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Abstract

Many applications of manipulators to date have been based on position control, but
when a robot manipulator makes contact with the environment. the control of force
and position is required. Onc approach, impedance control, is to control the ma-
nipulator such that the relationship between position and force is well defined. For
cxample, such that the robot behaves like a mass-spring-damper system whose pa-
rameters can be specified arbitrarily. In the recent years, many of the impedance
control implementations were using force feedback from an end-effector force sensor
and the impedance control was performed by forming the error in Cartesian coordi-
nates. The implementation proposed here requires instead co-located torque sensors
and the feedback control signals are based solely on joint variables, torque and dis-
placement. Co-located torque sensors lead to a larger control bandwidth since the
structural dynamics of the arm is seen as a perturbation, but is not part of the
plant to be controlled. Simple SISO controllers, designed to modulate individual
joint impedances, can achieve diagonal (decoupled) impedance matrices in Cartesian
coordinates, provided that a set of SISO compensators, called here “decouplers”,
arc sct up to cancel the non-linear coupling among the joints. This strategy results
in a simple computational architecture which does not require complex coordinates
transformations to be performed at servo rate. The method can be used with non-
redundant and redundant manipulators and experimental results are discussed using

a seven DOF manipulator available at the Institut de recherche d'Hydro-Québec.
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Résumé

La plupart des applications robotiques utilisées jusqu’a maintenant utilisaient la com-
mande de position. Cependant. quand un manipulateur effectue des taches impli-
quant des contacts avec l'environnement, la force cxercée doit anssi ¢tre prise en
compte. Une approche consiste & permetire au robot de réagir tel un systeme masse-
amortisscur-ressort permettant ainsi une relation dynamique entre la position ¢t la
force exercée par le robot. C'est ce qu’on appelle la commande dimpédance.

Au cours des derniere années, la plupart des lois de commande d'impédance utili-
saient un capteur de force placé & I'extrémité du robot ct la commande d'impédance
était faite & haut niveau dans 'espace cartésien. L'implantation que nous proposons
ne requiere que des capteurs de couple localisés au niveau des actionneurs ct les sig-
naux de commande ne dépendent que des variables de 'espace des joints, le couple et
la position angulaire. L'utilisation de capteurs de couple & chaque actionneur permet
d’obtenir une bande passante supéricure car la dynamique structurelle du robot est
percue comme une perturbation ct n'est pas incluse dans la boucle de commande.
De simple compensateurs SISO modulant I'impédance des articulations auxquels on
ajoute d’autres compensateurs SISO permettant d’annuler le couplage non linéaire
entre les articulations assurent I’obtention d’une impédance découplée en coordonnées
cartésiennes. Cette loi de commande fonctionne avec des robot redondants ou non,
et ses performances ont été vérifiées expérimentalement cn utilisant un manipulateur

A sept degrés de liberté situé & 1'Institut de recherche d’Hydro-Québec.
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Chapter 1

Introduction

The need for manipulators to perform various tasks has increased significantly in
recent years and the tasks to be performed become more sophisticated. From simple
pick and place operations, it is now intended to use robots in various applications
such as power line maintenance, surgery. etc. These more delicate tasks require
control systems which not only control the position of the robot, but also permit an
interaction between the manipulator itself and the environment on which it operates.

For a dynamic interaction during the task, pure position control is not sufficient,
an additional variable, the exerted force, must be kept under control. In fact, the
regulation of the interaction between the force feedback and the desired position
is required as opposed to tracking a relerence position trajectory. An impedance
controller will enable the modification of the mechanical impedance of a manipulator,
in particular its apparent inertia, damping and stiffness. Such a controller adjusts
the robot impedance and thus, the robot and the environment’s dynamic intcraction.

A decentralized impedance controller has been implemented on 2 high performance
hydraulic manipulator: the Sarcos General Robotic Large Arm (GRLA). The Sarcos
GRLA arm is a seven degree of freedom anthropomorphic manipulator.

This thesis is organized as follows. Following a brief literature review, a more
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claborated definition of impedance control will be proposed and two types of im-
plementation will be discussed.  Next. the decentralized control algorithm will be
outlined. Theory. error characterization and simulation results are included. The
next chapter presents the experimental results. The manipulator direct and inverse
kinematics and hardware calibration are also discussed.

The decentralized impedance controller developed in this thesis permits a user to
specify the Cartesian coordinates impedance of the robot as scen from the end-effector.
but usecs only the joint space variables. in contrast with other controllers forming the
impedance loop in Cartesian coordinates. An analog controller is used in conjunction
with a digital controller to compute the non-lincar coupling cancellation between the
joints, The proposed control law may be applied equally easily to ordinary or to
redundant manipulators.

The experimental work presented in this thesis has been carried out at the Institut
de recherche d’Hydro-Québec (IREQ). Robotics Division. Hydro-Québec is seriously
involved in the development of robotics and telerobotics systems. The use of robots is
presently considered for live power line maintenance, dam inspection, turbine main-
tenance and other tasks. Personel safety and productivity gain are the two main

considerations.



Chapter 2

Literature Review

2.1 Introduction

In general, the control of a robot may fall into three cases [33]: the control of position
and orientation of a manipulator in a pre-determined reference frame; the control
of a manipulator such that it will excrt the specified forces and moments on its
environment; and finally, the control of the position and oricutation of a manipulator,
taking into account the forces and moments interactions applied to the environment.

In this chapter, we will present a brief overview of the state of the art in robot
compliance control, in particular hybrid control and impedance control. These two
control approaches not only take into account the position of the robot but also its
interactions with the environment.

We will first discuss the basic concepts of constrained and unconstrained tasks
and then the fundamentals of hybrid control and impedance control. We will then

present the basic idea of decentralized impedance control.
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2.2 Constrained and Unconstrained Tasks

The control of a manipulator is related to the interaction between the control variables
( X,X.X.F) and the environment where it operates. We divide robot applications

into roughly two different types of tasks: constrained and unconstrained tasks [32].

2.2.1 Unconstrained tasks

These tasks are characterized by negligible interaction forces between the robot and
the environment (such that, d" = F-dX = ) and for control purposes the manipu-
lator can be considered as an isolated system. Its position. velocity and acceleration
arc the only controllable variables. In such situations, we can say that the manip-
ulator operates in an unconstrained environment and this is when pure position

control should be applied.

2.2.2 Constrained tasks

Constrained tasks occur when the robot position, velocity and acceleration are the
negligible interaction variables. The controllable variable is now the interaction force
between the robot and the environment. In this case, the robot is kinematically cou-
pled with the environment. We need to further distinguish whether there is dynamic
interaction between the manipulator and the environment.

If the force components are orthogonal to the displacement or if there is no dis-
placement at all (case of a very stiff surface) then no dynamic interaction occurs and
the mechanical work exchanged is approximately zero. In this special case, the cor-
rect control strategy is pure force control and since no dynamic interaction exists, the
whole system (robot and environment) can still be considered as an isolated system
(i.c. no exchange of energy).

The more general case occurs when the dynamic interaction betwecn the robot
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and the environment is not negligible (d1V" = £ - dX % 0). In this case, neither pure
position control nor pure force control can be used successfully to control a robot
because it is no longer an isolated system and the relationship between the control
variables may change continuously. We must consider a more general control faw that
will take into account position. velocity. acceleration and also force as state variables.

* The command and control of a vector such as position or force is nol cnough
to control dynamic intcraction between systems. The controller must also command

a relation between the port variables Tiogan

2.3 Hybrid control

The hybrid position/force control scheme was first proposed by Craig and Raibert [{]
and almost ten years after, An and Hollerbach [1] found that hybrid position/force
control could go unstable. Also Zhang [34] found that it could go unstable due to
kinematic conditions. Fisher and Mujtaba [12] found the source of the problem which
was due to an incorrect formulation and implementation of the hybrid control scheme.

The main idea behind hybrid control is to separate the position and force con-
straints and independently analyze those control variables using pure force and pure
position control laws along the proper coordinates. It is based on a decomposition
of the task space. Given a task frame, a selcction matrix (S) designates which axis
will be position controlled and which will be force controlled. Once Lthe joinl torques
from each part are computed, they arc added to form the joint torque command to a
simple set of actuators.

The Cartesian coordinates specifications (x,[) are first mapped into the joint space
specifications (0, 7). This mapping is computationally costly and problems will occur
when the robot is in the vicinity of singular configurations because this mapping

breaks down. Assuming small displacement, figure 2.1 presents the general hybrid
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control scheme,

&‘?__m-sm-

Fa

Figure 2.1: General hybrid control scheme

X4: desired position

Iy desired force

S: Selcciton matrix

Zg: arbitrary position vector in joint space

Z.: arbitrary torque vector in joint space

0.: joint sct of actual position of robot

F,.: Torce read by a force sensor

=) =TGN

The force transform maps the sensed force frame into the task frame.

A position error (X, = Xy—X,) and a force error (F, = Fy—F,) are computed and
mapped into joint space through a selection matrix to produce the angle and torque
errors (the s subscript indicates that the selection matrix has been considered). Pure
position control and pure force control are calculated based on the error vectors 0.,
and 7., respectively and each of them produce a desired torque. Those torques are

added to form the torque that will drive the robot actuators.
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2.3.1 Discussion

Hybrid position/force countrol offers more possibilities than pure position or force
control, but it has several drawbacks. For good performance. the dynamic model
of the manipulator should be known since this control scheme computes a torque
command to drive the robot actuators. It is consequently sensitive to the precision of
the dynamic model of the robot. There is a sccond important problem. Assuming that
a good dynamic model is available, the environment of the robot must also be well
known and defined. In certain cases, the choice of the control law for a particular
degree of freedom may not be obvious. This control scheme applics to situations
where the (known) environment is either stiff or soft. When a given environment is
not completely stiff nor completely soft, the robot cannot be controlled adequately.
Another problem is due to the need to switch the selection matrix as the robot moves.
Finally, Duffy [8] found that the use of the selection matrix leads to dimensional
inconsistency, and the results depend on the choice of units and on the choice of the
origin of coordinates.

