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A B S T R A C T 

In this thesis, we study the spectral properties of the hierarchical Anderson 

model. This model is an approximation of the Anderson tight-binding model on Zd, 

with the usual discrete Laplacian replaced by a hierarchical long-range interaction 

operator. In the hierarchical Anderson model, we are given a countable set X endowed 

with a hierarchical structure. The free hierarchical Laplacian is a self-adjoint operator 

A acting on the Hilbert space Z2(X). The spectrum of A consists of isolated infinitely 

degenerate eigenvalues. We look at small random perturbations of the operator A. 

The disorder is modeled by a random potential Vw, (K,t/>)(a;) = u>(x)ij)(x) for ip £ 

Z2(X). The numbers u(x) are identically distributed independent random variables 

with a bounded density. The hierarchical Anderson model is the random self-adjoint 

operator Hu = A + Vw. We prove the following two results. If the model has a 

spectral dimension dsp < 4 then, almost surely, the spectrum of Hu is dense pure-

point. The second result is on eigenvalue statistics. For dsp < 1, the energy levels 

for Hu are asymptotically a Poisson point process in the thermodynamic limit, after 

a proper rescaling. 
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A B R E G E 

Dans ce memoire, nous etudions les proprietes spectrales du modele hierarchique 

d'Anderson. Ce modele est une approximation du modele dAnderson sur Zd, avec 

le Laplacien discret remplace par un operateur d'interaction hierarchique de longue 

portee. Dans le modele hierarchique dAnderson, nous considerons un ensemle 

denombrable X, muni d'une structure hierarchique. Le Laplacien hierarchique li-

bre est un operateur auto-adjoint A qui agit sur l'espace d'Hilbert Z2(X). Le spectre 

de A consiste en valeurs propres isolees et infiniment degenerees. Nous considerons 

des faibles perturbations aleatoires de l'operateur A. Le desordre est modelise par 

un potentiel aleatoire Vu, (Vuip)(x) = u(x)tp(x) pour ip G /2(X). Les nombres ui{x) 

sont des variables aleatoires identiquement distributes, avec une densite bornee. Le 

modele hierarchique dAnderson est l'operateur aleatoire auto-adjoint Hu = A + Vu. 

Nous demontrons les deux resultats suivants. Si le modele a une dimension spec-

trale dsp < 4 alors, presque siirement, le spectre de H^ is dense pur-point. Le 

second resultat concerne la statistique des valeurs propres. Pour dsp < 1, les niveaux 

d'energie de Hu sont asymptotiquement un processus de Poisson dans la limite ther-

modynamique, apres un changement d'echelle approprorie. 

IV 
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Introduction 



The mathematical discipline of random Schrodinger operators has its origins in 

solid state physics as an attempt to describe localization and transport in randomly 

disordered quantum systems. The notion of a random discrete Schrodinger operator 

can be formulated in the following general framework. Let X be a countable set 

and let Ho be a self-adjoint operator acting on the Hilbert space l2(X). Ho is the 

energy operator^ of the unperturbed quantum system, and is usually taken to be a 

Laplacian. Let u> = W(x)}xeX be a family of independent identically distributed 

(i.i.d.) random variables. For the purpose of this introduction, let us assume that 

u(x) are i.i.d. random variables uniformly distributed on the interval [—1,1]. The 

disorder is modeled by a random potential Vw acting diagonally on Z2(X): 

(Vu,ip)(x) = tu(x)4>(x), - 0 e Z 2 ( X ) , x e X . 

The disordered quantum system is then described by the random self-adjoint operator 

Hu = H0 + cVu, 

where c > 0 is a coupling constant measuring the strength of the disorder. The 

generic spectral properties of H^ reflect the physical properties of the disordered 

system. Localization corresponds to a pure-point spectrum, whereas transport cor­

responds to an absolutely continuous (a.c.) spectrum. 

Since the pioneering work of Anderson [A], the most famous example of a random 

discrete Schrodinger operator is the Anderson tight-binding model on the lattice 
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X = Z . In the Anderson model, HQ is equal to the discrete Laplacian AZd, 

(Az„tfO(x)= J2 ^ ) ' ^ e Z 2 ( z d ) , x e Z d , (l) 
|y-x|=l 

where x = (xi, • • • ,xd) ,y = (yu • • • , yd) G Zd and \x - y\ = £ d
= 1 \xj ~ VjY A re­

markable feature of the Anderson model is that many spectral properties hold with 

probability one, and thus are generic. There exist deterministic sets S, Eac, Ep p such 

that with probability one, the spectrum of Hu is equal to S, the essential support of 

the a.c. spectrum of H^ is equal to Eac (up to a set of zero Lebesgue measure), and 

the pure-point spectrum of H^ is equal to Sp p . We refer the reader to [PF, CKFS, CL] 

for the proofs of these facts and for a general introduction to the field of random 

Schrodinger operators. The Anderson conjecture is that in dimension d = 3, there 

is a critical strength of coupling c0 separating the following regimes. 

(1) For c > Co, Hu is in the localized regime: with probability one, the spectrum of 

Hu is pure-point and the corresponding eigenfunctions decrease exponentially. 

(2) For c < Co, Hu is in the delocalized regime: with probability one, Hu has some 

a.c. spectrum. 

The large desorder regime c > > 1 is by now well understood [FS, AM]: with prob­

ability one, Hu is in the localized regime (1). The methods of proof are based 

on the idea that for large enough c, Ho can be considered as a small perturba­

tion term added to cVu, and that perturbation can be controlled by probabilistic 

estimates. The fractional moments method [AM, ASFH] is a robust technique al­

lowing to prove localization at large disorder for a wide class of random discrete 

Schrodinger operators. The analysis of the weak disorder regime c < < 1 is a much 
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more difficult problem. A fundamental open question is to prove the existence of 

some a.c. spectrum for the Anderson model in dimension d = 3. At the present 

moment, there does not exist a satisfactory mathematical technique to tackle the 

weak disorder regime. Nevertheless, very interesting special methods have been de­

veloped to analyze simpler models. For the one-dimensional Anderson model, there 

is no phase transition. For every c > 0, with probability one, the spectrum of Hu 

is pure-point and the corresponding eigenfunctions decrease exponentially [KuSo]. 

Localization was first proven for the continuous one-dimensional model in [GMP]. 

One can also consider more general Anderson models on graphs. In this case X 

is the set of vertices of the graph and the operator HQ is taken to be the graph 

Laplacian (Ho~ip)(x) = Yl^iv)'^ e £2(X),x € X, where the sum is taken over the 

vertices y adjacent to x. The Anderson tight-biding model on Zd is a special case in 

this framework when Zd is viewed as a graph with the vertices x and y adjacent iff 

\x — y\ — 1. After the Anderson model on Zd, the next most studied graph model is 

the Bethe lattice, for which X is a regular tree with branching K > 2 (the case K = 1 

is identical to the one-dimensional Anderson model). For the Bethe lattice, a result 

very close to the Anderson phase transition has been proven in [Kl, ASW, FHS]. 

For small enough c, c < c\ H^ has purely a.c. spectrum with probability one and 

for large enough c, c > c^-, H^ has pure-point spectrum with probability one. The 

situation on [ci,C2] is not resolved yet. 

A possible approach to study the Anderson model is via a hierarchical toy model. 

The idea of using hierarchical interactions goes back to Dyson's [D] in the context of 
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statistical physics. The density of states for hierarchical Anderson model was stud­

ied by Bovier [Bo] in the supersymmetric formalism. Later, Molchanov [M2, M3] 

considered the spectral localization problem for the hierarchical Anderson model 

and proved localization in the case of a Cauchy random potential. The hierarchical 

Anderson model turns out to be technically the simplest nontrivial random discrete 

Schrodinger operator for which localization holds at arbitrary coupling c. The main 

guiding principle for the hierarchical Anderson model is the same as in proof of local­

ization in the large disorder regime for the Anderson model on Zd . The hierarchical 

Laplacian A = Ho is considered as a perturbation term added to Vu. We will see that 

the very special hierarchical structure of A allows to understand this perturbation 

via simple recursive resolvent formulas. The parameter quantifying the importance 

of the perturbation will be the spectral dimension dsp of A. A small spectral dimen­

sion will mean that A very weakly couples distant regions of space and thus is not a 

too strong perturbation term. As a result, localization and eigenvalue statistics are 

easier to analyze for smaller spectral dimensions. 

This thesis is based on the author's papers [Kl, K2, K3]. Although the main 

results can be extracted from [Kl, K2, K3], in this work we have adapted a uniform 

notation, simplified certain arguments of [Kl, K2, K3] and fixed minor mathematical 

mistakes. In Chapter 1, we give the definition of the free hierarchical Laplacaian A 

and we study its basic spectral properties. The material of this chapter is elementary 

and is essentially present in [M3] and [Kl]. Chapter 2 is based on [Kl, K2] and is 

devoted to the study of the generic spectral properties of H^. We prove localization 
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for the hierarchical Anderson model with spectral dimension dsp < 4 and a general­

ization of Molchanov's theorem for mixed Cauchy distributions. The techniques of 

proof have their origin in [M3] and this chapter can be viewed as a natural exten­

sion of Molchanov's work. Chapter 3 is devoted to the study of the fine eigenvalue 

statistics. We prove Poisson statistics of eigenvalues for the hierarchical Anderson 

model with spectral dimension dsp < 1. This chapter is based on the author's work 

[K3] and exploits the method of Minami [Mi]. 
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CHAPTER 1 
The Free Hierarchical Laplacian 

1.1 Hierarchical structures 

Let X be an infinite countable set and d : X x X - > N a metric on X. For x G X 

and r 6 N, we denote by B(x, r) the (closed) ball with center x and radius r, 

B(x,r) = {y€X:d(x,y)<r}. 

We shall call d a hierarchical distance on X if the following three conditions are 

satisfied: 

(1) Two balls of the same radius are either disjoint or identical, i.e. given X\, I 2 6 X 

and r e N, we have either B(x\,r) D B(x2,r) = 0 or B(xi,r) = B(x2,r). 

(2) Every ball of radius r > 1 is a disjoint union of balls of radius r — 1, i.e. given 

x G X and r > 1, there exist nr(x) 6 {1, 2, • • • } and y\(x), • • • , ynr{x){x) 6 X such 

that 
l lr(x) 

B(x,r)= \J B(yj(x),r-1). 

(3) For every x E X, X = U ~ 0 ^ ( ^ r ) -

If d is a hierarchical distance on X, we call the pair (X, d) a hierarchical structure. 

By convention, we set n0(x) = n0 = 1. We denote by \B(x,r)\ the cardinality of 

B(x,r). 
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A hierarchical structure can be equivalently described in terms of a system of 

embedded partitions. A partition V of X is a collection of finite disjoint subsets of X 

whose union is equal to X, i.e. V — {Bj} i 6 / , X — \Ji&I Bt, and £?; fl Bj = 0 for i ^ j . 

Given two partitions V and V, we write V > V if every B E V is a subset of some 

B' € V. A hierarchical structure (X, d) naturally induces a system of embedded 

partitions of X. By the property (1), for every r > 0, the balls of radius r form a 

partition Vr of X. By the property (2), Vr is finer than Vr+\ and thus we have a 

system of embedded partitions 

V0 > Vi > V2 > • • • • 

Conversely, let VQ — {{^}}x6x be the singleton partition suppose that Vi > V2 > • • • 

is a given system of embedded partitions on X such that for every x, y € X, there 

exist r > 0 and B 6 Vr containing both x and y. If we define d(x,y) to be the 

such smallest r, then (X, d) defines a hierarchical distance. These two constructions 

establish a one to one correspondence between hierarchical structures and systems 

of embedded partitions. 

If for every r > 1, the number nr(x) is independent of x, nr(x) = n r, we say that 

(X, d) is a regular hierarchical structure. In this case, we have 

r 

|S(a;,r)| = Nr = JJn„ 

for every x G X. If moreover n r = n for r > 1, we say that (X, d) is a homogeneous 

hierarchical structure of degree n. The structure is nontrivial for n > 2. For a 

homogeneous hierarchical structure of degree n, we have Nr = n r. 



Example 1.1.1. Let X be the lattice Zd . The elements o/X are pairs x = (xi, £2, • • • #d) 

with x\, xii • • • Xd G Z. Let m > 2 be a given integer. For r > 0 and a; G Zd , consider 

the cube 

Qx,r = {y G Zd : 0 < y* - xk < mr for 1 < k < d} . 

Ze£ "Pr &e i/ie partition 

0/ Zd . Then the system of partitions {Vr)r>a defines a homogeneous hierarchical 

structure of degree n = md. 

1.2 The hierarchical Laplacian 

Let (X, d) be a hierarchical structure. We consider the Hilbert space /2(X) 

consisting of square summable functions ^ : X —> C, 

xex 

The inner product on Z2(X) is given by 

x€% 

For r > 0, we define the averaging operator Er : /2(X) —> Z2(X) by 

(E^)(x) = \B(x,r)\-1 J2 My)-
y€B(x,r) 

Thus Er is the orthogonal projection onto the closed subspace Hr C I2 (X) consisting 

of functions that are constant on every ball of radius r. Let (pr)r>i be a sequence of 
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real numbers such that p r > 0 and X ^ l i Pr = 1- We set po = 0 and 

r 

Ar = / L P s ' r = 0,1,2, v ,oo. 

