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ABSTRACT
* ' ‘
In this study, we address the, factorization problem in the

'
!

, Hard;(~ P spaces, and provide a fast algorithm for 'its ﬂplmentation

~

)
with applicaf:ions to some! important engineering problems. The Thesis

is presented in three partm « ~ ° . - r

e

In the firstpart we lay down the technical foundations

of the new approach in the scalar case. First, the factorization problem

"' is formulated in the HY spaces, A formulation with sufficient generality

. to encompass practically all such engineering problems, Necessary and

~

sufficient conditions for the existence of the spectral factors are de-

\rived, and a characterization of the class of functions admitting a canoni-
( ; l cal factorization is obtained. The reduction method is applied to certain
) 2 .
Toeplitz equations in H space to generate a sequence of appfoximate

spectral factors. When the Laguerre basis is used in the reduction method,
Y ’ £}
the Toeplitz equan.tion turns out to a Toeplitz set of linear equations, We

v
1 ]

also provide an error . bound and an estimate for the'speed of convergence.

In the second part, the matrix version of all the scalar

results is provided and enriched with c{i?c\us\%ions and extensions. In
B -
particular, we have shown that the factorization problem is associated with

. : . . . 2+ .
the solutions of certain Toeplitz equations in H spaces. The classi-

r——

. cal Gohberg-Krein factorization is re-examined wi[hix} the framework developed
here, and the connections between the outer—~factorization, the canonical
factorization, and inversion of certain Toeplitz operator have also been

- _ unveiled. . ‘
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In Part T)\ree, we generalize the Davis and Barry formula
| !

\ !
for the feedback gain in the LQR problems. The new setting, egquipped

‘ AN
-with the spectral factorization method, provides fast and efficient

factorization, and positive polynomials factorization.| Our parallel

results for the discrete time case are given in brief together with many

interesting computational properties,
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|

H On aborde dans cette &tude le probléme de factorisation

de fonctions dans un espace de Hardy g . On met au point un l%‘lgorithme
| .

de solution rapide, avec application 3 quelques problémes importdnts en

génie des systén\es. La thdse est présentée ‘sous forme de trois communi-

'

cations autonomes. |
i
3

Les fondements techniques de la houvelle approché sont posés
dans la premiére partie, pour le ca‘s'. monovariable. On formule 4'abord le
probféme de factorisation dans l'espace #P , avec suffisemment de géné-
ralité pou.r;' inclure presque toutes les applications de ce probléme. On
donne des cdnditions nécessaires et suffisgntea pour l'existence de fac-
teurs spectraux, et on obtient un caractérisativ‘an de la classe de fonctions
admettant une factorisation canonique. Une méthode de réduction est
appliquée 3 certaines équations de type Toeplitz en H2 afin de générer‘
une séquence convergente de facteurs spectraux approchés, Ces équations

g'avérent lindaires lorsqu’on utilise les fonctions de Laguerre. On donne

aussi une bonne d'erreur ainsi qu'un estimé de la rapidité de convergence.

ol
.

i
La seconde partie présente la version multivariable de la

"

premidre, enrichie de quelques extensions, Le probléme de factorisation
ast agsocié i la solution d'équations de type Toeplitz dans un espace H:("i .
On revoit l'oeuvre classi de Gohberg et Krein 3 la lumidre de la nouvelle

approche, et on fait les biens entre la factorisation externe, la factorisa=-

tion canonique et l'inversion de certains opérateurs Toeplitz.

i

i
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La troisidme partie est consacrée § la généralisation des

résultats de Davis et Barry pour le gain de rétroaction dans le probléme

linéaire-quadratique. La nouvelle méthode donné lieu i des algorithms

"
» !
de golution efficaces pour une variété de problémes de factoﬁsation tels

TS, A R R

le probléme LQ , la factorisation de matrices rationelles et de poly~

' ndmes. On donne eh bref des résultats paralléles pour le cas de systémes

: . discrétisés.
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- CLAIM OF ORIGINALITY

Two main contributions in control theory and applications
are claimed. The first one is a novel formulation of the spectral

factorization problem in the Hardy wP spaces of freguency response

functions. The :second contribution is the introduction of fast algorithms

-for solving some of the most important control problems.

’
«f

The new characterization of the factorization problem leads

to the following results: .

(1) A new understanding of the relationship between
‘the factorization problem and the inversion of
the generalized frequency-domain image of the

Wiener-Hopf operator.

(ii) A complete characterization of a class of functions
@
p

admitting a canonical factorizgtion in mem .
(iii) The formulation provides, to the first time, a
test and a procedure for solving a wide class of

. ) Wiener-Hopf equations with unsummable kermnels.

it

~

(iv) The relation between the outer~factorization of
functions, which appears frequently in the modern
design of feedback systems, and the spectral fac-

torization is unveiled.

T
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rational matrices and positive polynomials arising in other contexts than

[}

N

. )
(v) The classical Gohberg~Krein factorization, and . -
its connection with cextain Toeplitz operators
in H2 space are re~investigated in the light
)

of the new formulation...

-

(vi)  The new ¥ormulation provides as well a rigorous
methodology to approach many related open issues
in systems theory, e.g., the spectral theory of
. the linear gquadratic regqulator problems, some .
('ii'stributed filtering problems, Wiener-Hopf equa-

tions with unsummable kernels, and many others.

The second main contribution is the developing of fast and
simple algotithms, the first of their kind, for solving a wide cla‘ss of
LOR and filtering problems without solving the I;iccati equation, in con-
tinuous and discrete time, and for lumped and distributed parameter systems.
We have also modified‘the integral formula of Davis and Barry for the
optimal feedback gain. The new formula enables the treatment of unstable
systems and provides 'a prescaling technique for the eigenvalues of the
system :n such a way to simplify the computation, and to accelerate the

convergence of the algorithms. The po&:entialities of the approach has

been demonstrated By providing subalgorithms for the factorization of

]

control.
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HISTORICAL BACKGROUND

The relation between the factorization prob:{.em and the "solu—'
tion of the algebraic Riccato equa;:ion (A.R.E.) has be:I')x known for quite
a long time, In fact, this relation was utilized to prove the existence
and uniqueness of the solut;'ion of certain A.R.E. in [6, 9 and«10, p. III]
and [3, P. Il. Anderson} [12, p, III] reduced "the factorizaticn problem .
to the solution of.an A.R.E. . Brockett [8, p. III] was the J;;i.rst one to
suggest the- solution 6f the linear Quad:.‘-atic Regﬁf&qtor problem via the
spectral factorization. However, the computation needed to implement this
idea in t;1e multivariable’ case was not simpler than solving the A.R.E..
Inspired by the work of Brockett, Davis and Barry [2, p. I] derived an
iqtegrai formula which gives direct?l.y the optimal feedback gain -in terms of
the spectral fal®tor of certain positive function, and applied this approach
to the solution of a class of distributed parameter systems. Davis et al
extended “also, these results to the solution of the di\s‘trib'ﬁted filtering
{1, 1;\. 11, and to a Z'lass of open loop unstable distrilhuted parameter
[5, p. III]. It is expected that this approach may also cover a
wide ;rariety of disit;ributed paraimeter and large scale systems. Unfor-

o

tunately, only véry few numerical methods are available to implement such
a factorization.' Perhaps the earliest method is the iteration projection
method proposed by Masani and Wiener [4 and 5, p. Il. However, the

stringent conditions on the class of functions applicable to their method

made the method of limited use. F. Stenger [6, Part IJ considered the

o~
spectral factorization for the class of functions in Ll R N Lz*SR) using
a frequency domain approximation scheme in which a function a (jw) is ex-
- J !
& s
- ’ mlwm J -
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panded in the form

-]

a (juw) ~ Z ., a (j (nhd + %-h)) xn(w)

o OO

where xn(w) is a characteristic function on the frequency interval

et — .
{nh, (n+l)h) . The spectral factor of a(jw) is then obtained using
the classical idea of taging the Log, performing the causal projection,
then taking the anti-log. However, the high numerical accuracy needed
to héndle these characteristic functions and the fact that the structure

of the characteristic functions is different for different intervals, and ‘

that for a reasonable accuracy the frequency range has to be divided into

a large number of intervals, make the method computationally very demand-

ing.

Davis and Dickinson [7, p. I] have recently introduced an
iterative method for the spectrals factorization of Hermitian positive de-
finite matrices. Although the method has a quadratic convergence rate,
the causal projection and the matrix inversion required at each iteration
step and at each frequency }epresent a serious computational arawback.
Techniques of spectral factorization of rational mgtrices are legion
[11 - 22, p, III]. Aﬁthorough examination of this case has appeared in
[13, p. I11]. The majority of these techniques, including those of
{14 - i&,_ﬁ.“iII], rely on frequency domain manipulations in which the
problem of factoring a matrix of real rational functions is reduced to

factoring an even polynomial or a self-inversive polynomial. Anderson et
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{ 'l”’!»—m-m
al suggested to reduce the factorization problem to the solution of a

continuous {10, p. III] or a discrete type [11, p. IIX] matrix Riccati

equation, o'

o

» The theoretical aspects of the factorization problem and its
connection with the Wiener-Hopf equation for the class of kernels in )
Ll(R) was th;roughly investigated in the éamous monograph of Krein
[10, p. I] . These results were extended afterwards to the matrix case
in [3, p. II], and enriched with many interesting results in [4 - 6,

p. IX] . Finally,'these results were formulated’'in abstract form in

. [20 and 21, p. II] .

°
‘ v’
P
-
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INTRODUCTION

Some of the most important accamplishments in modern filter-
ing 'and systems theory hinge on the spectral factorization of functions.
When éhevnetwork 6r system is characterized by a set of state equations,

\ the solution of network or systems synthesis problems is almost invariably
}ormulated in terms of the solution of a matrix Riccati equation, whereas
if the gystem is modeled by its impulse response, one must solve a Wiener-

{
Hopf equation. Similarly in the frequency domain, synthesis reduces to

the factorization of a complex metrix function, Indeed, the three pr&ﬁlems

are equivalent and all reduce to the problem of factoringﬁgbmatrix valued

function.

\

In this study w; present a novel °characterization of the

' factorization problem in the Hardy i spaces of the frequency response ’
functions, as weii as a fast algorithm for its implementation. A formula-
tion sufficiently general to encompass both the finite and the infinite
dimension cases, and sufficiently rich to inspire the interested colleagues
of many extensions and ramifications, and moreover with the proper formal
language to communicate with the moaerﬂ trends in t#e design of feedback.

. Systems, It would appear that the fast algorithm developed here i; the
first of its E}nd for the linear quadratic regulafo; LOR and the filter-

ing problems. A unified approach is alsoc provided for the LQR qpn,pblems,

rational matrix functions factorization, and for positive polynomials

Lo

factorization.

.
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The Thesis is presented in three autonomous papers. The
first lays down the technical foundations of the algorithm in the scalar
case.' First, we invéstigate the relationship between the generalized
frequency domain image of the Wiener-Hopf equation, which is known as/the
Teeplitz equations, and the spectral factorization formuiated directly in
‘the frequency domain-spaces, i.e., the Hardy wP spaces. A complete
characterization of the class of functions admitting a canonical factori-
zation i; brought up. The factorization of positive almost every whe;e

’-v .
a.e.w functions and the standard Krein-type factorization are studied as

P

*

special cases. It is shown that the spectral factors can be obtained by -~
solving certain Toeplitz equations in the Hilbert space Hz+ using the
reduction method., An orthonormal basis in H2 space is chosen in such

a way that the reduced Toeplitz operatoxr turns oué to be a Toeplitz matrix,

with the advantage éf simple structure and the availability of fast algorithms

for its inversion and factorization. We introdute as well a novel approach

for estimating .the speed of conversion of the algorithm in terms of some .
smoothness conditions on the canonical factors. Finally, some interesting

computational aspects are discussed.

< ’

¢
The second paper is concerned with the multidimensional. case .

-
Th; argument and the framework are basically the(same ag in the scalar * N
case. In fact, with the matrix notations brought up at the start of this ;o
paper, most of the scalar'r;sults are transferred so smoothfy and conveniently :
to the matrix case that no amendments inhthe proofs are even required, i
leaving room for comments and discuésion. Moreover, for the ultimate con- - | 2
, %
&

<
,
il
el

-
e

b

i

gt
. — - .

g drpwibans - . e S e o B i SRS )



“

l’ 3
. L
venience most of the theorems in part two are deliberately stated to ‘\
match corresponding ones in the first paper. However, othexr new re- \
sul,t/s are reported as well. The relation between the so-called Outer- \ i
s )
factorization of a function, which appears frequently in the modern \

1
!
i

) i
design of feedback systems, and the canonical factorization is unveiled.
.. . .
The standard Gohberg-Krein factorization, and the connection between the

canonical factorization and inversion of the related Toéplitz operator are

-

elaborately re~investigated in the realm of the formulation developed here.

The results are also enriched by discugsions and extensions.

Part Three is dedicated to the illustration of some important

control and systems applications in the light of the results brought up in

L]

the preceding parts of this study. We generalize the Davis and Barry in-

tegral formula for the optimal feedback gain in the LOR problems.

%

The
new setting covers a wider) class of cost functions and overcomes the diffi-

culty of treating unstable systems. The new formula, equipped with the

bropd!'sed spectral factorization method, provides fast and efficient algo-

rithms for solving a wide class of LQR problems, rational matrix functions

factorization, and positive polynamials factorization. Our parallel re-

sults for the discrete time case are given in brief together with many

interesting computational properties.

e
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1 »/

~ - yo.

o~
PART I
-
, .
. .
.
~ .
e o
¢ *
. .
.
,
,
4 -
3 .
© .
.
.
‘ - Y
.
! .
.
) N + 1
:
! -
N - - . Y
- i €
o

EFEE RS ST

-

[N

PSR Jpnuare SR S




I8 ]

ot

-
=

. I. INTRODUCTION

SR g SRR A AR

Recently, there has been an increasing interest in

P

the solution of the filt:.ering [1] and. linear quadratic regulator [2, 3].

Using the so~called Canonical Factorization of a function, say a (jw),

W aa A

in the form

1

L+a G = m+6 G+ 6t Gwl” (1.1)

+ . L+l
where [I + G (_jm)]— ‘have analytic continuation in the open right

half plane, an approach which avoids completely the need for solving

the matrix Riccati equation.

o ’ . Moreover, this approach may also cover a wide variety
i of distributed parameter and large scale systems, Unfortunately, only

very few numerical metho‘ds are available to implement such a factoriza-

tion\. Psg:haps the earliest method is the iterative projection scheme

% proposed by Masani and Wiener (41, (5] who showed that i:c' a (jw) is

2 (R) and the

, the‘Fourier transform F.T. of some av(t) €l (m N
la (w) |'w <1, then the function G (jw) may be obtained via the
formula.

G (4w) ~ p lal -p lap [al]l +p (ap [ap [a]l]— -----

+ >
; . . . where p is the projection operator from 2 (R) onto 2t (m .

F, Stenger [6] also considered the factorization (1.1)

1 2 e

for the Class of Fourier transform of functions in L~ (R) N L” (R)

C'E using the frequency domain approximation

|
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aGe) - I aGnh+zn) oz ( : (1.2)

n=t=0

where z (w) 1is an approximate characteristic function on the frequency

interval (nh , (n+l) h) . The constructed characteristic:functions turn

out to take the form

J Oy
-] et
) r x o
x + L]
W . ] ST = (1.3)
m=0 ’ J m,n .
. +
where r and a are certain constants. Then the factor (1 + G )

m,n

is obtained using the classical idea of Raking the Log, performing. the
projection, then taking the antilog. The main advantage of this method
is its\ability to track rapidly changing frequency responses. However,
the hiéh numerical accuracy needed to handle these characteristic func-
tions, and the fact that the structure%6fiZ;:‘characteristic functions is
'different for different intervals, and that for a reasonable accuracy the
frequency range has to be divided into a iarge number. of intervals, make
. \ the method coﬁputationally very demanding. Moreover, the method, in its

" current form, is technically not applicable to the multivariable case.

J. Daéis and R.G, Dickinson [7] have recently developed an

iterative method, originally due to T. Wilson ([8], [9], for the gpectral

PP

factorization (1) using the formula

<

' + + + * I SRS |
(1 *.Gn+l) = (1 + Gn)(l +p [(1 + Gn) (L +a)(1 + Gn) -11)

o i, B R AR Yo B K Ry T
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The iteration is executed at each frequency and the projection is per-
formed approximately using the Stenger's idea. As these two methods '
are basically pointwise, they are not suitable for znalytic or semi-

analytic approximate solutions.

This paper presents the technical foundations, 13 the scalar
2 .,

Ly

case, of a new approach for approximating the canconical factors of a

given function, The idea itself can be summarized in few words: .
. “- 5

traditionally, the canonical factorization is used to solve the Wiener-
Hopf equation [10] , here certain generalized Wiener-Hopf equations,
called Toeplitz equations, will be utilized to obtain the spectral fac-
tors. First, the formulation of the factorization problem is carried out
in the #®F (R) spaces. Necessary and sufficient conditions for the

existence of the canonical factorization of a given function have been

%

derived. In particular the correspondefice between’the canaonical factor's

' ' +
and the solutions of certain equations in HZ-(R) spaces is established.

.

It igs shown that these equations can be solved using the reduction method
f;r operator equations in Hilbert space. An orthonormal basis in H2 (R)
space is chosen in such a way that the reduced operator mat%ix turns out , .
to be a Toeplitz matrix, with the advantages of simple structure and the
availability of fast algorithms for its inversion and factorization. We
provide alsc an error estimate and an expre;sion for the speed by which-

the approximation error decays to zer; in terms of some gmoothness condi-
tions on the canonical factors. Finally the méthod‘is illustrated by a

-

numerical example,
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II, THE MAIN RESULT ' ~ -
. , *
Ford/llustratlon, consider the standard finite dimensional

infinite time linear requlator problem x
£ = ax +BU (2.1)
. y = Cx ’ -

with the cost functibn

g = I (U2 +y2) dt (2.2)

o

Assume that (A, B, C] is a minimal realization of the transfer function

1

F(3W) = C(SI-A) B , Re (A, (A)) <0 =1, 2, +o. , din X .

, p]
Then by standard results [28] the optimal control is given by

U (t)y = -BTPx (t) (2.3)

where K is the unique positive definite solution of the algebraic Riccati

‘

equation

[
ATP+ Pa- PeB™P +cfc = o ' (2.4)

°

Davis [2] has shown that tﬁis optimal feedback gain can be

found, without solving (4) , using the integral representation

PE = '2’;'1? f (0w I-MFcTc (oI -ANTB L+6 (Ju] dv

- ’ . . {2.5)
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where (I + G) is the minimal phase function satisfying the spectral

factorization

.

1 * . -1 .
= [I +F (jw) F {jw)l = [1+G (jwlll +6 (juw)]

(1 +a)

/ (2.6)

The above integral formula is valid as well for a variety of distrﬁ‘uted.

]

1 ar
parameter “LOR problems {[2] , and their dual distributed filtering prob-

lems [1l] .

Tlearly the main difficulty of the above approach is the

-

factorization (2.6). An efficient factorization method would ‘greatly in-
crease the applicability' of the method. It is expected that the computa-
tions could be performed for systems of verylarge dimension, provided 2

is sparse. !

&

In this paper we address the factorization (2.6), as well as

a

a generalized version of it, in the Hp spaces (theorems 1, 2,3 and 4),

the spacesof the frequency response functions. In particular, we show

>

that the factor G satisfies certain equations in H2 space (Theorem 2 °
L]

and 3). The reduction method in Hilbert 'spaces (Section IV) is applied

to generate a sequence {Gn} of approximating functions (Theorems 6 and

7). ' ST
n !
~ ' +
c"n = z gk,n ¢k !
k=0 .

where {4%}& is the Laguerre orthonormal set in gt space.
. k=0 ‘

?