Despite its restrictions, hybrid position/force control is a step forward for dealing
with constrained environments. In the next section, we discuss impedance control as

a more general control approach.

2.4 Impedance control

Impedance control is concerned with the relationship between the position and contact
force simultaneously and a single control law will be applied to both constrained and
unconstrained tasks as opposed to hybrid control where two different control laws
were necessary {18]. When there is no forces at the end-effector, the control reduces
to a standard trajectory following problem in the task space. The control strategy

does not need to be changed when contact is made between the environment and
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the manipulator. The same controller is used in a single task including position and
position/force subtasks. In this sense. impedance control leads to a more robust
controller than the hybrid position/force controller since no switching is involved [6].

Impedance control is a general approach in which the robot is made to behave
like 2 mass-spring-damper system whose parameters (J. inertia: B, damping; K. stiff-
ness) can be specified arbitrarily in the task space. As opposed to pure force or pure
position control, no attempt is made to track force or motion trajectories precisely
but rather the relationship between force and motion is regulated. By tracking it is
meant that the manipulator will be controlled to follow precisely a desired trajectory;
by regulation it is meant that a desired trajectory will be given but the force ex-
crted by the environment will not exceed a certain value corresponding to a specified
impedance.

An impedance relates a flow to an effort (Z = 7 = £). For maximum encrgy
transfer, i.e. destruction of the environment in extreme cases, the robot’s impedance
must match the environment’s impedance. For minimum energy transfer, i.e. delicate
work, maximum mismatch is needed. The control establishes a dyramic relation
between the position and force instead of just controlling one of these variables at
any one time. Because of this dynamic interaction, the control scheme allows the
manipulator to work in both constrained and unconstrained environment, and the
cnvironment itself can change during the task.

See figure 2.2 ! for a general impedance control scheme. This scheme can be im-
plemented cither as position-based impedance control or as torque-based impedance
control. Those two methods have different properties and the two approaches will be
discussed later on.

Impedance control causes the robot to follow a desired trajectory as well as to

'from Whitney {32]
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Figure 2.2: General impedance control scheme

exert a desired force when errors build up between the actual position and the de-
sired position. The impedance controller will generate a force to correct the robot
trajectory. This correcting force causes the robot to follow a desired trajectory in free
space. In constrained motion, this correcting force corresponds to be the interacting
force between the robot and the task environment.

With impedance control, the contact force depends on the motion error of the
robot end-effector, i.e. position, velocity and acceleration errors [18]. Refering to
figure 2.3, m., b,,k, represent respectively the desired inertia, damping and stiffness
of the robot. Also, m., b..k. are the environment impedance parameters. The basic

dynamic equation that we wish the robot to follow is,
me(T — 2g) + b(& — 24) + kel — 24) = [o (2.1)

where

fe=mE + bt + ko (2.2)

The variables f. and z are respectively the environment contact force and the actual
position of the robot. The variable z4 represents the nominal trajectory and we can
relate it to the equivalent force input to the system (f;n). In fact, fin represents the

force that should be exerted by the robot in order to follow the desired trajectory.
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myeEy + bty 4 bery = fin (2.3)

Llquation 2.3 represents what would be the response if the robot was operating in
free space. But if the robot cncounters a wall of a given impedance 2. then fi, is
compared to the sensed force to produce a modified trajectory using equation 2.
that takes carc of the interaction of the robot with the environment. Finally, we say
that the overall behavior of the coupled robot/environment system is ideally given by

cquation 2.4.

z 1
T (e A MmO + (b + b)s + (Kr + ko)

In stiffness control and damping control, the contact force is treated as arising from

(2.4)

the position and the velocity errors respectively. In impedance control, the contact
force depends on the motion error of the robot end-cffector, i.e. position, velocity
and acceleration crrors [18]. Stiffness control is a special case of impedance control
where only the steady state force-displacement relationship is considered (z = (Tfit))’
damping control is a special case of impedance control where only the force-velocity

Tt i e . _ s _fin
relationship is considered (z = T )

Robot Environment
kr mr me ke
b

r L be
X
fin

Figure 2.3: Robot and environment system modeled with linear impedances

A parallel with pure position control and pure force control can also be made.

Pure position control corresponds to the case of an infinite impedance (or Z, > Z.)
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and pure force control to the case of a zero impedance (or Z, < Z,).

No problems are caused by the switching of the selection matrix as it is the case
with hybrid control. since the impedance itself manages the change by a dynamic in-
teraction with the enviroument. Also. there is no need to know exactly the impedance
(or rather the admittance [17]) of the environment to acheive a good performance (rel-
atively to hybrid position/force control). With the same control algorithm a robot can
be controlled in free space and in constrained environments because the impedance
specifies the dynamic relation between force and position. This is not the case with
hybrid control: in case of a rapid change in the environment, stability is not guar-
anteed (e.g. a pure force controller cannot be used in free space since the robot
would continually accelerate; a similar problem arises if pure position control is used
in a constrained environment, the force applied by the robot would be theoretically
infinite).

We now present two different approaches to implement impedance control. Both
are based on the same concept but the performance can vary depending on the
available hardware, and each method has its own advantages and disadvantages.
If impedance control is to be implemented with robots that were not designed for
trading force, there will be little choice for the implementation, but in other cases a
choice may be possible.

Also, one should keep in mind that in practical implementations, the accelera-
tion term that could contribute to change the robot inertia, is difficult to obtain.
Differentiating twice the position signal increases the noise component of the signal,
leading to useless information. Filtering the position signal prior to diffcrentiating is
one approach. However, during rapid changes in acceleration, filtering will degrade
the shape of the signal. A possible approach is to cstimate acceleration with state

space methods but it is not clear whether this is feasible, or even worth the trouble.
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2.4.1 Position-based impedance control

‘The position-based tinpedance control approach depends on an accurate internal po-
sition control loop around which is built the impedance control loop. The forces are
sensed and position commands are used as an input for the internal position loop.
Since many industrial robots are provided with accurate position controllers. this ap-
proach is a simple way to enhance the performance of the system by using retro-fitted

foree feedback.

?fe

”
mes3+bes+ke

——
x__1d mr s"-’l- brs + kr|

Impedance Controller ‘Position servos  © Robot & Environment

Figure 2.4: Position-based impedance control scheme

The main advantage of this method is that the dynamic model of the robot is not
required and rather good performance can be demonstrated. Developing a dynamic
model! can be laborious and will require costly computations for its calculation. This
will affect the stability and the robustness of the system. The inner servo loop gains
(PD gains) must be set as high as possible. In this situation, the robot dynamics is
seen like a disturbance to the impedance controller and are rejected by the position
servo loop (see figure 2.4). The terms D and H may vary depending on the imple-
mentation [25]. It is important that the position servo loop has a much shorter time
constant than the impedance loop, because the internal servo loop tracks a desired
position.

One problem with the position-based impedance control method is the difficulty
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to sclect a soft impedance without encountering stability problems [23]0 This is due
to the fact that position is used as a command to the position loop. This position
command is the result of I—'%ﬂ In the steady state case, for example, a small
stifflness produces a large position command and may excite high frequency resonant
modes to produce instability.

The transfer function derived [rom a position-based implementation (with H =0
and D = ——d——0=) resembles the ideal one (cquation 2.1) but contains an error

term that is minimized with high PD controller gain (&, and k).

=z - L (2.5)
fin ~ (mes? A bes + k) + (st + bes + k) + Als) -
where
Afs) = (mes® + b5+ ) (1 +m)s" + bos + &) (2.6)

kys 4 &y,
There is a steady state error with respect to the ideal impedance control equation
{equation 2.4). If k, and &, arc large enough as compared to the desired impedance,
then A(s) can be neglected and (2.5) is similar to the ideal transfer function (2.1). Il
k, and k, are not sufficiently high then the manipulator dynamics (the inertia in our
case) and the environment affect the servo loop and degrade the performance (note
that the environment must be taken into account in the impedance loop but not in
the servo loop).

There exists various implementations of the position based method, see [25] [13]
[18] for example. In [25], it is shown that the error on the steady state performance

may be eliminated in cases where the PD gains cannot be sct sufficiently high.
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2.4.2 Torque-based impedance control

In general, the torque based approach to impedance control. figure 2.5 *, will theoret-
ically lead to more cfficient and precis impedance controllers. The major difference
as compared to the position based approach is that it requires an accurate dynamic
mode! of the robot manipulator. In fact, the principle is to invert the dynamics of
the system and then to set the desired impedance.

In this control scheme, the actual positions, velocities and forces are sensed and are
then compared to their respective state variables. The error between the desired and
actual state variables are combined with the desired Cartesian coordinates impedance
to produce a desired torque command to the actuators.

Since this approach directly controls the torque command to the robot’s actuators,
the stability and robustness of the overall svstem depends on the precision of the
dynamic model. In fact, it can be stated that in practice, this method has poor
disturbance rejection because no inner loop is used inside the impedance loop to
compensatc {or parametric uncertainties.

Figurc 2.6 shows a qualitative relationship between the effect of parameter uncer-
taintics and the error of the torque-based controller. Of course when the parametric
uncertainties are small, torque based methods offer a better performance but the value
of a is small. Above &, torque based controllers rapidly loose their performances and
become unstable [2].

The probiem with the dynamic model is twofold. First, there always exist mod-
clling errors since it is impossible to completely model any system. Thus, the con-
troller must to some degree be robust to parameter uncertainty. Second, the calcula-
tions required for the inverse dynamic’s model increase rapidly with the complexity of
the model and may lead to difficulties in real time computing. As computers become

faster, the importance of this problem will be reduced but will always linger.

*from Khatib {21]
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As opposed to the position based method. stability is not affected when soft
impedances are required but it may be difficult to produce very sufl impedances. In
the position based method. a position command was produced from the ratio of a
force over the desired impedance. In the torque based method. a torque command
is produced from the product of a position and a desired impedance. In the case of
a large impedance. the bandwidth of the torque command increases and may again
excite unmodelled dynamics.

