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Abstract

We identify Lagrangian coherent vortices in a global mesoscale eddy-permitting

ocean model using the rotation-based method of Haller et al. (2016). We present

an analysis of the acute sensitivity of the identification results to varying the

method’s free parameters, and develop physically justified parameter choices

that allow for systematic vortex identification. In contrast to prior vortex stud-

ies, we probe the broad spectrum of coherency in the ocean by determining free

parameter choices that partition the spectrum into distinct coherency classes, al-

lowing for the identification of strictly coherent, moderately coherent, and leaky

vortices. Our tuning methodology is grounded in a combination of sensitivity

analysis, convergence tests, and consideration of the ocean model’s physics. To

aid in this process, we introduce the Coherency Index, a novel Lagrangian di-

agnostic for mathematically quantifying the degree of material coherency of a

Lagrangian vortex. We aim for this manuscript and the accompanying open-

access code to serve as a manual and toolset for the oceanographer interested

in harnessing a rigorous Lagrangian method to uncover coherent structures in

ocean models and observations.
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1. Introduction

Transient ocean mesoscale fluctuations play a central role in the global cli-

mate system, transporting climate-relevant tracers such as heat and carbon.

In satellite observations and numerical simulations, a portion of these fluctua-

tions take the form of materially coherent vortices (i.e., vortices whose interior5

material coheres together). Consensus has not emerged, however, as to the

abundance of these coherent vortices in the global oceans and the magnitude of

the associated transport.

In the literature, coherent transport questions have been investigated pri-

marily through the lens of Eulerian-based vortex identification: a set of tech-10

niques that attempt to diagnose coherent structures via anomaly contours of

an Eulerian field (e.g., sea level anomaly or Okubo-Weiss parameter of Okubo

(1970); Weiss (1991)). To compute transport estimates, these studies make the

fundamental assumption that Eulerian ”vortex contours” trap and transport

their material interior (for recent examples, see Raj et al. (2016); Dong et al.15

(2014); Zhang et al. (2014a,b)). Many studies justify this assumption by con-

sidering Ug/c, where Ug is the maximum geostrophic speed within the vortex

and c is the mean translation speed (Chelton et al., 2007, 2011). When this

diagnostic parameter is greater than unity, rotation dominates over translation,

indicating that the identified feature departs from linear dynamics and “can20

advect a parcel of trapped fluid” (Chelton et al., 2011). As practitioners of this

methodology acknowledge, the mere presence of some ability to trap fluid does

not quantitatively guarantee complete material coherence over a vortex’s total

lifetime (Zhang et al., 2014a; dOvidio et al., 2013). Nonetheless, past studies

make this assumption to reach estimates suggesting that identified vortices col-25

lectively play a significant role in global ocean transport (Dong et al., 2014;

Zhang et al., 2014b; Petersen et al., 2013).

On the other hand, several studies have called into question the ability of

Eulerian vortex identification methods to correctly diagnose material transport
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(Abernathey & Haller (2018); Haller et al. (2016); Beron-Vera et al. (2015);30

dOvidio et al. (2013); Froyland et al. (2007) and references therein). The com-

munity’s development of rigorous Lagrangian-based methods has cast doubt

on Eulerian vortex methodology, challenging the notion that Eulerian anomaly

fields and diagnostics such as Ug/c can reliably uncover material transport.

In contrast, Lagrangian techniques exploit material trajectories–the fundamen-35

tal elements of fluid transport–and thus provide direct access to the transport

structure of ocean flows.

A feature common to both Lagrangian and Eulerian vortex identification

methods, however, is the prominent role of free parameters, including those

related to numerical implementation. For a Lagrangian method, the number of40

free parameters varies from 3-4 (depending on the implementation) in the case

of the Lagrangian-Averaged Vorticity Deviation (LAVD) method of Haller et al.

(2016) and up to 6-7 for the geodesic ”black hole vortex” method of Haller &

Beron-Vera (2013). An informative discussion of the strengths, weaknesses, and

free parameters of Lagrangian vortex algorithms can be found in Hadjighasem45

et al. (2017), which demonstrates promising results for the LAVD method. For

reference, the identification of the popular Eulerian sea surface height (SSH)

eddies of Chelton et al. (2011) required nine free parameters.1

It may be inevitable that these free parameters exist. After all, a vortex

identification algorithm must take a global field (e.g., sea surface height, velocity,50

LAVD) as input and return a discrete object as output. As in mathematics,

passing from the continuous to the discrete limit requires the introduction of a

threshold or tolerance.

1The free parameters of Chelton et al. (2011) are as follows: minimum SSH threshold for

all pixels inside anti-cyclonic eddies, maximum SSH threshold for all pixels inside anti-cyclonic

eddies, minimum SSH threshold for all pixels inside cyclonic eddies, maximum SSH threshold

for all pixels inside cyclonic eddies, minimum number of pixels within eddy, maximum number

of pixels within eddy, eddy SSH amplitude threshold, maximum distance between interior

eddy points, and the choice of the number of pixels within a local neighborhood of an SSH

extremum.
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The presence of free parameters presents a challenge for the oceanographer,

whose desire is to identify physical structures that exist in the ocean indepen-55

dent of the particulars of an identification method. To complicate matters, the

relationship between the mathematical parameters of the Lagrangian method

and the physics of the identified structures is opaque. For example, distinguish-

ing between coherent versus incoherent sets of trajectories with the transport

operator or spectral clustering approach boils down to a delicate mathematical60

task: identifying a gap in the eigenvalues of an operator’s spectrum (Froyland

et al., 2007; Hadjighasem et al., 2016). Without exploring and understanding

the physical significance of varying this parameter, the oceanographer cannot

harness the method to objectively shed light on ocean transport.

