Parallel Simulation of Billiard Balls using Shared
Variables

by

Peter A. MacKenzie
School of Computer Science. McGill University
Montreal. Canada
June 1996

A Thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements for the degree of
Master of Science

Copyright © 1996 by Peter Mackenzie

.* l Natonal Library

o! Canada

Acquisitions and

Bibliotheque nationate
du Canada

Direction des acquisitions et

Bibhographic Services Branch des services bibliographigues

335 Welhngton Strect
Onawa, Ontano
K14 ONE K1A QN4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Weiling1on
Onawa (Ontano)

Four e VOITe AR

Qur e Noiee refpepnce

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19833-2

Canada

ACKNOWLEDGMENTS

[gratefully acknowledge my parents for having made all mv acheivements possible.

I would like to thank my thesis supervisor Professor Carl Tropper for his guidance,
support. friendly encouragement and help with the manuscript.

I would also like to thank the School of Computer Science ai McGill University for
providing a productive enviroment for my studies and thesis work.

Finnally. I would like 1o thank evervone who helped me with my work in one way or
another: Ben, Claire. Owain. Brett. Colin. Sean. Alberto, Herver. Azzedine. Luc. Ramesh. Kent,

Rafa. Debbie, James, Lynne. Claire and Dave.

LR

ABSTRACT

This thesis presents a conservative algorithm for the parallel simulation of billiard balls.
Simulating billiard balls has become an important benchmark for parallel event driven simulation
schemes. The approach distinguishes itself in that it makes use of shared variables to enable
processors to ascertain the state of the computation at neighboring processors. The table is
partitioned nto segments which are simulated by different processors. The shared variable
corresponds to a region at the boundary between table segments (referred to as the critical
region). By making use of shared variables. a significant speed-up over the execution time of a
purcly conservative approach is obtained.

The algorithm was implemented on a BBN Butterfly. as was a purely conservative
algorithm. In the purely conservative algorithm. a processor wishing to process a ball in the
critical region waits until the neighbouring processor’s simulation time is greater than the time of
the event it wishes to process. In our experiments, we examined three population levels of balls-
2400, 4800 and 7200. These populations were chosen to reflect low. medium and high
populations of balls. The shared-variable approach resulted in a 30 to 50 percent decrease in

execution time with respect to purely conservative approach.

RESUME

Cetic these presente un algonthm conservative pour la simulation parillele des balles de
billtard. La simulation des balles de billiard est devenue un pomnt de référence pour fes plans de
simulation des événements conduit en parallele. La fagon se distingue parce quiil utilise les
variables partagé pur permettre les processeur i etablissent 1'état de la computation aux
processeur voisin. La table est cloisonné en segrnents qui sont simulé par les processeur
differents. La variabie partagé correspond 2 une région 4 la limite entre les segments de table
(appliqué comme la région critique). En utilisant les vaniables partagés, une accélération
importante est obtenue par dessus le temp d’execution de la fagon sirictement conservative.

L algorithm était executé sur un BBN Butterfly, comme I"algorithm strictement
conservative. Dans 1"algorithm strictement conservative, un processeur qui veut traiter une balle
dans la region critique attend jusqu'a ce que le temp de simulation du processeur voisin est plus
que I'événement qu’il veut traiter. En notre expériences, nous avons examing trois niveaux de
population des balles - 2400, 4800, 7200. Cettes populations étaient choisis pour refléter les
populations des balles bas, moyens et élevés. La fagon de la variable partagé a resulté en unc

diminution de 30 a 50 pour cent en le temp d’execution de la fagon strictement conservative.

CONTENTS

Acknowledgments

Abstruct

Resume

List of Figures

1 Introduction
1.1 Principles of Parallel Simulation
1.2 Previous Work in Conservative Parallel Simulations
1.3 Parallel Simulation of Billiard Balls

2 Previous Work

3 Parallelism in a Billiard Ball Simulation
3.1 The Algorithm

4 Experiments

5 Conclusion

Bibliography

54

35

1]

LIST of FIGURES

12
(1%

2
142

‘:J)

w
tJ

:.JJ
L¥y)

Sequence constraint of parallel simulation

Processing atan LP

A blocked LP

Pseudo-code for a serial simulation of billiard balls algorithm
Pseudo-code for a parallel simulation of billiard Yalls algorithm
Table divided into small sectors

Processing error

The critical region

Shared variables in critical region

Pseudo-code for shared variable algorithm

Pseudo-code for find_lower_bound

Shared variables vs. without shared variables - 2400 ball population
Shared variables vs. without shared variables - 4800 ball population

Shared variables vs. without shared variables - 7200 ball population

| Introduction

Simulation is a useful tool for evaluating many mathematical models of complex real
world systems that cannot be evaluated analyvtically. However, large detailed simulations often
require enormous amounts of CPU time. Simulations of lurge communication networks., gas and
oil reservoirs, weather forecasts and military applications. to name a few, can require hundreds of
hours of machine time to complete. Executing these simulations proved impractical for even the
fastest available sequential machines. This in turn created 2 need for developing new methods to
speed up simulations leading to the development of algorithms for parallel simulations. i.e.
partitioning the simulation problem and executing the parts in parallel on multiple processors.

Surveys of the area may be found in [Jeff835. Misr86., Gros87, Gross88, RighS9).

1.1 Principles of Parallel Simulation

There are three different types of simulations: continuous, discrete and hybrid.
These types of simulations differ in how the state of an object in the system being simulated
changes with respect to time. The state in 2 continuous simulation changes smoothly and
continuously as time proceeds, e.g.. the flow of liquid through a pipeline and weather modeling.
Continuous simulation models often involve difference or differential equations that represent
certain aspects of the system. In a discrete simulation, a state changes at a static point in time.
Any queueing system such as a job shop would be an example of a discrete simulation. Many
simulations are hybrid. i.e. different parts of the same system can be modeled either discretely or

continuously. An unloading dock where tankers queue up to unload their oil through a pipeline

ix an example of a svstem suited to @ hybrid stmulation. General discussions of simulations
methodology and stmulation languages can be found n [Fish78).

A discrete event simulation models a physical svstem where the state changes ata
discrete point in time - these changes in the system’s state 1s referred to as an event. A parallel
discrete event simulation must vield the same results as a serial simulation to be considered
correct. The ordering of the events with respect to time is of paramount importance. In Figure
1.1, consider two events: E1 at logical process LP1 with timestamp 20 and E2 at LP2 with
timestamp 30. Assume that processing E1 causes the creation of event E3 tfor LP2 with a
timestamp less than 30. E3 might affect E2: for instance E3 could modify 2 state variable used

by E2. necessitating sequential execution of all three events.

Time

LP! LpP2

Figure 1.1 Sequence constraint of paralle! simulation.
It is the difficulty in overcoming the sequencing constraints that makes parallel discrete event

simulation a challenging problem and of interest to researchers in the paralle] programming

community at large for exploring the synchronization algorithms developed in parailel
simulation.

Discrete event simulations can either be svnchronous or asynchronous. In a synchronous
algorithm, all the objects in the simulation progress through time at the same rate - each object
simulates those objects that occur at the same time. In an asynchronous algorithm, different
objects can be at different points in (simulated) time. Sowizrat and Jefferson [Sowi82] showed
that synchronous paraliel simulation limits the amount of parallelism that can be exploited and
does not produce significant speed ups for many common kinds of systems. We therefore
consider only asynchronous discrete event simulation,

In a serial simulation the events are placed in a list and ordered according to event time.
The head of the list is the event with the lowest event time. Several data structures have been
proposed to represent the event set for discrete event simulation [Comf82] such as heaps and
splay trees. A clock is maintained which represents the current simulation time. As the
simulation progresses, the head of the list is removed, the simulation clock advances and the
event is simulated. The execution of one event may change events later in the list or require new
events be added to the list. It would appear that the only way to ensure that events are simulated
chronologically, mimicking the real system, is to process them one at a time, resulting in a
sequential program. Parallelism exists, however, when two events in the list do not depend on
one another - these events can be simulated concurrently. However. if an event is executed
earlier in real time and affects state variables used by a subsequent event with an earlier event

time. then effectively an event in the future has influenced an event in the past. This is referred

to

10 as a causality error. Preventing causahity errors in the absence ot global tme s the
tundamental problem of parallel discrete event simulatton.

The goal of parallel discrete event simulation [Misr86] is (a) to partition the svstem being
stmulated into relatively independent subsystems that communicate with cach other in a stmple
manner (such as passing customers or jobs from one subsystem to another), and (b to simulate
each subsystem on a different processor. This means eliminating the event list and the ¢lock in its
traditional form.

In order to guarantee the correctness of the simulation. the following property | Misr86]
must hold: the event message (e.t) is generated. received, processed, consumed (i.e. has reached
its final destination) or transmitted. respectively, by LPi in the simulation svstem if and only if
the event ¢ was generated. received. processed. consumed or transmitted, respectively. by PPi in
the physical system at time t. Details of this proof can be found in [Chand79. Misr86).

A simpie parallel simulation can be constructed in which every physical process (PP) in
the real svstem is modeled by a corresponding logical process (LP) [Chan79, Misr86]. For
example, a car wash might consist of a pay booth and a number of washers and drvers. One LP
could model the pay booth, while other LPs modeled each of the washers and the dryers. Any
communication between physical processes is modeled by communication between logical
processes within the simulation. There are no other processes that control the synchronization
among various processes or any global time in the simulation shared by the processes.

A fundamental concept in paraliel simulation is the timestamped message [Chan79,
Misr86]. The interactions between physical processes in the real system are modeled by

exchanging timestamped event messages between the corresponding logical processes. They

11

also represent sending times of events and the service time added to the received time (when the
event is in an output queue). They ensure that events are simulated in proper order [Chan79.
Misr86] on each processor.