’7»)

N

P

R
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It is shown that the coefficients }

n
£ai .
{gk,n Kmge O3 be obtained by solving

a Toeplitz set of linear equations (Theorem 7 and its corollary).
Levinson's algoxithm [24] is applied to generate récursiveiy the se-
quence of the approximating solutions as’shown bélow,“ It is proved

that, if G (s) is ana]/.ytic in the closed right half plane, the method

convergas expc;nentially (Theorem 8 and its corollaries). i {

P
9

The Algorithm-

« . w
L

The factor G of the factorization (2.6}, where (1 + a (jw))

is rea(l and ess inf (1 + a) > 0 , may be obtained as follows:

g ¢
Step 1
Find the coefficients {ak{‘ of the Laguerre expansion
k=0
N . -
a (jw) = Z @ (¢k+ ¢k) 7
k=0
Using th formula
o0
. ¢ . 9
- ‘a (Jw) =1 jw+l
U.k = < a (jw)l:¢k> [ ; - jw"l (jw_l) du’-’
-00 »
Step 2
Construet the Toeplitz matrix, Tn
n p
T T Bl
o
bo = 1+ =
. K
‘ -
&
« ’

~
e

B

o e v
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Step 3

.otk

; ’ Generate the seqﬁence of approximate solutions {Gn} using

R

Levinson's recursive algorithm for solwving a Toeplitz set of linear

‘ equations. . ‘

. Let .
; A = b b
1 00 1/ Po %
: D
: 990 = %/ Yo
3 / 91 ® ~ 20 P = % T %0 By .
9ny = Gan " Aan 9
! 01l 00 00 “11
1 -
|
| .
[ DO1 m=1,M
1‘ m=1 max m
Z’ )‘Om (bo - 2 kk,m—l bm-k) = bm+l - 2 Ak-l,m—l. bk
! k=0
i k=1
5 : - A 4 K=1, 2, vee , m
% )‘k,m = kk—l,m-l , om x‘nm-_]:,,tkg./’ rer !
& n m
- gm+]. smtl ‘(bo - X A'k,m bm+l-k)° '°m+l - 2 gk ,m l:’m+l-k
k=0 ’ k=0
v I mil gk,m - lk,m gm*-l,mﬂ j k=0; <oy m
¢ o
Vas ? ~ F

—
3

L
1,
q




L .

m . 2 2
) G mir ™ T+ el mel , GOTO 2 -
=0
. .
1 - Continue
2 ~ STOP h
Steg 4 .

Evaluate the approximate optimal gain using the formula

' PB :ﬁ-j-% (SI+AT)_1CTC(SI-A);
I‘ -
m+l g
o+ § il 511. (z;bk] ds (2.8)
ko VT

I is a rectifiable contour in the R.H.P. enclosing ‘"
o] (-I:T). Practically Steps (1) and (2) are inserted in the algorithm
(Step 3) so that the coefficients o and bk are computed only when-
ever needed in the recursion.
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III, BACKGROUND [11] , [12]

let 1< p<we (p=x andlet L’ (R) denote the
set of all complex valued Lebesque measurable functions a (x) de-
fined on the real line R such that

0

I]a(x) Ipd.'c<w_‘ “(ess sup | a (x) | < w)
A )

The set IP (R) are Banach spaces under the norm

1

p f
la (x)“p = [ J | a (x)lp dar] (Baﬂc° = ess sup la\(x)l)
R

The Hardy space Hp+(R) Q(HP-(R)) is defined to be the class of
analytic functions in the open right half- plane C+ (in the open left

half plane C ) , such.that

sup J |a'(c+jw)|pdw.< =
og>0 R

(0 < Q)

LT - +
The space H (R) (B (R)) 1is the class of analytic functions in C

(¢C7) such that : .

ess sup | a (0 +jw| < =

g >0
(¢ < 0)

It can be shown that -H'Z spaces p @ 1 are Banach spaces under the

norm

o e g S

§ neen
SEDRL § i

T

03
At

el
:%‘53
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. i
. | . 5

fa &l ="' sup { j | a ¢+ jw)T dw}

Fr > ¢>a R

(o <O

la )1 = ess suwp | a (0 + jw|)

[N

H— g >0

(o < 0)

If £ (s) € HP » then it has non-tangential limits at almost every point

of the imaginary axis and its %undary value function £ (jw} is an

element of P (R) . Moreover £ (s) can always be extracted from its

boundary value via Poisson formula,

A
As the association f (s) +> f (jw) is one-to-one and length preserv-

ing, from now on we sl&all not differentiate between a function and its

boundary value. We shal\\admit the use of expressiofis such as, say
"f (ju) 4is an element of Hb\(R) space", whenever we really mean £ (jw)

is the boundary value of some f (s) € i or f (jw) has an analytic con-
tinuation in the space HP (R) .

For p= 2 , H°Y (R) are Hilbert spaces with the inner product
) <f’1‘ (s) , £, () > a < £, Ow) , £, (w2 J

A function f (s < Hz+ (R) (Hz' (R)) iff its boundary value function is

£ Tt

cn STl

i
# s gl

n

,
Sy

H
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the Fourier transform F.T. of some 1 (R) function vanishing on the
negative (positive) axis. Accordingly, functions of class

F.T. {L2 ['0, )} wi‘..ll be called Har<\iy functions of class ‘H2+ (R) . '
In a similar mannexr Hz- (R) is identified with the F.T. {L2 (==, 01} .
Furthermore, 2 (R) is exactly the direct sum 1 Ol 5 ; i.e., every

function f € L2 (R) is uniquely expressible as
£ = fr4 £ where & e Hzi (R)
= p (£) +Q (f)

»

where p and Q are the préjecti.on operators taking L2 (R) onto

I-I21 (R) respectively. -

In particular p may be given by

I S B ¢ °
P = £ (8 m[x_saz

s = o+ju,% >0

. The following iz an orthonormal basis in Lz (R)

. . )\
Let ‘ \

1 1 4w =1 n
¢ (jw) -_ ( ) n= ,.,.1 ’ Q 1 ’ 2 aee
n ST du 1 Jw + 1 !
The sat {¢n} spans g (R) , while the set {an}
nzo n<2~o
2= .
spans H (R) . - -
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A function a (Jw) €L” (R) is in H T(R) iff

a (s) £ (s) € H2+ iR) for every f (s) € Hz+ (R)

-

. s

Let T be the unit circle m the complex plane and let F be any
functionon T and if £ is definedon R by £ (t) = F-(eit)
theln f is a periodic i;unction of period 27 . :l‘he space 93 {T)
for 1 sp < = (p =} is the glass of all complex meas;urable 27
periodic functions on R equipped with the norm,

¥ :
el - = f | £ @]|° a0}

-y &
For p ==
IER "= ess sup | £ (9]
e € [0, 27)

The LF (T) are also Banach spaces.

2

In particuiar L~ (T) is a Hilbert space in the inner product

<t g> = -2-;1; f‘f (8) g (8) d f,@;eL2 (T)

-

-‘J\I'he Hardy space Rp+ (T) (\Hp- (T) 1 sp< = ig defiﬁed to consistﬂ

of all analytic functions inside the unit circle (outside the unit

circle) for which

1

el s Gt ML s Bt » R s
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¥ " . 1
- 1 je |p P -
el sup 13 ] | fExe’” [Faey e
<
0sr«<l wr nj%]
(r > 1) lsp<m

\x For p = i >

Iel = ess sup |-f£ (r eje)[
a4
H —(T) -]
. 1>r2" .
s {r> 1)
- m CFmCEm S l<s<ps> .
2+ ‘
. Hp {(T) are also Banach spaces and H - (T) are Hilbert spaces.

x,
i

. . In particular for p = 1, 2, @ the Hardy spaces - Hp (T} can be

E

defined as

<
T
Fo(m ={ £€1° m [ £ ™ae=o .
EREE n-l’ 2, tense
IS o .
3 . .

HP spaces are closed subspaces of the corresponding P .(T) . °

. pefine ?e operator E on L2 (T) as follows

o © S ‘e
E(f) = E{ [ £ zM= 7§ £2%,z=1 o3® ?
Y . n n ! -+ ‘:
o n=Q )
L E (+«) is a projection operator from 23 {T) onto 3 (T) . %
R - 2
N | |
»
. . ¥
3 : i

.
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Iv. FACTORTZATION OF FUNCTIONS IN (R} SPACES

*

The relation between spectral factorization and the Wiener-
Hopf equation is as 0ld as the Wiener-~Hopf equation itself. In fact,

the solution of W - H equation is indispensably carried in the  frequency

"domain, via the spectral factorization,

It is the.ﬁ imperative to investigate the rel;tion between the
generalized freq{:ency domain image of the W -~ H éq_uation, whiFh is known
as the Toeplitz equations, andlthe spectra~l factorization formulated
directly in the frequency domain spaces, i.e., BP (R) spaces, This
section 95 dedicated to‘this’ purpose. The approach here is inspired
by ;:he work of Gohberg and Budjanu [13], [14], on the factorization in
abstract Banach algebra. » Nevertheless, the results here and the tools
are differept from [13] and [14] . As a matter of fact the formulation
here is basically in the subalgebras Hz-t n Hwi which are, in principi'é,
non-Banach. The machinery and some of the results on the Toeplitz
operators are due to Davinatz [15], [16] and (17] : and D_ouglals {111 .
The heart c;f our results in this section is Theorem 2 which relates the
canoni;:al factors, defined below, to the soluticn of certain Toeplitz '
Gperatqrs in Hz-t (R) Theorgm 3 considers in detail the special case
of factorizing functions which are positive almost everywhere, i.e., their
essential infimum is greater than zeroc (a slightly weaker conditio}x than
‘positiveness). The complete characterization of the class of. functionsg
which admit a canonical factorization is brought up in Theorem 4 ,

Finally, the standard Krein-type factorization [10] is, treated as a special

case in Theorem 5 ,
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pefinition )

‘ An element (1 +a (ju) , a (o) €1° (B NLT(R) , is
said to have a canocnical factorization if it admits representation in -
the form

Al
/ k! AR - - + . .
l+a (jw ="\1+h (GuI{l+h (jw] A.e.W, (4.1)

where ht (s) € BE(m) NXE®R) ', (1 +n(s)] is invertible for

seci, and ' :

+ . + .- 2+ ot
e | = 0+ nie)171E 82w N

Clearly the definition is quite similar to the Standard Krein - factoriza-

tion, However, here a (jw) need not be the Fourier Transform of an

'.L'1 (R) function. Moreover, we do not assume any continuity condition on

a (jwy . The uniqueness of the above canonical factorization is estab-

lished by the following Theorem:

)

**% TheqQrem 1

r

If an element (1 + a (jw)) admits the canonicalv factoriza-

" tion (4.1) , the factors G{r;'-'- (jw) are uniquely defined (a.e.w) .

Proof:

Let G% be another factor, then it follows from (4.1l) and
the equality _ o o
\ \
| \

m+et1i1+6] = [1+ GI] [+

T

e oo
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That ) \
, (L +GIM +h'] = [ +G10 +h]

which implies )
+ + + 4+ C - - - - .
G1+h +Glh = Gl+h +Glh - -(4.2‘)

Since the subalgebras w2t Nyt and 12N H ~ intersect only at the

zero element, hoth sides of (4.2) must be zero.

Thus

+ + + . +
+ = .
.G +h 4G/ h 0

L+6) = n+rTt 2o+ ch

,

S N
i.e., .

GI = g . g
similarly, it can be shown that G = G ... ' Q.E.D,

%

Before proceeding to derive the necessary and sufficient conditions for
the existence of the canonical factorization we first state the follow-

ing elementary lemmas which will be needed in the subsequent pxoofs,

e A

Y

. 1£ £ (s) € wt(r) ana f (o) €L7(R) , then

£ €EatTwNET (R . ' "

P AR - R
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Lemma 2

s G +Q(aG ] = -9 (a]

2l

S

v
~

N ,,
If h (s) € B R NH™(R) and [1 +h] has an inverse

in H T(R) ‘then there exists a unique function g (s) E/H2+(R) NH (R

such that [L+g] = (L-+hl % .

Lemma 3

I x (s) €M, then z &Eh €n¥(p .

The proof of these lemmas follow directly from the properties of o

spaces; for convenience and completeness they are given in the Appen-—

dix A .,

We now come to the main Theorem,

*** Theorem 2

2 © .
For an element a (jw) €L (R) "L (R} to adm/it the canoni-

cal factorization (3) , it is necessary and sufficient that the two

egquations

¢t+pac = -pial (4.3)

and

¢

(4.4)

;

have esentially bounded solutions in Hzi(R) resgpectively.

- Y N R
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Proof:

The sufficiency part; ' .

-
Suppose that (4.3), (4;.4) have solutions G+ and G

respectively in Hzi(R) which are essentially B&undéd. Then by Lemma
1 ctentngt equation (4j3) can be written as )

(L+GH) +pa@+6H] = 1

which implies that

L+a@1+6H = 1+v ) ‘ (4.5)

2

for some Y € H° (R) , but the left hand side of (4.5) is in Lm(R)

so Y must be € Hz-(R) N HQ-(R) by Lemma 1 .

-

Similarly

L+6)QL+a) = 1+ ¥ (4.6)

for some ' EH2+(R) n HM(R) .

Multiplying (4.5) by (L + G) and (4.6) by (1 +G) , we get

(L+G6)Q +a)(l+6H) = 1 +6)(+ ) = W+ ha +a6h

(4.7)
The second equality implies that
C+Y +G Y = Y ea +y & (4.8)

but the two algebras Hzi(R) n HQ:(R) intersect only at the zero element.

Then it follows from (4.8) that

de I u " NN A NI g e s ottt
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-

> (1 +6)(Q +Y) = 1 ie., [L+Y 1 = [1 + G']'l (4.10)
-
Similarly
(1+y7 = o +ch™t (4.11)

Substituting (4.10) and (4.11) back in (4.8), we get
(L+a) = [L+YI[+¢1 (4.12)
together with (4,10) and (4.11) imply that (1 + a) admits canonical factorization.

Necessity part:~

If (1 + a) admits the canonical factorization we have

+ -
(L+G)(L +a) = (1L +h) (4.13)
' Takiné the projection P of equation (4.13), we come up with "?
) /
+ .
¢"+?2[ac’] = -pla] (4.14)

/ + . . \ 2+ o
G satisfies equation (4.3) and is an element of H° (R)Y N H (R) .

il.edy
Using a similar argument one can show also that G satisfies equation
(4.4) and the proof ig complete. Q.E.D.
**  Lemma 4
W
» . 1 If an element (1l + a) , wherea € I.2 (R) NL (R) "admits

v

. the canonical factorization (4.1) , then the operators T and T de-

2

fined by
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" + A+ + + 24+
T(l+a)(x) = x££ +Plax] o x €H (R
and
’ r @) & & +Q [a 2] = € 52T (w)
(1+a)
™N

. , + .
are invertible in Hz—(R) respectively.

Proof:

Consider the equation
v

+

y+ = £+ P [ax]”

we shall prove that (4.15) has exactly one solution € H2+(R)
+ +

every vy € H2 (R) . ,

Let

a:; = (L+GH P [(1+G) y+1(/

for

4

24

(4.15)

(4.16)

+
Then by direct substitution one can verify easily that xo is indeed a

o

: +
solution of (4.15) . Now suppose that xl and m; are two solutions

of (4.15) , then we must have,

+ + + +
(xl -:cz)‘-i'P (a (xl-xz)] = 0

©
o

or

-

- (1L + a) (ka- :c;) = y +  for sofne y- € Hz-(R)

since (1 + a) has a canonical factorigation (4.1) then
%,
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L, . _ _
(1+h)($1~$2) = (1L+G) vy (4.17)
/\ -
.. 2+ . 2~
but the L.H.S. 48 in H (R) and the R.H.S. is in (R) , so we
must have both 7;i’des equal zero. Thus “
+ + +
+ - =
(1 +h )(ml .'cz) 0
1 + . ) ) ‘ . A + .
but (1 + h') 4is not identically zero which implies xl = xz , l.e.,
T(l+a) (*) is invertible. »
Applying thé¢ same argument to the equation
{
\ "'.
y =& + Qlag] (4.18)
with
- - + - '
xo=Qty (1 +G)] (1 G ) .

v
one can verify that (L‘S is indeed a solution of (4.18) and it is unique
v ¢

which implies that I‘(l+a) is also invertible. Q.E.D.

Theorem 2 1is guite general. In fact it is the corner stone of the
subsequent study, from which s éial cases will be studied and other
equivalent necessary and snffictentﬂ conditions will be derived., Lemma

4 reveals the '::elatio;xship béty:een the invertibility g'f the operators

' and T and the canonical ;‘.actorizatioﬁ. Uﬁfogtunately, as the
invertibility of T and. T is only a necessary condition for the canoni-

caf factorization, further study.of the ,conditions of the invertibility
“ -

"u

S

- . f4_
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k]
’

of ' and T proves to be not very helpful. This difficulty forces
us to study separate special cases from which the complete characteriza-
4N

tion of the clags of functions admitting the canonical factorization

(4.1) is formulated. It turns out that the fdllowing special case is

} -
an indispensable factor of any function admitting the canonical factori-
zation (4.1}).
by
*** Theorem 3
* 2 ©
For an element (1 +a) , a€1° (R] AL (R} to admit
the canonical factorization
+ » +
l+a (Jw = [1+h (Juw] [1+nh (jw)‘]_ a,e.w (4.19)
where .
3
Y o €8 w0 B w .,
(1 + h* (s)] 1is invertible for s = o + ju ¢>0 ,
and -
[
¢t@ = n+nt@it-1 € w0 Mw .
It is Neéessary and Sufficient that (1 + a) be real and N
ess inf | (1 + a (Jw)) | > 0. ’ .
Proof: '
-~ €
LT The proof of this theorem is inspired by tl‘se;fg’ilowing ‘
result which is due to A. Davinatz [15] and [16] . ' s
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"Lemma 5 (Davinatz) -
L © -
Let y. be a real function €L (R) , and define the
2+ ‘ ..
operator T v on H (R) by i
L/ 2+, .
Ttp (x} = P 1Yzl ’ z € H  (R)
Then the necessary and sufficient condition for T¢ to be invertible
cperator of H2+(R) onto itself is ‘

essinf | y | >0 .

We now come back to the proof of Theorem 3 .

The Necessity Part

From (4.19) it is evident that (1 + a) must be real.

" As the Facotrization (4.19) is. just a 'special case of the Factorization

{4.1), Theorem 2 and Lemma 4 are also applicable to the factoriza-

tion (4.19). ' In particular, Lemma 4 is @d}i.e., the operator

2+

T (1+a) (*) on H" (R) is invertible. Thenthhe Davinaty lemma we

‘conclude that ess inf | (1 +a) | >0 . -

The Sufficiency Part

Sugpose now-that (1 + a) is real and ess inf (1 + a) >o.
By Theorem 2 , for (1L + a) to admit the canonical factorization (4.19)
it is sufficient to show that there exists an element G' € gt (R) such

+ + *
that G and (G) satisfy respectively the equations

a
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x+ + P[a.'c+J = - P [a]

z 4 Qal‘,ax-] = - Q [a]

and G+ is essentially bounded.