The hierarchical Laplacian A is defined by 
oo 

A = ^ p r £ r . 
r=0 

The triple (X, d, A) is called a hierarchical model. If (X, d) is regular (resp. homoge­

neous) than we say that (X,.d, A) is a regular (resp. homogeneous). It is easy to see 

that A is a bounded self-adjoint operator and 0 < A < 1. 

Proposi t ion 1.2.1. We have the following diagonalization of A: 

(1) The spectrum of A is given by 

sp(A) = {Ar : r = 0, ••• ,oo}. (1.1) 

Each \r, r < oo, is an eigenvalue of A of infinite multiplicity. The point Aoo — 1 is 

not an eigenvalue. 

(2) Er — Er+i is the orthogonal projection onto the eigenspace of Xr and 

oo 

A = 2_^ K(Er — Er+i). 
r=0 

Proof. Note that 

12{X) =HoDH1DH2DH3D ..., 

and that P i ^ l o ^ = {^} s m c e a nonzero function constant on every ball would be 

identically constant on X and hence would have infinite I2 norm. These observations 
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yield that 
oo 

Z2(X) = 0 L r , 
r=0 

where Lr is the orthogonal complement of Hr+i in Hr- Note that Lr is the infinite 

dimensional subspace of functions ip s.t. Esip = ip for 0 < s < r and Esip = 0 for 

s > r. Hence for every ip g Lr, Aif) = \rip., and this proves (1) and (2). • 

For x £ X, we denote by 5X the Kronecker delta function at x: Sx(y) = 1 for 

y = x and 5x(y) — 0 for y ^ x. The spectral measure for ^ and A is the probability 

measure /ix on R such that 

(6x\f(A)Sx) = Jfd^x, 

for every bounded Borel measurable function / : E —> C. Proposition 1.2.1 allows to 

compute JJLX explicitly. 

Proposition 1.2.2. We have 

oo 

^x = Y/{\B(x,r)\-1-\B(x,r + l)\-1)5(\r), (1.2) 
r=0 

w/jere <5(Ar) denotes the Dirac delta mass at Xr. 

Proof. Using the spectral decomposition of A given by Proposition 1.2.1, we have 

oo 

(5x\f(A)Sx) = ^2f(K){Sx\(Er - Er+1)Sx) 

oo 

= 5^/(-V)<<y |5(2?,r)|_1lB(Xir.) - \B(x,r + l)\~1lB{Xtr+1)) 
r=0 
oo 

= ^ / ( A r ) ( | S ( x , r ) r 1 - | J B ( x , r + l ) r 1 ) , 
r=0 
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where lB(x,r)[y) = 1 if y G B(x, r) and 0 otherwise. • 

For a regular hierarchical structure, \hx is independent of x and 

*** = ** = E (r - r-) *(u (L3) 

f^\K K+iJ 

In this case, we will call the measure fi the spectral measure for A. 

1.3 The spectral dimension 

In this section, we discuss the important notion of the spectral dimension of 

a hierarchical model. For sake of simplicity, we only consider regular hierarchical 

models, but the discussion can be generalized to arbitrary hierarchical models. In­

formally, the spectral dimension is a measure of coupling of distant regions of X. A 

small spectral dimensions means weak coupling and a large spectral dimension means 

strong coupling. Hence faster decay of p r or rapid growth of Nr should imply smaller 

spectral dimension. The precise definition of the spectral dimension is motivated 

by the analogy with the edge asymptotics of the spectral measure of the discrete 

Laplacian Aza on Zd, for which the spectral and the spacial dimensions coincide. 

Definition 1.3.1. The spectral dimension of a hierarchical model is the number dsp 

given by iogfi{[i-t,i\) 
716" log t 
lim^Yl/' J - d s p / 2 , 

provided the limit exists. 

Since 

E<*»IA^> = X' 
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for all x € X, A generates a random walk on X with transition probability p(x, y) = 

(Sx\A5y). Starting at a fixed point XQ £ X, the random walk is a path (XQ, X\, X?, • • •) 

in € X, where the points Xk, k > 1 are chosen according to the following procedure. 

Given Xk, k > 0, we choose a random radius r with probability p r . After that, we 

choose a random point Xk+\ in B(xk, r) according to the uniform distribution. All the 

choices are made independently of each other. The random walk is called recurrent 

if with probability one, Xk = XQ for infinitely many £;'s and otherwise, the random 

walk is called transient. We recall without proof the following well-known general 

criterion for recurrence. Let 

oo 

R = ^ ( ^ 0 | A f c 4 0 > = (SX0\(1 - A ) - 1 ^ ) . 
fe=0 

The random walk starting at XQ is recurrent for R — oo and transient for R < oo. 

We also recall Polya's result saying that that the random walk on Zd generated by 

the discrete Laplacian AZd is recurrent if d = 1,2 and transient if d > 2. The 

corresponding result for the hierarchical Laplacian is: 

Proposition 1.3.2. Consider a homogeneous hierarchical model of degree n > 2. 

Suppose that there exist constants C\ > 0, C-i > 0 and p > 1 such that 

ClP~r < P r < C2p-r, 

for r big enough. Then: 

(1) The spectral dimension is 

dsp(n,p) = 2 ^ . (1.4) 
logp 
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Hence 0 < dsp(n, p) < 2 iff n < p. 

(2) The random walk generated by A is recurrent if 0 < dsp(n, p) < 2 and transient 

ifdsp{n,p) > 2. 

Proof of Proposition 1.3.2. Note that [i([l — t, 1]) is a piecewise constant function 

of t with jump discontinuities at the points 1 — Ar. Since 

oo 

d(p - i ) - V < i - Ar = J ] Ps < c2(P - 1 ) - V r , 
s=r+l 

and /x([l — Ar, 1]) = 1/Nr = n _ r , we have that 

l i m
l o gM[ l -MD = logn 

no \ogt logp' 

which proves (1). Part (2) of Proposition 1.2.1 allows to compute R explicitly: 

fl_<W(l-A)-4.> = / ^ - E ! T ^ 1 -

The bounds 

OO 0 0 

C-2\p - 1)(1 - 1/n) X)(p/n)P < ^ < C f V - 1)(1 - 1/n) ^ ( p / n ) r 

r=0 r=0 

show that R < oo for p < n and /? = oo for p > n, and part (2) follows. • 

1.4 The density of states 

In this section, (X, d) is a regular hierarchical structure given by the parameters 

n r and A is a hierarchical Laplacian specified by the parameters p r . We demonstrate 

below that the spectral measure \x is equal to the density of states measure for A. The 

density of states is a probability measure that describes the asymptotic distribution 

of eigenvalues of a large finite volume approximation to A. There are many possible 
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finite volume approximations of A. We will consider two such approximations and 

we will show that they yield the same limiting density of states, equal to //. 

Let us fix a point XQ E X and consider the increasing sequence of balls 

Bk = B(x0,k) k>0. 

Each Bk has size \Bk\ = N&. For k > 0, we define A& to be the truncated hierarchical 

Laplcacian 
k 

Afe = ] T p s £ s (1.5) 

Note that the subspace 

l\Bk) = {</> € Z2(X) : ><p{x) = 0 for x i Bk) , (1.6) 

is invariant for Afe. Let ek^k = 1, • • • ,Nr denote the eigenvalues of the restricted 

operator A^ \ l2{Bk) and let /j,k be the corresponding normalized eigenvalue counting 

measure, 

W = f E ^ ) ' (1-7) 

We denote by Co(R) the space of continuous functions / : R —> C vanishing at 

infinity, i.e. lim|t|_oo 1/(01 = ®- ^ {uk)k>i and v are Borel probability measures on 

R, we say that vk converges to v in the weak-* topology if for every / £ Co(R), 

lim f f(t)dvk(t)= If{t)du{t). 
k-^coj J 

Proposition 1.4.1. The sequence \ik converges to the spectral measure ji in the 

weak-* topology as k —> oo. 
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Proof. As in Proposition 1.2.1, one can explicitly diagonalize Afc. Summing by parts, 

we have the spectral decomposition 

Afe = p0£o + Pi^i + p 2 £ 2 + • • • + ?kEk 

= p0(£'o - £1) + (po + PI)(£?I - E2) + • • • 

+ (po + Pi + - " + Pk- i ) (£k- i -£fc) 

+ (Po + p H hpfc_i + Pfe)̂ fe-

It follows that 
fc-i 

which yields the statement after taking k —> oo. D 

Suppose that Afc is another sequence of bounded self-adjoint operators approxi­

mating to A and that /2(Bfc) is an invariant subspace for Afc. If pk is the normalized 

eigenvalue counting measure corresponding to Afc, then we have 

/ / ^ = ^^T(<y/(Afc)<y, 
sea* 

for every bounded Borel function / : R —> C. 

Afc-A^ 0 as k —> oo. Then Pk converges Proposi t ion 1.4.2. Suppose that 

to ji in the weak-* topology. 

Proof. Since //& converges to n in the weak-* topology, it suffices to show that for 

every Imz ^ 0, the difference 

Dk(z) = J(t - zy'dpkit) - !{t - zy'd^it), 

16 



converges to 0 as k —• oo. The resolvent identity yields 

(A, - z)-1 - (A, - z) - l < 
llmz 2 ' 

and therefore 

\Dk{z)\ = ^x;^^*-*)"1-^*-^"1)^ 
xeBk 

< |2 ' 
\lvazi 

which converges to 0 as k —> oo. D 

Let us consider the following simple special case. We denote by Pk the operator 

of orthogonal projection onto l2(Bk) and we set 

A ; = pkAPk. 

Then Ak — Ak < Yl^Lk+i P»- anc^ t n e sequence Afc verifies the hypothesis of the 

previous proposition. Therefore the corresponding limiting normalized eigenvalue 

counting measure is equal to fi. Among the different possible finite-volume approxi­

mations to A, the truncated Laplacian A^ is the most convenient and will be often 

used in the following chapters. Hence, the spectral measure // can be naturally in­

terpreted as the density of states of A. An analogous statement is well known for 

the discrete Laplacian on Zd. 
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CHAPTER 2 
Spectral Localization in the Hierarchial Anderson Model 

2.1 Definition of the model and its basic properties 

Let (X, d, A) be a regular hierarchical model. The associated hierarchical An­

derson model is denned as follows. Consider the probability space (£), T, P) where 

D, = Rx , T is the product Borel a-algebra in $1, and P is a given probability measure 

on (ft, T). For u € Q., we set 

Vr
w = 5Zw(x)(<yiB|-)<5x) (2.1) 

and 

HU = A + VU. (2.2) 

If the set {<JJ(X) : x e X} is unbounded, then V^ and H^ are unbounded self-adjoint 

operators with the domain 

I xex J 

The family of self-adjoint operators {H^^en indexed by the random parameter u 

of the probability space (Q, J1", P) is called the hierarchical Anderson model. Our 

goal in this chapter will be to understand the generic spectral properties of Hu. By 

generic we mean a property that holds with probability one. More precisely, there 

must be a set 0, 6 T with P(fj) = 1 and such that for all u> € tt, H^ has the desired 
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property. In this case we shall write: for P-a.a. u G U, Hu has the desired property. 

The first natural question is to describe the spectrum of H^, denoted sp(#w) , as a 

set. Note that, unlike the spectrum of the discrete Laplacian on Zd , the spectrum of 

the hierarchical Laplacian, sp(A), is a disconnected set. 

Theorem 2.1.1. Suppose that the random variables W(x)}x€X are i.i.d. with a 

distribution fiv, i.e. P = x-xex^- Let Sv be the support of [iv and Iv the smallest 

(possibly unbounded) closed interval containing Sv. Then, forF-a.a. to G f2, we have 

sp(A) + Sv C sp(tfw) C (sp(A) + Iv) n ([0,1] + Sv). 

In particular, if Sv is connected, then Sv = Iv and 

sp(ffw) = sp(A) + Sv, 

for P-a.a. u G £1. 

Proof. Let Sw = sp(/fw). Then Su is a random closed subset of R. For P-a.a. u> G Q,, 

we have u(x) G Sv and therefore sp(Kj) C Sv. For such u, the proof of the inclusion 

swc(sP(A) + /v)n([o,i] + sv), 

is an immediate consequence of the following general fact: 

Lemma 2.1.2. Let A be a self-adjoint operator on a Hilbert space H. If B is a 

bounded self-adjoint operators on H, b\ = inf sp(B) and 62 = supsp(B), then 

sp(A + B) C sp(i4)+.[61,62]• 

19 



/ / A is bounded and B is bounded from below, then 

sp(A + B) C [infsp(A)+ infsp(B),oo). 

/ / A is bounded and B is bounded from above, then 

sp(A + B) C (—oo,supsp(y4) + supsp(5)]. 

Proof. Suppose that B is bounded. By adding a constant to B, we can assume 

without of generality that h = - \\B\\ and b2 = | | 5 | | . If z £ sp(A) + [- | | 5 | | , ||B||], 

then dist(z,sp(A)) > \\B\\ and hence \\{z - A)~l\\ < | |B | | - 1 . Hence 

and the operator 

z-A-B = (z- A)(l -{z- A)~lB), 

has a bounded inverse. Suppose now B is bounded from below, say inf sp(B) = b ER. 

Let a — inf s p ^ ) . Then for any unit vector ip in the domain of B, 

((A + B)ij>\ip}>a + b, 

and hence sp(A + B) C [a + b, oo). The case when B is bounded from above is proven 

similarly. • 

The proof of the inclusion 

sp(A) + Sv C Su, 
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for P-a.a. u> G Q, is trickier. Let S = sp(A) + Sv. For rational numbers ri < r2) 

consider the event 

Qr l r t = { 5 w n ( r i , r 2 ) ^ 0 } . 