Instead of a global clock. each LP must maintain its own clock representing the iocal
simulztion time (LST). The LST is equal to the time when the last event (¢) was processed, i.e.
the time in the simulated system which indicates the end of an event that occurred at the
corresponding PP. A new LST is determined after each event is processed. The new LST is
computed as follows: LST = max(current LST, e.time). where e.time is the time of the last event.
The system is simulated for some time period [0.T]. where T is referred to as the simulation end-
time or termination time. During this time, any LP sends a number of messages to other LPs.

For instance, as shown in Figure 1.2, LPi has two input buffers, one assigned for each
link with another processor with events waiting to be processed. LPi selects the message with
the smallest time stamp in its input buffers. therefore maintaining the sequencing constraint.
Then LPi processes event ¢l, advances its LST to max(LSTi.el.time) + Servicetime, where
Servicetime represents the time that the physical process PPi would have spent to process the
event ¢l (el.time = 5) and generates the new event e4. If Servicetime = 1, then e4.time =6 and
LPi's local simulation time becomes 6 (LSTi = 6).

We now address the fundamental problem of parallel simulation - causality errors.
Without a global clock each LP’s local time can be different; LPi can be further ahead in
simulation time than an LP that sends messages to its input buffer. If for example LPi in Figure
1.2,b received event ¢2 and processed it before it received event €3 and e3 affected 2, then a

causality error will have occurred.

/!

(a) (b

Figure 1.2 Processing at an LP

Techniques for parallel simulation can be classified into two groups, conservative and
optimistic algorithms. Good surveys of the parallel simulation literature may be found in
[Kaud87. Righ89, FujiS0]. The techniques differ primarily in how they handle causality errors.
Conservative algorithms rely on blocking to synchronize processors, while optimistic algorithms
rely on detecting synchronization errors at run time and on recovery using a rollback mechanism.

In the conservative approach [Misr86], each process is allowed to proceed if and only if it
is certain that it will not receive an earlier event. Consequently, events are always executed in
chronological order at any LP. An LP must biock if it has an empty event queue and it is not
certain if an event earlier than any other event on its other event queues will arrive. Therefore,
only unblocked LPs can execute in parallel. In Figure 1.3, LPd must block because one 6f its
input queues is empty. In this snapshot, LPb and LPc are both eligible to execute concurrently.

If LPd were to process the message received from LPb with timestamp 30, it would risk receiving

an carlier message from LPc with a timestamp of less than 30. causing the events 1o be processed

out of order and risking a causality error.

Sl NN
W0

®

. Figure 1.3 A blocked LP

The performance of the parallel simulation can be greatly influenced by the amount of
blocking that occurs. If many LPs are forced to block, the simulation can be essentially
serialized. If all of the LPs are blocked then the network is deadlocked. Ensuring
synchronization and avoiding deadlocks are the central problems in the conservative approach.
We survey some methods for conservative simulations in section 1.2 .

In the optimistic approach [Jeff85], a process receives messages from all the
communicating LPs and places them in its input queue. Each LP processes events from its input
queues until no messages remain or until a2 message arrives "in the past” (a straggler). A
straggler indicates that 2 message has been processed out of order and the process execution must

. be interrupted so that a rollback can be performed in order to restore the states of the LPs to

14

before the order was violated. Since events processed in one LP may create new ¢vents in other
LPs that are sent via messages, those messages sent to other processors must be canceled. The
rollback mechanism sends antimessages to those processors. Upon receiving an antimessage, a
processor cancels the matching message in its input queue. There are two major versions of
Time Warp. The original version is intended for a distributed memory architecture and performs
cancellation by antirnessagés [Jeff82. Jeff85]. Another version is intended for a shared memory
architecture and uses direct cancellation without antimessages [Fuji89].

Although Time Warp gains from being deadlock free, it is at the expense of spending a
great deal of time rolling back and repeatedly simulating the same events. Another drawback of
this approach is that it requires a large amount of memory to save the states of the LPs and an
efficient garbage collection algorithm. Most studies of Time Warp have been experimental
[Fuji89, Lin89, Made88, Reih90]. Despite these studies. the rollback mechanism is not well
understood. A number of memory management schemes have been proposed to reduce the space
usage of Time Warp. They range from those that reduce the average amount of memory needed
but are unable to recover when it actually runs out of memory, to those that can run the
simulation within a large amount of preallocated memory by recovering memory on demand
[Das94). Although there have been studies of the different memory management schemes
[Lin92], little has been done in terms of the performance with respect to execution time [Das94].

The algorithm presented in this thesis is conservative in its nature. Given the problem it
was designed for, we feel that ensuring synchronization by using shared variables and blocking is
preferable to correcting causality errors with an optimistic approach. We therefore concentrate

on the conservative approach.

L

—
th

The performance of a parallel simulation executed on a multiprocessor is determined by
many factors. Onc important factor is the partitioning and mapping of processes onto the
processors. Often the number of logical processes (LPs), n. is much larger than the number of
processors k. In order to construct the simulation. the LPs must be partitioned into k components
or clusters of processes and then assigned to the different processors. There has been a great deal
of interest in partitioning processes [Bokh81. Bokh87, Ni85. Stan84). However. the problem of
finding an optimal partitioning is found to be NP-hard {Gare79] in all but very restricted cases.
Thus research has focused on the development of heuristic algorithms to find suboptimal
partitioning solutions. An algorithm should be at least able to find a partition that would
decrease the running time of the same simulation with a random partition.

There are many other problems that need to be solved for a paralle] simulation to be able
to exploit the inherent parallelism of a system fully. The problems include classical parallel
processing problems, such as distributed detection and resolution of deadlocks, distributed
termination, synchronization, partitioning and mapping processes t¢ processors, flow control, and

memory management.

1.2 Previous Work in Conservative Simulation

Major contributions to the work on the conservative approach may be found in Bryant
[Brya77]. Chandy. Misra and Holmes [Chan79. Chan81. Misr86], Peacock et al.
[Peac79),Groselj and Tropper [Gros87, Gros88), Wagner et al, [Wagn89], Bain and Scott
{Bain88] and Nicol [Nico88). A good survey of conservative approaches to parallel simulation

can be found in [Fuji90].

16

Chandy and Misra [Chan79] employ null messages to avoid deadlock and increase the
paralielism of distributed stmulation. When an LP sends an event message (¢.t) to another LP via
its output link. it sends a null message with the same timestamp on all its other output links.
Since events at each LP are processed in increasing timestamp order, the receiving LP reatizes
that it can not receive an event on that link earlier than the timestamp of the null message. This
allows the receiving LP to simulate al" svents with timestamps less than or equal to the minimum
timestamp of all the null messages on its input links. However, the arrival of a null message at
an LP can cause it to generate another null message. This can result in excessive numbers of null
messages being created and sent to all of the LPs. A number of papers have concentrated on
optimizing this approach by reducing the number of null messages. For example. in [Su89] the
authors send null messages only once the LP has become blocked. With this approach, referred
to as eager events, lazy null messages, they were able to report some success in speeding up logic
simulation.

Lookahead refers to an LP's ability to predict what will happen in the simulation’s future
based on the knowledge of the system being simulated and events that have been processed or are
waiting to be processed. In particular, it hclps the LP determine when it may receive a ncw event
message from a predecessor. Fujimoto [Fuji88] demonstrated that lookahead is critical in
determining a conservative algorithms performance. If processes have a good deal of lookahead,
conservative algorithms are able to exploit the parallelism of the system.

Some researchers have tried to reduce the number of null messages necessary by using an

LP’s knowledge of the network. De Vries [DeVr90] proposed considering the overall network

of LPs as composed of smaller sub-networks. An LP can then use its knowledge of the locul
network it belongs to to improve lookahead and reduce the number of null messages regiired.
Cui and Turner {Cai90] use an additional type of null message. camrier null messages. These
messages propagate through the system to carry additional information on lookahead and the
route taken. The LPs use this dynamic information in order to reduce the number of null
messages. Wood and Tumer [Wood94] have shown that using the Cai-Turmner method will not
reduce the number of null messages for certain types of communication graphs, particularly those
with nested cycles. They propose an alternative method to the carrier null messages approach in
order to extend its applicability to arbitrary graphs.

In [Misr86], Misra suggested using a time out for null message transmission and having
null messages annihilate earlier, obsolete, unprocessed null messages on the link. He also
describes a class of demand driven technigues in which a process requests time information from
the processor on the source side of its input link (the predecessor). In this algorithm, when an LP
is blocked or simply idle it can query a predecessor via a request message to obtain a new lower
bound on the timestamps of messages which it can consume. No analysis of the performance of
their algorithm is given in [Misr86]. If the predecessor receiving the request message is unable
to improve upon the senders Jower bound. it can in tumn send a request message 1o its
predecessors. This approach can lead to deadlock [Cote92, Misr86]. Consequently, a deadlock
detection and breaking algorithm must also be employed [Cote92].

The algorithm in [Misr86) assumes that path information is included within the request
message. The demand based time synchronization algorithm described by Bain and Scott

[Bain88] does not require that path information be propagated in messages between processes.

Instead they use three types of probe messages to detect deadlock and recover, ves. no and rves
(for reflected ves). The ves message indicates that the predecessor channel has reached the
request time; ne indicates that it has not and another request might be made: and the ryves
message indicates the request time has been reached and 2 evele was encountered. Once a cyvele
has been detected in the connection graph. a deadlock in time svnchronization cian be avoided.
No performance analysis is given.

In [Chan81]. Chandy and Misra allowed the simulation to run until it deadlocks. When a
deadlock was detected they used a deadlock detection mechanism to recover. Deadlock detection
mechanisms are described in the literature [Elma86. Chan82. Nata86. Cido87. Bouk93]. Reed.
Malone and McCredie performed a distributed simulation of several queueing network models
using the Chandy and Misra methods [Chan79. Chan81]. They determined that ailowing
deadlocks. then detecting them and recovering, is generally superior to methods that prevented
deadlocks. They also concluded that Chandy-Misra approaches are not viable for the parallel
simulation of queueing networks.