In the applied mathematics literature that introduced these Lagrangian tech-65

niques, the methods’ sensitivity and free parameters are not always systemat-

ically examined. For example, the authors of several leading vortex methods

in the comparison paper of Hadjighasem et al. (2017) omit details on how the

method was tuned: “We therefore rely on our expertise and experience to choose

a reasonable set of parameters for each method with the intention that (i) The70

choice of parameter(s) results in the most favorable outcome for the correspond-

ing method and (ii) The outcome is robust, i.e., small variations in the param-

eters do not lead to drastic changes in the outcome”. Thus, while the applied

mathematics literature provides promising tools, it lacks instructions on how

to physically rationalize a tuning of the sensitive parameters. Furthermore, the75

literature lacks a clear definition of a “favorable outcome”, which suggests that

the final results are determined by the author’s preferences rather reproducible

objectives.

Our paper aims to help fill this gap in the existing literature by creating

a bridge that spans from the methods papers of the applied math community80

to the vortex census studies of oceanography. Our objective is to implement

and apply a Lagrangian-based vortex identification method to a high-resolution

global ocean model, conduct a rigorous and thorough sensitivity analysis, and

arrive at a physically justified tuning that systematically identifies materially
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coherent vortices. We focus on a particular vortex identification method (the85

LAVD method of Haller et al. (2016)), but, in conducting our analysis, aim to

provide a tuning methodology that is relevant for other techniques. Wherever

possible, we strive to lend physical interpretation to the variation of the mathe-

matical parameters. In doing so, we have taken steps to ensure that the tuning

is robust, in the sense that small adjustments to the free parameters do not90

produce large changes in the results.

Stemming from this effort, we introduce a new Lagrangian-based diagnostic

of material coherency, which we refer to as the Coherency Index. This diagnostic

allows us to precisely quantify the sensitivity of the identified vortices’ coherency

to varying the method’s free parameters. Beyond this usage, the diagnostic has95

broad applicability, and could be employed to compare the coherency of vortices

across data sets, models, and identification methods.

2. Method and Materials

2.1. The LAVD Method

Haller et al. (2016) introduced a Lagrangian-based vortex identification (ab-100

breviated as the LAVD method) that exploits rotational coherence as a proxy for

material coherence. We have implemented the LAVD identification method in

an open-source Python package floater (available at https://github.com/rabernat/floater).

The intuition for the method springs from the observation that fluid trajecto-

ries inside a coherent vortex are spatially and rotationally organized in bands,105

layered concentrically about a rotating near-circular core. This combined spa-

tial and rotational organization makes it possible to detect materially coherent

objects via a trajectory-based metric of rotation.

In particular, we consider two dimensional flow and examine the relative

vorticity defined as ζ = ∂xv − ∂yu and equal to twice the fluid’s local rotation

speed relative to the Earth’s rotation. Let a fluid element be labeled by a ma-

terial label a, and its position in physical space at time t be notated as X(a, t).

We introduce the Lagrangian relative vorticity field, ζ(X(a, t); t), which takes
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as input a particular material trajectory and a specific time. For convenience,

we choose to label the material by its position in physical space at some ref-

erence time t0, so that a = x0. We are interested in characterizing not just

the instantaneous local rotation, but the average local rotation experienced by

a material element over a finite time interval [ti, tf]. To do so, we define the

Lagrangian-Averaged Vorticity Deviation,

LAVDtf
ti (x0) =

1

tf − ti

∫ tf

ti

∣∣∣ ζ(X(x0, τ); τ )− ζ(τ)
∣∣∣ dτ , (1)

where ζ is the domain average of the relative vorticity field (Haller et al., 2016).

For a given time interval, LAVD assigns a single scalar to each trajectory, the110

magnitude of which describes the average amount of local rotation experienced

by the material element. To understand the rotational structure of the flow,

the convention is to visualize the Lagrangian field, LAVDtf
ti (x0), by plotting the

value for each material element in the element’s initial physical location (i.e.,

X(x0, ti)). An example visualization is shown in Figure 1 for the Kuroshio115

current in the NOAA/GFDL CM2.6 model (detailed in the following section).

The algorithm utilizes this representation of LAVDtf
ti (x0), which we simply refer

to as “the LAVD field for [ti, tf]”, to identify rotationally coherent vortices.

We now return to our earlier observation that coherent vortices are composed

of collectively rotating fluid that is organized into concentric bands around a120

rotating near-circular core. Interpreting this feature in terms of the LAVD field

provides the definition of a rotationally coherent Lagrangian vortex (RCLV) as a

nested family of iso-LAVD contours containing an innermost LAVD maximum.

The outer boundary of the RCLV is determined by a threshold on the convexity

of the contour.2 A sample nested family of LAVD contours is shown for an125

Agulhas ring in Figure 2. As explored in detail in Section 3.3, the convexity

threshold is the primary free parameter of the LAVD method. The coherency

2A contour is convex if the line segment joining any pair of interior points lies entirely

within the contour (e.g., squares, ovals, and circles are convex, but crescents or star-shaped

polygons are not).
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Figure 1: LAVD field computed over a 30-day interval in the Kuroshio region of the Northeast

tropical Pacific Ocean. Smooth near-circular regions of LAVD anomaly represent mesoscale

regions that rotate coherently over the subsequent 30-day interval.

and population of the identified RCLVs are acutely sensitive to the convexity

threshold. The above presentation is oriented towards the oceanographer, but

we refer readers to Haller et al. (2016) and Haller (2016) for a rigorous and130

mathematical presentation of how LAVD naturally arises from a dynamic polar

decomposition of the deformation gradient.