In summary, the more perfectly the plant is known. the better the controller
performance will be. In the torque based method. a dynamic model of the robot
is mandatory but it will offer better performance. More time will be needed in the

modelling part as compared to the position-based method where almost. no modelling

is required.
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Figure 2.5: Torque-based impedance control
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Rubang conurolier

a Parametric uncertanty

Figure 2.6: Parametric uncertainty
2.5 Decentralized control

Deriving inspiration [rom the consideration of human stiffness control by skeletal
muscles, the end-cffector compliance of a robot can be specified by directly altering
its joint stiffness [20]. This is the basic concept of the proposed method and it will
be extended to damping and inertia control to specify in Cartesian coordinates the
impedance of a manipulator from the joint space variables.

Salisbury [27] pioneered active stiffness control based on 2 joint torque control law
which can be used to acheive any desired stiffness of the end-effector in the compliance
frame. An error on the stiffness would appear as the manipulator is deflected far
from its nominal position leading to a curved path in space rather than a straight
line motion [24]. A fundamental advantage is owed to the fact that the inversion
of the Jacobian matrix is not needed, but only its transpose. Kaneko et al. [20]
proposed a direct compliance control method inspired from Salibury’s and is based
on a completely independent joint control, leading to any desired compliance, and
simplifying the complexity of the control law. An important drawback arises from
the implementation. In order to be able to control in Cartesian coordinates (three

. position and three orientations), a 21 DOF robot would required. Also, the method
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has another problem. the end point compliance cannot be arbitrarily set according
to the arm configuration. This is due to the negative joint compliance required in
certain arm configurations {19] [31].

The interesting point however is that simple SISO controllers can be used in

conjunction with co-located sensors and actuators.

2.6 Other methods

The position, force and compliance control of robots has received a lot of interest
from the research community and many other methods have been proposed. Most
of them are based on torque control and present different approaches and methods
to take into account parametric uncertaintics of the dynamic model. Among the
proposed solutions we find adaptive impedance controllers [28], sliding mode control
[35], etc. Those implementations appear to ofier good performances, but are usually
computationally costly and are not necessarily casy to implement in practice. Since
the focus of this thesis is on simple and experimentally provable approaches, these

will not be discussed further.



Chapter 3

Decentralized control of

impedance

3.1 Basics

Joint space controllers are used to control the impedance in Cartesian coordinates.
The implementation proposed here requires joint torque sensors located in the joints
of the manipulator. The position and force feedback control signals are based only
on joint variables: torque and displacement. The fundamental advantage of this
controller is that it does not require any coordinate transformation in the inner loop,
only lincar SISO compensators are needed. Co-located torque sensors lead to a larger
control bandwidth since the structural dynamics of the arm is seen as a perturbation,
but is not part of the plant to be controlled. Simple SISO controllers designed to
modulate individual joint impedances can achieve diagonal {decoupled) impedance
matrices in Cartesian coordinates, provided that another set of SISO compensators,
called here “decouplers™, are set up to cancel the couplings among the joints. This
strategy results in a simple computational architecture which does not require com-

plex coordinate transformations to be performed at servo rate.

18
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Given a desired impedance in Cartesian coordinates, it is mapped into joint coor-

dinates. Assuming small displacements, we lincarize to obtain:

r = JF (3.1)
8X = J&O (3.2)
then, in the Laplace domain.
F(s) = Z.(s)0(s) (3.3)
T(s) = Zs(s)0(s) (3.1
thus
Zo(s) = JTZ(s)J (3.5)

where Z.(s) = B.s+ K,

For stiffness alone, the matrix Z; has been characterized and called by Salisbury
the joint stifflness matrix. There we look at a more gencral case where impedance
can be arbitrary. No Jacobian inversion is required, reducing the computations and
alleviating problems near kinematics singularities. There is however no reason wly
the resulting Z;(s) should be diagonal (and not necessarily positive definite) when
Z.(s) is chosen to be diagonal, except in special cases.

Conversely, a diagonal Zs(s) (namely PD control) will not lead to diagonal Z.(s):
in this case, cross coupling occurs in Cartesian space, When Z.(s) is diagonal, Zs(s)
is symmetric and the terms outside the diagonal (cross coupling terms) arc nol neg-
ligible. However, in general the diagonality or degree of decoupling of Zp(s) will
vary with the robot configuration. The significance of a non diagonal Zp(s) is that
the errors in one joint will affect the commanded torque in all the other joints as was
pointed out in [27](see equation 3.4). Only certain cases will lead to decoupling which

is an architectural kinematic property of the underlying mechanism as shown in [16].
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In certain situattons. redundancy can contribute to reduce or even cancel cross
coupling terms by exploiting the additional degree(s) of freedom to select a configura-
tion which minimizes the off diagonal terms of the joint space impedance matrix for
a given Cartesian coordinates impedance matrix. The general relation between the
number of parameters to control in joint space and the number of degrees of freedom
is given by:

N=1

p= Y (=1) (N =iy (3.6)

=0
where N is the number of D.O.F. and p. the number of parameters to control.

For purposes of illustration, the casc of a planar robot with three DOF is now
discussed. It is possible to configure a manipulator of this kind such that, for a given
diagonal Cartesian impedance matrix, the joint spacc impedance matrix becomes
diagonal. This can be cxplained by the fact that the Cartesian impedance matrix
specifies three terms, the impedance in the x and y directions, the cross coupling
term between x and y being fixed to zero, ideally. Since the robot has three joints it
can be verified that there is a unique solution to three equations with three unknowns.
Redundancy can be used to yield a diagonal joint space matrix that will satisfy the
Cartesian impedance matrix.

In the more general case of a seven degree of {reedom robot, from equation 3.6,
we find that 28 parameters are to be determined, among which 21 must be set to
zero. In this case, a manipulator with at least 28 degrees of freedom would be capa-
ble of yielding a diagonal Cartesian coordinates impedance matrix from a diagonal
joint impedance matrix. Moderate redundancy, in this case, can only contribute to
minimize the cross coupling terms. An optimization method could be applied to find
postures that minimize the coupling but decoupling cannot occur in general.

To set the diagonal terms of Zy{s) by means of feedback control, the gains of the

joint PD controllers are scheduled or continuously modified as the robot moves. Since
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the off diagonal terms are neglected. the system will be highly coupled but the control
is quite robust. From equation 3.1, for the stiffness term (and similarly for a general

impedance), the torque command to one joint is given by:

N
= Z(!\'i‘ioi) ({T)
=
N
T = 1\’,_,'0,'-!- Z [\','_J‘()J' (J.S)
J=LJ#

Equation 3.7 separates into two parts as in cquation 3.8. The diagonal terus
arc readily obtained with PD controllers about cach joint. The remaining terms
correspond to compensating torques calculated from the off diagonal terms and from
the position of other joints. The resulting impedance matrix in Cartesian coordinates
is now exactly decoupled using joint measurements alone.

One advantage of this method, is that analog PD controllers may bhe used to
implement the diagonal terms of the joint space stiflnesses and damping, thereby
{reeing the system {rom sampling and digitization approximations. The cross coupling
terms are computed numerically and summed with the PD countroller output torque
to yield the actuator force demand signal. An additional computed torque may he

used to fine tune the system.

3.2 Transfer function

Decentralized impedance control operates in joint space. It is nevertheless important
to derive the Cartesian coordinates transfer function. It will be obtained by mapping
the joint coordinates control into a Cartesian coordinates. The dynamies: inertia,

damping and stiffness are captured by,
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Tt = Dol + V(0.0) + G(6) (3.9)
applying the control,
Tt = Ma(0y — 0) + Bo(64 — 0) + Ko(04 — 0)
+ V(6.6 +G0) (3.10)
results in,

Dol + V(0,0) + G(0) = My(04—0)+ Bo(6s — 0) + Ko(04 — 0)

+ V(0.0) +G(0) (3.11)
assuming,
74 = Moly+ Baby+ Kby (3.12)
r = JIF (3.13)
Sz =~ J&0 (3.14)
F o= JO+JO (3.13)
we have,
Fy = JT(My+Dg)0+JTBeb +J TR0 +J-T(V =V)
+ JTG-G) (3.16)
Fy = JT(Meg+ D)) 2+ JTBeJ 2 + J7TKpd 2 +
+ JTW=V)+ I TG - G)=JT (Mg + Dg)J Vb (3.17)
where
My = JTMJ (3.18)
Bs = J'B.J (3.19)
Ke = JTR.J (3.20)

D = JTDJ! (3.21)
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using the above equations we have,

13:1 = ((D + -'111‘)";2 <+ Ij.r-"‘ + [\..r)-r + -Ar-rr'nr ('{‘-).—))
Aror = JTTV =Y+ I TG =Y = J (Mo + DSV (3.23)

When a relatively low speed of motion is required. the centrilugal and coriolis
term become negligible and also does the rate of change ol the Jacobian matrix. The
error inherent to the gravity term will be discussed later and for now we will assume

perfect compensation. The transfer function thus becomes,

x 2 ‘ \= .
7= (D + M)s + Bps + K,)™ (3.21)
By abuse of notation, Iy mecans [orces and torques and by . position and orien-

tation. ' The ratio %‘ is used to represent the transfer functions in cach direction

oo A, Iz o Za o Zv o Zw S L i Zi) Notice that the robot inertia appears
(i.c. s B T T B B T T T ). Notice the nertia appears

in equation 3.24. Since this matrix is not diagonal it will cause errors in the transient
response. These errors can be minimized using the redundancy of the manipulator
when it is available. The error characterization will be discussed in sectiou 3.7.