Wagner, Lazowska, and Bershad [Wagn89] used a shared-memory version of the
Chandy-Misra algorithm called lazy blocking avoidance. The algorithm waits until a processor is
idle before it attempts to provide a new lower bound for blocked LPs. In a shared-memory
environment. messages do not need to be sent, events are simply put on and taken off the
appropriate LP’s queue. They reported speedups that were approximately twice as good as those
reported by Reed et al. [Reed88). However, it should be noted that their algorithms are lirnited to

a shared memory environment.

19

Lubuachevsky [Luba88) proposes an algorithm for distributed discrete event simulation
. which is based on using a bounded lag restriction. The processing of events concurrently is
bounded above by a known finite constant B. An LP is permitted to process an event if its
timestamp lies between the interval [u. p+B] where 12 is the current smallest timestamp in the
system and B is the bounded lag parameter. This method is described in greater detail later.

Other windowing methods include those described in [Nico88] and [Avan92). Nicol
[Nico88] proposed a conservative method similar to [Luba88]. Each LP moves through the
simulation advancing its time up to a global ceiling. however. calculating the global ceiling
differs from using Lubachevsky's bounded lag. [Ayan92] introduced an approach called
Conservative Time Windows (CTW). Again. an LP is permitted to process events within a time
window. In contrast to other windowing methods. the size of the window may be different for
. diffcrent LPs. Their experiments indicate that enabling local bounds for the time windows
improved the performance of the CTW-algorithm.

Groselj and Tropper [{Gros88] clustered several processes into the same processor in order
to achieve better efficiency. They proposed an approach referred to as the Time of Next Event
algorithm (TNE). Their algorithm is based on the shortest path algorithm [John77, Chand82]
and computes the greatest lower bound on all input links for processes assigned to the same
processor.

For each empty input buffer. LPj maintains a time value TNEij, which denotes the Time-
of-Next-Event. An LP is allowed to execute an event e with timestamp e.time if it can be sure

that it will not receive any future events with timestamp less than e.time, i.e.. for all j, where the

input buffer (i,j) is empty, TNE]j 2 e.time, otherwise it must block. Consequently, events are

20

always executed in chronological order and the timestamps of event messages sent by cach LP

possible for inter-processor deadlocks to occur. A distributed deadlock breaking algorithm s
proposed in [Gros91] to deal with these inter-processor deadlocks.

In [Bouk92] the TNE algorithm was tested on an iPSC/i860 hypercube multiprocessor.
Significant performance improvements were realized by using TNE to unblock processes that
would otherwise need to block: good speed ups were realized over both a serial simulation and
an optimized version of Chandy & Misra null message algorithm. TNE's ability to take
advantage of having several LP's assigned to each processor and using the shortest path
algorithm to provide lookahead rather than message passing contributed to the good
performance. Other factors that play a role in TNE's and any conservative simulation’s
performance are the lookahead of the service distribution, the number of LPs in the model and
the number of processors used [Bouk92].

Parallel simulations are typically aimed at exploiting the parallelism as a result of a
spatial decomposition of the model. In [Chan89] the possibility of temporal decomposition is
exploited. The problem can be viewed as a space-time graph where the y axis represents the time
in the simulation and the x axis is the state of the process being simulated (the space). Each
processor maintains the state variables of one or more processes over a period of time. Regions
in the space-time graph are influenced by their neighboring regions through event messages
(vertical lines) or by sharing common state variables in different periods of time. [Chan89] also
describes a relaxation algorithm to overcome the dependency between regions. A process

computes the state of its own region using estimates of its neighbours regions (inflows) then

informs its neighbours (outflow). If 4 region correctly estimates its inflows, it will not have to
rccompute its own region and update its outflows. The space time-graph is correctly filled once

there are no new events and no new recomputations.

1.3 Paralle! Simulations of Billhiard Balls

Many systems can be viewed as collections of objects moving around a defined space and
interacting with each other. The objects can range from atoms and molecules to inter-planetary
objects acting under the influence of gravity. Molecules move around their environment
transitioning between unstable states and stable states as they interact with one another to form new
compounds and molecules. The particles which comprise Saturn's rings exemplify the second
category of system. Man made systems include cellular communication systems, in which mobile
users move in between regions that are allocated different radio bandwidths. Such problems
intuitively lend themselves to a parallel simulation algorithm by dividing the space in which the
interactions take place and having each processor on a multi-computer simulate those objects
within a region.

The difficulty in simulating such a model is that each processor must simulate an object in
its own region, although the object’s behaviour may be influenced by an object in another
processor's neighbouring region. This system can be modelled as the classic network of logical
processes communicating via message passing in which the messages contain information
pertaining to the behaviour of objects in each processors' region. The two classical approaches to
parallel simulation, conservative and optimistic deal with this problem in a manner consistent with
their paradigms. The optimistic approach has the processors proceed with simulating the objects in

their own region regardless of interaction with neighbours and correct for any errors by rolling back

when thev occur. The conservative approach blocks and waits until a processor is certain that an
object in its own region is not affected by an object in a neighbouring processor at an carlier time.

The aigorithm described in this thests makes use of shared vanables in order to allow
processors to access the state of its neighbour’s objects. The algorithm is conservative in nature in
that it does not permit the processing of events which might be out of correct (timestamp? order.
The use of shared vartables captures more of a simulation’s natural parallelism thereby reducing
the amount of time a processor would be blocked in a pure conservative approach. If the dynamics
of the objects being simulated are understood. it is then possible for the algonithm to make
inferences as to whether it can safely proceed. whereas a “typical™ conservative approach would
have to block.

As a paradigm of the problem we are interested in simulating, we chose a billiard ball
simulation. We sirnulate billiard balls ravelling around a table. bouncing off the boundaries and
colliding with other balls. The balls are represented in our model by velocity and position at a given
time. We simplify the problem by allowing for a frictionless table and ignoring the rotation of the
balls.

Both conservative and optimistic methods have been used to simulate billiard balls or
similar systems. For example, in [Hont89] the authors used colliding pucks as a benchmark for
evaluating the Time Warp algorithm. In [Luba92] an essentially conservative algorithm is used to
simulate colliding rigid disks or billiard balls.

The remainder of this thesis is organized as follows. Section 2 contains a summary of

previous work on the problem of simulating billiard balls (or nigid disks). In section 3 the

parallelism in this problem and our parallel algorithm, making use of shared variables. is described.

Section 4 contains the performance results realized from this algorithm. The conclusion follows.

2 Previous Work

In this section we summarize previous work on parallel billiard ball or rigid disk
simulations. The first paper [Luba91].however. describes a serial algorithm. It is made use of in
both the parallel algorithm described in [Luba92] as well as in the parallel algorithm described in
this paper. In addition to describing the algorithm in [Luba92] we discuss the more general
approach to distributed simulation in [Luba88). The last paper [Beck88] describes the parallel

simulations of colliding pucks using Time Warp.

In [Luba91] an algorithm for the serial simulation of billiard balls is described.
Lubachevsky reports that the serial algorithm running on a VAX-8550 is about as fast as Time
Warp [Hont89] on a 32-node hypercube MARK I [LubaS2]. For each ball in the simulation the
algorithm associates two events with it - an OLD event which represents the last event the ball had
and a NEW event which represents the ball’s next event or future event. A simulation event can
cither be a collision with another ball on the table or with one of the table’s boundaries. An event
consists of three components: time, state and partner. The time component is the time at which the
event occurs and therefore the time at which the ball is in the state represented by the state
component. The state is a pair of vectors that represent the position of the ball on the table and its
current velocity. If the event is a collision with another ball. the parter is represented by a pointer

to that other ball. Otherwise it is a collision with 2 boundary and the partner is NULL.

Processing an event means scheduling the next event for the ballis) G collimion event will
usually involve two balls but on rare occasions it can involve more than two balls, a collision with
the boundary will only involve the one ball.) The event just processed becomes the OLD event of
the balls involved and the next event scheduled becomes their NEW event. The current simulistion
time 1s the earliest NEW event time among the balis, Theretore. each ball's OLD event time ts less
than the current simulation time and its NEW event time is greater than the simulation time except,
of course. for the ball whose event is currently being processed.

The events are Kept in a heap data structure with the earliest NEW event on top. The
algorithm selects the ball with the lowest NEW event time and determines its new future event, To
determine a ball’s next event, the algorithm first determines which ball or boundary it will interact
with. A function interaction_time(statel, timel, state2, rime2) returns the time that a ball in stare/
at rimed will have its next interaction with an object in stare2 at time2 if no other objects interfere.
An object can be another ball or a boundary. If the object represented by state at zime2 is another
ball with the same diameter D and if the velocity of both balls remain constant, then
time=interaction_time(statel}, timel, state2, time2) becomes:

timee max(tim=itime2) +1t

where,

t=(-b-(b*-ac)")/a ifbs 0and b*-ac 20
e ifb>0orb*-ac<0

and

a = Ivelocity?2 - velocity 1P

b = (position20 - position10} ~ (velocity2 - velocityl),

¢ =1 position20 - positionl0 F - D* .

position]0 = position] + velocity l{max(time1.time2) - time1).
position20 = position2 + velocity2(max(time] time2) - time2),

__]

<
(]

!

where u = v denotes the dot product of vectors u and v. and Ivl denotes the length of vector v: Ivi=
(v =v }*. The algorithm determines the interaction_time for the current ball and each of the N balls
and K boundaries. Statel is the OLD event of the current ball (note, the OLD event has just been
replaced by its NEW event and the next event is being determined). State2 is the OLD event of the
object. State2 corresponds to the OLD event, because until the simulation reaches the time of its
future cvent. it represents the state of that object. If the interaction_time is greater than the object’s
NEW event. it will not interact with the current ball since the state that the object was in to cause
the collision changes before the collision. The ball's next interaction will be with the object with
the earliest interaction time.

