructed points

with results of newly found boundary points corresponding to junction points.
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Figure 2–7: Along with initial reconstructed points (results shown in 2–5) shown
with black disks, newly reconstructed boundary circular segments corresponding to
end points are shown with green disks.

Figure 2–8 also shows that there are not that many points reconstructed from

junction points. This is understandable since there are not usually many junc-

tion point and furthermore, unlike end points, these points can reconstruct at

most two boundary points.
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Figure 2–8: Along with initial reconstructed points (results shown in 2–5) shown
with black disks, newly reconstructed boundary points corresponding to junction
points are shown with violet disks.

The contribution of our approach in reconstructing boundary points is threefold:

improved of approximation of tangents for many regular points of the skeleton, the

computing of circular segments that correspond to end points of the skeleton, and

the computing of extra boundary points from junction points. In figure 2–9 the
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contribution that this thesis has made to the boundary construction method that

Dimitrov et al. proposed in [19] is shown.

!

Figure 2–9: Along with point reconstructed using Dimitrov algorithm [19], all re-
constructed boundary points contributed by this thesis are shown in orange. The
fraction of the total number of (discretized) boundary points reconstructed for each
of these examples is presented in table 2–2.
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Example Old Reconstruction New Reconstruction
Dog 88.11 % 98.82 %
Head 66.85 % 98.74 %
Hand 88.36 % 97.79 %

Table 2–2: This table presents the results of the improvement made by our boundary
reconstruction process for the three examples used by this thesis: the dog, the head,
and the hand. REMARK: These results are representative but not exact, because
the boundary reconstruction process depends on the sampling of (discrete) points on
the medial axis

2.4 Optimization of Distance Function Computation

In order to compute the flux value in flux-based skeletonization, Dimitrov et al.

[17] used a brute-force algorithm to compute a distance transform, DΩ(P ), for a given

shape Ω. For each point P of the shape Ω, the brute-force algorithm computes dΩ(P )

by calculating distances from P to all boundary points ∂Ω, and then choosing the

distance to the point on the boundary with minimal distance value. This procedure is

a time-consuming and exhaustive one, and therefore is extremely slow when dealing

with high-resolution input shapes. Using a brute-force approach is not feasible for

methods that deal with large databases of objects, and also is not pragmatic to use

for online tasks that need flux-based representation.

One of the contributions of this thesis is an optimization of this process. A gen-

eral idea to improve the efficiency of the brute-force distance function computation

is to decrease the number of calculations of distances. In this section, we introduce a

new method in which instead of computing distance from a considered point to each

boundary point, the calculation is restricted to fewer boundary points.

Our optimized method consists of five mains steps:
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1. Using a particular splitting factor k, the bounding box that contains the shape

is split into a square grid with a certain width for squares (e.g., see Figure

2–10) .

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

Figure 2–10: The grid for distance function optimization

2. An unordered map (hash map) is made from those grid cells that contain

at least one boundary point to indexes of all boundary points located in the

corresponding grid cell, denoted by H.

3. For each index of a grid cell, all closest grid cells that may have the closest

boundary point are computed, and stored in another map denoted by I.

4. For each point P , using I and the index of the grid cell that contains P , all

closest grid cells to P that have at least one boundary are computed.
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5. Using H, all boundary points from the closest grid cells found in the previous

step are considered and their distances to P are calculated and the minimum

is picked as the answer to dΩ(P ).

According to our method, Steps 1, 2, 3 are only carried out once, and this contributes

to decrease the total number of operations dramatically in real applications.