28

(4.20)

(4.21)

By the Daw/hdiz Lemma the equation (4.20) has a unique

solution in H2+(R) , call it gt , i.e.,

r

G++P[aG+] = ~ P [a]

*
(1 + a)(l + G+) = 1 +Y for some y € H2+(R)

Y

Taking the complex conjugate of (4.23) , we get,
+ * ' f
(L+G) (1+a) = 1+Y

Applying now the projector Q to both sides of (4.24)

*

(G+) + 0 la (G+)*] = ~ 0 [a]

. ,
i.e., (G") satisfies eguation (4.21) .

that G’ is €L (®) .

and equation (4.2 4) by (1L + G') to obtain

n+ nran+et = nectt'nen’

- [1+Y¥]11+67

= £ (Ju) - :

b4

)

So what is left is to show

(4.22)

(4.23)

(4,24)

(4.25)

’ *
To do so multiply equation (4,23) by -{1 + G+)*

S

et

2

S
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We shall prove first(that f (jw) must be a constant a.e.v. i
Consgider first
+
£ (Jw) = [1 +Y¥][1l +G] ’ (4.27)
substituting i
jw = 1 + eje/, 1 - e:'9 ' and
: 1+ e 2+ ‘ s
invoking Lemma 3 , we conclude that [1 + ¥ (-——-—-—j-e-)] € H° (T .
‘ l-~e
" . je je
and 1 +6 (2Ee e (n . Ths £ A2 €ty .
1l - eje ‘ 1l - ejg

Applying a similar argument to the second equality of (4.26), we see that

je
+* -
f ey enttm Lo
1 - ej ,
1+ 1- ) : ¢
But the two subspaces H (T) and H™ (T) intersect on the constant

!
elethents - i.e,, f must be constant . We now use the L,H.S. of (29)

| a+eh i +ar + 61 = [cf
{

+ ess inf |(1+a)] | (1 + ¢ |2 < |cf a.e.w. : . s

¥

s ST

f.e., (1+6G" isbounded aew) -~ o' €17 (m .

- The result follows. ' Q.E.D.
\ e
| .
" The next theorem characterizes completely the class of functions admitting 3
the canonical factorization (4.1). To the best of our knowledge we %

believe that the preceding formulation of the factorization problem and

the following characterization are new, -




Lerga ’%‘ R Y

*

T

Ll Theorem 4

. 9 © .
For an element (1L +a) , a€ L2 (R "L (R) , to admit™

the canonical factorization (4.1),

(1 + a) has the representation

(1 + a) = (1 +al)(l +a2)

where

€

N e e rmta e el et el Y e, B SRIEEE Wy ¥ N TP P R PR,

it is necessary and sufficient that

[

' " (4.28)

*

(1) (1 +a;) is real, a; € L2(R) N L”(R)

and ess inf |1 + all >0 .

G arapyPertm

"Proof

The Necessity Part

Supp;se that (1 + a)

 (4.1), éhen

Pl

(l+a = (L+h)(L+n)

~r

AN

A

and a, 1= H2+(R) F\Hm+(R)‘.

admits the canonicél factorization

- -k - +
1 .= {1+h)(1+h) (1+G){1+h)

)

The second term B can be written as

t + - W -k
‘B = 1l+h +(G) + (G)

) = l+a, : :

nt .

e

e meen & e

LA $rnBh, o B 3 S, Mo Fln A &
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Cle a Ex¥Tm 0w .

+ - %
5 }) and (1 +G)

Since (1 +
. m+ . ! .
oth invertible in H (R) so is " (1 + az) .

- ..*’ \\\** | - %
Let (1 + al) = (L+h)(1+h) = (1 + (b-} ) 1+ (h) ).
A

Thus (1 + al) admits the canonical factorization (4.19), t\l)xeh’:.by )

Theorem 3 , we must have (L + al) real and ess inf'(l + al) >0,

The Sufficiency Part

|
(1 + a2) admits the canonical factorizatian (4.1) , so

- +
(1L + a) = (1 + hl) (1 + hl) (L + az)

3
let
o + + + )
. ‘ \ h‘ = h]: + hl az + az
- . -
- + .
> (1L + a) = ~(1 + hl)(l +h)

S
LN
{
S
&
'y

‘Clearly nte 112+ NHE*®" i.e;, admits canonical factorization.
' ;

24

.

- _two easier factorizations, namely (4.28) and (4.19).

Theorem 5 is in fact a well known resu}t (see e.

However, it is re-investigated here as a special case of Theorem \2 with

/

independent proof.




g M A

kAR Theorem 5 , . !

| T

N

.

Let a (ju) be the’ F.T. of some a (t) € Lt (® N1 (R

Then, [1 + a (jw)] admiﬁs the éa“non'ical factorization (4.1) 1iff

(1) .1\+ a (jw) # 0 . W€ [ = , o] .
(11) Index [1 +a (jw)] = - 5% Jdarg (L+a) =0 *« ' X
Proof

s

We need the following lemma which is due to M.G, Kr&in {10].

.
I
o ¥
.
E

R

H
'

Lemma 6 (Krein)

i ’ v

N z

, "
Let a (t) € L; (R} , then the equation

.. o N <
-4 f °
B s -

x(t)+Ja(t-r)x(r)dr=y(T) ) (4.29) iR
. 0 . ¥

has e:;act"ly one solution (€] € Li [0, ) (1 Sp <w) for every

v () €1P [0, ) , if and only if the conditions I and II are fulfilled.

P T

The proof of this famous result can be found in [10] and will not be

repéated Here.

St 8 S W wua e B A STk

The Necessity Part of Theorefs 4 , ) . )

(1 + a) 'admits" the canonical factorizition (4.1} then by

Lemma 4 the equation

s

s
- gt -

/
K v - .
;
e o T e e e R TR e
AN A S PTG L e wf e T

$i
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+ . 4 o ‘
¢ +plax] =y (4.30)

[

+ .
has a unique solution z’ € g (R) for. every y+ € w2 (R} ., Taking

i
inverse Fourier Transform of (4.30) we come up with

-
h‘. " + A+
z (x) + J a(t-1x ()dt = y (¥) T (4.31)
O . .
- i The Wiener -~ Hopf ecmat::i.{(tI.ZB) has a unique solution X (t)

for every y (t) € LZ, [0, =) . So by the Krein result the two conditions

I and-IT must be fulfilled.

The Sufficiency.Part of Theorem 5

Suppose now conditions I and II are fulfilled then by the

Krein Theorem the equation

;: (ty + j a‘(tq— ‘t); iT) c'ln‘r = a () - (4.32)
0

(t) € L1 [0, ) ﬁLZ [0, ®) , where at (t)

82

'has a unique solution

?

is the causal part of a (t) .,
%

Taking the F.T. of (4.32) , we see that x (ju) satisfies the equation

3

+ {

2¥ + prazt] = p {a] (4.33)

~

i.e., equation (4.3) has a solution z' € H°' (®) .

But :c+ (jw) is also the F.T. of an r..l [0, ) function so
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X (jw) must be* € g2t (® N

g 1

where wh is the algebra of the F.T. of functions in Ll (0, =

since w+)C H ' (R so finally we conclude that = € 2w net (R},
By a gsimilar argument we can also'construct an element
z € HZ' (R) }\Hm- (R) and satisfying equation (4.4). So by Theorem 2
(1 + a) admits the canonical factorization (4.1).‘ The proof is Eom—

plete.

v
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V. THE REDUCTION METI;OD FOR SOLVING ——

THE EQUATION y = A & IN HILBERT SPACE

As was mentioned earlier, our final objective is to develop
an approximation method for generating the spéctral factors Gf- of the
canonical factorization (4.1). The idea here is to obtain those fac- .
tors by solving the Toeplitz equations (4.3) and (4.4). One way of

doing this is through the so-called Projection Method or the Reduction
~

¢

-Method [18], [20]. -~

- @

Let # be .an abstract separable Hilbert space, U () be
the group of all bounded linear operators on ). Let {Pn} be a chain
of projections which converges strongly to the identity gperator in

u () , i.e.,

Lim lpnx-:cﬂ+o v z€X.

0o x .
n

let say, p, (2] = ) 9 <z, ¢k> , for some basis {¢,} in i,
a k=1
we call the approximation method of solving the equation

N

-

i

Az = y A€uU (), yEX (5.1)

"~ Y
which consists of finding a solution Z € P, H of the equation

P,Ap % = p Y ‘ (5.2)

3
1]
.
Biepis il o o :ﬁx.x%“ﬁﬁ»»,,“@«”w et m e e et



The Reduction Method

N We say that the reduction method relative to {p n} is

applicable to the Operator A if beginning with some n the

0 r

(o] .
. equation (5.2) has a unique solution for any y € H, and as n -+ =

-

»~

the solutions % "tend to the solution of equation (5.1).. In other

- words, the reduction method is applicable to A if

(1) A is invertible,

(2) Beginning with sum ne the operators pn A Pn

as operators from P, H into pn H are inver-

d
tible and the operators (pn A pn) 1 P

F

n

- converge strongly to A-l as n > o

: Lemma 7 ([18], Theorem 2.1, pp. 58; 'see also [20])

’

" For an 'invertible operator A €U () to admit reduction

relative to the chain {pn}_ it is necessary and sufficient that

|pn Apn 2zl ¢ |pn zl (n.Z n ,c>0) (5.3)

0

<

in the next theorem we/iﬁn/vestigate the possibility of applying this method
to a certain class of op;erators in Hzi spaces, namely the class of posi-~
tive definite operators'in HZ . The auxiliary lemmas 8 and 9

explain first.what is meant by pogitivity.

]
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*kok Theorem 6

valued function with

v

Suppose that ¢ € L~ (R is a real

: ess inf |¢-l >0, Define
+
T, (@ = p'0¥ 7] . c €t (w) (5.4)
+
Then the operator T\p admits reduction relative to any basis in H2 (R) .
Proof
The proof is based on the.following two lemmas.
- - - * Lemma 8
- - Let § be a real valued function €& L (R) , and define
= 14 ‘

' - %~ -

; T‘l’ as above. The spectrum of Tll' is given by
g (T‘p) = [ags inf ¢ , ess sup Y] (5.5)

The proof of this lemma is quite lengthy, so we preferred

to defer it to Appendix B.

Lemma 9

T T is a

L] v
positive definite operator in H2+ (R) iff ¢ is real and ess inf (y) > 0 .

'ag
st M

and define as in (5.4) .

Let ¢ €L (R)

,‘w}ﬂm B e

P T Y

]

|

Al P e < et
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Proof of Lemma 9

<

The sufficiency Part

Yy is real and ess inf ¢ > 0

for x ,y € Hz+ (R)

<Y ? le x> =
) R
i.e., T\p = Tq)

and by Le (8)

g (T¢

.- =, [ess

but ess inf ¢ >0 >, T

The Necessity Part

Lf T
T

> jxw-fp')z*

Again by Lemma (8)

AR

we have

<YI‘px>

<7t x>
p ¥
i,e., T

V.

= &¢¥q$>

*

- <T

v

Y, x>

is self adjoint,

inf y , ess sup Y]

i

¥

is positive -

& = 0 -+

T T*

v v
Py,
- L4

is positive definite .

i.e.,

P 1is real.

38
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o (T'P) = ¥ess inf ¥ , ess sup Y]

Since T

¥

is positive we must have ess inf ¢ >0 .

We now come back to the proof of Theorem 6 .

By Iemma (9) Tw is a positive definite operator on H2+ (R) .

U .

Let '{pn} p;be the chain of projection genérated by some basis
wr€ ® . me .
g 4

. “© Ea 2
< 2> = »> el | €
pn'.l'wpnx,pnx <T pnx,pna:> P, & >0

14

S

i.e, P, Tq‘ P, is also positive definite, hence satisfies the conditions

of Lemma (7) , i.e., admits reduction relative to {¢k} . Since:’ {dbk}
AR

is arbitrary, T, adnmits reduction relative to any basis in H2+ (R}

¥
and the proof of Theorem 6 is complete.
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. VI. AN ERROR BOUND AND AN ESTIMATE
" FOR THE SPEED OF CONVERGENCE ]
. In the previous sections we have introduced the reduction
- 0
. method and have investigated the possibility of applying this method to
IS ) + "
- solve certain types of Toeplitz equations in HZ (R) space. Now, we
are going to apply these results to the equation
| + + h
G +plaG]l] = =-p [a] (6.1)
+
to obtain an approximate solution of the spectral factor G , we would
1%
-~
like also to know: (i) how far is the obtained solution, Gn , from
~ +
the actual factor G , and (ii) how fast this Gn converges to G
: with n . Theorem 7 provides an answer to the first question, while
¥
: Theorem 8 takes care of the second.
t
i .
L -~ -
? *#%*  Theorem 7
{
Congider the equation
+ + '
G +pfaGg)] = =-p [a] (6.1)

where a €12 () NL” (R , (L+a) is real and ess inf (l4a) > 0 .

Q
e 2+ . -
Let {¢k} be some basjs in H° (R) , and define the projectors
k=0 )
n -
B, W = I ¢ <z, 4> z €& (n) (6.2)
Xm0 _

~
e

Let Gn be the solution of the equation

* . : oS
‘ .

B AR A s T I,
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Gn * Pn [a Pn Gn] = TP la] s :3)
Finally,- let W be the isometric mapping which takes P, Hz+ kR) into
¢n“in accordance with the ‘.E;:rmula
©n .
Wil ) + g 6.} = (@ ,0 ...a)? (6.4)
WA 0’ " n : '
j=0
Then,
~ ﬁ R B
/ (i) G - G+ as n+®, ‘

n

i ilc-cl < c.l (- 1
(ii) G an c (1 pn)G 2 for some ¢ > 0,

~n

s ®x 7 .
(1iii) Under the mapping '# the reduced equation (6.3) is

. - 4
representable in ¢n+ by the vector equation

' ét_ = W [-p I[a]l

g = W [G]

n
. ) n
T, = 1 +{<a by v ¢j >} is a positive definite matrix.
n+l,n+l \ k, =0
Proof

’

(:l)k {1 + a) satisfies the conditions of Theorem 6 , so

»

+
it admits reduction relative to any basis in n° (R) .

. Then by the reducf:ion admissibility the solutions of

3t L e e ek St



e g

(ii)

~

the reduced aquation (6.3), Gn : converges to ! ,
+ ' .
G the solution of (6.1) as n + = , i.e,, (i)

. )
is proved.

The error
1 - -
E = G -G
n n

+

+ ~»
= p G -G +G-p G
n n n
S +
= en+(I-pn)G

(6.5)

el = dz1 a1 - +y
Eula €y t Ml =pp el

Since the two components are orthogonal.
From '(6.3) ) ' ;

~ a~ + '
G, +p, fap Gl = - pnlla] tp [ +a)@] ,

P,

) N ‘+‘ .
1 +ap (6 -p €1 = p

, [a (1= p)(Eh]
~ . ) -1 +
Yo -p ql, < M T ., 20 plle p [fatl -g) G !

-1 , ‘ +
Pn’f/l’n/'/e/tf‘) bal, b1 - p6’l

<1 (Pn T(J.+a!t)

e
el

/// 6.8 |

where 0 <€ (n) €1 and € (n) +1 as n -+,

+

* 2+ i
Since P, T(l +a)_pn is ix}vertible operator from Pn H (R) . :

2+ -1

into . Pn H (R - then (pn T(l+a.) gn) p, are bounded,

Let

s s . s
e o e o e [ —— T e A NS A i
. - = "

R i L U N A
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sup l(p_ p)_lp“=‘7<00
n (l+a) “n n
n>o0 :
Then (6,6) can now be written as
lg - TPL (1 - + .
G, -p, 6l = all_ W¢x p,) ¢l {6.7)
Substituting (6.7) into (6.5) we get finally
Ig | fal 01 - +
gl, s +vyhdjla-p) et (6.8)
which implies (ii) . ~ _/
(iii) Substitu'ging 1
'~ s S
Gn = z gk 4’k.,
k=0 ~
o n
.Pn [a] = 2 o‘k ¢k r B : .
k=0 * ‘e
into the reduced equation (6.3) we gét .
n n
" ~
zgk¢k+z¢kzgz<“¢z’¢k>='z°‘k¢k“
k=0 =0 \

\ which clearly may be split into the following system of

linear equations

n
Y+t L 9,<a¢, , 4 > = -0 , k=0,1,...n

i=0 (6.9) °
or, in a matrix form, t a

ko o SR MRS S B e §

'
[
{
;
Jimk&s v
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> P‘ t .
’ T, =29
v where ’ , n
H > n
+ {<
Th = In+l,n+l <a ¢2 ' ?k } (6.10)
N . /2,%=0

T T

Finally to show that Tn' is positive definite, let pn T # Q

: %,
. and define £ = W {Pn 2z} . Then

; ‘

; n ’ n

i s T - —

| = <

| , z Tz I = = ad, 0 >+ Z‘xzack

I ] %,k=0 2=0

. = < >

; - SPy TPy Tiygay Pn ® \
! . < S p x> >

; F- = pn z , T(l+a) pn z , 0 r.

i

since T(l+a) is positive definite by Lemma 9 .

: ’ Thus ‘l‘n is also positive definite, and the proof of Theorem 7 is complete.
Co2+

The analysis so far is valid for any basis in H2 . A variety of these

orthonormal bas;s_.uaﬁe constructed some time ago by Lee and Wiener [19] .

¢ .
From now on we are going to consider only the Laguerre orthonormal basis

defined in Section III.

, The Laguerre basis is chosen for many reasons, perhaps the

K 4
most important of which is that the reduced operator matrix (6.10) turns

out to be a Toeplitz matrix with the advantage of simple structure and the

\ availability of fast algorithms for its inversion and its U.L. factoriza- f

51.':;13}‘15‘351&: Sl bt bonet > -
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£ - tion ([21], [22] and [23] (of computational order n compared to n
f’.
; for a general matrix). A third advantage is that the entries of this
1_ ' Toeplitz matrix turn out to be the projection coefficients needed in
r.h.s. of equation (6.3), thus constructed at no extra computational
- cost. These results are established by the following corcllary, -
{
}

Let G r G and T be as in Theorem 7 . 1f {¢ )} 1is

the Laguerre orthonormal basis, T, is a Toeplitz matrix,

~

Proof
Since a (jw) is € 12 ‘(R) , can be expanded as ‘
, . S
1 ju-lk Tt/ juel ko .
o ‘” + {~ . . (6.11)
a (jo) = - % T (Getl) (Jw+l) 4 % SGer ) Ger
k=0 .
: - but
?
1 dwlk _1 (JusLy el
o+l (JuH-l 2 ( jm+1 jw+1 (6.12)
durl oty e > ‘
jw—l jw-l jm—l) jm— (6.13)
Upon substituting the relations (6.12) and (6.13) into (6 11), we get
1 N :!“ i
4 - % s 1
a (Juw) = —= + - - + :
__—auy — kEl =R N W IUNE M B (6.14)

?
-

where
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where ‘\
’ + » ju=1. 4k \\
‘PE - (j @ +1) . \\
LS ) - \
. \
We denote by \
. = v/;—- A
b0 %, /Y \
o b b = ..._].'....: (o ~t’; } \\ (6.15)
k 2 /7 k k-1 \ . )
y
bk - b—k .

Consider again the reduced eéuati.on (6.3), and substitute a (ju) by the -

r.h.s. of (6.14), we have .
n @ . n n
”» 20)‘1 m L3
I og o+, 1D 1y o L o9y ¢ Io-a 0
k=0 oo . 2=0 k=0
+ - (6016)
. , |
splitting (6.16) and using the relation o~
juslm |
- (jw+1) % ) q’J!.+m )
)l we come up with the following set of equatiop‘s \
~ n ‘
. A~ »
gk + z b -3 g!, % - ak k " Op l’ 2 aes (6.17)‘
=0 )
v Integrating (6.17) again into one vector equation, we get
» )
.9 = ¢
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where T, is given by . ' .

n

}
k,£=0

Tn’ = In+l,n4_-l * {bk—.Q

i.e., Tn is Toeplitz .