The definition of an RCLV relies on the empirically-supported hypothesis
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Figure 2: The contour field (shown in purple to yellow) of the Agulhas ring of Figure 8,

identified with a contour increment of 4×10−7 s−1. Local maxima are shown as green points.

In practice, we use a contour increment of 10−8 s−1 for RCLV identification, but the resultant

density of the contour field is so high that visualizations make the field look nearly continuous

and are less pedagogical.
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that the more convex an LAVD contour, the more the interior fluid rotates

together, and by extension, the more the fluid coheres. It is worth noting that135

this connection between LAVD contour convexity and material coherency, while

critical to the method, lacks rigorous mathematical justification. For general

finite contours, the justification is empirical and “motivated by the near-circular

cross-section generally observed for stable vortices” Haller et al. (2016). The

majority of Section 3.3 is devoted to investigating this empirical relationship.140

As a preliminary demonstration of the method, we compare the evolution of

vortex material identified by the method to randomly-selected “control” fluid.

As shown in Figures 3, the rotationally coherent object diagnosed by the method

exhibits a high degree of material coherence. In this particular case, we find a

downwelling vortex that contracts the surface material into a localized patch. (In145

general, we also find upwelling RCLVs that disperse material and non-divergent

RCLVs that preserve their area). The control material, however, is widely dis-

persed and stirred with the environmental fluid.

Figure 3: a) An LAVD field computed over a 60-day interval in the North Pacific Ocean.

Contours indicate the detected RCLV boundary (shown in red) and randomly selected control

volumes (shown in purple, blue, and gold). b) The material interiors after 60 days of advection

by the surface flow (numerical details on particle advection are described in the subsequent

section). The RCLV material (shown in red) contracts to a localized patch, a signature of a

strongly downwelling vortex.
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2.1.1. Implementation Details

Given Lagrangian trajectories, the LAVD method reduces the problem of150

identifying coherent vortices to the computational task of finding convex con-

tours in a scalar field (i.e, LAVD). This computational task belongs to the

field of image processing and is amenable to multi-core parallelization, and less

demanding in comparison to other Lagrangian vortex identification methods

(as discussed in Hadjighasem et al. (2017)). Contour identification, which also155

forms the basis of Eulerian vortex algorithms, is a well-studied task that can be

accomplished with existing optimized routines. We take advantage of Python’s

popular scikit-image package described in Van der Walt et al. (2014). The

scalability of the underlying computational task allows vortices to be identified

not just in the limited domains Lagrangian vortex methods are typically devel-160

oped and tested on (e.g., cat’s eye flow, Bickley jet, and others in Hadjighasem

et al. (2017)), but also in the high-resolution global domains of ocean models.

In the past, this global identification was only computationally feasible with

Eulerian vortex methods as in Petersen et al. (2013).

To apply the image processing methods, we create a two dimensional im-165

age from the LAVD scalar field. A pixel gives the value of the corresponding

particle’s LAVD. The global domain we employ for this study spans all 360◦ in

longitude and from 80◦ S to 64◦ N in latitude. This domain is covered with a

Lagrangian particle mesh at a uniform resolution of 1/32◦, producing an LAVD

image with dimensions of 11520 × 4608 pixels. (Note that we respect the spher-170

ical geometry when computing areas and distances by using the appropriate

local tangent plane projections.)

Identifying local maxima and contours in an image requires the introduc-

tion of two free parameters: a parameter to control how many local maxima

are extracted from the image and a parameter that sets an LAVD increment175

for identifying contours. Similar parameters are also found in many Eulerian

sea surface anomaly methods (Chelton et al., 2007; Frenger et al., 2015); the

fundamental difference is that our underlying field is derived from Lagrangian
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quantities. For this study, we inform our determination of these parameters by

consideration of a) the length scale of RCLV permitted by the ocean model, b)180

sensitivity analysis, and c) convergence checks. These efforts are described in

Sections 3.1 and 3.2. While these free parameters are inherent to the method

(and equivalent parameters can be found in the original paper’s MATLAB im-

plementation, publicly available at Hadjighasem (2016)), they are not discussed

in the original manuscript of Haller et al. (2016). The other free parameter,185

the convexity threshold, which is fundamentally related to the coherency of the

vortex, is discussed in Section 3.3.

2.2. The CM2.6 Coupled Climate Model

We identify RCLVs in the NOAA/GFDL CM2.6 coupled climate model,

which makes use of a 0.1◦ ocean model component. The ocean component is190

based on the MOM5 code of Griffies (2012) and uses a z∗ vertical coordinate

(quasi-Eulerian). Horizontal grid spacing is roughly 11 km in the equatorial

region and 5 km in the high latitudes. The atmospheric component makes use of

a 50 km configuration with a full diurnal cycle of air-sea fluxes communicated to

the ocean every 20 minutes. Hence, the ocean experiences a broad and realistic195

spacetime range of forcing. CM2.6 has generated a growing suite of publications

considering the role of explicitly represented ocean eddies in the climate system

(Delworth et al., 2012; Winton et al., 2014; Griffies et al., 2015; Dufour et al.,

2015; Saba et al., 2016; Goddard et al., 2017; Dufour et al., 2017).

