
•

•

•

Parallel Simulation of Billiard Balls using Shared
Variables

by

Peter A. MacKenzie
School of Computer Science. McGill University

Montreal. Canada
June 1996

A Thesis submitted to the
Faeu1ty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of
Master of Science

Copyright © 1996 by Peter Mackenzie

."'. Nallonal L,brary
olCanada

Blbliolheque naltonale
du Canada

AcqulSlllons and Orreclton des acqulsilions el
BlbllographlC Services Branch des services bibliographiques

395 WellingTon $treo:.'l
0Tt.1W:J. Onl;mo
K1A ON4

395, rue \"JeIl1r"lglon
Ortawa (OntarIO)
K1A ON..:

The author has granted an
irrevocab:e non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in hisjher thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
hisjher permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19833-2

Canada

•

•

•

ACKNOWLEDGMENTS

1gratefully acknowledge rny parents fvr having made .Ill mv acheivements possihle.

1would like to thank my thesis supervisor Prol"cssor Carl Tropper for his guid;lnec.

suppon. friendly encour.lgement and help with the manus<:ripr.

1would aIso like 10 thank the School of Computer Science at McGill University for

providing a productive enviroment for my studies and :hesis work.

Finnally. 1wouId like to thank everyone who helped me with my work in one way or

another: Ben. Claire. Owain. Brett. Colin. Sean. Albcno. Herver. Azzedine. Luc. Ramesh. Kent.

Rafa. Debbie. James. Lynne. Claire and Dave.

• ABSTRACT

This thesis presenb a ;;onservative algorithm for the paralld simulation of hilliard halls.

Simulating hilliard halls has hccome an important henchmark for parallcl event driven simulation

schemes. The approach distinguishes itsdf in that it makes use of shared variables to enable

processors to ascertain the state of the computation at neighboring processors. The table is

partitioned into segments which are simulated by different processors. The shared variable

corresponds to a region at the boundary between table segments (rcferred to as the critical

region). By making use of shared variables. a significant speed-up over the execution time of a

purely conservalive approach is obtained.

The algorithm was implemented on a BBN BUllerfly. as was a purcly conservative

• algorithm. In the purely conservative algorithm. a processor wishing to process a bail in the

critical rcgion wail~ until the neighbouring processor's simulation time is greater than the lime of

the event it wishes to process. In our experiments. we examined three population levels of balls-

2400. 4800 and 7200. These populations were chosen to reflectlow. medium and high

populations of balls. The shared-variable approach resulted in a 30 to 50 percent decrcase in

execution time with respect to purely conservative approach.

•

• RÉSUMÉ

Cette thèse presente un algorithm conservati"e pour la simulation parallèle des halles de

hiIIiard. La simulation des balles de billiard est devenue un point de rderen.:e p,)ur !cs plans de

simulation des événements conduit en par..lllèle. LI façon se distingue pan:e 'lu"il utilise le,

variables partagé pur permettre les processeur à etablissent r état de la computation aux

processeur voisin. La table est cloisonné en segments qui sont simulé par les processeur

differents. La variable partagé correspond a une région à la limite entre les segments de table

(appliqué comme la région critique). En utilisant les variables partagés. une accélér..ltion

importante est obtenue par dessus le temp d'execution de la façon slrictement conservat;ve.

L'a1gorithm était executé sur un BBN Butterfly. comme ralgorithm strictement

conservative. Dans l'a1gorithm strictement conservative, un processeur qui veut tr..liter une balle

• dans la region critique attend jusqu'a ce que le temp de simulation du processeur voisin est plus

que l'événement qu'il veut traiter, En notre expériences, nous avons examiné trois niveaux de

population des balles - 2400. 4800. 7200. Cettes populations étaient choisis pour refléter les

populations des balles bas. moyens et élevés, La façon de la variable partagé a resulté en une

diminution de 30 à 50 pour cent en le temp d'execution de la façon strictement conservative.

•

•

•

•

CO:"TE:"TS

Acknowledgments

Abs[r~ct

Resume

List of Figures

1 Introduction

1.1 Principles of Par.lllei Simulation

1.2 Previous Work in Conservative Paralle! Simulations

1.3 Par.l11el Simulation of Billiard Balls

2 Previous Work

3 Parallelism in a Billiard Bali Simulation

3.1 The Aigorithm

4 E.'"{pcriment~

5 Conclusion

Bibliography

6

ï

ï

15

21

33

36

47

54

55

• LIST of RGURES

1.1 Sequence constraint of par.lllei simulation ~

1.2 Processing at an LP 12

I.3 A blocked LP 1.'

2.1 Pseudo-code for a seriai simulation of billiard balls algorithm 26

2.2 Pseudo-code for a p=Ilel simulation of billiard "alls algorithm ~--,

2.3 Table divided into small sectors .'1

3.1 Processing error 34

~., The critical region 37.:l._

3.3 Shared variables in critical region 38

• 3.4 Pseudo-code for shared variable algorithm 41

3.5 Pseudo-code for find_lower_bound 42

4.1 Shared variables vs. without shared variables· 2400 bail population 51

4.2 Shared variables vs. without shared variables - 4800 bail population 51

4.3 Shared variables vs. without shared variables - 7200 bail population 52

•

•

•

•

1 Introduction

Simulation is a usdul tool for evaluating many mathematical modcls of complcx real

world systems that cannot be evaluated analvtieallv. However. Iar!!e detailed simulations often. .. ~

require enonnous amounts of CPU time. Simulations of large communication networks. gas and

oil reservoirs. weather forecasts :md military applications. to name a few. can rcquire hundreds of

hours of machine time to complete. Executing these simulations proved impr.lctical for even the

fastes! available sequential machines. This in turn created a need for developing new methods to

spced up simulations leading to the development of algorithms for par.lliei simulations. i.e.

panitioning the simulation problem and executing the parts in par.lliei on multiple processors.

Surveys of the arca may he found in [Jeff85. Misr86. Gros87. Gross88. Righ89].

1.1 Principles of Parallel Simulation

There arc three different types of simulations: continuous. diserete and hybrid.

These types of simulations differ in how the state of an object in the system heing simulated

changes with respect to time. The Slate in a continuous simulation changes smoothly and

continuously as ùme proceeds. e.g.• the flow of liquid through a pipeline and weather modeling.

Continuous simulation models often involve difference or differential equations that represent

cenain aspecl~ of the system. In a discrete simulation. a Slate changes at a staùc point in ùme.

Any queueing system such a.~ a job shop would he an example of a discrete simulation. Many

simulations are hybrid. Le. different parts of the same system can he modeled either discretely or

conùnuously. An unIoading dock where tankers queue up to unload their oil through a pipeline

•

•

methodolog" and simulation languages c:!n De iound in [Fish7~1._.

A discrete e"ent simulation modcls a physical system where [he state change, al a

discrete point in time - these changes in the system's state is rcierred to as an e"enL A parallcl

discrete e"ent simulation must yicld the same results a, a seriai simulation to he con,idered

correct. The ordering of the e"ents with respect to time is of paramount imponancc. In Figure

1. 1. consider two e"ents: El at logical process LP 1 with timcstamp :!O and E:! at LP:! with

timcstamp 30. Assumc that proccssing El causes thc creation of c"cnt E3 for LP:! with a

timestamp less than 30. E3 might affectE!: for instance E3 couId modify a statc "ariahle uscd

by E:!. necessitating sequential execution of ail three events.

Time

30

20

LPI

El

LP2

•

Figure 1.1 Sequence constraint of parallel simulation.

It is the difficulty in overcoming the sequencing constraints !hat makes parallel discretc evcnt

simulation a challenging problem and of interest to =hers in the parallel programming

•

•

•

9

community at large for exploring the synchronization algorithms devdopcd in paralld

Simulation.

DlScrete event simulations can either be synchronous or asynchrono:ls. ln a synchronous

algorithm. all the objects in the simulation progress through time at the same rate· each object

simulates those objects that occur at the sarne time. In an asynchronous aIgorithm. different

objects can he at different points in (simulated) time. SowizraI and Jefferson [Sowi8~l showed

that synchronous paraIlel simulation limits the amount of paraIlelism that can he exploited and

does not produce significant speed ups for many common kinds of systems. We therefore

consider only asynchronous discrete event simulation.

In a seriai simulation the events are placed in a Iist and ordered according to event time.

The head of the list is the event with the lowest event time. Severa! data structures have becn

proposed to represent the event set for discrete event simulation (Comf82] such a.~ heaps and

splay trees. A cIock is maintained which represents the current simulation time. As the

simulation progresses. the head of the list is removed. the simulation cIock advances and the

event is simulated. The execution of one event may change events later in the list or require new

event~ he added to the Iist. It would appear that the only way to ensure that events are simulated

chronologicaIly. mimicking the real system. is to process them one at a time. resulting in a

sequentiaI prograrn. ParaIleIism exists. however. when IWO events in the list do not depend on

one another - these events can he simulated concurrently. However. if an event is executed

earlier in reaI time and affects state variables used by a subsequent event with an earlier event

time. then effectively an event in the future has influenced an event in the past This is referred

•

•

•

III

lundamental probkm 01 paralkl discrete event slmu\atlon.

The goal of parallel discre[e event slmu\auon 1~!IsrSé>1is \a 1 [0 partltlon the system beln~

simulated into relatively independent subsys[ems that communicate with each ll[her ln a s'mpk

manner (such as passing customers or jobs from one subsystem tl) anotherl. and 1Il 1W SlnlU\ate

each subsystem on a different processor. This means eliminating the event list and the clock in ib

traditional forro.

In order to guar.mtee the correctness of the simulation. the following property IMisr~é>l

must hold: the event message (e.1l is generated. received. processed. consumed ti.e. has reached

its final destination) or transmined. respectively. by LPi in the simulation system if and only if

the event e was generated. received. processed. consumed or tr.msmined. respectively. by PPi in

the physical system at time t. Details ofthis praof can be found in [Chand79. Misr86].

A simple paraIlel simulation can be constructed in which every physical proccs.~ (PP) in

the real system is modeIed by a corresponding logical proces.~ (LP) [Chan79. Misr86]. For

example. a car wash might consist of a pay booth and a number of washers and dryers. One LP

couId model the pay booth. while other LPs modeled each of the washers and the dryers. Any

communication between physical processes is modeled by communication between logical

processes within the simulation. There are no other proces.~ that control the synchronization

among various processes or any global time in the simulation shared by the proces.'iCS.

A fundamental concept in parallel simulation is the timestarnped message [Chan79.

Misr86]. The interactions between physical processes in the real system are modeled by

exchanging timestarnped event messages between the corresponding logical processes. They

•

•

•

Il

also represent sending rimes of events and the service time added to the reccived rime 1when the

event is in an output queue). They ensure tha! events are simulated in propcr order [Chan79.

Misr86) on each processor.