2.4.1 Time Complexity

Based on the choice of a splitting factor, the number that the width and height of

the original bounding box of the shape is divided by, and resolution of discretization

of the shape and its boundary, the time for computing a distance function may vary

a lot. We did an experiment on a database of 1664 given shapes of 13 objects with

both the brute-force distance function approach and our optimized distance function

on the same machine, and the results of average computation time for computing all

skeletons of each object class are reported in Table 2–3.
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Brute-force Our Method

k = 4 k = 8 k = 12 k = 16

Alien 26.88 10.96 7.41 3.83 5.46

Bull 32.11 14.26 8.38 4.82 6.53

Camel 29.31 11.24 7.30 4.70 5.52

Child 28.99 12.10 7.93 4.63 5.65

Dinasour 33.72 14.81 8.62 4.89 6.45

Dog 30.32 12.23 7.71 5.01 6.34

Dolphin 26.30 11.65 6.27 4.38 5.46

Eagle 22.06 9.51 5.83 3.11 4.36

Guitar 23.08 9.43 6.18 3.68 4.72

Horse 32.78 13.20 8.51 4.88 6.27

Kangoro 33.64 14.75 8.32 5.24 7.04

Knife 21.12 9.25 5.80 3.17 4.17

Pig 28.90 12.50 7.29 4.54 5.42

Average 28.40 11.99 7.35 4.37 5.64

Table 2–3: The above table provides the average run time of our method with differ-
ent splitting factors in comparison with the brute-force algorithm. Average run time
for computing a skeleton for each shape of a considered class is shown. The base unit
of measurement for all numbers is seconds. All the experiments were performed on
a MacBook pro with a 2.4 GHz Intel Core 2 Duo processor, 4 GB RAM, NVIDIA
GeForce 320M 256 MB graphics card, and 250GB 5400 RPM SATA disk. For these
measurements, we used the OS X Version 10.8.
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CHAPTER 3

Flux Graphs for 2D Shape Analysis

Abstracting a graph from a medial axis and then using graph matching methods

is a popular approach in shape matching. Extracting a graph from the skeleton

of a given shape is followed by defining a set of nodes for disjointed parts of the

object and a set of edges for their connectivities, where the abstraction is a reliable

representation of the silhouette appearance. The objective of this chapter is to

introduce a novel way for simplifying skeletons using salience measures for skeletal

branches, and then extract a graph based on the simplified skeletal segments. To this

end, we present a new method for simplifying a skeleton where the representation

based on the incorporated parts preserves the majority of the shape’s area.

More specifically, the contributions of this chapter are three-fold: The first con-

tribution is to use the uniqueness of an inscribed disk as a tool for defining salience,

combined with the limiting average outward flux value. This measure of salience

is new and experiments show that it leads to an intuitive and simplified skeletal

segments with no significant loss in boundary representation. Second, we present a

method to abstract the simplified skeletal segments into a graph, which we call the

“flux graph”. We show via a number of experiments that this is much less com-

plex than earlier approaches such as shock graphs and skeletal graphs. Finally, we

demonstrate the potential of using flux graphs for shape matching.
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We shall start in Section 3.1 by proposing a new approach for simplifying a

medial axis using a new measure of salience based on uniqueness of disks combined

with the limiting average outward flux value. We shall then introduce flux graphs

based on the simplified skeleton in Section 3.2. Applicability of flux graphs for

matching problems is investigated in Section 3.3. Finally, we evaluate our proposed

method of abstraction of the simplified medial axis in Section 3.4.

3.1 Local Geometry of Salient Parts of the Medial Axis

To find salient parts, one must know about the properties of the local geometry

of a skeletal point on the derived skeleton of a given shape. Initial properties of a

skeletal point and some measures of saliency for the skeleton was reviewed in chapter

1. In chapter 2, we explained that the flux based skeletonization idea developed by

Dimitrov et al. is characterized by the limiting average outward flux value AOF ,

and then we verified that this characterization faithfully represents the object.

Numerically, the stable computation of the AOF and its proportionality the

object angle directed us to use this measure combined with a new measure based on

uniqueness of disks to compute a saliency range for skeletal points of a given shape.

In this section, we present these two measures of saliency.

3.1.1 Uniqueness of Disks

In this subsection, we present a new saliency measure that has been used in our

simplification and is called “Uniqueness of Disks”.

Definition 3.1.1. Assume a skeletal point on the skeletal branch of a given shape.

