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Abstract

This thesis deals with the development, analysis and application of a new method
to optimize the allocation of jobs on machine tools. The benefits of this method
are derived through time-decomposition of the scheduling horizon.

The decompecsition scheme is based on the scheduled flow of jobs we., the
input of jobs to the shop floor and their departure after processing. The par-
titioning procedure divides the planning horizon into ‘stages’, or time periods,
at which the job-mix remains consiant. The optimization of job allocation is
carried out within each partition and successive stages are treated sequentially.
The dynamic nature of the problem is such that the solution at a stage affects
the boundary conditions of the subsequent stage. The Constant Jobh-Mix Stage
(CMS) algorithm developed to solve the job allocation problem, accounts for the
setup times and enables one to obtain integer solutions while reducing slack on
machines and enforcing due date on jobs.

The application of the algorithm is demonstrated for three different cases.
The first two cases focus on single operation jobs and represent two different
approaches to scheduling. The former is concerned with scheduling jobs from
starting times illustrating ‘push’ system while the latter is due date driven, rep-
resenting a ‘pull’ system which corresponds to the just-in-time (JIT') philosophy.
The third case deals with the assignment of multiple operation jobs to machine
tools which are grouped according to processes. The results indicate that the
optimization based on the constant job-mix stages, leads to increased utilization
of machine tools, higher production rate, with shorter makespan of individual
jobs and reduced computational time.

The possibility of interfacing the CMS algorithm with the other components
of manufacturing systems is also discussed. The opportunitics for the enhance-
ment of integrated intelligent systems, through open and feedback loops arce

pointed out.




Résumé

lette these traite du développement, de analyse, et de Uapplication d’une nou-

velle méthode pour optimiser la répartition de taches sur des machines-outils.
Les avantages de cette méthode proviennent de la décomposition temporelle du
calendricr de planification.

Le plan de décomposition est basé sur le flux planifié des taches, c’est-a-dire
sur arrivée de taches dans Vatelier et leur départ une fois accomplies. Le pro-
cessus de fractionnement divise le calendrier en étapes ou intervals de temps
pendant lesquelles le job-mir reste constant. L’optimisation de la répartition
des taches s'effectue au sein de chaque fraction et les étapes successives sont
traitées de fagon séquentielle. La nature dynamique du probleme est telle que la
solution adnptée a une étape affecte les conditions aux limites de I'étape suiv-
ante. [’algorithme CMS ( Constant Job-Mix Stage ) développé pour résoudre le
probleme de répartition de taches tient compte des temps d’installation et permet
d’obtenir des solutions enticres tout cn réduisant les temps-morts des machines
et en assurant ’accomplissement des taches avant leur date d’échéance.

I’algorithme peut s’appliquer dans trois cas differents. Les dcux premiers
cas ne concernent que les taches ne comportant qu’une opération et représentent
deux approches différentes de planification. Le premier concerne la planification
des taches a partir des temps de départ, illustrant le systéeme “push ”, alors que
le sccond est basé sur la date d’échéance, représentant un systeme “pull ” qui
correspond au prinape du Juste-a-Temps. Le troisieme cas traite de 'affectation
de différentes taches sur des machines-outils regroupées par procédé. Les résultats
montrent que Poptimisation basée sur les étapes & job-miz constant conduit & un
taux de production plus élevé avec un temps total d’accomplissement de chaque
tache plus court et un temps de calcul moins imy ortant.

La question de la communication entre l'algorithme CMS et d’autres com-
posantes du systéme de production est traitée aussi. Les possibilités de renforcer
les systemes intelligents intégrés grice a des boucles ouvertes et des boucles

fermées sont également discutées.
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Statement of Originality and Contribution to Knowledge

The anthor of this thesis claims originality for the development of the followimg,

concepts:

- The development of a new method to partition the schedubing hotizon The
scheme is based on the scheduled flow of jobs, theit input and ontput from

the shop floor, such that the partitions have constant joh-mis.,

- The dynamic optimization principle The optimization procedure moves
from one stage v the next providing a link between the stages, exposing

the dynamic nature of the problem.

The constant job-mix stage (CMS) algotithm developed on the basis of the
above two concepts, 1s construed as an original contribution to the field of pro
duction systems. This algorithm enables one to obtain integer solutions, reduces,
slack on machines and enforces due dates on jobs. An equation is derived to com-
pute the computational time savings when CMS algorithm is applied for «ingle

and multiple operation jobs, in comparison with aggregated approach.
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Chapter 1

Introduction

1.1 General Remarks

Job allocation decision is a very important activity in the production planning
function of a manufacturing environment. It has particular implications to the
machine tool utilization, factory efficiency , product quality and ability to meet
duc dates.

Because of their sensitivity to various performance measures, job allocation
decisions are quite complex. Several methods and procedures are being developed
to meet this challenging problem. As a result, there are a variety of solutions
suggested, cach analysing the problem from different perspectives and with dif-
ferent degrees of complexity. These procedures involve substantial amount of
mathematical calculations and the use of computers help to a large extent in

the development and application of solutions. Yet job allocation is one major




function which has not taken fuli advantage of computerization in a manufac-
turing system. The current research in this area includes not only optimizing
the job allocation function, but also integrating the other components of the
manufacturing system with this function.

Job distribution on machine tools is a short range capacity decision assigning
jobs, activities or tasks to available resources (machine tools). The result of this
process is a timetable which describes exactly where and how much of each task
should be performed. In addition, the schedule details regarding the commence-
ment of each task and its duration, serve to obtain a better knowledge of the
flow of jobs on the shop floor. The process of job allocation helps to provide pro-
duction control by determining the load on machine tools and hence to identify
the bottlenecks on the shop floor.

In the production planning function, job allocation should be clearly differ-
entiated from job sequencing as the term ‘scheduling’ is often used to represent
both these activities. The purpose of job allocation is to distribute jobs on ma-
chine tools such that the available capacity (of the machine tools) is efficiently
and effectively used. The purpose of sequencing is to determine the order in
which the jobs or tasks have to be performed on a machine tool in order to best
satisfy some criteria like minimum makespan of jobs, minimum tardiness, etc.
The job distribution function being aun allocation decision, uses the information
made available by the aggregate planning and facilities plauning. This involves

1ning for all production line over approximately one year ahcad. Thus, job-




resource allocation is the most constrained decision in the hierarchy of capacity
planning decisions.

Conflicting objectives are often the characteristics of job allocation decisions:
high cfficiency, low inventory and compietion of all the tasks or jobs wi hin
the due dates to ensure prompt customer service. Efficiency is achieved by a
job allocation schedule which maintains high utilization of labour, equipment
(machine tools) and space. Of course the schedule should seck to maintain low
inventorics, which may lead to low efficiency due to lack of available material
for pracessing, or high setup times. Thus a trade-off decision in job allocation
function between high efficiency and low inventory level is required. The primary
aim of job-resource allocation decision is, therefore, to make a balance between
conflicting objectives so as to arrive at a satisfactory performance of the overall
manufacturing system.

Job allocation is not only influenced by several factors, but also highly depen-
dant upon the decisions made elsewhere in the plant. Apart from these decisions,
various factors constrain it by adding complexity. As a result, existing job al-
location problem sclution procedures are sub-optimal. This is because (1) the
factors which influence the decision process are simplified in order to reduce the
complexity (e.g., setup times being considered as a part of processing times) and
(2) the dimensions of the problem are reduced so that a computational solution
is feasible. These approximations often produce unrealistic, unsatisfactory solu-

tions. Therefore the importance of developing a simple, computable but realistic




general solution procedure must be emphasized.

Since the job allocation function also mfluences several other components of
the manufacturing system, it is imperative that it provides the most favourable
conditions for the other activities. In this context, an optimum solution for job
allocation is desired for a specific performance criteria. lu existing procedures
the search for optimum job allocation is the main cause of difficulties in computa-
tional solution. Thus the increase in complexity of job allocation problems leads
to sub-optimal solutions. However, reasonable approximation is acceptable be-
cause optimal job allocation is diflicult, often impossible. In most citeumstances,
the optimization tools are combined with a set of rules. Such a procedure pro-

duces acceptable results while meeting the defined ciiteria.

1.2 Motivation for the Study

The job distribution function helps in several aspects of decision making. It aids
in determining the type and amount of resource (machine tools) requitement,
additional capacity needed and thereby to identify the bottlenecks. Tt is essential
that the job distribution in a manufacturing system is cartied out efficiently
because in many circumstances the necessity to procure additional facilities can
be postponed by efficient loading of existing machine tools.

While scheduling problems of varying degrees of importance occur in all types

of systems, they are particularly complex in job shops. A job shop is a process




2.3

focused production system that employs general purpose machine tools. Some-
times, in an open shop, production is commenced based on custorners’ orders.
At other times, in the case of closed shops, it is based on inventory replenishment
decisions. In a job shop a large number of different products are processed, cach
in a specific lot sizes. First come first served, random selection and other priority
rules to load jobs on machines may not be applicable for all situations and some-
times they will prove unacceptable. This will result in delayed deliveries and
unbalanced utilization of resources. A clear understanding of the job allocation
procedures at the most detailed level will help to alleviate these difficulties.

Job shops are characterized by the variety of jobs that has to be processed on
limited resources and the set of tasks performed on each component differs widely.
This leads to an increase in the dimension of the problem when optimization
is attempted using tools like linear (L.P.), or other mathematical programming.
Morcover in many situations the time and cost parameters governing the problem
are assumed to be constant over the entire scheduling horizon. This is unrealistic
especially when the horizon spans a long period. Hence it is imperative that a
new procedure be developed to partition these problems such that the random
changes in the variables are accommodated. In a job shop, sctup times are
significant due to the variety of jobs that are processed and the schedule is
dynamically asynchronous becausc jobs have different arrival and completion
times.  An efficient job allocation procedure should address these issues apart

from optimizing the assignment.




i A compntetized production management wformation system called Manufac
tuting Resource Planning (MRP 1) has heen nsed with varving, degtee of stccess
by some of the large production plants  Since job shops usnally schedule pro
dnction for specifie customers, on specific set of machines, on the hasis of the
orders 1eceived, NIRP 1T was found 1o be less applicable. Moreover, the Master
Production Schedule (MPS) generated by the MRP H system leaves the machie
loading function to the foreman and this often results in the under ntilization of
the machine tools. Henee it is necessary that the job allocation function is not
only optimized but also flexible enough to he able to integrate with other activg
ties of the operations scheduling thus antomating the entire production plannimg
module. Such a link would enhance the system performance constituting an
portant step towards the integration of information flow in computer integrated

mannfacturing (C'IM).