-

it . U e D TN e pe A SEERR T e My S TTEASG S
)

4t mw eong T,
n

L7

(6.18)

Q.E.D.

Notice that the matrix T, is constructed using the relations (6.15) ‘at

]

no extra cost than the computation of the coefficients {ak}( which are

any way needed to construct the vector a .

]

We are going now to provide an estimate of the rate of decay of. the error

as a function of the approximation degree "n" .

/

/ ,
Let /CF. (T} by the space of p times continuously differentiable functions

on the unit circle, and define the mapping V as

v
N

- A\
. j\e
. + Y\
vorge = f =Sy (6.18)
"L -e ‘
\w
. ) b
Theorem 8 ‘
Let G+ and Gn be as in Theorem 7 , Howe‘ver assume further A

[\

-+
that q;s satisfies, in addition, the follawing smoothness property

Y

@ F (% 2 via+im e Gl €c° (M
\ \\

for some p ~ 1 \

\

\
(b) () gatisfies a Lipschitz condition of oxder % a

0< a < 1

-

-
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Then

< 9951*‘-5—“-‘11 (6.19)
! Pt - =
o 2

+ 2+ : A
Since G € H" (R) , its k'th Fourier coefficient w.r.t.

the La rre orthonormal basis is given by

G (jw) _:!'_. (Jiui.]:.)k dw

- X

%‘———h

Vs ju=1 ‘ju=l
f 1 ‘ . . Ju+l k _dw
- T6 (Gw) (1 + jw)]l ¢ )
\ Tl o=l P2
Snbsj:ituting = e_j ®
\ .
\ 1 R T .
\« gk S~ [ F (e”) e de (6.20)
-
Integrating the |[r.h.s. of (6.20) by parts )
- W —“-“ ‘
9, L (i-) {e37@ & (ejeyl - [ e85 (@3% a ¢ (6.21)
2 /7w i -

' |
Resuming integrating by parts up to p times, this gives
\

L

Sy — (ii)P [ kI8 D) (38 44 (6.22)
27
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D
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. :
. u . . T . "
g, = —=— h? f eI KB p (Bt I B (6.23)
2 /7
; - ‘

adding (6.22) and (6.23), and dividing by 2
L

1 1 -j.p f (@) , ie () , 48 + =4, ~ike r
- = - == [F (e") ~F (e k 7)] e de
2 2/7 K

%
- (6.24)

but p P (eJe) satisfies the Lipschitz condition

. T LN
| r P (ejO) _g® 38 * j-)?)l <c G
0<a<1

Substituting this condition back into (6.24)

1
ls,| < %
k 2 /7

constant . - .
ngl < Pra ' (6.25)

¥

[

N
C (i') 21

We shall now use (6.25) to get an estimate of the partial sum )
A\ ™ ’ — i

g2 2
= I gl

" k=n+l

w l(l-Pn)G

IS -

. & constant )

. n

. +2 constant ; ‘
* ba- P,) G Iz < 2p + 20-1 6.26)

¢

B T .

Subgtituting this result into part (ii) of Theorem 7, we finally come up
with >z

Pl
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~
Ic -G < constant
n <1 . ,
pta- -?:'
Q.E.D.

. Corollary 1 .

3

+ . . .
If G (s) is analytic in an open right half plane including

'

the juw - axis, then there exist ¢ >0 and 0 <a <1 such that

Ig - G n
. GGn|2<Ca /

Proof of Corollary 1

.

If G (s) is analytic in the closed right half plane, sc¢ is

(1 +.5) G (s) and_hence under the conformal mapping n = s=i F (7)

s+l '
F (g) = V [(s+]) G+ (s)] must be analytic inside the closed unit dg¢gk.

<

This implies F (eje) > is continuous and infinitely differential function

or the unit circle. It follows then from (6.25) that

xP |gk|< c

. : (6.27)

Fl

where C is congtant, for every p and every k , this implies that

either all gk‘s are identically zeros or gk be of expponential order, &

ii.. ngl = 8o for kome B >0 and 0<a <1

-
-

Now the sum of the squares of gk's turns out to be

dx

=

lad

C M-l < g < g [rrE e
n+l n

T

2 ,
< —B8 P constant a2n

n

.

-
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" .
+ e - ¢ < ¢ o .
n 2z
: ) Q.E.D.
* Corollary 2 "
+ .
If G- is a rational function with no poles on the ;uﬁaginary
axis. Then '
R ..
'G -l < o an /
n2 !
7
Y.
Proof
This result is a direct consequence of Corollary 1, since in
this case G 1is obviously'an analytic function in the closed R.H.P.
Q.E.D.
i
. }
i
I v .
. !
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. VII., THE ALGORITHM AND THE COMPUTATIONAL ASPECTS
In the previous sections we applied the reduction method to
i "
obtain a sequence of approximating functions Gn
N n
. = 7.1
%n L9 % - (7.1)
k=0 @

[ L

-

"and showed that the coefficients {gk n} satisfy a Toeplitz set of linear
[

equations, namely the vector equatien ¢

PP

s gt

9y " e 3 (7.2)
s —
where !
T

g_ = [" ao I "al see 7 T un] 7 o ] -
- = " L—- “ ¢ '
a = <a ({duw , ¢ 2 J a [jw) = jw_l oD Q@ “(7-3) )

T n

T, turns out to be a positive definite Toeplitz matrix {b, .}

* .  where bk are related to the coefﬂ:cients a

’ "8

k
bo = 1+ 7?_9-“

T N
Pe = ;’%‘-—-; (@ = &y
P M

k-j k'j"'o

's by the simple relation L

PR

5

1
3
i
:
;
H
i

(7.4)
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C o )
In other words the problem of factorization is reduced to solving the

o

Toeplitz set of linear equation (7.2). Fortunately, there are several

fast algorithms for solving the Toeplitz equation (7.2) in general and

R L BNt A Ty DN

when ‘I'n is positive definite in particular. For example one may first
+ £ind the Cholesky decomi:osition of Tn » using the fast algorithm by
Morf [25] and Rissanen [22]:, then solve (22) backward and forward as

usual, or can just invert ’1‘n directly using Justice algorithm [21] .

o g T

. ) However here we chose to illustrate the }llethod using the recursive
: - formula of Levinson [24] which gives the approximating selution
/ SR
[d ¢ =
vy ~ [go,m-l ress 'gn+1,n+l] ’

- %,

In terms of the old approximating solution

O Mrmn g w4

. ~ ° .
b = ¢ * s 8 M
R i * ~ L4 % [g0,n ! gn,n] * ¢
r's

Q.

lithout resolving the system of equations (7.2) for n+l , and thus’ enables
+ ’ ' ts

T to use a simple error criterion like the one used at the end of Step 3 in

£
B

o

I3 . the main algorithm given in Section 2 .
¢ : ' ,

.

A final point is that tixe Laguerre basis can be expressed in general in
. » . “

T s
; ‘ the form T

i . .
- o, @ = LB __L_ Jdu=pk- g | :
k ju + ju + .
: » /T P Jutp
LA s * N
. ¥ oy . ) - 3 - \

where p > 0 is a scale factor.

;
* . - ° A
) “Lé.,‘ ¢ . ‘
(} ‘*ﬁ’ ' * -
PR AR - . . ®
N .
“ -, K . :
.
.

FATITE R ST SR Y

‘
, . . ) oo ¥
+

us to monitor the change of the approximating solutions as; n r’ing_:{c_iases or . '
L] - R ’

e wmsd Y

i

O
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The parameter p may be chosen to minimize the H2 error in approxima-
‘ting a given function by a truncated Laguerre expansion, or to minimize
the nulber of terms in the Laguerre exponsion for a prescribed error.

T.W. Parks [26] introduced a criterion for the choice of "p" which £
minimizes the maximum truncation error over a certain class of functions.
Clowes [27] showed that in the case of rational functions, say £ (s) ,

the optimat’ valug o "p" is one of the positive roots of either

» fN (pﬁ) = 0 4 or fN+1 ) = 0 ) (7.5)

, Clearly, the solution of (7.5) can be quite tedious because the coeffi-

cient fN (p) will be a polynomial of at least (N+K)th degree if £ (s) =

i has simple K poles. Here we will not attempt a rigorous treatment for
the choice of p . Nevextheless some reflections might be useful for the
: interested readers. Consider the case when f£ (s} is an analytic func-

tion on the ju axjs . Invoking the argument of the proof of Theorem 8

, . and its corollaries, one ‘can show that '

¥oor,

£, @] < c of @ , c>0 , "0<a<1 -

{

t

¥

‘E‘

{:

; r < Clearly to minimize the truncation error the rate of decay of |f
x nt,

2 Y
|
¥
{

A simple criterion to achieve this could be . . - '
A : : P, ~p_ -
. min max | Rj (p) (Fi—';';)n I
p 3 s I

i
:
}
H
i
rg !

l
( has to be maintained maximal . In other'words a should be minimal.

»
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§
where Ry (p) is the residue of £ (s) at the pole s = - Ry v and “
. ~ n 1is given. The residues R_-) (p} represent the relative weightings
3
: of the poles_; (- pj) . A moré crude, but simple, estimate of p may
: be given by p = Y% minl Mmaxl , where A . =~ and X are respec- )
: tively the poles of the minimum and the maximum absolute values in ¢ . (,
@ .,
. Example
i ' . T
‘ Consider the following system
a:l 0 1 xl o)
= + 9)
. [ . ’ X 1l
-d -
.'x:2 5 2
; y = [2/21 2 /3]
: It is required to find the optimal feedback law which minimizeés /
|
! . ® 7
i .
- J-j (Uz+y2)dt .
' o - . ‘ ™ .
- & . " B
. “ Using the standard methods [28] one can show sirstematically that the ’ :
optimal gain is given by
- o ° " e ;
) ) ! . :
U = - [K"i‘ K2] x '
2 ! ‘ )
where
K = [6 2] .
’ \
Let us now apply the method proposed in this paper.- ~
.o ’ e )
L [
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Step 1

1+a (Ju) = 1+F (u) F (o)

where
1

F (s) is the transfer function of the system

2/3 s+/7
(s + 1)(s + 4)

F (g) =

Compute the coefficients uk through the formula ‘ -
o ’ ‘)
](12 W +7) -1/3 1 jw + 3.k ‘

: (= Y dw
Wk +1) (oF +16) yx Jw-3 Ju-3

Gk"

-0

where the parameter p is taken to be 3 .

\

B ek T

o = 3.6839753 (-1)¥ (%)k + 7894231 )"

k

. ol

L 3 N

Construct the Toeplitz matrix {bk— j}

e MY P b S TR S Rt ath Lt

PR

o
]

2.4571424 ]

b,. = =1.0102038

.434256

8
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”

Generate the approximating sequence g  using Lavinson's

algorithm -
900 = =1,8205597
957 * " .0538409
gol = -1.8427052 »
952 = - ,0920051 !
L = -
902, 1.8418362
Step 4

Substituting in the Davis' formula (2.8) , we come up with

-

the following numerical results
b

. . y3 1
% %0 " 7T Ju+3
X

<

= [6.0015226 , 2.0038285]
3
. e g3 1, '3
' 1 917 7T Ju+3 Jo + 3
K = [6.0089695 ,, 2.0028787]
N "3 3 .
L . 992 ¥ 7 9,73 de -3
2 ju + 3 o + 3 e + 37
K = 2.0000266] .

[6.0000097 ,

£

at

jw - 3,
jw + 37
w )
3 .
Y du=32
jw + 3 ‘Jw + 3

2olhew  taade

Jener—,
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. VIII. CONCLUSION

We have presented a simple fast computing -~ fast converging
method for solvix\lg the scalar LQR and the filtering problems. - The

maltivariable version will be submitted soon. The method is applicable

as well to a wide variety of distributed parameter LQR and their dual

filtering problems, and large scale systems. ‘1‘& more general factoriza-

tion (4.1) may be attackeg by reducing it to the two easier factorizations

(4.20) and (4.19). Another point to be declared is that Toeplitz

eqtations of the type (4.15) can also be solved by this method. Except

for minor amendments all the results are valid. In particular Theorem 6,

7 and 8 are applicable. Considering the algorithm in Section II, only

the equality (2.7) should be repiaced by

.
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<f(jy),¢;>= 0 for n=0,1,

APPENDIX A
* Lemma 1

If £ (s) 572+ (R} and £ (Ju), €L (R} then
2+ oh
£(s) €8T R NE . (R..
N - ' J

Proof
Clearly £ (s) €' (® iff £ (@th en @

sp it is sufficient to show that

" . /
. Jje
1 f 1+e ine \
I = — f ( ).e de = 0 n = l, 2' sesw
2 - 1 - eie . ‘ \
’ 1+ eje ,
Consgider the integral I , and substitute 6 = jv,
l-e
i gy -t
bl Gy+1)
1 1 I -1 4y + 1,n*
- - e £ (3y) { ( —) 1} ay
AN rwEgy-1) Y"1
, oo S
- u 1 - I -1 "4y + 1.n~l.*
. - £.097) | ( ) } dy
1 - -
- <Ef Gvy,é 2 = <£0EY),¢__,>
i Cm n-1

ot

where ¢; is nth Laguerre basis function in Hz‘ {R) but
£ (s) € e (R) , i.e., £ (s) L Hz- (R) which implies that

esese gy Ll.e., the r.h.s. of

—

e

i

Tt pRRt A yp

SO EITIAN Y dirhe Mok o oW ST
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(a.1) ' is identlcgl'ly zeto for n =1, 2 , .... and the result follows.

Q.E.D.

* Lemma 2

1f h€a% (R Nu™X ® and [1 +h] has an inverse in

H”i {R) there exists a unique function g € Hz-t n K“-t (R} such that

1

aé

(1 +qg] = [Ll+h]

Proof
Let g= = [1+ h.'l.‘l h clearly g € g2t (R) N B~ R
and T

+RL-[1+n" 0] = 1 = [1- hl+n™ 0 (1+m0

i.e., 1 +g is the inverse of [l + h] .

Clearly if [1+g) = [L+W "~ = +al > 5 =g :

>

. ’ Q.B.D‘
* Lemma 3
d ) N
24
If x (s) €8 (R) then =z ¢

. \

. iy \\
Proof
(jw) can be represented as. .
\1
b 1 1 1 o
g Gu) = ] =& g @a.2)

/]
n njm+1 Jw + 1

n=0

s

IS

g,

a
dhodionh Y

,.Wua,m@m&wmnwwmw&. WUaf G o

]

et A

+
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| : \
where | lz |© < = \ 1 o
v - 2] E K
. Supstituting (%%—;,—i‘) = ¢¥® . hen (A.2) becomes
\,
< \

\
\

je x o\ .
l+e - 1f LN N - jné
: (:-:—.:3—5) L=t I, =2 ) e \ 7
n=l | . ‘
! 5
but K ' )
%ﬁ 2 C2 . 2
% - ’ ’ . Z I xp = xn-ll < 2 2 I xn'.‘ + 2 z\l “i-n-ll e
f ) . 80 the result follows. 3
¢
i
. %
« hd \\ §
b
. ) ’
‘ LN " )
i \ f* S ‘ .
» t:;"/
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) APPENDIX B

The Proo of\Lemma 8

“\
The' proof of this lLemma is motivated by a similar™sesult for

. x +
Toeplitz operators on HZ (T) 111)] , we first introduce the operators

V and U as follows“, for any g (eje) definti on T, we set

Ve @ - g (8.1)
d g ( w - l)
[ 1 Jw + 17

U = B.2

g (e ) /—’E. jm + 1 ’:.‘ ﬁ“h’\'}it{!{.‘ - ( )

It is not difficult to conceive that V is an isometric mapping from

L (T} onto L” (R) , and U is also an isometric mapping from

H2+ (T} onto H2‘+ (R) .

Consider now the Toeplitz operator T "

'rq) () = p [y x] (B.3) "
Let 2 = U (g0 ~ ., _.9g€H
. 'y ‘
Then - s l b

-l - -1 ‘ N » '

14} T¢ v g ¢] 'r‘p U (g)

=vtpuvtpug
' - @wrpw viea (8.4)

- E[‘zgl =

- T‘p (g} ; , ‘ 5

B I T
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Ny
- ' where b
v -1 : ' 2
" « E = U pU the projection operator from L= (T)
onto H2+ {(T) ,
<
~ - je - .7
b @® - vty e Aty . (B.5)
1 38
—"e
- T‘D is also a Toeplitz operator defined on 1-12+ (™ , \
. -1
« T = U T U.
) ¥ v y
) Thus T v is clearly invertible iff 'rl'l" is invertible.
‘ Consider now T " when ¢ is real. . T v is self-adjoint because
— . ‘
<wa x> = <z, Twa:> = <yzx,z2> =(x, yx> =<z, 'rg,?ﬁ>
i.e:. B :
'1‘* = T % = T (B 6) E
w lp - "p ’ ;

pE g R Th e re ks

Hence its spectrum is real. So it is sufficient to show that if

Jro—

(r, = X I) is invertible then either ¢ (ju) # A ¥ w €ER or

v

A2y (Ju) ¥ &/F. since T'p is invertible iff- Tw

So it is sufficight to show that T, - A I is invertible implies ‘that :

A>$(ej°) 0ET ori(ej°)>xve€'r.

is invertible.

\v
\ \ ~
‘ - If TW - is invertible for ) real thern there exists g € Hz+ (T) i

such that

(Tp-AD g =1 ., a €8t m)

e
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+. (J)-Ar)g=1+ﬁ | L ) (B.7)
for some h € w" (T) with zero constant term.
Taking the compljex conjugate of (B.7) , we have . .
W =21 g =Bl+h (B.8)
multiplying (B.'I)' by 5 and (B.8) by g we get
W=-AD [gg]| = W+hg = @Q+03 (8.9)

but

(1+h)g€H]'+ (T , »(+h)g EHl— (1)

1+ 1-
Since H (T} and H (T) intersect only at the constant elements,

sbwemusthave
W=-X))] gg| = constant = a , *€ER

Since g is not zero almost a.e.w it follows that (y - 2 I) has the

( - -~ "~
same sign of o, i.e., either Y )X ¥ O0E€T or <A ¥O0ET and -

the result follows..

>0y

wr e h e et ke e < T e e b
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A PACTORIZATION ALGORITHM WITH APPLICATIONS
TO THE™ LINEAR FILTERING AND CONTROL PROBLEMS

THE MULTI-VARIABLE CASE
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matrix inversions are required at each iteration step and at each sampled .

the projection p which is performed using Stenger's idea [1,2]. Techniques
of spectral factorization of rational matrices are legion [23] - [32].
A thorough examination of this case has appeared in [23]. The majority

of these techniques, including those ©of (23] - [28], rely on frequency 9
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I. INTRODUCTION
In the first part of this study [36] we have developed the technicdl
foundations of a fast algorithm for solving the scalar LQR and filtering
\ .
pf:oblems via the so called Canonical Factorization of functions, sgy
K(jw) , in the form ' e
. -1 + ' LR . -
I + K(jw) “ = (T +G] [T +G] . ‘
" (1.1)
' -
+ i1, . . .;\
yhere [T +G (s)] is analytic in the open right half plane. )

Heére the technical foundations of the multivariable versi;m of
thig algorithm will be considered. As we have alluded to 'in the first ¥
part, very few methods are available to implement the factorization (1.1),
and when it comes to the multivariable case, the choice is narrowed down X

almost to one method, namely the recent one of Davis and Dickinson [1].