To maintain the horizontal isotropy of the grid and account for variations200

in the Rossby deformation radius with latitude, the meridional spacing of the

model’s grid decreases towards the poles. At its furthest extent near 80◦S, the

meridional spacing reaches a minimum of approximately 1/24◦. The model’s res-

olution permits organized turbulent structures at the mesoscale, and parametrizes

the effect of the unresolved sub-grid-scale dynamics on the mesoscale features205

as described in Griffies et al. (2015). A theoretical minimum of four grid cells

is required to construct the basic circular velocity field pattern of a vortex as

depicted in Figure 4. Accordingly, we intend to identify coherent vortices with

11



length scales greater than or equal to the length of two grid cells (which varies

from a minimum of 10 km at high latitudes to a maximum of 20 km at the210

equator).

When this computationally demanding simulation was run, a decision was

made to output horizontal velocities at daily-averaged frequency at the sea sur-

face and monthly-averaged frequency for the full water column. Because the

monthly-averaged velocities are highly smoothed, they are not suitable for de-215

tecting mesoscale coherent structures. Consequently, this study is limited to

considering advection by the near surface horizontal flow (top model grid point,

representing a depth of 10 meters). The Lagrangian trajectories generated by

this flow can be considered to be the approximate trajectories of inertial parti-

cles whose strong buoyancy effectively constrains them to remain close to the220

sea surface (Haller & Sapsis, 2008; Maxey & Riley, 1983). Examples of such par-

ticles include surface debris and pollutants, as well as drogued drifters. While

this flow is two dimensional, three dimensional motions can be inferred from the

convergence and divergence of trajectories, as is discussed in detail in subsequent

sections.225

2.3. Lagrangian Particle Mesh

Because linearly interpolating the velocity field allows us to probe length

scales slightly finer than the grid-scale (which is greater or equal to 1/24◦), we

cover the domain with a Lagrangian particle mesh of uniform 1/32◦ resolution.

This Lagrangian particle resolution corresponds to initializing a nominal 4 ×230

4 array of particles in the interior of each nominal 0.1◦ × 0.1◦ velocity cell as

shown in Figure 4. In this work, we advect the Lagrangian particles in the

daily mean surface currents from the pre-industrial CM2.6 simulation of 200

years. Advection using archived velocity fields is conducted with the MITgcm

(Marshall et al., 1997; Adcroft et al., 2014) in ”offline mode” as described in235

Abernathey & Marshall (2013). Trajectories are integrated using a 4-th order

Runge-Kutta scheme with a timestep of 900.0 seconds.

Velocity fields are interpolated from the Arakawa B-grid of MOM5 to an
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Figure 4: Schematic depicting a horizontal velocity field containing two neighboring grid-scale

vortices (with centers A and B) on a Southwest convention Arakawa C-grid. Each vortex

exhibits a four-cell clock-wise circular flow pattern. A sample of the Lagrangian particle mesh

(shown as black points) is displayed in the lower leftmost grid cell. The vortex centers are

three grid cells from each other, which corresponds to a separation of roughly ten Lagrangian

particles.

Arakawa C-grid required for the MITgcm (Arakawa & R. Lamb, 1977). The

MOM5 B-grid is based on the Murray Tripolar grid of Murray (1996), which240

has a standard quasi-mercator latitude by longitude format south of 65◦ N, but

contains a non-spherical grid north of 65◦ N with singularities over Northern

Canada and Northern Russia (Griffies, 2012). To avoid the complexities as-

sociated with interpolating from the non-spherical polar region of the B-grid

to a spherical C-grid, the domain is truncated at 65◦ N. The Lagrangian par-245

ticle mesh covers this near-global domain at 1/32◦ resolution with 37 million

particles. The LAVD and position of each Lagrangian particle is output and

saved daily. For example, Figure 3 exhibits particle trajectories after 60 days of

advection.

For a 30-day interval, we distribute the advection of the global particle mesh250

in MITgcm over 128 processors. This computation takes an hour and produces
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32 Gb of trajectory data.

3. Results

We proceed to analyze RCLV identified in CM2.6 and walk through how

to rigorously determine the method’s free parameters in order to yield robust255

results. We will take the trajectory data as given, and thus do not conduct a

sensitivity analysis of the Lagrangian trajectory computation (e.g., we do not

address sensitivity to the advection time-step, spatial resolution of the velocity

field, or vorticity computation). We only concern ourselves with the sensitivity

of the free parameters inherent to the LAVD method, which is the objective of260

the paper. Without loss of generality, we conduct this free parameter analysis

on RCLV identified in a 30-day window.

3.1. Minimum Distance

Following the RCLV recipe, we seek closed and convex contours that encircle

local maximum LAVD pixels. The first step is to identify local maximum LAVD265

pixels using the skimage.feature.peak local max method. By definition, a

local maximum exists with respect to a neighborhood whose extent requires

specification, thus introducing a new parameter, min distance, which is the

minimum allowable number of LAVD pixels separating two local maxima. The

largest possible number of local maxima can be extracted with min distance = 1.270

We note that the LAVD machinery is designed to identify stand-alone vor-

tices. The problem of vortex merger and detecting multi-core vortex structures

(as discussed in Hughes & Miller (2017)) is beyond the purview of this project.

