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Ahstract

:\ knowledge-based expert system was de\"cIoped to automatieally assess the lc\"cI of

EEG abnormality of pediatric patients monitored in the ICU. The system recei\"es six

hours of S-channcl EEGs and classifies the background EEG as onc of se\"en abnormality

lcvcls.

A total of 1SS. six-hour EEGs were \"isually interpretcd by a neurologist and uscd as

training examples. Spectral band activity was computed: artifacts were rejected ::si'lg a

median filter \\ith a hard-limiter. Quantitative variables reflecting amplitude. symmetry.

FrontIBack diffcrentiation and time variability were then extractcd based on the study of

Pasupathy (1994). Relationships between quantitative measures and the neurologist"s

assessment of amplitude. symmetry and FrontIBack differentiation were established. A

two-Iayer neural network having the measures of EEG variability as input was created for

variability evaluation. A single-layer network was constructed to give the integrative

interpretation of EEG abnormality based on the neurologisfs assessmenr of the four

features. Suitable knowledge base and inference engine were also constructed.

Performance was tested using the rotation method of error estimation. 45% of testing

instances were cIassified the sarne as the neurologist"s interpretation. 46% were cIassified

with an error of one abnormality leveI. Possible improvement and the cIinical future of

the system are discussed.
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Résumé

On a d':vclop': un système expert il vase de connaIssances pour d':terminer

automatiquement 1:: niveau d·anormalit': de l'EEG de malades sous monitorage dans

l'unit': p':diatrigue de soins intensifs. Le système reçoit six heures d'un EEG de 8 voies ct

doit classer l'activit': de fonds en sept niveaux d·anormalit':.

Un total de 188 EEGs durant chacun 6 heures ont ':té interprétés visue!lement par

un neurologue et utilisés comme exemples d·apprentissage. On a calculé l'activit': dans

divers bandes de fréquence; les artéfacts ont été éliminés grace à un filtre médian associé

à un seuil d·amplitude. En se basant sur le travail de Pasupathy (1994). on a calculé des

variables reflétant l'amplitude. la symmétrie. la différentiation antéro-postérieure et la

variabilité temporelle. On a déterminé les relations entre ces mesures et le jugement du

neurologue quant à l'amplitude, la symmétrie et la différentiation antéro-postérieure. On

a utilisé un réseau neuronal à deu;\( couches pour obtenir une mesure globale de variabilité

temporelle à partir des mesures élémentaires de variabilité. L'interprétation complète de

l'anormalité de l'EEG a été ensuite faite à raide d'un réseau neuronal à un niveau. ayant

comme entrées les différentes mesures. On a aussi construit un système à vase de

connaissances et un moteur d'inférence.

La performance globale a été évaluée par la méthode de rotation. 45% des

échantillons sont classés au même niveau d'anormalité que celui donné par le neurologue,

et 46% sont classés à un niveau d'anormalité en dessus ou en dessous. On discute des

améliorations possibles et de la future utilisation clinique d'un tel système.
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C/zapter 1
Introduction

1.1 Neurophysiologie Monitoring in the leu

ln the present day intensive care units (ICU). while numerous catheters. transducers.

digital readouts and alarms keep continuous vigil on a patienfs heart. lungs and kidneys.

the brains are "monitored" routinely by intermittent clinical observations. or "neuro-

checks". Jordan discussed these examinations by stating (Jordan. 1995): "Even under the

best eireumstances and when carried out by expert personnel. 'neuro-checks' are

discontinuous and subjective, Ali too often. they are unable to anticipate capricious

clinieal deterioration, Contrary to the goal of a truc monitoring system. 'neuro-ehecks'

must wait until after funetional deterioration oeeurs lor problems to be recognized. The

constraints on this type of clinical monitoring become more serious when patients are

sedatecl medieally paralyzed. or plaeed in barbiturate coma:'

During the past few years. neurophysiologie monitoring in the ICUs has received

inereased attention. The number of bedside neurophysiologie monitoring methods have

inereased and thus have been the subjeets of numerous clinical research studies. In

addition to well-established intracranial pressure monitoring. several newer methods

including eontinuous electroer.eephalography. evoked potentials. lranscranial Doppler

sonography. cerebral blood flow. and jugular venous oxygen saturation have been

brought to the ICU bedside to measure different physiologie variables. They ell:tend the
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dinici~.m·s power \)f l,nseryatil)n ln nrJer tel Jeteet phy~il1lngit..: ~nnl)rmalitics at ;l

n:ycrsihk stagc.

..\ sueeessful TCl' monitoring system sh(1uld meet the Il>jj(1,,ing criteria (Jordan.

1993 ):

• he more sensiti\'<: :md specifie than clinicaT ohser.:uion.

• be non-invasive.

• be easily operated and interpreted hy non-experts.

• be usablc at the hedside.

• not intertère with medical or nursing care of the patients.

Many neurointensivists share the opinion that the c1ectroencephalography (EEG) can

become an integral part of monitoring in the ICU (Emmerson and Chiappa. 1988). EEG

recordings have been uselul in the im'estigation of various disorders. subclinical seizures

and coma. The technique itsdf is non-invasive. and advances in technology have made

possible the collection. storage and analysis of continuously collected EEG. However. the

raw EEG generates cumbersome amounts of data. and its complexity discourages

interpretati.m by non-experts. Several methods have been developed to compress EEG

data and simplitY its interpretation \\;th definite benefit. such as compressed spectral

array (CSA) (Bicktord et al.. 1971). the cerebral l"unction monitor (Maynard. 1979) and

the topographic brain mapping (Nuwer. 1988).

EEG monitoring is currently in extensive use during carotid surgery (Chiappa et al ..

1979: Cho et al.• 1986) due to the fact that EEG changes correlate \\;th regionai ischemia

during carotid artery endarterectomies (Trojaborg and Boysen. 1973). Continuous EEG

monitoring for patient management has begun to be used routinely in a smaii number of

2
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ccntcr.; (Jordan. 1990. 1992). Jordon and Stringcr t1991) ha\'c reponed a dccisi\'c impact

of EEG monitoring on clinical management decisions in S5~ 0 of the patients monitored

subsequent to cardiac surgery. EEG monitoring of patients in coma has been performed

which pro\'ides clues to tht' cause of coma as weIl as prognostic information (Cant and

Shaw. 1984). EEG monitoring has also been used for monitoring barbilUrate therapy for

incrcased intra-cranial pressure \\ith large benetit (Ropper and Rockoff. 1983).

1.2 Electroencephalogram

The dectroencephalogram (EEG) reprcsents the spatial and temporal summation of

inhibitory and excitatory postsynaptic potentials which occur in the cerebral cortex

(Jordan.1995). It can be rccoràeà from the scalp surface by electrodes attached to the

scalp \Vith conductive jeIly. The arrangement of these clectrodes on the surface of the

scalp is based on an international standard of localization (the 10-20 system, Jasper.

1958). The EEG is recorded as a potential difference between pairs of dectrodes and each

such pair is rcferred to as a "channel". The combination of electrodes and channels

examined at a particular point in time is referred to as a "montage". After amplification.

the continuous analog EEG can be displayed using paper write-out and oscilloscopic

display. In long-term EEG monitoring systems. computer-based digital EEG is normally

implemented due to its efficient means of data storage and transmission and subsequent

data processing ability.

1.2.1 Why use the EEG for Monitoring

There are severa! neurobiologic rcasons for using the EEG as a monitor of brain

activity (Jordan, 1993, 1995):

3
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• EEG is linkt'd ta ct'rt!bral mt'taba/ism. The: EECi re:rre:se:nts the: ,rat;al and

te:mroral summation of ~xe:ita[(1ry and inhibitlH'Y rllst,ynartie: rote:ntials and the:ir

modulation by sub~ortical rroje:,tion libe:rs...\t the: ,dlllbr k,d. thc:s~ inte:ra,tillns

re:tl"t th~ unde:r1ying state: llf "re:brJI me:tabolism. \\"hi,h in tum de:re:nd, on

multipk làctors including synthc:sis l1f~nzyme:s and e:ne:rgy (Sie:gd e:t al.. !9S'l1.:\

disturbanc~ in on~ or moœ of th~s~ compon~ntswill produc~ a disturban" in EEG_

H~nc~ th~ EEG is a highly s~nsiti,~. although non-sp~citic. indicator of ccn:bral

dysfunction.

• The EEG is sensith'e to i,-c/zemia and hypaxia. and dt'tects neuronal dysfunction

at a rewrsible stage. The EEG is mainly g~n~rat~d by th~ cort~x pyramidal

neurons which ar~ seh:ctivcly vuln~rabl~ to hypoxia and ischemia. Th~ EEG

be"ins to d~t~riorate bdore ccli membrane làilur~ and irrc\'ersiblc reduction of:=

ATP occurs (Heus~r and Guggenberg~r. 1(85). Astrup ct al. (1981) have

demonstrated that the EEG abnormaliti~s occur belore the cerebral blood flow

(CBF) drops to ::!O-25 mll100glmin. wheœas 3ynaptic activity continues until the

CBF drops to 17 ml/100glmin. and that energy làilure and cd1 death are not secn

unti1 the CBF làlls to 10-12 ml/lOOg/min. These obser\"ations imply the presence of

a '1herapeutic window" in cerebral injury follo\\ing the appearance of EEG

abnormalities. Also. the correlation of EEG changes \\ith cerebral ischcmia during

carotid artery endarterectomies has been obsef\'ed by Trojaborg and Boysen (1973).

This re1ationship forms the basis of the current use of EEG monitoring during

carotid surgery (Chiappa et al.. 1979: Cho et al.. 1986).
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• EEG is tlte best al-ai/able metltod for detecting sei:ure acti,-ity. For many years.

continuous EEG outside the ICU has been used in epilcpsy units to detect and

localize seizure activity (Gumnit. 198ï). Engcl (1989) reported a significant

incidence. ranging from 10% to 2ï%. of acute seizures follo\\ing head injury.

spontaneous intracranial hemorrhages and ischemic stroke. A systematic study of

continuous EEG monitoring among the patients in 1CU has documented a

surprisingly high incidence of nonconvulsive seizures (Jordan. 1992).

• EEG correlates witlt cerebral topograplty. The international 10-20 system for

electrode placement establishes a reliable relationship between scalp electrode

placement and underlying cerebral topography (Homan et al.. 198ï). This attribute

has been de-emphasized because of the precise localization obtained by radiological

methods such as CT and MRI. However. for the ICU patienL transport for imaging

studies is logistically difficult and cao be hazardous. The EEG provides useful

information about cerebrallocalization at the bedside.

These attributes of the EEG have heightened interest ln its application as an

e1ectrophysiologic monitor for the patients with acute brain injuries. In addition to these

neurobiologie reasons. the technique ofEEG recording from the scalp is non-invasive and

EEG monitoring cao be easily set up at the patient"s bedside without any interference

with patient care and medication. The illterpretation of raw EEG data, however, requires

skilled personnel who may not be available at ail times in the ICU. Many researchers in

the EEG monitoring field try to overcome this shortcoming by using different data

5
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processing techniques. Among these techniques. quantitative CEG is the earliest and most

widely used.

1.2.2 Quantitative EEG

A neurophysiologic EEG monitor should continuously record brain activity of the

patients in the ICU over several hours. In order to detect the cerebral dysfunction at a

reversible stage. on-Iine interpretation of the EEG is crucial. However. the presence of a

neurologist onsite throughout the entire period of recording is quite impractical and the

complexity of the EEG discourages the interpretation by non-expert. In practice. there is a

considerable time lag between recording of the EEG and actual interpretation which

largely reduces the effectiveness of EEG monitoring. Also. visual interpretation of long­

term EEG recording is quite tedious and time consuming and it is diffieult to evaluate the

long-term trend ofthe EEG.

Quantitative EEG (QEEG) relies on the transformation of digital EEG signais into

mathematieally derived parameters. These parameters are then interpreted by statistical

analyses based on comparison with data obtained from a population eonsidered to be

normative. The information of QEEG is displayed in a variety of formats including

topographic scalp maps. bar graphs. CSA and density spectra arroy.

In addition to reducing data and simplifying the interpretation. QEEG can also

faeilitate the identification of intervals of physiologie sleep. graduai shifrs in dominant

frequeney and long-term EEG trends of prognostie significance. In recent studies,

considerable work has been done to estimate the sensitivity. reliability and usefulness of

QEEG for the prognosis of nervous system disorders. In severa! situations. QEEG is

6
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found to be more sensitive than conventional EEG. Nuwer (1988) has reported that

QEEG using eomputer-assisted frcquency analysis is more sensitive than eonventional

visual analysis in detecting abnormalities in focal cerebral isehemia. QEEG abnormalities

were found in 94% of 54 patients with completed or partial stroke compared to only 60%

found by visual EEG assessment. Also. Ritchdin et al. (1992) reported that QEEG was

more sensitive than conventional EEG. magnetic resonance imaging or computed

topography scanning as an indicator of cerebral dysfunction in systemic lupus

erythematosus patients. QEEG is also found to be able to increase the sensitivity of sorne

conventional techniques. Szelies et al. (1994) compared quantitative topographical EEG

with regional glucose metabolism measured by PET v';th respect to the sensitivity in

classification of mild to moderate dementia. The results showed that combined use of

QEEG and PET was more discriminating and reached higher diagnostic specificity than

each test individually. \10reover. QEEG is demonstrated to be an indicator of brain

perfusion and regional cerebr:ù blood flow (Leuchter et al.• 1994; Jibiki et al., 1994), aru"

to be useful for the detection of encephalopathy and unilateral cerebral lesions (Jacobson

et al., 1993; Salinsky et al., 1992).

Until now, most QEEG techniques are used in clinical laboratories. There are several

limitations to using QEEG to monitor leU patients and perform automatic diagnosis.

such as abundant artifacts, fluctuating patient states of alertness, lack of normative leU

data, and difficulty in detecting spikes, brief seizures, burst suppression and periodic

lateralized epileptiform discharges. These limitations, however, may be overcome and

there are a number of efforts to do sO, By new analytic procedures and signal processing

techniques, artifacts can he recognized and often removed (prior, 1973; Bickford et al.,

7
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1971: Maynard and Jenkison. 1984). Spikes. scizures and latcralized epiIcptiform

discharges can also be detected by successfully devcloped automatic seizurc detection

systems (Gotman. 1982. 1990).

The computer-assisted analysis based on QEEG has been used by sever.ll researchers.

however the most sensitive variables to be monitored have not been determined. The tool

most commonly used is the CSA designed by Bickford et al. (1971). Here thc frequency

spectn of the EEG activity are computed and plotted against a vertical time scale for

successive epochs. Gross changes can therefore be identified visually. Maynard and

Jenkison (1984) developed a system called the Cerebral Function Analyzing Monitor.

This device bandpass filters (2-20Hz) thc EEG. performs amplitude rectification and

smoothing. and then computes five amplitude measures and the pcrcentage of activity in

nine frequency bands which are displayed as a funetion of time. The Vital Signs

Monitoring System (Chiappa and Hoch. 1993) is another computer-assisted diagnostic

tool. This system plots the trend of the EEG over several hours. Different physiological

parameters are calculated and displayed such as peak. median power and spectral edge

frequency, frequency bin activity totals. frequency bin ratios and intracranial pressure.

1.2.3 Abnormal EEG in Children

EEG abnormalities in children are c1assified by Lombroso (1985) into three main

categories: (1) abnormalities of background activity. (2) ictal abnormalities. and (3)

abnormalities ofstates and ofmaturation.

Background activity refers to the basic EEG rhythrns which are present at ail times.

EEG background abnormalities correspond to deviations in amplitude and frequency

8
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composition of these basic rhythms in different head regions. Lombroso (1985) reported

that background abnormalities appear to be most suitable for diagnostic applications

especially in long-term prognosis. Other studies also indicate that background EEG is a

good indicator of prognosis subsequent to hypoxic-ischemic injury if recorded for

sufficient duration in all states (Watanabe et al.. 1980). The prognos!ic signiticance is

influenced by the timing of the recording. Kayser-Gatchalian and Neundorfer (1980)

demonstrated that recordings within the tirst 48 hours of the illness serve as the bt:st

prognostic indicators.

IctaI abnormalities are most often associated \\~th seizures which appear as sharp wave

and spikes. hypersynchronous rhythmic activity or as paroxysmal slow wave activity. In

children. ictal abnormalities provide prognostic information as well and can be caused by

the involvement of the central nervous system or by metabolic derangemcnt.

The composition of EEG acti~ty in children varies considerably with age. Children

who exhibit sleep rhythms that are uncharacteristic of their age are considered to have

abnormalities of organization in sleep states and maturation. This category consists of

more subtle de~ations. sorne of which are still being investigated and less well

established.

Among the three categories of abnormalities discussed above. background

abnormalities are the best prognostic indicator in long-term EEG monitoring especially

subsequent to hypoxic-ischemic injury. An analysis of background abnormalities together

with ictaI abnormalities may give maximum prognostic information, although the

processing of these two patterns may be independent. Background EEG abnormalities

manifest themselves in severa! forms:

9
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• Inacril'e Parrern - This is characterized by cerebral activities bdow 10/01\' almost

continuously throughout the recording. and unreactive to stimulation, ln the

absence of a postictal state. notable hypothermia. high levds of drugs. or severe

derangement in blood gases. this pattern carries a very unfavorable prognosis,

• Burst Suppression - Characterized by periods of inactive background (Iower than

10-ISuv) interrupted by synchronous or asynchronous bursts ofactivity. The bursts

can be of high or. less often. low voltage. last 0.S-6s. contain irrcgular slow waves

\\~th or \~thout interspcrsed sharp transÎents. In the absence of the factors

mentioned above. a burst suppression pattern heralds an unfavorable outcome

re<l<:hing high statistical predictability (Lombroso. 1985).