From equation 3.24, we find that the steady state value is,

= 0 0
A
mﬁ:x;': 0 0 (3.25)
0 0 2

!Properly speaking, the above equations would apply to rotations only if they are small. In
section 3.7 a correction factor is derived to correct this problem.
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3.3 Continuous Time Stability

Many non-linear feedback laws have been proposed in the literature for the control
design of robotic systems modelled by rigid body equations of open-kinematic chains.
Predominant among these techniques is the computed torque approach. This ap-
proach has. in practice, a number of drawbacks because the global stability depends
on exact dynamic models and full knowledge of the parameters of the system. Accu-
racy and speed in computation is also required [22]. In this section. we will show that
the proposed controller remains stable. In order to prove the stability, we will use
the state space theory. Assuming negligible coriolis and centrifugal terms and using

gravity compensation we have:

Dol = Bo(f4 — §) + Kp(04 — 6) (3.26)

forming a desired torque,

i = Baly+ Kby (3.27)

we have
74 = Do + By + K0 (3.28)
(3.29)

Then, with z a state variable (not a Cartesian coordinates vector),

* = Az 4 Bu (3.30)
y = Cz (3.31)
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where

’ )
. 3.32
i (
0 I
A = (3.33)
(—D;‘I\'g —Dg‘n,,)

B ’ 3.34)
= Dy (3.3
C = (I 0) (3.35)
u = 7y (3.36)

The characteristic equation, A(s), is given by the determinant of (s/ — A):

s -1
(3.37)
D;'Ry sl+ D;'By

Als) = D7 (Dps® + Bos+ Ko) =0 (3.38)

(s] — A)

The system will be stable if the given impedance transfer function in Cartesian
coordinates is stable. The characteristic equation (equation 3.38) will have all its

roots in the left half plane if and only if:
1. D;, By and A are positive semidefinite
2. Dy or Kj is positive definite [5]

The inertia matrix Dy has the property of being always positive definite simply
because the quadratic 67 Dyf represents the work cffected to overcome the joint, iner-
tias and therefore must be greater than zero [34]. If an acceleration feedback is to be
used, we simply need to make sure that (Dp + Mj) is positive definite. Also B, and

Ky are positive semidefinite because of their structural propertics,

Ko = JTK_J (3.39)
By

I

JTB.J (3.40)
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then,

Ko = JTRIK.J (3.41)
By = J'BLB..J (3.42)
e = Vor (3.43)
Ky, = Q'Q (3-44)
Q = 2d (3.43)

From the above, we can conclude that By and R arc positive definite if Q is not
singular and positive semidefinite if Q is singular.

It is known that a change in coordinates (e.g. from joint to Cartesian coordinates)
will not affect the stability, thus the proposed control law will remain stable at the

Cartesian level [15].

3.4 Discrete Time System Stability

The sampling frequency of a digital controller greatly affects the bounds within which
such a system is stable. 1t is known that stable continuous time systems may become
unstable when an equivalent digital controller is applied in replacement. In the set-up
used in this thesis, some parts will be implemented using an analog controller (the
diagonal terms of the damping and stiffness matrices) and the decoupler part will be
implemented digitally. To simplify this section, we will study the system as if the
controller was completely digital.

Digital controllers introduce a time delay and cause a reduction of the phase
margin leading to instabilities. The analysis of linear SISO digital systems is relatively
simple in the case of low order systems and may be easily generalized to muiti-variable

systems when they are fully decoupled (diagonal matrices) since there is no interaction
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between the different inputs and outputs. Unfortunately, the case of coupled multi-
variable systems does not generalize as easily. We will first discuss the one dimeussion

case,

9, + — 0
1=O—Bs + K—— ™

Analog System

T 5 .
% J'_Q—/ —C(@2)FZOH-IMs

Digital System

Figure 3.1: Analog and Digital Systems

Various approXimations may be selected to analyze the system in figure 3.1, a zero
order hold equivalent has been chosen. An equivalent digital controller is used to ap-
proximate the continuous one. Using Tustin’s method [14] (bilinear transformation),

given a sampling period T, we have in the Z domain,

2z-1 o
s = (T:—i-l) (3.46)
Clz) = B(E:_l K 347
T? z41 o e
°C) = wiEoye A
9 s A A rpy) —_9 4
open loop = RBT + K1)z + (KT7 - 257) (3.49)

2M(z - 1)

closed loop = ——z— (3.50)
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(H o K1 )z + (_’\'7"" _ .fiI)
_ r oA /T T AT 3 (3.51)
= 2. ¢¢BT RT? Mo (] 4 AL BT
~ '-“('?.T"'z.\r_")~"'( "'2.\:"\'1‘)

g

Z domain systems are stable when all their poles are included inside the unit

circle. Using the Jury stability test ([14]) the following conditinns for stability are

found:

)
K < -'_TE (3.52)
9
B <« # (3.53)
K >0 (3.54)

The same conditions apply in the case of diagonal multi-variable systems except

that K. B, M arc diagonal matrices.

3.4.1 Coupled multi variable case

The complete study of coupled multi-variable systems may become relatively complex
and will not be trcated in this thesis. From simulation, it appears that the results
obtained using the stability conditions for each elements of the matrices M. B and
KR produce limits in the same order that the effective stability limit.

With coupled systems, the response in one direction affects the response in an
another direction and energy may be exchanged among the joints. Energy is not
necessarily decreasing and the system may become non passive.

Given the continuous time system. we have from section 3.3,

0 NzN I 1\'1‘1\' \
-D;'Ky -D7'By

B 01\'31\? (3 "'6 )
= 9
Dt
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C = (Iyyxx Ox:x)
r = Ar+ Bu

v = (r

And the continuous time solution is given by.

z(t) = c"“:r:(O)+Lt(:""!3::(r)(Ir
yt) = Catt)

The discrete time equivalent (T being the sampling period) is.

T
s(n+1) = Mz(n)+ f " Bu(r)dr
(V]

= ¢a(n)+ (LT ¢ Bdr)u(n)
y(n) = Cz(n)

or in the £ domain,
(1 - )X(:) = ([ e BU)

X(z) = (:I—c"‘T)"(juTc’"B)U(:)

29

(3.60)

(3.61)

(3.62)
(3.63)
(3.61)

(3.63)

(3.66)

The digital system will be stable if all the roots of Det(zf — ¢7) lic inside the

unit circle. If T is sufficiently small, an approximation for e*7 can be used:

e~ T+ AT

(zI =€) = (21 -1-¢"T)

2= 1)Ins —InenT
Det(sI — eT) = Det(( Hrvas Ve

D7YKoT (2= 1)Inen + Dy BeT

(3.67)
(3.68)

) (3.69)



CHAPTER 3. DECENTRALIZED CONTROL OF IMPEDANCE 30

Finding the mathematical symbolic expression of the roots of the determinant in
the previous equation is very difficult even in the 2 degrees of freedom case since
it, leads to a 1** order cquation. In the case of a seven degrees of freedom robot,
the equation is of the 14 order. Applying the Jury stability test leads to complex
calculations. The symbolic compntation of the determinant is difficult but if numerical
values are given for Dy', By and Ky then it is casy to verify the location of the roots

of the determinant of (31 — ¢47),

A(z) = Det(z] - ') (3.70)

N

TI(= - =) (3.11)

i=1

The system is stable if

5 < 1] Vi (3.72)

It has also been shown that a change in coordinates should not affect the stability
conditions of the system under study [15]. If the Cartesian coordinates inertia matrix
is diagonal, it is easy to study the stability of the system since it is as simple as
the one dimensional case. In the case of a redundant robot, a given position can be
reached from many configurations and to each of these configurations corresponds a
different inertia matrix. An optimization criterion can be used to select the best pose,
reducing the coupling, and at the same time simplifying the analysis of the stability

conditions.

3.5 Controllability and Observability

From equations (3.33), (3.34) and (3.35),

A ° ! 3.73)
= N
—Da_lKg -D;'B; (



CHAPTER 3. DECENTRALIZED CONTROL OF INPEDANCE 31

0 . -
B = Dﬂ" (3.71)
C = (I 0) (3.75)
The controllability and obscrvability matrices are given by:
C = (B AB A*B .. A™'B) (3.76)
(€
CA
0 = C A? (3.77)
kCA““]
0 D;!
C = (3.78)
D' =D;'ByD;' ..
I 0
O =101 (3.79)

The system is controllable if rank(C) is n, when A is n x n. From equation 3.78,

we notice that a sufficient condition for € to have full rank is that the determinant of

0 D;!
C = : l (3.80)
D;' —=Dp'ByD;!

is different from zero. Since the inertia matrix, Dy, is always positive definite, the
determinant of C; will be (Det(D;))? because element (1,1) in €, is 0 (2 null matrix
having the same dimensions as D,.

From equation 3.79, the system is observable, since the first two columns of O are

identity.
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3.6 Redundant robots

In the case of kinematically redundant robots, even if the global system if completely
controllable and observable, the additional degrees of freedom may cause difficuitics
because the problem is underconstrained. It is then necessary to constrain the ad-
ditional coordinates arising from the redundant degrees of frecedom. for example by
specifying additional impedance terms (see section A.2.1). Redundancy can also be
used to minimize some criteria. The additional constraints to be added can be some-
thing simple, (e.g. with the Sarcos arm, controlling the position of the elbow), or
something more sophisticated. In [26]. the authors present a method to extend the

task space using Lagrange multipliers.

3.7 Error Characterization

To be stable, computed torque techniques require the knowledge of the manipulator
dynamics. Since a control law that does not completely inverse the roboti’s dynamics
will cause some error, it is important to characterize the nature of those errors and
to describe them. We will first look at the steady state errors and then the transient

errors will be studied.

3.7.1 Error on the stiffness term
Error from the control law

When the transfer function was derived, we assumed small displacements and a lin-
carization was performed to map the Cartesian coordinates position into joint coor-
dinates angles. As the robot moves away from its desired position the linearization

no longer holds. The resulting error may vary depending on the robot configuration.
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Sr =~ Jb0 (3.81)
r = JTF (3.82)
F = KAz (3.83)
r = JTRAr (3.84)
r o~ JTR.JAD (3.85)
Ar = 1T—24 (3.86)
A8 = -0y (3.87)
. - JAO = (A{0) — A(62) (3.5%)

(A(0) — A(da))
From the previous equations, when (0y — 0) is not small, the torque feedback (of
the decoupler) coming from the joint angles error and multiplied by J7K.J contains

an error and causes a steady state error on the stiffness term. The decoupler is no

longer exact.