Given our focus on identifying single-core RCLVs, and considering our former275

observation that the smallest vortex that is theoretically permitted by the model

occupies 4 grid cells, we expect a minimum separation of at least three grid cells

between LAVD maxima at the respective centers of two neighboring RCLVs as

illustrated in Figure 4. Interpreting this criterion in terms of the nominal 4 ×
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Figure 5: Kuroshio LAVD field with the local maxima (overlain in red scatter points) from

identification with min distance choices of a) 20, b) 15, c) 10, d) 5 pixels. The RCLV search

in all cases identifies a single vortex whose boundary (shown as yellow contour).
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4 LAVD pixel array in the interior of each grid cell provides the requirement280

that LAVD maxima should be at least 12 pixels apart. Sensitivity analysis

reveals that identification results largely do not depend on slight variations in

min distance. In practice, we find that mesoscale vortex features are almost al-

ways separated by at least a hundred kilometers. A demonstration of this char-

acteristic spacing is shown in Figure 5. Even though the number of local maxima285

strongly varies, the final identified vortex field is identical: the prominent and

isolated mesoscale anomaly is separated from its nearest neighbor maxima by

at least 20 pixels. Global identification with min distance set to 5, 10, and 15

pixels also yielded identical RCLV fields. We have used min distance = 10 in

the following analysis.290

3.2. Contour Increment

Given a local LAVD maximum, the next step in the identification process

is to find the outermost convex iso-LAVD contour that encloses the maximum.

We numerically identify this boundary contour by iterating through the nested

contour field, starting from the maximum and expanding outward. The itera-295

tive search terminates when a contour is identified that exceeds the convexity

threshold. Contours are found using the skimage.measure.find contours()

method, which implements the marching cubes algorithm of Lorensen & Cline

(1987). To find contours, the method linearly interpolates between the image’s

discrete pixels. As a result, the contour field is continuous; a distinct contour300

exists for every value in the interval between the minimum and maximum LAVD

pixel values in the image. To make progress, we are required to specify a fixed

LAVD increment with which to iterate through the nested contour field. This

contour increment introduces another free parameter to the method. Figure

2 displays the nested contour field for the Agulhas ring field of Figure 8. A305

contour increment of 4× 10−7 s−1 was employed to produce this contour field.

A coarse LAVD contour increment will distort the geometry of the LAVD

field, giving rise to a problematic coupling between the convexity deficiency and

the contour increment. We desire that the effects of varying the free parameters
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Figure 6: Average difference in LAVD between a pixel and its contiguous neighbors, computed

for the LAVD field shown in Figure 2. Contours (shown sequentially from red to yellow) are

the RCLV identification results for various choices of contour increment. Convergence occurs

with a contour increment of 10−8 s−1.
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to be independent, and must ensure that the contour increment is fine enough310

to resolve the contour convexity and minimize the coupling with convexity de-

ficiency. On the other hand, we expect that the amortized time complexity of

the vortex search varies inversely with the contour increment. An excessively

fine contour increment will thus require great computational cost, yet minimally

impact the grid-scale features of the RCLV boundary.315

Arriving at a contour increment that balances the competing interests (re-

solving the contour convexity vs. minimizing computation time) requires un-

derstanding how the LAVD varies from pixel to pixel. We assess this variation

by, for instance, taking the average of the difference between the LAVD value

at a pixel and the LAVD value at its four neighboring pixels:

∆LAVD[i, j] =

∑
(k,l)∈Neighbors

∣∣∣∣LAVD[i, j]− LAVD[k, l]

∣∣∣∣
4

(2)

where
∣∣ ∣∣ is the absolute value and the sum runs over the indices of the contiguous

pixels, Neighbors = {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)}. Figure 6 presents

this averaged difference field for the Agulhas LAVD field previously plotted in

Figure 2. With the exception of fewer than ten pixels in the local 128 by 128

pixel domain, the pixel-to-pixel variation in LAVD exceeds 10−8 s−1. We thus320

expect that a contour increment of 10−8 s−1 appropriately resolve the grid-scale

RCLV features.

We verify this hypothesis by conducting a sensitivity analysis in which we

compare RCLV boundaries identified with varying choices of contour increment.

The resulting contours are shown in Figure 6. Per our expectations, convergence325

is achieved with a contour increment between 10−7 to 10−8 s−1. On a global

scale, we tested the robustness of the contour increment choice by comparing

identification with a contour increment of 10−8 s−1 to 10−9 s−1. Both resultant

datasets contained the same number of vortices and there was less than a 1%

difference in cumulative area between the two datasets. As a result, we have330

employed a contour increment of 10−8 s−1 in this paper. For reference, RCLV

detection with floater on a global LAVD image with a contour increment of
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10−8 s−1 takes roughly 3 hours.

Figure 7: Schematic of a contour surrounded by its convex hull. The convexity deficiency

equals the difference in area between the convex hull and the contour (orange region) divided

by the contour’s area (blue region). For the above contour, the convexity deficiency equals

0.06.

3.3. Convexity Deficiency

For the LAVD method, the fundamental tuning question is how to determine335

the boundary of the RCLV using knowledge of the LAVD contours’ convexity.

To this end, we utilize the convexity deficiency, abbreviated as CD, as a measure

of the convexity of a 2D LAVD contour. CD is equal to the area between the

contour and its convex hull, divided by the area enclosed by the contour (Haller

et al., 2016). The convex hull of a curve is the smallest convex set that contains340

the curve as shown in Figure 7. If a curve has a small value of CD, then the

curve is nearly convex.