• Low Voltage Parrern Through Al! States - This exhibits mixed fiequencies lower

than 10-SOuv more or less continuously and in ail states. This pattern differs from

inactive pattern only in the degree of voltage attenuation and from burst­

suppression pattern because of the absence of bursts. If persistent and in the

absence ofscalp edema or technical faults (smearing ofelectrode paste. sweat, etc.).

the prognosis of unfavorable c1inical outcome reached statistically significant

values in 10ng-terrn prospective studies (Lombroso. 1974. 1978).

• lnterhemisphere Amplitude Asymmetry - This consists of a persistent voltage

asymmetry in background rhythms between hemispheres (Lombroso. 1980).

Transitory or mild asymmetries are probably of no pathological significance. A

persistent voltage asymmetry recognizable in various states could denote a

depression in one hemisphere or large amplitude activity in the other, both of which

10
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point to an underlying abnormality. These abnormalities can be intraparenchymal

hemorrhages (Lombroso. 1981): pre- or postnatal vascular accidents: tumors or.

rarcly. congenital malformations. The diagnosis of this pattern needs to be very

careful because the non-pathologie factors such as scalp edema or technical faults

(asymmetric c1ectrode placement. smearing of c1ectrode paste. swe:lt. etc.) can

produce similar asymmetries.

• J'vIonotonolls Pattern - This consists of an almost invariant diffuse pattern present at

ail times. poorly reactivc to stimuli. Bricolo and coworkers (1973) have

demonstrated that an invariant EEG carnes a \Vorse prognosis than a cycling

(alternating) EEG. In another study. they also found that approximately 95% of the

patients with a slow and monotonous CSA had unfavorable outcomes compared to

only 30% of those with a changing CSA (Bricolo et al.. 1978). Although the

cycling EEG patterns on1y weakly correlate with c1inicaI state of the patient. they

still have significant independent prognostic value (Rumpl et al.. 1979). To study

spontaneous variations adequately. the EEG must be recorded over an extended

period of time.

• Absence of Freqllency-Amplitllde Gradient - The EEG of a normal child shows a

decremeut in voltage from posterior to anterior head region. with an accompanying

decrease in slow frequencies in the same posterior-anterior direction. There is a

positive correlation between the severity of iIIness and the absence of this gradient

(Slater and Torres. 1979). The same study also found that the presence of this

Il
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gradient is dependent on the patient's age. ln most cases good gradients do not

appear bcfore 3 to" months ofage anJ after la years old.

ln addition to background abnormalities and scizures. cIinical neurologists are most

often interested in the trend of the EEG oyer long periods (at !cast seyeral hours).

especially subsequent to brain injury. since it is a good indicator of stale of deterioration

or rccovery.

1.3 Project Definition

The aim of the project is to build a system for automated neurophysiological

monitoring in the pediatrie ICU. The system is to be used as a bedside EEG diagnostic

tool for pediatrie patients who may suffer neurologie dysfunction such as those

subsequent to cardiac surgery. trauma or hemorrhage.

Such a monitor should mimic the neurologisfs behavior. accepting several hours of

raw EEG data as input and cIassii)'ing it as normal or abnormal based on its

characteristics. As background abnormalitics appcar to be the best diagnostic indicator in

long-term EEG monitoring. several features describing the background abnorrnalities

have becn selected to be used by the monitor for interpretation of the EEG.

Most of the EEGs used to build this system were recorded in the pediatrie ICU (at

Montreal Children's Hospital) to monitor the possible neurologie dysfunction of the

cardiac patients subsequent to cardiopulmonary bypass. Due to the regional blood flow

variation during surgery. these patients may suffer brain hypoxia-ischemia and may serve

as a good test group for this system. The long-terrn EEGs of patients who are in coma or

have seizures are also used to develop this system.

12
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Chapter :: tirst introduces the EEG rccording prolocols used in the Montreal

Children's Hospital including montage. amplitication. analog tilter and sampling rate.

Mathematical procedures are then presented which transform the raw EEG data into the

frequency band arrays on which artifact rejection and fealUre extraction procedures are

performed. Continuous EEG recording o\"er long periods is subject to \"arious kinds of

artifact especially in the ICU where the patient care and medication are essential. Artifact

rejection is therefore crucial for accurate EEG analysis. Common types of artifact are

discussed in detail and ilIustrated. Various tilters are designed and compared \Vith each

other based on their ability to reject artifact. Then the quantitative equivalents of selected

qualitative fealUres are extracted from the frequency band arrays of the EEG. The

obtained pararneters are further interpreted by statistical analysis based on a population

considered to be "normative". The work discussed in this chapter is based on a study by

Anitha K. Pasupathy (1994) and severa! modifications are introduced to improve the

performance of the system.

Chapter 3 introduces the construction of a knowledge-based expert system which

accepts the pararneter values associated with the selected features and classifies the EEG

into one of the severa! abnormaiity levels. Th,. system is trained with examples of six­

hour EEG sections interpreted by the neurologists. The feature e:l."t1'action method

described in chapter 2 is then used to calculate the quantitative values of the selected

features for each six-hour EEG. By using fuzzy membership and neural network

techniques. the system leams and updates its knowledge about the EEG classification by

comparing its performance \Vith the neurologists' assessment. The structure of the

knowledge base and the inference engine are explained as weil.

13
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The perlonnance of the aUlomated monitor system is tested and described in chapter 4.

The discussion of the possible impro\"ement and the c1inical future of the system arc also

included in this chapter.

14
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C/zapter 2 Data
Pre-processing and
Feature Extraction

This chapter describes the EEG data acquisition protocol. artifact rejection approach

and feature extraction methods used to obtain the quantitative interpretations of the select

features which describe the EEG background abnormalities. Most of the work in this

chapter is based on a study by Anitha K. Pasupathy (1994) and several modifications are

introduced to improve the performance ofthe system.

2.1 Data Acquisition and Pre-processing

2.1.1 Data Acquisition

The EEGs were recorded with an 8-ehanne1 montage called "Linle HO' in the intensive

carc unit of the Montreal Children's Hospital. As depicted in Figure-2. I. eleven

e1ectrodes were glued to the surface of the scalp. The EEG recorded from channels 1 and

4 corresponds to the activity from the frontal head regions of the left and right

hemisphere respectively. Similarly. channels 2 and 5 represent central parietal head

regions. channels 3 and 6 represent the posterior head regions and 7 and 8 represent the

central temporal head regions.

After being picked up by the electrodes. the analog signal is amplified by a factor of

10000 and filtered by a low pass filter (cutoff frequency of30Hz) to prevent aliasing and

a high pass filter (cutoff frequency of 1Hz) to remove artifacts due to respiration.
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swe:lting. etc. Then. the analog signal is digitized at a 200 Hz sampling rate and displayed

on a computer monitor using the software MONITOR (Stellate System. Montreal).

Visual interpretation of the EEG involves mainly the assessment of its tTequency

composition. The neurologists estimate visually the amount of EEG activity in the

various frequency bands. delta (1-3 Hz). theta (3-7 Hz). alpha (7-14 Hz) and beta (14-30

Hz). compares and correlates them and arrives at a decision about the normality of the

EEG. It would therefore be quite useful to transform the entire EEG into the frequency

domain. Since analysis of the background activity is best achieved by studying :ong-term

trends. it is preferable to analyze an extended EEG record lasting severa! hours. An 8-

channel EEG recorded continuously over a period of six hours produces approximately

60 MB of data. Transformation of the EEG into the frequency domain has the added

benefit ofdata reduction.

The frequency analysis of the EEG record is performed using a software caIled

ECLIPSE (Stellate System. MontreaI). The program divides the entire EEG recording

16
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into epochs of 30 seconds. each of which is œferred to as a "page". The Fast Fourier

Transforrn is computed for every 512 sampk points (2.56 seconds of EEG) and this

amounts to deven tTequency domain distributions per channd per page. In fact only

28.16 of the 30 seconds are used. The frequency distribution for each page ofa channd is

obtained by averaging its Il distributions. The band activity is then the av.:rage of the

amplitudes of the activity within the frequency range of the corresponding band. The

frequency ranges of the vanous bands are defined in Table-2.1.

Band Tilles Delta Theta Alpha Total
Frequency Range(Hz) 1.1 i-3.13 3.52-i.03 i.42-13.28 I.1 i-13.28

Table-2.1 Frequ.n~· rnn::cs of dirr.rcnt acti"ity bands.

The total band calculated here spans only up to 14Hz. a1though the frequency of

genuine cerebral rhythms can be as high as 50Hz. The reason behind such a narrow band

will be discussed in the section on Artifact Rejection. Once the ""activity"" of the EEG is

computed. each channel is associated with four average amplitudes corresponding to the

four frequency bands for every page of the record. The activity values for a frequency

band are then plotted against time as a "band array' for each channel. Activity

computation by ECLIPSE reduces 6 hours ofraw EEG data !Tom 60MB to about 5001(8.

2.1.2 Artifacts

Artifacts are frequent and often intractable during long-terrn EEG recordings in the

lCU since the prime concem there is the support of patient"s life and. particularly in the

early hours after surgery. many procedures both diagnostic and therapeutic are in

li
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progn:ss. Th.: dT':CI of lh.:s.: anitàcIs on comput.:r analysis is 'luite ,;erIl'US and their

r.:j,:clion is .:ss.:ntial lor aUlhentie interpr.:lation ,'flh.: recordins.
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n.:arby .:quipm.:nt or lh.: ground loop. This 60Hz anitàct also has harmonics al 120Hz.
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alias.:s and app.:ars as an aCli\"ity p.:ak al SOHz and ISOHz aCli\"ily alias.:s as 20Hz. Th.:

20Hz anifacl contaminal.:s lh.: b':la band acti\·ily. Figur.:-2.2 illustral.:S 6 s.:conds of an

EEG with 60Hz anilàcl mosl promin.:ntly \'isibk in lh.: Idi posl.:rïor h.:ad regions

(channd p3-cl).
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•

Figure-U Six seconds of an lkhannel EEG recorded b~' using -linle
H- montage.. Channel P,-O, contains 60Hz artifaeL

Another important source of artifact is patient mo\"ement. including body movement.

contraction of the scalp muscles. blinking. chev\;ng. coughing. swaIIo\\;ng and

involuntary myoclonic jerks. Muscle contractions due to che\\;ng. coughing and

18



Chamer 2 Data Pre-processinr: and Feature Extraction Thesi<

•

•

•

swallowing produce broad band activity referrcd to as the Electromyogram (EMG) while

the movement of the eyeball produces another kind of activity called Electro-occulogram

(EOG). which is caused by the fact that the eyeball is an eIectrical dipole. Both EMG and

EOG are quite useful for behavioral studies. however. these rltythms are not of interest

and contarninate the EEG when monitoring cerebral function. The movement of the

conductors that carry current from the scalp electrodes to the amplifier. caused by the

body movement. can induce an electric current due to the earth·s magnetic field. This

induced current is comparable to the current. of cerebral origin and therefore

contarninates the EEG signais. These patient-generated artifacts are usually spib:y.

containing sharp elements and very large amplitudes. and impulsive. not lasting for more

than a few seconds in duration. Figure-2.3(a) ilIustrates an EEG contarninated by patient­

generated artifact caused by the movement of the conductor of electrode P3 and Figure­

2.3(b) shows the total band activity of this EEG where the very large amplitude spib.)'

components correspond to the patient generated artifact shown in (a).

Artifact due to poor electrode contact is quite inevitable during a long-terrn recording

and an example is ilIustrated in Figure-2.4(a). During long-terrn EEG recording, the jelly

that fills the gap betwccn the electrode and the scalp to make electrical contact could dry

up-and this may impair the contact Artifact due to poor contact is characterized by low

frequency and moderately high amplitude. Such artifacts however, are not impulsive and

remain until the eleetrode is glucd again. Figure-2.4(b) shows the total band array

corresponding to the EEG with poor electrode contact depicted in Figure-2.4(a).
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Figurc-2.3 Patient-generated artifaeL (a) Six seconds 8-channel EEG: artifact can be seen
in channP.1s C,-P, and P,-O, due to the movement of the conduetor of common eleetrode
P,; (b) The total band activity of ehannel P,-O, in whieh the sharp spike corresponds to the
artifact shown in (a).

•

•

2.1.3 Artifact RejeetioD

As disc'lSsed earlier, the aim of this diagnostic tool is to determine the gross state of

the EEG on the basis of its frequency composition over severa! hours. It is quite

unnecessary, therefore, to identify and reject specific artifactuai EEG waves. Artifact

•
identification and rejection from the frequency band arrays would be sufficient for our

purpose. It is important to realize that artifact identification can be done visually onIy by

20
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Figure-2.4 Sustained artifact. (a) six seconds 8-c:hanncl EEG: artifact is observable in
channels C,-P, and P,-O, due to the poor electrode contact; (b) The total band arrays
ofchannel P,-O, in which the marked adivities correspond to the artifact shawn in (a).

examining the raw EEG record in the time domain. Suppression ofartifacts, however, can

be done in the frequency domain.

The frequency range of background EEG ofcerebral origin is 0-30Hz. Faster rhythms

of cerebral origin up to 50Hz may be present but usually correspond to seizure aetivity.

The beta frequency band (14 to 30 Hz) is eommonly affected by medication,

administration of anesthetics and 20Hz alias of 60Hz noise. To remove the effect of the

non-pathological factors, the 60Hz artifact and its harmonies, the total band analyzed is

from 0-14Hz. Sinee most background EEG abnormalities manifest themselves in the
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delta and theta frequency ranges. such a definition of the total band is not likely to distort

the interpretation in a significant way.

To reject the artifact due to patient movement and poor cIectrode contact. a tilter

capable of rejecting both impulsive ver; high amplitude artifact and sustained moderatcly

high amplitude artifact is required. Today. linear tilters are used extensively. However.

they fail to perform weIl with both the impulsive noise component and the sustained

noise component. A non-Iinear tilter called the median tilter has been used successfully

for the impulsive noise component. It replaces the value at each point by the median of

the signal values in sorne finite neighborhood about that point. The performance of a 5-

point median filter on an EEG with impulsive artifact and on one with sustained artifact is

illustrated in Figure-2.5.

DL::r....:IIIiI'••Mitl:iIIII.;:::4:IIiIJ..:iii''''Ill!,.,J (a)

l: E ~~)

(c)

•

C.IIIIIIIIZ7II'..'-..:...,IlIT....~.7111~(~
o 1 2 3 4 5 6hour

Figure-:::.s Artifact rejection by median filter. (a) The total band array of an EEG
eontaining impulsive artifaet; (b) The band array shown in (a) filtered by a S-point
median filler; (e) The total band array oran EEG eontaining sustained artifaet; (d)
The band array shown in (e) filtered by a S-point median filler.
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It is clear that the median filter is efficient at rejecting impulsive noise components.

but fails to remove the sustained artifact. Sustained artifacts in EEG recording can

continue over several hours. Thc median filter fails to recognize them when the entire

neighborhood is artifactual and similar. Therefore a hard threshold should be used.

A median filter with hard-limiter thrcshold performs weil in the rejection of sustained

artifact. The data was first filtered with a 5-point median filter. If the median of any

window of total band activity is greater than a threshold. then the activities in ail

frequency bands of that particular epoch for that channel are replaced by the respective

average band activities averaged up to that point in time. The choice of the threshold is

quite criticai for the performance of the filter. Extensive EEG review indicates that

genuine fluctuations of cerebral origin in frequency band activity are rarely greater than

25% of the averaged background activity while the amplitude of most artifacts is at lcast

1.5 times the average EEG background. Therefore, the threshold chosen ..vas 1.5 times the

average EEG activity. Figure-2.6 depicts the performance of a median filter with a hard­

limiter. Clearly, the hard-limiter threshold rejects both sustained and impulsive artifacts

quite effectively. It needs to be mentioned here that the user should ensure that at lcast

several minutes of "clean" EEG are present at the beginning of the recording so that the

filter is able to recognize the artifact by comparison with this reference.

2.2 Feature Selection

Once artifaets have been suppressed or rejected, the relevant features that will provide

information about the EEG background can be extracted. From the discussion on

abnormai EEG pattern, it is apparent that the nature of background EEG activity is
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Figure-2,6 Artifaet rejcction by median filter with hard-limiter, (a) The total band
array of an EEG eontaining impulsive artifaet; (b)The band array shown in (a)
filtercd by a 5:point median filler with hard,limiter of 1:5 avg; (e) The total band
array of an EEG eontaining sustaincd artifaet; (d) The band array shown in (e)
fillercd bya 5:poinl mcdian filler wilh hard,limiler of 1,5 avg,

primarily assessed on the basis of four aspects. namely. amplitude. LeftlRight s)mmetry.

AnteriorlPosterior gradient and variability of the EEG.

To study spontaneous variability over time and assess long-term trends of the EEG. it

is necessary to analyze an extended EEG record. However. to be most useful. it is

important to obtain information about an abnormal EEG pattern as early as possible.

Taking both these factors into consideration. it was decided that the classification of the

EEG would be done based on 6 hours of recording. The mathematical derivations of the

quantitative features extracted from an EEG prior to classification are discussed below.