JAD
e f fective = desire 3.89

when (A(8) = A(0y)), is different from zero.
If a computed torque based method had been applied: ™ = JTA(A(0) — A(04))
would be sent to the actuator and the problem would not occur. It is however possible

to derive the correct expression for Ky, subtracting a corrective term:

KeA8 = JTK(A(B) — A(02) (3.90)
Ko = JTKA(AB) = A0))((ADT A0 (AG)T) (3.91)

An alternative solution proposed in {33] allows us to nevertheless use analog PD

controllers and eliminates any steady state error even for large Ax in any direction.
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Since the eross coupling torques are computed at each sample period. a geometrical
projection of Xy is used 1o calculate a correction on the desired joint angles.

When Ax is large. the error arises from the approximation
Ar = JAO (3.92)

To prevent the crror, we simply incrementally update the desired joint space

position 04 at each servo cycle:

r = JTK. Az (3.93)
T = JTR.J(Otnew — 0) (3.94)
Otnew = O+ J7'Az (3.95)

Since equation 3.95 is computed at cach servo cycle, Az is small and this expres-

ston can also take care of the rotations. Given two positions in space, we have:

T, = (3.96)

T('f = (3.97)
\0 0 0 1
f 1 —=r,
R=(R)7'R; = r. 1 —r (3.98)
K—r, re 1

A = (Id—xs Ye—Y, ~a—23 Tzy Ty r:)T (3-99)
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Error caused by gravity

The gravity has more influence on direct drive robots than on geared oues. Its effect
is not reduced by the gear ratio. When the desired stiffuess is small or is of the
same order of magnitude than the gravity components, the precision of the controller
is aflected, T:' # RNiesired- Evidently when the desired stiffness is large, this errov

reduces proportionally.

Bo(0g = 6) + Ke(02— 0) + V(0.0) + G(0) = M(0) + V(0.0) + G(#)  (3.100)

M(0)E + Boé + hge = M(0)0,+ V(0.9) = V(0.0) +

G(0) - G(0) (3.101)
co = K7YG(0) - G(9)) (3.102)

or in Cartesian coordinates,
e = K7Y{G(z) = Glx)) (3.103)

3.7.2 Error on the Damping term

It was mentioned in section 3.2 that the off-diagonal terms of the inertia matrix
produce couplings in the transient response and cause an crror in the desired damping
parameter. In this section, we will characterize and estimate this crror, and suggest,
the use of redundancy to minimize it. Although the proposed decentralized impedance
controller does not require a dynamic model of the robot manipulator to remain
stable, an estimation of the inertia matrix must be known to set the parameters
of the transient response by fixing a desired damping ratio. Rewriting the transfer

function equation from section 3.2 vields:

T = (Dps*+ Bys + K;)0 (3.104)
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. o= TR (3.105)
Fo= J7T(Des + Bos + Ko)J ' (3.106)
= (-]_TDB-I-I.N‘Q + Brs+ W)z (3.107)
Transfer functions = (Dps® + Bes + Kp)7! (3.108)
where
m (3] 3
D = JTD "= ¢ my « (3.109)
€2 €&z M:
thus
YZ - st Caast — 2t egst — Y s?
Catzs? = ¢ Zs? XZ - gs greast — 3 Xs®
ey — Vs ey —oXe XV -y (3.110)
XYZ — (X + &Y + 6§2)s + 212358
where

X, Y and Z are the Cartesian impedances in the z, y and =z directions respec-

tively.

The mathematical expression for the inertia matrix may contain many terms but
its form is always that of equation 3.109. The off diagonal terms of equation 3.110
strictly depend on the ¢;’s of the inertia matrix. The couplings caused by the off-
diagonal terms only aflect the transient response and the error vanishes at steady
state. Depending on the robot configuration, the ¢;’s of the inertia matrix will change
and move the poles and zeros of the transfer function causing an error in the transient
response. Stability is always preserved however (section 3.3), it is only a question of
performance.

Looking 2t one Cartesian direction {e.g. z), it is possible to find an equivalent
block diagram representating the transfer function.

Z = Y2 - & (3.111)
J= - XYZ- (63X + &Y + €2)s* + 2¢1 626358 ’
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ab
= J.012
aX +¢ (3.112)

Fx a+b | T\ 1 X
a \&/ X(s)

el

Figure 3.2: A block diagram representation

We represent the coupling in the desired impedance as a prefilter and a feedback
loop. From figure 3.2, the problem becomes obvious. As b and ¢ decrease, the
change in the poles and zeros due to the prefilter and feedback loop decreases and
the transient response becomes closer to the idcal one.

By careful pose selection, it is possible to significantly reduce the off diagonal
terms of the inertia matrix. In order to estimate the error, we assume that the m;'s
are large compared to the ¢;'s such that equation (3.110) can be rewritten in the

{ollowing form,

Tranfer functions = (M.s* + Bos+ K,)~! (3.113)
YZ — 282 —aYs?
—, Zs? XZ = Xst

_\—qYs® —gXst XY )
= Al (3.114)

Equation 3.114 means that we assume the error in the transient response comes
from the coupling terms only and the influence of the ¢;’s on the poles and zeros of
the impedance is neglected in a given direction. The transient response is now the

superposition of the desired impedance transicnts and the coupling terms transients.
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In the case of a desired over damped impedance (usually the case in practical
tasks) in cach Cartesian coordinates direction, the time response of the denominator

is given by,

L ‘ (3.115)
XYZ = (s+a)(s+b)(s+a,)(s+b)(s+a)(s+8b) -

JU) = Cre™! 4 Coc™ " + Cae™™' + Cye™" + Cye™®' + Coe™"* (3.116)

It is also possible to express the effect of the ¢; on the time domain transient
responsc. The Laplace domain s operator is cquivalent to a differentiation with

respect Lo time, in the time domain. The impulse response is:

a(t) = (Cre™*" + Coc™ ) [ + &1} f, + &A1) [ (3.117)
y(t) = (Cac™' 4 Cac™Y)f, + &()fe + 83(t) f- (3.118)
=(t) = (Cse—n'-t + C"Ge-bﬂ)f: + &2t} fr + &a(1) S, (3.119)
() = —q g%(c,e‘“*‘ + Cae™t 4 Cye™ + Che~Y) (3.120)
62(t) = —62‘%(616_“‘! + Cze-b;t + Cse-czl + Cﬁe'b“) (3121)
8&(t) = —e;,%(Cae‘“"‘ + Cae~bt 4 Cge®t + Cee™bt) (3.122
where
f. = Impulse amplitude in the i direction
a;,b; = Eigenvalues of the impedance in each direction

1
C, = - 3.123
N R | PR oy | P (3.123)

1
C. = 3.124
@b a (e b - —b) 1

1

Cz = (3.125)

(az — ay)(ay — a:)(ay — b:)ay, — b,)(a, — b:)
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1
C. = 3126
I Py Ty gy oy y S S el
1
o — : . ._)""
Cs (ar —a:){—ay, +a:)a; = b:Ya; — b)) (a: = b.) (3.12%)
1
= 3128
C (ar = b:)(_ay + b=)(—(1._. + b:)(_b.r + b:)(_hy + b.) (8.128)
¢; = off-diagonal terms of the Cartestan inertia matrix

Given a desired impedance and a given location in space, the terms of equations
3.120, 3.121 and 3.122 become known and an expression for the transient error can

be computed finding the maximum of cach equations.

3.8 Use of the Redundancy of Robots

With redundant robots, it is possible to minimize the off diagonal terms by selecting
an optimal configuration of the joint angles for a given Cartesian position.

A well coordinated mass matrix reduces the cross coupling in the transient re-
sponse and reduces the error between the desired damping ratio and the actual damp-
ing ratio.

In practice, redundancy cannot completely decouple the inertia matrix but it can
greatly affect the conditioning of the mass matrix as it is now shown.

Figure 3.3 shows the change of the mass matrix during a self motion (for a given
Cartesian position in space). The three solid lines represent the three diagonal terms
of the mass matrix, m,, my, m., and the dotted line represents the off diagonal terms
of the mass matrix. In figure 3.4, the optimization criterion proposed below is plotted
as a function of a self motion parameters. For a given Cartesian coordiantes position
in space, the optimization criterion will select the robot’s configuration where its

inertia matrix is best coordinated (as close as possible to the diagonal case).
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p = || +]ea]+ el
|m:|+]my|+|m=[

(3.129)

Change ol tha coothaents in mass malix

Masse {K3)

Opumization crteron

o [] 100 150 200 250 300 aso 400
Joint 3 {deg)

Figure 3.4: Optimization criteria vs redundant degree of freedom
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3.9 Reachable Impedance

The range of impedance that can be reached by the robot depends on many param-
eters. In this section, we will study different factors that may reduce the acheivable

bandwidth of the resulting stable impedance.

3.9.1 Unmodelled Flexibility

Robot manipulators are often assumed to have rigid links, in practice it is never the
case. The links have finite stiflness, although it can be made high. resulting in an
increase in the order of the system {3]. Given the mass (m) and stiffness (&) of cach

link, an estimate of the resonant frequency 1s,

k
Wnres =\ — (3.130)

m

Equation 3.130 represents an upper bound for the range of rcachable impedances.

Given:
Z:(s) = M.s*+ Bos+ K. (3.131)
we have
I’I + L 1
wﬂdenred = E (-3- l 0;2)
w
wﬂdenrcd S _;Ei (3.1 33)

The bandwidth of the desired impedance cannot be higher than the natural fre-

quency of the robot without causing problems in the control.
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3.9.2 Sampling Pericd

The sampling period of digital controllers will set an upper and a lower limit on the
rcachable impedances. This depends on the relations between the desired inertia,
damping and stiffness (M. B and A'). Interestingly, the sampling period places a
lower limit on the reachable impedance. These conditions are expressed in equations

3.52, 3.53,3.54.

3.9.3 PD Controllers Maximum Gain

The usc of an analog (or hybrid) controller has several advantages, among them better
robustness and stability. It is thus important to investigate their limits.

The analog controller implements the diagonal terms of the joint space impedance
matrix. Those terms must be smaller than or equal to the maximum gains of the PD

controller. In the following cquations, the subscript maz has been implied.