The maximal inscribed disk of that skeletal point is called a Unique Disk if and only
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if it does not intersect with any other maximal inscribed disks of skeletal points from

other branches. The center of a unique disk is called a Unique Skeletal Point.

As an example consider figure 3–1. Let p.υ represents the uniqueness of a

d

r2

r3

p
1

r1
p
2

p
3

Figure 3–1: Uniqueness of Disks: Part of a dog shape is cropped and shown with
illustrated disks corresponding to unique and non-unique skeletal points. The max-
imal inscribed disk centered at p1(∈ χ1) is a unique disk and p1 is unique skeletal
point because it does not intersect with any other maximal inscribed disks from other
branches than χ1. At the same time, p2(∈ χ1) is not a unique skeletal point because
its maximal inscribed disk centered at p2(∈ χ1) intersects with p3(∈ χ2), a maximal
inscribed disk from χ2.

skeletal point p, so that

p.υ =





1 if p is a unique skeletal point.

0 if p is not a unique skeletal point.

The pseudo-code of the approach for finding the unique skeletal points is outlined in

Algorithm 1.

Eliminating a unique skeletal point results in a loss part of a shape boundary

because the corresponding boundary segment can not be reconstructed by any other
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Algorithm 1 Computing Local Geometry of Salient Parts of the Medial Axis

Declaration of variables

Ω: shape image
Sk(Ω) = {χ1, ..., χn}: Skeleton of Ω consisted of a set of branches
Skν(Ω): Simplified skeleton
χi = {pi1, ...,pil}: A skeletal branch consisted of a set of skeletal points
pj = (x, y, r, f, υ): A skeletal point is characterized by its position (x, y), radius r,
the flux value f of a skeletal point, and the uniquenss of that skeletal point u.

procedure Compute Uniqueness
for ∀χi ∈ Sk(Ω) do
for ∀pij ∈ χi do

if ∃ pkl ∈ χk | d(pkl,pij) < pkl.r + pij .r then

pij .υ ← 0 {Set pij as non-unique skeletal point}
else

pij .υ ← 1 {Set pij as unique skeletal point}
end if

end for

end for

end of procedure

procedure Compute Normalized Flux
All flux values are
for ∀χi ∈ Sk(Ω) do
for ∀pij ∈ χi do

pij.f ←
Fǫ(pij )

max{Fǫ}
{lim Fǫ(P )

2πǫ
= − 2

π
sinα→ max{|Fǫ|} =

4
ǫ
}

end for

end for

end of procedure

procedure Simplifying the Skeleton
Skν(Ω) = ∅
for ∀χi ∈ Sk(Ω) do
for ∀pij ∈ χi do

τ ← a certain threshold
if max(pij .υ,pij.f) > τ then

Skν(Ω) = Skν(Ω)
⋃

pij

end if

end for

end for

end of procedure
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skeletal points from other branches. In figure 3–2, parts of the skeleton of a dog

example found to satisfy the uniqueness of disks criterion are shown.

Figure 3–2: The skeletal points found to be unique are shown in black on the medial
axis of a dog example.

3.1.2 Limited Average Outward Flux

As we reviewed flux based skeletons in chapter 2, except at junctions and end

points, the flux value of the rest of the skeleton is computed by:

AOF = lim
ǫ→0

Fǫ(p)

2πǫ
= −

2

π
sinα (3.1)

for a considered regular point p. The equation determines a relation between the flux

value and the object angle. The bigger the flux value, the higher the object angle

gets. The higher the object angle at a portion of a skeleton the more likely the shape

silhouette is to be elongated locally at that part. Elongated parts admit a simple

and stable medial axis structure. Skeletal points with high flux value along a medial

branch are likely to be appended in the set of candidate points for the simplified

skeleton.
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In figure 3–3, skeletal points of a dog example are colored form white to black

(normalized between [0 1]) based on the normalized flux values which are in accor-

dance to the object angle at these points.