2.2.1 Measure ofAmplitude

A depressed EEG record is characterized by low amplitude values. which can be

reflected in the total band activity of the EEG. as depicted in Figure-2,7. Since sustained

rather than impulsive amplitude abnormalities are evaluated, the amplitude measure is
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mathematically derived as the logarithm of the average o\'er a 5-minute period of the total

band activity. In a band arroy. this represents the logarithm of the average of 10 points

since basie calculations are made every 30 seconds. The reason for using the logarithm of

the average rather than a simple average is explained in the section on statistical analysis.

As a total. an amplitude measure extracted every 5 minutes for 8 channels over 6 hours

amounts to 12*6*8 or 576 values.
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Figure-2.7 Amplitude depression. (a) Three seconds lk:hannel EEG with
normal amplitude; (b) Three seconds lk:hannel EEG with depressed
amplitude;(e)Total band activity ofchannel p,-o. of the EEG shown in (a);

2.2.2 Meas_(f4diIlbe~S~ldJ13l-o. of the EEG shown in (b).
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Figure-2.8 illustrates two EEG sections from two patients. one with Left-Right

symmetry and one without. Their total band activities are shown in Figure-2.9. A simple

ratio of activity between corresponding channcls of the left and right hcmispheres could

quantify the lcvcl of symmetry. Since a ratio value doser to "1" implies a symmetrical

EEG pattern. the extent ofasymmetry is proportional to the absolute difference between 1

and the ratio value. The formula for the LeftiRight symmetry is given as:

~h-eraged actil"ity of channel in lefi hemisphere

Here. averaged activity rcpresents averaged total band activity over a 5-minute period.

•
(a)

f3-eJ f3.eJ
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•

Figure-2.8 Lefl-Right symmetry. (a) Th."" seconds 8-channel
EEG with Left-Right symmetry: (b) Th."" seconds 8-channel
EEG of asymmetrieaL The aetivity of left hemisphere is
depressed.
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Figure-2.9 Tot:ll band aetivities of the EEGs in Figure-2.8. (a) (b) are
the aetivities of ehannel P,-o, and ehannel P,-O, of the EEG shown in
Figure-2.8(a): (c) (d) are the activities of channel P,-o, and channel P,­
0, of the EEG sh..wn in Figure-2.8(b).

Four LeftlRight symmetry measures corresponding to the four pairs of channels

symmetrically located in the two hemispheres are extracted every 5 minutes of an EEG

record. A quantified 6 hour EEG record is thus associated with 72 LeftlRight symmetry

values for each ofthe four channel pairs, or 288 values.

2.2.3 Measure ofFrontIBack Differentiation
As explained in chapter l, a normal pediatric EEG record is associated with a gradient

in amplitude ofactivity in the low frequencies with amplitude decreasing in the posterior

to anterior direction. This is referred to as FrontIBack differentiation. Figure-2.10

illustrates two EEG records and their delta band activities, one with FrontIBack

differentiation and one withou!. A ratio of the delta band activity of the posterior channel

to that of the anterior channel of the same hemisphere reflects effectively the extent of

their differentiation. Two such measures are extracted for every EEG record
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Figure-2.10 FrontlBack differentiation.(a)Three seconds EEG with FIB dif.; (b)Three seconds EEG
without FIB dif.; (c )(d)Delta band activities of channel F,-C, and channel P,-O, of the EEG shown
in (a); (e)(I)Delta band activities ofchannel F,-C, and channel P,-O, of the EEG shown in (b).

corresponding to the two hemispheres. The parameter is derived using the formula given

below.

•
1 Averaged della acliviry of poslerior head region

R = og( Averaged della acliviry of anterior head region of lhe sarne hernisphere)·
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Averaged delta activity in the formula above corresponds to an average over a 5­

minute period. For each hemisphere. the FrontiBack differentiation extracted from every

6-hour EEG record is deseribed by 72 values. The total number of values is therefore 144.

2.2.4 Measure ofVariability

This measure assesses the extent of spontaneous cyc1ing in an EEG record. The delta

band activity of the posterior channeIs of the two hemispheres is most reflective of a

cyc1ing EEG.

Figure-2.I1 iIlustrates three posterior delta band activities subsequent to artifact

rejection. one with spontaneous variability (a) and two others (b. c) without. Spontaneous

aIteration in Figure-2.I 1 (a) appears in the band array as humps that are significant1y

higher in the amplitude and extend over a substantiai period. Figure-2.I 1 (c ) shows an

absolutely flat band activity with no big humps. A soIitary large hump such as the one

presented in Figure-2.1 1 (b) is not representative of variability either. Therefore to

quantify variabiIity, the number, duration and height of the humps are to be quantified.

The band array signais can be considered as aItemating signais superimposed on a DC

signal, the DC component being the averaged band activity over the entire duration. By

subtracting the DC component. the quantification of the number. height and duration of

the humps can be accomplished by computing the zero-crossing rate and the energy of the

aItemating signal.
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Figure-2.11 Della band aetivity of the left posterior ehannel of three EEGs. (a)
Showing a good numbe. of broad humps whieh implies a normal variabilil)': (b)
Having only one big hump whieh rcpresents an abnormal variability: (e) Showing an
absolutely nat aetivity whieh indicates an abnormal variability:

Figure-2.12 (a) shows a delta band array of an EEG record. having continually

increased amplitud::- along the entire duralion. Such a continuai increase is often

encountered in patients after cardiac surgery. The line illustrales the position of the OC

component. It is apparent that. by simply subtracting the OC component. the infonnation

about the spontaneous humps can't be acquired by calculating the zero-crossing rate and

energy of change. because of the linear amplitude trend. In this case. the linear trend can

be fitted and subtracted from the band array instead of the OC component to remove its

inf.aence on both zero-erossing rate and energy ofchange. as depicted in Figure-2.12 (b).

It needs 10 be mentioned here that for the recordings which have no amplitude trend

(increasing or decreasing) the fitted linear trend is equivalent 10 the OC component.

As the name implies. the zero-erossing rate is a count of the nurnber of times the

signal crosses the time axis after subtraction of the trend. which reflects the nurnber of

hurnps. Since we are only inlerested in the hurnps that extend over a substantial period. a
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5-point linear averaging tilter is used to smooth out the humps in the band array that lasts

for less than a couple of minutes.

"""~"1 '7.n
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Figure-2.12 The delta band aetivity of ehannel p3-01 of an EEG having eontinually
inereasing amplitude along the six-hour duration. (a) The mean of the six-hour
aetivity doesn't represent the base around whieh the EEG aetivity altemates: (b) The
Iinear trend of the six-hour aetivity represents the base around whieh the EEG
aetivity altemates.

As mentioned before. not only the number but also the height and duration of the

humps need to be quantified. The e.'l.1ent of the hurnps is aseertained by computing the

energy ofehange of the altemating signal using the formula below:

no
LX,2

E = loger ~' d .. r)Average an act/vlty·

Where ''x;'' denotes the amplitude of eaeh point of the band array after the fitted linear

trend has been removed from il. There are 720, 30-second epochs in 6 hours.

From the discussion above, it is evideût that in order to quantify variability ofan EEG,

both zero-crossing rate and energy of change are essential. A zero-crossing rate and an

energy of change measure are extracted from the posterior channel of each of the IWO
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hemispheres for delta activity of the 6-hour EEG record and used for further

interpretalion.

2.3 Statistical Analysis

Fol!owing feature extraction. the SOOKB activity file is reduced to a set of 1012 data

values. 576 ofwhich describe its amplitude. 288 describe the Left!Right symmetry. l~

describe the FrontIBack differentiation and 4 describe the variability of the EEG. For the

quantitative interpretation of different fealures of the EEG. these values need to be

reduced further. Unfortunately. the EEG expert is unable to help with the definition of the

quantitative boundaries of the normal and abnormal categories for ail of the measures.

since al! these values are extracted from the frequency domain. Therefore it would be

preferable to provide the various measures of the EEG as quantitati\'e assessments

indicating normality of the corresponding features. rather than as a series of numerical

estimates that \Vould he difficult for a clinician to interpret.

Interpretation of quantitative EEG measures. as described above. is usually performed

by statistical analysis comparing results tO values obtained &om a normal control

population. The selecùon ofa representative normal control population is crucial for good

system performance. For this project. since it is impractical to get real "normal" subjects

to undergo long-term EEG monitoring in the leu. a group of ten post-cardiac surger:'

patients varying from six months to 12 years old \\ith normal post-operaùve long-term

EEG recorclings and normal short-term neurological outcome \Vere carefully chosen to

fonn the control population.

2.3.1 Population Distribution
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As seen in previous sections. ail the features extracted from the frequency band arrays

of the EEG are defined as the logarithm of a certain estimate rather than the estimate

itself. The distribution of the estimates such as average amplitude do not follow the

characteristics of a normal distribution. This may either be due to the biological

mechanism generating the EEG or due to rigid boundaries associated with the estimates

themselves. To facilitate transformation of these distributions toward the normal

distribution. the logarithrn of the estimate is used as the parameter definition (Gasser et

al.• 1982).

Amplitude Data values from the ten patients of the control population amounting to

2016 points are used to construct frequency distributions of amplitude for each of the

eight channel$, as iIIustrated in Figure-2.13. Skewness and J....urtosis of these distributions

are similar to that of the normal distribution. Averages and standard deviations (STD) of

the various distributions appear in Table-2.2.

The last two amplitude measures represent the central temporal head regions. The

inter-electrode distance for these two cbnnels is twice that of the other channels and

hence the amplitude averages are higher than those of the other channels.

Head Region (Channel) Average STO.
Left Anterior 4.43 0.37

Left Central Parietal 4.41 0.31
Left Posterior 4.62 0.41
Right Anterior 4.48 0.33

Right Central Parietal 4.39 0.32
Right Posterior 4.63 0.36

Left Central Temporal 5.10 0.33
Right Central Temporal 5.12 0.32

Table-2.2 Average and standard deviation values of the
eight amplitude distributions orthe control population•
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Svmmetry Data values from the same ten patients are used to construct the four

frequency distributions for the Left/Right symmetry measures. These distributions also

are close to normal distributions. as shown in Figure-2.14. The averages and standard

deviations of the four distributions are presented in Table-2.3.

34



Cltapter 2 Data Pre-prncessing and Feature Extraction Tltesis

Anterior• -
""

• '.'

Posterior

Cental Parietal

central Temporal

--
""
'.b--.,..

•

•

Figure-2.14 Distributions of the four symmetry
measures of the eontrol population.

Head Region Average STO.
Anterior -0.018 0.049

CentraI Parietal 0.009 0.056
Posterior -0.002 0.083

CentraI Temporal -0.008 0.022

Table-2.3 Average and standard deviation values of the
four symmetry distributions of the eontrol population.

The distribution trom the channel pair that monitors the centraI-temporal head region

has a much smaller range as compared to the other distributions. The reason is that the

two channels of this pair have a common electrode, Cz, and the difference in activity

between hemispheres is therefore much less, when compared to the other channel pairs.

FrontIBack Dif(erentiation As discussed in the section on abnormal EEG, the normal

pediatrie EEG is reported to present significant FrontIBack differentiation when the

patient's age falls in the range of4-month to 10-year. Beyond that range, this FrontIBack

differentiation is unimportant. Among the ten control subjeets, the EEG recordings of the

patients whose age is in the above range are selected to form the control distributions for
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•
the FrontlBaek differentiation. Ske\\ness and kurtosis of these distributions eonsisting of

1800 data values arc aiso similar to that of the normal distribution. The distributions and

the statistieal values arc presented in Figure-2.15 and TabIe-2.4 respectively.

•

let'l Hemisphere RighI Hemisphere
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•

Figure-2.15 Distributions of the IWo FrontlBaek differentiation
mcasurcs of the control population.

Hemisphere Average STD.
Left 0.13 0.11

Right 0.11 0.12

Table-2.4 Average and standard deviation valucs of the IWo
FrontlBaek differentiation distributions of the control population.

Variabilitv Unlike the other three measures that are extraeted once every five minutes.

the variability pararneters are extracted only once in six hours. Hence a very small sarnple

set is available to form the control distributions. Figure-2.16 illustrates the distributions

constructed by 28 values from the delta band aetivity. Table-2.5 lists the average and

standard deviation values of these distributions.

Pararneters Mean sm.
Zero-Crossing Rate: Left 17.72 3.17

Zero-Crossing Rate: Right 17.96 3.19
Energy Exehange: Left -3.64 1.17

Energy Exchange: Right -3.79 1.25

Table-2.5 Average and standard deviation valucs
of the four variability distributions of the control
population.
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Figure-2.1:; Distributions of the four variability
mcasurcs of the control population

2.3.2 T-Statistic

Eighteen variables are measured from a six-hour EEG recording, eight for amplitude,

four for symmetry, two for FrontIBack differentiation and four for variability. Each of the

eight amplitude measures and six ratio measures is associated with a distribution

composed of 72 data values. The amplitude and ratio distributions ofa new "normal" six-

hour EEG could be expected to be quite similar to the corresponding distributions of the

control population. An abnormal EEG, on the other hand, would have distributions quite

different from that of the control group.

A measure of the degree of similarity between the distributions of the control

population and the EEG being analyzed would give an estimate of the normality of the

feature concemed. A t-statistic measures the level of similarity between distributions by

comparing their means and may be used to compare the distributions of each new six-

hour EEG with the control population. Normally, the t-test statistic can be applied only to

distributions that satisfy two conditions: independent samples and normal distributions.
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For the problem at hand. the two samples arc absolutcly independent of each other since

they arc from different patients and do not influence each other. The distributions of the

control population obtained for amplitude. symmetry and FrontiBack differentiation arc

within limits of a normal distribution as discussed earlier. The corresponding

distributions of most patients have also been found to conform with the characteristics of

a normal distribution. The t-statistic can therefore be appIied to obtain the information

about similarity ofthese distributions.

Suppose that independent random samples of sizes of ni and n~ are taken from two

normally distributed populations with means ).l, and ).l~ respectively. Let x, and s,

represent the sample mean and standard deviation of the samples from the population

with mean ).l, and x~ and s~ the sample mean and standard deviation of the sample from

the population with mean ).l~. Then the random variable

(x, - x,) - (PI - p,)
t = - -

sf s;
-+­
ni n~

has approximately the t-distribution with degree of freedom given by

rounded to the nearest integer. The t-curve is syrnmetric about '0' and extends

indefinitcly in both directions. It approaches a normal curve as the nurnber of degrees of

freedom gets larger.

To test the similarity of the means of two populations. we can set a hypothesis Ho:

).l,=!l2. The random variable
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is called a t-statistic. A t-statistic value of 0 implies that the hypothesis is absolutely true

and the greater its absolute value the smaller is the probability that the two means are

equal.

Subsequent to feature extraction from a new EEG to be intcrpreted. the means and

standard deviations of the 14 pararneters (8 for amplitude. 4 for symmetry and 2 for

Front/Back differentiation) are calculated and the corresponding t-statistic values are

computed. If the t-statistic is greater than zero then the mean of the control population is

less than that of the EEG being analyzed. Similarly. if the t-statistic is less than zero the

mean ofthe control population is greater than that of the EEG being evaluated.

The range of t-statistic values e:l.1ends from -00 to +CO. Its value represents the Icvel of

normality of the measure associated with it. For amplitude. depression in EEG activity is

an abnormality and amplitudes greater than or equal to that of the control population

represent normal EEG. Therefore a t-statistic valut" greater than or equal to zero implies

amplitude normality for the corresponding amplitude pararneter and the probability of

normality is assigned a value of 1.0. It has been observed that a t-statistic value less than -

100 indicates a very severe depression and is therefore assigned a 0.0 probability of

amplitude normality. Then the t-statistic value from -100 to 0 is linearly mapped onto a

probability range from 0.0 to 1.0. The probability ofnormality of an amplitude parameter

is thus defined as:
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1.0. 1 <:: 0

P,.", = (100+1)/100. -1 00 < 1< 0

0.0. 1~ -100
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The symmetry parameters compare activity of the lcft hemisphere to that of the right

hemisphere. A t-statistic value of 0 for a symmetry parameter indicates that the EEG

being analyzed is symmetrical and is hence associated with a probabiIity of normality of

1.0. On the other hand. a t-statistic value greater or less than zero implies that either left

side is more active than the right side or the right side is more active than the Ieft side and

the EEG is asymmetrical. It has been observed that an absolute t-statistic value greater

than 80 indicates a very severe asymmetry and is therefore assigned a probability of

normality of 0.0. Thus the absoIute t-value range from 0 to 80 is Iinearly mapped onto a

probability range of 1.0 to 0.0. as described below:

j
O.o. 1 ~ -80

p,"'" = (80-111) 180. - 80 < 1<80
0.0. 1<: 80

In the case of FrontIBack differentiation measures. a t-statistic value greater than or

equal to 0 indicates the front back ratio parameter of the EEG analyzed has a greater

mean than the control population and implies an equai or greater differentiation. This is

considered normal and associated with a probability value of 1.0. On the contrary. a t-

value less than 0 indicates an insufficiency in differentiation in activity between posterior

and anterior head regions. Once again il was observed that a t-statistic less than -50

denotes a very severe lack ofdifferentiation and the probability of normality is set to 0.0.