Inslead of a global dock. eaeh LP must maintain ilS own dock representing the local

simul:.tion time (LST). The LST is equalto the time when the last event (e) was processed. Le.

the time in the simulated system which indicates the end of an event that occurred at the

corresponding PP. A new LST is detcrmined after each event is processed. The new LST is

computed as follows: LST = max(current LST. e.time). where e.time is the time of the last event.

The system is simulated for sorne time pcriod [O.T]. where T is referred to as the simulation end­

time or termination time. During this time. any LP sends a number of messages tO other LPs.

For instance. as shown in Figure 1.2. LPi has IWO input buffers. one assigned for cach

link with another processor with evenlS waiting to be processed. LPi selects the message with

the smallest time stamp in its input buffers. therefore maintaining the sequencing constraÏnt.

Then LPi processes event el. advances its LST to max(LSTi.e l.time) + Servicetime. where

Servicetime represents the time that the physica1 process PPi would have spent to process the

event el (el.time = 5) and generates the new event e4. IfServicetime = l, then e4.time = 6 and

LPi's local simulation time becomes 6 (LSTi =6).

We now address the fundamental problem of paraIlei simulation - causality errors.

Without a global clock cach LP's local lime can be different; LPi can be further ahcad in

simulation lime than an LP that sends messages to its input buffer. If for example LPi in Figure

1.2,b received event e2 and processed it before it received event e3 and e3 affected e2, then a

causality error will have occurred.

•
t~

(0)

Lr.

lb)

•

•

Figure 1.2 Processing at an LP

Techniques for parallel simulation can be c1assified into two groups. conservative and

optimistic a1gorithms. Good surveys of the parallel simulation Iiterature may be found in

[Kaud87. Righ89. Fuji90]. The techniques differ primarily in how they handle causality errors.

Conservative a1gorithms rely on blocking to synchronize processors. while optimistic a1gorithms

rely on detecting synchronization errors at run time and on recovery using a rollback mechanism.

In the conservative approach [Misr86]. each process is a1lowed to proceed if and only if it

is certain that it will not receive an earlier event. Consequently. events are a1ways executed in

chronological order at any LP. An LP must block if it has an empty event queue and it is not

certain if an event earlier than any other event on its otl)er event queues will arrive. Therefore.

only unblocked LPs can execute in paralIeI. In Figure 1.3. LPd must block because one of it~

input queues is empty. In this snapshot. LPb and LPc are both eligible to execute concurrently.

IfLPd were to process the message received from LPb with timestamp 30. it would risk receiving

•

•

•

13

an earlier message from LPc with a timestamp of less than 30. causing the events to be proccsscd

out of order and risking a causality error.

Figure 1.3 A blocked LP

The performance of the parallel simulation cao he greatly influenced by the amount of

blocking that OCCUIS. If many LPs are forced to block. the simulation can be essenùally

serialized. If ail of the LPs are blocked then the network is deadlocked. Ensuring

synchronizaùon and avoiding deadlocks are the central problems in the conservaùve approach.

We survey sorne methods for conservaùve simulaùons in secùon 1.2 .

In the opùmisùc approach [Jeff8S). a process receives messages from ail the

communicaùng LPs and places them in its input queue. Each LP processes events from its input

queues unùl no messages remain or unùl a message arrives "in the past" (a straggler). A

straggler indicates that a message has been processed out of order and the process execuùon must

he interrupted 50 that a rollback cao he performed in order to restore the states of the LPs to

•

•

•

1-1

before Ihe order was violated. Since c'·cntS proccsscd in one LP may create ne\\" events in other

LPs that are sent via messages. thosc messages sent to other processors mUSl be canccled. The

rollback mechanism sends antimcssagcs to thosc proccssors. Upon recciving an antimessage. a

processor cancels the matching messagc in its input queue. There are two major versions of

Time Warp. The original version is intcndcd for a distributed mcmory architecture and perfonns

eancellation by antimessages [Jeff82. Jeff85]. Another version is intendcd for a shared memory

architecture and uses direct cancellation without antimessages [Fuji89].

Although Time Warp gains from being deadlock free. il is atthe expense of spending a

great deal of time roIling back and repeatedly simulating the same events. Another drawback of

this approach is that it requires a large amount of memory to save the states of the LPs and an

efficient garbage collection algorithm. Most studies of Time Warp have been experimental

[Fuji89. Lin89. Made88. Reih90]. Despite these studies. the rollback mechanism is not wcll

understood. A number of memory management schemes have been proposed to reduce the spacc

usage ofTime Warp. They range from those that reduce the average amount of memory needed

but are unable to recover when it actually runs out of memory. to those that can run the

simulation within a large amount of preallocated memory by recovering memory on demand

[Das94]. Although there have been studies of the different memory management schemes

[Lin92].little has been done in terms of the perfonnance with respect to execution lime [Das94].

The algorithm presented in this thesis is conservative in its nature. Given the problem it

was designed for. we feel that ensuring synchronization by using shared variable.~ and blocking is

preferable to correeting causality errors with an optimistie approach. We therefore concentrate

on the conservative approach.

•

•

•

1::

The performance of a parai ici simulation executed on a multiprocessor is determined by

many factors. One imponant factor is the panitioning and mapping of processes onto the

processors. Often the number of logical processes (LPsJ. n. is much larger than the number of

processors k. In order to construct the simulation. the LPs must be panitioned into k eomponents

or c1usters of processes and then assigned to the different processors. There has been a great deal

ofinterest in panitioning processes [Bokh81. Bokh87. Ni85. Stan84]. However. the problem of

finding an optimal partitioning is found to be NP-hard [Gare79] in aIl but very restricted cases.

Thus rcsearch ha~ focused on the development of heuristic a1gorithms to find suboptimal

panitioning solutions. An a1gorithm should be at least able to find a parution tha! would

decreasc the running time of the sanie simulation with a random panition.

There are many other problems that need to be solved for a paraIlel simulation to be able

to exploit the inherent paraIlelism of a system fully. The problems include c1assicaI paraIlel

processing problems. such as distributed detection and resolution of deadiocks. distributed

termination. synchronization. partitioning and mapping processes to processors. flow control. and

memory management.

1.2 Previous Work in Conservative Simulation

Major contributions to the work on the conservative approach may he found in Bryant

[Brya77]. Chandy. Misra and Holmes [Chan79. Chan81. Misr86]. Peacock et ai.

[peac79].GroseIj and Tropper [Gros87. Gros88]. Wagner et ai. [Wagn89]. Bain and Scott

[Bain88] and Nicol [Nic088]. A good survey of conservative approaches to paraIIel simulation

can he found in (Fuji90].

•

•

•

lb

Chandy and Misra (Chan79] employ null messages to avoid deadlock and increase the

parallelism of distributed simulation. When an LP sends an event message (e.n 10 another LP via

iL~ output Iink. it sends a null message with the same timestamp on ail its other output links.

Since events at each LP are processed in increasing timestamp order. the reeeiving LP n:alizes

that it can not receive an event on that link earlier than the timestamp of the null message. This

allows the receiving LP to simulate al' :vents with timestamps less than or equal to the minimum

timestamp of ail the null messages on its input links. However. the arrivai of a null message al

an LP can cause it to generate anolher null message. This can resull in excessive numbers of null

messages being crealed and sent to ail C'f the LPs. A number of papers have concentr.lled on

optimizing this approach by reducing the number of null messages. For example. in (Su89)lhe

authors send null messages only once the LP has become blocked. With this approach. referred

to as eager events. lazy null messages. they were able to report sorne succes.~ in speeding up logic

simulation.

Lookahead refers to an LP's ability to predict what will happen in the simulation's fUlure

based on the knowledge of the system being simulated and events thal have been proces.~ed or are

waiting to be processed. In particular. it helps the LP determine when it may receive a ncw evenl

message from a predecessor. Fujimolo [Fuji88] demOnSlraled thallookahead is critical in

delermining a conservative algorithms performance. If processes have a good deal of lookahead.

conservative algorithms are able 10 exploit the parallelism of the system.

Sorne researchers have tried to reduce the number of null messages necessary by using an

LP's knowledge of the nelWork. De Vries [DeVr90] proposed considering the overall network

•

•

•

17

of LPs as composed of smal!er sub-networks. An LP can then use ils knowledge of [he local

ne[work i[hclongs 10 10 improve lookahead and reduee Ihe number of nul! messages reqL:.red.

Cal and Turner rCai90) use an additional type of nul! message. earrier nul! messages. These

messages propagate through the system to earry additional information on Jookahead and the

route taken. The LPs use this dynamie information in order to reduce the number of n'JI!

messages. Wood and Turner [Wood94] have shown that using the Cai-Turner method wil! not

reduce the number of nul! messages for cenain types of communication graphs. panicularly those

wilh nested cycles. They propose an alternative method to the carrier nul! messages approach in

order 10 extend il~ applicability to arbitrary graphs.

In [Misr86]. Misra suggested using a time out for nuII message transmission and having

nul! messages annihilate ear!ier. obsolete. unprocessed nuII messages on the Iink. He also

describcs a c1ass of demand driven techniques in which a process requests time information from

the processor on the source side of its input Iink (the predecessor). In this algorithm. when an LP

is blocked or simpIy icIIe it can query a predecessor via a request message to obtain a new Iower

bound on the timestarnps of messages which it can consume. No analysis of the performance of

their algorithm is given in [Misr86]. If the predecessor receiving the request message is unable

to improve upon the senders Iower bound. it can in turn send a request message tO its

prcdecessors. This approach can Iead to deacIIock [Cote92. Misr86]. Consequently. a deadlock

detection and breaking aIgorithm must aIso be empIoyed [Cote92].

The aIgorithm in [Misr86] assumes that path information is incIuded wlthin the request

message. The demand based time synchronization aIgorithm described by Bain and Scott

[Bain88] does not require that path information be propagated in messages between processes.

•

•

•

III

Inslead Ihey use Ihree lypes of probe messages 10 detecl deadlock and rcco\'Cr. -",·s. 110 and ,",',','

(for refiecled yes). The yes message indicales Ihalthe predecessor channel has rcached Ihe

requesl lime: no indicaleS Ihat il has nol and another requesl mighl he made: and Ihe ,",','S

message indicales Ihe requesl lime has been rcached and a cycle was encountered, Once a eycle

has been de:ecled in the connecùon graph. a deadlock in lime synchronization can he a\'oided.

No perfonnance analysis is given.

In [ChanSI]. Chandy and Misra alIowcd the simulation to run until il deadlocks. When a

deadlock was detecled they used a deadlock delection mechanism 10 recover. Deadlock delection

mechanisms are described in the Iiterature [ElmaS6. ChanS:!. NalaS6. CidoS7. Bouk93]. Reed.