While plots in the vein of Figure 3 evince a sound connection between LAVD

contours and material coherency, they do not directly address the question of

how to determine the convexity deficiency parameter. This question is partic-345

ularly important because the RCLV identification results are highly sensitive
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Figure 8: LAVD field computed over a 30-day period in the Agulhas region. Contours (shown

in blue) are the RCLV identification results for various choices of CD, all encircling an Agulhas

ring (formerly shown in Figure 2).
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to variations in CD. This sensitivity is demonstrated in Figure 8 for the RCLV

detection of an Agulhas ring.

Varying CD from .01 to .15 results in a concentric set of RCLV boundaries

with increasingly large spiral filaments. This spiral shape is ubiquitous to RCLVs350

and reflects the fact that RCLVs decay from the outside towards the center by

“unrolling” their exterior layer-by-layer. This unrolling motion can be seen in

Figure 9, which shows the fate of the Agulhas ring material interior. RCLVs were

identified using only the first 30 days of trajectory data, but trajectories past 30

days are shown to demonstrate the vortex decay process. All the vortices become355

less compact with time, but the higher CD cases show a faster deterioration with

material globally breaking away from the core vortex and dispersing.

Aside from expanding the boundaries of previously identified RCLVs, in-

creasing the CD also leads to the identification of new structures. This behavior

is demonstrated in Figure 10 which displays the detection results for a domain360

in the South Atlantic with Agulhas ring activity. The number of the identified

structures varies sharply with the CD: identification with CD choices of .01, .05,

.1, .15 yields 3, 11, 20, and 24 vortices respectively.

As we might expect, the three RCLVs identified with CD = .01 remain

compact and coherent over the 30-day advection. In comparison, the structures365

that appear only at higher CD exhibit more filamentary tails and less compact

geometry. We emphasize that varying CD changes not only the number, but

also the nature of the identified RCLV. In the subsequent section, we introduce

a statistical measure to quantify this difference in coherency behavior.

To settle on a value of CD thus requires a subjective judgment of how co-370

herent a feature must be in order to merit distinguishing it from the turbulent

environmental fluid as a ”coherent structure”. To avoid this subjectivity, the

idea of simply setting CD = 0 and eliminating it as a free parameter may sound

appealing. The consequence is that RCLV boundaries are strictly convex poly-

gons, composed of edges with length equal to the resolution of the Lagrangian375

particle mesh. Upon closer examination, we find that this choice is unsatisfac-

tory: we have merely transformed the ambiguity in determining CD into an
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Figure 9: Evolution of RCLVs shown in Figure 8 for parameter choices of a) CD = .01, b)

CD = .05, c) CD = 0.1, d) CD = 0.15. RCLVs were identified using only the first 30 days of

trajectory data. Later trajectories are shown to demonstrate the vortex decay process. See

text for discussion.

ambiguity in choosing the Lagrangian mesh resolution.

Perhaps part of the uncertainty here is due to the somewhat ill-defined na-

ture of a coherent structure’s boundary. This ambiguity is even present in380

McWilliams’ original work on 2D quasi-geostrophic turbulence, where he steers

clear of quantifying the boundary and a precise distinction between vortex and

environment is challenging (McWilliams, 1984). Recently, Wang et al. (2016)

studied the life cycle of an Agulhas ring using Lagrangian-based vortex detection

and showed that periodic “coherence regain” events, during which the vortex385
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Figure 10: Initial locations (shown in blue) and final locations (shown in red) of 30-day RCLVs

in the Agulhas region of the South Atlantic Ocean. RCLVs are identified with parameter

choices of a) CD = .01, b) CD = .05, c) CD = 0.1, d) CD = 0.15.

entrains surrounding fluid, complicate this distinction between environment and

vortex.

This ambiguity in the definition of a coherent structure’s boundary–along

with the acute sensitivity of the method to CD–motivates the idea of not set-

tling on a single value of CD. Rather, we argue that it is appropriate and de-390

sirable to leverage the sensitivity to CD in order to separate RCLVs into three

broad classes: strictly coherent, moderately coherent, and weakly coherent (aka
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leaky). In order to accomplish this goal, we need to choose three representative

CD values for each coherency class. While there is some subjectivity in choos-

ing representative CD values, this setup is arguably better motivated than the395

alternative of simply choosing a single CD for all of the analysis. This approach

also has the advantage of revealing dynamical insight on the geographical dis-

tribution of coherency in the ocean. For instance, it may be valuable to know

what regions form leaky vortices exclusively or which regions experience a high

frequency of strict coherent vortex formation.400

3.4. Coherency Index

To achieve a coherency categorization based on CD, we have to make precise

the relationship between material coherency and CD. To this end, we introduce

a Coherency Index. To quantify an RCLV’s spatial compactness, we compute

the variance of the particle positions,

σ2(t) =

〈 ∣∣∣∣X(t)−
〈
X(t)

〉 ∣∣∣∣2 〉 , (3)

where
〈 〉

indicates an average over the set of RCLV particles and
∣∣ ∣∣ is the

standard Euclidean distance. A coherent vortex remains spatially compact un-

der advection. To assess the change in spatial compactness over a time interval

[0, t], we compute the Coherency Index (CI),

CI =
σ2(0)− σ2(t)

σ2(0)
. (4)

The sign and magnitude of CI specify the material coherency of an RCLV.