The probability of normality of FrontIBack differentiation is described as:
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1
1.0. 1 :2: 0.0

P,.", = (50+1)/50.-50<1 <0

0.0. 1 :;; -50

2.3.3 Assessment ofVariability

Thes;s
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Unlike the amplitude and ratio parameters which are summarized by data

distributions for each new EEG record. variability is characterized by four values each

one summarizing a different aspect of variability. the zero-crossing rate and energy of

change of the delta activity of the two hemispheres. As it is not a distribution. the t-test

cannot be used to assess it. The data values themselves can be assessed by comparing

them with the corrcsponding distributions of the control population.

A mca:;urc of the relative standing of the data values \vithin the distributions of the

control population may be treated as an estimate of the level ofnormality. For instance. a

zero-crossing rate grcater than ail sample points of the control population implies

normality in the zero-crossing rate and a value less than ail sample points of the control

population implies abnormality. Such a measurc could be arrived at by computing the z-

score ofthe parameter value.

Any normal curve is defmed by its (wO parameters: /l, the mean about which it is

symmetrical and 0", its standard deviation. The percentage of the area that lies to the left

of a given value x compared to the total area under a normal curve gives a measurc of the

reîitive standing of the data value x within this normal curve. This percentage value is

equal to the area that lies to the left of a value z under the standard normal curve (which,

by definition.. bas a mean of 0 and standard deviation of 1, and the total area under the
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Figure-2.17 Z·score transformation. (a) A normal curve with mean
of 1 and std of 2. The shaded area is 84% of the total area under
the curve; (b) The standard normal curve. The shaded area is 0.84.
Sinee the total area under the standard normal curve "Quais to 1.
the percentage of the shaded area is also 84%. as in (a).
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•
curve is 1) where ==- x: f.l • as illU3trated in Figure-2.1 7. and can be read from a standard

table.

Ifwe assume the four measures of the control population. two zero-crossing rates and

two energy exchanges. follow nonnal distributions. the z-score method described above

may be used to evaluate the nonnality of these parameters. Subsequent to computation of

the z-score. the !wo zero-crossing rate values and the two energy exchange values are

convened to four probability values of nonnality.

2.3.4 Data Reduction

FoIIowing the statistica\ analysis described above. an EEG is characterized by 18

probability values of normality: 8 for amplitude. 4 for symmetry. 2 for FrontIBack

•
difi'erentiation and 4 for variability. An automated leaming machine couid be built to

leam the EEG classification knowledge based on these measures. However. the efficiency
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of such a system is dependent on the number of variables provided to it and is better if

fewer variables are input to the system. Therefore it would be useful to minimize the

number of variables provided to such a leaming device.

For amplitude. the eight measures are probability values of normality based on the

measurement of the average of the total band activity of a six hour EEG on different head

regions. This average can a1so be performed spatially since depression in several channels

is worse than depression in only one channel. Therefore the eight probability values are

averaged to form one value which indieates the overa!l normality of the amplitude.

Similarly. the FrontIBack differentiation measures corresponding to the two hemispheres

are averaged to provide evaluation of the normality of the FrontIBack differentiation. In

symmetry. however. the situation is a little more complicated. Ordinarily. the neurologist

evaluates an EEG with one severely asymmetrical pair of channels as more critical than

one with severa! mildly asymmetricai pairs of channels. The simple average may

therefore not be enough to represent the overa!l evaluation of the symmetry. Here. the

overall estimate of normality of the symmetry is achieved by

Where Psev is the probability value of the most asymmetrical channel pair and Pather is

the value of the other three pairs of channels.

An EEG is said to be variable ifit is characterized by a good zero-crossing rate AND a

good energy of change. The normality of variability is therefore indieated by the

magnitude ofthe Iower of the two pararneter values as
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The two variability pararneters eorresponding to the two hemispheres arc then averaged

to provide an overall measure of the variability of the EEG.

FrontlBaek differentiation is a feature largely influenced by the patient"s age. A

probability value of normality of 0.0 for the FrontlBaek differentiation of an EEG record

would be associated with normal differentiation if the patient is younger than 4 months or

older than 10 years. Therefore. it would be preferable to transform these probability

values based on the patienfs age before entering the next step. Figure-2.1 8 ilIustrntes a

significance function of FrontlBack differentiation. S(age). related to the patient"s age.

which is established upon the project expert's interpretation of published data (Slater and

Torres. 1979). The transformation is described by:

1
\.0. age <4_month

P,'.w = rP'IM 1S(age)loA_month:S age:s 10_year
\.0. age> 10_year

Wherer1\,0 means that the value insidenwould be set to 1.0 if greater than 1.0.

As mentioned earlier. the work described in this chapter is based on a former study of

Pasupathy (1994). Severa! modifications were introduced to improve system

performance: (1) The trend instead of the DC component was subtrncted trom the

frequency band array in order to calculate the zero-crossing rate and the energy exchange

for time variability of the EEG; (2) When reducing the four probability values of

symmetty to one. more weight is given to the most severely asymmetrical channel pair
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Figure-2.13 Significance of the Front/Rack
differcntiation based on the patient's age
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instead of calculating the average: (3) The age factor was introduced to transform the

probability value calculated for FrontlBack differentiation based on the patient's age.

The data processing and feature extraction mcthods dcscribed in this chapter are

summarized as follow. Firstly. the raw EEG is split into 30-second epochs. each of which

is called a 'page'. The frequency band arrays are then calculated for each six-hour EEG.

The frequency distribution for each page of a channel is computed by Fast Fourier

Transform. For each frequency band. an activity value is calculated for each page of a

channel from the frequency distributions. Therefore. a particular band array of each

channel of a six-hour EEG contains no values corresponding to no pages. Then. these

frequency band arrays are filtered by median filter with a hard-limiter to reject or

suppress artifacts. Thirdly. eighteen measures are calculated for the four features from the

frequency band arrays. 8 for amplitude. 4 for symmetry. 2 for FrontIBack differentiation

and 4 for variability. For a six-hour EEG. each of the 14 measures for amplitude.

symmetry and Front/Back differentiation gives a distribution composed of72 values after
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a 5-minute average. whereas only one value is calculated for each of the four yariability

measures. Next. statistical analysis methods (t-statistic or z-score) arc used to compare

these distributions and yalues with the distributions of the control population and producc

eighteen probability values of normality for the eighteen measures. Finally. these

eighteen probability values are further reduced to 4. and a six hour EEG is characterized

by 4 probability values of normality of the amplitude. symmetry. FrontIBack

differentiation and varÎability. This information is to be further interpreted to classi~' the

EEG âS being normal. mildly abnormal. moderately abnormal or severely abnormal. This

is donc by building an automated learning machine and \\ill be discussed in the foI!o\\ing

chapter.
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Chapter3
Knowledge-Based

Expert System

This chapter describes the method used to build a knowledge-based expert system

which accepts the four indices. amplitude. symmetry. FrontIBack differentiation and

variability measures of an EEG as inputs. and then classifies the EEG as one of thc four

categories. normal. miIdly abnormaI. moderately abnormal or severely abnormal (Figure-

3.1).

SYSTEM
INPUT

, ~--- ....... , , ...---- ... ,, , , ,,
LEARNlNG ',...,' KNOWLEDGE ",

\ ...... 1
\ STARTEGY' \ BASE ,

"'---"'1/ Il--"'-),---
, ,,

INFERENCE \

1 \

\ 1

\ ENGlNE ,, ,, , ...... - ...... ,

Figurc-3.1 A knowlcdge-bascd expert system serving as an EEG
interpreter.

SYSTEM
OUTPUr

•

Such a system should mimic the neurologist's criteria for classification. In other

words, il should have the ability to learn the knowledge embedded in thc neurologist's

decision-making about the level of EEG abnormality based on its various characteristics.



This system should also be able to organize the leamed knowledge in a proper way and

perform the classification task under a suitable inference engine.•
ChaMeT 3 Knowle..tlrte-Based Expert S,'stem Tltes;s
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3.1 Machine Learning from Examples

The ability to learn is one of the most fundamental attributes of intelligence. which

makes it an important coneern for cognitive psychology. artificial intelligence.

information science. pattern recognition. education. and related disciplines. The field of

machine leaming. which crosses these disciplines. studies the computational processes

that underlie the learning in both human and machines.

When starting a specitic leaming problem. an important consideration is the degree

of supervision available. In sorne cases. a tutor or domain expert gives the leamer direct

instructions about how things should be done or sorne kind of feedback about the

appropriateness of its performance. Such supen:ised learning problems contrast sharply

with unsupervised learning tasks. in which these instruction or feedback are absent. The

less supervision the expert can provide. the more inference work the leamer should

perform. Below are listed severa! strategies which exhibit a trade-off in the amount of

effort required of the leamer and of the teacher:

.. Rote leaming and direct implanting ofnew knowledge.

.. Leaming from instruction.

.. Learning by analogy.

.. Learning from examples.

.. Learning from observation and discovery.
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Direct implanting of knowledge into a system needs a wcll-developed and highly­

organized knowledge source. such as a spelling checking system. in which the knowledge

is implanted directly from a dictionary. Evidentl)". such a knowledge source would not be

availabIe for c1assif)lÏng background EEG signaIs.

Both Ieaming from instructions and Ieaming by analogy need the tutor's direct

instructions. which are precise and quantified knowIedge pieces that teach the leamer to

perform a task. Since neuroIogists commonly evaluate EEGs through visual

interpretation. and classification criteria are neither precise nor quantified. it is not

feasible for the neurologists to provide this kind of direct instructions for the Iearning

process.

Leaming from observation and discovery is sometimes named unsupervised learning

due to the Iack of tcacher. Normally it achieves the leaming purpose by c1ustering the

data into similarity groups. Such unsupervised Ieaming problcms are by themselves hard

to leam and should not be used ifany form ofsupervision is avaiIabIe.

Anothcr way to tcach a system how to perform a task is by presenting it with positive

and negative examples of the concept to be learned. The leamer induces a general concept

description that describes aIl of the positive examples and none of the counterexamples.

This strategy is termed learning from examples. For many leaming issues. examples. as

highly specifie pieces of knowledge, can be designcd for the tutors (0 proviàe their

supervision smoothly and lead the learning strategy to an appropriate point between the

two extremes of effort that learner and tutor should give. As we can see, learning from

•

•

•

Chop1er 3 Knowledge-Bosed Expert Sl'stem Tltes;s

49



Chapfer 3 Knowled!!e-Based Expert Sl'stem Thesi<

• FEATURE

EVALUATION

ONE TRAINING INSTANCE

AMPLITUDE SYMMETRY FIBDIF. VARIABIL1TY

(2)

,
. ,

~-',,,

MILD
DOCTOR'S

O\IERALL

EVALUATION

DOCTOR'S

EVALUATION

FOREACH

FEATURE

COMPUTER'S

CA1.CUI-'\TIaN

FOREACH

FEATURE

~----------------------------O)~

i G0 Œ),,,,,
~-----{:,,,.,..

,~­,,
,"---'

Figure-3.2 The structure of the examples.

•
cxamples is a more fitting schemc for our learning issue and the proposed cxample's

structure is depicted in Figure-3.2.

For each ofthe samples. a six-hour EEG record is quantificd by four probability values

of nonnality varying from 0.0 ta 1.0 calculated for the four features by the computer. Ta

simplify further interpretation. we transfonn these probability values ta integers from 0 lO

100 by multiplying them by 100. The neurologist is asked ta c1assify each of the four

features and the overall EEG into one of the four categories: nonnal (NOR), mildly

abnonnal (MIL), moderately abnonnal (MOD) and severely abnonnal (SEV). as

illustrated in Figure-3.2. In total, 188 six-hour EEG sections were acquired from the long

tenn EEG recordings obtained in the ICU of the Montreal Children's Hospital and

•
prepared to serve as the examples. Suitable automated techniques can be developed to

extract the required knowledge implied in these e.'\(amples. From Figure-3.2 we can see
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that the entire learning system may include two parts. The first part is designed to

transform the computcr's measures fc,r the four attributes into the doctor's interpretation

of these attributes. Since the quantified measures indicate the normality levels of different

attributes. with 100 implying complete normality and 0 implying ma'(imal abnormality. it

is reasonable to assume that these measures should be highly correlated with the doctor's

interpretation of these features if the feature extraction methods are effective. Table-3.l

lists the correlation values calculated by using 4.3.2 and 1 to represent the doctor's

classification of normal. mildly abnormal. moderate1y abnormal and severe1y abnormal.

The correlation levcls of amplitude. syrnmetry and FrontIBack differentiation are quite

high and therefore the feature extraction methods of these attributes are efficient. On the

contrary. the correlation value of variability is seriously low. which indicates that the

feature extraction method used for it does not accurately reflect the doctor's assessment

and needs to be revised. The transformation approach of variability is therefore

distinctive from that of the other three. and the details will be discussed in section 3.2 and

3.3.4 respectively. The second part of the system. which is described in section 3.3. is

irnplernented to evaluate the effects of different interpretations of different attributes on

the final classification.

Attributes Amplitude Symmetry Differentiation Variability
Correlation 0.89 0.82 0.86 0.32

Table-3.1 Correlation values of the extraeted probability ofnormality
values of the examples with the doetor's evaluation for them.

When the neurologists evaluate EEG recordings, they often have sorne difficulty

deciding which one of two adjunct classes an attribute belongs to. Therefore they rnay
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give an interpretation like "the overall EEG is mildly to moderatcly abnormal". After

discussing with the neurologists. wc decidcd to acccpt the three intermediate classes of

normal-mild. mild-modcratc and moderate-severe. We are therefore dealing with a total

of seven classes of abnormality.

3.2 Fuzzy Membership Learning

The aim ofthis step is to find the relationships which lead the precisc probability value

ofnormality calculated for each of the first three features to a classification similar to that

of the expert. If a six-hour EEG section has a computer output for amplitude of 75. what

would the expert say about ifs amplitude. normal or mildly abnormal? And what is the

probability that it is called normal? How can we modcl the computer's intrinsic precision

together with the human's vague knowledge about EEG?

3.2.1 Fuzzy Sets Theory

Most of our traditional tools for formai modeling. reasoning and computing are crisp.

deterministic and precise in character. But in many areas such as expert system. pattern

recognition and artiticial intelligence. two complications arise (Zimmermann. 1985):

• Real situations are very often not crisp and deterministic and they cannot be

described precisely.

• The complete description of a real system often could require far more detailed

data than a human being could ever recognize simultaneously. process and

understand.

Zadeh. who established the fuzzy set theory. writes (1965):" The notion of a fuzzy set

provides a cClnvenient point of departure for the construction of a conceptua1 frarnework
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which parallels in many tespects the framework used in the case of ordinary sets. but is

more genera! than the latter and. potentially. may prove to have a much wider scope of

ap!=licability. particulm;y in the fields of pattern classification and information

processing. Essentially. such a framework provides a natural way of dealing with

problems in which the source of imprecision is the absence of sharply defined criteria of

elass membership.··

At a more elementary leveI. one can consider fuzzy set theory to be a generalization of

ordinary set theory: the theory of collections ofthings. A fuzzy subset of sorne universe U

is a collection of objects from U such that v.;th each object is associated a degree of

membership. The degree of membership is always a real number between zero and one.

and it measures the extent to which an e1ement is in a fuzzy set. or in orc'.inary set

theoretic terms. it measures the plausibility ofan element being in a particular set.

3.2.2 Construction of Membership Function

The theory of fuzzy sets provides a strict mathematical framework in which vague

conceptual phenomena can be precisely and thoroughly studied. In this framework the

computer's precise output may be interpreted in the terms of fuzzy propositions by means

ofmembership functions.

Interpretation of Membersltip When choosing the method for constructing a

membership function. the interpretation of membership is of utmost importance. The

most common and well-studied is a probabilistic interpretation based on the notion of

frequency probability (Borisov et al.• 1982). A frequency probabilit) prA) is a number

around which the frequency of the occurrence of the event A V.v(A) = KN(A)/N
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oscillates. where K,. (A) is thc number of oecurrence of A in N trials. By definition.

P(A)=limV,(A). The membership function of the clements U€U in the set S is
X->rL) .

identified with the probability density p,,(u) = P(7o,,(u) = 1) = P,.(u). where

{
L"'UES .

7os(u) = o... ·u ES

Furtherrnore. subjective probability (Raiffa. 1968). deterrninistic (Allen. 1974). and

possibility-oriented (Borisov et aL. 1982) interpretations of membership are also studied

in depth and widely implemented.

Basic Met/lods or Constrllcting Members/lip Fllnction Two groups of methods of

constructing the membership function of a fuzzy set based on expert estimates ean be

identified: direct and indirect (Blishun. 1989).

Direct methods are characterized by the fact that the expert direetly assigns the rules of

deterrnining the values of a membership function which characterizes the notion. Direct

methods are used as a ruIe for deseribing notions which possess measurable properties

such as height, weight and volume. In this case it is convenient to assign values of

degrees of membership directly. Methods based on a probabilistie interpretation of

membership function Ps(u) = Ps(u), i.e. as a probability that the object UEU will be

assigned to a set which characterizes the notion S are also viewed as direct. A direct

assignment of membership may be biased. For cxample. there is a subjective tendency to

shift the estimates toward the end-points of a scaie. Hence. direct measurements based on

direct determination of membership shouId only be used in the case when the errors are

either insignificant or improbable.
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In indirect methods. the values of the membership funetion are selected in a manner

that satisfies a priori stated conditions. The expert information is only an initial

information that needs furthcr processing. Additional conditions could be imposed on the

form ofthe information obtained as weil as on the processing procedure. Indirect methods

are based on weaker requirements for the expert information. For example. the complex

notion "beauty". unlike "length" or "height". possesses no universal measurable

properties which would define the concept. In these cases. only ranking measurements

based on pail"\vise comparisons of objects are used. Indirect methods are more time

consuming but are more robust to distortions in the initial information.