Ky = JTK.J (3.134)

Ky, = 'iu&..-fx;,.") (3-135)

Q = : : (3.136)
JEo. IR,

Ks, = QK: (3.137)

K. = Q'K (3.138)

It is obvious from the previous equations that a given impedance in one direction
will limit the impedance in another one. Thus a very stiff impedance may be obtained
at the cost of a softer impedance in other directions. There is an explicit trade-off

cxpressed by equation 3.138.
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3.9.4 Maximum Torque

The tmpedance at a given point in space may be restricted by the three previous
constraints but since it is a dynamic relation between a position and a force, then
the actuator maximum saturation torque will limit the achievable desired impedance.

The limit is.

Tmar 2 JT(Brs + K2)Ax (3.139)

3.9.5 Robot’s Position

In the case of non redundant robets, the reachable sct of iinpedance at one point is
unique. In the case of redundant robots. the rcachable impedance at one point is not

unique and redundancy may be used to change the limits on the reachable impedance.
q 3 3 I

3.10 Simulation

Before experiments were carried out on the Sarcos GRLA arm, simulations were
performed to verify the performance of the proposed control algorithm under ideal
conditions. The first part of this section will look at the stcady state response and
the second part will consider the transient response and how redundancy can improve

the performance.

3.10.1 Steady State Response

A very slow force ramp is appliied at the end-effector of the manipulator causing
a deflection from the nominal position according to the desired stiffness, Ar = ,’—\-

Figures 3.5 and 3.6 highlight the errors resulting from undecoupled decentralized

control. In the presence of a small displacement, we see that the actual stiffness
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(slope of dotted line) does not mateh the desired stiffness (slope of solid line) when
the deflection is large (figure 3.6). The effect of the various couplings is obvious.
With a decoupler, figure 3.5 and 3.6, the response corresponds exactly to the ideal
case. An crror arises from the lincarization approximation {(x & J) causing a curve
(dashed line) response even with decoupler. When the correction term is introduced
to compensate for the torque feedback crror, the response matches the ideal one (solid

line). Equation 3.95 is solved in real time using Householder’s method [29].

Ramp: X direction Ramp: ¥ diroction
.04
0.03
£
8002
2
0.0t
% : 2
Poalnon m) 444
Ramp: Z directon
0.04
Kx: 100 Nim
003 Ky: 200 Nim
£ o ¥z 300 N'm
S0 L o T NO Docouplor
E T =~ L With Decouplor
o0 — 1 1coa!
co 1
Pouition (M) x1o”

Figure 3.5: Small deflection

3.10.2 Transient Response

The main point here is to observe the effect of cross coupling on the transient response
as well as the error on the damping factor. The simulations presented in figures 3.7, 3.8
and 3.9 consist, for each figure, of a step input of force applied at the end-effector of the
robot along one of the Cartesian coordinates. The robot’s transient response is then
plotted. ldeally, there should be no response along the other direction. Depending

on the degree of coupling of the inertia matrix, a transient may appear.
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Ramp:. X arreetion Ramp Y direction
40 40 -
30 Ky 30 L
820 45 320 /o
2 2 4
10 10
% o oz % X 0z
Pezition {m) Position {m)
Ramp; Z direction
‘c l
i Kx; 100 N/m
301 ' Ky. 200 N/m
§ ‘," Kz 300 Nim
e 20 / ..... : No Decouptar
E ’ ..t With Decoupier, No Housoholaor
10 / __ : Win Decoupler and Householoor
L"0 0.1 02
Postion {m)

Figure 3.6: Large deflection

Since the arm under study is kinematically redundant, the effect of self motion
on the transient response is studied. In figures 3.7, 3.8 and 3.9, the dotted line is
the ideal response, the dashed line corresponds to the worst situation and the solid
line shows the best situation. We see that significant improvement is achecived when
the inertia matrix is best conditioned. In some case it is even possible to completely
remove the coupling transients. As seen on figures 3.8 and 3.9, the observed damping
ratio corresponds almost perfectly to the desired one. In figure 3.7, the damping ratio
is slightly inacurate but the degree of decoupling is very good compared to a worst

case situation.
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Figure 3.7: Step in X direction
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Figure 3.8: Step in Y direction
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Chapter 4

Manipulator dynamics

An cxpression for the inertia matrix in Cartesian coordinates is developed and is
used to specify the cliaracteristics of the transient response. A gravity compensation
algorithm is also developed. The ideal equation of motion of a manipulator resulting

from the rigid body dynamics is given by,

r = Dyl + V(0.6) + G(6) (4.1)

where Dy, V (9,(}) and G(#) are respectively the mass matrix, centrifugal and coriolis
components and the gravity component. In the static case, the gravity component
G(6) is the only contribution to the torque. In the dynamic case, both Dj and V(O,é)

will affect the motion.

4.1 Cartesian Inertia Matrix

Four numbers are required to determine the mass properties of a link: the mass and
three moments of inertia. The estimation of these parameters is difficult in practice

because only the product of a mass by a length is observed and the extraction of the

mass propertics is not easy.

48
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In the proposed method. the robot manipulator is approximated by a distribution
of point masses set at known locations on the arm. An estimate of the mass matrix

1s written as follows:

p

T = Z(Jgrm,-g)=ﬂ.-‘\l (1.2)
i=1

M = Q"' = (my oma .. omy,) (1.3)

The robot was moved to a number of locations and the joint angles and joint
torques were recorded producing a total of 37 data points. Table 1.1 shows the mass

estimatcs derived from this data for the Sarcos GRLA manipulator.

m; | mass estimate (kg)
my 7.33561

ma 14.7723

my 24.6204

my 21.1916

ms 17.7628

Table 4.1: Mass cstimate

Then the joint coordinates mass matrix is computed using the estimates:

Dy = Y (3Tdim) (1.4)

i=1

The estimation of the Cartesian coordinates mass inatrix, M, is derived from Djy.

Assuming a small rate of change of the Jacobian with respect to time,

& = Jb (4.5)
. P o= Jo+Jo~Jd {4.6)
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Fo= MF (1.7)
o= Dyl (1.8)
r = J'F (1.9)
M = JTpya? (4.10)

D is a rather crude approximation since only six point masses have been taken

into account. As will be demonstrated in chapter 3, this estimate is surprisingly good.

4.2 Gravity Compensation

A model of the robot is used to calculate a gravity compensating torques. The com-
plexity of the model may vary but at some point a model requiring the estimation of
an excessively large number ol parameter may not be necessarily better than another
one using a few parameters (figure 4.1). Also, the robot’s architecturc may help re-
duce the number of parameters required for a good gravity compensation algorithm
and at the same time, the computational cost to compute the compensating torque

in real time.

Precishn

Numbet parameiens

Figure 4.1: Precision vs number of parameters

A model requiring only six parameters has been developed for the Sarcos GRLA

. arm. We assumed that each center of mass was located along the manipulator link.
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The robot has been modelled with three point masses, mg, ey and iy and three

terms representing the point masses multiplicd by their center of imasses m s el
and mal.,. The model developed in the previous section ceuld have been used for
gravity compensation but this one has a lower computational cost.

In figure 1.2, the norm of the error between the estimate and actual gravity foree in
Cartesian coordinates is presented. Considering that the Sarcos GRLA arm weights

approximately 150 kg, this simple model offers a good performance.

Gravity Componsation Error Disinbution
20r pomr Moan: 26656 N 1
Standard coviaton; 13.30 N
—] Min: 1.B74 N

F 15k Max; 209.6 N )
%‘ M

& 10} ]

5r J

0 20 40 60 80 100 120 140 180 180 200

Emot in Nowton

Figure 4.2: Gravity compensation



Chapter 5

Experimental Results

5.1 Experimental Setup

The experimental setup consists of the Sarcos General Large Arm (GRLA) manipu-
lator (figure 5.1}, It uses hydraulic actuators driven with high performance jet pipe
valves integrated at ecach actuators and strain gages are available at each joint to
measure torque. This manipulator is characterized by a large workspace and a pay-
load of approximately 100 kg. Hydro-Québec uses it to develop telerobotics strategies
to cveniually perform live line maintenance of electrical power lines. A Sparc CPU
card inserted in a VME bus system is used as a digital controller and is also used to
communicate with the robot analog controller via a digital card from GreenSpring

Computers. The robot is also supplied with a 3000 psi oil pressure.

5.2 Implementation

Given a desired position, the actual position of the manipulator is first read. Then,
the Jacobian matrix is evaluated and the joint space gains (stiffness and rigidity) are

derived. The diagonal terms of the joint space matrices are sent to the analog PD

52
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Figure 5.1: The Sarcos GRLA arm

controller and a cross-coupling torque is obtained from the off diagonal terms and
the position error. To eliminate a steady state error due to large deflections {section
3.7) a geometrical projection is used to produce a new desired position at cach cycle.
Then the gravity compensation is computed. Finally, the cross-coupling, the gravity

torques and the computed analog gains are written to the corresponding channels.

5.3 Steady State Response

A very slow ramp of force was applicd at the end effector of the robot, causing a

deflection. Ideally, the robot’s displacement is given by,



CHAPTER 5. EXPERIMENTAL RESULTS 58

where F is the applied force and K is the robot” stifiness.

Figures 5.2, 5.3, 5.4 show three different cases with the desired stiffnesses set to
1000N /rre, 5000N/m, 10000N/m respectively. ' A known force is applied to the end
effector of the manipulator and the joint displacements are recorded. The position of
the end-effector is derived from this data.

The precision of Lthe steady state response is limited by the precision of the gravity
compensation algorithm. In the neighbourhood of the test configuration, the error of
the gravity model has been compensated for as accurately as possible by adding an
crror term derived from the discrepancy between the sensed torque and the gravity
model torque. In this way, we take into account the AF due to the error on the

gravity compensation algorithm.