Proposition 2.1.3. / / (ri ,r2) n 5 ^ 0 Men P(Q r i, r2) = 1. 

Before proving Proposition 2.1.3, let us see how it implies that S C Su, for P-a.a. 

UJ e Q. Consider the event 

r i<r2:( r i , r2)nS^0 

Then P(Q) = 1. We claim that 

w e Q ^ 5 c S w . 

Indeed, let w G Q. Suppose u G S. For every rationals r\ < u < r2, we then have 

have (ri ,r2) n 5 ^ 0 and hence w G Qn,r2- Hence Sw D (Vi,r2) ^ 0. Since 5W is a 

closed set, we conclude, after letting r\ | u and r2 j u, that u G Sw. 

Proof of Proposition 2.1.3: 

Proof. Suppose (r , i , r2)n5 ' ^ 0 and let u G ( r i , r 2 ) n 5 . Then we can write u — Xs + e 

where e £ Sv and s G {1,2, • • • , co}. For each e > 0 and a ball BT or radius r, 

consider the event 

£(£?r, e) := < u> : max \u(x) — e\ < e \ . 
^ x€Br J 

Since ^v((e—e, e+e)) > 0 and the random variables {u>(x) : x G Br} are independent, 

we have that 

F(£(Br,e)) = ( M
v ( ( e - e , e + £)))Nr > 0. 
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According to the hierarchical structure, X is a countable union of disjoint balls of 

radius r: X = U*li Br,j- Let 

Sr,£ = l imsup£(B r j ,e) . 
3 

Since the events {S(Brj, e),j = l,..., 00} are independent and Y^TLi ^ (£(Br,j, £)) = 

00, the Borel-Cantelli Lemma yields that P(£,-,£) = 1. Then the event 

£ = I J £r,l/(r+l), 
r>0 

also has P(£) = 1. By construction, for u> € £, there is a sequence (Brjr)r>o of balls 

of increasing radius such that 

(*) max \LO(X) — el < , 

for all r > 0. 

For r > 1, we let qr = min(r — 1, s). It is easy to see that for each r > 1, there 

exists a unit eigenfunction ipr of A corresponding to the eigenvalue Xqr, such that 

ipr{x) — 0 for x ^ Br,>- Indeed, we can take a normalized function ipT constant on 

every radius-^ sub-ball of Brjr, zero outside Brjr and such that Eqr+iipr = 0. Then 

lim IIA^,. — Xsipr\\ = 0, 
r—>oo 

and, by (*), 

lim H/LVv - (As + e)ipr\\ = 0, 
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for to E €. Hence, ipr is a Weyl sequence for the operator Hu and u — \ s + e € sp(//w). 

Hence u € (rx,r2) n 5W and 

i.e. CJ € Qn,r2- We have shown that £ C QTl,r2- Since P(£) = 1, we conclude that 

HQrur2) = 1. • 

This completes the proof of Theorem 2.1.1. • 

Remark: The corresponding statement is well known for the discrete Laplacian 

on Zd, see for example [CL, CKFS, PF]. The proof given above corrects a mistake 

made in [K2]. 

2.2 Statement of spectral localization theorems 

We denote by spac(//a)) the a.c.part of the spectrum of Hw and by spcont(/fw) 

the continuous part. In [M2], Molchanov proved the following localization result: 

Theorem 2.2.1. Let (X, d, A) be a regular hierarchical model. Assume that 

00 

^ p r r 1 + £ < o o , (2.3) 
r= l 

for some e > 0. / / the random variables {UJ(X) : i £ X } are i.i.d. with a Cauchy 

distribution, 

Kth{e)de = — de, (2.4) 
7r (e — ay + hz 

for some parameters o £ l and h > 0, then spcont(//w) = 0 for F-a.a. u. 

Molchanov's theorem is remarkable for several reasons. First of all, it is a result 

valid for any disorder. Given a coupling constant c > 0, the random operator A + cV^ 

can be rewritten as A + I C i e x 0 ^ ^ ) ^ ! ' ) ^ - ^ w(x) has a Cauchy distribution ka>h, 
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then cu(x) has a Cauchy distribution kca,ch- Hence, under the hypotheses of the 

theorem, A + cVu has pure point spectrum for P-a.a. u. The next observation is 

that the condition (2.3) is very weak, it particular it does not at all depend on n r. 

This mens that Theorem 2.2.1 holds in arbitrary spectral dimension. Indeed, let 

n > 2 be given and let dsp be a positive real number. Then there is a unique p > 1 

with dsp = dsp(n, p). Set p r = Cp~r, where C is a normalization constant making 

YlT=\Vr — 1- Then p r satisfies (2.3). Therefore, we can construct homogeneous 

hierarchical Anderson models of arbitrary spectral dimension for which Theorem 

2.2.1 holds. 

Cauchy random variables play a very special role in the theory of random discrete 

Schrodinger operators and it is natural to ask whether one can extend Theorem 2.2.1 

to distributions other than Cauchy. A partial answer to this question is that one can 

prove localization for very general distributions of UJ(X), at any disorder, provided 

that one imposes stronger decay conditions on p r than (2.3). This restriction will in 

turn impose an upper bound on the spectral dimension. 

Concerning the probability measure P, we will make a technical assumption 

having to do with the notion of conditional density. We denote by C the Lebesgue 

measure on R. For any x € X, Q, can be decomposed along the x'th coordinate as 

0, = R x ft, ft = RX\W. Let Px be the corresponding marginal of P defined by 

FX(B) = P(R x B), where B C fl is a Borel set. Then for Px-a.a. us e ft, there 

is a probability measure Pf on R s.t. the conditional Fubini theorem holds: for all 
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f E L\tt,F) we have 

/ f(u)dP(u) = 1 ( 1 mZ)dS*{t)) dFx(u). 
Jn Jn V R / 

If for Pjj-a.a. u) E Cl, Fx is a.c. with respect to C, then we say that P has a conditional 

density along the rr'th coordinate. P is called conditionally a.c. if for every x E X, 

P has a conditional density along the x'th coordinate. An important special case of 

a conditionally a.c. probability measure is the product measure P = ®xexPxi where 

each Fx is a probability measure on R a.c. with respect to C. 

Our main result on spectral localization is. 

Theorem 2.2.2. Let (X, d, A) be a regular hierarchical model. Assume that there 

exists a sequence ur > 0 with Yl^Li v-r1 < °° and 

oo 

J>prur^/W^<oo. (2.5) 

Then: 

(1) For all uen, spac(tfw) = 0. 

(2) IfF is conditionally a.c. then spcont(jffw) = 0 forF-a.a. to. 

Remarks on Theorem 2.2.2 

Remark 1. The condition (2.5) is more demanding than (2.3). The required decay 

of p r imposes an upper bound on the spectral dimension of A. Theorem 2.2.2 and 

Proposition 1.3.2 allow us to construct hierarchical models.with spectral dimension 

dsp < 4 that exhibit localization at arbitrary disorder. If (X, d) is a homogeneous 

hierarchical structure of degree n > 2 and p r = Cp~r with p > \fn, then the 

hypothesis (2.5) is fulfilled for ur = r1+e . Given 0 < dsp < 4 one can adjust p > y/n 
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to make dsp(n, p) — dsp. If p r = Cr _ 2 _ £ n _ r ' 2 , then the model has spectral dimension 

dsp = 4 and (2.5) is verified for ur — r1+£/2. One can also construct trivial models 

with dsp = 0 by taking p r to decrease faster than p~r for any p. We emphasize that 

homogeneity of the hierarchical structure is not required for Theorem 2.2.2. 

Remark 2. The fractional moments method of Aizenman and Molchanov [AM] 

allows to prove localization for A + cVu for large disorder c or for large energies. 

One needs an extra regularity hyphothesis on the random variables u{x) and the 

condition on A that 

M — s u p ^ K ^ I A ^ I ^ o o (2.6) 
x vex 

for some 0 < s < 1. Simple estimates show that 

oo oo 

£ P T N J - ' < M < $ > ; N J - . 
r= l r= l 

The requirement (2.6) on the decay of p r is comparable to the hypothesis (2.5), while 

Theorem 2.2.2 is valid at arbitrary disorder or energy. 

Remark 3. By a general result of [JL], if u(x) are i.i.d. random variables with a 

density, then the eigenvalues of Hu are simple with probability one. 

Remark 4. Part (2) of Theorem 2.2.2 does not hold for all UJ. Our method of proof 

combined with the general results of [DMS], [G] yields that Hw will have singular 

continuous spectrum for some u/s. 

2.3 A criterion for spectral localization 

In this section we formulate and prove a sufficient condition for Hw to have 

spac(i/w) = 0 for all w € £2, and a sufficient condition for Hu to have spcont(Hu) = 0 
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for P-a.a. u. Both theorems 2.2.1 and 2.2.2 will follow from this localization criterion 

and will be proven in the next section. 

Consider the truncated operators 

r 

Hu,r = ^2vaEa + VUl r>0. (2.7) 
s=0 

Fix u) e Q. For any ball Br of radius r, the subspace l2(Br) is invariant for Hu,r. 

This is the main reason for working with the truncated hierarchical Laplacian. Let 

a(uj, Br) be the set of the eigenvalues of the restricted operator HUir \ l2(Br) and 

ffu = (J a(u>, Br) where the union is over all balls in X with all possible radii. Clearly, 

au is a countable subset of R, and hence of zero Lebesgue measure. For z G C\cru,, 

r > 0, and i , t / 6 X , we set 

Gu,r(x, y; z) = {6x\(HUir - z)~15y). 

For z € C\<7W, r > 0 and t 6 X, let gUir(t; z) be the average of GWir(-, i; 2) over the 

ball B(t,r), i.e. 

ft^t; z) - — J^ GWtOl-z). 
r d(t',t)<r 

Since the joint spectral measure for Jt, <5t/ and / / ^ j . is real, GW)T.(t', £; 2) = Gu,r(t, £'; 2) 

and 

<W-(M = "J- ^ G-,r(^i'^) = ^-(^|(^,r-2)_1lB( t,r)). (2.8) 
. d(*'.*)<r 

For Br eVr, we set 

7 w ( 5 r ; 2!) = -^<lBr|(ffw,r - z)'llBr). 
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For x 6 X and w 6 fl, we denote by /i£ the spectral measure for Hw and <5X, 

by /^cont the continuous part of //£• and by /i£ the a.c. part. The main spectral 

localization criterion for the hierarchical Anderson model is the following 

Theorem 2.3.1. Assume that there exists a sequence ur > 0 with Y^Li^1 < °° 

and 
oo 

VJprur < oo. (2.9) 
r = l 

Lei x € X and a Borel set B CR be given. Then: 

(1) If for a fixed to € Q, 
oo 

^2PshUB(x,s);e)\<oo, (2.10) 
s=l 

for C-a.e. eeB, then /x£ac(£) = 0. 

(2) If P has a conditional density along the x'th coordinate, and (2.10) holds for 

P ® C-a.a. (u, e) € ft x 23, then fJ%iCoat(B) = 0 for P-a.a. u e ft. 

(3) Assume that for P (g> C-a.a. (CJ, e) € ft x 23, £/iere is a finite constant Cw,e,x such 

that 

\-yu{B(x,r);e)\<CUieiXUr, (2.11) 

/or a/£r > 0. IfP has a conditional density along the x 'th coordinate, then (J^cont{B) = 

0 for P-a.a. to G ft. 

To facilitate the exposition, we will first prove three simple propositions (2.3.2, 

2.3.3 and 2.3.4). Then we will review the Simon-Wolff localization criterion (Theorem 

2.3.5) and give the proof of Theorem 2.3.1. 
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Proposition 2.3.2. Let u G Q, x, y G X, z G C\<7W and r > 0 be given. Then 

r 

GUir(x,y;z) = Gufl(x,y;z)— ^ Ps^s-i9u,,s-i(x;z)g0JtS(y;z), (2.12) 
s=d(x,y) 

and 
1 r 

gu,r(x;z) = —Gwfi(x,x;z)Yl(l-ps-fu(B(x,s);z)). (2.13) 

Proof. The formula (2.12) holds for r = 0 since po = 0. For s > 1, the resolvent 

identity yields 

(HUtS - z)~l8y - (/L,s_i - z)~l5y = -(HUt8-i - zy^sE^Huj - z)~15y. 

Observe that i?s(i/WiS —z)-15j, = gu,s(y',z)lB(y;$)- Taking {Sx\-) in the above equation 

yields 

Gu<a(x, y; z) - GUt8-i{x, y; z) = -p,&,,s(y; z){Sx\(Hu!tS-1 - 2)_ 1 lB f e i S )) . (2.14) 

Note that by (2.8), 

,,,/TT • ,_!, v Ks-i9u,a-i(x\z), iid(x,y)<s, 
( ^ ( - " u ^ - l ~ Z) 1 £»(«,«)) = < 

y 0, if d(x,y) >s . 

The formula (2.12) follows after adding (2.14) for s = 1,2, • • • , r. 

The proof of (2.13) is similar. The resolvent identity yields 

(Sx\(Hu,r - z)~llB(x,r)) = (1 - P r 7 w ( - B ( £ , r ) ; z ) ) ( < 5 x | ( / W _ i - 2 ) _ 1 l s ( x , r - l ) ) , 

and (2.13) follows after iterating the above formula. • 
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Proposition 2.3.3. Let ur > 0 be a sequence with Y^Li ur 1 < °°- Let u € £2 and 

x € X be fixed. Then for C-a.e. e € R, there exists a finite constant Ce such that 

1/2 

ft tX.<! (2.15) 5^ l^(y;e)|2) <Ce 
i d ( i , j ) < s 

for all s > 0. 