+ . |
In their method, the matrix spectral factor G is obtained iteratively .-

4

‘using the formula

.
S

v

g e

(I + G

- * K _ -1
n+l/)~_ (T + Gn) (T +P [(I + Gn) (I +K) (I + Gn) I] ;] .

RS

{ .
The methed, as discusséd in part I, is point wise, and hence has the

ability of tracking rapidly changing frequency responses. However,

[

o

N N
L ST, YOI S T e g
. f

frequency. Nevertheless, the main computational load of this method is
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domain manipulations in which the probiem of factoring a matrix of real
. 4

rational functions is reduced to facto ing an even polynomial or a self-
inversive polynomial. If t:he factorization (1.l1l) of a real rational
function is needed in other contexts tfnan the filtering and control
problems, Anderson et al suggested to reduce the factorization problem
to the solution of a continuous [29] or discrete type [30] n;atrix Riccatiu
equation.

o

Concerning our approach here, the argument and the framework are

convenience most of the theorems here are deliberately put and stated
to match corresponding ones in Part I. 1In fact, with the matrix notions
rought up in section 3, most of the scalar results are transferred sb

oothly and conveniently to th matrix case that no proof is even

Lo ~

\

equired. - \

Section 4 is dedicated to the formulation of the factorization pro-

/ blem in HP spaces of matrix valued functions. biecessary and sufficient

conditions for the existence of a canonical factorization of a given
matrix function have been derived. 1In particular the corresponbdence bet-

ween the canonical factors and |the solutions of certain equations in

I3

HP spaces is established. Some other new results are reported as well

N
in this section. The relation |between the so called outer-factorization

of a function, which appears frequently in the design of feedback systenms

{33), [34], and the canonical factorization is derived. The standard -
Gohberg-Krein factorization [3,}4,5&6] is elaborately reinvestigated in

the realm of the formulation developed in this section.

. s . I T [

£y

basically the same as in the scalar case [36]. Moreover, for the ultimate

-
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The reduction method [6,7] in Hilbert spaces isspplied in section 5

Pad

tt C . .
to a certain equation in H2 space of matrix valued functions to generate

a sequence of approximate spectral factors. An orthonormal basis in

2+ . . .
H space is chosen in such.a way that the reduced equation turns out -

to be a Toeplitz set of linear matrix eguation with the advantage of

simple structure and the availability of fast algorithms [8,9,10 & 11}
for its solution. We provide also an error estimate and an expression

for the speed by which the approximation error decays to zero in terms

P

of some smoothness conditions on the canonical factors. Finally,

!

the method is {llusprated by a numerical example, and some other
’

»

~t

extensionéiand applications are discussed.
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II. THE MAIN RESULT

%

For illustration, consider the standard finite dimensional in-

finite time linear regqulator problem

y=cCx N (2.1)

with the cost function

£

s Feefares
® . (2.2)
. i

Assume that [A,B,C] is a minimal realization of the transfer function

F (S) =C (SI - &)1 B, Re (@) <0, 3 =12,... dim .

Then by standard results [13], the optimal control is given by

y =-8"p z (v)
(2.3)
where :13 is the unique positive definite solution of the algebraic Rfccat;l.

equation

(2.4)
Davis and ﬁarry [12] have shown that this optimal feedback gain may be ‘

found, ;vithout golving (2.4), using the integral formula

1 1

+ PB= — { (-ij-AT)' CTQC(ij-A)- B {I+G(iw] dw
o0

©

. v ' {2.5)

w

2
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1

. t .
here (I + G] is the minimal phase fupction (i.e. [I + G(s)] } are

analytic in the open right half plane) 'satisfying' the factorization

’

I+ KED] P =2 +F G oF Gol™l = (I + (w1
*
[T + G(JU’)] (2.6)

3

where
- * <- 1
K (jw) =F (jw) Q F(jw)
The above integral formula is valid as well for a variety of distributed
parameter LQR problems {12), and their dual distributed filtering -
problems [14]. Clearly the main difficulty 'of the above approach is

the factorization (2.6). In this papfr we address the factorization

¢

(2,6), as well as a generalized version of it, in the Hardy HP spaces

of matrix valued functions (Theorems 1,2,3, and 4). We show that the

factor G sa:tisfies certain To;aplitz equatiox;s in the space H2+(R) ' L
© mxm

(Theorems 2,3). The reduction method in Hilbert spaces (see section II

of part I) is applied to generate a sequence En‘ of approximating

functions (Theorems 8 & 9)

s

+ - i q @
G = 3 g _¢
n k‘o KR k .

. tw 2t )
Wwhere {¢k}o is the Laguerre orthonormal basis in H° (R). It is- shown

}

that the matrix coefficients {g can be obtained by solving a ‘

n
et “ pE=0

'i‘oeplitz set of linear matrix equations (Theorem 9 & Lemma 9). The
[

The Akaike-Levinsén algorithm [8] is applied to generate recursively

the sequence of the,approximating solutions as shown below. It is proved

¢
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[ 1]

~e

that, if G(s) is analytic on the closed right half plane, the method *

converges exponentially with n, the degree of approximation (Theorem

10 and its corollary).

o

The Algorithm

The factor G of the factorizatmn (2.6), where (T + K(Jw)] is

Hermitian and positive definite (a.e.w.), may be obtamed as follows:

Step 1

Find the matrix coefficients Ak's of the Laguerre exﬁansion of

-

K{jw) using the formula

* t

[+ . k .
- . 1 Jw-1 ) -
A = <K@, ¢I> I K (jw) [ﬁf (Fw+l) (jw+l) ] duw

—~4 hat

k = 011'21000
Step 2 }

Construct the block Toeplitx xpatrix
n - ) .
T T {Bk-j}k/,:i=0 !
/

= = +
.'Bo I+2J’ﬁ(A A)

1 “ ‘ :
Bt oE A T AL .
T
B x

_k=B + L
v

Generate a sequance of approximate solutions {Gn} using the

Step 3

Akaike~Levinson recursive algorithm for solving a Toeplitz set

3
»
]
]
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of linear matrix eguations as follows:

Y%,0° "B %
-1
B,"-B B

1.1~ "B B A
5, = (B, - B n;l :la'f]"1
q = [B- B'{ 351 31];1 . i
nel ,  NMAX I
gmmq,:.(-zsn-‘),3 B g o )

mel n+l-m “m~l,n

T -
n-m+1,n gn'n

m = 1:2,.0-,“

“ gm—l,n = gm--l,n--l

n

g Bn-b-l * 2

Dn+l,n+1 = =1 Dn-j+l,n Bj) Sn

D

= D +
m,n+l m,n

Dn+1,n+1 En--xn+1 n

m = l,2,...,n

[
n 6
T T
Enel,nel [ By * §=1 5,n n~j+l] %
m,n+l - Em,n * I-:'n+l,n+1 Dn-m+1,n !
-1 -1 -1
9he1 I Dn+1,n+1 En+:l.,n+1 %
-1 -1 -1
Spel 7 Sp l-":n+J.,n+1! Pntl,ne1 Sn
.
N
4
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n
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n . &1
¥ ?l:,-o i gR.,n - g!?.,n+1 “E + gn+].,n+l "E <e
GO TO 2
1 - QONTINUE
2 - STOP x
Step 4 ; ' ’
Evaluate the approximate cptimal feedback gain using the
1
formula
1 T.-1 T -1 ‘
a_ - -
lcn.. 513 ‘ffSIh'i'A) ¢ccoc(st-a) "B |
r
. . )
‘ n
. . 1 S-1
. (x+ E-o %,n T (s+D) (s’ 198

°

T is a rectifiable contour in tRe r.h.p. enclosing ¢ (-AT). Practically

4 steps (1) and (2) are ingserted in step 3 of the algorithm so that the

k are computed whenever needed in the recursion.

K

matrix coefficients Ak and B

L5

o aan deli P AL 4
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III. BACKGROUND [15-19]

Lo 5
o

R . The space ¢ consists of all mxm matrices with complex entries with

either norm

wrarda T

L.u.b 2z |
|a rI = x.+'0 T=T .if A is considered as an operator
’ - - v s
: on some Banach space of vectors in ¢mx|
: m
! *
%‘ or . lAle = Tra (AR ) = X |a l2
1 v ) P/ Psd
é\ In this case ¢m is a Hilbert space under the innerproduct
H > 4 h
" H
% * - .
; . . - <AB>=Tra(AB) = } 3 Poq -
‘ - : P.q l
{ / ‘ ! . X ]
; : . The sets qum (T) (Lgm (R)) p # 1 consists of all mxm matris- Y

valued functions F = { j} , F:T > ¢mxm (F:R* ¢mxm)' with complex

valued entries £,y (e P@ Pw).

* .

-

P PPN R

o p P ‘had
. 1?'(.1:) €L (T) (Tm (R}), p 1 iff F had measurable. entries and

]

. ) i
p P , ‘ P p d
| IF(m)IE €L .('r) (L (R)). For p?l. Lm (T) (L, (R)) is a Banach ;
! 'space under the norm ||'F IIp = scalar 1I¥ nom of |F(x)! -
2 2 . %
. Lm:un (T) (mem (R)) is a Hilbert space under the inner product . j@
2
* , . , ' A
<E‘.G>2 = I Tra [F{¥) G ()] d =z . o oA i
. . L . . .
‘ N T [
(R)

Li




AT
RS

x

TR e

LN A

-t

[P

5t 1 a ezt
ok ST e AR AR ST RO BRIY N s e AN ST s, TH ST R o b \ w2y

hd ) )

+ \,
o fa P
The space Hpt! (1) (ﬁz ((R)) is ‘tlie subget of meSL (T)

{
-

") (R)) consisting of all matrix valued functions with entries in

’
), @ (@) '

M

(L

2t

’ pas : . .’
. In particular mez (Ty (H -y (R)) is a Hilbert space with the inner

product of any two elements F and G in the space defined by té:e L

inner product of the boundary value functions of P and G, and nomm

. T
* sup , .
.l ||2 o = 0Sr<1 == JTta (Pire'® ) P'(re’? )] a0
2 (T) > 2m .
: (r > 1)
-T
v o0 -
2 sup i . .
hFll"y, = g>0 Tra [F(S) F (s)] d w
(R} (c<0) _
- /
S=0 + jw
« t . et .
o (B (T W (R)) is a Banach alge'bra with the norm ) \ -
; ess sup 10 : !
BEll g,y = 0<r<1 [F(xe") |
H (T) (r>'1) . )
ess sup ’
el g -O’>O""'F(S)LE:S'O+jm
‘ H (R) (o0 <0) 1\ N
u N ‘ . o
. As in the scalaz: case, every function \’i‘ € Lixl (R) can be expresied as
(3 ) P no , ‘ , .,
§ F -BF_'_ +F_ = P[F] + Q[F] where F € mez (R),
o . 2 - .
- The projectoxs P (Q) : Lot (R) * (R) (H""}”(R” ’ P[xl = {p(x j.) }1_1 n
I=b
N The projector Q is defined analogously. o . ¢ \ .w"‘“

a
>

o el e e
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gl‘he following leamas are stated without pr'oof. " They are simple exten-
sions of their scalar mates given in Part I. )
Lemma lk >
2t \ @ 2+
0 If F(s) € B~ (R) and F(jw € L _ (R), then F’ #1°° (R
o !
NE (R
. 4
4 § o N
@ , oot . ’ ) .
1£ 5(S) & B2Y (™ (R)°and (1 + H (s)] has an inverse in v
m ! W N \u .
’ ’ -= oo , ““ ’ i ST
. H (R), then there exists ‘a unique (a.e.w) matrix functidn .
° 2+ \ n o ‘ f o —lo .
R t + = + .o .
G(S) e H (R) H (R) 'such that (I + G} ;[I H] R )
-Lé—&-a— - o ) . "‘ . e \ P
i . 1+E Ctmy o ’
X . B
If X(5) € Hi:ll(f) then X () ¢ @ )
. P > 1. 1 2 R y
{ ’ N ' 2 ®
! . .
. K ‘ i
’ . . ‘ % u . ° x\
P ) 4" B
N\ 4
3
. ! . " b H4 ,
, - ) » .
e = 3 s 3 . .5 @
’ ¢ —0‘ ’ \ - ‘ . } ‘“ "/.‘ ! . -
v . ./ ) . ) - - &‘{ .
- * ” ER ) [
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Iv. FACTORIZATION OF MATRIX-VALUED FUNCTIONS\ \

IN H®  (R) SPACES
mxm

81

In this section we investigate the relation between the general-

ized frequency domain image of matrix Wiener-Hopf equation, which is
known as Toeplit® equations, and the spectral factorization formulated
directly in the frequency domain spaces; 1.e. the Hardy uP spaces. The

approach here is inspired by the work of Gohberg and Budjanu [20,21].

While the machin@ry and seme of the results are motivated by the -results

of Pousson on Toeplitz operates [17,18] on the circle group. The heart

of our results in this section is Theorem 2 which relates the canonical

factors, defined soon, to the solutions of certain Toeplitz equations in

2%
mxm

a matrix valued function which is positive definite almost everywhere,

oY
H (R). Theorem 3 considers in detail the special case of factorizing

i.e. Hérmitian and its ess inf det (.) > 0. The complete characterization

is brought up by Theorem 4. We have also studied the relation between
the canonical factorization of a function and its outer-factorization,
from which new necessary and sufficient tests for the existence of the

canonical factorization are brought up.

Definition:

. . 2 @ , .
An element I + K{(jw), K(jw) € L (R) N 1L, (R), is said to
have a right cancnical factorization if it admits representation in the

A
form



82
[I+KGw] = [I+H (Gl [T +H (Gw] ae.w. " (4.1)
where . {
2t ¢ oot
* T,
y2t(s) e v (R) N H e (R d

(1 + Hri -1 =t
(s)] £ mem (R), and

Y
a

22 N EE (R)
mxm

mxin

+ + -1
G (8) {(I+H (S)] - I¢cH

The uniqueness of the above canonical factorization is
established by the following theoren,
&
Theorem 1

. . 2 o
+ , j R) M
If an element I K(jw) , XK(jw) € Lm (R) M L (R)

+
admits the canonical factorization (4.1) the factors G are uniguely

defined (a.e.w.). The proof of this Theore;n is basically the same as its
scalar version (I, theorem 1).

The following theorem is the corner stone of the subsequent
study, from which special cases will be studied and other equivalent
necessary and sufficient conditions will be derived.

Theorem 2

2

w0
+ . . m
For an element I K(jw), K(jw) € L (R) I (R) to

admit the canonical factorazation (4.1), it is necessary and sufficient

that the two equations

+ +
G +P [KG]

I
]
o
=
—

(4.2)

-

G +0Q [G K] -Q[K] (4.3)

+ , * ot
in the Hilbert spaces i (R), have solutions in B (R) NH (R)
meam mym mxm

@
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respectively.
Except for a fewobvious minor changes, the proof of this
theorem is identical to that of the scalar case (I, theorem 2). ) .

Studying the solvability of such equations in Hj;n (R)

is not an easy task. However, with only a mement of contemplation we

can realize that these two equations are no more than a set of parallel
. 2t .
m-vector equations in Hm (R). In other words, it is sufficient to

. i
study the two equations (4.2) and (4.3) in the vector spaces Hi (R)

+
rather than in the matrix spaces H2 (R). This fact is put forward

in formal terms in the following two lemmas.

Lemma 4

Define two operators T‘y and TL\; in the following way

2+
Ty [X] = P [¥x] xeH (R
(4.4)

U 2+ ,

Ty [x] = P [¥r] zeH . (R . (4.5)
where

‘l’emem (R) ,

1

T, is invertible iff T, is invertible’

¥
Proof :

Ffom the definition, it is clear that T v can be expressed as
U U
T‘y 92""’ 'l‘q, gm]

'f]_'

- C

Ty (X} = [T

o

where wl, L secey mm are the columns of X let \I“y be invertible, accordingly

2
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-1 U v U -
Ty [Ty Zys Ty Zpreenr Ty Zp] 0 = (2)0 Zy0ee gy ]
v / U U
. = [A T‘ya_:l,AT\y.gz,...,AT\ya_qm]
2+ U
for some operator A, and for every X € mem.. It follows that A T\y =1,
4
. v, -1 o, . \S; .
i.e., A = (T‘y) . Thus T\y is invertible conversely, let Tq, be inver-
tible and define an operator B as
_ U, -1 v, ~1 v, -1

B(X] = [(T\y) Lq+ (T\y) Toreeer (T\y) igm]

Thus BT, [XI¥ = [x., % x ] = X, for every X € H°|  j.e T, is
us BTy Tye Tyreeer T 1 = . for every i-e Ty

invertible and B = ’I‘;l. Q.E.D.
Lemma 5

Define two operators PLy and I‘};, in the following way

2=-

I‘\y [x1 = @ [x¥] X EH (R) (4.6)

U - T 2~

Ty (€1 = Q Iz Y] xeH (R

) (4.7)
- L 2]

h Yern. (R
where € L )

Then, Ty is invertible iff I’}i,’ is invertible.

Except for obvious changes, the proof is the same as lemma 4.

Using the above facts, we are going now to show in lemma 6,

that (I + K) admits the canonic factorization (1.1), the two equations

must have unique solutions. he main conclusion at this point is that

the canonical factors can e obtained by solving (4.2) and (4.3) directly

+
in anlxm (R), and as these two solutions are the only solutions in
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+ . +

H2 (R), and as these two solutions are the only solutions in H2 (R)

mxm mxm
2t S

they also turn out to be in H (R)y N H (R) as well.
X mxm

- L3
Lemma 6 4
L ! 2 o0
If an element I + K, Xe L (R) N L (R), admits the
mxm mxm

canonical {factorization (4.1), then the operators T and [ defined by

+ o + + 2+
T (1+K) (x) = x + P[Kgz], X €H (R (4.8)
. - - B S,
Plgegy ¥ = %+ Q [XK] X €H (R) (4.9)

+
are invertible in H2 (R) respectively

Proof:

To prove that T is invertiblg, it is sufficient, by lemma 4, to

show that the equation

Y+=x +P[Kx] /\ (4.10)

2+

+
has exactly one solution & € H 1 (R) for every z € mel (R).

Let g = +G1 P (X+6) ¥ (4.11)

. . ) . , +
Then by direct substitution one can verify easily that z, is

+ +
indeed a solution of (4.6). Now suppose that :51 and :52 are two

N

“solutions of (4.6), then we must have

+ +
(@, - 2) +P [K(g -x)] =0
or 1 ¥ K) (J_cI - a_g;) = y for somey € H:l;l(R) (4.12)
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since (I + K) has a canonical factorizataion (4.1), then

+ — —
(I+H)($_Ul--’_1_72)= T+61y
: o
but the L.H.S. is in H>_ (R) and the R.H.S. is in HZ . (R)
1 sl .H.S8. is in mx1 , SO we
must have both sides equal zero, 1.e.
+
(I +H (9)] (a_?l(S) —-’52(5)) = 0
+ +
but [I + H (5)] 1is nonsingular for S g ¢ , hence .'EI = :_c; and we

conclude that T is invertaible.

Similarly, by the aid of lemma 5, and an argument as..aboVe we can prove
that [ is invertible as well. Q.E.D.///

Lemmas 4,5, and 6 unveil the relationship between the invertibility of
the operators [ and T and the canonical factorization. Unfortunately,
as we have seen, the invertibility of T and ' is only a necessary con-
dition for the existence of the canonical factorization (4.1).
Accordingly a further study of the conditions of the invertibility of T
and ' will not be very helpful. This difficulty forces us to study
separate special cases from which the complete characterization of the-
class of functions admitting the canonical factorization (4.37) is

formulated. It turns out that the following special case be an indis-

pensable factor of any function admitting the canonical factorization

(4.1).