WITH Dacouplarn X gitection WITH Docoupler Y girocion
200
100
100
of -
£ o S
100 M
de Yo
200
~300 :
3% 08 07 96 03 04 05 08 07
Positon (m) Postion {m)
WITH Decoupler: Z direction
00 !
i Docoupier rata; 111 He
F 0 Deslred Stitiness: 1000 Nm
g Actusl Suftness in X 1027 Nim
- .200] Actual Sutness in Y: 1044 1m
Actun Stitiness in 2: 1035 Nim
'“!8.8 0.8 0.4

Position {m)
Figure 5.2: Steady state with decoupler, 1000 N/m
The estimation of the stiffness from data plotted on figures 5.2, 5.3, 5.4 was done

using a least squares method. Table 5.3 shows the percentile of error between the

desired and the estimated stiffness. The most important source of error is due to the

110000 N/m corresponds to 1 kg per mm
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Figure 5.3: Stecady state with decoupler, 5000 N/m

Stiffness (N/m) | Error in x {%) | Error in ¥ (%) | Error in z (%)
1000 2.7 4.4 3.5
5000 2.2 6.6 5.9
10000 0.5 5.9 6.0

Table 3.1: Desired stiffness error

presence of transients at the beginning of the data acquisition and the rest is due to
noise in the measurement.

Figure 3.5 corresponds to the case of pure PD control where the PD gains are
continuously updated in order to meet the impedance but no decoupler is applied.
In section 3.1, we saw that such a problem is under determined since the number of
parameters to set is larger than the control variables. The results using the complete
control algorithm are presented on figure 5.6. The performance degrades when the
robot is moved away from its nominal position because of the linear approximation
made with the Jacobian matrix (section 3.7). In theory, it was shown that the preci-

sion in fact, degrades. In practice, the system may escape control altogether. Finally,
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Figure 5.4: Steady state with decoupler, 10000 N/m

the decoupler is added in conjunction with the geometrical projection to compensate

for the lincarization approximation (sec figure 5.7).
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5.4 Transient Response

An estimate of the manipulator inertia matrix is needed to program the transient
response characteristics. In chapter I, we developed a method to estimate the value
of this matrix. For the purpose of this section. we assume that the transfer function

in a given direction is,

X a2
F = ms*+bs+k =
. ] .
= = (5.3)

We experimentally checked that the response along a given direction matches the
desired one. We also checked for the absence of coupling aceross the other directions.
Inspection of the figures below shows that the results are quite convincing given the
numeroas sources of uncertainties in such a complex system. The steady state errors

arc caused by the error of gravity compensation model.

X Qirgcton ¥ croction
025 025
T oL T 02
§o.8} . §01s -
8 o1 : % oa .
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0.05 . ' . 005 .
b+l mo e 1 0
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2 o1 . ) Soinots: 2000 N'm
a Dampng. 900 N/(mvs)
0.05 : Inortis: 20,83 Kg
4]
0 2 4 L}
Tine {so0)

Figure 5.8: Transient Response
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5.5 Contact Tasks

The implementation proposed in this thesis uses co-located torque sensors instead of
a force sensor placed at the end-cffector of a manipulator. The advantage of using co-
located torque sensors is obvious when contact tasks are performed. Since the sensors
are placed at cach actuators, the link dynamics as well as the sensor dynamices do not
deteriorate the force fecdback information but is just scen as a perturbation, leading
to a very stable response when the manipulator contacts a stiff surface. Figure 5.1
present the situation where the robot follows a desired trajectory and then hits a stiff
wall placed along the path. The desired and followed trajectories have been plotted.
While the manipulator is in contact with the wall, the position in the Z direction
remains the same and a force arises corresponding to the product of the desired
stiffness by the distance between the desired and followed trajectory. The desired
stiffness has been sele ted to be 4000 N/m and the: damping was sct to 250 N/(m/s).
The maximum applied force is 434 N when the difference between the desired and
followed trajectory is 0.1004 m. An error of 8.25 % (33 N) is duc to Lthe crror on the

gravity compensation model (see figure 4.2},
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Chapter 6

Conclusion

The simpler the control is, the better its properties can be demonstrated: theoret-
ically, practically and experimentally, in terms of stability, performance, robustness
and generality. In this thesis, a simple theory leading to the implementation a joint
space controller with decoupled impedance in Cartesian coordinates was presented.
The proposed controller is based on joint variables (€, 7) and does not require complex
changes of coordinates.

It has been found that steady state errors may appear depending on the precision
of the gravity compensation algorithm. Also a correction has been proposed to over-
come the steady state error on the impedance arising when the robot is far from its
desired position. Since the Cartesian inertia matrix is not diagonal, coupling in the
transient response is created. The error terms have been expressed and are directly
proportional to the importance of the off diagonal terms in the inertia matrix. They
are bounded and in practice quite small. When redundant robots are used, it is pos-
sible to position the robot such that the off diagonal terms are minimized and thus
reduce the transient error.

étability in continuous time has been proven as well as in the digital case where

stability conditions have been expressed. The decentralized impedance controller

65
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has been implemented on a redundant rohot, the Sarcos (GRLA) arm available at
Institut de Recherche d'Hydro-Québec and experimental results have been presented
for various situations. In addition, the decentralized impedance control technique that
has been proposed, owing to intrinsine robustness, is casy to tune. Sloppy tuning will
degrade performance but stability will remain unconditional, provided that simply
expressed bounds on the gains are not exceeded. This is an important property since
the robotic equipment is to be used in the field where highly qualified personel is not

necessarily available.



Appendix A

Kinematics

This chapter discusses the kinematics of the Sarcos (GRLA) arm. This is required
to implement the decentralized impedance controller. The forward kinematics, the
Jacobian matrix and one method to compute the inverse kinematics of the redundant
robot arc presented.

The Sarcos arm that is used in the implementation, is a seven degree of freedom,

zero offset anthropomorphic manipulator.

A.1 Forward Kinematics

A.1.1 Denavit-Hartenberg Parameters

Table A.1.1 shows the Denavit-Hartenberg parameters {or this manipulator. It is

followed by the transform matrices and the Jacobian matrix.

A.1.2 Transformation matrices

Using the Denavit-Hartenberg parameters, we can compute the transformations ma-

trices relating one frame to the next.
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1| e | | d; | O
(10 30160,
200 Z 100,
31 0 =4 |0s
1| 0 10140
50 0 | = |10
6| 0 Z 10|06
T ‘—13 T 0 07
Table A.1: Slave arm Denavit-Hartenberg parameters
Ti=1 = Rot.(8:;)Trans{d;)Trans.(a;) Rot-{e;) (A1)
thus
€8, —38,Calpha, 56,%alphu, Ctheta;Gi
. Sg; €8, Sa, —€p,3q, Sp, @
Ti-1 = ) (A2)
0 Sa, Co, d;
0 0 0 1
where
a; = distance along x; from o; to the intersection of the z; and 3;_; axes.
a; = the angle between 2;_, and z; measured about z;.
d; = the distance along z;—; form 0;_; to the intersection of the z; and z;_; axes.
0; = the angle between z;-; and 2; measured about z;_;.
a 0 &1 0
$ 0 - 0
T = A3
' 01 0 0 (A-3)
0 0 0o 1
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T} =

o _
T =

o
T} =

T =

s7

0
\ 0

0 s 0

0 =2 O

I 0 0

0 0 1
0 —-s3 O
0 e 0

-1 0 |
0 0 1

0 = 0

0 —¢; O

1 0 0]

0 0 1
0 -s5 0O
0 e 0

-1 0 L
0 0 1

0 sg O

0 - O

1 0 0

¢ 0 1
Se 0 0

-c; 0 0
0 -1 0
0 0 1

6y

(A1)

(A.6)

(A.9)

By forming 77 we easily obtain the Cartesian positions, z, ¥ and 3. From the

structure of the robot, only the first four links will produce a position displacement,

$0:
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x = hepsa 4 bleegsa + (ercaez + s153)54)
y = hsisa+ b{egsis2 + (caeasy = ers3)s,)
: = =lica + ly{—cacy + c3505,)

(A.10)
(A.11)
(A.12)

Where ¢; and s; represent respectively cos(g;) and sin(g:). 1) is 0.3788 m. and I»

is 0.7620 m. The joint limits for this arm are given by table A.1.2.

ql ql'mln qimnx
q | -10.0 | 80.0

g2 10 -100
7 | 90 | 90
44 30 140
gs| 0 | 130
Q¢ -90 90

| 45 | 45

Table A.2: Sarcos Slave arm: Joint limits

The sensors offset are shown in table A.1.2.

Denavit-Hartenberg Sarcos
6Jl D _':l' + glsnc
osz _:l: + 025‘:«:
93111.' 5+ 63.\‘;«:‘
94:);; 94.¢RC‘
050:: ¥+ 85snc
66,: 1 s+ 965‘!«:
97:»:: 07.¢Rc

Table A.3: Corr:-pondance batween DH and SRC
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A.2 Jacobian

The Jacobian can be divided into two parts. First. J; represents the mappiog from
joint angle velocities to translational velocities and can be obtained by dilferentiation
of the end-effector position (r. y. ). Second J,. maps the joint angle velocities 1o
angular velocities. [t is obtained using. the third column of the rotation matrix from

the basc frame to the joint velocity being expressed.

a8
o= | % (A.13)
dz
df
Jo = (?R: gR: gR: .[:R: gR: 33: gn:) (A1)
Ji
J = (A.15)
Ja
i = =(hsis2) + l(—(casis2) + (—(c2e381) + cr53)54) (A 16)
Sz = acali + b(cicaey — creasasy) (A.1T)
Jia = bfess) — crcasz)sy (A.18)
jm = 12(C|(C1C2C3+3183)—618254) (i\lg)
jis = 0 (A.20)
Jie = 0 (A.21)
jir = 0 (A.22)
jzl = C]l1.$2 + !2(C1€.|32 + (c102C3 + 3183)54) (AZ'})
Jez = colisi + la(cacast — e3515284) (A.24)
Jzz = l(—(cic3) — c2s183)s4 (A.23)
. Jea = l(ca(cocasy — cr183) — $15284) (A.26)
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s = 0 (A.27)