Moreover. the membership function may reflect the opinion of a group of experts as

weil as the opinion of a single expert. so that at least four groups of methods arc

available: direct and indirect for a single expert. and direct and indirect for a group of

experts. For a detailed analysis of constructing a membership function, other

characteristics such as procedure of collecting the initial data. type of measurements and

type ofmembership scale are also used.

Practical Implementation For our probIem, the amplitude. symmetry and FrontIBack

difi'erentiation ofthe EEG are measurable unIike the compIex notion of"beauty". In fac!,

the measurement ofthese three features has already been done by using feature extraction

methods which act as the ruIer in the case of "height". and the probability values of

normality are just the resuit of the measurement. However, unIike the "height" case, the

EEG expert is unfamiliar with these resuIts and therefore cannot assign the value of the

membership function c1irectly. A mathematical modeI is established to automatically
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estimate the probability density function P,(u) from statistical data. which makcs our

mcthod of constructing the membership function lie somewhere between the direct and

the indirect group. Two EEG experts evaluated the EEG sections. But since their work is

not independent from each other. it is better to consider it as a singlc cxpcrt case.

Assume that we \Vant to build a membership curvc for thc fuzzy subset "normal

amplitudc". In this case. the computcr"s calculation for the EEG's amplitudc is dcfined as

the empirical objects U on an interval of [O. 100]. and the fuzzy subset notion "normal

amplitude" is represented by S. Using the probabilistic interpretation based on the

frequency probability. the membership function isp.,.(u) = P(Xs(u) = 1) = Ps(u).

Consider that there are 150 six-hour EEG sections used as training examples. each of

which has the data struc~ure shown in Figure 3.1. In order to build the membership curve

for "normal amplitude". the data used here is the 150 computer calculations for EEGs'

amplitude and the corresponding expert's classifications. The detailed algorithrn for

evaluating the frequency probability P(7.S(u)=I) is:

(a) Divide the range of the computer's value. from 0 to 100. into twelve bins: ::;;0.1-10.

10-20.20-30.30-40.40-50.50-60.60-70.70-80.80-90. 90-99. ~IOO.

(h) For every bin Bi ( i E [0.11] ). calculate the number of training examples (ANi)

having a computer's value of amplitude in bin Bi. For example. if among 150

training examples. there are 17 for which th~ computer's calculations ofamplitude

are in the range (80,90], thenAN,9=17.

(c) For every bin Bi ( i E [0.1 1] ), in the training examples which account for ANi.

calcuiate the number of events (ANNi) for which the expert's evaluation of
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amplitudc is nonnal. 1f in thc 17 cxamplcs abo\'c. 16 arc classificd as having

nonnal amplitudc. thcn .·IN]\i9=16.

(d) For cvcry bin Bi ( i E [O. 11] ). calculatc its frcqucncy probability (FPi) for

"nonnal amplitudc": Fp' =ANN, / AN, . For thc cxamplc abo\'c. FP9 of nonnal

amplitudc = 16/17::: 0.94.

Table 3.2 shows thc ANi. ANNi and FPi calculatcd for "nonnal amplitudc".

B, <0 1-10 10-20 20-30 30-40 40-50 50·60 60-70 70-80 80·90 90-99 >100

AN, 4 3 5 14 21 13 20 13 14 17 Il 15

ANN, 0 0 0 0 2 5 10 8 12 16 Il 15

FP, 0.00 0.00 0.00 0.00 0.095 0.385 0.5 0.615 0.857 0.941 1.00 1.00

Table-3.2 The AN" ANN; and FP; valucs calculatcd for the
subsct nnormalamplitudc".

By plotting FP; against the twelve bins • we acquire the primitive membership curve

(Figure-3.3) for "nonnal amplitude".

Since the calculated FP;(S) is the estimate ofP(XS(i)=l) and equals P(XS(i)=l) when

the samp1e number N-+ro. noise is inevitably introduced into this primitive membership

curve. Therefore it is reasonable to expect a better membership functioll by using a well-

defined reference function to fit the primitive curve.
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So far. many membership functions have been proposed. however. there is still no

s~'stematized conclusion about when and how 10 use which function. since the choice ot'

the membership function is largely application dependent. Wc propose to use ref"rence

functions of the S-type. which rcsembles the normal probability distribution

(Rommelfanger. 1993 J. The most olten used S-shaped function is the exponential

function

c
Ils (1/) = -1-"""::""-a-t-II-"""'b'"'")

+ exp

in which b is the inflexion point. a is the slope ofthe function and c is the scale.

Figure-3.4 shows the original membership curve and its fined exponential func~ion by

using Levenberg-Marquardt nonlinear optimization method (Press et al.. 1992).

Unimodal functions. which will be encountered in "miId abnormal" or "medium

abnormal" cases. can also be describcd by representing the increasing and decreasing part

separately. Figure-3.5 illusttates this optimization process step by step. First. separatc the

unimodal curve at the point of maximum value: Second. fit the increasing part and the
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Figure-3.5 Optimization steps for
unimodal funetions.

For each attribute, we only construct the fuzzy membership functions for the four main

classes, not the three intennediate classes. The reason is that 181: training examples are

tao small ta construct membership functions for seven classes, and the embedded noise

may make the construction impossible. Therefore, any attribute evaluated as an
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intermediate c1ass will be set to the nearest lower class. For instance. if the amplitude of

an example is evaluated as miId-normal. it would be transformed to mild to imp1ement

this strategy.

3.3 Neural Network Learning

When a neurologist gives an overall evaluation for the EEG. a comp1ex process takes

place in his or her minci. A moderate amplitude may be given more weight than a

moderate FrontIBack differentiation and may carry a larger influence on the final

interpretati,.n. Again. he may think the normal symmetry and mildly abnormal symmetry

are almost the same. but a severely abnormal symmetry will be totally different. Although

all these thoughts and processes obtained from the e:'l:perience are stored in his mind. it is

nearly impossible to explain it verbally in a formai way. We need a system which can

automatically learn and encode these thought processes from the training e:'l:amples and

then serve as a classifier.

Before going further.let us discuss a linle the issue of noise. Noise. as the probabilistic

introduction of errors into data. is inevitable in real-world applicaùons. Wc cali a set of

training exarnples noisy if a probabilisùc process is involved in their generation. Noisy

training examples are someùmes contradictory. Commonly. a contradicùon means mat

there e:'I:Îst two training examples with the same inputs but different outputs. In our

situaùon, mis contradiction has anomer kind of meaning. Assume there are two training

exampIes {Ej.Cj} and {E2.C2} in which the four feature's classificaùons ofEj are bener

man mose of E2. so me final evaluaùon C j should be better than or equal to C2.

omerwise mere could be a contradicùon. Unfortunately. our training data is very noisy
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and these two kinds of contradiction can be found in our training instances. A

contradictory training data set is sometimes called nonseparable training examples due to

the fact that you cannot separate the class Cl from C2 based on these training instances

regardless of which method you choose. Therefore when sclccting the lcarning strategy.

the ability to handle noise and nonseparable training data bccomes an important factor.

3.3.1 Why Use the Neural Network Models

•
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Normally. researchers in learning from examples associate themse1ves with one of

three paradigms. inductive learning (especially mie induction). instance based learning

and neural networks (Langley. 1996). In order to evaluate the appropriateness of these

three techniques to the task at hand. we have to ponder several detailed issues. such as

noise-tolerance. representation. ease of retraining and the amount of training data.

Rule induction employs a statistical evaluation function to incorporate attributes into

condition-action mIes. decision trees. or similar logical knowledge structure (Langley.

1996). Most carly learning algorithms in the mIe induction framework assumed that

every instance was correctly classified as positive or negative with respect to the desired

con~ept (Koloder et al.. 1985). These strategies had almost no noise-tolerance and a

single contradictory example would throw the entire learning sequence into confusion.

New systems try to fix this drawback by labeling the instances with certainty factors or

setting production ruIes with different reliabilities. The possibility of implementing such

techniques in this EEG classifier. however. is ve'"";:' poor because it is extremely difficult

for the neurologists to give certainty factors to their evaluations. On the other hand. since

the learned knowledge is represented as production ruIes. retraining procedure will
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include reorganization of these condition-action mies. and selting rcliability to the mies

may make the burden of retraining even more serious.

Instance-based Icaming simply stores training instances in memory and applies them

to new situations through matching techniques. The basic requirement for an instance­

based system is a big. pattern-rich training database. For our EEG classification approach.

there arc four description attributes each of which contains four levels of interpretation.

so the total pattern number desired is -/-/=256. But in practice. we only have 188 training

instances. Subtracting the ones that have identical descriptions (their classifications may

be different). the remaining patterns reside in 30-40. only one-scventh of the total pattern

nurnber. With such a smaII portion of patterns. it is difficult to tmplement this paradigm

for the task at hand. Furthermore. instance-based leaming also has problems in dealing

with the contradictory training exarnples. as discussed above.

Compared with rule induction and instance-based learning. neural network leaming

has more advantages for our task. Briefly stated. a neural network model (also caIIed a

connectionist model) consists of units that are arranged in layers and interconnected by

weighted connections, as picturcd in Figure-3.6. These connections are used to pass the

data through the units. The network leams the input patterns by changing the values of

their weights. With suitable weights the network can model any computable function.

Perhaps the strongest appeal of the r.eural network models is their suitabiiitY for

machine learning. Machine leaming in eonnectionist models consists of adjusting

connection weights to improve performance of a network. This is a very simple and
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Figurc-3.6 A feedfonvard. IWo layer nelwork.

pleasing formulation of the Icaming problem. It abstracts out essentials of leaming and

invites the construction of general algorithrns.

Neural network models can be especially good al handling noise. A l~t of learning

algorithrns for network training arc able to leam knowledge from contradictory training

data without any extra mies, which makes them handle the noise in the training examples

in a very naturaI way. Moreover, since cells can easily examine brge numbers of inputs.

they tend to be Jess sensitive to on-line noise: the greater number of correct input

variables can outvote the fewer number of incolTeet input values.

Another major attraction ofneural network models is that they can serve as knowl-::dge

bases for classification expert systems. Most importantly, leaming algorithrns allow us to

generate knowledge bases automatically from training e>:amples. This is particularly

convenient for retraining the system because the old knowledge base can be simply

replaeed by new network weights without any ex"tra effort to reorganize the knowledge

base.
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The neural network learning seope is usually arranged into two tields. single-layer

leaming problem and multi-Iayer learning problem. This classification is based upon a

definition about sepatable funetion and nonseparable funetion. Assume there exists a

Boolea!1 fUl1etion whieh ean deseribe the relationship between the inputs and the outputs

of a network. then this Boolean funetion is calicd a separable funetion if it ean be

eomputed by a single-cclI lineat discriminant model: otherwise it is a nonseparable

funetion. Most of the eommon Boolean funetions sueh as AND. OR. NOT or seleetor ate

separable funetions. whereas the XOR funetion is a nonseparable funetion. Figure-3.7

depiets the case spaee t)f these two funetions. The left pieture shows a separable function

spaee whieh can be separated by a line. whereas the right ilIustrates a nonseparable

function space.

In real applications. sometimes it is hatd to tell whether a system function is separable

or nonseparable and whether the single-layer model or the multi-layer model shouId be

chosen. If we ate primarily interested in constructing a model from training data that will

gelieralize well. then the only reason to use a multi-Iayer network is to fit the training data

bettt:r than would be possible with a single-layer model so that better generalization

might be achieved. Therefore if a single-layer model tits t.l-te training d3ta as weIl as a

multi-layer network. then the single-layer model should be used. In this case the single­

layer model will be faster. simpler and quicker to retrain.

In the next two sections. both a single-layer mode! and a multi-Iayer model ate createrl

and trained by using corrcsponding leaming algorithms. and the results will be discussed

in the next chapter.
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3.3.2 Learning in Single-Cell Models

Thes;.\'

•
ln connectionist models. a k-Iayer model is defined as a network where cells are

grouped into k+1 subsets (layers) such that cells are connected only to cells in the next

layer. A single-cell. linear discriminant model is a single-layer model (without

intermediate celIs) in which aIl the input cells are connected to a single output cell. We

can construct our singie-eell model as pictured in Figure-3.8.

•
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Figure-3.8 The structure of the single ccII ne!work.
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Percep/roll Leamillg and LMS Pcrccptron learning is the most important "carly"

learning algorithm. This algorithm requcsts that ail the inputs. outputs and weights arc

integral and updates the wcights by using W' =II' ± E' . in which Ek is the input of one

training example. IV is the old weight ,,"ector and W* is thc rcvised wcight V'ector. Thc

perccptron convergence theorem (Minskey. 1961) proV'es that for a finite set of separable

training examples. E. the perceptron learning algorithm "ill produce a set of weights. /V.

that correctly classifies ail Ek EE after a finite number of change steps. The perceptron

learning algorithm has limited power since it can only be used for separable training data

sets. This shortcoming is fixed by the pocket algorithm with ratchet (Gallant. 1986)

which is a recent extension of perceptron learning and shows a better ability to handle

nonseparable training data.

The least mean square algorithm (LMS). also called Widrow-Hoff mie. is another

important single-ccII learning algorithm which tries to find an optimal set of weights. W.

that minimizes the mean squared error (MSE) based on the gradient descent algorithm.

Compared to the perceptron learning algorithm. the LMS has severa1 advantages:

• It can do a better job with nonseparable data (but not necessarily better than the

pocket algorithm).

• Il generalizes the training data rather than only finding a solution. as iIlustrated in

Figure-3.9 (a).

• Il improves the speed oflearning by adjusting the magnitude ofthe change.

• It is better suited for output values that are continuous.
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that it overemphasizes the far-out cases. as shown in Figure-3.9 (b).

TI1l!sis

Since our training examples are nonseparable and the outputs of the examples are

continuous. the Least Mean Square aIgorithm is more suitable than the Perceptron

learning algorithm. The gradient descent aIgorithm. as the basis of the LMS. is discussed

in the next section.

LMS Algorithm
Pcrceptron Lcaming

Figure-3.9 Merits and demerits of Perceptron algorithm and LMS algorithm.
(a) LMS algorithm generalizes better than perccptron algorithm; (b) LMS
algorithm is morc sensitive to the faroOut samples than perceptron algorithm.•
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+
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+

+
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+
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Gradient Descent Gradient descent is a basic technique that plays an important part

in most connectionist learning aIgorithms. especially LMS and backpropagation.

Suppose we have a differentiable function & that takes a set of network weights

w= ( W".I.O ••• W".I.P) and the training examples for a p-input singie-cell problem. and

produces a measure of the error, &(W), for those weights. The error surface gives the error

for every set of weight values, W. Because the error function is differentiable, we can

ccmpute its multi-dimensional derivative (or gradient) vector
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at any point in weight space, The gradient gi\'cs the dircction in \wight space that would

result in maximum incrcasc of the error \,hcn an infinitcsimally small wcight change is

made in that direction, Lening p bc a small positivc numbcr. wc can computc the revised

weight vector W· by W· =W - pvc(W) , This immediately suggests a learning

algorithrn: star! at sorne arbitrary set of weights. W. and continue to evaluate - v&(1r)

while taking small steps in that direction until sorne stopping critcrion has becn reached.

Least Mean Square Assume there are N training examples {Ek} "lth corresponding

correct output {Ck}. then the mean squarcd crror. &. IS given by

1 .-
c(W) = ïïil (W· Ek - Ck)~ = (W' E - Cr.The gradient vector

1 A;.I

•

where S is the weighted sum for the output cell. Because we must speciry a step size. p.

for the gradient descent. we can absorb the factor of 2 into p. Then the final forrn of the

Widrow-Hoff algorithrn is W' =W +p(C - S)E. This updating procedure is also called

the delta ru1e because ôis sometimes used to represent the error. (C-S).

Gradient descent algorithrns are not guaranteed to find a global minimum. even if they

converge. Sometimes following the derivative will lead to a lo~ minimum. but not the
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global minimum. A very nice property of LMS is that there is no local minimum to worry

about. since it can be proven that the LMS algorithm must converge to a global minimum

(Widrow and Hoff. 1986).

Below is listed the detailed training algorithm for the single-ccii modcl pictured in

Figure-3.8.

1) Choose a small positive value for p. the step size. and assign randomly sclected

small initial weights {Wij} to the 16 inputs.

2) Repeat until changes in the mean squared error. &. become sufficiently small.

2.1) Take the next training examples. E. with correct output C.

p

2.2) Calculate the weighted sumo S = Wo +LW E~
- 1 1'+1,1 -

J"

2.3) Update weights: W;.,.) = Wp+'.) +p(C -S)EJ

2A) Update step size: p' = p.ç. where Ç=0.9999.

For the a1gorithm above. severa! practica1 considerations need to be mentioned:

• Input values. If the neurologisCs classification for the amplitude of one training

example is normal, then the cell that represents normal-amplitude will be fired.

having input value of +1, while the other three cells that represent mild, moderate,

and severe-amplitude will not be fired. having input values of O. If this evaluation is

mild-normal, then both the cells that represent normal-amplitude and mild-

amplitude will be halffired, with values of0.5.