Malone and McCredie perfonned a distributed simulation of several queueing network models

using the Ch::~dy and Misra methods [Chan79. ChanS 1]. They detenruned that allowing

deadIocks. then detecùng them and recovering. is generally superior to methods that prevented

deadlocks. They also concluded that Chandy-Misra approaches are not viable for the parullel

simulation of queueing nelWorks.

Wagner. Lazowska. and Bershad [WagnS9] used a shared-memory version of the

Chandy-Misra algorithrn calIed lazy blocking avoidance. The algorithm waits until a processor is

iclIe before it attempts to provide a new Iower bound for bIocked LPs. In a shared-memory

environment. messages do not need to be sent, events are simply put on and taken off the

appropriate LP's queue. They repot1ed specdups that were approximateIy lWice a.~ good as those

repot1ed by Reed et al. [ReedSS]. However. it should be noted that their aIgorithms are Iimited to

a shared memory environment.

•

•

•

19

Lubachcvsky [Luba88] proposes an algorithm for distributed discrete event simulation

which is based on using a bounded lag restriction. The processing of events concurrently is

bounded above by a known finite constant B. An LP is perrnitted to process an event if its

timestamp lies between the interval ru. IJ+B] where u is the current smallest timestamp in the

system and B is the bounded lag parameter. This method is deseribed in grcater detail later.

Other windowing methods include those described in [Nie088] and [Ayan92]. Nicol

[Nie088] proposed a conscrvative method simiJar to [Luba88]. Each LP moves through the

simulation advancing its time up to a global ceiling. however. calculaùng the global ceiling

differs from using Lubachevs"..y·s bounded lag. [Ayan92] introduced an approach called

Conservative Time Windows (CTW). Again. an LP is pennitted to process events wi!hin a time

window. ln contrast to other windowing methods. the size of the window may be different for

differcnt LPs. Their experiments indicate that enabling local bounds for the ùme windows

improved the performance of the CTW-algori!hm.

Groselj and Tropper [Gros88] clustered severa! processcs into the same processor in order

to achieve better efficiency. They proposed an approach referred to as the Time of Next Event

algorithm (TNE). Their algorithm is based on the shonest pa!h algori!hm [John77. Chand82]

and computes the greatest lower bound on ail input links for processes assigned to the same

processor.

For cach empty input buffer. LPj maintains a ùme value TNEij. which denotes the Time­

of-Next-Event. An LP is aIlowed to execute an event e with timestamp e.lÏme if it can be sure

!hat it will not receive any future events with timestamp less !han e.lÏme. i.e.• for ail j. where the

input buffer (ij) is empty. TNEij ~ e.time. otherwise it must blocl:. Consequently. events are

•

•

•

10

always executed in chronological order and the timestamps of event messages sent hy ea,'h LP

are ordered in non decreasing order. Although il docs help unblock blocked processes. it is

possible for inter-processor deadlocks to occur. A distributed deadlock breaking algorithm is

proposed in [Gros9!] to dca! with these inter-processor deadlocks.

ln [Bouk92] the TNE algorithm was tested on an iPSC/iS60 hypercube multiprocessor.

Significant performance improvements were rcalizcd by using TNE to unblock proccsscs that

would otherwisc need to block: good speed u"s were realizcd ovcr both a seriai simulation and

an opùmized version of Chandy & Misra nul! message algorithm. TNE's ability to take

advantage of having severa! LP's assigned to each processor and using the shoncst path

algorithm to provide lookahead rather than message passing contributed to the good

performance, Other factors that play a role in TNE's and any conservative simulation's

performance are the lookahead of the service distribution. the number of LPs in thc model and

the number of processors used [Bouk92],

Parallel simulaùons are typically aimed at exploiùng the parallelism a.~ a result of a

spatial decomposition of the mode!. In (Chan89] the possibility of temporal decomposiùon is

exploited. The problem Can be viewed as a space-ùme graph where the y axis represenl~ the ùme

in the simulation and the x axis is the state of the process being simulated (the space). Each

processor maintains the state variables of one or more processes over a period of lime. Regions

in the space-time graph are influenced by thcir neighboring regions through event messages

(verticallines) or by sharing common state variables in different periods of lime. (Chan89] also

describes a relaxation algorithm to overcome the dependency between regions. A process

computes the state of its own region using estimates of its neighbours regions (inflows) then

•

•

•

21

infonns ils ncighbours (ouillow 1. If a rcgion corrcclly esIimalcs ils inllows. il will not have to

rccompule ilS own region and update its oUlllows. The space Iime-graph is correclly filled once

lhcrc arc no ncw evcnts and no new recompulaIions.

1.3 Pamllel SimulaIions of Billiard Balls

Many systems can be viewed as collections of objeclS moving around a defined space and

inler.lcIing with each other. The objecL~ can range from atoms and molecules to inler-planetaI')'

objecL~ acting under the inlluence of gr.lvity. Molecules move around their environmenl

tr.snsiIioning between unstable states and stable states as they interact with one another to form new

compound.~ and molecules. The particles which comprise Saturn's rings exemplify the second

category of system. Man made systems include cellular communication systems. in which mobile

users move in be!Ween regions that are allocated c1ifferent radio bandwidths. Such problems

intuitively lend them~lves to a parallel simulation algorithm by c1ivicling the space in which the

interactions lake place and having each processor on a multi-eomputer simulale those ObjeclS

wilhin a region.

The c1ifficulty in simulating such a model is that each processor must simulate an objecl in

ilS own region. although the object's behaviour may be influenced by an object in another

processor's neighbouring region. This system cao be modelled as the classic ne!Work of logical

processes communicating via message passing in which the messages contain information

pcrtaining to the behaviour of objecIS in each processors' region. The !wo classical approaches to

parallel simulation. conservative and optimistic deal with this problem in a manner consistent with

their paracligms. The optimistic approach bas the processors proceed with simulating the ObjeclS in

their own region regardless of interaction with neighbours and correct for any errors by rolling back

•

•

•

when they occur. The conservative approach blocks and wails unlil a processor is cenain thal an

object in its own region is nOI affected by an object in a neighbouring processor al an earlier lime.

The algorithm descrihed in this thesis makes use of shared variables in order to allo\\"

processors to access the state ofilS neighbour"s objecls. Thc algorithm is conscrvativc in nature in

that it does not pemùt the processing of cvenlS which might he OUI of correct (limeSlamp1ordcr.

The use of shared variables captures more of a simulation's natur.ù par.ùlelism lhereby reducing

the arnOUnl of time a processor would he blocked in a pure conservative approach. If the dynarnics

of the objecl~ heing simulated are understood. it is then possiblc for the algorithm to make

inferences as to whether it can safely proceed. whereas a '1ypical" conservative approach would

have to block.

As a paradigm of the problem we are interested in simulating. wc chose a billiard bail

simulation. Wc simulate billiard balls travelling around a table. bouncing off the boundaries and

colliding with other balls. The balls are represented in our model by velocity and position at a given

time. We simplify the problem by allowing for a frictionless table and ignoring the rotation of the

balls.

Both conservative and optimistic methods have been used to simulate billiard balls or

similar systems. For exarnple. in [Hont89] the authors used colliding pucks as a benchmark for

evaluating the Time Warp algorithm. In [Luba92] an essentially conservative algorithm is used to

simulate colliding rigid disks or billiard balls.

The remainder of this thesis is organized as fo11ows. Section 2 contains a summary of

previous work on the problem ofsimulating billiard ba11s (or rigid disks). In section 3 the

•

•

•

par.J.lIelism in this problem and our par.llicl a1gorithm. making use of sharcd variables. is describcd.

Section 4 contains the p.=rformance resulLs realized from this a1gorithm. The conclusion follows.

2 Previous Work

In this section we summarize previous work on parallel billiard bail or rigid disk

simulations. The first paper [Luba91).however. describcs a seriai algorithm. It is made use of in

both the par.lllei algorithm describcd in [Luba92) as weil as in the parallel algorithm describcd in

this paper. In addition to describing the algorithm in [Luba92] we discuss the more general

approach to distributed simulation in [Luba88]. The last paper [Beck88] describes the parailei

simulations of colliding pucks using Time Warp.

In [Luba9I] an algorithm for the seriai simulation of billiard balls is described.

Lubachevsk-y reports that the seriai algorithm running on a VAX-8550 is about as fast as Time

Warp [Hont89] on a 32-node hypercube MARK m[Luba92]. For each bal! in the simulation the

algorithm associates IWO events with it - an OLO event which represents the last event the ball had

and a NEW event which represents the ball's next event or future event. A simulation event cao

either he a collision with anotherbal! on the table orwith one of the table's boundaries. An event

consisl~of three components: time, state and panner. The time component is the lime at which the

event occurs and therefore the time at which the ball is in the state represented by the state

componen!. The stale is a pair of vectors that represent the position of the bal! on the table and its

current vclocity. If the event is a collision with another bal!.. the panner is represented by a pointer

to that other bal!.. Otherwise it is a collision with a boundary and the panner is NUL!-

ifbS oand b'. ac;: 0
ifb> Oorb' - ac < 0

•

•

•

Proccssing an cvcnt mcans schcduling thc ncxt cvcnt tor thc ha1lts) la .:ollls",n c\'Cnt will

usually involvc two balls but on rare occasions it .:an involve more than two halls; a ",llis",n wlth

thc boundary will only involvc thc onc bal1.) Thc cvcnt just proccsscd hc.:omcs thc OLD cvent ot

the balls involved and thc next cvcnt schcduled hccomcs their NEW cvcnt. Thc currcnt slmulanon

time is the earliest NEW event timc among thc balls. Theretore. cach ball's OLD cvcnt tnnc is lcs.'

than the CUITent simulation time and il' NEW cvcnt time is greatcr than thc simulation timc cxœpt.

of course. for the ball whose event is currently heing processed.

Thc evenL' are kept in a heap data structure with thc earliest NEW cvcnt on top. Thc

algorithm selects the ball with the lowest NEW event time and dClcrmines il' new future cvcnt. To

determine a ball's next event. the algorithm first determines which bail or boundary it will inter.ICt

with. A function inreraccion_cime(scacel. cimeJ. scace:!. cime:!) retums the time that a bail in scacel

at cimel will have its ne."(t interaction with an object in scace:! at rime:! if no other objecl' interfere.

An object can he another balI or a boundary. If the object represented by state at lime:! is another

bail with the same diameter 0 and if the velocity of both bail, remain constant. then

cime=inreraclion_rime(slace}. rimel. scare:!. cime2) becomes:

time+- max(tiw.:i.timc2) + 1

whcre.
1= (-b-(b' - ac)~) 1a

1+-
and
a = lvelocityl - velocity!r
b =(position20 - positionlO) • (velocityl- velocity!).
c =1position20 - position10 r-0' .
positionlO =position! + velocityt(max(timel.timc2) - timel).
position20 =position2 + ve1ocityl(max(timel.timc2) - timc2).