By construction, CI is positive for vortices that are strongly coherent, with a

theoretical limit of CI = 1 for vigorously downwelling vortices that contract

to a point (as in Figure 3). For a weakly coherent vortex that sheds material,405

σ2(t) can be arbitrarily larger than σ2(0), and CI becomes arbitrarily negative.

Figure 11 presents sample vortex motions and their associated CIs. The vortices

were selected from the vortex field discussed earlier in panel d) of Figure 10. As

we might expect, the CI metric penalizes a vortex for dispersing and developing

filaments, and rewards a vortex for growing more compact. We also observe410
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Figure 11: Values of Coherency Index (CI) for representative RCLVs, which were selected

from the vortex field shown in panel d) of Figure 10. Rows demonstrate examples of leaky,

coherent, and contracting vortices respectively. Initial locations of trajectories are shown in

blue and final locations are shown in red. The dispersion (D) and number of particles (N)

(directly proportional to the vortex’s area) are included to illustrate the explanation of why

the dispersion is a poor coherency metric.
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that CI values close to zero correspond to vortices whose movements closely

resemble solid body motion.

In prior literature, the variance of Lagrangian particle displacements has

been used to quantify how sets of particles spread out over time (see the review of

LaCasce (2008), and references therein). This quantity, known as the dispersion,

is given by

D(t) =

〈 ∣∣∣∣X(t)−X(0)−
〈
X(t)−X(0)

〉 ∣∣∣∣2 〉 . (5)

Note that D(t) measures how the particles disperse over the time interval [0, t],

while σ2(t) measures only the instantaneous spatial distribution of the particles

at a fixed time t. We now explain several reasons why D(t) has limited utility415

as a coherency metric.

First, we note the problematic dependence of D(t) on the vortex’s area,

which governs the spatial scale of the displacements. The same value of D(t)

can correspond to a fairly coherent large vortex and to a leaky small vortex.

This undesirable feature of D(t) is demonstrated in Figure 11. A similar point420

is illustrated in Figure 2 of LaCasce (2008) with the conclusion being that

“[w]hile the dispersion reflects the clouds size, it is fairly insensitive to the

clouds distribution in space”.

Another fundamental limitation of D(t) is the quantity’s inability to dis-

tinguish between radial expansion versus contraction. Consider a particle cloud425

with circular symmetry that is radially expanded or contracted. Since the vortex

maintains its circular shape, the mean displacement
(〈

X(t)−X(0)
〉)

is zero

by symmetry. The value of D(t) is then set by only the magnitude of the change

in the vortex’s radius. D(t) is ignorant of whether the change in the vortex’s

radius is positive or negative, and thus cannot distinguish between expansion430

and contraction. Therefore, D(t) overlooks a signature difference between up-

welling and downwelling vortices. These limitations of D(t) are not shared by

CI, which is independent of vortex area and capable of distinguishing expansion

from contraction.

To further understand the relationship between CI and the convexity defi-435
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Figure 12: A box-and-whiskers plot of the Coherency Index distributions for RCLV datasets

resulting from identification with various choices of convexity deficiency parameter. For each

distribution, the mean is indicated by a black point, the second (third) quartile is contained in

the lower (upper) box, and the standard deviation is displayed as a whisker. Data farther than

one standard deviation from the mean is plotted discretely. RCLVs were identified across the

full global domain using 30-day trajectories. To put the values of Coherency Index in context,

see Figure 11. Also see text for further discussion.

ciency, we conduct a global identification of RCLVs for various choices of con-

vexity deficiency. We then compute and compare the Coherency Index distri-

butions. All calculations are done with a global 30-day LAVD field. The results

are summarized in the table below and displayed in Figure 12. Note that a

limited spatial region of this global data set was previously shown in Figure 10.440
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Number Mean CI Median CI

CD = .01 109 0.28 0.48

CD = .05 346 -0.18 0.20

CD = 0.1 579 -0.48 0.11

CD = 0.15 789 -0.74 0.03

CD = 0.2 1014 -0.91 -0.03

CD = 0.25 1250 -1.17 -0.08

CD = 0.3 1534 -1.47 -0.16

The clear trend aligns with our expectations: the higher the value of con-

vexity deficiency, the greater the number of identified leaky vortices. This fact

is reflected by the Coherency Index distributions medians, means, and quartiles

all shifting uniformly down the y-axis towards negatives CI values in Figure 12.445

First, we observe that for the strictest convexity deficiency threshold of CD =

.01, the mean convexity index is positive, indicating that the method is primarily

identifying coherent objects that grow more compact with time. At CD = .05,

the mean value of the convexity index changes sign to −.18. This signals a

coherency regime change: although the median is still positive, there are now450

many dispersive RCLVs in the dataset. All subsequent larger values of CD

intensify the leakiness and shift the mean further negative. The key point here

is that to classify the strictly coherent RCLVs we should choose a CD < .05.

The next shift in coherency regime occurs between CD = 0.15 and CD = 0.2.

In this interval, the median changes sign, revealing that at CD = 0.2 most455

identified vortices are leaky. The proximity of the mean to the 1st quartile of

data also reflects the presence of very incoherent vortices. Since most vortices

leak and some do so to an extreme degree, we conclude that between CD = 0.15

and CD = 0.2 we transition to the weakly coherent regime. These findings

suggest that we employ parameter choices of CD = .01, CD = 0.1, and CD =460

0.25 to survey the three different types of vortices.