The algorithm then determines the new state of both balls, if there is a collision between
two balls, or the new state of the ball if there is a collision with the boundary. The function
advance(state0, time0, timel) updates the position of the ball at stare0 and time0 to the position it
will occupy at timel if the velocity component of srateQ remains the same during the interval
(time0, timel). The function jump(statel,state2) updates the velocities of each of the objects whose
current states are statel and state2. The result of a collision between balls 1 and 2 with vector
velocities v1old and v2old (assuming that energy and momentum are conserved) is computed as
follogvs: the normal components of the initial velocities are switched but the tangential component
remains unchanged. If the other object is a boundary then szaze2 would be NULL.

If the current ball's next event is a collision with another ball (the object ball), it is possible
that the object ball's previous NEW event was a collision with 2 different, third ball. Since the

collision between the current ball and the object ball occurs before the collision with the third ball,

the third ball's NEW event needs to be "undone”. This requires that the third ball's NEW state be

restored to its OLD event state. Figure 2.1 contains the pseudocode for this algorithm.

while current_time < END_TIME
current_time = min of all balls NEW time
Iet i be that ball
[L.OLD] ¢ [1.NEW]
P « minitmum time for interaction with any
other ball. j « other ball
Q + minimum time for interaction with any
obstacle, k « is that obstacle
R « min{P.Q}
if R < infinity
statel « advance(state[i.OLD].time[i.OLD].R)
if Q<P /*then obstacle event®/
state[1.NEW] « jump{state1.k)
partner[i.NEW] « NULL
else
time[jNEW] «R
state2 « advance(state[).OLD].time[}.OLD].R)
state[i.NEW],state[j,NEW] « jump(state] state2)
m < partner{j NEW]
partner[i. NEW] « j: partnet[j.NEW] ¢~ i
ifm=NULLandm=i
state[mNEW] «
advance(state[m.OLD] time[m.OLD1.time[m.NEW])
partner[m.NEW] « NULL
Figure 2.1 Pseudo-code for a serial simulation of billiard balls algorithm

Parallelizing the billiard ball simulation requires that the table be divided up into separate
regions which are distributed among the processors and that each processor simulates the balls in its
assigpcd region. Each processor "shares” a border with two or more other processors and has to
pass balls back and forth across these borders. This interdependency between the processors, which
is inherent in any paraliel simulation, requires an algorithm to maintain the causality when the
processors' simulation times are different. The following papers deal with this problem.

In [Luba88} Lubachevsky proposes a general algorithm for distributed discrete event
simulation which is based on using a bounded lag restriction; the processing of balls concurrently is

bounded above by a known finite constant. The algorithm proceeds in iterations. In order to

determine the floor for the iteration each processor broadcasts the earliest event in its event pool.
The floor is then the earliest event in the simulation; the processors then synchronize. Each
processor goes through every event with a time less than 11 + B and determines which events will be
cnabled for that iteration and marks those that are enabled. An enabled event is one that can be
processed in the next iteration. As a result of processing these events, new events may be
scheduled or deleted. including events at other processors. Once each processor has completed
processing all of its marked events in the current iteration it resynchronizes and determines the floor

for a new iteration.

while p < infinity and not (termination_condition) do
{

p=mint(Mj), 1 SjSN

broadeast 1 1o all N processes

synchronize

forallj=1...Ndo
ifM)ISu+B
then detect and mark enabled events in Mj
synchronize

forallj=1...Ndo
if M., contains marked events then

{

i =t(Mj)

process marked events

if required. then schedule new events for Ij or other Ik, k does not equal j.
and/pr delete some events from Ij or other Ik, k does not equal
delete the processed events from Ij

}

synchronize
}
Figure 2.2 Pseudo-code for a parallel simulation of billiard balls algorithm

Determining if an event should be enabled in each iteration involves determining if an
earlier event from another processor will affect it. This is determined by using 2 precomputed
quantity, d(k,j), where k and j are processors, which represents the propagation delay. The

propagation delay is the amount of time that must past before an event in k can affect an event in j.

i

The propagation delay is added to the time of the earliest event which can be sentbv ki1 =
earliest_eveni_time(k) + d(k.j) if the current event being considered is in j. If event e(j) >t then it
cannot be marked as enabled.

The opaque period is the simulation time when one processor is servicing an event and will
therefore not be able to create another event on its own processor or another until it is done. I an
opaque period exists. then it plays a part in determining if an event can be enabled.

The paper also describes a specialized computer that would perform the operations
necessary for this algorithm efficiently. Those operations include synchronization barriers,
computing the minimum floor for each iteration, testing if events are enabled and updating cvents
in each processor (i.e. when the processing of an event in one region results in new events being
scheduled in another region). Experiments in [Luba89] show that the bounded lag approach to
discrete event simulation can realize a speed up of 23.3 over a serial program when simulating a
queuing network with 235 processors. A theoretical argument for the simulations® scalability is also
given in [Luba89].

The problem with using the bounded lag approach in [Luba88] for the distributed
simulation of billiard balls is that there are no propagation delays or opaque periods between
adjacent processors that can be precomputed. The time at which a ball may enter a neighbour’s
region depends on the ball’s current position and velocity. This approach would result in very
quickly serializing the simulation. The bounded lag method also requires the processors to
synchronize in order to maintain the integrity of the simuiation. One processor can not be trying to

determine which events to enable for a given iteration when another processor is deleting events.

Although the synchronization approach in this algorithm might be appropriate for a SIMD (or a
specialized) machine, it would result in costly overhead on 2 MIMD machine.

[Luba92] details how the bounded lag algorithm is used to simuiate the billiard ball
problem. Basically. this pap~: parallelizes the algorithm described in [Luba90] using the bounded
lag approach. One result in [Luba92] is that the Time Warp approach to state recovery can be
replaced by a simpler method. Consistent with the general bounded lag algorithm, the fundamental
observation of this method is that if two disks are separated by a large enough distance, the
probability that a causal dependence between their motions will be created in the near future is
small. The algorithm rests upon the assumption that there is an upper bound on event propagation
speed. the consequence of which is that two balls which are sufficiently far apart can be processed
concurrently. The author contends that by using the bounded lag to control the errors that can
occur, the simulation does not require the more flexible rollback mechanism employed by Time
Warp. Instead, it can use a simple state recovery method.

Within the large sectors controlled by each processor. the space is divided into smaller
sectors to reduce the number of balls that need to be searched. Dividing the simulation space into
smaller sectors reduces the number of balls that need to be examined in order to determine a ball's
next collision, because it is only necessary to examine the balls within the small sector. This,
however, is at the expense of having more events since each time a ball moves into another small
sector another event must be processed. The optimal trade-off size of a small sector depends on the
parameters of the problem to be simulated [Luba92]. [Hont89] also found sectoring to play a factor

in performance of rigid disk simulations.

30

Each processor maintains a list of events, The smallest time in the list of events is referred
to as the a_time. The algorithm proceeds in iterations. The floor for each iteration ts the min
a_time(PEi) for all processors PEi. According to the bounded lag restriction with parameter B, uan
event ¢ is then processed only if time(e) < floor + B. for some value of B.

As mentioned above, each event is associated with a small sector s within which it occurs.
An error occurs when a collision is missed or a positive area is occupicd by more than one disk at
the same simulated time. Events which occur in small sectors close to the borders and which are
admissible to process under the above condition may result in new events being scheduled in the
large sector which is simulated by the processor or in its ncighbouring sector (and processor) or in
both sectors. This means that errors can occur if two events in adjacent small sectors on opposite
sides of a processor border are processed out of sequence (i.c. with respect to their simulation
time). To detect these errors each sector maintains a time t(s) when the last event was processed in
the vicinity of s, defined to be the 8 neighbouring small sectors. In Figure 2.3, the vicinity of the
small sector at coordinate B2 is B1,C1.C2,C3.B3,A3.A2 Al. t(s) is updated when a new event at
time t is processed in sector s. All other sectors in the vicinity of s take the new t(s). The algorithm
considers an error to have occurred if while updating 1(s), the new value t is smaller than ((s).

To reduce the number of errors and to enable their detection, a set of small sectors close to
the boundary (called an insulation layer) is defined. These small sectors have more restrictive
processing rules. For a disk d, W(d) is the set of all processors adjacent to the location of the event
e (in Figure 2.3, W(d) = {P1,P3,P4}). Processing of ¢ is not permitted if for any PE in W(d)
a_time(PE1) < time(e). In this case, processing of event ¢ must wait until both the bounded lag

restriction time(e) < floor + B is satisfied and for all PE in W(d) a_time(PEi) > time(e).

31

[E)

Pl P2

P3 P3

Figure 2.3 Table divided into small sectors

With these processing restrictions, errors will not occur unless disks gain sufficient speed to
travel the distance w across the insulation layer in time less than B. Balls outside the insulation
layer are scheduled independently of the neighbour’s time. So, if a high speed ball was travelling
fast enough that it could cross through the insulation layer within the bounded lag B, it could collide
with a neighbour’s ball. This error will only occur if the ball is travelling at a velocity v wkere wiv
<B.

Errors can also occur as a result of a propagation of collisions through a chain of balls that
stretch across the insulation layer. A chain of balls occurs when a number of balls close together
form a row perpendicular to the boudary between two regions. If the first ball in the row is set in
motion, it quickly collides with the next ball in the row which in turn collides with the next. One

end of the chain could collide with a ball outside the insulation layer, that was scheduled

independently of its neighbours a_time, while at the other end of the chain a ball could collide with
a ball from a neighbouring processor. The frequency with which this occurs is small. It grows as
the balls are more closely packed together.