..
"

•

•

•

where u • v denotes the dot product of vectors u and v. and Ivl denotes the length of vector v: Ivl =

Cv • v t. The a1gorithm determines the interaction_time for the current bail and each of the N balls

and K boundaries. Slate 1 is the ûLD event of the current bail (note. the ûLO event has just becn

replaced by il~ NEW event and the next event is being determinedl. State2 is the ûLD event of the

object. State2 corresponds to the ûLO event. because until the simulation reaches the time of il~

future event. il repre.~nl~ the state of that object. If the interaction_time is greater than the object's

NEW event. it will not interact with the current bail since the state that the object was in to cause

the collision changes before the collision. The ball's next interaction will be with the object with

the earliest interaction time.

The a1gorithm then determines the new Slate of both balls. if there is a collision between

two balls. or the new Slate of the bail if there is a collision with the boundary. The function

advance(srareO. rimeO, rimel) updates the position of the bail at srareO and rimeO to the position it

will occupy at rimel if the velocity component ofsrateO remains the same during the interval

(rimeO. rünel). The functionjump(srarel.srare2) updates the velocities ofeach of the objects whose

current states are statel and state2. The resuit ofa collision between balls 1 and 2 with vector

velocities vlold and v20ld (assuming that energy and momentum are conserved) is computed as

follows: the normal components of the initial velocities are switched but the tangential component

remains unchanged. If the other object is a boundary then srare2 wouid be NUll..

Ifthe current ball's next event is a collision with another bail (the object bail). it is possible

that the object ball's previous NEW event was a collision with a different, third bail. Since the

collision between the current bail and the obje::t bail occurs before the collision with the third bail•

•

•

•

l6

the third ball's !'o'EW evcnt needs 10 he "undonc". This requires Ihallhc Ihird ball's NEW sIal': he

reslored 10 ilS OLO event Stalc. Figure 2.1 eontains Ihe pseudocodc for Ihis a1gorilhm.

while current_lime < END_TIME
currenuime = min of ail balls NEW lime

leI i be that bail
{i.OLD] ;- [i.NEWJ
P 0+- minimum lime for interaction \\ith any

other bail. j ;- other bail
Q<E- minimum time for inter:u:tion v.ith any

obstacle. k ;- is that obsucle
R;-min{P.Q}
if R < infinity

SUlel ;- advance(sute[i.OLD].lime[i.OLD].R)
if Q<P !"then obstacle event"'

sute[i.NEW] ;- jump(sute I.k)
panner[i.NEW] ;- NULL

else
time[j.NEW] ;- R
sUle2;- advance<sule[j.OLD1.time[j.OLD1.R)
sUle[i.NEW].sule[j.NEWl ;- jump(sulc1""l:lte2)
m;- panner[j.NEW]
panner[i.NEW];- j: panner[j.NEW1;- i
ifm=NULLandm=i

SUIC[m.NEW] ;-
advancc(SUIe[m.OLDJ.lime!m.OLD1.time[m.NEWll

panner[m.NEW] ;- NULL
Figure 2.1 Pseudo-code for a serial simulation of billiard balls algorithm

Parallelizing the billiard ball simulation requires thal the table be divided up inlo separale

regions which are disttibuled among the processors and that cach processor simulales the balls in il~

assigned region. Each processor "shares" a border with IWO or more other processors and bas 10

pass balls back and forth across these borders. This inlerdependency beIWeen the processors, which

is inherent in any parallel simulation, requires an algorithm to maintain the causality when thc

processors' simulation times are different The following papers deal with this problem.

In [Luba88] Lubachevsky proposes a general algorithm for disttibuted discrete event

simulation which is based on using a botmded lag resttiction; the processing ofballs coneurrently is

bounded above by a known finite constant The algorithm proceeds in iterations. In order to

•

•

•

27

delermine the floor for the iter,ltion each processor broadcasL~ the earliest event in iL~ event pool.

The floor is then the earliest event in the simulation; the processors then synchronize. Each

processor goes through every event with a time Jess than I.l + B and deterrnines which events will be

enabled for that ileration and marks those that are enabled. An enabled event is one that can be

processed in the next iteration. As a result of processing these events. new events may be

scheduled or deleted. including events at other processors. Once each processor has completed

processing ail of iL~ marked events in the current iteration it resynchronizes and deterrnines the floor

for a new iteration.

while Il < inlinity and nol (lerminalion_condilion) do
1

Il = min I(Mj). 1;; j ;; N
brood=t Il 10 ail N proeesses
synchronize

for ail j = 1••••N do
ift(Mj) ;; Il + B

then delee! and mark enabled events in Mj
synchroni7.e

for ail j= 1•.•.Ndo
ifM. contains marked events then

1
tj = l(Mj)
process marked events
ifn:quired. then schedule newevents forIj orother Ik. k does nol equalj.
and/pr delete sorne events from Ij or other Ik. kdoes not equal j
delele the processed events from Ij

}
')'Ilchronize

}

Figure 2.2 Pseudo-code for a paraJlel simulation of billiard balls a1gorithm

Deterrnining if an event should be enabled in each iteration involves determining if an

earlier event from another processor will affect il This is detemûned by using a precomputed

quantity. d(kj). where k andj are processors. which represents the propagation delay. The

propagation delay is the amount oftime that must past before an event in k can affect an event inj.

•

•

•

The propagation delay is added to the time of the earliest event which can he sent hy k: r =

earliescevenUime(k) + d(k,j) if the current event heing considered is in j. If event eUl > tthen it

cannot be marked as enabled.

The opaque period is the simulation time when one processor is servicing an event and will

therefore not bc able to creale another evenl on its own processor or anolher until il is done. If an

opaque period exislS. then il plays a part in delermining if an evenl can bc enabled.

The paper also dcscribes a specialized compuler lhal would perform lhe opcmlions

necessary for this algorilhm efficiently. Those opemtions incluàe synehronization barriers.

eomputing the minimum floor for eaeh ileration. testing if events are enabled and updating evems

in each processor (i.e. when the processing of an event in one region resulL~ in new evenL~ bcing

scheduled in another region). ExperimenlS in [Luba89] show that the bounded lag approach 10

discrele event simulation can realize a speed up of 23.3 over a seriai progmrn when simulaling a

queuing network with 25 processors. A theoretical argumenl for the simulations' scalability is also

given in [Luba89].

The problem with using the bounded lag approach in [Luba88] for the distribuled

simulation of billiard balls is that there are no propagation delays or opaque periods between

adjacent processors that can be precomputed. The time at which a bail may enler a neighbour's

region depends on the ball's current position and velocity. This approach would result in very

quickly serializing the simulation. The bounded lag method also requires the processors 10

synchronizc in order to maintain the integrity of the simulation. One processor can not bc trying 10

determine which events to enable for a given iteration when another processor is deleting events.

•

•

•

29

Although the synchronization approach in this a1gorithrn might bc appropriate for a SIMD (or a

specialized) machine. it would result in costly overhcad on a MIMD machine.

[Luba92] details how the bounded lag a1gorithm is used to simuiate the billiard bail

problem. Ba~ically. this pall"; oarallelizes the a1gorithm describcd in [Luba90] using the bounded

lag approach. One rcsult in [Luba92] is that the Time Warp approaeh to state recovery can bc

repiaeed by a simpier method. Consistent with the general bounded lag a1gorithm. the fundamental

observation of this method is that if IWO disks are separated by a large enough distance. the

probability that a causal dependence bcIWeen their motions wiIl be created in the ncar future is

smalI. The a1gorithm rcsL~ upon the assumption that there is an upper bound on event propagation

speed. the consequence of which is that IWO balls which are sufficiently far apart can bc processed

eoncurrcntly. The author contencls that by using the bounded lag to control the errors that can

occur. the simulation does not require the more flexible rollback mechanism employed by Time

Warp. Instcad, it can use a simple state recovety method.

Within the large sectors controlled by cach processor. the space is divided into smaller

sectors to reduce the numbcr of balls that need to be searched. Dividing the simulation space into

smaller sectors reduces the number ofballs that need to be examined in order to determine a bail's

next collision. because it is ooly necessary to examine the balls within the small sector. This,

however. is at the expense of having more events since cach lime a bail moves into another small

sector another event must bc processed. The optimal trade-off size of a small sector depencls on the

parameters of the probiem to be simulated [Luba92]. [Hont89] a1so found sectoring to play a factor

in performance ofrigid disk simulations.

•

•

•

Each processor maintains a list of events. The smallest time in the list of e\'enls is referrcd

to as the a_time. The algorithm proceeds in iterations. The l100r for each iter.llion is the min

a_time(PEi) for ail processors PEi. According to the bounded lag restriction with par.lmeter B. an

event e is then processed only if time(e) :,; 1100r + B. for sorne value of B.

As menlioned above. each evenl is associated with a small sector s within which il occurs.

An error occurs when a collision is missed or a positive area is occupied by more than one disk al

the same simulated lime. Events which occur in small sectors close to the borders and which arc

admissible to process under the above condition may result in new evenL~ being scheduled in lhe

large sector which is simulated by the processor or in its neighbouring seclor (and processor) or in

both sectors. This means that errors cao occur if!Wo events in adjacent small seclors on oppositc

sides of a processor border are processed out of sequence (Le. with respect to their simulation

lime). To detect these errors each sector maintains a ùme tes) when the last event was proce.~ed in

the vicinity of s. defined to be the 8 neighbouring small sectors. In Figure 2.3. the vicinity of the

small sector at coordinate B2 is B1.C1.C2.C3.B3.A3.A2.A1. tes) is updated when a new event at

lime t is processed in sector s. Ali other sectors in the vicinity of s take the new tes). The algorithm

considers an error to have occwred if while updating t(s), the new value t is smaller than t(s).

To reduce the number of errors and to enable their detecùon. a set of small sectors close to

the boundary (called an insulation layer) is defined. These small sectors have more restrictive

processing mies. For a disk li. W(d) is the set of ail processors adjacent to the localion of the event

e (in Figure 2.3. W(d) =[PIJ'3J'4}). Processing ofe is not permined if for any PE in W(d)

a_time(pEi) < time(e). In this case. processing ofevent e must wait unùl both the bounded lag

restricùon time(e) < floor+ Bis satisfied and for ail PE in W(d) a_time(pEi) > time(e).

PI P:!

1

•"
P4 ~

•
:!

~

4

S

6

7

H

A B c o E F G H

31

•

•

Figure 2.3 Table divided into small sectors

With these processing restrictions, errors will not occur unless disks gain sufficient speed to

travel the distance w across the insulation layer in time less than B. Balls outside the insulation

layer are scheduled independently of the neighbour's lime. So. if a high speed bail was travelling

fast enough that it could cross through the insulation layer within the bounded lag B. it could collide

with a neighbour"s bail. This errorwill only occur if the ball is travelling at a velocity vw~ w/v

<B.