Figure 3–3: Normalized flux values of a skeleton are shown in a range starting from
white, which has the least flux, and ending in black which has the maximum flux on
a dog example.

In Algorithm 1 the procedure of setting flux values is outlined.

3.1.3 Simplifying the Skeleton

According to measures of saliency introduced in previous section (uniqueness

of disks and flux values), we simplify the flux based skeletons. To decide whether

a skeletal point should be kept or thrown away, we apply the following procedure:

When the considered skeletal point is unique or its normalized flux value is greater

than a certain threshold, then that skeletal point will be kept in the skeleton; other-

wise it will be thrown away. In our experiments, we assume τ = 0.9045 which means

all non-unique skeletal points with object angle α greater than about 60◦ will be

retained in the simplified skeleton. The procedure is coded in Algorithm 1. Figure

53



3–4 provides results of applying the simplification algorithm with a certain threshold

on the dog example.

t1

t8

t7 t6

t5
t4

t3 t2

t10t9 t11

t12

t13

t14

t15
t16

Figure 3–4: Several salient segments labeled as ti are shown as the result of simpli-
fying the medial axis of a dog example.

3.2 Flux Graphs

3.2.1 Introduction

The main reason for finding the local geometry of salient parts and simplifying

the flux-based skeleton is to extract a graph representation which is simpler than but

otherwise as complete as effective as the popular existing approaches. In this section,

we propose a graph called “Flux Graph” that describes a shape as a set of separate

parts each connected to a number of other ones, while preserving the topology of the

object being represented.

3.2.2 Nodes and Edges

Each graph consists of a set of nodes. According to the simplified skeleton

described before, the sets of nodes and edges are made for flux graphs. Simplifying
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the skeleton results in a number of fragmented parts. Not all these fragments should

be apart from each other, therefore those ones that share a big portion of their

volumes and are close enough to each other, are combined through a merging process

(see Algorithm 2). The remaining departed fragments at the end of the merging

process are treated as the nodes of a flux graph. This merging process is applied to

get a more robust graph which is not sensitive to local fragmentation of nodes.

A critical condition that may occur is when a skeletal branch does not generate

any salient skeletal points and the entire branch is thrown away during the simplifi-

cation. Ignoring a complete skeletal branch changes the topology of the skeleton. On

the other hand, playing with the threshold on the object angle to get some skeletal

points is also not a good idea, because short segments of skeletal points with low

salience have very low representational influence on the original shape’s boundary.

These considerations lead us to take the entire skeletal branch as a node for the flux

graph. The results of merging fragmented parts on the dog shape are shown in figure

3–5.

The set of links between nodes are determined based on their connectivities on

the original medial axis. This set of links is assumed to represent the set of edges in

the flux graph. To direct edges, we considered the average radii of inscribing disks

along two adjacent nodes and compared them. The one with magnitude is chosen as

the parent and the other one as the child.

3.2.3 Equivalency of the Graph to the Main Object

In this subsection we will discuss the equivalency of a flux graph to the original

shape that it is representing. To study how accurately a flux graph represents its
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Algorithm 2 Flux Graph Abstraction Using a Simplified Skeleton

Declaration of variables

FG = (V,E): Set of nodes and set of edges of a Flux Graph
Skν(Ω): Set of fragmented parts of the simplified skeleton
Lν(Ω): Set of links between fragmented parts in the simplified skeleton
vol(ti): Volumetric area reconstructed by the set ti

procedure Compute Lν(Ω)
∅ ← Lν(Ω)
for ∀ti ∈ Skν(Ω) | ti ∈ χm do

for ∀tj ∈ Skν(Ω) | i 6= j and tj ∈ χn do

if ∄tk ∈ Skν(Ω) | tk ∈ {χm

⋃
χn} and (d(tk, ti) + d(tk, tj)) ≤ d(ti, tj) then

Lν(Ω) = Lν(Ω)
⋃
(ti, tj)