• Output values. The output value is in the interval [0.2, 0.8], with 0.2 representing

severe, OA representing moderate, 0.6 representing mild, and 0.8 representing
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nonnal. If the doctor's classification for one training instance is mild-nonnal. its

output will be represented as 0.7.

• When to update. By definition. vc is computed for ail training examples before

updating the weights. But both practice and theOI')' indicate that estimating Vc from

a single training example and updating the weights is more efficient (LeCan et al..

1989).

• Iterative learning. Nonnally there arc two kinds of training process: one-shot

learning and iterative learning. One-shot learning examines each training example

only once in the course of compu!ing a set of weights for the network. while

iterative Iearning examines each training example many times. either cycling

through the set of the examples or choosing one at random for each cycle. In our

a1gorithms. we use the iterative learning at random which is more powerful than

one-shot Iearning. but of course slower.

• Initial weights. Initial weight values are set to small. randomly generated positive

and negative quantities in the interval [-21p.21p] where p is the number of the input

cells.

• Choice ofp. Appropriate choice for p is problem-specific. But it is probably best to

keep it less than 0.1. Here we set the initial p=l/(P+l). where pis the number of

input cells. We a1so change p for each iteration by a factor Ç=0.9999. This will

make p decrease when the error decreases, leading to asymptotic convergence. the

characteristic of gradient descent. The decreasing factor ç is obtained by manuai

intervention.
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• Bias. IVo. is the constant term when computing. S = 11'~ +L IV
p

• , •,
E; • which can

./',]

greatly increase the separating power. To calculate the bias. simply add an

additionaI 0'10 input. then the bias is exactly the same as a weig.ht l'rom an input that

is aIways +I.

• \Vhere to stop. The changes in the mean squared error is monitored during the

training process and the algorithm stops when this change is less than 0.005 during

1000 iterations.

3.3.3 Learning in Multi-Layer Models

Backpropagation. rediscovered by Rumclhart. Hinton. and Williams (1986). is

currently the most important and most widely used algorithm for multi-layer

connectionist Ieaming. Its rapid rise in popularity has bcen a major factor in the

resurgence of neural networks.

Backpropagation is an algorithm for Ieaming in feedforward networks using mean

squared error and gradient descent. Compared with the LMS a1gorithm. backpropagation

uses activation functions and works on multiple Iayers. whereas LMS operates on a

single-cell model with no activation functions.

We start with a feedforward network with a set of weights Wij and a set of training

exarnples {Ek, Ck}. The activations for ail the intermediate cells and the output cells can

be computed as:

Si = LW,JUj
j

U, =f(SJ
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whcn: the activation function.Fx). is

/(x) = 1 -,'
+c

Thc dcrivati\'c of this sigmoid function cvaluatcd al x is

= -(1 +c-T~c" (-1)

1 1
= (1- )

1 _, 1-'+e +e

:.1'(8,) = Il,(1- Il,).

For the gradient vcctor V'[; = (01"")' we can prove that (Gallant. 1993).

CE ...
--=-011
Ci,- ' .1

'.1

{

(C, - Il,)f'(S,) if Il, isan olltpllt IInit

where 0; = (m2,;,H~,.,o:,)f'(S,) for ot!zerzmit....

The detailed algorithm is as follows:.

Tlte...i...

--

1) Choose a small positive value for p. the step size. and assign randomly sclected

sma:l initial weight~ {Wi.j} to ail cells.

2) Repeat until changes in the mean squared error. c. become sufficiently small.

2.1) Take the next training examples. E. \Vith correct output C.

2.2) Fonvard propagation step: Make an input-output pass through the network

to compute weighted sums. Si. and activations. IIi = f(Sj). for every cell.
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2.3) Backward propagation .wep: Starting with the outputs. make an output-

input pass through the output and intermediate cells computing:

f' (S, ) =Il, (1 - Il, ).

_ {(C, -II,)f'(S,) if Il, isar. Olllplil unit

Ô, - (l)f~,.,Ôm)f·(S.) for other lInits.
",;m>/

2.4) Updatc weights: w;,J =w',J + pô,u
J

•

2.5) Update step sizc: p' = p*ç. where Ç=O.99995.

The practieal considerations are similar to those encountered in LMS described in the

last section. except that because of the usage of the activation function /(x). the

backpropagation error. c.. can have loeal minima. so we are no longer sure of finding a

solution with a global minimum squared error. This is unavoidable. and the only easy

countermeasure is to try starting again with different initial random weights.

Most applications oi backpropagation to free-nelWork problems make use of a 2-1ayer

network. A major reason for this is that intermediate cells that are not directly connected

to output cells ",ill have very small weight changes and will leam very slowly. Another

reason for restricting anention to such configurations is that now the only remaining

topology decision is how many intermediate ceUs to use. Here, we also construct a 2-

layer network with 16 inputs and one output for our leaming problem (Figure-3.\O).

Different numbers of intermediate cells are tried for this system and their generalization

ability is d:scussed in the ne":t chapter.
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Figure-3.IO The slruclure of lhe lwo-Ia~'er nelWork. The number of
lhe intermcdiate eells is unknown and will be delermined upon their
generalization abilitics.

3.3.4 A Network for Variability

In chapter 2. we discussed the fealure extractior: method used for variability. Two

quantities were calculated for each hemisphere: the zero-crossing raIe and the energy of

change in the delta band array of the posterior head region. Probability values of

normality of different parameters are arrived at by using the z-score method. Then the

four probability values are reduced to one by choosing the smaller one of the two

quantities in one hemispherc lmd averaging the values of the two hemispheres. However.

at the beginning of this chapter. il was shown that this probability value fails to represent

the degree of variability that \Vas assigned by the neurologists. One reason for Jhh; failure

is that in adàition to the delta band activity. the alpha band activity mal' also reflect the

variability. Lack of analysis of this band may therefore partially influence the results.

After extensive observation. we realized that neither delta band nor alpha band can reflect
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the va:iability with their ovm zero-erossing rate and energy exehange pararnelers. 50.

there may exist sorne interaetio:1 among the activities of these two bands which reflects

the variability of the EEG but is diffieult to acquire by observation. When calculating the

probability values of normality of different quantities. we assume that the larger the

quantity value. the greater the probability of normality of that pararneter. For instance. a

zero-crossing number greater than ail sarnple points of the control population would

imply a 100% normality of zero-crossing rate. But this assumption maybe not correct.

The largest probability of normality for the zero-crossing rate of the delta rdIld array over

six hours may lie in a particular range. say. 17-18 times. and the further a zero-crossing

number is away !Tom this range the smaller the probability of normality may be. In this

case. il is very difficult to calculate the probability value of normality for the zero­

crossing rate and energy exchailge quantities since it is hard to tell where this normal

range lies. Our problem is that we have eight quantities: zero-crossing rat(; and energy

exchange ofdelta and alpha band actÏ;.ity oftwo hemispheres which are thought to reflect

the variability of a six-hour EEG in sorne way, either by themselves or by their

interactions. We try to determine what the relationships between the eight parameters and

the variability of the EEG are. To solve this problem, we can CO'lstruct another 2-layer

network which uses e.e eight quantities as the inputs and the ~;;.pert's classification of

variability as the output a:ld train the network by using the examples. Through the

training process, the re!'ltionships between the eight parameters and the variability of the

EEG wiII ~le encoded in the weights of the network automatically. The network is trained

with the bach.-propagation algorithm introduced in the I~t section and the resul~ will be

shown in the next chapter.
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3.4 Knowledge Base and Performance

Our knowlcdge base includes four parts: age factor for frontlback differentiation. fuzzy

membership functions fer amplitude. symmetry. and F/B differentiation. network for

variability (network B). and network for final cva!uation (network A). Except for the age

factor. which is obtained from the neurologisfs interpretation of published data (Slater

and Torres. 1979). the knowledge in the other three parts is leamed from the training

examples. Fortunately. both our leaming strategies for fuzzy membership and neural

networks are such that they a1low us to generate the knowledge base during the leaming

process without any form of reorganization.

Figure-3.11 pictures the entire system's structure and shows an example to iIlustrate

its performance. Assume there is a six-hour EEG section from a patient who is eleven

months old. After processing by artifact rejection and feature extraction strategies. the

values calculated for amplitude. symmetry and FIB differentiation are 77. 82 and 49.

Subsequently. the age factor. which is 0.74 corresponding to the patienfs age of Il

months (0.9 years). is obtained by checking the age factor dat::b..se. and then the

FrontIBack differentiation value 49 is divided by 0.74 to get the tra!lsformed value of 66.

nen. the fuzzy membership base is checked to obtain the membership values for 77.82

and 66. These membership values are then applied directly as the corresponding inputs of

network A. Next. network B employs the 8 parameters of variability as the inputs and

calculates its output as 0.7; since 0.7 is half way between normal and mildly abnormal.

The last four cells of network A are set to 0.5. 0.5. O. O. Finally. the overall result. 0.7. is

calculated from network A. which classifies this six-hour EEG recording as mild-normal.
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Chapter4
Results and
Discussion

4.1 Training and Testing Data

Seventy four long-term EEGs recorded at thc l'vlontreai Children's Hospital were used

as the training and testing data for the cxpcrt monitoring system. Among them. sixty nine

were recorded in the intensive care unit after corrective cardiac surgery. and five were

recorded at another monitoring unit for suspected seizures or coma. The recordings were

interpreted by two neurologists and every six-hour section \Vas graded for each of its four

features and evaIuated as one of seven abnormaIity levels. Every one of the seventy four

EEGs yields one to three sections depending on the length of the recording. In ail. a set of

188 sections was available from the seventy four EEGs for training and testing the expert

system. There are several ways in which a data set can be divided into training and testing

subsets. each ofwhich has its own merits and demerits (Devijver. 1982).

One techr.ique. which is called the resubstitution method. uses the entire data set to

train the system and the sarne data set to test it as weIl. NormaIly. this technique is used

with a perceptron-like learning aIgorithm since one essentiaI property of the perceptron

learning aIgorithms b that they converge to one hyperplane that correctly classifies ail the

training data. Obviously. this method is not suitable for our learning problem in which the
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training data set is nonseparable and the performance results are not replicated by

independcnt testing data.

The holdout method. the most obvious alternative to the resubstitution method.

requires the data to be partitioned into two mutually exclusive subsets and uses one for

testing and the other for training the expert system. This scheme suffers from making

poor use of the data since a leaming system trained on a larger data set will. in general.

perform better than one that is trained on a smaller data set. especially when the sample­

size is small or incomplete.

Leave-one-out is a method that tries to compensate for this demerit of the holdout

method and make efficient use of the available data. By this technique. if the sample size

is N. the system is trained with (N-I) samples and tested with the last one. This is carried

out N times until all the samples have been used for testing. Here for eaeh run almost the

entire sample-set is used for training and ultimately ail samples are used in the tests.

though each run consists of independent training and testing sets. However, the extensive

computation involved in the N training sessions is a big drawback ofthis technique.

The rotation method is a compromise between the holdout and leave-one-out methods.

For this met.;od, the N samples are divided into r sets with N/r samples each. In each run

one of the r sets serves as the testing set while all the others are used to train the learning

machine. The performance of the system is then arrived at by calculating its added

perfo=ance for the r runs. The rotation method reduces both the poor data utilization

inherent to the holdout method and the computational compleKity associated with the

leave-one-out method.
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•
ln this project. thc rotation method of performance estimation was used. The 188

samplcs werc divided into six subsets "'ith 31 or 32 samples each. For each serics. five

subsets were used to train each part of the system and one was used to test. Six training

and testing runs were carried out and the performance was the summation of the six runs.

4.2 Results

4.2.1 Results of Fuzzy Membership

Six training and testing runs were carried out to train the system and test the

performance. Figures-4. I. 4.2 and 4.3 demonstrate the training process and the

membership funetions obtained for amplitude. symmetry and FrontIBack differentiation

•
in training series 1. In each figure. the first four graphs delineate the estimated frequency

probabilities for twelve bins ("o') and the fined exponential functions for the four classes:

normal. mild. moderate and severe: the fifth graph outlin·;s the combination of the four

fined curves which partitions the total value space into four successive but overlapping

subspaces.

Normal Mid

0" ZI
50 100

Moderate

o.~l. 0 0o~ !
o 50 100

Severe

Figure..U Amplitude Membership Funetions.

100

Normal

o~~ _ _ l
o~~;"-"-~o~50'='o~O"-""~o"-"':;ào

Mild

=S::ooJ
50 100

20

1Severe MOderate

•
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Figure-4.3 FIB Differentiation Membership Funetions.

From these figures, it can be seen that the four abnormality levels are not equally

distributed in the value space of the computer's output. Sorne of these subspaces are

narrower and sorne are wider. Moreover, the increase and decrease slopes of most bello

shaped membership functions, as the membership curve obtained for moderately
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abnonnal Front/Back differentiation. arc not symmetricai. Ali of these may indicate that

the ncurologist"s assessment of abnonnality for these features is a nonlinear process.

Besides. in aH the three fèatures. the normal subspace overlaps the moderate subspace

which means that the noise Icvels bctwcen the computer's quantitative measures and the

neurologisfs evaluation of the thrce fealures are high.

Through thcse fuzzy membcrship functions. the computer's calculation for each

feature has been matched to the doctor"s classification. The accUlac)" of this matching is

examincd by using corresponding testing examples of different training sessions and the

summation of the outcomes is listed in Tablc-4.I. The "samc leve'" categories present the

pcrcentage of the ::xamplcs for which the tùzzy membership functions' classifications are

the same as the doctor's ones. The "less than halflevel" categories present the percentage

of the examples that the fuzzy membership functions' results arc only half level away

!Tom the doctor"s classifications (for e~amplc. one is mild and another is mild-normal)

plus the examples that have the same classification.

Amplitude Symmetry FIB Dif.

Test Train Test Train Test Train

Same Level 61% 62% 55% 56% 65% 68%

<HaIfLevel 90% 90% 90% 91% 86% 86%

Table-4.\ Evaluation orthe transformation
ability of the fuzzy membership funetions.

82



•

•

•

Charler 4 ResalIs and DisClL's,"";n'"'n"- ~~!_'Z~le~'·~is

For all of the three features. the results arc similar. For testing data. about 55%-65% of

the instances arc appraised as the same class as the neuro!ogisfs e\"aluation. and only Icss

than 15% arc more than half lc\"cl away trom the desired outputs. il needs to be noted that

there is almost no difference between the results of the training and the testing data.

4.2.2 Results of Final Evaluation Network

The artificial neural network (ANN) modcls sho\\TI in Figure-3.8 and Figure-3.\ 0 were

trained with the Least Mean Square and backpropagation algorithms. The generalization

ability of different network models for the training and the testing data is revealcd in

Table-4.2. in which the neurologist"s Interpretation for the four features serves as input,

and the output of the network is eompared \\ith the doctor's assessment of the overall

EEG abnormality. The neural network architectures are expressed as strings. sho\\:"g the

number of inputs, number of nodes in hidden layer and number of outputs. The variable

<I> indicates the average of mean squares of the diffcrcnces betwcen the actual and the

desired outputs at the end of training over six runs. Most of the models achieve 70%

correct classification for both training and testing data. and over 95% are within half level

distance from the neurologist"s outputs.

Comparing the 2-layer models with the single-13yer model ( the first row in Table­

4.2). even the best of the 2-layer models can only achieve the same generalization ability

as the single-layer mode! does, despite the Iteration number of the 2-layer modeis being

ten limes that of the single-layer mode!. The learning performance of these two kinds of

models is compared in Figure-4.4. Evidently, the single-layer model converges much
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modcls arc more suitable than the multi-Iayer modcls for this learning problem.

Tllesis

•

•

Train Test
ANN Wcight Iteration <l> Same <Half Same <Half

Number Levcl Leve! Levcl Leve!
16-1 16 10000 0.0036 70% 98% 69% 97%

16-2-1 34 100000 0.0043 68% 97% 69% 97%

16-3-1 51 100000 0.0042 67% 98% 67% 96%

16-4-1 68 100000 0.0043 67% 98% 68% 96%

16-5-1 85 100000 0.0042 69% 98% 69% 97%

16-6-1 102 100000 0.0042 67% 98% 66% 97%

16-7-1 119 100000 0.0043 67% 97% 67% 96%

16-8-1 136 100000 0.0039 68~~ 98% 68% 97%

16-12-1 204 100000 0.0042 68% 98% 67% 97%

16-16-1 272 100000 0.0040 69% 98% 66% 97%

16-20-1 340 100000 0.0041 66% 98% 66% 97%

16-24-1 408 100000 0.0042 68% 98% 65% 96%

16-28-1 476 100000 0.0041 68% 98% 67% 97%

16-32-1 544 100000 0.0039 69% 98% 67% 97%

Table-4.2 The generalization ability of different networks for the
final evaluation on the training and tcsting data.
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Figure-4.4 Compnrison of the convergence veloeil)'
of the single-Iayer and the two-Iayer networks.

4.2.3 Results orEEG Variability Network

Similar to that pictured in Figure-3.10, the architecture of the network for variability

has eight inpUt!;, one-layer hidden cells and one output. The training results (Table-4.3)

reveal a reduced accuracy of classification by comparison with the other three features

(Table-4.1). The statistical data in Table-4.3 shows that the correct classification

percentage is less than 20% in all the models while the parallel values in table-4.1 are in

50%-60%. Also only about 40% of the testing instances are within half level range from

their desired output against the 85% in the other three features.