Errors cao also occur as a result ofa propagation ofcollisions through a chain of baIls that

stretch across the insulation layer. A chain ofballs occurs when a number ofballs close together

form a row perpendicular to the boudary belWeen IWO regions. Ifthe fust ball in the row is set in

motion. it quickly collides with the next ball in the row which in turn collides with the nexl One

end ofthe chain could collide with a bail outside the insulation layer. that was scheduled

•

•

•

independently of its neighbours a_time. while at the other end of the chain a ball eould collidc with

a ball from a neighbouring processor. The frequency with which this occurs is smal!. Il grows :L'

the balls are more closely packed together.

By restricting the processing of events with thc bounded lag method. error detcction has

been "fiItered". making it possible to have a crude and simple method of stale saving and recovery.

without the overhead necessary ta implement Time Warp's mcthod of rolling back. Just before:m

iteration begins "nothing is moving". an ideal time to save the state of the simulation. However.

saving states at each iteration is inefficient since most of the saved states would be unnecessary as

rollbacks "should" occur infrequently. States are saved when the floor excecds an amount of time

equal to pB from the previous saved state. B is the bounded lag and p is an adjustable parameter. p

~ 1. When an errar is detected the algorithm redoes the entire simulation from il' most recent

checkpoint.

The parallel program was emulated on a serial machine: the paper does not provide a

performance analysis which reports actual execution times on a real machine. The algorithm

successfully parallelizes the seriai algorithm in [Luba90] without being overburdened by roll back.,.

In a low density simulation there was approximately one roll back per 5XlO~ collisions and one per

2XI06 collisions for a high density simulation. However. the problem with the execution time of

this method could weil be the amount of time a processor spends blocked.

In [Beck88] the authors describe how a parallel simulation ofcollicling pucks was run on

the Tune Warp Operating System. The problem consists of IWO types ofobjects: pucks and sectors.

Each object is a process. As in [Luba92] the table is decomposed into sectors. Each sector is an

object and is responsible for scheduling collisions within its boundaries. The sectors examine the

•

•

33

lr.ljeclories of alilhe pucks wilhin ils boundaries 10 schedule only lhe earliesl predicred collision.

The secror reawakens al lhe lÎme of the collision and causes the pucks involved 10 change lheir

velOCilY via messages. The pucks change their velocily and calculale their new lr.ljeclory. Pucks

send EnrerlDcpart messages 10 the seclors as they move from one seclor 10 lhe olher. Because of

the dependency belween the sectors, errors can occur as balls move from one sector to another;

Time Warp is used to correct lhese errors. This implementation of the colliding pucks simulation

was tested in [Hont89). With 32 processors they reported speed ups of 7.9 over a seriai version.

3 Pamllelism in a Billiard Bail Simulation

When a billiard bail simulation is divided among multiple prccessors according to regions,

parallelism cxists because events in one region can be processed independently of those in other

regions. However, as mentioned above, balls close to the boundary beIWeen the IWO regions do nOl

share this luxury. It is as Iikely that a future event will be a collision with a bail from a neighbouring

processor, as it will be a collision with a bail from the same processor. Causality may be violated

when IWO events on opposite sides of a border beIWeen IWO processors are processed out of

sequence. Let us define processor Pa's current_time(pa) as the time of the current event which it is

processing. Suppose that processor Pb, which is on the opposite side of the border with Pa. has

currenCtime(pb) <currenctime(Pa), as in Figure 3.1. Ifwe use the seriai a1gorithm described in

section 2. the bail currently being processed by Pa is AI and the time ofits NEW event time(AI) is

the currenctime(Pa). AI 's NEW event al time(AI ') is to cross the border beIWeen Pa and Pb. The

bail currently being processed by Pb is BI. At time(B1) it bas collided with bail B2 and its new

direction is toward the borderberween Pb and Pa. In fact it will cross the border al time(Bl') <

•

•

currenuime(Pa) and continuc on 10 collidc wilh ball AI allimc(B 1") < currenuimc(Pa). An crror

will occur if Pa processcs A1and continucs 10 simulalc olhcr c\'cnts.

.. 1 ~l'

"1 ~u /00,0,
ftl" ~ "l' 1.""-.. 1'"

t "1" :Il

Pa 2.0 Critic:al cglon Ptt I.KO

Figure 3.1 Processing error

BaBs close to the border can he processed optimistically as in Time Warp [Beck88.Hont89]

in which errors are corrected by rolling back. They can also he simulated conservatively so that a

processor is not permitted to proceed until it is certain that no ball from a neighbouring processor

will cross over the border and cause an error.

[Luba92] is a hybrid approach. A certain amount of freedom is a1lowed outside of the

insulation layer aHowing a crude state recovery method to correct any errors. However. inside the

insulation layer strict conservatism is enforced.

The shared variable a1gorithm (descrihed in detail in the subsequent section) shares some

features with the a1gorithm described in [Luba92]. As in [Luba92]. it restricts which events rnay he

processed in a manner similar to the bounded lag approach. The simulation does not run in

•

•

•

35

Iterations. However. a processor eannot process an event e at time(e) when therc is a processor Pi

that sharcs a border with it and has a current_time(Pi) < time(e) - B. B is the distance from the

edge of the critical region to the border divided by an estimated maximum velocit)'. The value of B

is adjusted 10 effect a compromise between giving the processors the freedom to process balls in

thcir region independently of their neighbours. and preventing errors from occurring in the

simulation. Between eaeh processor. a portion of the simulation region is designated as a critical

region similar to the insulation layer. The critical rcgion is simply a region close to the borders

between IWO processors which has stricter rules for simulating the balls found inside of il. The

algorithm trealS a bail crossing the boundary beIWeen processors and moving into or out of the

critical region as an event. The method used to process balls serially within each processor is the

algorithm found in [Luba90]. described earlier.

It is the way in which ball~ are simulated inside the critical regions that distinguishes the

shared variable approach and which reaiizes substantial performance improvemenlS. Each

processor maintains. along with ilS event heap. a subset of that processor's evenlS in an ordered list

consisting of the evenlS that take place within the critical region. These lislS are shared by all

neighbouring processors. Processors use these lislS to determine when a ball will cross the border

and to extrapolate from this information whether they may ~e1y proceed without causing an error.

The algorithm avoids the severe blocking restrictions for processing evenlS close to the border

which can result in serializing the processors as they wait to schedule these balls. The shared

variables method loosens the restrictions on processing balls close to the border and consequently

reduces the amount of time processors spend waiting to process balls close to the borders.

•

•

•

3.1 The Algorithm

The algorithm has a different processing regime depending upon whether an event oceurs

inside or oUlSide of the critical region.

Balls oUlSide the critical region are "protected" by the critical region l'rom missing collisions

which could occur with balls in a neighbouring processor's regions. By restricting the processing of

balls to when time(e) < current_time(Pneigh) + B • balls oUlSide of the critical region are assured

that a ball from another processor cannot cause a violation of C".Iusaiity. For example. a....~ume that

as depicted in Figure 3.2. processor Pa is processing ball AI at time(A 1) = 2.0. If the estimated

maximum ball velocity is 4.0 unitslsec. it would take 1 sec (4.0 unilS 14.0 uniL~sec=1 sec) to cross

the critical region and possibly collide with another ball from the neighbouring region. thereby

causing an error. Therefore processor Pa is able to proceed without risk of error if the

current_time(Pb) > 1.0 sec (time(AJ) - B =2.0 sec - 1 sec = 1.0 sec). In the event that balls travel

at higher than the estimated maximum speed or there are chains of balls stretching acros.~ the

critical region. state recovery and resimulation are required [Luba92].

• ., : Il

0,
"'

-0

Wldlh 4.0 unit"

P;a ;:,0 Cfltll::;al RC~lon
Pb 1.7~

Figure 3.2 The critical region

If the bail Pa is currently anempting to process is in the critical region. then under a

• conservative algorithm Pa would black unùl current_time(Pb) > current_time(Pa). The algorithm

using shared variables tries to determine if a bail crosses the border before current_time(Pa). IfPa

determines that no bail crosses the border before current_time(Pa). then it can avoid useless

waiting and can proceed with the simulaùon. Otherwise. as in the conservative case. it must wail

ln Figure 3.3. processor Pa's current....time(Pa) is 2.0 when it tries to process AI at time(Al)

=2.0. At the same real time processor Pb's current....time(Pb) is 1.75 when it tries to process a bail

outside the critical region. Under "strict conservatism" processor Pa would have to wait since

current_ùme(Pa) > current_time(Pb). Using shared variables., processor Pa can look "inside" of Pb

and determine the state ofballs near the border. Sïnce the earliest time!hat a bail could cross the

border from Pb is time(B2) > current_time(Pa). Pa can safeIy proceed.

•

•

•

•

Il: 1 ...

"I:U ~o
0 ~

"
.~,,~

0
"1 1 ~.

:11I
"'1"

....0

Pa ~.O Criuc:l1 Rc:lt1on Pl'! l 75

Figure 3.3 Shared variables in criùcal region

The algorithm fust detemùnes if the current ball AI being processcd al ùme

currenl_ùme(Pa) is in the critical region. IfAI is nOl in the criùcal region. then the processor mu.~l

wail if current_time(Pa) > currenl_time[pi] + B for any processor Pi which shares a border with l'-.L

As mentioned above. ifPa is grealer than B ahead of ilS neighbour in simulaùon time il is pos..;ible

for a bail to cross Pa's critical region and affect ilS current bail. Ifcurrent_time(Pa) <

currenuime[Pi] + B it may proceed with processing ilS current bail.

If the current ball Al is inside the critical region. then a bail directly acros.~ the border could

affect it in time less than B. lt is here that a strictly conservati\~ approach mighl have 10 black.

whereas the shared variable algorithm tries to determine if it may proceed. There are two

conditions that must be satisfied in order for the shared variables to be lIti1ized FIrSl, the

currenctime(Pa) > currenuime(Pi) for some processor Pi thal is a neighbour ofbail A:. this

indieates that there is a ball in Pi that, depending on ilS current state, could cross the border and

•

•
'.

•

39

affect AI before currenUime(Pa) and that the a1gorithm needs to detennine if. in facto it will. If. on

the other hand. currenuime(Pa) < currenuime(Pi). there is no bail in Pi which could cross the

border and affect bail A and processor Pa can proceed. The second condition is the same as if the

bail is outside the critical region; current_time(Pa) < current_time{pi) + B. This is necessarily true

if current_time{pa) < current_time(Pi). Ifcurrenctime(Pa) > currenCtime(Pi) then the processor

needs to know ifany of the balls in the critical list of Pi can affecl the evenl being processed for Al.