Proof. Since l2(B(x,r)) is an Nr-dimensional invariant subspace for //wr. and since 

||lB(x,r)||2
 = V^r> w e have by Lemma 3.4.7(see the appendix) that for Mr > 0, 

£ ({e e R\au : | | ( / /u , r - e ) " 1 ! ^ , , . ) ^ > M r } ) < 
4Nr 

Let Mr = (urNr)
2. Then ^^=1 " r M r

 1 /2 < oo. By the Borel-Cantelli lemma, for 

£-a.a. e 6 R\crw, there exists a finite constant Ce such that 

\(Hu,r ~ e) ^ B ^ . r j U j < Ce\jMn (2.16) 

for all r > 0. Observe that 

1/2 

£ l̂ (y;e)|2 = E 
kd(z»2/)<s id(s,;/)<s 

— (SyKH^s - e) 1lB(y,s)) 

= ^ I 5 Z K^wK^".* — e ) 1:Ls(*,-) 
y<i(x,2/)<s 

1/2 

1/2 

(#w,s - e) ^ B ^ . s ) ! 2 ' 

Inequality (2.16) yields (2.15). 

The key step in proving Theorem 2.3.1 is: 

• 
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Proposition 2.3.4. Assume that there exists a sequence ur > 0 with YlT=i ur1 < °° 

and Y^LiVrur < oo. Let B C R be a Borel set and let u € fi, i. 6 X ie fixed. 

Suppose that 
OO 

^ p s | 7 w ( £ ( x , s ) ; e ) | < o o , (2.17) 
6 = 1 

/or C-a.a. e £ B. Then, for C-a.a. e € B, 

svLpY]\Gu,r(x,y,e)\2 <oo. (2.18) 
r>0 ~t - J/€X 

Proof. For all e £ C\crw, the representation formula (2.12) and Cauchy-Schwarz 

inequality yield 

1/2 

;e)| ^ |Ga, , r (a ; ,y ;e) | 2 J < IG^oC^xji 

1/2 

2 s^s-\\9u>,s-i{x;e)\ I ^ |<?w,s('</; e) | 
s=l \d(x,y)<s 

Hence, by Proposition 2.3.3, for £-a.a. e 6 R, 

/ \ 1/2 

( ^ | G w , r ( x , y ; e ) | 2 ) < \Gufi(x,x; e)| + C7e J ^p ,u ,N a - i |sW-i(z; e) | . (2.19) 

Hypothesis (2.17) implies that for £-a.a. e E B, the product n^=i ( l — Vslu{B(x, s); e)) 

converges. For such e, it follows from (2.13) that there is a finite constant C'e such 

that 

N . K . t o e ) ! ^ , (2.20) 

for all s > 0. 
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Combination of (2.19) with (2.20) yields the estimate 

( ^\G^r(x^V\e)\2 1 < \GUfl(x,x;e)\ + CeC'e J^PsUs, 
\yex I s=i 

and the result follows. D 

Before proving Theorem 2.3.1, let us recall the Simon-Wolff localization crite­

rion. Define the function Q^^ : R —> [0, +oo] by 

&,*(e):= / / ^ ^ ^ l i m l K A + K . - e - i e ) - 1 ^ ! ! 2 . 
JR (e - A) <̂ ° 

By the Theorem of de la Valle Poussin, 

<Kac(e) = ^ (*$£ ||(A + K, - e - te)" 1^!! 2^ de. 

Hence, if for a fixed ui G $7 we have that Qw<x{e) < oo for C-a.a. e G R, then fj% = 0. 

The Simon-Wolff localization criterion is summarized in: 

Theorem 2.3.5. Assume that F has a conditional density along the x'th coordinate. 

Let B C R be a Borel set such that Gu,x(
e) < °° forF® C-a.a. (LU, e) G Vt x B. Then 

/£lCont(B) = o/orP-a .a . w e n . 

Theorem 2.3.5 is a well known consequence of the rank-1 Simon-Wolff theorem 

[SW] (see also the lecture notes [J]) and the conditional Fubini's theorem. 

Now we can prove the main localization criterion. 

Proof of Theorem 2.3.1. Fix u G Q, and fix e G R\aw for which (2.9) holds. Proposi­

tion 2.3.4 yields that then we also have the bound (2.18). By monotone convergence 

d/£(A) ,. f dfj%(\) f df4(X) r dfM%(\) = Um r dv%(\) r 
JR (e - A)2 ilo 7M (e - A)2 + e2 S

£>o JM (e -A) 2 + e2
 £ > ^y K ( e -A) 2 + e2' 
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Since for any z € 

lim ||(#WiP - z)-1 - (Hw - z)-l\\ = 0, 

we have that the weak-* limit lim,.-^//£ r equals /x£, where /x£r is the spectral 

measure for HU,T and 5X. Therefore 

sup lim / T U2 • 2 - S U P / (e - A)2
 £>o »--oo 7R (e - A)2 + £2

 £>o,r>i JR (e - A)2 + e2 

^ ' r ( A ) 
= sup / 

r> l JR (e - A)' 

sup||(//w,r - e ) ^ l 1 

r>l 

= sup^ |G a , j r ( .x ,y ;e ) | 2 < oo. 
r> l 

In the final equality we used the fact that {Sy : y € X} is an orthonormal basis for 

/2(X). Since £ (<rw) = 0 and since the bound (2.18) holds for £-a.a. e € M\au, we 

have that for every fixed u E Cl, Q^^ie) < oo for £-a.a. e € R. This proves part 

(1). Part (2) follows from the fact that Gu,x(e) < oo for P ® £-a.a. (w, e) € fi x 1 

and the Simon-Wolff criterion. Part (3) is an immediate consequence of part (2) and 

assumption (2.9). • 

2.4 Proofs of spectral localization theorems 

In this section we show how to apply the localization criterion (Theorem 2.3.1) 

to prove theorems 2.2.2 and 2.2.1. 

Proof of Theorem 2.2.2. Since ju(B(x,s); e) = E ^ ^ ^ s f e e ) , Cauchy-

Schwarz inequality and Proposition 2.3.3 yield that for xC-a.e. e £ l , 

\-yu(B{x,s);e)\<Ceuay/Ta. (2.21) 
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Hence 2_,s>oPs hu{B(x,s);e)\ < oo and the result follows from parts (1) and (2) of 

Theorem 2.3.1. • . 

The proof of Molchanov's theorem 2.2.1 requires more work. Let us introduce 

some notation. It is convenient to form the complex number v = a + ih G C + (in the 

upper half-plane) and to denote by kv the Cauchy distribution with density ka^- If v 

is a Borel probability measure on the Riemann sphere S = Cu{oo}, and r : § —> S is 

a Borel measurable map, then rv will denote the induced Borel probability measure 

on §: 

(TU)(B):=U(T-1(B)), 

for Borel sets B C S. If n > 2 is a integer, and v is a Borel probability measure on 

§, we let 

Anv = T(y* •••*»), 
V 

n times 

where T(Z) — z/n, and * is the usual convolution of measures. Hence, if Yx,... Yn 

are i.i.d. random variables on § with distribution v, then Anv is the distribution 

of (Yi + • • • + Yn)/n. The following proposition summarizes some of the basic facts 

about Cauchy distributions. 

Proposition 2.4.1. Cauchy distributions have the following properties: 

1. If vi,v\ € C+, then 

2. If T(Z) — —1 or if T(Z) = (az + b)/(cz + d), where a,b,c,d G R, ad — be > 0, 

then 
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for all v G C+. 

3. For all v 6 C + and integers n>2, 

^•n^v — *H»* 

Proof. The proof uses basic harmonic function theory. For bounded continuous func­

tions h : R -» R, let Uh : C+ -» R be defined by £/h(t;) = /R h(t)dkv(t). Then [/fc(u) 

is the unique bounded harmonic function in C+ which extends continuously to R 

with liniyio Uh(x + iy) = h(x). If X is a random variable with a Cauchy distribution 

kv, Xi ~ &„, then Eh(X) = Uh(v). Let Aj ~ kVl and XL ~ A;̂ . For fixed t G R, we 

let /it(s) = h(s + t). Then 

E/i(Xi + X2)= h{s + t)dkVl(s)dkV2(t) 

ht(s)dkVl(s)\dkV2(t) 

= J{Uht(Vl)(s)}dkV2(t) 

= [ {Uh{t + v^is)} dkV2{t) 

= Uh(v1 + v2). 

Since h is arbitrary, we conclude that X\ + X2
 r*~j ky^-\-V2. This proves 1. For the 

proof of 2., consider the case T(Z) = (az + b)/(cz + d). The mapping r is an analytic 

bijection C\ {—d/c} —• C\ {a/c} with an analytic inverse. We have 

, . (ad — bc)Im z 
Imr(z) = j — • 

\cz + d\ 

35 



Hence r maps C+ -> C+, C_ - • C_, R \ { - d / c } -> R \ { a / c } . Let X ~ fc„,iet 

/i : R —> R be a bounded continuous function whose support does not contain a/c 

and let f(s) = /i(r(s)). Then 

Uf(v) = Uh(T(v)), l m v > 0 . 

Hence 

J hdkT{v) = Uh(r(v)) = Uf(v) = Ef(X) = Eh(r(X)). 

Since h is arbitrary, this implies that T(X) ~ A:T(„). The case T(Z) — —z is proved 

along the same lines using the fact that r preserves harmonicity. 3. follows from 1. 

and 2.. • 

We will use fractional linear transformations of the special form 

T'(*> = lffz> 

where p > 0. Note that TP+PI = rp o TP*. The transformations rp are important in the 

hierarchical Anderson model because of the following recursive relation, proven by 

Molchanov in [M2]. 

Proposition 2.4.2. Let tu G Q, and z € C\au be given. Then for all I G X , 

^(B(x,0);z) = —-J . (2.22) 
U1(X) — Z 

For all r > 1 anc? Br £ Vr, we have the recursive formula 

7 u , (£ r ; z) = rPr j 1 J ^ 7u,(£r_iJ-; *) , (2-23) 
\ Br-i,jCBr J 
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where the sum contains nr terms, corresponding to the n r balls Br-ij of radius r — 1 

contained in Br. 

Proof. The formula (2.22) is clear since Guja{x, y; z) — (u(x) — z)~1(5x\Sy). For r > 1, 

the resolvent identity yields 

(HutT - z)'llBr - ( i / w , r - l - ^ ) _ 1 l B r = - P r 7 w ( 5 r ; z){Hu>r^ - z)~llBr. 

Taking (l.Br|-) in the above equation yields 

Nr7w(-Br;z) - ] P NT._17w(Br_iJ;2) = -yr~{w(Br\z) ^ Nr_i7a,(Br_lj-; z). 
B r _ i , j C B r jB;_xCBr 

The formula (2.23) follows after dividing by Nr in the above equation and then solving 

for %(Br\z). D 

Proof of Theorem 2.2.1. 

Since for every fixed u, C(aJ) = 0, we have e ^ aw for P x £-a.a. (o>, e) € Q x R. 

Hence, there is a Borel mesurable set E C R with the properties 

1. C(R\E) = 0, and 

2. for every fixed e G E, there is a set fie £ f with P(f2e) = 1 and such that 

e ^ aw for all w G 0,e. 

Let us fix e € E. Then for all u 6 Oe, and hence for P-a.a. ui € fi, all the 

representation formulas in propositions 2.3.2 and 2.4.2 are valid. It follows from 

(2.22) and from Proposition 2.4.1 that {ju;(B(x,0); e )} x e X are i.i.d. Cauchy random 

variables with distribution kVo, where Vo(e) = — (e — a + ih)"1. Moreover, (2.23) and 

Proposition 2.4.1 yield that for r > 1, {7u;(-Br; e )} B e7, are i.i.d. Cauchy random 

37 



variables with distribution kVr, where vr(e) — T\rVo(e). Since Ar —> Aoo = 1 as 

r —> oo, the closure of the orbit 

V(e) = \J{vr(e)}, 
r>0 

is equal to V(e) U {Tii>o(e)}, a compact set in C+. Since sup,,>0 |vr(e)| < oo, there is 

a constant K{e) < oo, such that 

P ( | 7 w ( 5 r ; e ) | > u ) < ^ M , 

for all real u > 0, integer r > 0 and Br £ VT. Let us now fix x E X and take 

ur = r1+e. By the Borel-Cantelli lemma, for P-a.a. u G f2e, there exists a finite 

constant Lu)(e) such that 

| 7 w (B( .T , r ) ; e ) |<L w ( eK, (2.24) 

for all r > 0. Part (3) of Theorem 2.3.1 yields that ^ c o n t = 0 for P-a.a. u G fi. 

Since i G X i s arbitrary, the result follows. • . 

Note that, in the proof given above, (2.24) is a significant improvement of (2.21) 

since the factor y/W^. is no longer present. 

2.5 A generalization of Molchanov's theorem 

In this section we generalize Theorem 2.2.1 to convex combinations of Cauchy 

distributions. Let M. denote the set of Borel probability measures on C+. Given 

v £ M and a Borel set B C M., we set 

K{B)= ! kv(B)du{v). 
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Then kv is a Borel probability measure on M and for every bounded Borel function 

/ : R - C , 

f fdkv = I(f fdk^\du{v). 

We call ku a mixed Cauchy distribution. Note that the usual Cauchy distribution 

ka+ih is a special case of the above general defintion: ka+ih = kv for v = 5(a + i/i). 