end if

end for

end for

end of procedure

procedure Merging Process - Compute V and E
Compute Lν(Ω)
for ∀ti ∈ Skν(Ω) do
for ∀tj ∈ Skν(Ω) | i 6= j do

v ← |(vol(ti)
⋂
vol(tj))| {Compute the shared area of reconstruction of disks

for ti and tj}
if v > 0.95|vol(ti)| or v > 0.95|vol(tj)| then
if (ti, tj) ∈ Lν(Ω) then

tij = ti
⋃
tj {ti and tj will be merged. All skeletal points in between will

be added to the new merged part}
for ∀l ∈ Lν(Ω) | ti ∈ l or tj ∈ l do
replace ti (or tj) with tij

end for

delete ti, tj from Skν(Ω) and add tij to Skν(Ω)
end if

end if

end for

end for

(V,E) = (Skν(Ω), Lν(Ω))
end of procedure
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Figure 3–5: The finalized flux graph of a dog example is shown. LEFT: The set of
nodes is shown with the recovering parts depicted in different colors. RIGHT: The
extracted directed acyclic graph corresponding to the flux graph of the dog example
is drawn. There is a dummy node called ♯ that is father to every nodes that do not
have any fathers.
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original shape, different parameters can be take into account. Some of them are

explained in bellow:

1. Percentage of reconstructed shape: The percentage of the volume that a flux

graph represents from the original shape is a favorable candidate to measure

the accuracy of a skeletal graph. The higher this ratio is, the more capable

the simplified skeleton is of representing the original object. Fortunately, flux

graphs get excellent scores of equivalency to the main object. Experimental

results shown in table 3–2 provide evidence for this claim (this is discussed in

more detail in Section 3.4).

2. Hausdorff distance: This is a function to compute a distance measure between

two subsets of a metric space, and is often used to measure how far two shapes

are from each other. Assume a given shape X , and its reconstructed shape

from its simplified flux graph Y. Taking the boundary of X as ∂X and of Y as

∂Y , the Hausdorff distance between them is defined as follows:

dH(∂X, ∂Y ) = max{ sup
x∈∂X

inf
y∈∂Y

d(x, y), sup
y∈∂Y

inf
x∈∂X

d(x, y)}. (3.2)

3.3 Graph Matching for Flux Graphs

3.3.1 Introduction

A skeletal graph abstraction can be used as a tool in many visual shape problems;

one of them is the matching task. To be able to compare shapes, graphs are derived

from their silhouettes and are matched with each other in a trial step. In this section,

we explain how flux graphs are matched and compared against each other. To carry

out a comparative experiment with shock graphs we used the same graph matching
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set up and database used for shock graphs [25], [36] as our matching framework in

this thesis.

3.3.2 Topological Similarity

The topological structure similarity is a measure that says how much the de-

rived graphs are similar to each other. Given two flux graphs, a bipartite graph is

made between nodes of their DAGs. Each edge is weighted based on the structural

similarity between nodes; the weight is the normalized length of difference of their

topological signature vectors

w =
|t1 − t2|

max(|t1|, |t2|)

where t1 and t2 are representing corresponding TSV vectors of the two nodes of a

considered edge. The best matching of a maximum weighted bipartite matching is

when the sum of the values of the edges is maximized. The idea of using the TSV is

adapted from [36]. Like shock graphs, flux graphs can be represented using a {0, 1}

adjacency matrix, with 1’s indicating adjacent nodes in the tree form of the DAG. The

eigenvalue-value sum of a sub-DAG of a given flux graph with computed eigenvalues

of its corresponding submatrix is invariant to any similarity transformation applied

to the submatrix. In a DAG representation, the TSV is defined as the vector of

eigenvalue-sums derived from the corresponding adjacency matrix for the sub-DAG

of the considered node. The matching algorithm used is a greedy algorithm [25]

which has the benefit of finding a largest maximal matching in polynomial time. The

similarity is computed by matching a query with a model node and then normalizing

by the number of matched nodes according to the order of the model graph.
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3.3.3 Geometrical Similarity