This is nOl helpful ifcurrenl_time(Pa) > current_lime(Pi) + B since any bail in Pi could affect Pa.

hence looking al the balls in the critical region is nOl enough. and as mentioned above. the

processor mUSl wail

The a1gorithm also restricts the use of sbared variables to limes when il is greater !han

avg..time_between_events ahead of the slower neighbouring processor. This is 10 eosure thal the

processor does not useiessly calculate the lower bound when the neighbouring processor may

process !hal evenl nexl If. as in Figure 3.3. the next evenl which Pb is going 10 process is the bail

B3. then there is little 10 gain by having processor Pa access a sbared variable if the owner will

simulate il next anyhow. The payofffor using shared variables occurs when Pb has many other

events to simulate outside the critical region earlier !han the ball which Pa is waiting on.

To delermine !hat a bail will Dot cross before lime(AI), the a1gorithm must determine a

lower bound on the lime when a given bail in the critical region of processor Pi will cross. It does

this using the sbared variables accessed in the function find_lower_bound described in Figure 3.6 .

Fmt the a1gorithm sets the invariant flag..ball_can_affeccme equal to FAlSE. This indicates

whether or Dot the a1gorithm bas found a bail in pj's critical region which could cross the border

and affect Al. The algorithm goes through the ordered list ofhalls in pj's critical region starting

:

•

•

•

40

with the ball with the earliest NEW event time. delennining their lower_bounds until il comes 10 a

ball with NEW event time(e) > current_time(Pa). Recall that we want to know whal happens after

ilS NEW event. because the ball's NEW event represent.~ ilS future stale. thc OLO evenl has already

taken place and has been correctly processed. If the ball Il is in Pi's critical region and il~ fUlure

event time(ll) > currenl_time(Pa). then it cannot affect AI's current event. However. this is only

true if n's next event remains the same. It is possible that processor Pi will subsequently realize a

different NEW event for n where time(ll) < current_time(Pa) after Pa has detennined that n

would not affect il. This potential problem is addressed in the following section. If the lower

bound for any ball in Pi"s critical region is time(e) < current_time(pa). then the algorithm has found

a ball that could affect Pa Rag.,ball_can_affeccme is set to TRUE. and the algorithm exilS from

the loop since it is no longer concemed with any other balls in the critical region because the

processor is already required to wail.

OUlSide the loop the algorithm checks the value of f1ag.,ball_can_affect_me. If it is

FALSE. then the algorithm did not find any ball that would cross the boundary(palPi) in time(e) <

current_time(Pa) and processor Pa can proceed. If the value of f1ag.,ball_can_affect_me is TRUE

then the processor must wail. It wailS until the earliest NEW event in the critical region cr_time(pi)

> current_time(pa).

Depending on the position of the bail. it may he necessary for the a1gorithm to wait for more

than one processor. For example. if the ball is in a corner of ilS region. ilS future event could he

affected by any one of the three regions surrounding il. As in Figure 2.3. the ball d is in the upper

right corner ofP4. Balls close to the border ofP!. P2 or P3 could affect cl. Under these conditions

•
41

the a1gorithm would have to dctermine a 10wer....bound(PalPi) for each of the neighbouring

processors i. Figure 3.4 below contains the pseudo-code for the a1gorithm.

whcrc:. Band sarc constanl~.

cr_time is the lime of the tirst evcnt in the criticallist
cr_ball poinlS to the current b<l1I being pseudo simulaled

in the criticallist
Pa is the cum:nt processor cxecuting
Pi is a proeessor thm shares a border with Pa

if (bail is NOT in critical region)
for (""ch proeessor i which shares a border with Pa)

if(current_time[PaJ > current_time[Pi] + B)
waitO until current_lime[Pa] <

currenLtime[Pi] + B
endif

endfor
endif

Il if Pa is within B of Pi it can proeeed Il
Il otherwise il must wait Il

•
cise (b<l1I is in cr)

for (each neighbouring proeessor i ofball A)
if (currenLtime[Pal > currenLtime[Pi]) && (currenLtime[Pa] < currenuime[Pi] + B) Il shared

variables can be used Il
if (cr_lime[Pi] > currenLtime[Pi] + avs...time_between_evenlS)

flas...b<lIU::m....affecLme = FALSE: Il sel invarianl to FALSE Il
for (cr....ball = firsl ball in cr....lisl: Il st:lrt al firsl b<l1I in Pi's crilicallislll

cr_ball[NEW] < currenLlime[Pa]: If loop until find a ball thal can'l affecl Pa If
cr....ball = nexl in lisl) If look al nexl ball in Iisllf

low....bound = find....loWCl....bound(cr....ball): If detennine 10WCl_bound ofwhen il will cross If
if (Iow....bound <currenLtime[Pa]) If iflow....bound is less !han the currenLball time in

Pa il could be affected by a b<l1l in the cr....lisl of Pi If
flas...ball....can...affecLme =TRUE: 1/ sel invarianllo TRUE 1/

brcalc:
endif

endfor
endif

if (flas...ball....can...affecLme = TRUE)
wail unlil currenLtime < cr....time[Pi]

endif

else
wailO until currenLtime[Pa] < cr....time[Pi]
and currenLtime[Pa] < currenLtime[pi] + B

endelse

1/ if the invarianl is sel 10 TRUE the algorithm bas found
a ball thal could affect il and must wail If

1/ if il is too far ahead thal any ball in Pi could affect il
il must wail 1/

endfor (each neighbour of ball)
endelse (in cr)

Figure 3.4 Pseudo-code for shared variable algorithm

•

•

•

The posiùon of the NEW event for a ball in the critical rcgion will he within the reg.on

simulated by the owning processor. A neighbouring processor can determine how long it willtake

the ballto reach their shared border by using ils NEW event time and NEW event position and

velocity. The ball will cross in the time equalto the NEW event time. plus the time to tr.l"elthe

distance to the border. It is not. however. enough to simply use a ball's currcnt velocity and position

since a future collision can occur which would speed up il' approach to the border. It is necessary

to determine the ball's next collision. The tind_low_function tirst determines the balls next event

and then uses its new velocity and position to calculate the ùme required to cross the border

belWeen the processors. Figure 3.5 below contains the pseudo-code for the tind_lower_bound

algorithm.

wherc. cr_bail is the currenl bail in the criticallisl

lindJow_bound(cr_ball)
time_added =cr_ball's distance from border1 cr_ball->velocity Il calcul'le limc unlil il rcaches thc bordcr Il
if (lime_.dded >= 0) Il ifcr_bail is on the border or hcading low.rds il Il

10wer_bound_withouLcollision = cr_ball->timelNEW] + time_added III0wer_bound_withouLcollision
Il is the balls currenLtimc + lime_added Il

if (lime_.dded != 0) Il if nol on the border have 10 consider. collision Il
Bj <- bail with minimum inleraction..time(cr_ball. each bail in cr_lisl) Il determine which bail il will collide

withll
calcul'le new states .fter collision between cr_bail and Bj
calcul'le new lower_bound for cr_bail with position .nd velocity .fter collision
calcul'le new lower_bound for Bj with position and velocity after collision
lower_bound_after_collision equals minimum{lower_bound ofBj.lower_bound ofcr_bail)

endif

Il the lower_bound is the minimum of the 10wer_bound_withouLcollision and lower_bound_.fter_collision Il
lower_bound =min{lower_bound_withouLcollision.lower_bound_after_collision)
relUm{lower_bound)

else Il else il is hcading .way from the border Il
lower_bound =END_TIME
relUm(lower_bound)

endeJse
Figure 3.5 Pseudo-code for find_lower_bound

•

•

•

Thc function first nccds to dctermine thc timc_addcd for the ball we arc currently looking al

in the critical rcgion (referrcd to as the cr_ball). The variable time3dded is the amount of time

after the NEW eventtime untilthe ball crosses the boundary. If this time is equalto zero then the

ball's NEW event is crossing the border. If il is greater than zero then the ball will be moving

toward the border after il~ NEW event. Finally. if it is less than zero it will be moving away from

the border. If the ball is moving away from the border the function find_lowecbound retums

The lower bound for the cCball (if it does not collide with any other ball) is time_added

plus the ball's NEW event time. If the ball is heading toward the border. then the possibility must

be considered that a collision could occur which would decrease its arrival time at the border. Balls

heading away from the border may have a collision which could result in changing their direction,

toward the border. Since it would require another ball heading in the opposite direction (i.e. toward

the border) the algorithm does not determine the time of a collision until the ball heading toward the

border. if one exists. is examined.

The find_lower_bound function treats the cr_ball as though it were the current event on the

top of the processor's heap. Since balls are not actually being simulated. they are not taken off the

lis!. If there are balls earlier in the list then the cr_ball. they are assumed to have already been

processed - the possibility that the ecball's next event is a collision with such a ball has already

becn considered. Find_lower_bound uses the ball's NEW event to determine when its next

collision with a boundary or with another ball in the critical region will take place. To calculate

when a baIl will collide with a boundary or a another baIl the function uses the interaction_time

function as does the serial algorithm executed within each processor.

•

•

•

The find_Iower_bound function detennines the intemction_time hetween the current cf_hall

and eve!)' other bail further down in the critieallis!. Any possible collision with halls earlier in the

list would have been considered when the earlier balls' lower_bound wa.' detennined. The bail

with the earliest interaction_time is a,sumed to be the next bail to coll ide ;.vith the CUITent cr_bail.

For example. the function intemction_time would bc pa.,sed the CUITent cr_ball's NEW event time

and state. as though it were the event bcing processed within il' own region. Time:! and state:!

would bc the time and state of the OLD events of ail the other balls further down in the (ordered)

critical lis!. The cr_ball's next event is assumed to be a collision with the bail with the lowesl

intemction lime. The state of the balls after the collision is determined using the advance and jump

functions. and is then used to determine a new lower_bound.

The lower_bound_after_collision is the earliest lime either one of the balls involved will

cross the border with their new states after the collision. The find_lower_bound function retums

the earliest of the low_bound_without_collision and low_bound_after_collision. As is discussed

below it is possible that the collision in the crilical region may not occur if an earlier collision with

another bail is found. It is therefor necessary to retum the earliest of the low_bounds in case

another collision is found and one of the balls involved in the original collision is able to reach the

border quicker than had the collision occurred. This is analogous to the owning processor realizing

that a bail will collide with another bail that is a1ready scheduled to collide with a third bail, so the

third ball's state is restored to its state before the collision.

There are !Wo apparent problems with this a1gorithm. FtrSt. as menlioned above. the NEW

event for the cunent cr_bail may not be the correct event. The NEW event may not be correct if

later, in reaI lime, the owning processor realizes !hat the cr_bail will collide with another bail earlier

•

•

•

then the NEW cvcnt timc. This could cause an error if a neighbouring processor did not "sec" thc

other collision and dctcrmined thatthe cr_bail would not affect it based on thc prcvious NEW

cvcnl. For the NEW eventto change. the cr_bail would have tO collidc with a bail from either

outside the critical rcgion or from within the critical rcgion. If it werc with a bail from within the

critical region. the processor calling the find_lower_bound function will have seen this collision

and determined if the balls involved would affect il. Collisions with balls further down in the

criticallistthan the cCball will have bcen exarnined when determining the cCball's next evenl.