In summary, we delineated between the leaky and moderately coherent

regimes by when the mean Coherency Index is approximately zero. We then
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defined the end of the moderately coherent by when the median Coherency

Index is approximately zero. Sample results for the CD values corresponding465

to these definitions are shown in Figure 13 for a domain in the Pacific Ocean.

The varying dispersive nature of the identified vortices is in agreement with our

expectations based on the above definitions.

The broad fluctuation in the results emphasizes the importance of under-

standing the method’s sensitivity and how it relates to the physics of the iden-470

tified vortices before applying the method to address vortex census questions.

Importantly, we find an order of magnitude more leaky vortices than strictly

coherent vortices. Censuses conducted with CD = .01 versus CD = 0.25 would

consequently reach RCLV net transport estimates that differ by at least an order

of magnitude.475

For comparison, we have included panel a) of Figure 14 to demonstrate the

dispersive nature of randomly selected patches of fluid. The control results are

characterized by a CI distribution with an approximate mean of -7 and median

of -5.

4. Discussion and Conclusions480

The above analysis demonstrated that the LAVD method results are highly

sensitive to variations in the free parameters: convexity deficiency, min distance,

and contour increment. We also described, however, that this sensitivity can be

physically rationalized, enabling the oceanographer to utilize the method to re-

veal objective structures. Through convergence analysis, we have demonstrated485

that the full mesoscale vortex field can be detected with min distance = 10,

and that the nested LAVD contour fields can be fully resolved with a con-

tour increment of 10−8 s−1. Subsequently, we introduced a Coherency Index to

quantify the coherent versus dispersive nature of the identification results. This

diagnostic enabled us to select tunings of the convexity deficiency that explore490

the entire spectrum of coherency in the ocean. In particular, we showed that

convexity deficiency choices of .01, 0.1, and 0.25 are representative values for
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Figure 13: a) trajectories of two randomly selected arrays of control regions, and RCLV results

for b) CD = .01; c) CD = 0.1; d) CD = 0.25 on a common subdomain in the Pacific Ocean.

See text for discussion.
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strictly, moderately, and weakly coherent vortices. Note that because resolu-

tion and dynamics vary from model to model, these exact values may only be

appropriate for our specific model dataset. However, the tuning methodology495

developed here should be equally effective and relevant for applying the method

to other models and observations. Furthermore, the coherency index provides

a means to compare and assess results across models and even identification

methods. Forthcoming work builds on the foundation laid in this paper, and

presents the results from a global census of vortices for each coherency class in500

CM2.6.

Our analysis was limited to the two-dimensional surface manifestation of

the vortex flow, but coherent vortices are, of course, fully three dimensional

structures. The significant computational challenge posed by the 3D problem

in conjunction with the absence of subsurface daily velocity field data in our505

model put 3D considerations beyond the scope of this study. We share this

2D limitation with nearly all other vortex studies. The LAVD methodology,

however, naturally extends to three dimensions, in which a three-dimensional

array of Lagrangian particles may be employed to search for convex iso-surfaces

of LAVD as in Section 11 of Haller et al. (2016). By only studying the surface510

realization of the vortex, we are neglecting the vertical motion responsible for

the upwelling and downwelling. The presence of this vertical motion, however,

can still be directly inferred and quantitatively addressed within the context of

our 2D results by invoking three-dimensional incompressibility.

We expect that horizontal motion dominates over vertical motion for vor-515

tices that show no signs of convergence/divergence (i.e. CI ≈ 0) as in Figure

11c,d. For downwelling vortices, however, the horizontal motion of a surface-

constrained Lagrangian particle may differ significantly from the horizontal mo-

tion of the fully 3D fluid trajectory. Consider the downwelling vortex of Figure

3. The vortex has an initial horizontal surface area of 3.5× 104 km2, and the520

depth of the ocean model’s surface grid cell is 10 m, giving a total initial volume

of 350 km3 in the surface layer. After 60 days of advection, this material has

been compressed to a narrow core with an area of 430 km2. Consequently, we
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infer that the vortex downwelled over the 60 day interval with a vertical volume

transport of 6.7× 104 m3/s (or 6.7× 10−2 Sv) . Assuming that the downwelling525

occurred in the vortex core, we also estimate a characteristic downwelling ve-

locity of 1.6× 10−4 m/s (or 13.5 m/day). Thus, if the vortex column penetrates

less than approximately 800 m into the ocean interior, surface fluid may escape

the coherent structure by being pumped down through the vortex column and

exiting at depth. Future research should aim to explore this 3D structure of530

coherent vortices.

In terms of the detection method, implementing a root finding algorithm in

the contour search could potentially improve the algorithm. Currently, we con-

duct the contour search by stepping through the LAVD field at a fixed contour

increment. Root finding algorithms (e.g., the bisection method as described in535

Burden & Faires (1985)) are designed to rapidly converge on the features of

a function by taking taking variably-sized steps. Consider a family of LAVD

contours and let CD(x) give the convexity deficiency of the contour with LAVD

= x. Suppose that the desired CD threshold for RCLV identification is CDo.

The RCLV boundary is then specified by CD(x) = CDo, and x can be found540

using a root finding algorithm. Root finding would eliminate the need to specify

a fixed contour increment. Efforts are underway to implement this in floater

(available at https://github.com/rabernat/floater) and explore it as an alterna-

tive means of searching the contour field.
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