The geometric information investigates the relation of the local geometry of

skeletal points on the nodes of each given DAG. To determine the similarity between

nodes, Macrini et al. [25] tried to fit line segments to the skeletal points of a given

node. Therefore, for a given query and a given model, the algorithm tries to fit

the query to the model by allowing line segments of the model to shrink or grow

to include the query data points. The main assumption here is that the derivative

of the radius function can be related to the object angle which has to do with the

relationship between the bi-tangent points associated with a skeletal point. For small

amounts of foreshortening due to modest rotations in depth, the change in object

angle will be small.

3.3.4 The DAG Matcher

Since each flux graph is a directed acyclic graph (DAG), to match a query shape

with other shapes, we need to develop a DAG matcher. The DAG matcher receives

two DAGs as input and computes a value representing their similarity, as well as a list

of corresponding nodes in the two DAGs. This analysis considers both topological

structure (Γ ) and geometric information (∆) associated with a flux graph’s vertices.

Each of these two measures return a value normalized in the interval [0 1]. The final

similarity score is a weighted combination of these two

S(G1, G2) = ωΓ (G1, G2) + (1− ω)∆(G1, G2),
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where S(G1, G2) represent the similarity between DAGs derived from two given

shapes, and ω is a tunning weight in the interval [0 1]. At the end of the process a

list of corresponding nodes and a similarity measure are made.

3.4 Experimental Results

In this section, we present our experimental results using flux graphs together

with the shape representation and graph matching tasks. The representation task

experiment includes results regarding equivalency to the main object discussed in

Subsection 3.2.3, and the matching problem experiment goal is to recognize unseen

2-D query views of 3-D objects by matching the query view against all the available

data modes (reviewed in Section 3.3). We compare results of these experiments with

those obtained using shock graphs [27], [23].

3.4.1 The Dataset

The dataset used for experiments is the same dataset used for experiments done

for Bone Graphs [24], [26] and Shock Graphs [25]. The data set has 13 3-D graphics

models used for matching. Perspective projection of the 3-D object is computed onto

the image plane where each model is centered in a uniformly tessellated view sphere.

With 128 uniformly sampled views per object, the data set contains a total of 1664

2-D projected views.

3.4.2 Complexity Comparison with the Shock Graph

In this chapter, we suggested a method to abstract a representation based on

the proposed simplified skeleton. One of the contributions this thesis has made, is

this new category of skeletal graphs that are more simple and almost as powerful

as existing popular approaches. To evaluate this claim, we carried out a complexity
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Graph Shock Graph

Nodes Edges Σdeg(v)d Depth Skeletal points TSV

Alien 27.63 29.47 49.16 4.72 453.2969 58.17

Bull 35.12 37.83 77.09 6.14 604 74.62

Camel 32.33 34.54 73.00 6.52 593.1562 67.56

Child 10.58 10.44 13.06 3.58 431.1953 20.47

Dinasour 26.50 27.85 53.45 5.55 433.6328 56.78

Dog 23.66 24.89 43.16 4.94 441.5938 47.92

Dolphin 20.84 21.34 42.84 5.25 362.8047 44.63

Eagle 14.55 14.55 21.68 4.13 411.1562 28.41

Guitar 25.45 27.14 44.70 4.86 320.4219 52.38

Horse 17.66 17.99 31.08 4.73 501.9844 38.49

Kangoro 28.59 31.02 52.85 5.24 524.3359 58.28

Knife 35.65 38.99 64.84 5.41 274.4531 70.56

Pig 27.48 28.54 58.65 5.63 537.8516 59.28

Table 3–1: The above table provides the average values of some complexity measures
for shock graphs. Results are generated based on 1664 2-D view-based shapes of 13
3-D objects.

comparison experiment against Shock Graphs, one of the most known applied skeletal

graphs. Our attempts to quantitatively evaluate the complexity of a flux graph have

been related to the measures as follows: the count of graph vertices, the count of

graph edges, the cumulative sum of number of nodes at each depth multiplied by

the depth, the depth, total number of skeletal points on the graph, and average of