Collisions with balls earlier in the criticallistthen the cr_bail will have bcen exarnined when those

earlier balls wherc the cr_bail. A collision bctween the cr_bail and a bail from outside the critical

region however. will not yet have been encountered. Recall that we are not so concemed with the

exact time of the cr_ball's next event but rather with whether it will interfere with the current event

of the processor ahcad in simulation time. Just as in the case ofprocessing balls normally outside

the critical region. this would require at lcast an extra B units of time for the bail outside the region

to collide with the bail inside the critical region which eould then move across the border. Since

our processor is already required to be within B time units of its neighbours this would not cause an

errer. This addresses. as previously mentioned. why it is sufficient to calculate the lowecbound of

only those balls that have NEW event tirne(e) < currenctime(Pwaiting). A bail with a NEW event

time(e) > eurrent_tirne(Pwaiting) will not affect Pwaiting since tirne(e) happens after Pwaiting's

eurrent event Ooly if the balls NEW event tirne changes from tirne(e) to tirne(c'). where time(e') <

currenctime(Pwaiting). could it potentially affect the current bail being processed by Pwaiting. If

the collision is with a bail from outside the critical region then it would take too long for it to cross

the border.

•

•

•

The second problem is that we are only simulating the firstlayer of evcnts. Wc do not

consider the case in which a bail collides with a bail and then collides with another bail which

speeds ilS way to the border. Such considerations would necessitate a method of state rccovcry to

correct any errors which result from not taking into account these secondary collisions. In our

experimenlS we linùted the occurrence of these errors by using an appropriatcly large critical rcgion

and linùting the densily of the balls in the simulation.

Future projects include trying to realize further performance improvemenl~ by storing and

sharing balls' NEW event~ that were calculated using the find_lower_bound function. If onc

proeessors has fewer balls to simulate in ilS region for a given time period. it will frequently he

further ahead in simulation time than its neighbours. This will cause it to use the shared variables

to infer if its neighbours' balls will affect il. Once the neighbouring proeessor catches up in

simulation lime it could use the NEW event~calculated by the find_lower_bound function instead

of recaleulaling them itself. The owning proeessor would have to he able to determine if anything

had occurred in the crilical region since the neighbour proeessor had made the calculalions that

could cause them to he incorrect

Another project is to implement the algorithm on a distributed memol)' machine. Shared

variables could he implemented using distributed memol)' [Mehl93].

•

•

•

47

4 Exreriments

The expcriments were run on an BBN butlerfly. The butlerfly is a shared memory

multiprocessor in which each processor accesses shared memory using a shared bus. Each node of

the butlerfly is a 68200 Motorola processor. The simulation was programmed in C using the

MACH 1000 opcr.lting system. a UNIX-like opcrating system with an expanded libr.uy for

synchronous functions. including semaphores and shared memory. Each processor runs at 16 MHz.

The simulations were done with a 200X200 square unit table and with 1unit diameter

balls. As we will shall see. the most important factor in affecting the spced of the simulation is the

density of the balls on the table. The expcriments were run with between 1200 and 7200 balls on

the table. Their initial position and velocities vectors were randomly generated using the C library

randO function. The balls' positions were allowed to occupy any position on the board provided

that a ball was not touching or overlapping another ball. The x and y coordinates of the velociry

vectors were between the range of-4 and 4 units per second. The number of processors used were

4.9. 16 and 25.

We compare our algorithm to one which does not use shared variables. When such a

processor needs to process a bail in the critical region it must wait until the neighbouring

processor's simulation lime is greater!han the lime of the event it wishes to process. There is no

information available for the processor to use in order to determine if it may proceed. The

algorithm is identicaI to the one with shared variables in every other respect.

A larger population ofbaIls clearly results in more events occurring during the same period

of time in the simulation because there are more balIs to be simulated. therefore they collide with

one another more often. When balIs are closer together they are more likely to collide with a nearby

•

•

•

ball as they move about the table then they arc to tmyellong distances bctween collisions. When

the balls lfayellong distances they are processed !css often. enabling the processors to do other

work. If the density bccomes high. the balls bcgin to moye small distances. collide with a nearhy

ball. change direction and continue doing this until they come to a stage in which they arc

effectively"vibmting". In [Luba92]. balls expand. As this happens. they bccome more closely

packed and eventually stan vibrating. This situation lends itse1f wellto par.J1lcl simulation since

the dependency bctween the processors is based on balls moving acros..~ boundaries. something

which will not occur frequently when the balls are quasi-stationary. Furthermore. with very high

density simulations the processors will advance at approximately the sarne rate bccause events will

always be available to simulate at cach processor.

We conducted experiments be!Ween a low population simulation of 2400 balls to a high

population of 7200 balls. The more densely populated the critical region becomes. the more likely

a ball is to be involved in more than one collision on its way toward a border be!Ween !Wo

processors. As mentioned before. sinœ the algorithm bases its lower bound only upon the next

event • it is possible to miss a second collision that may cause an error as an unexpected ball crosses

the border. It is also only under these conditions that the possibility ofa "high surge in event

propagation speed" reallyexists. As in [Luba92] a crude state recovery mechanism would be

necessary to correct these errors. This rernains a project for future work. In our experimenL~a

population of7200 balls prove to be the lirnit where astate recovery mechanism would not be

necessary to correct these errors. With populations greater than 7200 balls they will begin to

approach a vibraùng ~te and the case with whicb vibrating balls cao in theory be simulated in

parallel sbould more than make up for loS! lime spent in state recovery [Luba92].

•

•

•

49

As can be seen in the gr.lphs in Figures 4.1. 4.2 and 4.3. significant speed ups relative to a

simulation without shared variables occur for each of the populations. When we go from a low

dcnsity population of 2400 to higher density population of 4800. the time saved with the shared

variables increases by a modest arnount. Without shared variables. as the density increases there

are more bal1s in the critical region to simulate. forcing a processor to move in lock step with il~

neighbours. However. with shared variables there is more opponunity to use this shared data to

recognize opponunities in which it is possible to avoid blocking. Table 4.1.4.2 and 4.3 shows that

there were more occa.~ions with 4800 and 7200 balls than with 2400 balls when the shared variable

a1gorithm could detennine that it could safely proceed.

The percentage decrease in execution time gained through the use of shared variables begins

to level off at a population of 7200 balls. a1though there are still impressive reductions in execution

time. The shared variable method's execution time is between 34% less with 9 processors and 49%

less with 25 processors. These improvements are comparable to those obtained with 4800 balls.

which are comparatively 36% and 53%. With more balls in the criticaJ regions there is a greater

dependency between the processors as the balls are bounced back and fonh across the boundary.

The processors are forced to simu1ate in lock step as they share these balls - no method to reduce

the arnount of time spent waiting can completely overcome this. As can be seen from Table 4.4 the

number of occasions when the a1gorithm with shared variables is able to avoid waiting with 7200

balls is less than number of occasions with 4800 balls.

As the number of processors increases. the improvement in execution limes increases for

the shared variable method over the non-shared variable method. With more processors "dividing"

•

•

•

5U

the table space. the percentage of space near borders between two processors increases. causing

dependencies between the processors.

Fundamentally. the purpose of using shared variables is to reduce the amount of waiting

time. As can be seen l'rom Tables 4.1. 4.2 and 4.3. the amount of time a processor wastes waiting

for other processors is greatly reduced using shared variables. Figures 4.1. 4.2 and 4.3 show this

improvement in execution time. With 2400 baIls and 9 processors the time of the shared variable

approach is 33% less than that of the algorithrn without shared variables. Those improvements risc

to 41 % with 16 processors and 48% with 25 processors. Similar resull~ occur with the other

simulation sizes. With 4800 balls and 9 processors there is a 36% reduction in the execution time.

with 16 processors there is a 46% reduction and with 25 processors there is a 53% reduction. Note

that with a population size of 2400 balls the increase in execution timc from 16 processors to 25

processors results from the number of baIls per processor being too small - the simulation is

overwhelmed by the overhead of passing messages.

An important influence on the algorithms' efficiency is the size of the critical region. The

larger the size of the critical region. the larger is the view a processor has of its neighbour's state.

Furthermore. with a larger critical region the likelihood oferrors oce· UTing [Luba92] decreases.

The cost of an increased size is having more baIls to maintain in the shared variables which

neighbours must examine in order to determine a lower bound. In our experimcnts. wc attempted

to choose the size of the critical region with these [wo factors in mind.

• _._l'loO..,, ~.-a ••••tll••

_ ••"."••_!'I...

51

'"''

.."

.."
,."

,
•

'.24 o.

------- 1:~

32,0' ---- ----~ -;;;:-.
'" ... 1---- 41.0 J
".1111

~...
1

1

1

"

Figure 4.1 Shared variables vs. without shared variables - 2400 bail population

1-'''tCIlO'lt alMlNO "'.,.._,
wt$al'Y tH.

..-

..- .
i't"7....

""-
:111.3 .,.., """-_... ""-
~ ""- _..
~ "'- ,.....,

.............. .8.1 'lIo

.......... $3,1 "llo
za:,&,"1

170&."

••

• ,....
....
....-.....

"
j

....

....
,...

•
Figure 4.2 Shared variables vs. without shared variables - 4800 ball pOpulation

..
..-

~.~
1,.

~
1

1

331'

~f..... !

"'''~ ~61M,.~

~ Q>'oW.e,

.......
"V'"

)42"":

:'1II18S:

o •

.-..4 '''-' .".0-.-._......_....-

....

....

" ...

.....

•

• Figure 4.3 Shared variables vs. without shared variables - 7200 bail population

•

• processors with without
shared variables shared variables

9 1341 6376.2

16 683.26 3379.3

24 383.08 2258.8

Table 4.1 Average total amount oftime (sec) processors spent waiting
with a population size of 7200 balls

53

•

•

processors with without
shared variables shared variables

9 2593 4940.3

16 604.04 2824.3

24 357.08 1847.1

Table 4.2 Average total amount of lime (sec) processors spent waiting
with a population size of4800 balls

processors with without
shared variables shared variables

9 232 752.68

16 102.74 425.02

24 83.82 342.69

Table 4.3 Average total amount of lime (sec) processors spent waiting
with a population size of2400 balls

:

54

• processors 2400 4800 7200
balls balls balls

9 53.11 131 104.4

16 49.75 149.5 137.31

24 50.24 152 126.52

Table 4.4 Average number of occasions when able to avoid blocking

5 Conclusion

We have presented in this paper. an algorithm for the parallel simulation of billiard balls

which makes use of shared variables. The shared variables cOll'l:!>l'Ond to a region at the boundary

•

•

of the (table) segments which are simuiated by each processor. As neighbouring processors have

access to the contents of these variables. the amount of blocking that is necessary in a conservative

simulation is greatiy reduced. A projeet for future work is to implement algorithms to read the

shared variables on a wstributed memory machine.