Let S be the set of mixed Cauchy distributions k„, such that the distance from M to 

the support of u is strictly positive. 

Theorem 2.5.1. Assume that there exists a sequence ur > 0 with ^ r l i ^ 1 < °° 

and 
oo 

2^Y>rur < OO. 
r= l 

7/^/ie random variables {u(x)}xeX are i.i.d. with a mixed Cauchy distrubution kv G S, 

then spcont(//w) = 0 for F-a.a. u>. 

Remark 1. Theorem 2.5.1 is valid at arbitrary spectral dimension or disorder. 

Indeed, if LO(X) has a distribution k^ € S, and c > 0, then cw has again a distribution 

of the form kv> E S. Precisely, v' = rv, where r(z) — cz. 

Remark 2. If / is a Co probability density on M, and e > 0, then there is a mixed 

Cauchy distribution kv £ S s.t. 

sup |/(e) — dku/de\ < e. 
eeR 

The proof of Theorem 2.5.1 parallels that of Molchanov's theorem 2.2.1. First, 

we need a generalization of Proposition 2.4.1 to the case of mixed Cauchy distribu­

tions. 

Proposition 2.5.2. Mixed Cauchy distributions have the following properties: 
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1. IfV\,V\ G M, then 

2. If T(Z) = —~z or if T(Z) = (az + b)/(cz + d), where a, b,c,d G R, ad — bc> 0, 

then 

for all v € M. 

3. For all v E M and integers n>2, 

The proof is a straight forward consequence of the definitions together with 

Propostion 2.4.1 and Fubini's theorem. 

Proof of Theorem 2.5.1. Let E be the set of full Lebesgue measure as in the 

beginning of the proof of Theorem 2.2.1, and let e € E be fixed. It follows from 

(2.22) and from Proposition 2.5.2 that {'yu(B(x,0);e)}xeX are i.i.d. mixed Cauchy 

random variables with distribution kUo, where UQ = TQV, TQ(Z) = —(e — 'z)~1. Since 

the distance from the support of v to R is strictly positive, there is a closed disk 

DQ C C+ such that supp(^o) C Do- The relation (2.23) and Proposition 2.5.2 yield 

that for r > 1, {7u,(jBr;e) : Br £ Vr} are i.i.d. mixed Cauchy random variables with 

distribution kVr, where 

vr = T P r y l n r ^_i . 
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For r > 0, let Dr = T\rDo. Since T\r is a fractional linear transformation taking 

C+ onto itself, Dr is again a closed disk in C+. We claim that for all r > 0, 

(*) supp(r/r) C Dr. 

The proof is by induction. By construction of DQ, (*) holds for r = 0. Let r > 1 and 

suppose (*) holds for r — 1. Since supp(i/r-I) C Dr_i, and Dr_i is convex, we have 

that supp(Anrivr_i) C Dr_i. Hence supp(rprAnrJ/r_i) C rPrDr_i = Dr, and (*) holds 

for r, proving the claim. 

Let D be the closure of Ur>o-Dr. D is a compact subset of C+ and for all r > 0, 

supp(fr) C D. It follows that there is a constant K(e) < oo, such that 

P ( | 7 w ( S r ; e ) | > n ) < ^ , 

for all real u > 0, integer r > 0 and Br € Vr. The rest of the proof is the same as in 

Theorem 2.2.1, with the more general sequence ur instead of rl+e. • 
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CHAPTER 3 
Eigenvalue Statistics 

3.1 Introduction: the problem of the eigenvalue statistics 

Let us describe the problem of eigenvalue statistics in a more general framework 

of random discrete Schrodinger operators. In this framework, recall that we are given 

an infinite countable set X, a bounded self-adjoint operator Ho acting on the Hilbert 

space l2(K) and a random potential Vu acting diagonally on Z2(X): 

{Vuij>)(x)=v{x)il>(x), ^ G / 2 ( X ) , x e X . 

For our study of the eigenvalue statistics, we will always make the assumption that 

{(u(x))}x€% are i.i.d. random variables with common distribution /xv. Hence the 

random parameter u is an element of the probability space (fi, J7, P), where Q = Rx , 

T is the product Borel cr-algebra on f2 and P is the product probability measure is 

P = xxex/-tV'• We consider the random discrete Schrodinger operator 

Of course, the hierarchical Anderson model fits into the above framework if X is 

endowed with a hierarchical distance d and Ho = A is the hierarchical Laplacian. 

The Anderson model on Zd, the Bethe lattice and any other Anderson model on an 

infinite graph fit into the above framework as well. 
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The finite volume approximations to Hu are in general given by an increasing 

sequence (£&)&>! of finite subsets of X, Ufc>1 Bk = X, and a corresponding sequence 

of operators (H%)k>i approximating H^, such that the subspace l2{Bk) is invariant 

for i/£\ We are interested in the asymptotic behavior of the random eigenvalues 

Ci ^ e 2 ^ • • • :b e\Bk\' 

of H^ \ l2(Bk) as A; —> oo. Usually, the first step is to prove the existence of the 

density of states measure. One establishes that there is a nonrandom probability 

measure \xav on R such that, with probability one, the random normalized eigenvalue 

counting measure 

tfHftr1 $>(#*), (3.i) 
3 = 1 

converges to fj,av in the weak-* topology as k —* oo. If the model has enough sym­

metry and regularity, then fj,av is equal to the averaged spectral measure for Hu and 

any 5X. The measure fj,av is called the density of states for H^. Typically, the proof 

of the existence of the density of states does not require any special regularity of /xv 

and is based on general probabilistic arguments (Birkhoff's ergodic theorem in the 

case of the Anderson model on Zd and, as we will see, Kolmogorov's strong law of 

large numbers in the case of the hierarchical Anderson model). The interpretation 

of the existence of the density of states is that for large k, the number of eigenvalues 

in a small interval (e — e, e + e) around a point e e supp(^av) is typically of the order 

of \Bk\ [iav((e + e, e — e)). The fine eigenvalue statistics near e are then captured by 
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the rescaled point measure 

IB* I 
C e = £ 5 ( | B * l ( e r f e - e ) ) . (3.2) 

Unlike //£, the study of the asymptotic behavior of £%'e requires finer probabilistic 

and spectral theoretical tools. Minami's technique [Mi] is a method allowing to prove 

that, in appropriate situations, ££'e is asymptotically a Poisson point process as k —> 

oo. This means that for disjoint Borel sets Ai,A2, • • • ,Am C M., the corresponding 

numbers of rescaled eigenvalues in each of the sets, 

are approximately independent Poisson random variables and hence the eigenvalues 

near e are uncorrelated. In Minami's technique, one makes the assumption that the 

distribution / i v has a bounded density: d^ (t) = j(t)dt and UTIIOO < °°-

Minami originally considered the Anderson tight-binding model on Zd. He 

proved Poisson statistics of eigenvalues in the localized regime ([Mi, KN]). Minami's 

method has its origins in Molchanov's paper [Ml], where the first rigorous proof of 

the absence of energy level repulsion is given for a continuous one-dimensional model. 

After Minami's paper [Mi], the technique and its variations have been used to prove 

Poisson statistics of eigenvalues for different models [AW, BHS, KN, KS, S]. Along 

with the Anderson conjecture, it is believed that there is a phase transition on the 

the level of eigenvalue fluctuations. A localized regime should always yields Poisson 

statistics of eigenvalues. In the delocalized regime, one should observe universal re­

pulsion laws for rescaled eigenvalues, as in the random matrix ensembles. A phase 
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transition for eigenvalue fluctuations has been recently rigorously analyzed [KS] in 

the context of CMV matrices. As for the problem of the existence of a.c. spectrum 

for the Anderson model on Zd, there does not yet exist a general technique allowing 

to show eigenvalue repulsion for Anderson type models at weak disorder. 

The probabilistic part of Minami's technique shared by most models is based 

on the theory of infinitely divisible point processes. As a result, one sometimes has 

to go though a substantial body of material also concerned with other questions e.g. 

[Ka, DV] in order to extract the necessary results. One of our goals is to give a self-

contained elementary exposition of the probabilistic part, only assuming standard 

material taught in a first graduate course on probability. The spectral part of the 

technique is based on decoupling, i.e. on approximating H^ by a direct sum of a 

large number of statistically independent infinitesimal components. The analysis is 

specific to each model and the decoupling is possible only in an appropriate regime. In 

this chapter, we prove Poisson statistics of eigenvalues for the hierarchical Anderson 

model with spectral dimension dsp < 1. In subsection 2, we discuss the necessary 

probabilistic preliminaries on Poisson point processes. In subsection 3, we study the 

density of states for the hierarchical Anderson model in arbitrary spectral dimension. 

In subsection 4, we provide a complete proof of Poisson statistics of eigenvalues in the 

hierarchical Anderson model. In the Appendix, we outline, within our framework, 

Minami's original proof of Poisson statistics of eigenvalues in the Anderson model 

on Zd in the localized regime. 
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3.2 Probabilistic preliminaries 

3.2.1 Why the Poisson distribution 

The Poisson distribution with parameter A is the discrete probability measure 

PA on N = {0,1, 2, • • • } given by 

The simplest example where the Poisson distribution appears naturally in connection 

with the rescaled measure ££'e is the trivial case of a random discrete Schrodinger 

operator: X = {1, 2, • • • },HQ = 0 and the finite volume approximations are Bk = 

{].,••• ,*;}, H% = Hw \ l2{Bk). Then H% \ l2(Bk) has statistically independent 

eigenvalues {w(x)}x€B and it follows from Kolmogorov's strong law of large numbers 

that for every Borel set A c t , 

lim f%(A) = r(A) = ! j(t)dt, 
fc-»oo JA 

for P-a.a. u 6 Vt. 

Let us assume that 7 is continuous at a point e G R and that 7(e) > 0. If 

<*4ii A2, • • • , Am C R are disjoint bounded Borel sets, then the random vector 

[Wi),CU)»-,Ce(^)]. 

has a multinomial distribution 
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ri!r2!.---rm +i! 

where 

Ik^Qkfl ' ' ' ^Cm+v rs = 0,- • • ,k, 2_j i"s = k, 
s=l 

qk,s = F {k(u(l) -e)eAa}= / -y(t)dt, s = 1, • • • , m + 1, 
Je+k-1A3 

and Am+i = R\(U£li Aa). Continuity of 7 at e yields that 

lim kqk,s = i(e)£(As), 
fc—•oo 

and hence 

m 

lim F{Ck'
e(A1) = r1,Ck'

e(A2) = r2r.- ,Ck'
e(Am) = rm) = \{FX8{{rs}l 

s=\ 

with \ s = j(e)C(As). Hence the random variables ^'e(As), s — 1, • • • , m are asymp­

totically independent and have Poisson distributions P\a. 

In nontrivial situations, the operator Ho ^ 0 introduces statistical dependence 

between the eigenvalues of H% \ l2{Bk) and therefore the analysis of the rescaled 

measure ££'e is more involved. However, if the dependence introduced by Ho is not 

too big in a suitable sense, then Minami's method allows to show that £k'
e(As), s = 

1, • • • , m are still asymptotically independent Poisson random variables. In the next 

subsection, we discuss a general limit theorem needed for Minami's method. 

3.2.2 The Poisson point process and Grigelionis' limit theorem 

Although ££'e as well as the other measures of interest to us are on R, we discuss, 

for sake of clarity, the general situation of random point measures on a metric space 

S. We equip S with the Borel a-algebra Bs, i.e. the cr-algebra generated by open 
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sets. We denote by M. the set of all nonnegative Borel measures \x on (S, Bs) such 

that fi(A) < oo for every bounded Borel set A C S. A measure /J, € M. is called a 

point measure if \i can be written in the form 

fi = ^28(xj), Xj e S, 

where J is a countable index set. We denote by M.p the set of all point measures on 

(S, Bs)- If \x £ Mp, then we must have n(A) £ N for every bounded Borel set A C S. 

A point process on S is map u —> /xw from some probability space (fi, ^", P) to M.p 

such that for every bounded Borel set A C S, the map u —> ^ ( / l ) is measurable. If 

^w is a point process, then the map 

u(B) = E^{B), BeBs, 

defines a measure on (S,Bs)- The measure v is called the intensity measure of the 

point process \xu'. 

Definition 3.2.1. Let v G M.. A Poisson point process on S with intensity v is a 

point process £,u with the following properties: 

1. for every bounded Borel set A C S, the random variable £U(A) has a Poisson 

distribution with parameter v(A). 

2. given disjoint bounded Borel sets A\,A2,--- ,Am in S, the random variables 

^J(Ai),^u{A2),--- ,€w(Am) are independent. 

It can be shown [Ki] that given any v G M., there exists a Poisson process on 

S with intensity v, constructed on a suitable probability space. The Poisson point 
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process is an idealized model of noninteraction and the point process ££'e in the study 

of eigenvalue statistics never exactly verifies conditions (1) and (2) of definition 3.2.1. 

Definition 3.2.2. A sequence ££ of point processes on S, defined on the same proba­

bility space, is said to converge to a Poisson point process on S with intensity u € Ai 

if for any given disjoint bounded Borel sets A\, At-, • • • , Am in S, we have 

m 

lim ¥{^k(Al) = rlt$(A2) = r2, • • • ̂ (Am) = rm} = n * W { r a } ) , (3.3) 
fc—»oo -*•-*• 

for allr1,r2,--- -,rm € N. 