1.3 Thesis Outline

The main objective of the thesis 1s to develop a new procedure to optumee the
allocation of jobs on machine tools. The effectiveness of this procedure s hroneht
about through a decomposition scheme which partitions the planning honzon into
divisions. based the scheduled flow of jobs. The decomposition scheme leads 1o
the development of an algorithm to solve job allocation problems and hrings 1o

) light the possibility of integrating this with other production planmng fune tions,

wsevetl
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thus enhanang CIM.

The importance of the planning function in a manufacturing environment
and the role of job allocation in the capacity decision function are explained in
chapter | The motivation for the study of these problems, how it aids in various
decision making processes are also discussed.

Chapter 2 provides a critical review of the work done on the problem of job
allocation problems  The chapter concludes with an evaluation of the limitations
imposed by several of the existing solution procedures. It appears that because
ol the constraints and limitations involved in selecting the parameters, existing
procedutes tend not to represent a realistic job shop environment. In this part
of the thesis an attempt is made to improve the situation.

Chapter 3 discusses the need for partitioning the scheduling horizon and the
principles underlyving a proposed scheme. The time decomposition scheme based
on the scheduled flow of jobs is described in detail. The chapter also presents the
dynanue optinnzation principle which functions within cach partition to allocate
jobs on machine tools. The benefits of the partitioning scheme and dynamic
optimization principle arve described.

The algorithm based on the partition procedure and the dynamic optimiza-
tion principle which were described in the previous sections, is outlined in Chap-
ter 1. The L.P. model for the job allocation problem is formulated and explained
in detail. The functions of the algorithm and its constituents, namely, the lincar

program and heuristics are presented.

-1
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l Chapter 3 contams the demonstration of the algotithm application to sngle
operation scheduling problems. The signiicance of single opetation jobs, the
possible applications of the problem s described. The nmmet e al examples lins
trate the application of algorithm for a case ol multiple jobs Cases whete hoth

the starting and completion times of jobs ate known and when only the comple

tion times are known. are analyzed. .\ sample contiol program tised to solve the
L P.and the summary of computational results are provided appendices \
and B respeetively. The chapter concludes with the discussion of resnlts whete
these are compared with those of standard practices, Compnutational aspects are
highlighted.

Chapter 6 deals with the multiple operation job shop which s an extension
ol its single operation counterpart. The LP. formulation and the flow «hart
of the algorithm. modified to suit multiple operation job shops. are provided
A numerical example demonstrates the application of the aleonthin to sudh a
case. The results bring to light the benefits of the algonthm over the Shortost
Processing Time (SPT) rule.

The possibilities of incorporating the partitionme scheme and the optimiza

tion algorithm into intelligent manufactaring system is discnssed chapter 7

The various factors that should be considered while designimg such an incorpo
ration are also described.
("hapter 8 presents conclusions that may be drawn from the study tepotted

I in the thesis, as well as recommendations for futnre 1escarch work,
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Chapter 2

Job Allocation - State of the Art

Review

2.1 Literature Review of Studies on Job Allo-

cation

The job allocation problem falls into the general category of job-resource assign-
ment. A vatiety of taxonomic procedures have been provided for dividing job
allocation problems. Based on the processing complexity Graves [1] classifies the

ptoblems as:
. One operation, one processor
2. One operation, multi-processor

3. Multi operation job shop, tasks performed with identical precedence.

9
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4. Mult1 operation job shop, tasks petformed without any precedence con-

straints.

In a multiple operation manufactuting environment the job allocation problem
has the most complex form: there are no restrictions on the processing steps for
a task and alternative routings are allowed. This may be due to the completely
general nature of the multi-operation job shop category; however, for production
lines which are limited by a bottleneck section, simpler categories like single
operation problem are important.

A standard approach to job-1esource allacation problem is through the ap-
plication of lincar programming. Typical for this approach are the works by
Horn {2] and Powell [3]. The formet formulates the parallel machine tools, sin-
gle operation job shop scheduling problem as an assignment model. The linear
programming formulation with minimum mean flow time criterion converts the
model into an assignment problem. A similar approach is followed by Powell
where a simple linear programming model to minimize the productive cost is
formulated.

For a case of two identical machines Lawler and Mattel {1] search for allocation
to satisly minimum late job requirement. In a three step algorithin the jobs
which are subjected to deadlines are schedules within the fixed time interval
besides minimizing the number of late jobs. Since the procedure involves listing
all possible schedules, it is a tedious approach and this becomes increasingly

complex as the number of jobs increases. When M identical machine tools are

10
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nsed to process N jobs, McNaghton [5] provides a solution procedure in which a
loss function is defined for cach job. The value of this function is proportional to
the time between the deadline and the actual completion of the job: it is zero if
the job is processed within the deadline. The jobs are assumed to be preemptive.
However no examples were provided to demonstrate the solution procedure nor
was the complexity of the procedure discussed.

Lincar programming deals with a static matrix of jobs and machines, which of
course, represents a fundamental constraint, resulting not only in the departure
from realistic situations, but also leading to increase in the size of problem. In
order to tackle such large problems several techniques have been proposed to
partition the planning horizon which will result in sub-problems of smaller size.

Perhaps the pioneering work in decomposing a general multi-stage linear pro-
gramming problems was carried out by Dantzig [6]. The scheme consists of
dividing the planning horizon into stages of equal time period and a siatus vec-
tor defined at the beginning of each division such that this provides the only
connection between the stages. While the local optimum solutions are obtained
by lincar programming, global solutions are obtained by a master program us-
ing parametric programming. However, as Dantzig indicates, when the decisions
are ticd together by more than one variable this approach becomes tedious. An
improvement in this procedure is suggested by Lasdon [7] in which the large
number of columns of the L.P. model are handled by column generation through

sub-problems instead of formulating a master program. Although it is claimied

11




that the number of iterations required to solve the problem is reduced by a facton
of two in comparison with that of Dantzig, the computational complexity is quite
significant in both these cases.

Although it is not confined to job assignment problems Wagner [8] addiesses
the issue of solving linear programming problems containirg multiple but iden-
tical time periods. The variables are assigned unique subscripts for cach time
periods and hence for p periods there will be np terms in the objective function,
where n is the number of actual variables. Unfortunately the variables of all
time periods are combined, and this approach will therefore not provide stage
sub-problems representing each time period.

A partitioning scheme based on the arrival and completion times of jobs is
another approach to solve job allocation problems. Nasr and Elsayed [9] suggest
a partitioning scheme based on the finish times of jobs. All jobs are assumed
to be non-preemptive and integer programming is used to solve the assignment
problem. Integer programming solutions, however, arc computationally inten-
sive. To deal with the machine loading problem Jain ¢l al. [10] divide the
planning horizon into partitions of equal time durations, say months. In an inte-
grated scheduling system the machine loading is carried out by an L.P. with an
objective to maximize production and then employing heuristics to construct a
feasible schedule for sequencing jobs at various work centers. The monthly sub-
problems are however, aggregated and the L.P. is solved for the whole planning

horizon.

12
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Network graph technique is yet another method to solve the job distribution
problems. Dorsey ct al. [11] addresses the problem of assigning the jobs to several
identical machines over a definite time horizon. The optimal solution is arrived
at by an initial integer programming formulation with a minimum production,
inventery and backorder costs criteria. Subsequently the model is converted into
a network graph problem and solved. However, from the computational view
point solving integer programming problems is tedious. Iwata ef al. [12] treats
the problem of assigning jobs to machines using network graph and an algo-
rithmic procedure consisting of two dispatching rules, namely: earliest finishing
time (EFT) and its extension which considers alternate routings, EFTA. These
proposed rules provide shorter makespan (makespan of a job is the time between
its entry into the shop and its departure after processing) than other dispatching
rules, the schedule is not however constrained by the due dates of jobs. As a
result the setup times are added to the schedule after the assignment is carried
out. When setup costs are considered in the schedule, mixed integer program-
ming is used by Dilts [13] to solve the combined problem of lot sizing and job

allocation.

2.2 The work of M. Alaee at McGill University

M. Alace [14], in order to formulate a procedure to solve job allocation problems,

developed a method to partition the scheduling horizon based on the flow of

13
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jobs (i.e., input of jobs and their departure after processing). According to this
decomposition scheme the partitions are defined when a job enters the shop or
when it leaves after processing. Thus within the time duration of the partition
the product-mix on the shop floor remains constant.

The jobs within each partition are denoted by unique subscripts. When the
same job moves to the next partition, it assumes a different subseript. The job
allocation is carried out using an linear programming model with an objective to
minimize makespan. The constraints for this L.P. arc the time available on the
machine tools during each partition and the total number of jobs processed

Alternate routings are allowed 1.€., a job can be processed on different ma-
chines. However, the machines are not identical and hence the processivg times
of the same job on different machines are not the same. The setup times are
accounted for in the schedule by subtracting the sctup time of cach job a prioni
from the available time on each machine. Thus irrespective of whether the job
is loaded on the machine or not, setup times are deducted.

The solution procedure aggregates all the partitions: the L.P. contains the
terms for all the partitions, both in the objective function and in the constraints.
This precludes full exploitation of the advantages of the partitioning procedure
fuily. The scheme presented in this thesis is based on this concept; in addition
setup times are taken into account. An algorithm is developed subsequently to

solve the sub-problems sequentially.

14




2.3 Concluding Remarks

In the proposed allocation models, one or more of the following drawbacks are

noticed:

I.

o

In some of the works it is assumed that setup times are part of processing
times.  However, job shops are characterized by a variety of jobs which
consume a considerable amount of setup time. It is difficult or sometimes

impossible to incorporate setup times/cost along with processing time/cost.