The reasons for the present drop of accuracy in variability classification are complex

and the most important one seems to be that the criterion used by the neurologists for

classifying variability is different from that e"1racted by computer. The details of this

issue and the possible solution will be discussed in section 4.3.
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Train Tcst
ANN Samc <Half <One Samc <I-Ialf <One

Lcve! LeveI Leve! Lcve! Leve! Leve!

8-2-1 20% 39% 89% 20% 39% 89%

8-3-1 20% 39% 89% 20% 39% 89%

8-4-1 19% 40% 89% 20% 40% 89%

8-5-1 20% 39% 89% 20% 39% 89%

8-6-1 20% 39% 89% 20% 40% 89%

8-7-1 19% 41'Yo 89% 19% 42% 89%

8-8-1 20% 39% 89% 20% 39% 89%

8-10-1 20% 39% 89% 20% 39% 89%

8-12-1 19% 41% 89% 19% 42% 90%

8-14-1 20% 39% 89% 20% 39% 89%

8-16-1 20% 39% 89% 20% 39% 89%

Table-4.3 The generalization ability of different networks
for the EEG variability on the training and tesling data.

4.2.4 Results orthe E'itire System

Until now, ail parts of the system. their structures. implementation methods and

effectiveness have been presentea. The capability of the entil't: expert system built for

background EEG classification \Vas evaluated as the cumulative result of the test data of

the six runs (Table-4.4). in which the quantitative measures of the test instances were

used as the input of the inference engine depicted in Figure-3.!!, and the output of the

system is compared \Vith the neurologist's interpretation. The single layer model and the
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l2-intennediate-cclI 2-layer modcl \Vere used as the final evaluation net\Vork and the

EEG variability network of the system respectively.

Results Ooctor

Computer Nonnal Nor-Mi! Mild Mil-Mod Moderate Mod-Sev Severe

Nonnal 2 1 0 0 0 0

Nor-Mil 20 " 0 0,)

Mild 4 6 6 0

Mil-Mod 0 1 7 0 1

Moderate 0 0 0 2

Mod-Sev 0 0 0 0 0

Severe 0 0 0 0 0

• Tablc-4.4 Comparison of classification results from the
automatie method and the human experL

In the 7 * 7 matrix presented above, rows represents the system's c1a~sification for the

testing instances and the colurnns correspond to tl1e neurologists' evaluation. The dark

shaded ceUs in the main diagonal represr.ni- the concordance of the two kinds of

classification. and the light shaded ceUs stand for the instances whose system's outputs

are half a level away from the expert's classification. As we can sec, the results are vel)'

encouraging and most of the instances fall in the shaded area. Table-4.5 shows the

statistical asscssme:lt of the results above. Almost 40% of the total testing instances are

•
c1assified as the same c1ass as the neurologists'. If we add the cases with a half level

deviation, the total percentage of instances which are considered as having acceptable
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results reaches 90%. In contrast. the instanœs whose c!assitication error exceeds one

c!ass are lcss than 3%.

Degree Percent

Same Le\'c1 40%

Hall' Le\'c1 90%

One Le\'e! 97%

Tabh.4.5 Percentage interpret:ltion of the
resulls presenlcd in Table-4.~.

4.3 Discussion

Many systems ha\'e been de\'c1oped to assist EEG monitoring by extracting different

kinds of features !Tom the EEG. But in most cases. the users arc expected to interpret

these featurcs by themscl\'es. This would largely impede the utility of these systems in

the ICU during long-terrn EEG monitoring where expertise may not he present ail the

time. The system de\'e!oped in this project tries to remo\'e this drawback by automating

the entire process of EEG interpretation.

ln the system. artifacts were identified and rejected !Tom the frequency band arrays of

the EEG. The main reason for perforrning artifact rejection in the frequency domain

rather than in the time domain is that the featurcs used for EEG interpretation in this

system were extracted !Tùm the frequency domain to represent gross state of the EEG

background over severa! hours. Therefore. it is not necessary to identify and reject

specific artifactual EEG waves. Furthermore. il is quite difficuit to anti~ipate the
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wavcforms of the various anitacts and it is computationally economicalto reject anitacts

in the frequency domain (Barlow. J986).

Since the qu::tlitative EEG tèatures used by the neurologist incJude not only amplitude

but also frequency information about the EEG. the quantitative me:lSures of these features

were extt:lcted l'rom the frequency band atrays of the EEG. The me:lSures extt:lcted for

amplitude. symmetry and FrontlBack differentiation by using t-statistic analysis b:lSed on

a control population quantitY the EEG quite effectivcly. and the probability values of

normality obtained were highly corrclated with the experfs visual interpretation. By

using fuzzy membership techniques. these probability values werc then mapped into the

neurologisfs :lSsessment for each of the three features. S-shaped membership functions

were chosen to represent the distributions of the neurologist"s levels of normal. mildly

abnormal. moderately abnormal or severely abnormal. since they rescmble the normal

probability distribution and may reflect the pattern of human language and thought. For

further development. other membership functions could also be tested and compared in

order to find a best fitted funetion type. For every norrnality level of each feature. a

histogram was computed and fined to S-shaped functions through error optimization

methods. The unimodal functions were described by fining both the increasing and

decreasing parts to S-shaped functions rather than fitting it to a bell-shaped function. This

is based on the consideration that t:.~ un1'UOdai functions may not be syrnrnetrica\.

As rnentioned before. the probability values of norrnality obtained for EEG variability

over time by using the z-score method could not demonstrate the abnorrnalities observed

by the neurologist on visual analysis. In order to solve this problem. a two-Iayer neural
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nctwork was cstablished to classij)' EEG yariability based on the measures of zero­

crossing rates and energy exchanges of the delta band array. The classification ability of

this subsystem was presented in Tablc-4.3. Ils classification error is quite high when

compared with tha! of the other three features. The reasons of this low accuracy are

complex. EEG yariability oycr time is defined as the extent of spontaneous cycling in an

EEG record. Many studies (Bergamasco et al.. 1968: Bricolo et al.. 197:;: Garrcl et al..

1979: Rumpl ct al.. 1980: Kamazc ct al.. 1982) indicated a clear correlation between the

presence of this spontaneous fluctuations and a fayorable clinical outcome. The subjects

of most of these studies were post-lraumatic eomatose patients aged at lC:lSt seyeral years.

Most of our subjeets. however. are post cardiac surgery infants who suffered pain and

reeeived sedatives during the reeording. The influences of the patient"s age. sedatives and

the unstable sleep indueed by the pain on this spontaneous alteration pattern still remain

unclear and may affect the doetor's judgment. Furtherrnore. most of the studies

mentioned above used this spontaneous eycling together with typical polygraphic sleep

patterns a1though sorne of them considered il as an independent prognostic value. Due to

these factors. when evaluating the variability of the EEG samples. our project experts

prefer to combine the EEG variability with the typica1 polygraphic sleep patterns such as

spindles. k-eomplex and vertex sharp waves. Automatica1ly identifying these waves from

long-terrn EEG is. however. very difficult. either in the time domain or in the frequency

domain. After further investigation. we found a close correlation between level of the

EEG depression and presence or absence of sleep cycle features based on the

neurologist"s interpretation. In fuel, for our training examples. the cross-eorrelation of the

neurologists' classification for amplitude and the combined feature of EEG variability
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and sl.:.:p cyck is as high as 0.8. :\ similar tinding \\as r.:ported hy \\'atanahe and

cowork.:rs (1980). ln their study. they indicated that the cI;tssi tication of the haekground

EEG depression was weil correlated with the disturhance of skep cycle in th.: tùll-term

newboms with perinatal hypoxia. It may be reasonabJc. therefore. to rehuild the system

by using the three features of amplitude. symmetry and Front!Back differentiaticn.

removing the variability. Table-4.6 presents the testing results of the system trained by

three featurcs in which a twelve-input singk-layer network similar to that shown in

Figurc-3.8 was uscd as the linal evaluation network. il performs b.:tter than the system

trained by four featurcs and incrcases the percentag.: of correct classilication by aimost

5% (Tablc-4.7).

• Results Doctor
Computer Normal Nor-Mil Mild Mil-Mod Moderate MOd-Se\'1 Severe

Normal 8 ~ 0 0 0 0.>

Nor-Mil 23 3 3 0 0

Mild ~ ~ 2 0.> .>

Mil-Mod 0 1 7 0 1

Moderate 0 0 0 1

Mod-Sev 0 0 0 0 0

Severe 0 0 0 0 0

•
Tabl<-4.6 Rcsults of the system traine<! only by amplitude.
symmetry and FrontlBaek dirrerentiation.
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Dc:grc:c

1

P~rc~nl

Sam~ L~\·e!

1

-+ ,,0'-_ .0

HalfL~ve!

1

91%

On~ Leve!

1

9ï%

Table-S.ï Pcrccntage intcrprctation of
lhe rcsults prcsenlcd in Tablc-4.6.

Tlte.\"is

•

•

A single-lay~r n~ural network was used for evaluation of th~ overall norrnality leve! of

the EEG based on the classifications of ditTercnl f~atur~s. By consid~ring both the

g~neralization ability and computational effici~ncy. this single-Iay~r network was proven

to be more suitablc tha.., the two-layer networks. This may reflect that a linear function

can be used to represent the rclationship hetwcen the inputs and the output of the

network. Twelvc inputs that reprcsenl every norrnality class of the three fcaturcs were

used (six"tcen for four features) in this network because ditTercnt classifications for one

feature may influence nonlinearly the final evaluation. If using three inputs instead of

twelve (one for each feature). the relationship betwcen the inputs and the output of the

network may no longer be linear.

The whole system contains no training data specifie values in the learning algorithms.

Therefore. the exact same procedures couid he repeated for another training data set or for

a different type of abnorrnality. This is convenient for retraining the system in further

development.

By comparison to Pasupathy's study (1994). the rcsuIts presented in Table-4.6 are

quite encouraging. The correct classification rate increases from 23% to 45%. The

instances cIassified with an error exceeding one cIass (here the cIass means the four main
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cbsses) decrease from 35% to 3%. This improyed perfôrmancc may he due to folIowing

reasons: (1) ..\ \'ailahIc training data increases from 60 six-hour EEG sections to a total of

1SS. This not only trains the system more completcly hut aiso expands the scope of

technology which can be impIcmented. (2) Fuzzy membership and neural network

techniques handle the noises better than the yersion space technique used by Pasupathy.

which is yery crucial in this system due to the fact that the training data is extremcly

noisy. (3) The whole system is diyided into seyeral subsystems. such as fuzzy

membership functions. a network for yariability assessment and a network for tinal

classification. This may simplify the task of each step and facilitate the error detection in

an earlier stage. (4) The age factor is introduced in FrontIBack differcntiation assessment.

which was not emphasized by Pasupathy.

Table-4.6 shows that most of the examples are cl::ssitied as normal or mildly

abnormal. In fact. about eighty percent of the total six-hour EEG instances used in this

study show normal or mildly abnormal background activity while only twenty percent

were assessed as moderately or severely abnormaI. This biased training data results in an

incomplete leaming of the assessment of severely abnormal EEG patterns in both fuzzy

membership functions and neural network weights. The constructed system. therefore.

exhibits an increased misclassification rate trom normal EEG pattern to severely

abnormal EEG pattern.

The weights obtained for the l2-input single-layer network ..;., listed in Table-4.8. We

can see that the differences of the weights between the successive nodes that represent

different amplitude level are greater than that of symmetry a'1d FrontlBack
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differentiation. It reveals that the amplitude. which indicalCs the degree of the EEG

depression. is a more important tcature than the s::mmetry and the Front'Back

diflcrentiation and a variation in amplitude will greatly intluencc the neurologists'

assessment of the EEG abnormality. This may be duc to the fact that amplitude directly

represents t""O abnormal EEG background patterns: dectro-cerebral inactive pattern and

low vo!tage pattern through ail states. As discussed in the section on abnormal EEG of

chapter 1. if persistent. both of these two patterns are weil corrdated with unfavorablc

clinical OUlcome. Moreover. since low voltage pattern ditTers from the dectro-cerebral

inactive pattern only in the degree of amplitude attenuation. these pattern can easily be

discriminated by the system using amplitude classification. Sometimes. burst­

suppression. another important background EEG pattern. can also be reported as

generalized depression by this amplitude measure. The reported degree of depression is

altered depending on the height and duration of the bursts. the duration of the suppression

and the persistency of the burst-suppression pattern. This representation of burst­

suppression by amplitude measure is therefore very imprecise and far from the clinical

requirement. In recent clinical studies. more and more researchers showed that the EEG

burst suppression pattern was highly predictive of unfavorable outcome (Lombroso.

1985; Rowe et al.• 1985: Holmes et al.. 1993). and it is very crucial to add another

measure that could precisely identify this pattern.

Table-4.8 also shows that the weight differences between the symmetrical and mildly

asymmetrical nodes are much smaller than that between the moderately asymmetrical and

severely asymmetrical nodes. This increased influence on the assessment of EEG
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ahnonnality may n:I1~~t tha! !ransi~nt or mild asymm~tr:~s ar~ prnhahly of no

pathologi~al signilicanœ. as r~port~d hy LomhmSl) Il 9S:'1. Th~ symmdry m~asur~ us~d

in !his syst~m is has~d on th~ amplitud~. hut in som~ ~a~~s th~ symm~try in fr~qwncy is

aIso of inwr~st (Shagass ~t al.. 1988)...\ symm~try m~asur~ in ho!h amplitud~ and

fr~qu~ncy may th~rcforc h~ mor~ n:pr~s~nta!iv~ and usc.:ful although !h~ frcq\l';lIcy

mcasur~m~nt is ~asily disturhcd hy high lr~qu~ncy compon~nts induc~d hy S~à.:iliv~s.

such as the midazolam that is ofien us~d in our patients.

F~ature 1 Class 1 Runl 1 Run2 1 Run3 1
Run4 1 Run5 1 Run6

1

Bias

1

(\.215

1

0.222

1

0.200

1

0.214

1

0.206

1

0.207

Amplitude Normal 0.297 0.295 0.306 0.308 0.292
1

0.291

Mild 0.140

1

0.145 0.148 0.145 0.138 0.143

Moderate -0.045 1 -0.040 -0.036 -0.038 -0.045 -0.045

Severe

1

-0.181 -0.217 -0.231 -0.215 -0.231 -0.224

Symmetry Normal 0.145 0.139 0.156 0.176 0.140 0.154

Mild 0.118 0.105 0.115 0.142 0.117 0.119

Moderate 0.043 0.021 0.036 0.087 0.009 0.036

Severe -0.152 -0.094 -0.080 -0.120 -0.029 -0.083

FIB Diff. Normal 0.108 0.115 0.120 0.083 0.123 0.117

Mild 0.058 0.068 0.070 0.033 0.066 0.067

Moderate 0.087 0.023 0.032 0.051 0.024 0.022

Severe -0.014 0.005 0.006 0.028 -0.016 0.012

Table-4.8 Weights obtained for the 12-input single­
la~'er networks after training in the six runs.
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Th.:r.: is anoth.:r important EEG patt.:m calkd g.:n.:raliz.:d high-amplitud.: slow-wa\".:

acti\'ity which n.:.:ds to b.: in.:orporat.:d into this syst.:m. Chiappa (19ï9) r.:port.:d that

~.:n.:raliz.:d slowin~ is on.: of th.: tirst ti:w si~ns of isch.:mic brain dama~.:. ln........ .... ....

m.:thodology. this .:xœssi\".: high-\"oltag.: slow acti\"ity can b.: charact.:riz.:d as incr.:as.:d

low fr.:qu.:ncy compon.:nts tog.:th.:r with high amplitud.:. But sine.: only thr.:.: of th.:

EEGs record.:d at th.: Montr.:al Childr.:n·s Hospit:ll w.:r.: consider.:d as showing

.:xcessi\"e high-\"oltage slow acti\"ity. the quantitication of these attributes was not

feasible.

When interpreting pediatric EEG. it is important for the neurologists to take the

patients' age into account since the EEG of children \"mes extensi\"ely from neonat:ll up

to about 10 years old. As mentioncd in the section on Front-Back differ.:ntiation. an EEG

pattern considered normal for a 3-month-old may be an abnormal pattern for a 3-year-old

chiId. Ideally. it would be better to define age imervals. such as <4 month. 4month-1 year.

1-4 years. 4-10 years and >10 years within which the characteristics of a normal EEG

recording are not expected to vary extensively. Independent "normal"' control populations

for the various age intervals could then be est:lblished and the system could be trained

and tested for each of these intervals. However. in practice. the realization of this aim will

inevitably encounter the difficulty that recordings for every age intcrval have to be

collected.

Besides background abnormalities. seizures also provide important prognostic

information. A1though sorne studies reported that epileptiform activity was not as

predictive of outcomes as background activity (Holmes et al.. 1982)•
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d.:ctro.:nc.:phalographic sdzur.:s. wh.:th.:r asso.:iat.:d with c1inical maniti:stations or not.

ar.: highly corrdat.:d with roor outcom.:s 1Rom.: .:t al.. 1985 l. R.:c.:nt long-term EEG

monitoring r.:\'.:akd that sdzuœs among pati.:nts with aeut.: orain injury ar.: far mor.:

common than pr.:viously r.:cogniz.:d. Jordan (1992) r.:port.:d a signiticant incid.:nc.:. up to

35%. of sdzur.:s in an analysis of 124 monitoœd pati.:nts. Low.:nstdn and Aminoff

(1992) d.:scrib.:d 4ï comatos.: pati<:nts. in 80% of whem EEGs sugg.:st.:d nonconvulsiv.:

s<:Ïzur.:s. Th.:refor.:. the combined use of this background EEG monitoring syst.:m

togeth.:r with comput.:r-based aUlomatic scizure d.:t.:ction systems (Gotman. 1982. 1990)

may provide more useful diagnostic information.