Hence, in the previous subsection, the sequence of point processes ££'e on R 

converges to a Poisson process on M. with intensity "i(e)C. In general, it can be 

difficult to verify the condition (3.3) directly and it is more convenient to verify an 

equivalent condition in terms of the characteristic functions, namely 

m 

l i m E e ^ - i ^ ^ ^ n e x p f K ^ X e ^ - l ) ) , (3.4) 
k—»oo J-J-

s=\ 

for all ti, t2, • • • , tm £ R. Both (3.3) and (3.4) are equivalent to the usual definition 

of convergence in law for random vectors in Nm . 

The basic limit theorem guaranteeing the convergence of a sequence of point 

processes to a Poisson point processes is due to Griegelionis [G]. Originally formu­

lated for step processes on R, Grigelionis' theorem remains valid in more general 

settings and in our case it translates to: 
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Theorem 3.2.3. (Grigelionis, 1963) Let (nk)k>\ be a natural subsequence, let for 

each & > 1, ££i, ££2 ' ' ' ' i €knk be independent point processes on S and let 

it — / Atr 
3 = 1 

Let v e M. and assume that for every bounded Borel set A C S, we have 

(1) lim max F {%d(A) > 1} = 0, 
k—>oo l<3<nk . 

(2) l i m ^ P f e . ( / l ) > l } = ^ ) , 

and 
nk 

(3) lim J > { # , ( > ! ) > 2} = 0 . 

TTien ££ converges to a Poisson point process on S with intensity v. 

Theorem 3.2.3 is well-known and can be found in the literature e.g. [DV, Ka] as 

a corollary of more general results on point processes. For completeness, we include 

a self-contained proof here, following the original arguments of [G]. 

Proof. We use the standard notation oh = YlT=iasbs, for a, b G Km and \a\ = 

X^Li as for ct € Nm . We denote by { e s } ^ a the standard basis vectors of Rm. Let 

A\,A2, • • • ,Am be given disjoint bounded Borel sets in S. Let X% be the random 

vector 
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and let (f>k : Km —> C be the corresponding characteristic function 

4>k{t)=¥,eitXZ, teRm. 

According to (3.4), we have to show that for all t € Rm, 

m 

lim <f>k(t) = TTexp (v{As){Ju - 1)) . 
s=l 

We set 

**J = [ f f j M , ffj(4l), • • • , ffj(An)], 

and 

3=1 

By assumption (1), there is a ko such that for k > ko, 

max F{%d(A)>l}<l/4. 

Hence for k > fc0 and 1 < j < n*, 

< 2 J ] P {*£ = a} = 2P { ^ ( ^ ) > 1} < 
H>i 

and we can write 
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|a|>l 
(3.6) 

exp [ £ P {*& = a} (eiat - 1) + £fcii ' 
H>i 

where 

\M>i 

and /(z) = log(l + z) — z. The function / is analytic in the open disk {\z\ < 1} and 

\f(z)\<C\z\2 for \z\<l/2, (3.7) 

where 0 < C < oo is a numerical constant. Next, we write 

£ P {X£ = a} (e** - 1) = J2 P W j = a l ^ - !) + F*J 
|a|>l |a|=l 

m 

= E P W j = e ^ ^ - !) + F*J (3-8) 
s=l 
m 

= J > {%j(A.) = 1} (eft- - 1) + GkJ + Ffc,,, 
s = l 

where 

and 

Hence, 

F ^ ^ P J X ^ a } ^ - ! ) , 
|a|>2 

GfcJ = J^ (P (**J = e.} - P ( ^ j ( ^ ) = 1}) (e«- - 1). 

bkJ(t) = exp f X > U k 0 4 a ) = 1} (<?' - 1) + #*,,•] , 
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where 

Hkj — Ekj + Fkj + Gk,j-

We then have, by independence, that 

»*(*) = 1 1 ^ ( 0 

= e*p E ( E p titMs) = 1}) (e*s -1) + E "*J 
(3.9) 

\ s = l \ j = l / j=l 

The assumptions (2) and (3) imply that 

l i m ^ P { ^ . ( A s ) = l } ^ ( 4 ) . (3.10) 

We claim that 

k—>oo • 

k—*oo • 
l i m V t f f e j = 0. (3.11) 

fc—• n o « ^ 

If (3.11) holds, then (3.10), (3.11) and (3.9) together yield the desired conclusion 

(3.5) and we are done. We now prove (3.11). We have 

| F f e J | < 2 P { ^ J . ( A ) > 2 } , (3.12) 

and the bound (3.7) yields 

\EkJ\ < C 2 ] T P {XZj = o} ) = AC (P { ^ ) > l } ) 2 • (3.13) 
\ M>i / 

To estimate |Gfcj|, note that 

{XZj = e.} <Z {%d(A.) = 1} , 
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and 

( t e ( ^ ) = 1} \ {X%j = es}) C {&j(A) > 2} . 

Hence 

\Gkj\<2mP{%ij(A)>2}. (3.14) 

We now combine the bounds (3.13), (3.12) and (3.14) to get 

nk nk 

Y,HkJ <(2m + 2)J2v{Ck,M)>2} 
3 = 1 j=l 

+ AC (maxFi&t^A) > l}\ jhv{%d(A) > l } . 
^ ' j = i 

The assumptions (1),(2) and (3) imply that the right hand side of last inequality 

converges to zero as k —> oo, completing the proof. • 

3.2.3 Corollaries of Grigelionis' limit theorem 

For the point processes £w on S = R arising in the study of eigenvalue statis­

tics, it is sometimes more natural to obtain information about the Poisson inte­

grals ,/RIm (t — •z)~1d4u(t), Imz > 0, rather than about the events {£,U(A) > 1} and 

{£W(A) > 2}. In this subsection, we replace the conditions (2) and (3) of Theorem 

3.2.3 by sufficient conditions in terms of the Poisson integrals. We refer the reader 

to [J] for the general theory of Poisson integrals and their applications to spectral 

theory. 

For a positive Borel measure ji on S and a Borel function / : S —> [0, oo), we 

set 

!(*/)= [ f(t)f(t'W(tW(t'). 
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If // = Y^j ${tj) is a point measure on S and f(t) = lA(t) is the indicator function of 

a bounded Borel set A C S, then we have 

I(n,lA) = ^2lA{ti)lA(tJ) = fi(A)(fi(A)-l), 

and therefore l(fi, 1A) ^ 0 <=$> fi(A) > 2. If £w is a point process on 5, then 

X X ^ ) >'} = Ec - ^ K ^ ) ='} 

(>2 

= EJ(^,14). 

Since 

P{CW(A) > l} = E f % 4 ) - £ > { ? " ( 4 ) ^ 0 . 
;>2 

we conclude that the conditions 

" i t 

(2') lim]TE^.(,4) = ^ ) , 
k—»oo *—' J 

and 

(3') l i m E E T ( ^ . l A ) = 0, 
fc-+oo * — ' J 

together imply conditions (2) and (3) of Theorem 3.2.3. The next step is to replace, 

in (2') and (3'), the quantity E£kj(A) hYEJ fd£k,j f o r / i n a sufficiently rich family 

F of functions. 

Theorem 3.2.4. For each k > 1, let £k,v€k,2i''' >£fc,nfc ^e P°int processes on S and 

let ^ — YTj=\^t,j- Let v G M- Suppose that there is a measure /z € M s.t. that 

v and (Cfc")fc>i are absolutely continuous with respect to [i, with uniformly bounded 
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densities, i. e. there is a constant 0 < C < oo such that for all bounded Borel sets 

ACS, 

v(A) < Cfi(A), 

and 

%V(A)<C»(A), k>l. 

Suppose that F C Li(S, fi) is a family of functions such that finite linear combinations 

of functions in F are dense in LI(S,/J.) and such that for every bounded Borel set 

A C S, there exists f € F with f >1A- Suppose that for all f e F, we have 

(2") fclirn|Mr = J fdv, 

and 

(3") l i m ^ E I ( ^ , / ) = 0. 
k—>oo ' — ' " 

Then (2') and (3'J hold for all bounded Borel sets A C S. 

Proof. Let A be a bounded Borel set. Let e > 0. There is a finite linear combination 

9 = SjCt/i) fi e F> w i t n
 J I ^ - I A I C ^ <•£. Then \$ gdv - v(A)\ < Ce and 

\JgdZ7 - £,tv(A)\ < Ce. Since l i m ^ j gd^ = Jgdv, we have 

u{A) - 2Ce < liminf %V(A) < l i m s u p ^ O 4 ) < v{A) + 2Ce, 

and (2') is obtained after letting e J. 0. Now let f £ F be such that / > 1A- Since, 

X(Sk, U) < /(£&, / ) , (3') follows from (3"). • 

The special case when S — E, n — C is the Lebesgue measure on E, v = XC for 

a A > 0 and F is the family of functions {Im (t — z)~1}lmz>0 yields 
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Theorem 3.2.5. Let (rik)k>i be a natural subsequence, let for each k > 1, ££x, ££2, • • • , ££n 

be independent point processes on R and let 

nk 

3=1 

We make the following four hypotheses: 

(HO): there is a constant 0 < C < oo such that for all k > 1 and every bounded 

Borel set / I c R , 
nk 

(HI): for every bounded Borel set A C R, 

lim max P {^.(A) > l } = 0. 

f#i2j: i/iere is a constant 0 < A < oo suc/i i/iai /or Imz > 0, 

nk 

m 
fc-

nk . 

lim TE Im(t- zY'd^it) = TTA. 

(7/3j: /or l m z > 0 , 

im 
nk « 

lim ^ E / Im (t - zy'lm (t' - z)-xd%d{fyd%^t') = 0. 
3-

Then £% converges to a Poisson point process on R with intensity \C. 

Theorem 3.2.5 is implicitly derived in [Mi] and is suitable for applications to 

eigenvalue statistics of general random discrete Schrodinger operators. 
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3.3 The density of states in the hierarchical Anderson model 

In this subsection, (X, d, A) is a homogeneous hierarchical model of degree n. 

We do not impose any special decay condition on the sequence (p r) r>i. In particular, 

A can have an arbitrary spectral dimension dsp. The random variables {w(x)}xeX 

are assumed to be i.i.d.. with a common probability distribution //v. No further 

regularity of nv is assumed. Hence, the probability measure P o n f l = M.x is the 

product measure 

P = xx6X/xv. 

The finite volume approximations to Hu are defined as follows. We fix a point xo € X 

and we consider the increasing sequence of balls 

Bk = B(xQ,k) k>0. 

Each Bk has size \Bk\ — nfc. We take the approximating sequence H% to be the 

truncated operators 
fe 

as we did in (1.5) for the proof of localization. The subspace l2(Bk) is invariant for 

Z/£. The normalized eigenvalue counting measure //£ for H% is given by (3.1). The 

averaged spectral measure for Hu is the unique Borel probability measure \iav on R 

denned by 

J f(t)dvav(t) = E(40|/(//J40>, / G C0(R). (3.15) 
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By symmetry, J f(t)dfj,av(t) = E{6x\f(Hu)5x) for all x 6 X. The content of the 

following theorem is that the averaged spectral measure jJLav is naturally interpreted 

as the density of states for Hu. 

Theorem 3.3.1. For F-a.a. u £ Cl, //£ —> fiav in the weak-* topology as k —• oo. 

Precisely, there is a set & £ T with P(fi) = 1 such that for allu £ Q and f £ Co(M) 

we have 

^ J f(t)df4(t) = J f(t)dfj.av(t). 

We start the proof of Theorem 3.3.1 with resolvent bounds. Since 

H? = H"_i + prEr, 

the resolvent identity yields 

( /?_! - z)-1 - (H? - z)-1 = VT{EU - zy'Er{H"T - z)-\ 

for z £ C\E. Therefore: 

I K ^ - a - ^ - ^ - z ) - 1 ) ! < | I m z r 2 p r , zeC\R. (3.16) 

Iterating (3.16) yields for r < k, 

k 

||(tf? - z)-1 - (H% - z)-l\\ < \lmz\-2 £ P- ^ C\R. (3.17) 
s=r+l 

and letting k —> oo, 

oo 

WiH^-zy'-iHu-zr'W^llmzr2 J2 P- ^ C \ K . (3.18) 
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Proposition 3.3.2. For every z € C\R there is a set ttz € T, with P(Clz) — 1 and 

such that for all u E Q,z, the difference 

D^ = J{t - zYHtiit) - J{t - z)-ld^{t), 

converges to 0 as k —> oo. 