When several jobs are considered together, they are assumed to be available

simultancously and have a common completion time.

. Alternate routings are not permitted and hence there is no chance of pre-

emption. The jobs have to wait until the appropriate resource i1s free to
load. However, in reality the resources in a job shop are flexible enough
to handle a variety of jobs and hence there are alternate ways to process a

job.

. Most of the work done in the field of job shop scheduling, both for single

and muitiple operations, assume that processors are identical.

. In cases where quantity processed is the optimization criterion, obtain-

ing integer solutions was found to be difficult. Some authors uses integer
programming models for which the computational effort required is high,

particularly when the size of the problem is large.

15
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Scheduling problems are solved for definite time hotizon. So all the patan-

eters within that horizon are assumed to be constant.

7. When network graph technique is used in conjunction with heuristies o
solve scheduling problems, it was noticed that the computational effort
increases for large scale problems. This is because the tec hnique involves
listing of all possible schedules and selecting the best among, them, for a

given criterion.

Similar computational difficulty is expetienced when dynamic programming,

appioach is used.
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Chapter 3

Time Decomposition and

Dynamic Optimization

3.1 Necessity for Decomposition

The problem that is often encountered in linear programming (L.P.) formulations
of job allocation is that the jobs are assumed to be available at time zero and all
jobs hiave common completion times. Since job shops are characterized by parts
that arrive at different times and have different due dates, this assumption may
not hold good on most of the occasions. When L. P. formulation is attempted
accounting for such job arrivals and departures, the number of variables increase,
making the computational procedure difficult. The new partitioning scheme
should address these drawbacks and also include the new jobs in the schedule as

they arrive into the shop.
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Maintenance for machine tools in a job shop can be scheduled at specific
time periods within the planning horizon. The machines will not he available
for processing the jobs during maintenance petiods and a job allocation schedule
should accommodate this by taking into account the starting times and duration

of scheduled maintenance. When the planning horizon is large, it is found to be

difficult to incorporate time periods during which the machines are not available.

For practical job allocation problems, computer storage may be an important
consideration. These probleins may sometimes requite matrices of a size that tas
even large, modern computers. In general, all these job allocation problems span
a definitc horizon and if such a problem could be divided into smallet problems,
then the computational effort can be reduced. However, while partitioning the
scheduling horizon in this fashion, the sub-problems should he linked in such a
manner that there exists an effective coordination between then.

It should be noted that the parameters such as processing time, setup time
and the associated cost, tend to decline as the learning curve progresses. Another
reason for this decline could be the technological advancement of opetations
methodology. A linear programming formulation must however assume that
these parameters are constant for a given time horizon. In the short run these
may not affect the performance of the job allocation solution, as the time elements
can be assumed to be fairly constant. However, if the time elements and the costs
associated are variable or discontinuous over the full range of scheduling horizon,

then the assumption of linearity will not provide a realistic solution. Henee, it
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is often practical to segment an clement of the time horizon and assign different
time and cost values to cach of the segments thereby approximating the behaviour
of variables which are not constant. The immediate effect of such decomposition
will be the increase in the size of the variable matrix and hence the computing
time required to solve the problem.

Some progress has been made in developing methods for solving integer vari-
able problems. While it can be stated that theoretically these methods will
ultimately yield integer solutions, even small problems have been found to re-
quire great many iterations and huge computer memories. Real life problems
demanding integer solutions should be solved using approximations such that

the solution procedure is economical.

3.2 Time Decomposition Scheme

The jobs (new materials and components) arrive in the shop for processing on
a suitable and available machine tool according to their respective process plan
and schedule defined by the order releases and due dates. When considering
the allocation of jobs on the machines, one should notice that their arrival and
due dates are spread throughout the planning horizon. This neans, the job mix
on the shop floor is changing with time. As mentioned earlier, this situation
complicates the L.P. formulation, which is a simple way to find the optimum

solution for job-resource allocation problems. There are, however, time periods
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within the planning horizon, when the job mix on the shop floor temains constant

Such periods occur when no new jobs arrive or a finished one leaves the shop
floor. 1t is therefore possible to decompose the time of the planning hotizon
into constant job-mix stages. Any job arrival or departure means a change m the
product mix on the floor, and therefore such an event marks the beginning or end
of the stage. A job arrival to the shop floor o1 departute of a finished component,
is an evenl. A stage is defined as the time interval between two events, duning
which the product mix is constant. A stage can also be formed by conseentive
arrivals or consecutive departures of any jobs. Thus the planning honizon can be
divided into constant job-mix stages (CMS) based on the scheduled flow of jobs.
It 1s apparent that with N jobs considered, there could he upto 2N — | stages.
The concept of constant job-mix stages (CMS) formed by the time decomposition
method is illustrated in Fig 3.1.

The time and cost factors are assumed to be constant within a stage. This is
valid as it provides a reasonable approximation for any existing variables whose
values are changing with time, and also allows for a step change at an event
occurrence.

The division of the scheduling problem into stages (time periods when the

job-mix is constant) has its advantages:

1. By partitioning the scheduling horizon based on the flow of jobs, cach
division has a constant mix of jobs. The dimension of the L.P. formulation

is reduced because of this partitioning scheme,
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21

=

Stages




Y

2. Factors like machine availability and alternate rontings for jobs can be

incorporated accurately as these are defined within cach partition,

3. Smce allocation of jobs on madchine tools is carnied ont as soon as the
components arrive ou the shop floor, it is casy to incorporate setup times,

and this provides a realistic schedule.

1. From a computational viewpoint. it is profitable to partition the scheduling
horizon and solve the sub-problems, since the computational effort and the

time required to solve an L.P. is proportional 1o the size of the problem

3.3 Dynamic Optimization Principle

The decomposition of the planning horizon into constant jobh-mix stages, opens
the possibility of using L.P. to uptimize the job allocation on machine tools fol-
lowing the time-based schedule. The optimization can be carried out within cach
stage, with the output of one stage forming the input for the subsequent stage,
in addition to the basic positive or negative input defining the beginning of this
new stage. The job allocation solution of the L.P. indicates the quantity of jobs
to be processed on the available machine tools. This is deducted from the to-
tal demand quantity in order to obtain the remaining quantity to be processed
during the subsequent stages and this forms the input for the next stage L.P.
Considering that such a link between the stages continues throughout the plan-

ning horizon, from stage to stage, the dynamic nature of both the problem and
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the optimization procedure 15 apparent, and hence the procedure can indeed be
called as dynamae optimazation.

As will be seen in the following chapters, the optimization of job allocation
within cach stage provides a more compact schedule. While this leads to com-
pressing the schedule towards the due dates with backward decomposition, it
provides a schedule compressed towards the starting dates when forward decom-
position is carried out. The former corresponds to the just-in-time philosophy
with reduction of slack and wotk-in-process (WIP) inventory as its effects. The
latter procedure provides carly shipment dates for orders and permits loading

additional jobs on machine tools during the spare time.
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Chapter 4

The Job Allocation Algorithm

4.1 Introduction

Based on the time-partitioning scheme and dynamic optimization principle, an
algorithm is developed to optimize the allocation of jobs on machine tools. The
algorithm consists of two parts; the first part is the allocation problem which
is formulated as a linear programming model and the second, a heuristic which
will account for various functions, like: incorporation of sctup times, obtaining
integer solutions ete. The job allocation procedure can be viewed as a decision
making process, in which the quantity of cach job to be loaded on a particular
machine tool is to be determined. Consequently, the decision making process is
exercised over a discrete set of events in the scheduling horizon. In cach sub-
problem, the set of jobs (operations) available for allocation is considered and

the assignment for those jobs to machines is obhtained with consideration given
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to local constraints like machine availability, capability and time available on

machines.

4.2 L.P. Formulation

The job allocation problem within each stage is formulated as a linear allocation
model, with an objective to maximize the production rate of all the machines.

The constraints for the L.P. are:
1. The production quantity should match the demand,

2. The time of processing of all the components on every machine cannot

exceed the stage time period.

Some machines might not be available throughout the stage duration. When a
machine tool is not capable of processing a particular job and/or when a machine
is not available, the machine availability index r,, and processing capability
index s,,, guatantee that the objective function will contain only the valid non-
zero terms. In all the equations found in the L.P. formulation which follows, the
subscript 7 denoting the stage is unique; hence there will be P stages representing

the entire problem. The L.P. formulation for a single stage job allocation problem

1s as follows:
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M N
Maxr { Z ( E 7'nn3,1mXUm)}

m=1 j;=A
subject to:
M
Z 7'nn33mXum < QJ J = A, B, ,N
m=1
N
Z 7'1m31mRJmX1]m < Tim m=1,2,.,M
1=A
X!Jm 20 j:A,B,...,IV

m=1,2,..

The first set of constraints state that the quantity of any job processed should
not exceed the demand quantity. For components which are due by the end of the
stage the demand is met by cquating the quantity processed to the remaining
quantity t.e., in the demand constraint the < operator is changed to =. The
second constraint set requires that the machine hours utilized in any stage should
not exceed the capacity available on cach machine tool. The last one is a non-
negativity constraint for the quantity of any job processed in a stage.

The linear programming formulation of the allocation model is somewhat, sim-
ilar to the generalized transportation problem. The constraints are not equations

but are inequalities which must be augmented by slack variables. Although the
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solution of a transportation model yields integer solutions directly, the allocation
tableau is large and sparse. Storage and/or data accessing problems may arise.
The allocation model belongs to a special class of transportation problem
called the multi-divisional problems which exhibit a special block angular struc-
ture (Hillier and Lieberman [16]). Each smaller block contains cocflicients of the
constraints for one sub-problem (one sub-problem represents one stage). Since
the divisions operate with considerable autonomy, the problem is decomposable
into separate problems, where each division is concerned with optimizing its own
operation. The decomposition scheme makes use of this special structure in order
to svlve the allocation problem. Moreover, the scheme also provides a schedule

which is not bounded by time. Such an open ended schedule permits loading of

jobs on a continuous basis, thus enabling realistic and short term scheduling.