Experiments were performed on the BBN Butterfly. in which a purely conservative version

of this simulation was compared to one which makes use of our algorithm. Three population levels-

2400. 4800 and 7200 balls were used. In this approach. when a processor wants to process a bail in

the critical region. it blocks until the neighbouring processor's simulation time exceeds the time of

the event it wishes to process. The shared variable approach resuited in a 30 t<,_SO percent deerea.o;e

in the execution time compared to this approach.

Under conditions of extremely high population. it is possible that a simple checkpointing

seheme would be neeessary such as the one suggested in [Luba92]. This is a project for future

investigation.

•

•

•

55

Bihliographv

[Bain88) Bain. W. L. and Scott. D. S.. "An Algorithm for Time Syneronization in Distributed

Diserete Event Simulation". in Proe. SCS Multieonfcrcnec on Distributed Simultation. 1998.

pp30-33.

[Beck88) Beekman. Brian. et al.. "Distributed Simulation and Timc Warp Part 1: Design of

Colliding Pueks". Proceedings of the SCS Multiconferenec on Distributed Simulation. Vol. 19.

no. 3. (July).

[Bokh8I) Bokhari. S. "On the Mapping Problem". IEEE Trans. on Comp.. Vol. C-30. (3).

March 81. pp 207 - 214.

[Bokh87] Bokhari. S. "Assignment Problems in Parllel and Distributed Computing". Kluwer

Academie Publishers, Boston, 1987.

[Bouk92] Boukerche. A.• and Tropper, C.• "Parallel Sinùation on the HypercubeMultiprocessor".

Journal of Distributed Computing. 1992, pp 1 - 17.

[Bouk93] Boukerche. A.• and Tropper. C.. "Parallel Simulation of Communicating Finite State

Machines". in Proc. of the 1993 SCS on Parallel and Distributed Simulation. vol. 23. no. 1. 1993.

pp. 143-150.

[Brya] Bryant. R. E.. "Simulation of Paeket Communication Architecture Computer Systems".

MITILCS/TR-188. Massachusetts Institute ofTechnology. Cambridge. Mass.• Nov. 1977.

[Chan79] Chandy. K.M. and Misra J.• "Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs". IEEE TranS. on Software Engineering. SE-S. Sept. 1979,
-

pp440-452.

•

•

•

[Chan81] Chandy. K.M. and Misra J.. "Asynchronous Distributed Simulation via Sequence of

Parallel Computations". CACM. Vol. 24. No.4. April 1981. pp 198-206.

[Chan82] Chandy. KM, and Misra J.• "Distributed Computation on Graphs: Shoncst Path

Aigorithms". Common ACM 25(11 l. 1982. pp 833-837.

[Chan89] Chandy. K M.. and R. Sherman, "Space-Time and Simulation", in Proceedings of the

1989 SCS Multiconference on Distributed Simulation. 1989.53-57.

[Cid087] Cidon. 1.. Jaffe. J. Mo, Sidi. M.. "Local Distributed Deadlock Detection by Cycle

Detection and Clustering". IEEE Trans. Software Eng. SE-l3. 1987. pp 3-14.

(Comf82] Comfort. J. C.. "The Design of a Multi-microprocessor Based Simulation Computer­

r. Proceedings of the Fifteenth Annual Simulation Symposium. March 1982. pp 45-53.

(Cote92] Cote. C. and Tropper C.• "On Distributed and Pseudosimulation". 1992 Workshop on

Parallel and Distributed Simulation. SCS. Vol. 24. no. 3. Jan 1992. pp. 97-106.

(Das94] Das. S.• R.. and Fujimoto. R.. M.• "An Adaptive Memory Management Protocol for

Time Warp Parallel Simulation.... in Proc. 1994 ACM Sigmetrics Conf. on Measurement and

Modeling of Computer Systems. pp. 201-210. May 1994.

[Elma86] Elmagarmid. A. K. Dana, A. K. and Liu. M. To, "Deadlock Detection Algorithms in

Distributed Database Systems". Proc. IEEE Int. Conf. on Data Eng.• Los Angeles. Califomia.

Feb.• 1986.

[Fish78) Fishman. G.• S.• "Principles of Discrete Event Simulation". Wiley. New York. 1978.

•

•

57

[Fuji88j Fujimoto. R. M.. "Performance Measurements of Distributed Simulations Strategies". In

Proc. 1988. SCS Multiconference on Distributed Simulation. Vol. 19. No. 3. Feb. 1988.14-20.

[Fuji89j Fujimoto. R. M.• "Time Warp on a Shared Memory Multi-Processor". in Proceedings of

the 1989 International Conference on ParJ.Ilel Processing. Aug. 1989.242-249.

[Fuji90) Fujimoto. R. M.. "Parallel Discrete Event Simulation". in Proc. of the Winter Sirnul.

Conf.. 1989. 19-28.

[Garc79) Garcy. M. R.. and Johnson. D. S.. "Computers and Intractability: A Guide to the Theory

of NP-completeness". W.H. Freeman and Company. New York. 1979.

[Gros87] Groselj. B.. and Tropper. C.• "Pseudosimulation: An A1gorithm for Distributed

Simulation with Limited Memory". International Journal of Parallel Prograrnming. Vol. 15. No.

5. Oct. 1987. pp413 -456.

[Gross88] Groselj. B.• and Tropper. C.• "The Time-of-Next-Event Aigorithrn". in Proceedings of

the 1988 Distributed Simulation Conference. SCS Simulation Series. Vol. 19. No. 3. Feb. 1988.

San Diego. CAL. pp 25-29.

[Gros91] Groselh. B.• and Tropper. C.• "The Distributed Simulation ofClusterec1 Proeesses".

Distributed Computing. vol. 4 pp. 111-121. 1991.

[Hont89] Hontalas. P.• et al. "Performance of the Colliding Pucks Simulation on the Time Warp

Operating Systems". Distributed Simulation. SCS Simulation Series. vol 21. no. 2. pp 3-9.

[Jeff82] Jefferson. D. R.. and H. SowizraI. H.• "Fast Concurrent Simulation using the Time Warp

Mechanism. Part 1: Local Control", Computer Science Department. V.S.C.. TR-83-204. Los

Angeles. CAL 90089-0782.

• [Jeff85] Jefferson. D. R.. "Vinual Timc··. ACM Trans. Prog. Lang. Syst. 77.(3). July 19S5. 405­

425.

[John77] Johnson. D. B.. "Efficicnt Algorithms for Shoncst Paths in Sparsc NClworks". J ACM.

Vol. 24. 1977. pp 1-13.

[Kaud87] Kaudel. F. J.• "A Literature Survey on Distributed Discrctc Event Simulation".

Simuleller. Publication of SIGSIM. ACM Press. Vol. 18. Junc 1987. 11-21.

[Lin89] Lin. Y.-B.• and Lazowska. E. D. "A study ofTimc Warp Rollback Mechanisms". TR S'l­

09-07. Depanment of Computer Science and Engineering. University of Washington. 1989.

[Lin92] Y. Lin. "Memory Management A1gorithms for Optimistic Parallel Simulation".

Information Sciences, vol. 77. pp. 119 - 140. 1992.

• [Luba88] Lubachevsky. B.. "Bounded Lag Distributed Discrete Event Simulation", Distributcd

Simulation, SCS Simulation Series. 1988, pp 183-191.

[Luba91] Lubachevsky. B.• "How to Simulate Billiards and Similar Systems" Journal of

ComputationaJ Physics 94. 1991, pp 255-283.

[Luba92] Lubachevsky, B.• "Simulating Colliding Rigid Disks in ParaJlel Using Bounded Lag

Without Time Warp". Distributed Simulation. SCS Simulation Series, vol 22. no. 1. pp 194-202.

[Made88] Madisetti. J.. WaJrand J., ar.d Messerschmitt D.• "WOLF: A Rollback Aigorithm for

Optmistic Distributed Simulations", 1988 Winter Simulation Conference Proceedings, Dec.

1988.

•

•
59

[MehI93] Mehl. H. and Hammes. S.. "Shared Variables in Distributed Simulation". Proc 7th

Workshop on Parallel and Distributed Simulation (PADS93). 1993. IEEE Computer Society

Press. vo1.23. no. 1. pp 68-76.

[Misr86] Misra. J.. Chandy. K. M.. "Distributed Discrete-event Simulation". ACM Computing

Surveys, 18(1 J. March 1986.39-65.

[Nata86] Natar.ljan, N.. "A Distributed Scheme for Detecting Communication Deadlocks". IEEE

Trms. Soft. Eng., Vol. SE-12, No. 4, pp. 531-537. April 1986.

[Nico88] Nicol. D. M., "ParalleI Discrete-Event Simulation of FCFS Stochastic Queuing

Networks", in Proc. of the ACM SIGPLAN Symposium on Parallel Programming, Enviroments,

Applications, and Languages, Yale University, July 88.

[Ni85] Ni, L. et. al.. "Distributed Drafting Algorithm for Load Balancing", IEEE Trans. Sor.

• Eng.. Vol. 11(10). 1986.

[Peac79] Peacock. J. K.. Wong. J. W.• and Manning. E. G.• "Distributed Simulation Using a

NelWork of Processors". Computer NelWorks 3, (1 J. Feb. 1979.44-56.

[Reed88] Reed, D. A. and Maloney. A. "ParaIlel Discrete Event Simulation: The Chandy-Misra

Approach", in ?roc. 1988 SCS Multiconference on Distributed Simulation. 1988,8-13.

[Reih90] Reiher. P., Fujimoto, R.. Bellenot. S.. and Jefferson. D" "Cancellation Strategies in

Optimistic Execution Systems". Proceedings 1990 SCS Multiconference on Distributed

Simulation. 1990.

[Righ89] Righter. R.• Walrand J. C" "Distributed Simulation of Discrete Event Systems", in

Proceedings of IEEE. Vol. 77. No. 1. Jan. 1989.99-113.

•

•

•

•

bU

(Stan84] Stankovie. J. and Sidhy. 1.. "An Adaptive Bidding Algorithm for Processcs. Clustcrs

and Distributed Groups". Proe. 4th Int. Conf. Distributed Comput. Systems. 1984.

(Su89] Su. W. K.. and Seitz. C.L. .•, \lariants of the Chandy-Misra-Bryant Distributcd Simu!:ltion

Algorithm". in Proeeedings of the 1\/89 SCS Multieonferenee on Distributed Simulation. Vol.- -
21. No. 2, March. 1989.38-43.

[Wagn89] Wagner. D. B.. Lazowska. E. D. and Bersahd. B.. "Techniques for Efficient Sharcd

Memory Par.tllel Simulation". in Pree. 1989 SCS Multiconference on Distributed Simulation.

1989. 29-37.