By restricting the processing of events with the bounded lag method, error detection has
been "filtered”, making it possible to have a crude and simple method of state saving and recovery,
without the overhead necessary to implement Time Warp's mcthod of rolling back. Just before an
iteration begins "nothing is moving”, an ideal time to save the state of the simulation. However,
saving states at each iteration is inefficient since most of the saved states would be unnecessary as
rollbacks “should™ occur infrequently. States are saved when the floor exceeds an amount of time
equal to pB from the previous saved state. B is the bounded lag and p is an adjustable parameter, p
2 1. When an error is detected the algorithm redoes the entire simulation from its most recent
checkpoint.

The parallel program was emulated on a serial machine: the paper does not provide a
performance analysis which reports actual execution times on a real machinc'. The algorithm
successfully parallelizes the serial algorithm in [Luba90] without being overburdened by roll backs.
In a low density simulation there was approximately one roll back per 5X10° collisions and one per
2X10° collisions for a high density simulation. However, the problem with the execution time of
this method could well be the amount of time a processor spends blocked.

In [Beck88] the authors describe how a parallel simulation of colliding pucks was run on
the Time Warp Operating System. The problem consists of two types of objects: pucks and sectors.
Each object is a process. As in [Luba92] the table is decomposed into sectors. Each sector is an

object and is responsible for scheduling collisions within its boundaries. The sectors examine the

33

trajectories of all the pucks within its boundaries to schedule only the earliest predicted colliston.
The sector reawakens at the time of the collision and causes the pucks involved to change their
velocity via messages. The pucks change their velocity and calculate their new trajectory. Pucks
send Enter/Depart messages to the sectors as they move from one sector to the other. Because of
the dependency between the sectors, errors can oceur as balls move from one sector to another:
Time Warp is used to correct these errors, This implementation of the colliding pucks simulation

was tested in [Hont89]. With 32 processors they reported speed ups of 7.9 over a serial version.

3 Parallelism in a Billiard Ball Simulation

When a billiard ball simulation is divided arnong multiple processors according to regions.
parallelism exists because events in one region can be processed independently of those in other
regions. However, as mentioned above, balls close to the boundary between the two regions do not
share this luxury. It is as likely that a future event will be a collision with a ball from a neighbouring
processor, as it will be a collision with a ball from the same processor. Causality may be violated
when two events on opposite sides of a border between two processors are processed out of
sequence. Let us define processor Pa's current_time(Pa) as the time of the current event which it is
processing. Suppose that processor Pb, which is on the opposite side of the border with Pa, has
current_time(Pb) < current_time(Pa), as in Figure 3.1. If we use the serial algorithm described in
section 2, the ball currently being processed by Pa is Al and the time of its NEW event time(Al) is
the current_time(Pa). Al's NEW event at time(A1°) is to cross the border between Pa and Pb. The
ball currently being processed by Pb is B1. At time(B1) it has collided with ball B2 and its new

direction is toward the border between Pb and Pa. In fact it will cross the border at time(B1') <

current_time(Pa) and continue on to collide with ball Al at time(B1™ < current_time(Pa). An error

will occur if Pa processes Al and continues to simulate other events.

Critical Region Pb 1,80

Figure 3.1 Processing error

Balls close to the border can be processed optimistically as in Time Warp [Beck88.Hont89]
in which errors are corrected by rolling back. They can also be simulated conservatively so that a
processor is not permitted to proceed until it is certain that no ball from a neighbouring processor
will cross over the border and cause an error.

[Luba92] is a hybrid approach. A certain amount of freedom is allowed outside of the
insulation layer allowing a crude state recovery method to correct any errors. However, inside the
insulation layer strict conservatism is enforced.

The shared variable algorithm (described in detail in the subsequent section) shares some
features with the algorithm described in [Luba92]. As in [LubaS2], it restricts which events may be

processed in a manner similar to the bounded lag approach. The simulation does not run in

L]
Ny

tterations. However, a processor cannot process an event e at time(e) when there is a processor Pi
that shares a border with it and has a current_time(Pi) < timef{e) - B. B is the distance from the
edge of the critical region to the border divided by an estimated maximum velocity. The value of B
is adjusted to effect a compromise between giving the processors the freedom to process balls in
their region independently of their neighbours, and preventing errors from occurring in the
stmulation. Between each processor, a portion of the simulation region is designated as a critical
region similar to the insulation layer. The critical region is simply a region close to the borders
between two processors which has stricter rules for simulating the balls found inside of it. The
algorithm treats a ball crossing the boundary between processors and moving into or out of the
critical region as an event. The method used to process balls serially within each processor is the
algorithm found in [Luba90]. described earlier.

It is the way in which balls are simulated inside the critical regions that distinguishes the
shared variable approach and which realizes substantial performance improvements. Each
processor maintains, along with its event heap, a subset of that processor's events in an ordered list
consisting of the events that take place within the critical region. These lists are shared by all
neighbouring processors. Processors use these lists to determine when a ball will cross the border
and to extrapolate from this information whether they may safely proceed without causing an error.
The algorithm avoids the severe blocking restrictions for processing events close to the border
which can result in serializing the processors as they wait to schedule these balls. The shared
variables method loosens the restrictions on processing balls close to the border and consequently

reduces the amount of time processors spend waiting to process balls close to the borders.

3.1 The Aleonthm

The algorithm has a different processing regime depending upon whether an event oceurs
inside or outside of the cnitical region.

Balls outside the critical region are “protected™ by the critical region from missing collisions
which could occur with balls in a neighbouring processor's regions. By restricting the processing of
balls to when time(e) < current_time(Pneigh) + B . balls outside of the critical region are assured
that a ball from another processor cannot cause a violation of causality. For example, assume that
as depicted in Figure 3.2, processor Pa is processing ball Al at time(A 1) = 2.0. If the estimated
maxirmnum ball velocity is 4.0 units/sec. it would take 1 sec (4.0 units / 4.0 units/sec = 1 sec) to cross
the critical region and possibly collide with another ball from the neighbouring region, thereby
causing an error. Therefore processor Pa is able to proceed without risk of error if the
current_time(Pb) > 1.0 sec (time(A)) - B=2.0sec- 1 sec = 1.0 sec). In the event that balls travel
at higher than the estimated maximum speed or there are chains of balls stretching across the

critical region, state recovery and resimulation are required [Luba92).

Pal0

Al 2u

wadth 4.0 unus

eaii—

Critical

(Al

i (T

Region

Pb 1.75

If the ball Pa is currently attemnpting to process is in the critical region. then under a

Figure 3.2 The critical region

conservative algorithm Pa would block until current_time(Pb) > current_time(Pa). The algorithm

using shared variables tries to determine if a ball crosses the border before current_time(Pz). If Pa

determines that no ball crosses the border before current_time(Pa), then it can avoid useless

waiting and can proceed with the simulation. Otherwise, as in the conservative case, it must wait.

In Figure 3.3, processor Pa's current_time(Pa) is 2.0 when it tries to process Al at time(Al)

=2.0. At the same real time processor Pb's current_time(Pb) is 1.75 when it tries to process a ball

outside the critical region. Under "strict conservatism” processor Pa would have to wait since

current_time(Pa) > current_time(Pb). Using shared variables, processor Pa can look "inside” of Pb

and determine the state of balls near the border. Since the earliest ime that a ball could cross the

border from Pb is time(B2) > current_time(Pa), Pa can safely proceed.

Pa 2.0 Pnt 78

CrittcaljRegion

Figure 3.3 Shared variables in critical region

The algorithm first determines if the current ball Al being processed at time
current_time(Pa) is in the critical region. If Al is not in the critical region, then the processor must
wait if current_time(Pa) > current_time[Pi] + B for any processor Pi which shares a border with Pa
As mentioned above, if Pa is greater than B ahead of its neighbour in simulation time it is possible
for a ball to cross Pa’s critical region and affect its current ball. If current_time(Pa) <
current_time[Pi] + B it may proceed with processing its current ball.

If the current ball Al is inside the critical region, then a ball directly across the border could
affect it in time less than B. It is here that a strictly conservative approach might have to block,
whereas the shared variable algorithm tries to determine if it may proceed. There are two
conditions that must be satisfied in order for the shared variables to be utilized. First, the
current_time(Pa) > current_time(Pi) for some processor Pi that is a neighbour of ball A; this

indicates that there is a ball in Pi that, depending on its current state, could cross the border and

M

39

affect A1 before current_time(Pa) and that the algorithm needs 1o determine if, in fact. it will. If, on
the other hand, current_time(Pa) < current_time(Pi), there is no ball in Pi which could cross the
border and affect ball A and processor Pa can proceed. The second condition is the same as if the
ball is outside the critical region; current_time(Pa) < current_time(Pi) + B. This is necessarily true
if current_time(Pa) < current_time(Pi). If current_time(Pa) > current_time(Pi) then the processor
needs to know if any of the balls in the critical list of Pi can affect the event being processed for Al.
This is not helpful if current_time(Pa) > current_time(Pi) + B since any ball in Pi could affect Pa.
hence looking at the balls in the critical region is not enough, and as mentioned above. the
processor must wait.

The algorithm also restricts the use of shared variables to times when it is greater than
avg_time_between_events ahead of the slower neighbouring processor. This is to ensure that the
processor does not uselessly calculate the lower bound when the neighbouring processor may
process that event next. If, as in Figure 3.3, the next event which Pb is going to process is the ball
B3. then there is little to gain by having processor Pa access a shared variable if the owner will
simulate it next anyhow. The payoff for using shared variables occurs when Pb has many other
events to simulate outside the critical region earlier than the ball which Pa is waiting on.