Theorem 3

[»+]
For an element I + K, K € L2 (R) N1, {R) to admit the
mxXm mxm

canonical factorization



I+ K({Gw)] = I[I+ H+(jw)]* [T + H+(jw)] a.e.w. (4.13)

1

where’ gt sy e BT R O R), o+ as)) e Hrm(R). and

+ . + -1 2+ ot
= - n
G (8) {I + H (8)] I €8 (R) H (R)

It is necessary and sufficient that [I + K(jw)] be Hermitian and positive
definite (a.e.w.).

Like the scalar case, we need another lemma on Toeplitz
operators to complete the proof of theorem 3. Unfortunately, we don't
have ready result on the invertibility of Toeplitz operators on the line,

as we had in the scalar case. However, we maintain that the following

3

results, originally established on the circle group, are applicable to
. 2+ 2
the Toeplitz operators on H (R) (hence on H. (R) as well).
mxt mxam

Lemma 7

=]
Let Y be a matrix valued function € L (R), define the opera-
tors 'I'\y and T§ as in (4.4) and (4.5) respectively then

i) If T

U, . -1 *®
y (T‘y) is invertible, then Y ~ ¢ mem(R)

ii) Suppose Y is positive definite (a.e.w.) then T,y (T\\;) is invertible.

The proof of this lemma is pogtponed to Appendix B.
Proof of theorem 3 :

The necessity part

From (4.13) it is clear that I + K must be Hermitian and at
least positive semi-definite a.e.w.

As the factorization (4.13) is just a special case of the

factorization (4.1), theorem 2 and lemma 6 are also applicable, i.e.
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3
2 s . .
The operator T(I + K on mem (R) 1s invertible. Then by part (i) of the\
.last lemma we conclude that det (I + K) does not vanish almost everywhere,
\
i.e. (I + K) is positive definite a.e.w. .
o The sufficiency part
Suppose now that I + K(iw) is Hermitian and positive definite
almost everywhere. According to theorem 2, for 1 + X to admit the
canonical factorization (4.13) it is sufficient to show that there exists
+ 2 + + * , .
an element G € H (R) such that G and (G ) satisfy respectively the
equations
[~
+ +
X + PI[K X ] = ~P[K] , (4.14)
N X + QO[X K] = =Q[K] (4.15)
T+ ot . . )
and G € H (R). By lemma 7 (ii) the equation (4.14) has a unique so-—
P ° . @ ~
+ [
lution in BT (R), call’ it G, i.e.
: e + prikc = -pK)
+ * 2+
> (L +K) (T +G) = I+Y for some Y € H {R) (4.16)
-1
/"/ Taking the complex conjugate of (4.16), we get
S ) i
+ *
(I +G) (I+K) = I'+Y (4.17)
we apply now the projector Q to both sides of (4.17), we come up with
/ + k + %
- ’ (G).+Q[(G) K]l = -Q[K] (4.18)

*
i.e. (G+) satisfies equation (4.15). 8o what is left is to show that

a

G+ is € HM (R) or equivalently ¢ Lw (R)
- mxm q Y mxam *

*
To do so multiply equation (4.16) by (I + G') and equation (4.17) by

-
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(I + G ) to obtain
+. ‘ + ) 4 % *
[T + G ] [T+K] [T+G] = [IT+G] 1+ Y]
= [I+Y] [I+G]
= £ (juw) '

S . (4.19)
we shall prove first that £ (jw) must be a constant a.e.w. Consider
first the equality ° !

. f3w) = [I+7Y][l+G]
© 1l + eie
substituting jw = —ra and recalling lemma 3, we r@alize that
1-e ‘
i® C i0 \ )
l+e 2+ + 1 +e L2+
[T +Y (. ie)]Emem (T, and {I + G ( i6”°H (.
l1'-e 1 -e q
-
\ ig -
+ +
Thus £(22—) ¢ utt (1. v
. 1 - ei® mxm

¥
-

Applying a similar argument to the second egquality of 4.19 we see that
~ -

i@
1t+te Hl- (7).

£ ie)amxm

1 -e

|

1+ 1-
H T i
But the two subspaces (T) and H (T} intersect only on the constant

' £
elements, i.e., f£(jw) = C a constant matrix. We now use the L.H.S. of
&
(4.19)
+ % +
L+ G [I+K] [1/4 G1 = ¢ aew (4.20)

Applying the trace operator to both sides of 4.56, and using the matrix

identity | .
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a
* m *
Tra [B AB] = ) bj ADbj
j=1
where b} is the jth column of the matrix B, we see that
* . . .
] 32 (I+K(§w] It = Tra [C] a.e.w.
L
+
where gﬂ, 18 the 2th column of (I + G ] ~
+ < \
> + j + G
Apin (Xt KGw1 b« ) IIE < Trace(C]
. Since I + K{jw) is positive definite a.e.w., we have . 3
3 > ] *
0< ess inf Mmin (I + K{jw)l | (T + G ”E < Trace [C]
a.e.w.
+ , . . + 0
> | (T +6) "E is boundéd almost everywhere i.e. G € L o (R)
< and the result follows. , Q.E.D.
The following theorem completely characterizes the class of
functions admitting the canonical factorization (4.1).
Theorem 4
o]
For an element I + K{jw), K(dw) € L2 (R) NL (R), to
‘ mxm mxm
admit the canonical factorization (4.1), it is necessary and sufficient
that (I + K) has the representation
"I +K = [I+ K1 II+ X)) (4.22)
where

i) I+ Kl is Hermitian positive definite (a.e’.w.) , and

® 2
}xl €L R L{nifv? V4

2+ O

. o4 , -1
ii) K, € H (R} N Hm(R) with [I + 1<2] € mem (R}

- PUROv

2 mxm
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Proof:

Apart from the routine amendments of notations, the proof is

\,
s

i

essentially the same as in the scalar case (I, theorem 4).
Theorem 4 not only provides a simple test for factorization admissibi-

]

lity but also reduces' the factorization problem (4.1) to two possibly

easier ones, namely (4.22) and (4.13).
O
We are going now to two new important theorems which relate

.
the canonical factorization (4.1) to the so~calleld outer-factorization

T~

\
of functions. In theorem (5) we prove the existence of the outer-

factorization by construction, using the pro%ertieis of the canonical ’ .
factorization (4.13), while theorem 6 imposes certain necessary and
sufficient conditions on the outer-factorization for the function to

admit the canonical factorization (4.1).

The Quter~Factorization of Nonsingular Functions

Theorem 5
. 2 © . . ,
Suppose that I + K{jw), K € mem R N mem (R), is invertible

00
in L (R), then there exists a unique factorization such that

I +K = [I+U] [T+ J] (4.23)
where
. I+ U is unitary
+1 oot 2 oot
N
. [I + J) epH (R} and J € Hm (R) mem (R)

Proof

3

»*
(T +K) (I +K) is positive definite a.e.w., then by theorem

_

3 it admits the canonical factorization (4.13)
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(1+1<)* (I,+ K) = (I+Y*) (I +7v) (4.24)
<
*:; *

[(I +K) (T+7v)] [T + v]

[T +u] (1 +0J] (4.25)

i.e. (I + K) admaits the factorization (4.23)

To pPove the uniqueness of the factorization (4.23), suppose

4

there exist another factorization

I+K = [I + Ul] [(x + J1] (4.26)

anclt'Jl # U,Jl # J

Tt follows that

*
(I + J) LI + J)

TR (IR = (I+Jl)* (T +3))

*
but the canonical factorization of (I + K) (I + K) is unique by

theorem 1, so we must have Jl = J (a.e.w.)

Also from (4.25) and (4.26) we get

o = (Ul -0 (I +J), (4.27)
\
but (I+J) is nonsingular a.e.w., soO we conclude that Ul = U a.e.w.
Q.E.D.
. Theorem 6 : ’

Suppose that I + X, K € L2 (R) N L (R), admits the
mxm mam .

factorization (4.23) then the necessary and sufficient condition for

I + K to admit the canonical factorization (4.1) is that there exists a

2 o]
» n - s .
function 2 € L (R) L (R) , admitting the factorization (4.1)

and such that
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-

I+U=(I+2) (L+y) * ",K : (4.28)

with
* * '

(T +2) (£+2) = (I +Y) (I +Y) (4.29)
Proof of theorem 6
The necessity part

Suppose that (I + K) admits the canonical factorization (4.1)

Y*

Since (I +K) (I + Ky is positive definite a.e.w., it admits the

©
canonical factorization (4.13),

I+K (I+K = [I+7Y [I+7Y] (4.30)

which implies

*‘l' *
[(I +K) (I +Y) 1 [I+7Y]

-

+
A
1

((I+K) (T+¥) 3 [1+y]

[T + U] [I + Y] (4.31)

e
it

Clearly the outer-factorigation (4.31) of (I + K) satisfies the necessity
condition

I + K has the representation . g

[L+K = [@T+2) (T+D] L+ a3

but (I + 2) admitsg the canonical factorization (4.1), so (4.32) becomes

I+K = (I+E) (IT+HE).@+ 07 (1 +3

= THE] (@+HD @+ E@enl .

Ve
T

- + . .
) = [I + Hk] {1 + Hk] (4.33)
i.e. I + K admits the canonicai factorization (4.1).

Pz
The proof of theorem 6 is complete,

<
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e

In the next theorems we shall, reinvestigate the traditional
Gohberg and Krein factorization [3 - 6] of matrix valued functions 1in
the realm of the formulation developed in this section.
Theorem 7

Suppose that K(jw) is the Fourier transform of some Kv(t) €

2 , .
Ll (R) N1 (R}, then for I + K to admit the canonical factorization
mxm mxm

(4.1), it is necessary and sufficient that the operator TI+K defined 1in

(4.4) be invertible on H2+ (R)
mXm

Proof of theorem 7

The necessity follows directly from lemma 6.

The sufficiency

Suppose now TI+K is invertible. Since the Fourier transform

., . . , 2 2
F is an isometric mapping from mel (R) onto mel (R), so the operator

F_l 'I']L:)_’_K F (F':':L TI+K F) is invertible iff T;+K (TI+K) is inver.tible in
H2+ (R) (HZ+ (R}). It follows then the Wiener-Hopf equation
mx]l mxm .
. o«
T (t) + Jk" (t=2) 2 () d t = y (&) e
o

is unique(ly solvable in L:Lxl [®,®). Now by well known results of Gohberg

and Krein [ 3 ¢ theorem 2.1] the equation (*#) must also be solvable

in every Lﬁxl {°,») for every y+ (t) € Lftxl (R), L<p <o, 1In

2
mxl

v 1

- + 1 ‘
particular, & (t) € L, [ NL [°/®) whenever y (t) € L, [°,=) N

Lixl[%w) . We now observe that the Fourier transform of the equation
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X+P [KX] = -P [K] (4.34)
L . . 1 2
is in fact a system of m~vector equations in mel }°,m) N mel [°,)
which implies that X'(t) € L. [°,®) N1°  [°,®), i.e
xm 14 1 L4 . .7

2+

+ +
X e T (R NwW c &t (m NnET (w,
mxm mnxm mxm man

+ , , .
where W is the algebra of the Fourier transform of matrix valued

i

functions in Ll (°,).
‘mxam

We have now concluded that the equation (4.2) has a solution

7

2 oot .
n .
X€eH (R) H (R). We are going now to show that equation (4.3)

- OO
has also a solution in H2 (Ry N H (R). Now since T is invertible,
msam mxm I+K

is T_ _*.
so is T, .

Using a similar argument as above we conclude that the equation

* *
Y+ P [K Y] = -P [K] (4.35)

°

+ oo
must have a solution Y € H2 (R) N H (R). Taking the complex
mxm mxm

conjugator trangpose of both sides of (4.35) we get

.

* *
(Y) +9Q {(¥) K] = =-QIK] (4.36)

f

, X . 2= O
i.e. (4.3) has a solution in mem (R) N H (R) . ‘Then by theorem 2,

I + X admits the canonical factorization (4.1).

... Q.E.D.

Corollary 7.1

2 ©
j N
Suppose that I + K, K{(jw} € L (R) L (R) has a
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N \ !
representation in the/ form
I+K = (H+ K] [I+K)] (4.37)
- K, e Hj:m (R} N H:*m , (I o+ Kzltl e H:J'm (R)
. Kl (Jw) is the Fourier transform of some kI (t) € L;xm (R) N
2 @

Then the necessary and sufficient condition for I + K to admit the

canonical factorization (4.1) is that TI+K be invertible.
Proof:

The necessity part follows from lemma 6. Suppose now TI+K is
invertible, since TI+K = TI+K1' TI+K2 : TI+K1 must be invertible.

Then by theorem 7 it admits the canonical factorization 4.1, thus

L4

- +
I+ K [I+Hl] [I#Hl] [1+K2}

it

- +
[I+H] [I+H] i.e. I + K admits the factorization

(4.1). Q.E.D.

Lemma 8

2

M ]
Suppose that I + K, K(jw) € L (R) NL (R), admits the

outer factorization (4.23). Then the necessary and sufficient conditions

for TI+K to be invertible is that there exists a matrix valued function
ot ' -1 o4
B(S) € H (R) , and B (s) e B , such tha;
ls-@x+uwl, <1 (4.37)

where | All = ess gsup max (A, (& l\’k))l/2
o [ _l j

The proof is given in the Appendix B

&
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V. APPROXIMATING THE CANONICAL FACTORS

In part I of this study we have introduced the reduction
mythod for solving linear equations in Hilbert spaces, and have applied

the method to solve the equation
+ +
G + P[KG] = =P [K] (5.1)
. . 2+ ,
in the Hilbert space H (R) in the scalar case.
We are going now to extend this result to solve (5.1) in the Hilbert
2+ .
space mem (R) of matrix valued functions.

We first show that if (I + K) 1is Hermitian positive definite (a.e.w.),

, L +
the operator T admits reduction relative to any basis in H2 (R).

I+K
. .
Next,. in theorem 9, we apply the reduction method to generate a sequence

of approximating solutions

. ‘n
Gn = £=O gk,n ¢k' gk,n € ¢mxm

+
and {¢k I} is an appropriate orthonormal basis in H2 (R). The matrix
coefficients gk n turn out to thisfy a set of linear matrix equations.
’
The situation is simplified further by choosing {q)k}Oo to be the Laguerre

orthonormal basis. In this case the block matrix equations come down

to a Toeplitz set of linear matrix equations with the advantage of the

.

availability of fast algorithms for its solution [8-11]. We also derive
an error bound and an estimate of the gpeed of convergence. Theorem 8
is the counter part of tlreorem 6 part I. However, we provide here a

direct and simpler proof. Theorems 8 and 9 are stated here without



98

proof. Their proof follows simply from their scalar mates once the

notions developed in section 3 is mechanized.

Theorem 8

@
Suppose that ¢'e L (R) is Hermitian positive definite (a.e.w),

.
then the Toeplitz operator Ty admits reduction relative to any basis in

2+

H (R).

mm

Proof ’ .
The proof cbnsists of two steps; 'in the first we show that T¢

must be a positive definite operator, second, by lemma 7, part.I the result follows.

Let us now prove that T¢, is i1ndeed a positive definite operator on

1t (r).
mxm

(0]
Definition: A Toeplitz operator quu Y mem (R), is said to be positive

definite if

Tra < ¥, Ty x}] > = Tra<T¢ x)], x> = €> 0

2+ .
for every x € H 4(R) . (5.2)

Now if ¢ is Hermitian positive definite then

o0 w0
* * *
Tra<x,'1‘¢ [x]>=TraJx¢xdw=Tra Jx ¢ x dw
a ~c0 - -
«©
(L=
= z x dw
v _k ¢ _k
e k=1 ‘

where 'Ek is the kth column of the matrix x
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m *
; j K j
Tra < x, Ty [x] > J }Ll z, (w A ($Ew) 2 (Jw) dw
2
> . :
ess inf Amin (bGw) I x 1l 2
W H
mxm
> 0

Where the last step stems directly from the hypothesis) we conclude that

Toeplitz operators constructed in the above way must be positive definite.

We can now see that, if {Pn} is the chain of projections

. 2+
generated by some orthonormal basis {¢kI} c B o R
Tra <pn Ty P, [x1, P (x] > = mra < Ty P X1, P x] >
> egs inf A . (p(3w)) I P x i
> 0

Then-by lemma 7 of part I, Ty admits reduction to the basis

{¢k1}. Since{¢k1}-is arbitrary, Ty admits reduction relative to any basis

f«ka] in Hj:m (R).

We now come to the main result of this section.

Theorem 9

Consider the equation
(5.1)

F+p ka6l = -p K]

2 [o]
n + : Y 1 ) f .
where K € L (R) L (RY, [T + K] is Hermitian positive definite

a.e.w.
Let {¢ I} be some basis in H°. (R), and define the projectors
k" k=0 mxm !
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n n
P (x] = J ¢ <x, 61> =71 ¢ {@=, _, )"
n k=0 * K k=0 & TR
X € H2+ (R)
mam
let Gn be the solution of the equation
Gn + Pn (X Pn [(:n]] = -Pn (K] {(5.3)

' +
finally, let W be the isometric mapping which takes Pn H2 into

+1
¢n , the space of all (1+n) ~ Tuples constant matrices with complex

entries equipped with the norm

n
n n _ *
<SBhae Bt T §=o Tra [a; Byl

in accordance with the formula

n
wi] a ¢} = colum (a, a

..,A)
i=0 n,

1’
Then,

i) Gn" G as n » o

ii) llc;-cnll2 < c |l (T -P) [G]||2 ,C >0

H H
mxm mxam

iii) Under the mapping W the reduced operator equation is

o+
representable in ¢n 1 by the block matrix equation
Tn g ='A (5.3b)
where A = -~W [Pn [K]]

g = W [Gn]
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n

T + <K I>
‘{ der 01>}

n = Im(n+l) x m(n+l)

and Tn is a positive definite Block matrix.

The outlines of the proof of this theorem is identical to its
scalar counterpart, and will not be repeated. Theorem 9 is the main result
in this section. It maintains that the solutions of the reduced
eéuation (5.3) converge in the mean square sense to the spectral factor
G. Moreover, the approximating solutions Gn may be obtained directly by
solving a positive definite set of linear matrix equations (5.3b). The
next lemma, 9, simplifies the problem furthermore. It shows that if

we take the ba@@s to be the Laguerre orthonormal functions in HZ (R) ,

we come up with a Toeplitz set of linear matrix equations as
well as a surprisingly simple explicit construction of the blgck matrix

T in terms of the Laguerre coefficients {An}.

Lemma 9

Let G, Gn' and Tn be as in theorem 9 . If {¢kI} is the Laguerre
orthonormal basis, then Tn is a block Toeplitz matrix.

Proof of lemma

2 . .
Since k(jw) € L (R), it can be expanded in the form

o ) 2
N 1 Jusl ¥ % 1 -1 Gel
K(3w) §=0 M T Gon Sert! YR T Goon) Guel
‘ (5.4)
[ i’} 2+1
1 ju=-1 s Lo dw-l o ju-l s Loy
but 5o+l or) 2 GG - Gon 1 F o7 Wy - Yl
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2gent e P ant Ly Ly
ju—~1 “ju-l 2 jwl Juw~1 2 -8-1 ~%
{(5.86)
Upon substituting the relations (5.5) and (5.6) into (5.4), we get
1 S |
KGw = 5 @&, +a) + §=1 T Ay -a, )Y
® *
+ %_11% (B - A; l) W-Q,
™
= %_w B, ¥y (5.7)
with
BO = -:l;(AO+A;)-]-'ﬁ
B, = 3 (A, - A ) %ﬁ (5.8)
g B
Consider again equation (5.4) and substitute K(jw) by the r.h.g. of
(5.7)
Then
n o n n
Z=Og£,n.+ P L E.,w' ¥ B Logr,,, 0.1 = -Lo ag b,
(5.9)

splitting (5.9) and using the relation

Yo b = 0y Wy = )

we come up with
n

99 +3) B, 9 = -A (5.10)
K!ﬂ r=0 f=xr “t,n % £=0,1, ... n
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&
rewriting (5.10) in a compact Block matrix equation, we have

T.g = "B
where - - ¢
* * *
I+ BO Bl B2 .o Bn
I *
+ “ee
B, By By -
Tn = (5.11)
+ e /
_B2 Bl I BO
B, B, R A B(:J
A = column (AO, Alﬁ ceer An)
— column (
g = %’nl %11 ’ rﬁn)

i.e. The reduced equation is melted down to a Toeplitz set of linear
matrix equations, and the matrix Tn is given explicitly by (5.8)

and (5.11).