4.3 Setup Time Incorporation

Setup times are incurred whenever a machine tool starts to process a new com-
ponent. If the lot is split among many machines, then all those machine tools
undergo a setup. The job allocation problem is more difficult to solve when setup
times are considered. For a given problem and ignoring the setup times, it is easy
to test whether or not a feasible solution exists by comparing the cumulative de-
mands to the cumulative capacity for all time periods and facilities. With setup

times taken into account, the scheduling problem under consideration is found
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to be NP-complete i.e., cannot be solved in polynomial time (Garey ef al. [15]).

Setup times are significant parameters in a job shop manufacturing environ-
ment. This is due to the fact that a variety of components are processed in a
job-shop. Setup times in job shops take more time than in other kinds of man-
ufacturing environment. This is because job shops are flexible in processing a
variety of complex jobs. Obviously, this will have an impact on meeting the due
dates, especially in cases where the setup times are more than 500 times the
processing times, which is often the case.

The setup times are incorporated after the initial allocation of jobs on machine
tools is carried out. This is because, in order to assign setups, it is essential to
know which jobs are loaded on which machines. After assigning the approptiate
setup times on machines, the job allocation schedule is generated once again to

obtain the final solution.

4.4 Other Functions of the Algorithm

The other {unctions of the algorithm, apart from setup time incorporation are:
providing integer solutions, updating demand quantity, reducing slack on ma-
chines, enforcing due dates for jobs and providing a link between the different
stages. Since the job allocation is solved using lincar programming, the solition
contains real variables and this is unsuitable if only integers are admissible. Tn or-

der to obtain integer values, the variables that enter the L.P. solution are rounded
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ofl to the nearest smaller integer. In other words, the variable is truncated. A
cumulative effect of this might build slack on the machine tools. However, the
CMS algorithm also accounts for slack reduction by reassigning jobs on machines
where slack exists. The necessary condition for this, of course is, that the required
setup exists on these machines for a particular job.

Since the stage time durations are considerably less than that of the planning
horizon, the total demand quantity may not be processed within a stage. The
CMS algorithm also updates the demand quantity of jobs at the end of every
stage by deducting the quantity that has been processed during the stage. The
remaining demand quantity to be processed in the subsequent stages, is the
parameter which provides the link between the stages. The CMS algorithm also
enforces the due dates for jobs which are due by the end of the following stage,

by changing the < operator in the quantity constraint to =.

4.5 Algorithm Procedure

Once the starting dates and due dates are known, the stages can be determined.
The L.P. model of the job allocation problem for the first stage is then formed
and solved. Based on the job allocation to machines in this stage, the setup
times are deducted from the assigned time for each machine and the L.P. model
is iterated. If there is no change in job allocation, then the quantities processed

on cach machine are truncated to integers. Slack reduction on machines which
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have idle time and the due date enforcement is then carried out by reallocating
the jobs to machines. The demand quantity is then decreased by the quantity
processed during the stage and constitutes the quantity to be processed in the
subsequent stages. The quantity of all components processed during the next
stage is equated to the demand quantity, for all jobs which are due by the end
this stage. These procedures are iterated until the job allocation in all the stages
is completed. The following algorithm provides the steps involved in the solution

procedure.

Step 0: Formulate the Linear Programming (L.P.) model for the first stage .
Step 1: Solve the L.P. model.

Step 2: Based on the assignment of jobs, deduct setup times from the assigned
times. If setup already exists on the machine, then do not dednet setnp
time.
if X;m >0and X,_y,,, >0, then 5,,,, =0
for job j having setup on machine m. Otherwise,

(Ttm)new = (sz)o{d - ng.—.A Sim
Here, (Tim),q refers to the available time on machine m during stage ¢,

before setup time incorporation.

Step 3: Solve the modified linear program. If the solution obtained indicates the

same job allocation pattern as observed in step 1, the solution is chosen.
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Otherwise go to step 21.
Step 4: The quantity processed during the stage is integer truncated.

Step 5: If the current stage is the last stage for component j, and if the quantity
processed is less than the demand, then distribute job j on machines which
accept, loads other than j.

Il after rounding off, the following conditions exist:

L oot Xom £ Q,
2. 1 1s the last stage for component j.

3. ﬂm - Z;V:A(RJ111Ar1_17n) S R]m

then,

(T'!m )ncw = (T"n)old - (Ol X RJm)

(‘X‘Jm)new = (X"Jm)old t o
for machines which accept load components other than j.

where o = (@, — 1,‘,1’=1 Xigm)-

INote that the steps 2 and 3 in the algorithm will not loop Once the setup time is
ncorporated, the available time on machines is reduced, thus fewer jobs are allocated on the
machines during the next iteration The pattern of allocation often remains the same causing
the algorithm to go to step 4. Looping can happen only when the stage duration 1s less than
the setup tune. But when this happens, either the job processing is postponed to subsequent

stage or the entire stage duration is consumed for setup on the machine.
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Step 6: If there is slack on any machines, load job for which setup already exists

on that machine; i.c., if the following conditions exist:

N e
fTu T lg=A )\umen > R_]m and,

M 4
;nzl Al_)m S QA

then,

-

(4\ YMew — (‘\'U"")old + a

1
< 717!1 s

provided, (Xim)yy X Bym

where  0<a<Q4-3M X,

m=

Step 7: If this is the last stage, then terminate, clse proceed to step 8,

Step 8: For all X,,,, in the solution, subtract the quantity processed from the

de-

mand quantity to obtain the remaining quantity to be processed in the

next stage?.

Step 9: For any component which has due date during the end of next stage the <

operator in the time availability constraint is changed to =.

Step 10: Form the L.P. model based on step 8 and step 9. Go to step 1.

2The steps 9 and 10 belong to the next stage.




o g

Chapter 5

Application of Algorithm to

Single Operation Job Shops

5.1 Analysis of the Problem

The single operation, multiple job scheduling problem is an important general-
ization of a job shop. The task or operation requires one processing step which
may be performed on any of a number of similar machine tools. In a production
line, the different operations performed on a particular job need not consume
the same amount of time. A slower operation in an unbalanced line constitutes
a bottleneck. The output of a bottleneck (slowest) operation decides the output
of the entire production line. In such situations, it may be sufficient to consider
only the bottleneck operation and analyze it If the cause for bottleneck can

be attributed to ineflicient loading patterns, job allocation can be optimized on
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this operation using the CMS algorithm. Besides incieasing the throughpat, this
exposes other existing problems in the production line. This aids in solving the
problems, thus enhancing the throughput and efficiency of the overall shop.
The theoretical insight obtained by analyzing the single operation job allo-
cation problem is helpful in tackling more complex problems, These serve as
building blocks for understanding the decision processes involved in multiple op-
eration job assignment problems. Individual optimization of single operation

jobs may provide a global sub-optimal solution.

5.2 Problem Definition

The classic multi-item, single operation, multi-machine tool job allocation prob-

lem can be stated as follows.
1. There are N items to be scheduled.

2. There are M machines which arc not identical. These machines may o1

may not be capable of processing all the N jobs.

3. Unit processing time Ry, is incurred when the machine m (m=1, 2, 3,.

ey

M) processes job j (j=A, B, C,..., N).

4. Setup time S,,, is incurred whenever a machine m starts processing a new

job j. Setup times are unique for a particular job on a particular madune.

5. Due dates are specified for each type of job.
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6. The demand quantities Q,(j = A, B,C, ..., N) for all jobs are known.

7. All machines may or may not be available throughout the planning horizon.

5.3 Scheduling from the Starting Times

In situations where job arrival times are known, scheduling jobs from the start
dates is prudent as it determines the actual completion date of the operations.
The jobs are processed as soon as they arrive on the shop floor. This provides
a loading pattern in which the schedule is compacted towards the start dates.

Early shipment dates for all the orders is an obvious result of such schedule.

5.3.1 Numerical Example

A case of four jobs to be processed on four machines is considered to demonstrate
the application of the algorithm described in Chapter 4. Each job undergoes only
one operation and there are alternate machines to perform each operation. All
jobs are to be processed in specific quantity and their arrival and duc dates are
known in advance. The processing time of different jobs on machines is provided
in Table 5.1. The demand quantity of jobs and their due dates are given in Table
5.2 while the availability of different machine tools during the planning horizon
is shown in Table 5.3. The constant job-mix stages for this problem is illustrated
in Fig 5.1. The problem is to allocate jobs on machine tools in such a way that

the output is maximized.
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Table 5.1: Processing times of jobs.

FM(whinf Proc. time (mun)
m AlBIC| D
1 J |- 121 6
2 - 1813 7
3 2110} -1 12
4 10 - {4 9

The algorithm provided in the previous chapter is applicable for a general
case. Morcover in the current example the setup times are not considered. Henee,

some of the steps may not be applicable for the case under consideration and

hence are omitted.
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Table 5.2: Demand quantities, arrival and due dates.

Job | Quantuy | Arrival | Due date

7 Qa (mwn) | (min)

A 420 0 3600

B 240 900 2500

C 1800 1200 4400

D 400 3000 6000

able 5.3: Availability of machme tools.