To determine that a ball will not cross before time(A 1), the algorithm must determine a
lower bound on the time when a given ball in the critical region of processor Pi will cross. It does
this using the shared variables accessed in the function find_lower_bound described in Figure 3.6 .
First the algorithm sets the invariant flag_ball_can_affect_me equal to FALSE. This indicates
whether or not the algorithm has found a ball in Pi’s critical region which could cross the border

and affect Al. The algorithm goes through the ordered list of balls in Pi’s critical region starting

40

with the ball with the earliest NEW event time. determining their lower_bounds until it comes to a
ball with NEW event time(e) > current_time(Pa). Recall that we want to know what happens after
its NEW event. because the ball's NEW event represents its future state, the OLD event has already
taken place and has been correctly processed. If the ball 11 is in Pi’s critical region and its future
event time(I1) > current_time(Pa), then it cannot affect A1's current event. However. this is only
true if I1's next event remains the same. It is possible that processor Pi will subsequently realize a
different NEW event for I1 where time(11) < current_time(Pa) after Pa has determined that 11
would not affect it. This potential problem is addressed in the following section. If the lower
bound for any ball in Pi’s critical region is time(e) < current_time(Pa), then the algorithm has found
a ball that could affect Pa. Flag_ball_can_affect_me is set to TRUE, and the algorithm exits from
the loop since it is no longer concemned with any other balls in the critical region because the
processor is already required to wait.

Qutside the loop the algorithm checks the value of flag_ball_can_affect_me. Ifitis
FALSE, then the algorithm did not find any ball that would cross the boundary(Pa/Pi) in ime(e) <
current_time(Pa) and processor Pa can proceed. If the value of flag_ball_can_affect_me is TRUE
then the processor must wait. It waits until the earliest NEW event in the critical region cr_time(Pi)
> current_time(Pa).

Depending on the position of the ball, it may be necessary for the algorithm to wait for more
than one processor. For example, if the ball is in a corner of its region, its future event could be
affected by any one of the three regions surrounding it. As in Figure 2.3, the ball d is in the upper

right comner of P4. Balls close to the border of P1, P2 or P3 could affect d. Under these conditions

41

the algorithm would have to determine a lower_bound(Pa/P1) for each of the neighbouring

processors i . Figure 3.4 below contains the pseudo-code for the algorithm.

where, B and s are constants,
cr_time is the time of the first event in the critical list
cr_ball points to the current ball being pseudo simulated
in the critical list
Pa is the current processor executing
Pi is a processor that shares a border with Pa

if (balt is NOT in critical region)
for (each processor i which shares a border with Pa)

if (current_time[Pa] > current_time[Pi] + B) /1 if Pa is within B of Pi it can proceed //
wait() until current_time[Paj < I otherwise it must wait //
current_time[Pi] + B
endif
endfor

endif

else (ball is in cr)
for (cach neighbouring processor i of ball A)
if (current_time[Pa) > current_time[Pi]) && (current_time[Pa] < current_time[Pi] + B) # shared

variables can be used //
if (cr_time[Pi] > current_time[Pi] + avg_time_between_events)
flag_ball_can_affect_me = FALSE: {/ set invariant to FALSE //
for (cr_ball = first ball in cr_list; /1 start at first ball in Pi's critical list //
cr_ball[NEW] < current_time[Pa); {/ loop until find a ball that can't affect Pa //
cr_ball = next in list) I/ took at next ball in list //

low_bound = find_lower_bound(cr_ball): # determine lower_bound of when it will cross //
if {low_bound < current_time[Pa]) 1 if low_bound is less than the current_ball time in
Pa it could be affected by a ball in the cr_list of Pi //
flag_ball_can_affect_me=TRUE; / set invariant to TRUE //

break;
endif
endfor
endif
if (flag_ball_can_affect_ me=TRUE) / if the invariant is set to TRUE the algorithm has found
wait until current_time < cr_time([Pi] a ball that could affect it and must wait //
endif

clse
wait() until current_time[Pa] <cr_time[Pi] //if it is too far ahead that any ball in Pi could affect it
and current_time[Pa] < current_time[Pi) + B it must wait //

endelse

endfor {each neighbour of ball)
endelse (in cr)

Figure 3.4 Pseudo-code for shared variable algorithm

The position of the NEW event for a ball in the critical region will be within the region
. simulated by the owning processor. A neighbouring processor can determine how long it will take
the ball o reach their shared border by using its NEW event time and NEW event position and
velocity. The ball will cross in the time equal to the NEW event time. plus the time to travel the
distance to the border. It is not, however. enough to simply use a ball's current velocity and position
since a future collision can occur which would speed up its approach to the border. It is necessary
1o determine the ball's next collision. The find_low_{unction first determines the balls next event
and then uses its new velocity and position to calculate the time required to cross the border
between the processors. Figure 3.5 below contains the pseudo-code for the find_lower_bound
algorithm.

where. cr_ball is the current ball in the critical list

find_low_bound(cr_ball)
. time_added = cr_ball's distance from border / cr_ball->velocity // calculate time until it reaches the border //
if (time_added »>=0) {1 if er_ball is on the border or heading towards it //
lower_bound_without_collision = ¢r_ball->time[NEW] + time_added / lower_bound_without_collision
/I is the balls curremt_time + time_added //

if (time_added '=0) {1 if not on the border have to consider a collision //
Bj <- ball with minimum interaction_time(cr_ball, each ball in ¢r_list) // determine which ball it will collide
with //

calculate new states after collision between cr_ball and Bj

calculate new lower_bound for cr_ball with position and velocity after collision

calculate new lower_bound for Bj with position and velocity after collision

lower_bound_after_collision equals minimum(lower_bound of Bj, lower_bound of cr_ball)
endif

/I the lower_bound is the minimum of the lower_bound_without_collision and lower_bound_afier_collision //
lower_bound = min(lower_bound_without_collision, lower_bound_afier_collision)
return(lower_bound)

else /! else it is heading away from the border //
lower_bound = END_TIME
return(lower_bound)

endelse

Figure 3.5 Pseudo-code for find_lower_bound

43

The function first needs to determine the time_added for the ball we are currently looking at
in the critical region (referred to as the cr_ball). The variable time_added is the amount of time
after the NEW event time until the ball crosses the boundary. If this time is equal to zero then the
ball's NEW cvent is crossing the border. If it is greater than zero then the ball will be moving
toward the border after its NEW event. Finally, if it is less than zero it will be moving away from
the border. If the ball is moving away from the border the function find_lower_bound returns
END_TIME.

The lower bound for the cr_ball (if it does not collide with any other ball) is time_added
plus the ball's NEW event time. If the ball is heading toward the border. then the possibility must
be considered that a collision could occur which would decrease its arrival time at the border. Balls
h?ading away from the border may have a collision which could result in changing their direction
toward the border. Since it would require another ball heading in the opposite direction (i.e. toward
the border) the algorithm does not determine the time of a collision until the ball heading toward the
border, if one exists, is examined.

The find_lower_bound function treats the cr_ball as though it were the current event on the
top of the processor’s heap. Since balls are not actually being simulated, they are not taken off the
list. If there are balls earlier in the list then the cr_ball, they are assumed to have already been
processed - the possibility that the cr_ball’s next event is a collision with such a ball has already
been considered. Find_lower_bound uses the ball's NEW event (o determine when its next
collision with a boundary or with another ball in the critical region will take place. To calculate
when a ball will collide with a boundary or a another ball the function uses the interaction_time

function as does the serial algorithm executed within each processor.

The find_lower_bound function determines the interaction_time between the current or_ball
and every other ball further down in the critical list. Any possible collision with balls carlier in the
list would have been considered when the earlier balls® lower_bound was determined. The ball
with the carliest interaction_time is assumed to be the next ball to collide with the current cr_ball.
For example, the function interaction_time would be passed the current cr_ball's NEW event time
and state, as though it were the event being processed within its own region. Time?2 and state2
would be the time and state of the OLD events of all the other balls further down in the (ordered)
critical list. The cr_ball's next event is assumed to be a collision with the ball with the lowest
interaction time. The state of the balls after the collision is determined using the advance and jump
functions, and is then used to determine a new lower_bound.

The lower_bound_after_collision is the earliest time either one of the balls involved will
cross the border with their new states after the collision. The find_lower_bound function returns
the carliest of the low_bound_without_collision and low_bound_after_collision. As is discussed
below it is possible that the collision in the critical region may not occur if an earlier collision with
another ball is found. It is therefor necessary to return the earliest of the low_bounds in case
another collision is found and one of the balls involved in the original collision is able to reach the
border quicker than had the collision occurred. This is analogous to the owning processor realizing
that a ball will collide with another ball that is already scheduled to collide with a third ball, so the
third ball’s state is restored to its state before the collision.

There are two apparent problems with this algorithm. First, as mentioned above, the NEW
event for the current ¢r_ball may not be the correct event. The NEW event may not be correct if

later, in real time, the owning processor realizes that the cr_ball will collide with another ball earlier

e
n

then the NEW event time. This could cause an error if a neighbouring processor did not “see™ the
other collision and determined that the cr_ball would not affect it based on the previous NEW
cvent. For the NEW event to change. the cr_ball would have to collide with a ball from cither
outside the critical region or from within the critical region. If it were with a ball from within the
critical region, the processor calling the find_lower_bound function will have seen this collision
and determined if the balls involved would affect it. Collisions with balls further down in the
critical list than the cr_ball will have been examined when determining the cr_ball's next event.
Collisions with balls earlier in the critical list then the cr_ball will have been examined when those
carlier balls where the cr_ball. A collision between the cr_ball and a ball from outside the critical
region however, will not yet have been encountered. Recall that we are not so concerned with the
exact time of the cr_ball's next event but rather with whether it will interfere with the current event
of the processor ahead in simulation ime. Just as in the case of processing balls normally outside
the critical region, this would require at least an extra B units of time for the ball outside the region
to collide with the ball inside the critical region which could then move across the border. Since
our processor is already required to be within B time units of its neighbours this would not cause an
error. This addresses, as previously mentioned, why it is sufficient to calculate the lower_bound of
only those balls that have NEW event time(e) < current_time(Pwaiting). A ball with a NEW event
time(e) > current_time(Pwaiting) will not affect Pwaiting since time(e) happens after Pwaiting's
current event. Only if the balls NEW event time changes from time(e) to time(e’), where time(e") <
current_time(Pwaiting), could it potentially affect the current ball being processed by Pwaiting. If
the collision is with a ball from outside the critical region then it would take too long for it to cross

‘the border.