Next, we provide an estimate for the speed of decay of the error
by theorem 10 and its corollary. Here again they are stated without

proof as they follow directly from their scalar mates. See part I.

Define the spacé c® (T) to be the space of p times continuous-

ly differentiable matrix valued functions on the unit circle, and the

mapping V by

vV £x) = fc (e7) = £{ iO)
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We can now derive an estiﬂ?ge of the speed of conergence of Gn to G
when the reduction method is applied with respect to the Laguerre basis \

in mem (R).

Theorem 10

Let G and Gn,be as in theorem 9. However, assume, in addation,

G satisfies the following smoothness conditions,

ig, . . . D
1) FC (e” ) = Vv [(1+jw) G(juw)] € mem (T)

2) Fép) (ele) satisfies the Lipschitz: condition

3 3 1 o
Fp® (184 _po) (18 lg<clhl
for some 0 <g <1 c>0

2 *
and | AIE = Tra (A A)

Then
N tant
“ G -¢C ” < cons
n H2+ (R) NPT ¥
mxm

Corollary 10.1

If G(s) is analytic in an open right half plane including the
jw-axis, then there exist constants ¢ <0 and 0 <a <1 guch that
le-c_ Il €cd
n

The above corollary indicates that the approximation error
decays, in the average, exponentially with the degree of approximation,

which is a fairly fast convergence rate.
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Vi. THE ALGORITHM AND THE COMPUTATIONAL ASPECTS

In the previous sections we applied the reduction method to

obtain a sequence of approximating functions Gn .

n
G( =
n §=o Ie,n %
and showed that the matrix coefficients {gk n}n satisfy a Toeplitz set
7 k=0

of linear matrix equations, namely

Tn E& = A (6.1)
where A = column [—AQ, —Al, ey —An]

g = column [ gO,n' gl,n' ey gn,n]

[od]

. : [
Co , - K(jw) - 1 jw+l
A, <KW, ¢, > f % Gon Goon 4v

=00 .

. n
iti T lit tri . . B e
Tn turns out to be a positive oep‘ z matrix 'EIBK_J}K’320 where K ar

related to the coefficients Ak's by the simple relationship

4

I+= (A +A
o " A

o
I

o 2T

B = == (A -A&_)

X 23 P T A
*

B T B

In.other words 'the problem of factorization is reduced to solving a
Toeplitz set of linear matrix equations. Fortunately, there has been
a great deal of interest in developing fast algorithms for the factor-

ization and inversion of Block Toeplitz matrices in the last few years.
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The pioneer work in this context is due. to Akaike ([11], and Morf (9]
and Rigsanen [10] who where able to show that the Cholesky decomposition

- 2 .3
of an nxn block Toeplitz matrix requires only of order of 0 (n m")

operations compared to O (n3 m3) for the general matrix case. An ela-
borate discussion and generalization with applications have recently
been carried out by Kailath et al {8]. Here we choose J© illustrate the
method using the matri;s form of the Levinson's recursive formula for

solutions of Toceplitz set of linear equations [11). The Akaike formula

[11] gives directly the approximating solution

]

951 = column 95 o037 91,041’ 70 Tnsl, ned

in terms of the old approximating solution

9, = col [gO,n' gl,n""" gn'nl'

without resolving the system of equations (f;.l) for n+l, thus enables

us to monitor the change of the approximating solutions as n increases.
Another surprising observation is that, under the normal

assumption that the resolvent R(S,A) of the operator A in (2.1) ris o

analytic in the closed right half plane 7 the approximate feedback gains

]Kn converge to the optimal feedback gain X = PB faster than the

approximate spectral factors Gn converge to G. ,
This phenomenon may be explained roughly as follows:

Denote by 0 the first term under the integral (2.5), namely

%

o = %1? (=jo - a5 cToe (jur - )t B

The integral (2.5) can then be written as

106
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X = dew+Z 5. 9

where 6_, is the Lth coefficient of  w.r.t. {(p;‘} and g, is the Lth

Laguerre coefficient of G. Using an argument similar to that used in

o

the proof of theorem 8, part I, it can be shown that the coefficients

6_9’ decays exponentially with %£. Thus the coefficients 6_2' act as ,
weighting patterns reducing further the effect of the errors arrising
in approximating (I + G) in general. and the truncation error of

(I + G) in particular.

Example

Consider the stationary state estimation problem for the

following system

’ dr = Ax dt + B dw (t)
dy = Cx dt +4d v (t)
where
A= (o -3 o o , 8= f&a o) -
1 -4 0 o0 - N12 of .
0 0 0 -35 o {83
Lo 0o 1 =12 o {2
3
C = 0 .5 0 5
o E
0 > 0 .5

W(t) and V(t) are Wiener processes with incremental covariances

respectively.

Q =158 0 H,andIz'2 _ ‘
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According to [l4], the steady state filter may be given by

dr = Ax dt +XK [dy - C x dt]
o]
1 . N -1 7 -
x = = f (jw - A) T BO BT (~jw - A T ¢ (I + 67T dw
-0

where [I + G-] satisfies the canonical factorization

, -1
[I+C (-3w - &) F B BT (jw - ah)™t T

+ -
= [I+G] [IT+G)
We applied the method proposed in this paper with respect to the

Laguerre bas:i:s

2
2 1 s-4
‘(i»'SL (s) 9 T s+4 (s+4)
Fi
we come up with the following numerical results
-
r 2.5 4.3301 «
.
1.0 1.7321
X =
-11.258 6.5
L-l.7321 1.0
-

The spectral factor is approximated using only one term of the Laguerre

expansion

— =~
2.5357 4.3920
X 1.0089 1.7475

' ”~S B

- - ko= ~11.432 ! 6.6004 '
]
-1.7593 1°.0157 )

L Y

Maximum error & 1.6%
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. The spectral factor is approximated using two terms of the Laguerre

expansion
(" 2.5040 4.3370 |
L J
1.0010 1.7338
X = 1274 6.5093
_-1- 7346 1.0015 |

Maximum error < .15%.
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VIiI. DISCUSSION AND CONCLUSION

The paper has addressed the factorization problem in the Hardy

HP spaces of matrix valued functions. The classical Gohberq and Krein
factorization is re-examined within the framework.developed here. The .
relation between the outer factorization and the canonical factorization
has also been in\;estigated. We developed a fast algorithm for implementing
the spectral factorization, particularly suitable for the control and
filtering applications. In part III of this study, see [37], we have
generalized the Davis and Barry formula (2.5) to cover a wider range of
control problems. The results for the discrete time case, together with
other applications as rational functions and positive polynomial factor-
ization, can be found as well in [37]. A summary of our results in the
discrete time case is given i;l the Appendix A. A relatively close step
along this line of thought has been attempted by Jonckeer and Silverman
[32], who studied the analytic factorization and its connection with the
Toeplitz operators, but 6nly for the rational lt:unctlons on the unit
circle. Application of our results to distribute parameter systems is

currently being investigated and will be reported elsewhere.
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APPENDIX A

Consider the stationary filtering model given by

’ *
x (k +1) = Az (k) +BU (k) E{Ukuj}=96kj

-

(A.1)
yk) = czx (k) + V (k) E {v(x) i)} = 1 ij

Assume the system.is minimal and A is stable, then the optimal linear

state estimator is given in the steady state by the Kalman filter

z(k+1) = Az (k) +X [y k) -Czx (k)] (4.2)
T T -1 . . . .
X = APC (D+CPC is the Kalman gain matrix, and P satisfies
the Riccati equation

P = APAT ~apcCT (I+CPCT)—1CPAT+BQBT

Again here the solution of the Riccati equation can be avoided by using
the formula [1]

71-— ({D z I -8 T Bo BT (z7tr: a7t T+ (29
|z =

0
dzw?t (A.3)
where W and G_(2Z) satisfy the factorization
ke = 1+ c el® oyt e g BT (1710 AT (T
(A.4)
= [I + G; @1 W+ G, 81"

:
with G,(0) = 0, and [I + G, (2)] 1 anglytic inside the unit pircle.

The formulation of the factorization (A.4) in the Hardy H (T)

spaces ig a well established result, e.qg. "‘[17 18 and 27]. Most of the
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’

results in the continuous time case can be developed here also with even
simpler proofs. So to avoid cumbersome repatition we shall only bring

up the summary of the results for the discrete time case. In the first

place, it is not difficult to see that if K (ele) £ L2 (my N L (T)
mxm mxm
Then (I + GO(Z)] satisfy the Toeplitz equation
P [K (I + GO)] = W (A.5)

with K positive definite, the Toeplitz operator TK is positive definite,

. . . . 2+ ,
and admits reduction relative to any basis in H (T). By applying the

=]

k=o' 2 sequence of approxi-

reduction method w.r.t. the natural basis {ik}

L4

—mating functions {Gn} can be generated

° 2
. G(z) =) g9, 2 (A.6)
n 2=1 ﬂv“

As in the continuous time case, {g, 1}, . turn to satisfy a Toeplitz set
£in %=1

of linear equations

= - .7
N Tn s B . ~ (A )
g = column [gl’n v gz’n ¢ ey gn’n]~\ .
{
h = column [hl, h2, ey hn] >
where hk is the kth fourier coefficient of K(ele)
~ “\
T T T '
ho hl h2 e hn
T
hl h0 h1
T = ’
n
h2 hl
h
Lhn hl 0
P
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Finally the Akaike-Levinson algorithm may 5e used to solve
(A.7) exactly as we explained with contiquous time case. The approximate
colution (A.6) is then substifuted in (A.4) to £find ;he Kalman gain.
With a proof similar to that of theorem (7, part I), but much simpler,

we maintain that, 1f (I + Go) is analytic in the closed unit disk,

then Gn converge to G, exponentially.

0
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APPENDIX B i

Lemma 7

<o
Let Y be a matrix valued function € L (R), define the

operators T‘{, and T\\f, as in (4.4) and (4.5) respectively, then

@

. U, . . . -1
i) If T‘{, (T‘Y) is invertible then ¥ ~ ¢ mem(R)

i

ii) Suppose Y is positive definite (a.e.w.) then Tq, (T}y)) is invertible.

Proof:

We first introduce the two operators V and U as follows

v g™ = gdEh o0 (8.1)
g(iw—l)
<, l "
v gel® = = —J-UJ;‘;’—}I— ' (B.2)

It is not difficult to conceive that V is an isometric operator from

® L . . , . 2+ ’
Lm;(R,(T) onto meﬂ,(R)' and U is also isometric operator taking mejl,(T)

2+
onto ,me,Q.(R) .

: AV
Consider now the Toeplitz operator T‘{,, the operator

-1 v _ 2+ . .
U T‘{, U (g) = '1'({‘; (9), g € mel('l‘), is a Toeplitz operator, where
~ i
¥y o= y A
ie
l-e

Clearly T\l;, is invertible iff T’\i; is invertible, then the above lemma

follows directly from exactly similar statements on Toeplitz operators

>

S
on Hj:xl(T)’ (see e.qg.) [1B1,(Corollary 2.7 and theorem 2.8) .

t
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Lemma 8
. 2 w
Suppose that I + K , K (Jw) € L (R) "L (R), admits the

outer factorization (4.23). Then the necessary and sufficient conditions

for TI+K to be invertible is that there exists a matrix valued function

B (8) € l (R), such that B-l (s) & Hm+ (R), and
mxm mxm
te-ax+ull_ <1 (8.3)

where

_ * 3
hal, = ess sup max (Aj (aa))

The proof relies on the following result of Rabindranathan which states

2+

mxl (T)

i o0
that if U is a unitary function € mem(T) , then Tu is invertible on H

- 004
iff there .exists a B € Hm+ (T) such that B l(s) £ H (T) and
mnxm mxm

lv-s8l,<1.
]
By the argument used in the proof of lemma B, one can see that the Rabin-

’ +
dranathan lemma is applicable also to the Toeplitz operators on Hlixl(R) .

Now suppose that T is invertible, then T + must be invertible. Then

I+K I+0

it follows from the above argument and the Rabindranathan lemma that

’ ot
there must be a matrix valued function B(S) € H (R) and such that

-1 oo X
B () ed (R andllB-@+o)ll <1

\ S,
- ‘\

"

m+ N
Conversely, suppose that there exists a function B(S) € H (R) such that

[

condition (B.3) is fulfilled. Then again from the Rabindranathan lemma

and the above argqument the operator TI+U must be invertible. But

P TV, R, — ]



= )
Trax Treu * Trex

must be invertible.

is invertible,

so we conclude that T
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A FACTORIZATION ALGORITHM WITH APPLICATIONS
TO THE LINEAR FILTERING

AND CONTROL PROBLEMS; APPLICATIONS

PART III
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I. INTRODUCTION

This short paper proceeds to the same objective of part I &
part IT of this study; namely, theiobjective of develoging fast algorithms
for spectral factorization of functions with application to some control
and systems problems.

In the preceeding parts we have addressed the factorization o%

. . ’ P . s . .
functions in the Hardy H spaces. In particular it is established that if

. . 2 o . L , , ,
I+ K({Hw, K (JwelL (Ry N L (R) is positive definite Hermitian, it

admits the factorization

-1 *
(I+K] " =[I+G] [L+G] {(1.1)

where

2 00
N
.GeH (R) H (R)

~]1 o
. [I + G} Emem(R)

A sequence {Gn} of approximate spectr%;\factors is sought in the form

\
n , 7
G (jw) = g 9, (jw) (1.2)
n =0 £ %

where {¢2} is the Laguerre orthonormal basis in HZ(R)

sy~ AR 1 jw-P £
b, (J0) = ‘j:r Torp (jm+P) P>0

L )
It is shown that such sequence may be generated by solving the following

Toeplitz set of linear matrix equations using, say, the Akaike-Levinson

algorithm (2]
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T g = -A

B (1.3)
where

A = column [AO,Al,...,An]

- >
A < K(Jw) , 7
i

g = [go,n' gl,n' cv vy gn'n] h

and T =B,

n k-3°k,3j=0

L '
B _I+2\F‘P—7\' (A, + Al

I S -
Y A e TR

B

B‘l =:Bi

Applications of this method to the linear quadratic control and
to the filtering problems have been demonstrated in [l]%and [2] respectively.
Here we shall expand the scope of this approximation method to cover a
wider class of systems and control problems. In section 2 we generalize the
Davis and Barry [3] integral formula for the optimal feedback gain in the
IQR problem. The new setting not only covers a wider class of cost functions
but also overcomes the difficulty of treating unstable systems. The new
formula, which utilizes a factorization of type (l1.1), together with the
proposed method of spectral fgctorization, provides a fast and efficient
way for solving many ILQR problems: The neﬁ formula also enables us to pre-

scale the eigenvalues of the system in such a way that accelerates the con-

vergence of our algorithm.
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In network synthesis, implementing the factorization (1.1)
directly by the reduction method may not be appreciated since the rational
structure of the spectral factor is destroyed. Névertheless, 1n section
3 we shall show that our approklmation method 1s still applicable in this
case as well by employing an elegant trick to restore the rational struc-
ture of the spectral factors. Our approach proceeds by reducing the
factorization problem to the solut%pn”of a quadratic matrix equation in
a similar way as in [12]. Such guadratic matrix equation is transformed
in turn to an integral formula i1nvolving another factorization which is
performed using our method.

The discrete time case has been considered on section 4. A
similar integral formula for the optimal feedback gain is derived. The
ne@ formula, as its continuous time mate, overcomes the difficulty in
treating unstable systems, and provide a means of prescalihg the eigen
values of the system in such a way to accelerate the convergence of the
approximation method. We have also given a summary of our results in the
discrete time case together with many other interesting properties.

The potentialities of our approach are demonstrated once more
in s;ction 5 where we provide a fast algorithm for the factorizgtion of
positive polynomials. Finally, our results are illustrated by an

example.
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II. AN INTEGRAIL REPRESENTATION OF

THE OPTIMAL FEEDBACK GAIN

We shall generalize the formula of Davis et al’ [3,4 & 5] for
i

the optimal feedback gain. The new setting not only covers a wider class

of cost funct@ons but overcomes the difficulty in treating unstable

systems [5], or systems with poles on the imaginary axes. The new
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formula provides also a means for prescaling the eigenvalues of the system

in such a way that accelerates the convergence of the numerical method
proposed by the author {1,2] for the L@K problems.

Consider the finite dimensional continuous time linear system

i

é = Agx +Bu (2.1)

where (A,B) is controllable, & (t) € R°*, and U(t) € B0,

Let the cost function be

'

v =f{fu)mﬂ+2§ﬂﬂJg(m+§ﬁwQ§qut (2.2)

and assume that’

{le

ow) = I +B' (-jwl - a9 YgGur - m 7t B

1

+3 (oI - A&) B + B (-jur - a0 L g (2.3)

is positive semi definite. By well known results [6-10], The optimal

control which minimizes (2.2) subject to (2.1) is given by

U (t) = -(B'P + J') xz(t) (2.4)

where P is the so called stablizing solution of the ARE

PA +A' P- (PB+J] [PB+J] +Q=0 (2.5)
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One advantage of the above minimization problem is that it is
invariant under feedback in the sense that g feedback of the form

U (£) = L g (t} + V(L)
transforms the data (A,B,J,Q) into (A + BL, B, L' + J, i'L + JL + L'J*
+ Q). It has been recognized in several papers [6] - [10] that this trans-
formation does not change the problem. By the controllability assumption,
it is always possible to stabilize the system. Hence, there is no loss
of generality in assuming that the system has already been prestabilized
by a suitable feedback. Thus, throughout the paper we shall assume that
A is strictly stable.

Willems [6] and othexrs [9] & [12] showed that the above minimiza-
tion problem is closely related to the factorization ?f ¢(s) in the form

¢(S) = W'(~5) W(8) (2.7)

with W(s) and w—l(s) analytic in the R.H.P. 1In fact, it turns 'out that

W(S) = I +X(SI - A) 'B - (2.8)

-1 -1 l

W (S)= I -K(SI-A+BX) B (2.9)
where X = B' P + I ig the optimal feedback gain.

The following lemma gives the inverse relation of (2.8), i.e., the

optimal gain in terms of the spectral factor W(S).

Lemma 1

The feedback gain K -



s o

N 129
1 - - - -
1(’=——.—J(51+A')1Q(SI-A)lel(S)ds
27)
T
1 v -1 -1
e +
+ 273 j (s1 aA) J W (s) d s (2.9)
T .
where ' is a closed rectifiable contour enclosing o(-a ).
Proof:
The ARE (5)can be written as
P(SI-A) + (SI+8)P-K K+0=0 (2.10)
multiplying (10) from the right by (SI - A)_l B we set
' -1 ' -1
-PB+ (SI +4) P (SI - a) B~ K K (SI - 2) B
+o I -n"tB=0 ) (2.11)

using the relations

and

-1
I +K (SI - A) B=W (S)

we have

Wt sy +(sT+aY P(ST-RATBWE (S) - k"

roGI-mtswls =0

finally multiplying by (SI + A')—l from the left

1 1 -1

st+ )P awtis)y a+p st-n"tew?t(s) - 5T +aY) kT

+ 1+ A tosr-mtewts) =0 (2.12)

Noﬁfzﬁtegrating (12) over a closed rectifiable contour I' enclosing
J s

A

- 4

R
P
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o (-A') and using the relation (e.g. [31], pp. 225).