TSV (topological signature vectors) values. Quantitative results of computing these

measures based on the data set used for this thesis are provided in tables 3–2, and

3–1. The efficiency percentage that flux graph contributes with respect to the shock

graph is presented in table 3–3. This measure indicates how much more efficient the

measure is for flux graphs over shock graphs, expressed as a percentage.
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Graph Flux Graph

Nodes Edges Σdeg(v)d Depth Skeletal points TSV Coverage

Alien 15.55 14.70 27.48 4.19 378.7891 35.40 0.99

Bull 15.62 14.62 27.14 4.41 409.4297 35.63 0.98

Camel 11.47 10.48 17.22 3.88 459.4531 24.79 0.98

Child 6.58 5.58 5.35 2.42 340.4453 11.15 0.99

Dinosaur 12.95 11.96 20.88 4.03 327.0312 27.80 0.99

Dog 15.20 14.48 19.94 3.85 328.8672 29.89 0.98

Dolphin 5.52 4.55 4.40 2.42 294.5938 8.83 0.99

Eagle 14.92 13.99 25.05 4.22 339.4297 31.33 0.99

Guitar 12.62 11.62 19.41 3.95 272.3047 27.28 0.99

Horse 12.73 11.87 17.91 3.88 370.6484 27.58 0.99

Kangaroo 11.83 10.86 16.58 3.55 358.0625 24.00 0.99

Knife 14.60 13.77 27.05 4.38 229.8594 33.94 0.99

Pig 13.86 12.86 21.85 3.93 362.1328 31.18 0.99

Table 3–2: The above table provides the average values of some complexity measures
for flux graphs introduced in this thesis. The final column on the right is the coverage
percentage of the original object, i.e., the ratio of the area reconstructed by the flux
graph to the area of the original shape. These results are generated based on 1664
2-D view-based outlines of 13 3-D objects [27], [23].

Nodes Edges Σdeg(v)d Depth Skeletal point TSV Coverage
Efficiency %49.87 %56.08 %59.99 %26.38 %24.08 %48.52 %99

Table 3–3: Average efficiency percentage of flux graphs over to shock graphs. These
measure are obtained by taking the ratios of the corresponding entries in Tables
3–1 and Table 3–2, subtracting those ratios from 1, and then averaging over all the
objects in the database.
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3.4.3 Matching 2-D Views of 3-D Models

In this subsection, the flux graph representations is evaluated against the shock

graph in a set of view-based object recognition experiments. This comparison is

followed by the same matching framework of [26]. The recognition task is followed

by: (a) Each view is one by one removed from the database (1664 2-D view-based

shapes), and compared to all other remaining views (b) if the class of closest the

matching view is the same as that of the query, then we have a correct recognition.

In the next sets of trials in each step, %25 of the total views are removed randomly

from the database. The same experiment is carried out with further subsampled

databases. Figure 3–6 plots the recognition estimation success rates for both shock

graphs and flux graphs, averaged over all views of all objects in the database. See

[27] for a more detailed explanation of the experimental set up.

Figure 3–7 provides some qualitative results for the discussed matching exper-

iment. These typical examples show that the flux graph representation offers the

advantages of efficiency in terms of fewer nodes, edges, depth levels and skeletal

points than shock graphs and other skeletal graphs, while still allowing for intuitive

part to part correspondences that appear to respect the hierarchy of parts in the

object.

In terms of quantitative results, shock graphs outperform flux graphs slightly

but this is because the matcher used in the experiment is tuned to shock graphs and

their detailed features (see Figure 3–6). In this experiment, the DAG matcher used

is not entirely appropriate for matching flux graphs because the geometry similarity
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measure is not properly suited for matching nodes in flux graphs, and also the greedy

matching algorithm does not exploit all hierarchical information.