Machine |  Available | Not available
m (min) (min)
1 0 - 6000 0
2 0 - 6000 0
3 0 - 2000 2000 - 3000
3000 - 6000
4 2400 - 6000 | 0- 2400
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Stage 1
Step 0: First stage L.P. is formulated as follows:

Maz  (Xan + Xaa)
Subject to:

Xann + X413 €420
3Xa11 <900

5X 413 < 900
Step 1: Solution for this L.P. is {X4; = 300, X 43 = 120}
Step 10: The next stage L.P. is formulated as follows:

Mar (Xpy+ Xpoa)
Subject to:

XBa2 + Xpos < 240
8Xp22 < 300

10XB23 < 300

Stage 2
Step 1: Solution {Xpy; = 37.5, Xgps = 30}
Step 4: {Xpay =37, X g2z = 30}
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Sl(‘]) H: CJB - {/\,]322 + A,B23} = 240 - 67 =173
Step 10: The next stage L.P. is formnlated as follows:

Max (Xpsg+ Xpas + Xear + Xeaz + Xeaq)
Subjeet to:

Xpa2+ Xpgaz =173

Xear + Xease + Xeaq <1800

2Xen <1300

8Xpa2 + 3Xca2 <1300

10X B33 < 1300

4Xcaq < 1300

Stage 3

Step 1 Solution {Xpgay = 93, Xgaa = 80,

Xear = 650, Xeap = 185.33, Xcaq = 25}

Sh‘]) 4.’ {.\'332 = 931A’333 = 80’

Xear = 650, Xogg = 185, Xgaq = 25}
Step 8: Q¢ — {/\’C‘SI + Xeap + Xc34} = 1800 — 860 = 940

Step 10: The next stage L.P. is formulated as follows:
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Max  (Xcy + Neax + Neay)
Subject to:

Xea + Xeaz + Neaa €910
2Xc41 <500

3Xca2 <500

4Xc44 <500

The problem is solved for the remaining stages in the similar fashion,

5.3.2 Results and Discussion

The linear programming problem for all the stages was solved using IBM's MPSNX
software on a IBM 3090 mainframe. The final results obtained by the application
of CMS algorithm are provided in Table 5.4 and this shows the assignment of
various jobs during each stage. As the problem could be solved with all stages
aggregated together using a lincar programming formulation, it is considered as
a basis for result cotaparison. The objective function and the time availability
constraints of such an aggregated formulation are obtained by combining those
of the stages. Table 5.5 and 5.6, and Figure 5.1, show a comparison between the
CMS algorithm and the aggregated approach.

As can be seen from Fig 5.1, the job distribution on machine tools is com-
pressed towards the starting times when CMS algorithm is used, whereas in

aggregated approach the jobs are processed in rather a discontinuons manner.

40




[ )

The decrease in makespan of jobs, as in Table 5.5., is the effect of such schedule
compression: a maximum of 68% reduction in makespan is indicated for indi-
vidual jobs. The obvious result of this is shorter completion time of jobs (Table
5.9), due to the fact that the jobs are loaded on any available machine tool as
soon as they arrive on the shop floor.

The important benefit of using the decomposition scheme and optimization is
an increasce in utilization of the machine tools. Machine tool utilization is defined
as the ratio of the time when the machine is busy to the time between the entry
of first job and completion of the last job on the machine. Table 5.6 shows a
comparison of utilization between CMS algorithm and aggregated approach. The
maxinnm output objective of the linear program ensures that within each stage
the jobs are loaded on the available machine tools and no machine is left idle if
any job which the machine is capable of processing, is present. on the shop floor.
Thus the machine tool utilization is maximized in every partition, providing a
cumulative cffect of overall maximization of machine tool utilization.

Since the schedule is compacted towards the starting dates and makespan of
jobs is reduced, free time is made available on machines and this can be used to
process other jobs. This also helps to provide early shipment of orders.

From a computation time viewpoint, the partitioning of the time horizon and
optimizing the sub-problems, proves to be profitable. For a linear program the
computational time roughly cquals the third power of the number of functional

constraints (Hillier and Lieberman [16]). When a problem is decomposed, the
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sub-problems contain far fewer constraints than the latge problem. Thus the
computational time of all the sub-problems added is substantially reduced in
comparison with that of the large problem. TFor a general N job A machine
problem, when all the P stages are aggregated the number of constraints present
will be (N 4+ £F., M), while that of single stage is M, + V.. Tor P stages,
the number of constraints present will be S F (M, + N,). Henee, the savings in

computational time when the problem is solved using CMS algorithm s

(N + 5,2, MY

Ry = -
TTS M, + N3

For the example case the number of constraints present in the aggregated LP s
28 while that of the 6 stages are {3,3,6,1.6.5}. The savings in computational

time will be:

28
TP 4346344 67 4 5

s |

Ry = 32

Hence the algorithm approach is 32 times less time consuming than the aggre-
gated approach. This shows the implication of partitioning on the computational
time effort required, which will be even more pronounced when problems of larger

size are considered.

5.4 Scheduling from the Completion Times

Scheduling from completion times presents two important advantages:

1. It provides a schedule which is compacted towards the due dates.
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Table 5.4: Final allocation of Jobs

Machine | Stage | Stage 2 Stage 3 Stage 4 Stage § Stage 6
I Nan =300 ] Xea =650 | Xogr = 250 | Xgs1 = 300 | Xpgr = 133
2 t Xp = 37| Xp32 =93 | Xpgo = 166 | Xeso =99 | Xpga = 108
Xcap = 185 Xps2 = 43
3 XNarz =120 | Xpy3 = 30| Xpa3 =80 1 Xpss = 50
4 i 1 Xcas =25 | Xoaa = 125 | Xpss = 66

t = Machne not capable of processing a particular job

1 = Machme not available

Table 5.5: Comparison of completion time and makespan

Jobs | Compl. time (min) Makespan (min)
Stage Aggr. Stage | Aggr. | reduction %
A 900 2860 900 | 2860 68.5
B | 2000 2500 1100 | 1600 31.3
C 3600 4400 2400 | 3200 25.0
D 1100 6000 1400 | 3000 53.3
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Fig 5.1. Allocation of jobs on machine tools based on Aggregated approach and Stage approach
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Table 5.6: Comparison of utilisation

Machines | Utilisation % | Increase

m Stage | Aggr. | Stage/Aggr.
1 93.1 | 77.5 1.2
2 78.3 | 44.9 1.7
3 88.5 | 53.1 1.6
4 99.5 | 96.2 1.0

2. Late start dates is obtained for all jobs. This corresponds to just-in-time

(JIT) philosophy.

As a result of JIT schedule work-in-process (WIP) inventory is reduced and
clearly this leads to alot of saving especially for components which have high raw
material value and for those components for which the value increases rapidly
as the operations progress,  Since the schedule is compacted, the production
process can be organized such that inventories are strategically placed throughout
the process. Then, by carefully reducing these inventories certain production
ptoblems are exposed. Solving these reduces costs and lead times and improves
quality. The following example demonstrates how the partitioning scheme can
‘

be applied to cases where the starting dates are unknown. Comparison of results

with that obtained by applying SPT rule is also provided.
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5.4.1 Numerical Example

Let us cousider a problem of allocating 8 jobs on 5 machines, The processing
times and the setup times of various jobs on different machines are provided
in the Table 5.7 and Table 5.8. The ‘1’ symbols in these tables indicate the
machine is not capable of processing the particular job. For the problem at haud,
the machines are assumed to be available throughout the scheduling hovizon ¢,
there are no downtimes. Table 5.9 presents the demand gnantities of different
jobs and their stipulated due dates.

In this example, it is assumed that only the due dates are known, while the
starting times are no! known initially. Hence the following backward scheduling,
procedure is adopted to determine them. Starting from the due date of the last
component, jobs arc assigned to machines using SPT rule without preemption
If two or more jobs compete for the same machine, the job which has the least
processing time is assigned to the machine. The remaining jobs ar distributed
to other available machines (based on SPT rule). When this proceduie is catried
out for all the jobs, it genetates a loading pattern with the late start dates which
serve as a reference to define the stages (Fig 5.1). The SPT rule was selected
because, this rule ensures high machine utilization and petforms better than
other priority rules in situations where jobs arrive in the shop at different times.
This provides the least favourable conditions to which the results of the €CMS

method are compared.
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Table 5.7: Processing times of jobs.

Machine Processing time (min)
A|/B|C|D|E|F |G| H
I 200 1 |35(40(120(3.0] t |35
2 L7130 t | f t128127]3.2
3 P U351 27 4324+ [25] ¢
4 2113813937 t (3130} t
5 151+ [3.0]42]23(35] t |31
t = Machine not capable of processing the job
Table 5.8: Setup times of jobs on machines.
Machine Setup time (min)
A|B|C|D}|}E|F |G ]|H
1 200 t+ (1951145 {150 {155 | t {110
9 285200 + |t | t |160]175 | 140
3 t 1230210100120 t 200 ¢
4 2001220 | 190 | 180 | t [150 | 160 | t
5 210 + |200 100} 145|120 | { | 145

= Machme not capable of processing the job
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Table 5.9: Demand quantities and due dates.

Job | Quantity | Due date (nun)
A 1500 5000
B 2000 7000
C 1500 9000
D 1000 9000
E 5000 12000
F 3000 15000
G 3000 16000
H 4000 17000
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5.4.2 Results and Discussion

Results of the example are given in Figures 5.2 to 5.4 and Tables 5.10 to 5.13.
As can be seen fiom the figures, the method of dynamic optimization {(CMS)
using decomposition into constant job-mix stages generates a considerably more
comptessed schedule than normal backward scheduling based on SPT rule. The
late starts are pulled towards the due dates, corresponding to the just-in-time
philosophy.

The pattern of job allocation on machines using the CMS method is shown
in Figure 5.2. It provides a good illustration of the effect of pull logistics. The
corresponding numerical data for the late starts are given in relation to the due
dates, in Table 5.10.

The inherent feature of job allocation which is visible in Figure 5.3 is the
distribution of setup times. While in the common practice of assigning a job to
machine with SPT, only one setup is needed for the full processing time of this
job (Figure 5.3 a), this is not the case with the CMS method. In the new method
setups are assigned to various machines according to the optimized solution, in
which setup times are taken into account. In this procedure the setups may be
repeated on the same machine in various stages if another job has to be processed
in the meantime to meet the due date. Improvement in sequencing is however,
possthle.

The compressed schedule, in which the distributed setups form an integral

part. permits an increase machine tool utilization (Table 5.11) and provides
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cousiderable free capacity concentrated carly in the schedale: this fiee capaaity
can be used to process additional jobs. The total free capacity of the shop s
increased by nearly 50 % (Tahle 5.12). The utilization of machines 1s calculated
as the ratio of time a machine is busy (including the setup times) to the total
time-span in the shop between the start of the first job to the last due date and
expressed as percentage. This time- spau is different for SP'T and CMS schednle,
As can be scen from Figure 5.3 and Table 5.11, machine # 2 is the busiest one
in both the cases; it has 100% utilization in CMS case, in which case s busy
time is equal to the total shop time-span. The wtihzation of remaining machines
would have been higher than indicated 7T8% to 86.3%. if not for the out of range
earlier start of machine # 2. which defines the denominator of the utilization
ratio. Table 5.11 indicates that the increase of utilization in the case of (NS
over SPT, while varying from machine to machine, 1eaches 187 (. . 8T% ligher)
for machine # 4. The increase of the machine utilization reflects the compression
of the schedule.