46

The second problem is that we are only simulating the first laver of events. We do not
consider the case in which a ball collides with a ball and then collides with another ball which
speeds its way to the border. Such considerations would necessitate 2 method of state recovery 1o
correct any errors which result from not taking into account these secondary collisions. In our
experiments we limited the occurrence of these errors by using an appropriately large critical region
and limiting the density of the balls in the simulation.

Future projects include trying to realize further performance improvements by storing and
sharing balls’ NEW events that were calculated using the find_lower_bound function. If one
processors has fewer balls to simulate in its region for a given time period, it will frequently be
further ahead in simulation time than its neighbours. This will cause it to use the shared variables
to infer if its neighbours™ balls will affect it. Once the neighbouring processor catches up in
simulation time it could use the NEW events calculated by the find_lower_bound function instead
of recalculating them itself. The owning processor would have to be able to determine if anything
had occurred in the critical region since the neighbour processor had made the calculations that
could cause them to be incorrect.

Another project is to implement the algorithm on a distributed memory machine. Shared

variables could be implemented using distributed memory {Mehl93].

37

4 Experiments

The experiments were run on an BBN butterfly. The butterfly is a shared memory
multiprocessor in which each processor accesses shared memory using a shared bus. Each node of
the butterfly is a 68200 Motorola processor. The simulation was programmed in C using the
MACH 1000 operating system, a UNIX-like operating systemn with an expanded library for
synchronous functions, including semaphores and shared memory. Each processor runs at 16 MHz.

The simulations were done with a 200X200 square unit table and with 1 unit diameter
balls. As we will shall see, the most important factor in affecting the speed of the simulation is the
density of the balls on the table. The experiments were run with between 1200 and 7200 balls on
the table. Their initial position and velocities vectors were randomly generated using the C library
rand() function. The balls’ positions were allowed to occupy any position on the board provided
that a ball was not touching or overlapping another ball. The x and y coordinates of the velocity
vectors were between the range of -4 and 4 units per second. The number of processors used were
4,9, 16 and 25.

We compare our algorithm to one which does not use shared variables. When such a
processor needs to process a ball in the critical region it must wait until the neighbouring
processor's simulation time is greater than the time of the event it wishes to process. There is no
information available for the processor to use in order to determine if it may proceed. The
algorithm is identical to the one with shared variables in every other respect.

A larger population of balls clearly results in more events occurring during the same period
of time in the simulation because there are more balls to be simulated, therefore they collide with

one another more often. When balls are closer together they are more likely to collide with a nearby

48

ball as they move about the table then they are to travel long distances between collisions. When
the balls travel long distances they are processed less often, enabling the processors to do other
work. If the density becomes high, the balls begin to move small distances. collide with a nearby
ball. change direction and continue doing this until they come to a stage in which they are
effectively "vibrating”. In [Luba92], balls expand. As this happens. they become more closcly
packed and cventually start vibrating. This situation lends itself well to parallel simulation since
the dependency between the processors is based on balls moving across boundaries, something
which will not occur frequently when the balls are quasi-stationary. Furthermore, with very high
density simulations the processors will advance at approximately the same rate because events will
always be available to simulate at each processor.

We conducted experiments between a low population simulation of 2400 balls to a high
population of 7200 balls. The more densely populated the critical region becomes, the more likely
a ball is to be involved in more than one collision on its way toward a border between two
processors. As mentioned before, since the algorithm bascs its lower bound only upon the next
event , it is possible to miss a second collision that may cause an error as an unexpected ball crosses
the border. It is also only under these conditions that the possibility of a "high surge in event
propagation speed” really exists. As in [Luba92] a crude state recovery mechanism would be
necessary to correct these errors. This remains a project for future work. In our experiments a
population of 7200 balls prove to be the limit where a state recovery mechanism would not be
necessary to correct these errors. With populations greater than 7200 balis they will begin to
approach a vibrating sate and the ease with which vibrating balls can in theory be simulated in

parallel shouid more than make up for lost time spent in state recovery [Luba%2].

49

As can be seen in the graphs in Figures 4.1, 4.2 and 4.3, significant speed ups relative 1o 2
simulation without shared variables occur for each of the populations. When we go from a low
density population of 2400 to higher density population of 4800, the time saved with the shared
variables increases by a modest amount. Without shared variables, as the density increases there
are more balls in the critical region to simulate. forcing a processor to move in lock step with its
neighbours. However, with shared variables there is more opportunity to use this shared data to
recognize opportunities in which it is possible to avoid blocking. Table 4.1.4.2 and 4.3 shows that
there were more occasions with 4800 and 7200 balls than with 2400 balls when the shared variable
algorithm could determine that it could safely proceed.

The percentage decrease in execution time gained through the use of shared variables begins
to level off at a population of 7200 balls, although there are still impressive reductions in execution
time. The shared variable method's execution time is between 34% less with 9 processors and 49%
less with 25 processors. These improvements are comparable to those obtained with 4800 balls,
which are comparatively 36% and 53% . With more balls in the critical regions there is a greater
dependency between the processors as the balls are bounced back and forth across the boundary.
The processors are forced to simulate in lock step as they share these balls - no method to reduce
the amount of time spent waiting can completely overcome this. As can be seen from Table 4.4 the
number of occasions when the algorithm with shared variables is able to avoid waiting with 7200
balls is less than number of occasions with 4800 balls.

As the number of processors increases, the improvement in execution times increases for

the shared variable method over the non-shared variable method. With more processors "dividing™

the table space. the percentage of space near borders between IWo processors increases, causing
dependencies between the processors.

Fundamentally. the purpose of using shared variables is to reduce the amount of waiting
time. As can be seen from Tables 4.1, 4.2 and 4.3. the amount of time a processor wastes waiting
for other processors is greatly reduced using shared variables. Figures 4.1, 4.2 and 4.3 show this
improvement in execution time. With 2400 balls and 9 processors the time of the shared variable
approach is 33% less than that of the algorithm without shared variables. Those improvements rise
to 41% with 16 processors and 48% with 25 processors. Similar results occur with the other
simulation sizes. With 4800 balls and 9 processors there is a 36% reduction in the execution time,
with 16 processors there is a 46% reduction and with 25 processors there is a 33% reduction. Note
that with a population size of 2400 balls the increase in execution time from 16 processors to 25
processors results from the number of balls per processor being too small - the simulation is
overwhelmed by the overhead of passing messages.

An important influence on the algorithms’ efficiency is the size of the critical region. The
larger the size of the critical region, the larger is the view a processor has of its neighbour’s state.
Furthermore, with a larger cnitical region the likelihood of errors occ.uring [Luba92] decreases.
The cost of an increased size is having more balls to maintain in the shared variables which
neighbours must examine in order to determine a lower bound. In our experiments, we attempted

to choose the size of the critical region with these two factors in mind.

. 2400 balis

1100

| t shared
=S wiit) ahaten varables

1424 0%
1400 P

TR LI

1200

1000 o \ /
.w'h \tn{r ary %E

\ 41.0% _._________._.-i_
s00 p—— =

(113 1IN

S48 40 {

400 i
200 .
-] 4
™ 18 2%

Figure 4.1 Shared variables vs. without shared variables - 2400 ball population

4300 balls =t whoul shated vatmbies
= with ANA IO vAhablen

-

'wr.n
~.
303% \
b sazess N
~_ <o

o~ S
\ 481 % .
2/I4.43 . '_‘——_.____ 5% ‘

1706.«'

BEERE

Ume (eet)

:

g i

§

Figure 4.2 Shared variables vs. without shared variables - 4800 ball population

LY

T200 balls ———py ANOW BN vEimbues
i g it bt vaabies
14000]
4&09:.“ i
]
12000
\ .
10000
7% \
L
5000 I~
T b881.74
= 619845
-
£ w00
\ "o acs
4000 1
494N
e e
2000
RIS
[}
? " ke
PrOCHLSOID

Figure 4.3 Shared variables vs. without shared variables - 7200 ball population

processors with without
shared variables shared variables

9 1341 6376.2

16 683.26 3379.3

24 383.08 2258.8

Table 4.1 Average total amount of time (sec) processors spent waiting
with a population size of 7200 balls

Processors with without
shared variables shared variables

9 2593 4940.3

16 604.04 28243

24 357.08 1847.1

Table 4.2 Average total amount of time (sec) processors spent waiting
with a population size of 4800 balls

processors with without
shared variables shared variables

9 232 752.68

16 102.74 425.02

24 83.82 342.69

Table 4.3 Average total amount of time (sec) processors spent waiting
with a population size of 2400 balls

z

Processors 2400 4800 7200
balls balls balls

9 53.11 131 104.4

16 49.75 149.5 137.31

24 50.24 152 126.52

Table 4.4 Average number of occasions when able to avoid blocking

5 Conclusion

We have presented in this paper, an algorithm for the parallel simulation of billiard balls
which makes use of shared variables. The shared variables comrespond to a region at the boundary
of the (table) segments which are simuiated by each processor. As neighbouring processors have
access to the contents of these variables, the amount of blocking that is necessary in a conservative
simulation is greatly reduced. A project for future work is to implement algorithms to read the
shared variables on a cistributed memory machine.

Experiments were performed on the BBN Butterfly, in which a purely conservative version
of this simulation was compared to one which makes use of our algorithm. Three population levels-
2400, 4300 and 7200 balls were used. In this approach, when a processor wants to process a ball in
the critical region, it blocks until the neighbouring processor's simulation time exceeds the time of
the event it wishes to process. The shared variable approach resulted in a 30 te 50 percent decrease
in the execution time compared to this approach.