Proof. Let e > 0 be given. We take r = r(e, z) big enough so that 

oo 

\lmz\~2 Y^ Ps < e / 2 . (3.19) 
s=r+l 

Then for r < k, 

x€Bk 

= \\Bk\-
1^(Sx\{(Ht!-z)-1-{H^-z)-1)Sx)\-

I x€Bk ) 

+ { w 1 E v*\(H? - *)~ls*) - E<^oi(^ - *)-1<u 1 
l xeBfc J 

(3.20) 

The bounds (3.17) and (3.19) yield \h,u\ < e/2. We proceed with estimating \IIk,u 

Note that 5^ is a disjoint union of nfe_r balls of radius r, 

Bk = U f̂e, 

fc —r 

R. 
J ' 

and therefore 
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Since each subspace l2(Bkj) is invariant for H", we can write 

nk~T 

xeBk j ' = l x€BkJ 

and recognize that the right hand side is an average of nk~r i.i.d. bounded random 

variables. Hence, Kolmogorov's strong law of large numbers yields that there is a set 

fiz)£ £ T with P(UZtE) — 1 and such that for all u) € £lz,e, 

lim iSfeP1 Y ; { y ( f f r - ^ ) = n - T E ( y ( f f r ^ ) ^ ) , (3.21) 

where B is some fixed ball of radius r. The bounds (3.17) and (3.19) yield 

\(5X\(H? - z)-l5x) - (SX\(HU - z)~l5x)\ < e/2, 

which combined with (3.21) yields 

lim sup \IIk,u\ < e/2. 
k—*oo 

Hence for u> € f̂ )£, limsupfc^^ |Z\<J < £, and the statement follows after taking 

Theorem 3.3.1 is a consequence of Proposition 3.3.2 and a density argument. Let 

G be a countable dense set in C\R. Since any function / € Co(M) can be uniformly 

approximated by finite linear combinations of the functions t —> (t — z ) - 1 , with z 

ranging through G, Theorem 3.3.1 follows after taking £1 = PlzeG^-
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3.4 Poisson statistics of eigenvalues in the hierarchical Anderson model 

We keep the setup of the previous subsection and we make the following addi­

tional assumptions on the hierarchical Anderson model. We assume that there exist 

constants C\ > 0, C2 > 0 and p > 1 such that 

Cip~r < P r < C2p~r, 

for r big enough. Then, according to Proposition 1.3.2, the spectral dimension A is 

equal to 

dsp = 2 ^ . (3.22) 
log/) 

We make the assumption that 

0 < dsP < 1. (3.23) 

Concerning the probability distribution pv, we make the assumption that /xv has a 

bounded density: 

dp?(t) = j(t)dt and W^ < 00. (3.24) 

For our study of fine eigenvalue statistics, we need the following two general esti­

mates for random discrete Schrodinger operators. For both estimates, the density 

assumption (3.24) plays a crucial role. 

Lemma 3.4.1 (Wegner Estimate [W]). Let MQ be any self-adjoint operator on I2' 

and let 

Mu = M0 + Vu. 
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Then for every bounded Borel measurable function h 

have 

E(6x\h(Mu)6x) < Wi^ f h(t)dt. 

[0,oo) and x € X, we 

(3.25) 

Hence, ifv^ is the spectral measure for 6X and Mw and vav = E14, is the corresponding 

averaged measure, then uav is absolutely continuous with respect to Lebesgue measure, 

dvav{t) = v(t)dt, 

and 

\\v\L<h\L. 

For a bounded operator A on a Hilbert space, we denote by Im A the self-adjoint 

operator (2i)~1(A - A*). 

Lemma 3.4.2 (Minami's Estimate [Mi, GV, BHS]). Let M0 be any self-adjoint 

operator on l2(&) and let 

Mu = M0 + Vu. 

Then for every x, y € X and Im z > 0, we have 

I \ 

Edet 

V 
< 7 T J (3.26) 

/ 

(4 | Im (Mu - z)~Hx) . {5x\lm (Mu - z)-Hy) 

<<yim (Mu - z)-l5x) <<yim (Mu - z)~%) 

The proofs of Wegner and Minami estimates are given in the appendix. Wegner 

estimate yields that fiav is absolutely continuous with respect to Lebesgue measure, 

dn™{t) = r)(t)d,t, 
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and 

IMI < Ibll • 
II I Woo — II ' Hoo 

If e G R and e > 0 are given, then in view of Theorem 3.3.1 we expect the number 

of eigenvalues of H% \ l2(Bk) in the interval (e — e, e + e), 

to have typical size of order \Bk\/j,av(e — e,e + e) for large k. The precise statistical 

behavior of the eigenvalues e^' near e is captured by the rescaled measure ££'e given 

by (3.2). We make the following regularity assumption on e: for Imz > 0, 

lim lm(t-e- ez)_17/(t)dt = nr](e). (3.27) 
ei° J 

For example, if 77 is continuous at e, then (3.27) holds. However, it is in general 

a difficult problem to establish the continuity of 77 for random discrete Schrodinger 

operators. In the case of the Cauchy random potential (2.4), 77 is known to be 

analytic [L]. If the Fourier transform of 7(f) decays exponentially, then it is possible 

[CFS] to prove analyticity of 77 after increasing the disorder, i.e. replacing Vu with 

cV^ for a sufficiently large c > 0. When continuity of 77 is not available, one appeals 
f 

to a classical theorem in harmonic analysis (see for example [Ko]), due to Fatou, 

guaranteeing that (3.27) holds for £-a.a. e € R. 

Finally, we assume that 

77(e) > 0. (3.28) 

The assumption (3.28) holds for £-a.a. e G supp(/xav). 

Our main result on Poisson statistics of eigenvalues is: 
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Theorem 3.4.3. Under the present assumptions, ^ ' e converges to a Poisson point 

process on M with intensity rj(e)C 

The rest of the subsection is devoted to the proof of Theorem 3.4.3. The main 

idea is to approximate H% with H" for r < k, as in the proof of Theorem 3.3.1. This 

time we choose r to depend on k, r — rk, such that 

lim ^ = c, (3.29) 
fc—>oo k 

with 

dsp < c < 1. (3.30) 

Let 

e-i ^ e 2 ^ • • • s e\Bk\-> 

denote the eigenvalues of H"k \ l2(Bk) and let 

IB* | 

£r = X;*(iifci®',fc-e)), 

be the corresponding rescaled measure near e. Since Bk is a disjoint union of nfc_rfc 

balls of radius rk, 

Bk = [J Bkj, 
i = i 

we have the corresponding direct sum decomposition 

nh~rk 

H?k\l\Bk)=Q)H?k\l\Bkj). 

65 



Therefore, the point process ££'e is the sum of nfc Tk independent point processes, 

n* - r * 

where 
nrfc 

tfj" = £wW J -<o) . 
( = 1 

and e?'k'j, / = !,••• , nrfc are the eigenvalues of H?k \ l2(Bkj). 

The proof of Theorem 3.4.3 is organized as follows. We first establish that the 

point processes ££'e and ££'e are asymptotically close in the following sense: 

Proposition 3.4.4. For every f G Li(M.,dt), 

lim E 
k—*oo 

J fd&e- j fd& = 0. (3.31) 

Corollary 3.4.5. Lei Ai,A2, • • • , An &e gwen disjoint bounded Borel sets in R. Lei 

X% and X% be the random vectors 

^ = Kn^)>ce(^---,ce(^)], 

and let <pk,<pk '• 

X% = [Ce(A1),^
e(A2),--- ,ek'

e(Am)}. 

C be the corresponding characteristic functions 

itXt 0fc(i) = Ee4 t A*,<^(O=Ee l t A*, te 

Then for all t G 

lim 
k—>oo 

k(t) - <j>k(t) 

Then we establish 
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Proposition 3.4.6. The point process £%'e converges to a Poisson point process on 

R with intensity r){e)C. 

Proposition 3.4.6 and Corollary 3.4.5 together imply Theorem 3.4.3. The Wegner 

estimate plays a crucial role in the proof of Propositions 3.4.4 and 3.4.6. For every 

Borel set A c l , w e have $fi(A) = ^2xeBk(5x\f(H^)5x), where 

f(t) = lA{\Bk\(t-e)). 

Wegner estimate (3.25) yields that for all x € Bk, 

E(5x\f(H%)5x) < h\L J f(t)dt= h l L l ^ r 1 ^ ) . (3.32) 

Summing (3.32) over all x 6 Bk yields 

^ n ^ l N l o o ^ ) . (3.33) 

Similarly 

ECk'
e(A)<\\1\\ooC(A). (3-34) 

Proof of Proposition 3.4-4- Step 1: We first prove (3.31) for the family of 

functions 

gz(t) = lm(t-zy\ • I m o O . 

Setting 

zk = e+\Bk\~
1z, (3.35) 
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we have 

Hence 

9*d&e - / 9zd&e < \lmzk\-
2 ] T ps = cons* l lmzf 2 ( 5 - j 

s=rk+l 

The formulas (3.29) and (3.30) imply that for large enough k, pTk > pl'k where 

— < 

dsp < c' < c < 1. Therefore 

PTk V/°l 

and ^T < 1 because of the formula (3.22). This proves (3.31). 

Step 2: To prove (3.31) for general / 6 Li(R,dt), note that finite linear combi­

nations from {9z}imz>o are dense in L1(R, dt). Hence given e > 0, there is a finite 

linear combination 

P 

g(t) = ] T Ojlm (t - z ^ ) - 1 , Im z{j) > 0, 

with 

The triangle inequality 

g(t)\dt <e. 

E J fdCk'
e - J"<•"(*) <EJ\f-g\fd£ cu,e 

+ E Jgd£k- J gd%* +EJ\g-f\ < k ' 
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together with Step 1 and the bounds (3.33) and (3.34) imply 

lim sup E / / < ' e - / / C ' c ( 0 
k—»oo J J 

and (3.31) follows after letting e J, 0. • 

<2||7lLe, 

Proof of Proposition 3.4-6. I suffices to show that ££,e and the ^ verify the four 

hypotheses of Theorem 3.2.5. 

(HO) holds because of the bound (3.34). 

(HI): we need to to establish that for every bounded Borel set A c t , 

lim max F(£'UA) > 1) = 0. (3.36) 
k—>oo l<j<n

f c - rfc 

Proof. Chebyshev's inequality and the bound (3.32) yield 

P(S;M) > i) < Eg?(A) 

<^H7lL^) 

= n'"'-*||7||00/:(i4), 

and (3.36) follows. • 

(H2): We need to establish that for all Imz > 0, 

lim E [lm(t - z)-1^'6^) = irr]{e). 
k—>oo J 
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Proof. We have 

E flm(t- zy'd&'it) = IBfcl-'EIm ] T {5x\(H?k - zkyHx) 
^ xeBk 

= \Bk\~1 Elm £ (6X\ ( (#» - zky
x - (H» - zky

l) 8X) 
xeBk 

+ Elm(5X0\(H"-zk)-
16X0) 

Now II^UJ —• 7T7y(e) by 3.27 and 4]U) —> 0, as in the proof of Proposition 3.4.4. • 

(H3): We need to establish that for every function gz(t) = Im (t — z)~x, Imz > 0, 

n K - r k 

lim £)EZ(tf£&) = 0. (3.37) 
j = i 

Proof. We have, 

| 5 f c | 2 / ( ^ 

= ( £ ( 4 | I m ( / / - -zk)-
l5x)\ - ^ ( ^ ( i m C ^ - Z f c ) - 1 ) ^ , ) 

iX€Bkij J x€Bkj 

= ^ det 
x,y£BkJ 

1 (411m ( / / - - zfc)-a<y (<yim ( / f t - *fc)
_1<S«,> ^ 

^ (5,11m (H?k - zk)-%) (6y\Im (if- - Zfe)-1^) / 

Using Minami's estimate (3.26) we get the bounds 

| B f c | 2 E / ( ^ ! 5 2 ) < 7 r 2 " - " 2 2 IU,I|2 I D |2 
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and hence 
nk~Tk 

EE/(Ce'^)<^2||7llLn-rfc, 

which yields (3.37). • 
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Conclusion 
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In this thesis,.we studied in detail the hierarchical Anderson model. We dis­

cussed the deterministic spectral properties of the free hierarchical Laplacian and 

the typical spectral properties of the hierarchical Anderson model. We proved two 

main results. If the model has a spectral dimension dsp < 4 then, with probability 

one, the spectrum of Hu is dense pure-point. For dsp < 1, the energy levels for Hw 

are statistically uncorrelated in the thermodynamic limit. 

A number of interesting questions remain open. First of all, does spectral lo­

calization hold at arbitrary spectral dimension for an arbitrary density j(t) of the 

random potential? Based on Molchanov's theorem and its generalization, we tend 

to believe that the answer is yes. Still, it might very well be that dsp = 4 is a true 

critical exponent for the hierarchical Anderson model and that one can observe a 

qualitative change in the spectral behavior for dsp > 4. Concerning Poisson statis­

tics of eigenvalues, it is interesting to compare our result with Minami's theorem. 

The one-dimensional Anderson model on Z has Poisson statistics of eigenvalues, at 

arbitrary disorder. So does the hierarchical Anderson model with spectral dimen­

sion dsp < 1. A closer look at Minami's paper reveals that the proof of Poisson 

statistics in dimension one requires, in addition to Aizenman-Molchanov theory, the 

powerful machinery of Furstenberg theorem and in particular nontrivial regularity 

results about Lyapunov exponents. On the other hand, the proof of Poisson statis­

tics for the hierarchical Anderson is very simple technically. The resolvent identity 

alone is a sufficiently powerful tool because of the low spectral dimension assumption 

and because of the high degree of self-similarity of the model. Does the hierarchical 
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Anderson model still have Poisson statistics of eigenvalues for spectral dimension 

dsp = 1? What about dsp > 1? 

Of course, the pessimist may argue as follows. The hierarchical Anderson model 

remains a toy model missing many important features of the Anderson model on Zd. 