To verify the increase of production rate of the shop due to the CMS o) 1i-
mization of job allocation, production output (total number of piecces produced
on all machines) is divided by the total shop time-span, as in the case of utiliza-
tion. Thus,
for SPT: 21000/(17000 — 200) = 1.25pes/min = THpes[hr
for CMS: 21006/(17000 — 2120) = 1. 4lpes/nun = 84.Tpesf

This constitutes 12.9% production rate increase with CMS. However, the present
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example puts the CMS method at disadvantage due to the fact that machine # 2
precedes the starts of all other machines by 4000 — 2120 = 1880n:n. If the shop
time-span was counted from the start of these all other machines at 4000min
then, with the production output reduced by the amount produced by machine
# 2 during these 1880min, then the production rate would be:

for modified CMS: (21000 — 636)/(17000 — 4000) = 1.57pes/min = Y4pces/hr
1.0, 25% production rate increase.

The increase in production rate as well as the compression of the schedule due
to CMS optimization is reflected in the reduction of makespan. As Figure 5.4
and Table 5.13 show, individual jobs experience up to 71% makespan reduction
in comparison with SPT case.

This example permits assessment of the advantages of job allocation using
constant job-mix stages. Shorter lead times, lower inventory (WIP) and addi-
tional capacity have been recognized by Goldratt [17] as having a major effect
on the throughput. Of course, the new capacity has an effect only when it is
utilized.

An important benefit of the decomposition of the problem is the reduction
of computational time. The expression derived in section 5.3.2 can be ap-
plied here also. For the example studied, the non-decomposed problem contains
S8 constraints, while the number of constraints for each stage sub-problem is

{4.7.8,8,7.9,7.4,7,7,4}. Hence the savings in computational time will be

583

Ry = -
1 13+71+83+83+73+9'}+73+43+73+73+43

= 53.31
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Table 5.10: Comparison of late start times.

Jobs | Late start times (min) | Due Dales
SPT CMS (mun)

A | 1680 1010 5000
B 200 2120 7000
C 4040 6:+10 9000
D | 5120 5120 9000
E | 1850 7990 12000
F | 6440 9000 15000
G | 8300 12000 16000
H | 4455 6600 17000

Thus it will take 53 times less computational time to solve the problem using

CMS algorithm than when all stages are aggicgaled together.




Table 5.11: Compatison of utilisation.

Machines | Utiization % | Increasc factor
SPT| CMS CMS/SPT

1 60.4 86.3 1.43

2 88.1 98.6 1.14

3 71.2 80.4 1.13

4 42.9 80.4 1.87

5 74.7 78.0 1.04

Table 5.12: Comparison of free capacity.

Machines | Free capacity (min) | Increase factor
SPT CMS CMS/SPT

i 1850 4000 2.16

2 200 2120 10.60

3 4010 4000 0.99

4 1680 4000 2.38

5 1155 4000 0.90
Total 12225 18120 1.48
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Table 5.13: Clompatison of makespan

Jobs | Makespan (mun) | Reduction

SPT CMS Y

A 3320 960 Tl

B 6800 1880 28

C 4260 1860 H6

D 3850 3880 0

E 10150 4010 60

I° 8560 6000 30

G 7700 4000 48

I ] 12545 10100 17
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Chapter 6

Application of Algorithm to

Multiple Operation Job Shops

6.1 Analysis of the Problem

In this chapter, the job allocation process involved in multiple operation joh
shops will be considered. This is an extension of the single operation problem
The principles, L.P. formulation and the solution procedime can be adopted for
multiple operation jobs with minor modifications.

The machine tools in the factory are assumed to be grouped according to the
natute of processes ¢.g., turning, milling, grinding efe. All jobs are assmmed to go
through the different sections {operations) in a predeternuned sequence There
are alternative machine tools in cach section. The processing times, setup tines,

due dates, quantities, machine availability and capability are known a prioti Job
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allocation problems of this nature are typical for factories where the layout of
machine tools is according to the processes. By combining multiple operations
the problem becomes more realistic and hence the applicability of solutions to
job shops is appropriate. The optimization is carried out within each scction,

thus providing a cumulative effect on the entire shop operations.

6.2 L.P. Formulation

The linear programming model provided in section 4.2 is modified to suit the mul-
tiple operation problem. In addition to the nomenclature already provided, the
subseript Lacts as the index for sections (operations). The linear programming
model of the job allocation problem within each partition 7 (stage) is formu-
lated with an objective to maximize the number of pieces X, of each job j
(1 = A B,C,....N) produced on a machine tool m (m = 1,2..., M) at the op-
crating sections | (I = 1,2,..., L). While the machines in each section are not
identical, a job can be processed on more than one machine. Processing time
R, and setup time S, are incurred when one unit of job j is loaded on ma-
chine m at seetion I The L.P. formulation for the job allocation problem is as

follows:

<
e~
=




{ 1

AN

Mar { Z ( Z PondSymi \'uml)}

m=l =4

subjeet to:

M
Z 7'11711317711-\.111111 S (21 J = Al H‘ C oy AY

m=1

N
Z rlmlsjmlijll\’uml < Tunl m=1.2.. .M

=1

Noymt 20 J=0 B0 N

r . . . v .
I if machine m at seetion s available at stage
Fanl = 3
0 otherwise
\
(
I if machine m at section 1 is capable of processing job
St = 4
0 otherwise
\

The machine availability index r,,,; and the machine capability indes s
responsible for eliminating all the terms that 1educe to zero, both in the objectrve
function and constraints. The first set of constiaints ensnres that the Guantity
produced at each stage is not more than the demand quantity, The second sef of
constraints restricts the total processing time on cach machine tool not 1o exceed

the available time on that machine. The last set is a non-negativity constiaint

for the quantity of jobs produced in the stage.
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6.3 Solution Procedure

The solution procedure described in section 4.3 is used here. An additional step
is provided to link the different sections (operations). The solution procedure

encompassing both the linear program and the heuristics is shown in Fig 6.1.

6.4 Numerical Example

Let us consider a case of 6 jobs that has to undergo 3 operations (e.g., turning,
milling and grinding). Each section (operation) has 4 machines and the jobs can
be processed in any of the alternative machine tools. The processing times and
the setup times at different sections are given in Tables 1 and 2, while the demand
quantities and the due dates are shown in the Table 3. The Tables indicate also
the machine tools that are not capable of processing a particular job.

The optimization problem can be stated as follows. For a case of N = 6
jobs, M =4 machines in each section, the optimization problem based on CMS
algorithm is defined for every stage with an objective to maximize the number of
pieces of cach job processed within a stage. Such an objective leads to maximum
production rate and machine utilization. Each job has to be processed in sections
.2 and 3, in that order. Production is in lots equivalent to the demand quantity
within the due dates specified. The starting times are calculated by applying SPT
rule backwards from the due dates given and this provides a reference to define

the stages. In this procedure the jobs are assumed to be non-preemptive and
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Fig 6.1 Flow chart for the solution procedure
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when two or mote jobs compete for the same machime the job having, the least

processing time is assigned and the rest of the jobs s allocated to the remaming,

machines.

6.5 Results and Discussion

The results obtained by applying CMS algorithin are presented in Tables 6 1 1o
6.6 and Figures 6.2 to 6.1, As an example of the resultant job allocation, Vig
6.2 shows the distribution of jobs on machine tools in the tirst section, The SPT
allocates cach job to one machine only, causing unbalanced machine loading By
distributing jobs on alternate machine tools, the ('MS algonthm achieves hetter
utilization of machines. Table 6.1 shows utilization of machine tools for all thiee
sections. The utilization was calculated as the ratio of time the machine i busy,
to the time between the entry of the first job and departiure of the last job from
the section in percentage. According to Table 6.4, an average of 3% inarease
in utilization of machine tools for all thice sections was aclieved when (NS
algorithm is applied (ave. 87.3%), in comparison with SP'T rule (ave. 61%.).
Another positive effect of the application of CMS algorithm s the reduction
of completion dates of every job. in the present example. Fig. 63 provides
the Gantt diagram for jobs being processed in all three sections. For clanty of
presentation only the first and the last job are plotted, A and F respeetively. Pro

cessing times for jobs allocated according to both SPT rule and CMS algonithm

61




Table 6.1: Processing times of jobs on machine tools

Machine Processing Times (min)
m A B C D E F
I | 1.0 098] 1.8 |30 |32]3.92
_T“é 2 | 15|10 [1.85] t |30 (3.90
S 3 lo9s| 15| 20|33 |34 405
1 t 10951 1.9 [2.95|3.25|3.95
Io{21 {1127 4]+ |27
E 2 2250 1.0 | 28 | 42|35 25
g s |20 t 12.75(4.25 (335 2.8
4 | 20]1.15{285| 43 |32 |26
I | 7465|9276 875735
g 2 | 73163917588 %
§ 3 | 720162t | 738573
4 17.3506.35]9.15|7.55| 8.7 | 7.4

f-the machine is not capable of processing the job
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Table 6.2: Setup times of jobs on machines

Machine Setup Times (min)
m A|B|C | D|E|F

1 60| 75 {105| 80 | 55 | 75

E 2 |50|70 [100] t |60 | 70

§ 3 6565 {90 | 55 | 50 | 80
4 1 [100}90 | 95 | 65 | 65
1 80 |105| 85 |100] t | 100

o

S 2 8511201 90 | 90 | 120 | 110

8

a3 83| + |95 | 95 | 115 | 100
4 90 | 110 | 80 | 95 | 110 | 105
1 60|45 | 90 | 70 | 65 | 100

)

g 2 65| 50 | 100 | 75 | 60 t

8

3 3 (70|65 | ft |8 |70 |105
4 65| 60 | 100 | 70 | 65 | 95

t-the machine is not capable of processing the job
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Table 6.3: Demand quantities and due dates

Jobs A B ¢ D L F

Quantily 600 800 1200 | 700 850 900

Duc Date (mon) | 12000 | 15000 | 23000 | 19000 | 16000 | 16000

are shown for compatison. Smce each section is solved sequentially, reduction
m completion time has a cunuilative eflect and the due dates are significantly
shottened This amounts to additional avaialble free capacity and conld be used
to process other jobs. The reduction in completion dates is linked to shorter
makespans which can e achieved when CMS optimization algorithm is applied.
This is illustrated in Fig. 6.1 and by the data in Table 6.5. It can be scen from
this Table, that a reduction m makespan between 5.7% and 73.8% was achieved
for individual jobs. The reduction in makespa: of course, the result of the
disttibution of jobs on machines.