Under conditions of extremely high population, it is possible that a simpie checkpointing

scheme would be necessary such as the one suggested in [Luba92]. This is a project for future

investigation.

wy
0

Bibliographv
[Bain88) Bain, W. L. and Scott, D. S., “An Algorithm for Time Syncronization in Distributed
Discrete Event Simulation™, in Proc. SCS Multiconference on Distributed Simultation. 1998.

pp30-33.

[Beck88] Beckman, Brian, et al., “Distributed Simulation and Time Warp Part 1: Design of
Colliding Pucks”, Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 19,

no. 3, (July).

[Bokh81] Bokhari, S. “On the Mapping Problem”. IEEE Trans. on Comp.. Vol. C-30, (3).
March 81, pp 207 - 214.

[Bokh87] Bokhari, S. “Assignment Problems in Parllel and Distributed Computing™, Kluwer
Academic Publishers, Boston, 1987.

[Bouk92] Boukerche, A., and Tropper. C.. “Parallel Simlation on the HypercubeMultiprocessor™,
Journal of Distributed Computing, 1992.pp 1 - 17.

[Bouk93] Boukerche, A.. and Tropper, C.. “Parallel Simulation of Communicating Finite State
Machines™. in Proc. of the 1993 SCS on Parallel and Distributed Simulation, vol. 23, no. 1, 1993,
pp- 143-150.

[Brya) Bryant, R. E., “Simulation of Packet Communication Architecture Computer Systems”,
MIT/LCS/TR-188, Massachusetts Institute of Technology, Cambridge, Mass.. Nov, 1977.

[Chan79] Chandy, K.M, and Misra J., “Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs™, IEEE Trans. on Software Engineering, SE-5, Sept. 1979,
pp 440 - 452. ‘

[Chan81] Chandy, K.M. and Misra J.. “Asynchronous Distributed Simulation via Sequence of

Parallel Computations™, CACM, Vol. 24, No.4, April 1981, pp 198-206.

{Chan82] Chandy. K.M. and Misra J.. *Distributed Computation on Graphs: Shortest Path
Algorithms™, Common ACM 25(11). 1982, pp 833-837.

[Chan89] Chandy, K. M., and R. Sherman. “Space-Time and Simulation™, in Proceedings of the
1989 SCS Multiconference on Distributed Simulation, 1989, 53-57.

[Cido87] Cidon, L., Jaffe, J. M., Sidi, M.. “Local Distributed Deadlock Detection by Cycle
Detection and Clustering”. IEEE Trans. Software Eng. SE-13, 1987, pp 3-14.

[Comf82] Comfort. J. C.. “The Design of a Multi-microprocessor Based Simulation Computer-

I". Proceedings of the Fifteenth Annual Simulation Symposium, March 1982, pp 45-53.

[Cote92] Cote, C. and Tropper C., “On Distributed and Pscudosimulation™, 1992 Workshop on
Parallel and Distributed Simulation. SCS, Vol. 24, no. 3, Jan 1992, pp. 97-106.

[Das94] Das, S., R., and Fujimoto, R.. M., “An Adaptive Memory Management Protocol for
Time Warp Paraliel Simulation.”, in Proc. 1994 ACM Sigmetrics Conf. on Measurement and
Modeling of Computer Systems, pp. 201-210, May 1994.

[Elma86] Elmagarmid, A. K., Datta, A. K. and Liu, M. T., “Deadlock Detection Algorithms in
Distributed Database Systems™, Proc. IEEE Int. Conf. on Data Eng., Los Angeles, California,

Feb., 1986.

[Fish78] Fishman, G., S., “Principles of Discrete Event Simulation™, Wiley, New York, 1978.

57

[Fuji88] Fujimoto. R. M., “Performance Measurements of Distributed Simulations Strategies™. In

Proc. 1988, SCS Multiconference on Distributed Simulation, Vol. 19, No. 3. Feb. 1988, 14-20.

[Fuji89] Fujimoto, R. M., “Time Warp on 2 Shared Memory Multi-Processor™, in Proceedings of

the 1989 International Conference on Parallel Processing. Aug. 1989, 242-249,

[Fuji90] Fujimoto. R. M., “Parallel Discrete Event Simulation™. in Proc. of the Winter Simul.

Conf.. 1989, 19-28.

[Gare79] Garey, M. R.. and Johnson, D. S.. “Computers and Intractability: A Guide to the Theory
of NP-completeness™. W.H. Freeman and Company. New York. 1979,

[Gros87] Groselj, B.. and Tropper, C.. “Pseudosimulation: An Algorithm for Distributed
Simulation with Limited Memory”, International Journal of Parallel Programming, Vol. 15, No.
5. Oct. 1987, pp 413 - 456.

[Gross88) Groselj. B.. and Tropper. C., “The Time-of-Next-Event Algorithm™, in Proceedings of
the 1988 Distributed Simulation Conference, SCS Simulation Series, Vol. 19, No. 3. Feb. 1988,
San Diego. CAL. pp 25-29.

[Gros91] Groselh, B., and Tropper, C., “The Distributed Simulation of Clustered Processes™,
Distributed Computing. vol. 4 pp. 111-121, 1991.

[Hont89] Hontalas, P.. et al. “Performance of the Colliding Pucks Simulation on the Time Warp

Operating Systems”, Distributed Simulation, SCS Simulation Series, vol 21, no. 2, pp 3-9.

[Jeff82] Jefferson, D. R., and H. Sowizral, H., “Fast Concurrent Simulation using the Time Warp
Mechanism, Part I: Local Control™, Computer Science Department, U.S.C., TR-83-204, Los
Angeles, CAL 90089-0782.

v
3

[Jeff85] Jefferson. D. R.. *Virtual Time™, ACM Trans. Prog. Lang. Syst. 77, (3). July 1985, 405-
425.

(John77] Johnson. D. B.. “Efficient Algorithms for Shortest Paths in Sparse Networks™, J ACM,
Vol. 24, 1977, pp 1-13.

[Kaud87] Kaudel. F. J.. “A Literature Survey on Distributed Discrete Event Simulation™,

Simuletter, Publication of SIGSIM. ACM Press. Vol. 18. June 1987, 11-21.

[Lin89] Lin, Y.-B., and Lazowska. E. D. *A study of Time Warp Rollback Mechanisms™, TR 89-

09-07. Department of Computer Science and Engineering. University of Washington, 1989.

[Lin92] Y. Lin, “Memory Management Algorithms for Optimistic Parallel Simulation™,

Information Sciences. vol. 77. pp. 119 - 140, 1992.

[Luba88] Lubachevsky. B.. “Bounded Lag Distributed Discrete Event Simulation™, Distributed
Simulation, SCS Simulation Series, 1988, pp 183-191.

[Luba91] Lubachevsky, B., “How to Simulate Billiards and Similar Systems™ Journal of
Computational Physics 94, 1991, pp 255-283.

[Luba92] Lubachevsky, B., “*Simulating Colliding Rigid Disks in Parallel Using Bounded Lag
Without Time Warp”, Distributed Simulation, SCS Simulation Series, vol 22, no. 1, pp 194-202.

[Made88] Madisetti, J., Walrand J., and Messerschmitt D., “WOLF: A Rollback Algorithm for

Optmistic Distributed Simulations”, 1988 Winter Simulation Conference Proceedings, Dec.
1988.

[Meh!93] Mehl, H. and Hammes, S.. “Shared Variables in Distributed Simulation™. Proc 7th
Workshop on Parailel and Distributed Simulation (PADS93), 1993, IEEE Computer Society
Press, vol.23, no. 1, pp 68-76.

[Misr86] Misra, J., Chandy. K. M., “Distributed Discrete-event Simulation”. ACM Computing
Surveys, 18(1), March 1986, 39-65.

[Nata86] Natarajan, N., “A Distributed Scheme for Detecting Communication Deadlocks™. IEEE
Trans. Soft. Eng.. Vol. SE-12, No. 4, pp. 531-537. April 1986.

[Nico88] Nicol. D. M., “Parallel Discrete-Event Simulation of FCFS Stochastic Queuing
Networks™, in Proc. of the ACM SIGPLAN Symposium on Parallel Programming, Enviroments,
Applications, and Languages. Yale University. July 88.

[Ni85] Ni, L. et. al., “Distributed Drafting Algorithm for Load Balancing™, IEEE Trans. Sof.
Eng.. Vol. 11{10). 1986.

[Peac79] Peacock. J. K.. Wong, J. W., and Manning, E. G., “Distributed Simulation Using a
Network of Processors™. Computer Networks 3, (1), Feb. 1979, 44-56.

[Reed88] Reed, D. A. and Maloney, A. “Parallel Discrete Event Simulation: The Chandy-Misra
Approach™, in Proc. 1988 SCS Multiconference on Distributed Simulation, 1988. 8-13.

[Reih90] Reiher, P.. Fujimoto. R., Bellenot, S.. and Jefferson, D.. “Cancellation Strategies in
Optimistic Execution Systems™, Proceedings 1990 SCS Multiconference on Distributed
Simulation, 1990.

[Righ89] Righter, R., Walrand J. C., “Distributed Simulation of Discrete Event Systems”, in
Proceedings of IEEE, Vol. 77. No. 1, Jan. 1989, 99-113.

60

[Stan84] Stankovic, J. and Sidhy. L., “An Adaptive Bidding Algorithm for Processes. Clusters

and Distributed Groups™, Proc. 4th Int. Conf. Distributed Comput. Systems, 1984,

[Su89] Su. W. K., and Seitz, C.L.. " Variants of the Chandy-Misra-Bryant Distributed Simulation
Algorithm™. in Proceedings of the 1989 SCS Multiconference on Distributed Simulation. Vol.
21.No. 2, March. 1989, 38-43.

[Wagn89] Wagner, D. B.. Lazowska, E. D. and Bersahd, B.. “Techniques for Efficient Shared
Memory Parallel Simulation™, in Proc. 1989 SCS Multiconference on Distributed Simulation,
1989, 29-37.