In addition, presently there is a greater amount of commonality between flux

graphs than shock graphs due to the removal of ligature-like regions. This makes

matching flux graphs more tolerant (less sensitive) to small changes in viewpoint.

This builds a case for their use in view-sphere partitioning but it may be that they

are not yet suited for matching. More work needs to be done to investigate this issue.

In future work, one may conceive of developing a new node similarity measure

based on other parameters that could be extracted from nodes of a flux graph.

Furthermore, for the matching experiment, there is always the possibility of using
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various choices of graph matching algorithms based on the characterization of flux

graphs.
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Figure 3–7: Some examples of node correspondences found by the DAG matcher.
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CHAPTER 4

Conclusion

In this thesis, we extend the flux-based skeleton to achieve full boundary re-

construction in a manner that is efficient since the distance function computation is

optimized. In addition, we present a a novel simplified shape representation that can

be used to reconstruct almost all of the original object from a shape’s medial axis.

We consider the flux-based medial axis approach developed by Dimitrov et al.

[17], and we show that the method can be improved to perform skeletonization

process a number of times faster than the original method. This contribution paves

the way for tasks that apply the method on large databases of examples (e.g. the

representation and matching experiments done in Chapter 3). A fast medial axis

transform also benefits online algorithms by reducing the cost of computing a medial

representation.

Another contribution of this thesis is its boundary reconstruction for flux-based

skeletons. A comprehensive recovery of an object’s boundary supports the integrity

of a shape representation. In addition, a complete representation suggests a way of

directly relating medial quantities to boundary features, because the medial features

are easier to handle, to store and to compare with other represented objects than

shapes boundaries directly.

Furthermore, the uniqueness of an inscribed disk is introduced as a new mea-

sure of saliency that evaluates the importance of a skeletal point using only medial
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information. This contributes to the task of ligature analysis where the goal is to re-

move portions of the medial axis that are unstable in the presence of slight boundary

perturbations.

Using the uniqueness of the inscribed disk as a measure combined with the limit-

ing average outward flux, a novel approach for flux graph representation is proposed,

where skeletons of interest are simplified and abstracted as graphs that are much

simpler than popular skeletal graphs in the literature.

In contrast with methods that carry out ligature analysis based on the limited

number of configurations of the placement of ligature and non-ligature parts, our

investigation has the advantage that the notion of saliency is defined for each skeletal

point separately.

The representation has been evaluated by a matching framework designed for

shock graphs ([23], [24]) to recognize 2D views of 3D objects and we have shown that

flux graphs yield results that are almost as good as shock graphs.

4.1 Future Research Directions

To advance the representation proposed, one can incorporate some notions of

types for nodes. These types can be used later in implementation of node similarity

measures. Moreover, in order to efficiently utilize our representation for view-based

shape matching and object recognition, it is necessary to address the problems of:

(a) designing a proper geometry similarity measure, (b) applying a new matching

algorithm that is in accordance with the analysis of shapes with flux graphs, (c)

examining the use of our representation in more comprehensive problems of view-

based pose estimation and object recognition.
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The geometry similarity measure used in our framework to evaluate flux graphs is

the same as that used to evaluate Shock Graphs in [25]. The similarity measure used

is tuned in favor of Shock Graphs, which a new method of geometrical comparison

between nodes of flux graphs.

Like the geometry similarity, the matching algorithm used in our evaluation,

the greedy algorithm, is not the best choice. The greedy algorithm restricts the

ability of the matcher to find the best matching parts from examples. The topolog-

ical structure of a given shape can easily change and also may result in elimination

or creation of some fragments in the presence of small variations or within-class

deformation. Therefore, one potential improvement is to use a many-to-many corre-

spondence matching technique for a given pair of medial axis graphs.

The other direction that this representation can be used for is to examine changes

in pose estimation of 2D view based outlines of a 3D object. In summary, we believe

that the established ability of the flux graphs can be further extended in problems of

ligature detection, matching, and pose estimation with larger databases of examples,

as well with a matching framework better suited for this kind of representation.
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