As expected, the maximum output objective results in increased procduction
tate for all sections as indicated in Table 6.6. The maximum increase of 43.6% was
achieved in section # 3. One should note, that although in the present example
cach job passes through all the sections, in general a job may be scheduled to
by pass certain operations and to be processed in the remaining sections only.

The reduction in computational time which is derived as a result of decom-
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posing the scheduling horizon into constan®. joh-mix stages. can he cale ulated for
every section (operation), using the expression derived in 5.3 9. The number of
constraints present, in the L.P., when all stages are aggregated, for sections 1. 2
and 3 are 36, 31 and 38 respectively. The number of constiaimts present in the
stages:
for section # 1: {356, 7, 7.8.5,5}
for section # 2 {5.6,5,5.5.6,7}
for section # 3: {5.6.6, 7. 7.8.8.8}.
Hence the computational savings for cach section ju

36°

Ry = T TI T = 2 TR0

PP+ T LT LS 4

31
Rre = e N~
S T B B B Tl
D073
13 = % = 1975 2 20

IR Y R T ey
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Table 6.4: Comparison of machine utilization

Machine | Machine Utilization %
m SPT CMS
1 46.6 97.9
o2 | 921 89.3
2
S
N 3 48.9 95.3
4 71.3 89.3
1 50.7 94.2
S 2 |494 57.2
| £
| ]
| 3 3 46.7 46.7
4 62.5 97.0
1 35.6 100.0
T 2 | 728 99.7
2
O
> 3 77.2 85.9
4 78.8 94.6
8|
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Table 6.5-

, :
Comparison

of completion dates and makespans

Jobs A B « D —ml—*;—m_h I’
Completion | SPT | 9691 | 106382 | 23000 | 16000 | 19000 l—‘)-(;()(;
Dates (mm) | CMS | 63583 1 5570 | 15990 | 15227 | 15912 | 11131
Makespan | SPT | 10253 | 12780 | 20690 | 13176 l(i:&:;(i 157 llh)

(min) CMS | A836 | 3350 | 13630 | 12573 | 13219 | 10811
Reduetion % B2 L T38| 338 n.7 I8.9 1 309

Table 6.6: Compatison of production rate

Op.Section | Production Rale (pes/num)
SPT | CMS | Inecrcase %
1 0.838 | 1.139 35.9
2 0.620 | 0.744 20.1
3 0.267 | 0.383 43.6
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Chapter 7

Integration in Intelligent

Manufacturing Systems

Within the many components of manufacturing decision processes, opetation
scheduling can be perceived not only as an important Iink in the chain, bt even
as a hub of the information system linking the activities associated with the pro
duction processes. The information flow concerns hoth the decision processes and
the material flow i.e., physical execution of orders. However, the vast amonnt of
raw data existing in present day management information systems s not used for
optimization of production management, a particularly difficult task considering
that this is a dynamically changing environment.

The usefulness of integrating the capability of intelligent systems with tradi-
tional information systems has been recognized alrecady by Tseng and O'Conneg

(18], while Lu [19] proposed a framework for integration of heuristic and deter-
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ministic knowledge for engineering decisions.

The present procedure for dynamic optimal job allocation using the CMS
algotithm links existing computetized information system with combined de-
terministic and heuristic solution. Thus, the procedure extends the functions
covered by the information system to operational level decision.

The link to the existing management information system is accomplished
through the manufacturing resource planning system (MRP 1), It contains, as
one of its five function, the master production schedule (MPS), the others being:
tequirenents planning, capacity planning, shop floor control aud cost control
(production accounting) (Flapper of al. [20]).

The MPS module provides a timetable specifying what components, in what
guantities are needed and when, However, MPS does not extend its functions to
operations scheduling, 1.e., job sequencing and job-resource allocation. In prac-

tice, while sequencing is done using some priority rules, the decision concerning

job allocation on machine tools is left to the foreman on the shop floor. And

vet, these functions are of critical importance for shop efficiency which affects its
actual capacity and subsequently the throughput.

The CMS algorithm can be incorporated into the MPS module, and then,
linked to other functions of MRP II system. Such an integration would function
in the following way: the MPS module generates the master production schedule,
which triggers the release of production orders for all components which have

to be processed in the shop. Based on the production orders and the data




available from the manufacturing database, the CMS algorithm genetates the
job allocation schedule

Animportant factor in the integration of C'MS algorithm with the MPS/MRP
11 system is the type of information and the compatibility of data. To gencrate
a schedule, MPS uses information on demand quantities and delivery dates "T'he
C'MS algorithm uses the same information, m addition to which it uses also
the machine availability and capability data from the manufacturing database.
While the algorithm is 1easonably independent fiom the MRP 1 modules, the
stiucture of the data, the access ateas of the algoithm and the hierarchy of the
algorithm function should be taken into account while integrating.

The integration of the C'AMS job allocation algotithim with the MPS module
(which also contains process planning information) could be, and indeed should
be, extended to other components of the manufactuting decision system, such as:
scheduling and allocation of maintenance, personnel and equipment on machines,
scheduling (and in some cases also allocation) of components processed on vations
machines to quality control stations and/or assigning quality contiol inspectors
to machine tools. Further extension would also intetface scheduling of material
releasc and material handling (physical) to be synchronized with the job-machine
allocation and sequencing.

All these links would have the feedback loops cquipped with learning —
sell correcting adaptive capability for the use of CMS algorithm for possible

rescheduling and reallocation of jobs. Such a design would make full use of the
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dynamic optimization capabilities of the CMS algorithm. These ateas are the ob-
vious topies for futnie 1esearch and development in an effort towards developing

computer integrated intelligent manufacturing systems — an intelligent CIM.

~J
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Chapter 8

Conclusions and

Recommendations for Further

Study

8.1 Conclusions

A new method which has been developed to optimize job allocation on machine
tools in a time-dependent environment, enhances the efliciency of production
planning systemns by generating more realistic schedules. Besides; since the job
allocation function is closely related to other components of a manufaciuring
system, the schedules obtained by using the Constant Job-Mix Stage (CMS)
algorithm aids in the efficient functioning of the related departments like main-

tenance, quality control etc. As the CMS algotithm targeted the key parameters
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ol & machine shop (c.g.. production rate, makespan) for improvement, the per-
formance of the overall factory is ameliorated.

The decomposition schemie partitions the scheduling horizon into stages of
constant job-mix. The CMS algorithm based on this scheme uses linear pro-
gramming within cach stage to allocate jobs on machine tools, and associated
henristics to account for setup times, due date enforcement, integer solutions and
stack reduction while optimizing job distribution. The procedure proceeds from
stage to stage, the output of one stage being the input of the next. This forms
a dynamic scheme of optimization which links the whole problem.

Thiee different examples were dealt with in detail to demonstrate the appli-
cation of CMS algorithm. All of them concerned multiple jobs to be allocated on
a number of machine tools, cach with different capacities and capabilities. Such
sitnations are quite typical of many job shops in which machine tools are laid
out according to their processes. The following conclusions can be drawn from

these applications:

[. The results of the CMS algorithim, when compared with those of the aggre-

galed approach and SPT rule indicate that better utilization of machine

tools can be achieved.

2. The compressed schedule along with high utilization of machine tools brings
about a significant reduction in the makespan of individual jobs. As a result

the jobs spend less time on the shop floor leading to greatly reduced work-




in-process (WIP) inventory.

. Improved production rate (throughput) is an important benelit detived

from the application of the U'MS algorithm. In the case of single opera-
tion jobs the increase m production rate is measured for all the jobs and
machines together, For the multiple operation case, improvement in pro
duction rate is noted for cach section thus contributing to the productivity

of the overall shop.

. The CMS algorithm provides a compressed schedule; wlile scheduling is

carricd out fiom the starting times, carly shipment dates for jobs (or or
ders) are obtained. When scheduled from the die dates the CMS algonithm
provides late start dates. In both cases the spaie time which is made avail-
able because of the compressed schedule, can be used to process additional

jobs.

It is possible to apply the CMS algorithm to both single and multiple
operation job shops. In the latter case the machine tools are grouped m

sections according to their operations.

In comparison with the aggregated approach, the CMS algorithm provided
a significant savings in computational time requited to solve the job allo-
cation problems. Using the expression developed to calonlate such savings
in time, it can also be concluded that, the savings in computational tune

increases when the stages contain fewer jobs.
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7. Job allocation problems solved using the CMS algorithm, open the possi-

bility of combining deterministic and heuristic procedure with management,
information systems, specifically the master production schedule of MRP

I1, to arrive at a sclution for shop floor control.

8. As the CMS algorithm aids the job allocation decision process in a produc-
tion planning function, it provides an eflicient control when integrated with
the other components of manufacturing system like maintenance, quality
control and material release. Such an integrated system enhanees the au-

tomation of various decision making processes.