Unlike AZd, the free hierarchical Laplacian A has no a.c. spectrum to start with 

and it is therefore very unlikely to find a.c. spectrum or eigenvalue repulsion for 

the randomly perturbed operator. The hierarchical Anderson model is therefore too 

unrealistic physically. In our opinion, the hierarchical Anderson model is actually 

a beautiful playground to investigate the mathematical mechanisms responsible for 

localization and for Poisson statistics. The spectral dimension dsp serves as a contin­

uous tuning parameter, whose effect can be immediately observed on the different 

estimates. We believe that a deeper study of the hierarchical model, as well as other 

long-range symmetric toy models, has the potential to improve the understanding of 

the necessary and sufficient conditions for localization and Poisson statistics in gen­

eral random discrete Schrodinger operators. It may then be possible to understand 

why these conditions are violated for delocalized models. 
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Frequently used notations and definitions 
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Parameters of a hierarchical structure 

• (X, d) is a hierarchical structure 

• B(x, r) — {y 6 X : d(y, x) < r} is the (closed) ball with radius r and center x 

• Nr is the cardinality of B(x, r) 

• nr is the number of balls of radius r — 1 contained in a ball of radius r 

• Vr is the collection of balls of radius r 

• 5X is the Kronecker delta function at x 

Parameters of the hierarchical Laplacian 

• Er is the orthogonal projection on the subspace of /2(X) consisting on functions 

that are constant on every closed ball of radius r 

• (Pr)r>o is a sequence with p0 = 0, p r > 0 for r > 1, and X ^ i Pr = 1 

• p > 1 is the rate of decay of p r : p r ~ p~r 

• A = X ^ o prEr is the hierarchical Laplacian 

• K = YH=o Ps a r e t R e eigenvalues of A 

• A r = Y7s=oVsEs the truncated hierarchical Laplacian 

• dsp is the spectral dimension of A 

Parameters of the hierarchical Anderson Model 

• K, = Sxex tJ(a ')(^|-)<5x is the random potential 

• Hw = A + K, is the hierarchical Anderson model 

• #o>,fc and also H% denote the truncated operator A^ + Vu 

• P is a probability measure on f2 = Rx 

• for the i.i.d. case, nv is the probability distribution of u(x) 

• "f(t) is the density of ^ v 
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• r)(t) is the density of the averaged spectral measure //*"' 

Convergence of measures 

• Co(R) is the set of continuous functions / : R —* C with lini|t|_>0O \f(t)\ = 0. 

• A sequence of Borel measures Hk on R is said to converge in the weak-* topology 

to a measure /i on R if 

lim / fdfik = / fdfj,, 
k->°° JR JR 

for every / € C0(R). 

Other symbols and notations 

• N denotes the natural numbers {0,1,2, • • • } 

• C is the Lebesgue measure on R 

• 8(e) is the Dirac delta mass at e 

• 1A is the indicator function of the set A 

• a.a. is an abbreviation for almost all 

• a.c. is an abbreviation for absolutely continuous 

• Aza is the discrete Laplacian on Zd 

• C + is the upper-half complex plane {z :Imz > 0} 

• for Si, S*2 C R, Si + S2 denotes the set {si + s-2. : Si G Si and S2 G S2} 
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Appendix A: A matrix lemma 
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Lemma 3.4.7. Let A be a hermitian N xN matrix and v E CN. Then for all M > 0 

£({e: IK^-er^H^M}) <4 M „ « l l a 

Proof. (Following [M3]) Let Ai , . . . , A/v be the eigenvalues of A and 1^1,... ,ipN the 

corresponding orthonormal basis of eigenvectors. In this basis, we have v — Yl%=i vi^ii 

Z)»=l H a n d (A ~e) ly = Z)i=l(^i - e) ^ i^ i - F o r e a c n i = 1, • • • , N, con­

sider the open interval A* = (Aj — Vi/vM, Aj + Vi/y/M). The total length of these 

AT intervals is 

TV TV TV 

\ l = l / 1=1 1=1 

< 
M 

VTVIM 

Chebyshev inequality yields 

£({e6«\yA-ll(^^K>M})<i/^A 

<Ltf 
1 * /"> 

(A-eJ-^Hgde 

TV 

E 
R\Uf=1A, i = 1 

TV 
f j 

V. 

A,- — e 

Aj - e 

2 

de 

de 

t2 -dt 

TV 

< 

M 

2 

^ E N 
i=l 

/AMM 2 ' 

and the result follows. • 
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Appendix B: Wegner and Minami's estimates 
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Proof of Lemma 3.4-1: (Following [J] section 5.3) We decompose the probability 

space (n,.F,P) along the x'th coordinate: fi = ExR x \ ^> , u = (t,ui'), P = j(t)dtx¥'. 

Then 

Mw = Af(tiU/) = M(0,W') + t(<ya|-><5x, 

and the resolvent identity 

(M(t,w0 - zYl - (M(0,^) - z)-1 == (M(t>w0 - z)-1(-^(^ |-)4)(M { 0 , a ,0 - * ) - \ 

yields 

(i |(M (1 ,„,, - , ) - « = t _ ( _ < f c | ( W ( ^ _ , ) - . W ) - . -

Hence for Imz > 0, 

/ Im ((5x|(M(fX) - z)-15x)dt = 7T, 

which implies that 

[ (6x\h(MiW))8x)dt = /\(t)<fc. 

Hence, using Fubini's theorem, 

E(4|/i(Mw)<5x) = / /(5x|/^(M(t)W0)(5x)7(0^dP'(a; ,) 

• 
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Proof of Lemma 3.4-2: The main ingredient of the proof is the following calcu­

lation: if A = (ajj)iJ=i?2 is a 2 x 2 matrix with ImA > 0, then 

/ : / 
detlm 

" t a \ _ S - 1 

oo </ — oo V \u V 
0 u 

det Im A 

dtdu (3.38) 

/ 

= 7T 

^ ( d e t l m / l ) 2 + (detlm>l)(|a l i2 |2 + |a2 a |2) /2 + (|a1)2|2 - \a2^\2)2/16 

For a detailed derivation of (3.38), we refer the reader to Lemma 2 in [GV] or to [Mi] 

for the special case a\$ = a2,i. 

If x = y then (3.26) holds trivially. If x ^ y, we decompose the probability 

space (Q, T, P) along the coordinates x and y: 

n = R2 x R ^ ' r t , w = (t,u,u>'),F = j(u)du x >y(t)dt x P'. 

Consider the 2 x 2 matrix 

/ 

F(t,u,u') = 
{x\(M(t,w) - z)-^) (x\(M(t,w) - z)-^) * 

^ <x|(M(t,u,w/) - 2)-!y) <j/|M(titt,w,) - z)~ly) J 

and note that Im F(t,U:UJ>) > 0. We can write 

Mw = %,„,„/) = M(0i0,cy) + t(5x\-)Sx + u(5y\-)8y, 

and the resolvent identity implies 

/ 
- l 

F (t,U,U>') 

t 0 

0 u 
^ r(0,0,w') (3.39) 
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Let Au, = --F(o,o,w') a n d n o t e t h a t I m 4y > 0- T h e n (3-39) and(3.38) yield that for 

for each fixed u', 

/ / det Im F{t,u,ui')dtdu < n2. 

Minami's estimate is now an immediate consequence of Pubini's theorem. • 
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Appendix C: Minami's proof of Poisson statististics of eigenvalues for 
the localized Anderson model on Zd 
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For a rectangle B C Zd, we denote by H% the restriction of H^ to l2(B) with 

Dirichlet boundary conditions: i.e. (5x\Hg5y) = {5x\Hu5y) if both x,y G B, and 

(Sx\Hg6y) = 0 otherwise. For k > I, let Bk be the rectangle 

-B/c = \ x G Zd : max \xi\ < k >, 
{ i=l,-,d J 

and let H% = tfgfc. As before, e"'fc < e£'fc < ••• < e"£\, are the eigenvalues of 

H% \ l2(Bk), fi% is the corresponding normalized counting measure given by (3.1) 

and £%'e is the rescaled measure near e given by (3.2). We refer the reader to the 

recent work [KN] for a discussion of the regime where both space and energy are 

rescaled. The averaged spectral measure for Hu is given by (3.15) and the Wegner 

estimate yileds that nav has a bounded density r)(t) with respect to C. A basic result 

for the multi-dimmensional Anderson model is that for P-a.a. u E f2, the spectrum 

of H^ is equal to [—2d, 2d] + supp(7) = supp(/xav) and //£ converges to fxav in the 

weak-* topology as k -> oo ([PF, CL, CKFS]). 

Theorem 3.4.8. (Minami, 1996) Assume that there are constants 0 < C < oo,0 < 

D < oo and 0 < s < 1 such that 

E | ( 4 | ( ^ - - 2 ) - \ ) r < C e - D ^ l , x , y , € Z d , (3.40) 

for all z with e\ < Rez < e2,Ivnz ^ 0 and for all rectangles B C Zd . Assume 

that e € {e\,&z) verifies the regularity condition (3.27) and that 77(e) > 0. Then ^ ' e 

converges to a Poisson point process on R with intensity n(e)C. 

We refer the reader to [HM] for a discussion of the set of e for which 77(e) > 0. 

Condition (3.40) is called fractional-moments localization. It implies that within 
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(ei, e2), for P-a.a. ui € fi the spectrum of H^, if any, is pure-point with exponentially 

decaying eigenfunctions [AM, ASFH]. For d = 1, condition (3.40) holds for all 

energy intervals (e\,e2) [Mi]. In dimensions d > 2, condition (3.40) is obtained by 

either moving the energy interval (e\,e2) to ±oo or by increasing the disorder. The 

two main techniques for proving that are the multiscale analysis [FS, DK] and the 

Aizenman-Molchanov theory [AM]. 

Proof of Theorem 3.4-8. We fix a 6 (0,1) and for each A:, we make a partition 

Bk = ( J Bktj, 

where Bkj are disjoint rectangles with side ~ (2k)a. Hence nk ~ kd^l~a^. Let e^' 'J, 

I = 1, • • • , \Bk,j\ denote the eigenvalues of WQ \ l2(Bkj) and let 

\Bk,j\ 

& e = E *(i**i &*J - e))> 
i=i 

3=1 

Hence the point process ££'e is the sum of nk independent point processes ££\e. As 

for the hierarchical Anderson model, Theorem 3.4.8 follows from the following two 

propositions. 

Proposition 3.4.9. For every f G Li(M.,dt), 

lim E 
k—>oo 

/M^-/Mr = 0. (3.41) 

Proposition 3.4.10. The point process ££'e converges to a Poisson point process on 

R with intensity r)(e)£. 
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Proof of Proposition 3.4-9. As in the proof of Proposition 3.4.4, it is enough to 

prove (3.41) for the family of functions 

gg(t)=Im(t-z)-1, I m o O . 

We set 

Then 

- l 
zk = e+\Bk\ z. (3.42) 

9zdC, T- Jg,d%* 
nk 

j=i xeBkJ 

Let Vk = (3 In k, where /3 > 0 is a fixed big enough constant to be specified later. We 

set 

and 

Then 

where 

int(Bfcj) = { i e Bkj : dist(x,dBktj) > vk} 

wall(Bkj) = {x E Bk,j : dist(x, dBkj) < vk} • 

E J 9,d%* - J g,d%* <E| / f c i W | +E i / / f c , J , 

" i t 

/fc,w = \Bk\~
l Im £ Y. <**! ( ^ B M - ^ ) _ 1 - (#* - *0_ 1) **>> 

j = l x€wa\\(Bkj) 

"fc 

/4,c = i^r1 im £ 53 (̂ 1 ((^fc, - ^r1 - m - zk)-1) fix). 
j = l x6int(B f c J) 
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The Wegner estimate (3.34) yields that 

E |/fc,J < 2TT h l j^ \Bk\-1 Y, |wall(5tj-)|, 

0=1 

and the right hand side converges to zero as k —* oo. 

To estimate E \IIk,u\, we use the resolvent identity 

<*.i ((H%hJ - 'J-1 - m - zk)~l) sx) 

(v,v') 

where the sum is over all pairs (y,y'), with y € dBkj, y' £ Bkj and \y — y'\ = 1. 

Hence, 

E i//u < \Bk\-
1 E E E E I^K^J - ^r^xvic** - **)_1**>. 

j = l ieint(Bfcij)(y,j/') 

(3.43) 

For A; large enough so that e\ < Rezk < e<i, we use the main assumption (3.40) 

together with the bound 

<(lmzk)-
2 = (\Bk\/lmz)2, (8x\(H%kJ - zk)-Hy)(5y,\{H% - zk)-Hx) 

file:///Bk/-1


to obtain 

5/2 

.1/2 

< (|5fe| / I m z f - ^ E |<*, |(#SW - zk)-Hy){5y,\{H% - zk)~% 

<m\/toz)W-'n(E\(6x\(H%^-zk)-\)\y'\E\(8M^ 

<{\Bk\/lmz)2^-s/2)Ce-Dvk. 

(3.44) 

Since, in (3.43), there are 0(ka^d~^) pairs (y,y') for each Bkj, the bounds (3.43) 

and (3.44) yield 

E |//*,w| < O ^ ^ |B f c |2 ( 1 _ s / 2 ) e""0"*) 

= Q(ua{d-l)+2d{\-sl2)e-D(l\nk\ 

Hence, if we choose /? > D~l (a(d - 1) + 2d(l - s/2)), then E |77fe,J -> 0 as k -> 00. 

D 

Proo/ 0/ Proposition 3.4-10. As in the proof of Propositon 3.4.6, it suffices to 

show that ££'e and the £^e verify the four hypotheses of Theorem 3.2.5. The proof 

of (HO), (HI) and (H3) is the same as in Propositon 3.4.6. It remains to show that 

(H2) holds, i.e. for Im* > 0, 

k—>oo " / ' 
lim E / gzd^e = nr](e). (3.45) 

The argument of the proof of Proposition 3.4.9, with H% replaced by Hu, yields that 

y&<Ce- JgAiaA=0, (3.46) lim E 
k—»oo 
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and then (3.45) follows from (3.46) and (3.27). 

• 
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