Th.: present monitoring system was built to receivc six-hour raw EEGs as input and

classii}' them to different background abnormality 1.:\'c1s. The reason tor using a six-hour

EEG section as the analyzing unit is because it provides intormation about the EEG trend

and this is of c1inical interest. The assessment of the EEG trend is sometimes used for

high risk patients to determine the adequate depth of anesthesia (Halimi et al.. 1990).

More often. the EEG trend is monitored for changes in the CNS function and condition

during surgery. In a study of 92 patients monitored by an EEG-trend-analyzer during

carotid surgery. EEG-trend-analyzer showed a sensitivity of 100% for ischemic events

(Loeprecht et al.. 1985). The EEG trend monitoring is panicular useful in postsurgical

intensive care to determine whether the patient is undergoing deterioration or recovery.

To be most useful. the final monitoring system should be able to provide the information

about background activity. trend and seizurc occurrence of the EEG recorded in the last

six hours and update these information every hour.
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ln c1inical usc. non-pathological factors such as mcdication or paticnt's ancsthctic

Icvcl nccd also hc incorporatcd into thc monitoring systcm. Drug-induccd amplitudc

attcnuation. hurst supprcsslon. or scizurcs havc to hc cxcludcd. High frcqucncy

componcnts introduccd hy scdativcs should also bc considcrcd carcfully.

\Vith thc valuablc carlicr work of Anitha K. Pasupathy. an cffcctivc knowlcdgc-hascd

EEG monitor systcm in pediatrie intcnsivc carc unit has bccn construcicd. Thc ovcrall

systcm performancc is quitc encouraging. For furthcr dcvcIopmcnt. morc long-tcrm EEGs

should be collccted to train thc systcm. cspccially thc scn:rcly abnormal oncs. Inclusion

of fe\\" more quantitativc mcasurcs and small agc intcr.als suggcstcd abo"c \\"ould also

enhance thc system performance.

98



•

•

•

References

:\I1<.:n :\D. \kasuring the.: e.:mpirical propcrtics nt" se.:ts. IfEE TrallSacrio/1 o/1.\rsrcms..\/a/1

<Jlul ()·hancrics 1974: 4::\0.1.

:\strup .1. Simon L. Si<.:sjo BK. Thre.:sholds in ce.:re.:hral ise.:he.:mias-the.: ische.:mic

pe.:numbra. Editiona!. Srrokc 1981: 12:723-725.

Barlow .IS. Artifact proce.:ssing (re.:je.:<:tion and minimization) in EEG data proce.:ssing. In:

Lope.:s da silva FH. Storm van Le.:e.:uwe.:n W. Rcmond A. e.:ds. C1inical Applicarions ol

Complll<!r Analysis (Il EEG and orlu:r .\"europhysiol0r?ical Sir?nal.,·. Amsterdam:

Elsevier Science Publisher B.V. 1986:15-62.

Bergamasco B. Bergamini L. Dorriguzzi T. EEG slecp pattern as a prognostÎC criterion in

post-traumatic coma. Elecrroencephal0r?raph and Clinical ;Veurophysiology 1968:

24:374-377.

Bickford RG. Fleming NI. Dillinger TW. Compression of EEG data by isometric power

spectral plots. Elecrroencephalography and C!inical ;Veurophysiology 1971: 31:632.

Blishun AF. Comparative Analysis of Methods of Measuring Fuzziness. Eng!ish

Translation on Tekhnicheskaya Kibernetika 1989: 1:110-126.

Borisov AN. Models ofDecision Making Based on a Linguistic Variable. Zinatne. Riga.

1982.



Rt!ft!Tences Tltesis

•

•

•

Bricolo :\. Turdi:l G. On: GD. TerLi:m H. :\ proposai lar the EEG evaluation of acute

traumatic coma in neurosurgical practice. El.:crrocnœphalography and ('1inical

.\'curopilysiology i 973: 34:789.

Bricolo A. Turr=i S. F;lccioli F. Odonizzi F. Sciarrelta G. Erculiani P. Clinical

application of compressed spectral =y inlong-term EEG monitoring of comatose

patients. Elecrroencephalographyand Clinical :\'europh.\~,iology 1978: 45:211-225.

Cant BR. Shaw NA. Monitoring by compressed spectral =y in prolonged coma.

,Veurology 1984: 35-39.

Chiappa KH. Burke SR. Young RR. Results of electroencephalographic monitoring

during 367 endanerectomies. Use of a dedicated mini computer. Srroke 1979:

10:381-388.

Chiappa KH. Hoch DB. Electrophysiologic monitoring. In: Ropper AH. eds.

Neurological and neurosurgical intensive care. 3'" ed. New York: Raven Press.

1993:171-183.

Cho I. Smuliens SN. Streletz U. Fariello RG. The value of intraoperative EEG

monitoring during cariùd endanerectomy. Annals ofNeurology 1986: 20:508-512.

Devijver PA. Pattern Recognition: A statistical approach. Englewood Clïffs. NI:

Prentice Hall International. 1982.

Emmerson RG. Chiappa KH. Electrophysiologic Monitoring. In: Ropper AH. Kennedy

SK. Zervas NT, cds. Neurologie and Neurosuegieal Intensive Care, 2"d ed.

Rod.-ville, MD: Aspen. 1988:13.

100



•

•

References

Engd J. Sl'i=urcs alld qJi/,·p.'Y. l'hibnddphia: F..-\. na,is. IlIX'): II 2- 1.~.j. 1(\,ntcmpl'rary

Gallant SI. Optimal lincar discriminant>. In: l'roc''ssillgs I:ïghth Imanati"na/

C01!tert!nct! on Pallcrn Recognition. Paris. Franc~ 198(1: 849-852.

Gallant SI. Xcura/ XClll'Ork Lcarning alld E~pcrt .'>stcm. Cambridgc: :-'IIT Prcss. 1qQ~.

Garre! S. Maynard R. Bargc ;"1. :\icokt :\. Reymond F. EEG and clinicaI study of 107

patients \\ith acute severe traumatic comas. RCI'UI! d E/l!ctrol!ncl!pha/ographic I!t dl!

.\'I!urophysi%gil! C/iniquc 1979: 9(2): 1~9-148.

Gasser T. Bacher ? Mocks J. Transformation towards the normal distribution of broad

band spectral pararneters of the EEG. E/I!ctroenœpha/ography and C/inica/

Neurophp'iology 1982: 53( l): 119-124.

Gotman J. Automatic recognition of epileptic selzun:s ln the EEG.

Electroencephalography and Clinical.\'europhysiology 1982: 54:530-540.

Gotman J. Automatic seizun: detection: improvements ln e\'aluation.

•

Electroencephalography and Clinical.\'europhysiology 1990: 76:317-324.

Gumnit RJ. ed. lnrensil'e neurodiagnostic monitoring. Nt:\\' York: Raven Press. 1987.

(Ad\'ances in neurology. \'01 46.)

Halimi P. Gozal Y. Cphen M. Gozal D. Computerized electroencephalographic

monitoring in anesthesia. Cahiers d Anesthesiologie 1990: 38(5):309-317.

101



Re(erenct!s Tltesis

•

•

•

Heuser D. Guggenberger H. Ionie changes in brain ischemia and alterration produced by

drugs. A symposium on brain ischemia. British Journal of Anaesthesiology 1985:

57:23-33.

Holmes GL. Rowe J. Hafford J. Schmidt R. Testa M. Prognostic value of the

electroencephalogram in neonatal asphyxia. Elecrroencephalograph and Clinical

Neurophysiology 1982: 53(1 ):60-72.

Holmes GL. Lombroso CT. Prognostic value of background patterns in the neonatal

EEG. Journal ofClinical Neurophysiology 1993:10(3):323-352.

Homan RW. Herman J. Purdy P. Cerebral location of International 10-20 System

electrode placement. Elecrroencephalography and Clinical Neurophysiology 1987:

66:376-382.

Jacobson SA. Leuchter AF. Walter DO. Conventional and quantitative EEG in the

diagnosis of delirium among the elderly. Journal of Neurology. Neurosurgery and

Psychiarry 1993; 56:153-158.

Jasper RH. .The ten-twenty electrode system of the International Federation.

Elecrroencephalography and Clinical Neurophsiology 1958;i 0:371-375.

Jibiki I. Kurokawa K. Fukushima T, Kido H. Yamaguchi N, Matsuda H, Hisada K.

Correlations between quantitative EEG and regional cerebral blood flow in patients

with partial epilepsy. Neuropsychobiology 1994; 30(1):46-52.

Jordan KG. Continuous EEG monitoring in the neurological intensive care unit.

Neurology 1990; 40(Suppll):180.

102



References TIIC.<is

•

•

•

Jordan KG. Stringer \VA. Correlative xenon-enhanced CT cerebral flo\\" (XeCTCBF) and

EEG to functionally stratify acute cerebral infarction. Xeuralogy 1991: 41 (Suppl

1):336.

Jordan KG. Noncomulsive status epilepticus in the neuro-1CU detected by continuous

EEG monitoring. Neurology 1992: 42(Snppl 1):194.

Jordan KG. Continuous EEG and evoked potential monitoring In the neuroscience

intensive care unit. Journal o/Clinical neurophysiology 1993: 10(4):445-475.

Jordan KG. Neurophysiologic monitoring in the neuroscience intensive care unit.

Neurologie Clinics 1995: 13(3):579-626.

Kamaze OS. Marshall LF. Bickford RG. EEG monitoring of clinical coma: the

compressed spectral array. Neurology 1982: 32(3):289-292.

Kayser-Gatchalian MC. Neundorfer B. The prognostic value ofEEG in ischemic cerebral

insults. Electroencephalography and Clinical Neurophysiology 1980: 49:608-617.

Koloder J. Simpson R. Sycara K. A process model of case-based reasoning in problem

solving. ln: Joshi A. ed. Proceedings IJCAI-85. Los Angeles. CA. 1985: 284-290.

Langley P. Elememt ofMachine Learning. San Francisco: Morgan Kaufmann Publisher.

1996.

LeCan Y. Boser B. Oenker J, Henderson O. Howard R. Hubbard W. Jackel L.

Bacl.:propagation app1ied to handwritten zip code recognition. Neural Computation

1.1989; 4:541-551.

103



References Tlte.sis

•

•

•

Leuchter AF. Cook lA. Mena I. Punkin JJ. Cummings JI.. Newton TF. Migneco O.

Lufkin RB. Walter DO. Lachenbrush PA. Assessment of cerebral perfusion using

quantitative EEG cordance. Psychiatry Research 1994: 55(3): 141-152.

Loeprecht H. Wolfle K. Heudorfer J. Reich H. Can EEG monitoring with the Trend

Analyzer replace sturnp pressure measurement in carotid surgery? Langenbecks

Archivfur chirurgie 1985: 366:333-338.

Lombroso CT. Seizures in the newbom period. In: Vinken PJ. Bruyn GW. eds. Handbook

ofclinical neurology. vol 15. Amsterdam: North-Holland. 1974:189-218.

Lombroso CT. Convulsive disorders in newboms. In: Thompson RA, Green JR. eds.

Pediatrie neurology and neurosurgery. New York: Spectrurn. 1978:205-239.

Lombroso CT. Normal and abnormal EEGs in full-term neonates. In: Henry CE. ed.

Current Clinical Neurophysiology. Update on EEG and evoked pot<:ntials. New

York: Elsevier / North-Holland, 1980:83-150.

Lombroso CT. Intracranial hemorrhages in the newbom. A prospective clinical and

eiectrophysiological study of 37 cases. In: Proceedings ofthe lYDP commemorative

international symposium on developmental disabilities. Tokyo: ISBN Elsevier

Science Publishing Co.• 1981 :251-256.

Lombroso CT. Neonatai polygraphy in full-term and premature infants: a review of

normal and abnormal findings. Journal ofClinical Neurophysiology 1985; 2(2):105­

155.

104



•

•

•

References

Lowenstein DH. Aminoff MJ. ClinicaI and EEG features of status epilepticus In

comatose patients. Neurology 1992: 42:100-104.

Lundgren JP. Computerized EEG: Applications and interventions. Journal ol

Neurosci.mce and Nursing 1990: 22(2): 100-112.

Maynard DE. Development of the CFM: the cerebral function analyzing monitoring

(CFAM). Annals olAneslhesiol Fr 1979: 3:253-255.

Maynard DE. Jenkison JL. The cerebral function analysing monitor. Initial clinical

experience. application and further development. Anaeslhesia 1984: 39:678-690.

Minskey M. Steps toward Artificial Intelligence. In: Proceeding IRE 1961: 49:8-30.

Nuwer MR. Quantitative EEG: I. Techniques and problems of frequency analysis and

topographie mapping in clinical settings. Journal olClinical Neurophysiology 1988:

5: 1-85.

Pasupathy AK. An experl Syslem lor EEG MoniIoring in lhe Pedialric ICU. Master

thesis. McGill. 1994.

Press WH, Teukolsl..-y SA. Vetterling WT. Flannery BP. eds. Neumerical Recipes in C.

2"d ed. Cambridge: Cambridge University Press. 1992:683-688.

Prior PF. The EEG in acule cerebral anoxia. 1973.

Raiffa H. Decision Analysis. Addison-Wesley. Reading. MA. 1968.

Ritchdin CT. Chabot RJ, Alper K, Buyon J. Belmont HM. Roubey R, Abrarnson SB.

Quantitative electroencephalography: A new approach to the diagnosis of cerebral

105



References Tltesis

•

•

•

dysfunction In syslemic lupus erythematosus. Arthritis and Rheumatism 1992:

35(11):1330-1342.

Ropper A. RockofT MA. Treatment of intracranial hypertension. In: Ropper AH.

Kennedy SF. cds. Neurologieal and .1I,'eurosurgieal Inrensh'e Core. Baltimore:

University Park Press. 1983:138.

Rose A. Lombroso CT. Neonatal seizure states. Pediatries 1970: 45:404-425.

Rowe JC. Holmes GL. Hafford J. BabovaI D. Robinson S. Philipps A. Rosenkrantz T.

Raye J. Prognostic value of the electroencephalograrn in term and preterm infants

following neonatal seizures. Electroencephalograph and Clinical Neurophysiology

1985;60(3):183-196.

Rurnelhart DE. Hinton GE. Williams RJ. Leaming internai representations by errer

propagation. In: Rurnelhart DE. McClelIand JL. eds. ParaUel Distribured

Processing: Explorations in the Microstructures of Congition. vol. 1. Cambridge:

MIT Press, 1986.

Rurnpl E, Lorenzi E. Hackl J, Gerstanbrand F, Hengl W. The EEG at different stages of

acute secondary traurnatic midbrain and bulbar brain syndromes.

Electroencephalography and Clinical Neurophysiology 1979; 46:487-497.

Rurnpl E. Electro-neurological correlations in carly stages of post-traurnatic comatose

states. II The EEG at the transition stage to, and at the full stage of the traurnatic

apallic syndrome. EEG-EMG Zeitschrift jür Elektroenzephalographie

Elektromyographie und VenvandJe Gebiete 1980; Il(1):43-50.

106



References Tltesis

•

•

•

Salinsky MC. Oken BS. Kramer RE. Morehead L. A comparison of quantitative EEG

frequency analysis and conventional EEG in patients \\ith focal brain lesions.

Electroencephalograph.v and Clinical iVellrophysiology 1992: 83(6):358-366.

Shagass C. Roemcr RA. Josiasscn RC. Some quantitative EEG findings in unmedicatcd

and medicatcd major dcprcssivcs. Nellropsychobiology 1988: 19(4): 169-175.

Siegel G. Agranoff B. Albers RW. Motinoff P. eds. Basic Nellrochemistry. 4'h cd. New

York: Raven Press. 1989.

S)ater GE. Torres F. Frequency-Amplitude Gradient: A new parameter for interpreting

pediatrie sleep EEGs. Archives ofNellrology 1979: 36:465-470.

Szdies B. Mielke R. Herholz K. Heiss WD. Quantitative topographical EEG compared to

FDG PET for classification of vascu1ar and degenerative dementia.

Electroencephalography and Clinical Nellrophysiology 1994: 91 (2):131-139.

Trojaborg W. Boysen G. Relation between EEG. regional cerebral b100d fIow and

internai carotid artery pressure during carotid endarterectomy.

Electroencephalography and Clinical Neurophysiology 1973; 34:61-69.

Watanabe K, Miyazaki S. Hara K, Hakamada S. Behavioural state cycles. background

EEGs and prognosis of newborns with perinatal hypoxia Electroencephalography

and Clinical Neurophysiology 1980; 49:618-625.

Widrow B, Hoff ME. Adaptive switching circuits. In: Institute of Radio Engineers.

Western Electronic Show and Convention. Convention Record 1986; 4:96-104.

107



References Thes"

•

•

•

Zadch LA. Fuzzy Sets. information and Control 1965: 8:338-342.

Zimmermann Hl. Fu--=}' Set Theor}' and its Applications. Hingham: Kluwer-Nijhoff

Publisher. 1985.

108