1 vr. -1
— + =
5 f (ST A) d s I
I‘V i
and
W
1 -1
I f (sI A) ds =0
. T
if the spectrum of A is not enclosed by T , we come up with (9). Q.E.D.

The difficulty of treating unstable systems is overcome here
very smoothly by simply prestabilizing the system by a suitable feedback.
In this case our results are simpler than the treatment proposed by Davis
in [5]. It has been noticed that the convergence of the algorithm
proposed by the author in [1,2] to eva}uate the feedback gain K could
be quite slow if applied to systems having poles close to the jw-axis or
having their poles scattered over a large region in the complex plan.
These problems are also tackled down here by chosen a proper prescaling
feedback which reallocates Efe’ﬁg;es of the system in such a way to
accelerate the convergence of\ghe algorithm, for example, if the pre-

ccumulate all the poles at one point on the

-

scaling feedback is chosen to
negative real axis of the complex plane, then the above formula ma§ be
evaluated using only (n-1) terms of the Laguerre expansion as explained in

the introduction.
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+IIT. FACTORIZATION OF RATIONAL MATRICES

The problem of giving a spectral factorization of a class of

real rational matrices arising in Wiener-Hopf problems and network

synthesis is tackled via the integral formula derived in the previous

section.
Suppose there 1s given a real rational matrix ¢(S) with the
properties
. ¢(S) = ¢'(-8) =2 (S) + 2" (~5) + R (3.1)
. ¢(jw) 2 0 ¥ real w (3.2)

The representation in the r.h.s. of (3.1) can always be imple-~
mented via partial fraction expansion of ¢(s), and such that Z(S) is
analytic in Real (S) > 0.

A real rational matrix W(S) is sought which satisfies

$(sS) = W' (=-8) W(S) (3.3)
and is analytic in the O.R.H.P. and possesses an analytic inverse there.

The techniques of performing such factorizationqof rational
matrices are legion [1] - (12]. A thorough examination of this case has
appeared in [13]. The majority of these techniques, including those of
[141 - (18], rely on frequency domain manipulations in which the  problem
of factoring a matrix of real rational functions is reduced to factoring
an even polynomi;l or a self~inversive polynomial. If the factorization
(3.3) is needed in other contexts than the filtering and control problems,
_Anderson et al suggested to reduce the factorization problem to the solution

of a continuous [12] or a discrete type [1ll]l matrix Riccati equation.

Our approach here is quite similar to the one adapted by Anderson in {12],
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except that the solution of the Riccati equation i1s avoided by utilizing
the integral formula derived in the previous section and the approximate
‘
factorization method proposed by the author in [1,2])-.
without loss of generality, we shall consider the case when
d(®) = R>0. If ¢ (») 1s singular, a procedure to reduce this case to

factoring a ¢r(S) with det ¢r(w) # 0 can be found ih [127.

The algorithm proceeds as follows
1) Factorize R = N'N, N' = N
2) Find a minimal realization (A,B, J') for the transfer function

2,(S) = NLz(s) N7, then

¢, (5 sy ¢ (s) Nl g (st - A)—l B + B' (-SI/-)A”)_IJ + I

(3.4)

Comparing ¢l(jw) with (2.3), we‘easily realize the similarity of this

factoriz§tion problem with the minimization problem dealt with in the pre-

vious section (with Q = 0). Aééordingly the solution to the factorization

'

problem may be given by

W(s) = Wl(S)\N

-1
W:L (S) =1 +XK (sI-3a) B

X =B'P+ J°
and P is the stabilizing solution of the ARE (2.5), with Qﬂ= C.

We shall now apply our method to avoid the solution of the A.R.E.
(2.5).

Assume further, only for the moment, that the strict inequality
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in (3.2) holds. Moreover, let ZO(S) has no poles on the jw-axis.
Hence, ¢l (jw) admits the factorization (1.l1). We can now proceed as

follows”®

4) Apply the reduction method, as explained in {2} and summarized in the
introduction, to obtain an approximate spectral [%ZI(S)].

5) Find the optimal gain X using the integral formula (2.9) (with Q = 0).

Namely

f oL Vol ol
F = 3 f (ST + &) J W (8)] ds
T

6) Restore the rational structure of the gpectral factor W (S) using

the formula

~

W(S) = (I+XK (SI-A 1grn
If z(S) has some jw—axis poles and/or det ¢ (jw) vanishes at some isolated

points, say El, 52, eeay Ex' one can still perform the factorization (3. 3)

by considering instead the factorization of the matrix function

8, (5) = A" (5) ¢ () A (s)

where A(s)y =1- Kl (ST - A+ B Kl) B,

and K, is chosen such that (A - B Kl) possesses eigen values at &1, 52,

and Ex. Clearly then ¢2 (S) 1s positive definite and bounded and can be

factored as before to say,

¢2 (s) = Wi (-S) W2 (s)

Then the required spectral factor W (S) is obtained via the formula

(sI - A)'1 B] N.

W({s) = WZ(S) [T + Kl
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IV. AN INTEGRAI REPRESENTATION OF THE

OPTIMAL FEEDBACK GAIN

{(Discrete-Time Case)

The discrete version Of, the aintegral formula (2.9) will be
derived. Unlike the integral formula of Davis and Dickinson (4], the
one derived here cavers a wider range of control problems, including
unstable systems.

We consider the problem of giving a stable feedback which

minimizes the cost function

| v =] 2 oo () +22 (£) JU () +U (8 RU' (b)
o (4.1)
subjéct to the dynamical constraint
z (t+l) = Az (t) + B U (¥) {4.2)

and (A,B) is a controllable pair.
By the invariance property of this problem under feedback [20] - [22],

there will be no loss of generality in assuming that | Aj (a)| <1

-

ji=12,... dim (@).
It has been establisheg (20,21] that the solution of thi\s problem

is associated with the factorization of the matrix function

1

lroanty @r-ats

¢ (@) =9 (275 =8 (2

-1 1

+B' (2 I -A")

v

J+J (zx—A)"lB+R\

(4.

\

3)
N
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In the form

6 (2) = W izl pw

0 0 (2) (4.4)

Where WO(Z) is analytic and possesses an analytic inverse in | 2 l> 1.

D 1s a normalizing constant such that W_ () = T.If ¢(2) =0

o}
¥ | 2z|=1, and D>0 ’
then the control law is governed by

U(t) =-Kz (t)

K= (R+8' PBY Y (3+2a" pa (4.5)
and P is the real symmetric solution of the ARE

pP=A"PA- (J+AY PB] (R+B' PB) * [J+A' PB]' +Q (4.6)

Furthermore, the factorization (4.4) is given explicitly by ¢

. D= (R+ B' P B)

Wy (z)=I+x(zx-A)"lB

we shall now use the above results to derive an explicit integral formula

for the optimal gain K in terms of the spectral factors of ¢(Z).

Lemma 2

The optimal gain is given by

l

_1 -1 -1 .-1 _, I !
K= PTEl J D [wE)(z Y1 T I (2T - &) dz
lz|=1
Lol R T R o U !
+2ij [ [Wo (2 )3 B'. (2 A7) T Q (21 - &) 43z

|2]=1 (4.7)
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Proof: R

Consider the A.R.E. (4.5), let us write it in the form

P=A"PA-KDK +Q (4.8)

Adding Z—l P A to both sides of (4.8), we get

1 1

Pz (zl-A) =-(2 "|-A') PA-XK'DK + 0 (4.9)
multiplying (4.9) by B' (Z-ll- A')nl on the left and using the relations
.B'"PA=DK-J

1 1

. w(') (z 7)) =1+B8B' (Z-ll— A') "K', we come up with

B (z'll— A')'l pztzr -at=g - Wy zh px

+ B (2 t-anTtyg (4.10)

Again multiplying on the left by [w(') (z—l)]“:L and on the right by

z (21 - &)t

/ Wy " H1 e 2 -y e - (W} zH1 e -tz

1,.-1 -1 r -1

1z+[w(')(z")] B' (2 71- 2 Q (2ZI - A) ~ 2

- DK (2ZI - A)

(4.11)
Integrating both sides of (4.11) over the unit circle, the left handside

will be zero since it is analytic inside the unit circle. So we get

<

1 RS S R -l
DK = -2-?‘_—3- [W0 z M) J' (21 A) d z
|Z|=.l
. 1 L -1 -1, -1 1-1 -1
+—2-EJ Wy (z7)] T B (2 A") T Q (2I -A) 4z
|z]|=1
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The preceding treatment, as in the continuous time case, covers
as well the open loop unstable case, simply by applying a suitable
prestabilizing feedback. The problem of factorizing a given discrete
rational matrix function will also be dealt with using the same procedure
of the continuous time case, except for few cbvious changes.

The factorization (4.4) in the Hardy HP(T) spaces, unlike the
continuous time case, is a well established result [23] - {27]. The
special case when ¢(2) is a rational function of 2 hag, been considered
recently by Jankheere and Silverman [19]. Moreover, most of our results
in the continous time casé can be developed here with even 31mpl;er proofs.
so to avoid cumbersome repetitions we shall bring up the summary of the
. results for the discrete time case.

In the first place, it is not difficult to see that if

2

w . -1 e
¢(z) eL (T NL (T), then W, (2), = [I + G, (2)] 7 satisfies the

0
Toeplitz equation

PI$ (2) (T+6G,)] =D (4.12)
With ¢(2Z) positive definite, the Toeplitz operator Tq> is positive
definite [24], and hence admits reduction relative to any basis in -
H:ixm (T), (see e.g. [27], Theorem 2.1). By applying the reduction method

. -% o N .
w.xr.t. the natural basis [Z ]2’_:00, a sequence of approximating functions

\ can be generated in the form

.
| -2
G Lz)_j;/%\\ 2 : (4.13)

g
n g=1 L,n k \

‘
.)-, - T g A W oA % G e " - - - -




v v e s -

1328

=]
e}
I
1

h! =1
o gﬂ,n L go,n

As in the continuous time case, {gz o, ] turns out to be a
L

Toeplitz set of linear equations =1

T g = -h (4.14)
g = column [gl n’ gz’n, cery gn,n]
h = colum [ hy, By, ..., h]
where hg, is the 2th Fourier coefficient of ¢ (z), w.r.t. {Z—Z}‘zzo. ‘
ENR T h;_l-
hl ho .o
'I'n = ho ' ho = R
B
hn h0
- -

and T > 0.
n

i

Finally, the Akaike-Levinson algorithm may be used to solve (4.14)
exactly as we explained‘ in the continuous time case [2]. The apprdkimate
solution Gn(Z) is then substituted irx the integral formula (4.7) to find
the optimal feedback gain<With a proof similar to that of theorem 7, P(art

I, but much simpler, we maintain that, if (I + G(') (z-l)] is analyticin some

open desk containing the unit circle,then “n converges to Yo exponentially.

The result in the discrete time case is more interesting than the

continuous time from the computation point of view. Consider the integral

1
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formula (4.7) and let us substitute

n
W) zh = 1+ gl; . 2t ) (4.15)
=1 2 .

n
DRE‘E;—J.J(I+X gz 3 @-a taz
g=1 L
1 2 3 -1 -1 -1
+2—m~j [I+§‘ g'p’nZ]B' (2z - A'") Q (Z2I - 34) d z
=] ~

After some manipulation the integral turns out to be

n

K = p;l {gr + JZL=1 gk»n o aby s
bt {1 B+ § g, B' I,} (4.16)
n 0 (=1 Iin L
where ,
1, = jﬁ - to@m-ntztaz (4.17)
[z]=1 2 =0,1,2,...

the integral (4.17) can be evaluated very efficiently using the FFT or
the Astrom algorithm described in [28].

It should be noticed that the  integrals (Iﬂ,) are exactly those

e

needed to evaluate the coefficients {hg} in the Toeplitz equation (4.14),

namely

n, = B 1234-.'3' 2ty
L =1,2,3,...n

A final remark here is that one can always make the algorithm to converge

efficiently fast by applying a prescaling feedback shrinking the poles of

the gystem sufficiently inside the unit circle.
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V . FACTORIZATION OF POSITIVE POLYNOMIALS

In this section we shall discuss in brief the factorization of
self-inversive scalar polynomials and positive polynomial matrices, and
then the problem of rational matrix factorization.

- ¢ Consider first the self-inversive polynomial

- -n n
= + + ... + .o .
P(2) CO CIZ CnZ ClZ + an (5.1)

o # 0

Let us assume that P(Z) >0 ¥ |zZ[=1. To apply the methode~6f this

paper towards finding a polynomial WO(Z) such that
P(z) = W (z V) DW(Z (5.2)
0 0 )

Wo(z) £ 0 ¥ |z] =1

We set
P(z) = C,+J' (ZI~A) b+Db' (2T -4") J ‘ (5.3)
where
P -
01000 ...0 (0]
001 ... 0 :
A = s b= , J! = [c, C 4eees C.]
01 ' - . n n~1 1
000 ... O , 1
, .

Comparing (5.3) with (4.3), we can see easily the correspondence between
the factorization problem (5.2) and the minimization problem discussed
in the previous section. In particular, it is not difficult to see that

the coefficients of the factor WO(Z) turn out to be Kl, Kz, “es Kn’ where

{ K = (K, K s .- K]

e ——————tt ¢ W ez e
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is just the optlmél feedback gain

(4.5).

Inspired by the results of the previous section, we may proceed

to find X as follows

-~

1) We seek an approximate inverse polynomial Gn (Z) to the

factor WO(Z) using the approximation method discussed before,

namely,

~13

G (z2) = 1+ g
m 2=0 ﬁ»m

Z-—!L

(5.5)

where {gm 2’} are obtained by solwving the Toeplitz equation

¢ ¢! cr ]
o 1 " "m-1
Cl CO .
e CO
CO
'
c:m—l v C:O

m,m

1

(]

using the fast algorithm of [29].
3

4

(5.6)

2) Restore the coefficients of WO(Z) by substituting Gm(z) into

-

the integral formula (4.7), explicitly

-1 1 ¢/
Km = Dm 213 f
|z[=2

m
[1+7
=1

y P ' - -
gl’m zZ'] 3" (21 A)

1

d

z

(5.7)

(5.8)

The last integral (5.8) may be simplified to the following

explicit expression

"N\

141
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-l ] t —
k,z;m " t Elgr— m & Gom = T
r=
i (5.9)
2=1,2, , m
7 -2

Wo(Z) = 1+ } k[)m z (5.10)

Our algorithm has certain computational advantage over [29] and
[30], which depend on Cholesky factorization of Toeplitz matrices, while

solution of (5.6) can be performed directly with computational complexity

2
© of at most O(m log  m)!. When we turn to the rxr matrix polynomial

_ . I o -1 -n
I' (2) CO+C1Z+"'an +clz +...cnz (5.11)

with T'(2) > 0, |z|=1, a similar approach works.
One takes A as the direct sum of r compies of the A matrix used for the

scalar polynomial A, B as B' = [0 O ... I] and finally, J' = [cx;’ c'l].

Even scalar polynomials and the corresponding matrix polynomials

can be handled by conversion through the bi-linear transformation [12],

’ [18] . Considering the problem of factoring a power spectrum matrix

$(2) > 0, one can write obviously, ¢(2) ds \

$(z) = Fov

where P(Z) is a scalar self inversive polynomial with P(0) > 0, and
['(2) is a matrix of the form (5.11). One can then proceed into two ways;
either one can factor I'(Z) and P(Z) separately as described previously,
or one can write

0(2) = R+ z(z) + 2'(z D) )

and initiate a procedure similar to the one implemented to factorize

rational matrices in section 3. )
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Example
Let I'(2) = C. +¢C 7l iz
e ) = 0 1 1 ’
i -1 o 0 o0 o0
9 T k1 & .5 8§ C3=11 -1 -5
o .5 1 0o 0 0

we applied our method to implement the factorization

- ' -1
r(zy = (I+KlZ)D(I+Klz )

After only 2 iterations in the Akaike-Levenson algorithm, we get

. 2264919 ~.2264919 —.1132551

Kl = -2113245 -.2113245 ~.1056623
-.113255 .113255 .0566273
. 7886755 -.7886755 . 10566’23

D =] -.7886755 5.7886755 .~ .3943377
.1056623 . 3943377 . 9471689J

which are correct results to within at least S decimal places.
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VI. CONCLUSION

The paper has discussed in brief some important applica-
tions of the spectral factorization scheme proposed in the prece;iing
papers. In particular, the generalized Davis and Barry formula,
cequipped with the factori)zat.ion scheme provides a simple and fast pro-
cedure for solving.many control problems. The potentialities of our
approach has been further demonstrated by presenting an algorithm for
the spectral factorization of a class of rational matrices arising in
Wienér-Hopf problems and network—synthesis. The parallel results in

~

the discrete time case has been given in brief with stress on some compu-
tational aspects. Although this paper has considered the lumped parameter
systems only, most of the results are'directly applicable or extenddble

to the distributed parameter systems as well, and will be reported soon

in a separate paper.
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CONCLUSION

Although the LQR and the stationary filtering problems
are considered to be well established results in systems theory, the
Riccati equation, which indispensably appears in their solution, remains
a stumbling stone in many applications such as large scale systems, dis-

tributed parameter systems’, and adaptive systems.

In this study we have introduced fast and simple algorithms
for solving such LQR and filtering problems, without the Riccati equa-
tion, in continuous and discrete time, and for lumped and distributed
parameter systemns. The modified formula of Davis anA’Barry enables the
treatment of unstable gystems as well, and provides a prescaling technique
for the\eigenvalues of the systems in such a way as to accelerate the con-
vergence of the algorithm. Moreover, Fhe flexibility of the approach has

< . . o

been demonstrated by providing subalgorithms‘for the factorization of |

-rational matrices and positive polynomials arising in other contexts than

control. It is hoped that this approach, because of its speed and simpli-
o

city, will prove to be a significant contribution in narrowimrg the gap

a

between control theory and control applications.

We have presented also a novel characterization of the fac-
torization problem in the Hardy i spaces. A formulation sufficiently
general to encompass practically all such engineering problems, lumped or
distributed parameter. This formulation may prove to be useful, as a

rigorous methodology, to address many related open issues in control theory,
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e.g., the spectral theory of the linear guadratic regulator problems in
the continuous time case, some distributed filtering problems, Wiener-Hopf
equafions with unsummable kernels, and many others. Other interesting
and useful extensions may be initiated, for example, by construcéing'other
bases in H2(T) and HZ(R) which preserve the Toeplitz structure, ér by
investigating those models and realizations which reduce further the com-
putations ?f t@e algorithm, e.g., modeling systems in terms of polynomials

R

in shift operators.

Finally, it should be realized that although the formulation
of the factorization problem is carried out in the subalgebras H2-t N H?t-,
the analysis itself is valid equally well, after few amendments, in the
subalgebras BEng™t (L<p <= . In this case, one may still develop
the algorithm by considering the related Toeplitz equations in the Banach

spaces uP (1 Sp <) instead of the Hilbert space H2 .

v

‘All in all, we hope that this study has not only paved the
way towards a better understanding of the factorization problem as one of
the most vital issues in modern systems theory, but provided the control
engineer with fast and simple algorithms for implementing some of the most

'

important control schemes as well,

o