2w = 0 (A.28)
Jor = 0 (A.29)
ju = 0 (A.30)
g3z = sz + Llcasa + cacasy) (A.31)
jar = —(lasasasi) (A.32)
Jaa = la(cacysa + casy) (A.33)
Jas = 0 (A.34)
Jss = 0 (A.35)
e = 0 (A.36)
Ju = 5 (A.37)
Ji2 = Ci182 (A.38)
jiz = €381 — €1Ca8a {A.39)
Ju = ccgsz 4+ (c1caes + $183)84 (A.40)
Jas = cs(essy — erca83) — (cq{crcacs + s183) = €15284)8s (A.41}
Jie = =(cs(—(cr1€482) — (c102¢3 + 5153)84)) + (cs{ca(crcacs + s153)  (A.42)

—clsgs.;) + (C3S1 a4 C233)35)56
j_“- = CG(—(CICQSQ) —_— (C]CzC:; + 3153)54) (A43)

—(CS(G:(CIC2C:3 + S]Sg) — 013234) + (CgS; - C;CgSs)Ss)Ss

n = - (A.44)
Js2 = sis2 (A.45)
Js3 = —(cies) = e8183 (A.46)
Jsa = cysisz+ (cocasi — ¢y83)s, (A47)

. Jss = Cs(-'(Cxca) - 625133) - (04(626331 - 6133) - 515234)35 (A-48)
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Jet
Je2
Jsa
Jed
Jes
Jes

j67

= —(Cr.(—(c-b‘l-‘:) — (Ccacasy — C153)54))
+(cs(eq(cacssy — Cisg) — sysesg) 4+ ("’((‘10:1) — casysy)sg)sg

= ce(_(c.w‘p"'.') = (Cacasy — e183)8q) — (cafea{eacasy — 1)

—spsasg ) + (=(e163) — caspsy)sn)sa

=0

= -0

= —(s2s3)

= —(cocq) + casasy

= —(cps283) — (€3¢q52 + €284)55

= —(cglcaes = €as283)) + (cs(e3case + cpng) — sos385)86

= CG(CQCq - C3S'_!$.;) - (C5(C3C.;Sg + Cgs,l) - 5253.{1‘5)3.;

A.2.1 Jacobian Extension

(A1)

(A.50)

Redundant manipulators have a rectangular Jacobian matrix bul it is possible to

extend it to produce a square matrix.

We decided to add an additional constraint to the Cartesian coordinates in order

to take advantage of the available redundant degree of freedom. The angle between

the Z axis of the base frame and the axis of the elbow joint. We have,

Tetbow = L2

Yelbow — 5182

Zebow = —lc2
Tend—ecffector = hc182 + l2(c1¢a52 + (C16265 + $153)34)
Yend—effector = 15182 + lofcasisz + (coc38) — €153)84)

(A.58)
(A.59)
(A.60)
(A.61)
(A.62)
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Send—effector = —I1C-_g -+ fg(—CgC.; + C3.’~'2.‘~'.|) (:\63)

(A.61)
The equation of the plane formed by those two vectors is,

-

; ] k
w = Del Tetbour Yelbow Selbow (-‘\-65)

Tend—cf fector HYend=ef fector ~end=cf fector

= ai+bj+ck (A.66)

normal = (a b ¢)f (A.67)
Z = (0 0 1) (A.68)
normal- Z = Va® + 6 + cos(Onormat) (A.69)
Onormat = €08~ (s283) (A.70)

Thus the additional constraint in the Jacobian matrix is expressed as a new line,

jncw = 0normal (A-Tl )

Y — - e 1 ] "'2
Inew ( 0 AT T \/1_—s§3§ 0 ) (A.‘ )

Given Oporma it is possible to select an impedance for this new constraint as we

do [or the other Cartesian coordinates directions.

A.3 Inverse Kinematics

Finding the inverse kinematics of a redundant manipulator is usually not a simple
task since there are multiple solutions for the position and orientation. Depending on
the manipulator architecture, the problem may simplify. The Sarcos {(GRLA) arm has

its last three axes intersecting at one point. The position of the point of intersection
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depends only on the first four joint angles. A simple way to find a solution to the
inverse kinematics problem is to fix one of the joint angles and then find the position
as a function of the three remaining joint angles. Once the first four joints are knowr:,
Pieper’s solution is used [3).

Assuming that 0; is fixed by the user (or any optimization eriterion exploiting the

redundancy of the manipulator) we find. using equations (A.10). (A.L1) and (A12),

x2+y2+:2——l;"-—1§)
200
0; = fixed by the user (A7)

VEGS + (I + bea)t = 22

0: = =cos™'(

92 = Atan:Z(lr_,c;,.s‘,, —(Il + IQC.;)) + Atan?.( )(.’\.T-))

-~

\/x'-' + y? = Bs3s3

12538.1

0, = Atan2(z,—y)=x Atan2( } (A.T6)

the last three joint angles are found using the desired orientation matrix I}, and

the orientation given by the previously found joint angles, R:

i 72 T3

=R =ty rn Ty (A.TT)

also

. Th—l — .
R(R)™ = RSRS (A.78)
leading to
CsCe —S85 €33 1167 + M287 TSy — Mz — T3
S5Cg Cs 85S¢ | = | Taicr F 287 ToyST —Ta;er —Tin (A-79)
-s¢ 0 Cs Ta1Cy -+ Taass  Taps; — razCr  —Tuy

. From the above matrices, we find directly 0s,:



APPENDIN A, RINEMATICS 76

05 = .‘1’(17?2(—7'23. —7'13) ('\SU)
then 8;:
96 = Atan‘.?(—rl;;c;, - Tag3¥s, —T'33) (A.SI)
finally,
— 85 = T80 — T2dr (A.82)
Cy = 72187 = TaCy (.’\.83)
thus
T'aa8g + I'i2C .,
sp= 22 T 135 (A.84)
T2Te) — T11T22
ra185 + € . o=
o= 2T IS (A.85)
2T — M
and
0, = Atan2(ss, c7) (A.86)

The inverse kinematics solution of this manipulator leads to eight different con-

figurations since 8y, 82, #; and 04 have each two different possible values.
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Calibration

In the last chapters we presented a simple theory and supported it with simulations
and experimentation. The calibration of the scnsors and analog circuits is explained
here. Figure B.1 shows the organization of the controller used on cach joint of the

Sarcos GRLA manipulator.

T gravit
- At ' + 0
0, = Kv s+ Kp Kt [+ Actuator ]
+ ~ T
T

Figure B.1: Analog Joint Controller card

B.1 Proportional and Derivative controller gains

The decentralized impedance control implementation uses the PD controller gains to
select the joint space diagonal terms of the stiffness and damping matrix. The off

diagonal terms are used to form a cross-coupling torque to be substracted as a torque

-1
-1



APPENDIX . CALIBRATION

-1
o

bias. We need to find the conversion factors from machine units to physical units

(Nm/frad and Nm/(rad/scc)).

B.1.1 Proportional term

The correspondance between the voltage measurement and the joint angle (in radian)

is given by equation B.1. The correspondance between the voltage measurement and

the joint torque (in Nm) is given in cquation B.2.

3
0 = —v

20

Maximum load cell capacity

3

Uy

20 Maximum load cell capacity

=T

-
4

8

(B.1)
(B.2)
(B.3)
(B.4)

Table B.1.1 presents the results from an experiment conducted to check the nom-

inal gain.

Max. load (Nm) | Gye(Nm/rad) | G, (Nm/rad)
3443.11 2739.88 2672
3443.11 2739.88 2648
1411.11 1122.92 1112
1411.11 1122.92 1112
222.39 176.98 174.75

254.0 202.13 195.82
254.0 202.13 201.31

Table B.1: Controller Proportional term calibration
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Figure B.3: Joint # 2 torque vs position
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Figure B.4: Joint # 3 torque vs position
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Figure B.5: Joint # 4 torque vs position
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s

B.1.2 Derivative term

The analog joint controller cards include an analog dilferentiator estimating the ve-

locity of cach joint. Its transfer function (see figure 1B.9) is:

X RaCs o

X )

X (ReCas + )(RCis + 1) (
where Ry = 5.23kQ, €y = 0.1/, Ry = 311kQ. €z = 0.0014/.

The differentiator attenuates high {requencies at the rate of 20 dB3/decade. Figure
B.10, shows its Bode ploi. For frequencics lower than 1912 rad/see (300 11z). Fquation

B.5 reduces to:

% = RaCys = 0.0511s (13.6)
L©
I
Ct R1
S AMAS L

Figure B.9: differentiator circuit

The maximum voltage that can be supplied by the differentiator is 10 volts, cor-
responding to a velocity of 30.74 rad/scc. This is two order of magnitude below the
cutoff frequency of the differentiator and corresponds Lo extremely high velocities.

To compute the proper conversion factor from volts to rad/scc we use the method

described in section B.1.1

(B.7)
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g
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Figure B.10:

T

20 volls

il

S volts

Nm/[(rad/sec) =

differentiator transfer function

Maximum load cell capacity

S T
20R,C, Maximum load cell capacity
Y 3

Rg C)

mazimum load ccll capacity

20R.Cy mazx load cell capacily
Y 3

(B.8)

(B.Y)
(B.10)
(B.11)
(B.12)
(B.13)

Then from equation B.12 we can find in table B.1.2 the proper correspondance

for each joint.
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Max. load {Nm) | Gu(Nm/(rad/sec))
30500 140.01
30500 140.01
12500 57.35
12500 57.35
1970 9.04
2000 10.33
2000 10.33

Table B.2: Controller Derivative term calibration

o
T}
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B.2 From Joint Torques to Cartesian Forces

In non redundant robots. the inverse Jacobian matrix is used to derive the end-elfector
wrench from the torques (F = .J-T7). When dealing with redundant manipulators,
the Jacobian matrix cannot be inverted since it is not square. OQne approach is to
neglect one row of the Jacobian and compute the corresponding force with a reduced

set of joint torques. One criterion is to eliminate the line corresponding to:

min(Y_ [Jril) (B.14)

A pseudo inverse method may also be used to minimize the error between |7 = JTF).

F=(JJ0yUr (B.15)

Yet another method is to add one line to the Jacobian to make it square and then

inverts it. The additional line lies in the space created by the redundant degree of

freedom.
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