8.2 Recommendations for Further Study

One of the important feature of job allocation using the CMS algorithm is the
distribution of setup times. While in the common practice of assigning a job to
machine with SPT, only one setup is needed for the full processing time of a
job, this is not the case with the CMS method. In the new method setups are
assigned to various machines according to the optimized solution, whete setup
times are taken into account. Since the optimization is carricd out within each
stage without considering the allocation in the previous stage, this may 1esult, in
multiple setups for a single product on a particular machine at different periods.
If such a situation is encountered, allocation of jobs on each machine can he

shuffled so that fewer setups are necded. However, duc to this shuffling the
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arrival and due times of jobs can change leading to the redefinition of stages.
In such circumstances, a comparison between CMS algorithm allocation and the
shuffled schedule can be carried out with a suitable performance criterion.

In the CMS algorithm jobs arc assumed to be preemptive. Because of the
multiple setups problem mentioned earlier, it may be worthwhile to conduct a
comparison between preemptive and non-preemptive scheduling with makespan
criteria.  The non-preemptive schedule is obtained by assigning jobs on only
machines which are free to load while allocated to subsequent stages.

In the job allocation schedule, the setup times are accounted for, indepcn-
dently of the processing times. That is, the setup times are assigned bazed on
the initial solution and often the job allocation before and after the setup time
assignment are the same. This is because, once the setup time is deducted from
the total available time, optimization is carried out for the remaining time. In
order 1o consider collectively both setup and processing times in the schedule,
break even analysis can be used. The equation for each machine will consist of a
fixed setup time and a variable processing time which is a direct function of the
quantity processed. Choice of machine to process a particular job is arrived at
by comparing these equations and obtaining the break even quantity.

Another interesting topic for future study is the transfer quantity of the jobs
between the different operations in a job shop. This means one can produce a
process batch (which equals the demand quantity, as is in all our cases) and move

to the next operation, or in smaller lots called transfer batches. Transfer batch
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is used by JIT concept, where the objective is to achieve a one-unit processing,
batch. Such transfer batch movement from one operating section to another
affects the time-partitioning and the duration of partitions because the stages are
defined by the job arrivals and departures. This concept of changing a transfer
batch can be applicable to jobs of high demand quantity and processing times.
Since the linear programming formulation of the job allocation problem is
similar to the transportation model, the possibility of devising a solution proce-
dure using the triangularity structure can be studied. Some of the steps i the
CMS algorithm are cartied out manually. The scheduling algotithm can be fully
computerized such that it can either form a part of an expert system on schedul-
ing, or be integrated with other functions of the Production System. While the
former will be a dedicated scheduling system to advise on the allocation func-
tion in different circumstances, the latter will be a part of planning and control

function enhancing the automation of the production management system
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Appendix A

Sample of Job Control and Data

Cards for MPSX
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This section shows an example of job control data cards used for the purpose
of <olving « lincar programnung problem  The model under consideration s
example 5. (stage 6) The hinear programming formulation ol this problem s

as follows:

Mar {-\'Q»Hl -+ -\'I,IIZ + .\h”'l + \.hl 1 + \'nl 3 '\—h[ n A\vn.]u {

+4\|.IH -+ a\’t»l)l -+ \—h/)'\ 4 \'h('] + .\h' 3 b \’h('l 4 -\c-("\}

aubjeet to-

Non + Nor+ Yo < 33|
Nor+ Nopv+ Nogs < 159
Nopy+ Nops + N+ Nops < NG0)
Noet 4+ Noes + Ny + Noes < 1500

350X + 2Nk 4N 35Ny < 1520

3.2X0m2 < 1860
20X + 13Neps + 27N < 1650
3.7 XNepa + 39N < 1860

30 Nas + 225N s + 42 N0ps + 3Nes < 1660

The McGill’s MUSIC (Multi User System for Interactive Computing) job
control cards followed by MPSX (Mathematical Programming and System bux-

tended) data cards are provided in the following two pages.
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/INFO MVS R(MUSIC) CL(40)

// EXEC MPSX

//MPSGO.SYSIN DD *
PROGRAM
INITIALZ
MOVE(XPBNAME, LINEAR’)
MOVE (XDATA,'JIT6")
CONVERT('SUMMARY")
BCDOUT
SETUP('MAX’)
MOVE(XOBJ,"QUANTITY")
MOVE(XRHS,'BVECTOR")

PICTURE
PRIMAL
SOLUTION
PEND
//MPSGOX.SYSIN DD *
NAME JIT6
ROWS
N QUANTITY
L ROWI
L ROW2
L ROWS3
L ROW4
L ROWS
L ROW6
L ROW7
L ROWS
L ROW9
COLUMNS
X6Hl  QUANTITY L. ROWI
X6HI  ROWS5S 3.5
X6H2  QUANTITY I. ROW1
X6H2  ROW6 3.2
X6HS  QUANTITY 1. ROW1
X6H5 ROW9 3.1
X6El  QUANTITY 1. ROW?2
X6El  ROWS 2.
X6E3  QUANTITY 1. ROW?2
X6E3 ROW7 2.4
X6ES  QUANTITY 1. ROW2
X6E5 ROW9  2.25
X6Dl  QUANTITY 1. ROW3

X6Dl1 ROW5S 4.
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X6D3 QUANTITY 1. ROW3 1.
X6D3 KOW7 4.3
X6D4 QUANTITY 1. ROW3 I.
X6D4 ROWS 3.7
X6D5 QUANTITY 1. ROW3 1.
X6D5 ROW9 4.2
X6Cl1 QUANTITY 1. ROW4 1.
X6Cl1 ROW5 3.5
X6C3 QUANTITY 1. ROW4 1.
X6C3 ROW7 2.7
X6C4 QUANTITY 1. ROW4 1.
X6C4 ROWS 3.9
XKC5 QUANTITY 1. ROW4 1.
XKC5 ROW9 3.0

RHS
BVECTOR ROWI 531. ROW?2
BVECTOR ROW3 860. ROW4 1500.
BVECTOR ROWj5 1520. ROW6 1860.
BVECTOR ROW7 1650. ROWS 1860.
BVECTOR ROWS9 1660.

ENDATA
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Appendix B

Sample of Computational

Results

The summary of computational result for the example provided in appendix A is
given in the following two pages. Section 1 of the results deal with the sensitivity
analysis of the variables. The main result, namely, the quantity of components
loaded on different machines is obtained from section 2. The variables which
enter the basic solution (denoted by BS in section 2 of the results) are the final

solution for the example under consideration.




IMPSX/370 R 2.1.0

PAGE 4 91/266
ONAME JIT6
ROWS
N QUANTITY
L ROW!
L ROW2
L ROWS3
L ROW4
L ROWS5
L ROW6
L ROW7
L ROWS
L ROW9
COLUMS X6HlI  QUANTITY
X6H1  ROWS 3.50000
X6H2  QUANTITY 1.00000
X6H2  ROW6 3.20000
X6HS  QUANTITY  1.00000
X6HS  ROW9 3.10000
X6El  QUANTITY  1.00000
X6El  ROWS 2.00000
X6E3  QUANTITY 1.00000
X6E3  ROW7 2.40000
X6ES  QUANTITY 1.00000
X6ES  ROW9 2.25000
X6D1  QUANTITY  1.00000
X6DI  ROWS 4.00000
v6D3  QUANTITY  1.00000
X6D3  ROW7 4.30000
X6D4  QUANTITY  1.00000
X6D4  ROWS 3.70000
X6DS  QUANTITY  1.00000
X6D5  ROW9 4.20000
X6C1  QUANTITY  1.00000
X6C1  ROWS 3.50000
X6C3  QUANTITY  1.00000
X6C3  ROW7 2.70000
X6C4  QUANTITY  1.00000
X6C4  ROWS 3.90000
X6CS  QUANTITY  1.00000
X6C5  ROW9 3,00000

MPSCL EXECUTION

1.00000 ROWI

ROWI
ROWI
ROW2
ROW2
ROW?2
ROW3
ROW3
ROW3
ROW3
ROW4
ROW4
ROW4

ROW¢4
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1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

1.00000




RHS

BVECTOR
BVECTOR
BVECTOR
BVECTOR
BVECTOR
ENDATA
OSECTION 1 - ROWS
-NUMBER ...ROW.. AT ...ACTIVITY... SLACK ACTIVITY ..LOWER LIMIT. ..UPPER LIMIT.
.DUAL ACTIVITY
QUANTITY BS

0

O 00O W &N

10

!MPSX/370 R 2.1.0

ROW1
ROW?2
ROW3
ROW4
ROW35
ROW6
ROW7
ROWS
ROW9

10 91/266
OSECTION 2 - COLUMNS
- NUMBER .COLUMNS AT ...ACTIVITY... .. INPUT COST.. ..LOWER LIMIT. ..UPPER LIMIT.
.REDUCED COST.

ROWI1
ROW3
ROWS
ROW7
ROWS

531.00000
860.00000
1860.00000
1860.00u30
1860.00000

ROW?2

155.00000

ROW4 1500.00000
ROW6 1860.00000
ROWS 1860.00000

2908.98048 2908.98048-

UL 531.00000

UL 155.00000 .

BS 722.98048 137.01952
UL  1500.00000

UL  1860.00000 .

BS  1699.20000 160.80000
UL  1860.00000

UL  1860.00000

UL  1860.00000

MPSCL EXECUTION

0 11 X6HI LL . 1.00000
12 X6H2 BS 531.00000 1.00000
13 X6HS5 LL . 1.00000
14 X6EI BS 155.00000 1.00000
15 X6E3 LL 1.00000
16 X6ES5 LL . 1.00000
17 X6D1 BS 220.27778 1.00000
18 X56D3 LL . 1.00000
19 X6D4 BS 502.70270 1.00000
20 Xe6D5 LL . 1.00000
21 X6Cl1 BS 191.11111 1.00000
22 X6C3 BS 688.88889 1.00000
23 X6C4 LL . 1.00000
24 X6C5 BS 620.00000 1.00000

IMPSX/370 R 2.1.0  MPSCL EXECUTION

11 91/266

OEXIT - TIME = 0.00
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NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

NONE

1.00000

531.00000 1.00000-
155.00000 .50000-

860.00000

1500.00000  .12500-

1860.00000
186.00000

.25000-

1860.00000  .32407-
1860.00000  .27027-

1860.00000

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

.29167-
PAGE

.87500-

90417

..27778-

.15625-

39352-

.22500-

17905-

PAGE



