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Abstract

A knowledge-based expert system was developed to automatically assess the fevel of
EEG abnormality of pediatric patients monitored in the ICU. The svstem receives six
hours of 8-channel EEGs and classifies the background EEG as one of seven abnormality
levels.

A total of 188. six-hour EEGs were visually interpreted by a neurologist and used as
training examples. Spectral band activity was computed: artifacts were rejected using a
median filter with a hard-limiter. Quantitative variables reflecting amplitude. symmetry.
Front/Back differentiation and time variability were then extracted based on the study of
Pasupathy (1994). Relationships between quantitative measures and the neurologist’s
assessment of amplitude. svmmetry and Front/Back differentiation were established. A
two-layer neural network having the measures of EEG variability as input was created for
vaniability evaluation. A single-layer network was constructed to give the integrative
interpretation of EEG abnormality based on the neurologist’s assessment of the four
features. Suitable knowledge base and inference engine were also constructed.

Performance was tested using the rotation method of error estimation. 45% of testing
instances were classified the same as the neurologist’s interpretation. 46% were classified
with an error of one abnormality level. Possible improvement and the clinical future of

the system are discussed.



Resume

On a dévelopé un systéme expert 2 vase de connaissances pour déterminer
automatiquement lz niveau d'anormalit¢ de 'EEG de malades sous monitorage dans
I'unité pédiatrique de soins intensifs. Le systéme recoit six heures d'un EEG de 8 voies et
doit classer I'activité de fonds en sept niveaux d anormalité.

Un total de 188 EEGs durant chacun 6 heures ont été interprétés visuellement par
un neurologue et utilisés comme exemples d apprentissage. On a calculé ["activité dans
divers bandes de fréquence:; les artéfacts ont été éliminés grace a un filire médian associé
2 un seuil d"amplitude. En se basant sur le travail de Pasupathy (1994). on a calculé des
variables reflétant "amplitude. la svmmétrie. la différentiation antéro-posténeure et la
variabilité temporelle. On a déterminé les relations entre ces mesures et le jugement du
neurologue quant a I"amplitude. la symmeétrie et la différentiation antéro-postérieure. On
a utilisé un réseau neuronal a deux couches pour obtenir une mesure globale de vanabilité
temporelle & partir des mesures élémentaires de variabil_ité. L’interprétation compléte de
I"anormalité de I"EEG a été ensuite faite & [’aide d un réseau neuronal a un niveau, ayant
comme entrées les différentes mesures. On a aussi construit un systéme a vase de
connaissances et un moteur d’inférence.

La performance globale a été €valuée par la méthode de rotation. 45% des
échantillons sont classés au méme niveau d anormalité que celui donné par le neurologue,
et 46% sont classés a un niveau d’anormalité en dessus ou en dessous. On discute des

améliorations possibles et de la future utilisation clinique d’un tel systéme.
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Chapter 1
Introduction

1.1 Neurophysiologic Monitoring in the ICU

In the present day intensive care units (ICU). while numerous catheters. transducers.
digital readouts and alarms keep continuous vigil on a patient’s heart., lungs and kidneys,
the brains are “monitored™ routinely by intermittent clinical observations. or “ncuro-
checks™. Jordan discussed these examinations by stating (Jordan. 1995): “Even under the
best circumstances and when carried out by expert personnei. “neuro-checks™ are
discontinuous and subjective. All too often. they are unable to anticipate capricious
clinical deterioration. Contrary to the goal of a true monitoring system. “neuro-checks’
must wait until after functional deterioration occurs for problems to be recognized. The
constraints on this type of clinical monitoring become more sertous when patients are
sedated. medically paralvzed. or placed in barbiturate coma.™

During the past few vears. neurophysiologic monitoring in the ICUs has received
increased attention. The number of bedside neurophysiologic monitoring methods have
increased and thus have been the subjects of numerous clinical research studies. In
addition to well-established intracranial pressure monitoring. several newer methods
including continuous electroencephalography. evoked potentials. transcranial Doppler
sonography., cerebral blood flow. and jugular venous oxygen saturation have been

brought to the ICU bedside to measure different physiologic vanables. They extend the



Chapter I Introduction Thesis

clinician’s power of observation in order to detect physiologic abnormalities at 2
reversible stage.

A successful ICU monitoring syvstem should meet the following ¢riteria (Jordan,
1995):

* be more sensitive and specific than clinical observation.

= be non-invasive.

= be casily operated and interpreted by non-experts.

» be usable at the bedside.

« not interfere with medical or nursing care of the patients.

Many neurointensivists share the opinion that the electroencephalography (EEG) can
become an integral part of monitoring in the ICU (Emmerson and Chiappa. 1988). EEG
recordings have been useful in the investigation of various disorders. subclinical seizures
and coma. The technique itself is non-invasive. and advances in technology have made
possible the collection. storage and analysis of continuously collected EEG. However. the
raw EEG generates cumbersome amounts of data. and its complexity discourages
interpretation by non-experts. Several methods have been developed to compress EEG
data and simplify its interpretation with definite benefit. such as compressed spectral
array {CSA) (Bickford et al.. 1971), the cerebral function monitor (Maynard. 1979) and
the topographic brain mapping (Nuwer. 1988).

EEG monitoring is currently in extensive use during carotid surgery (Chiappa et al..
1979: Cho et al.. 1986) due to the fact that EEG changes correlate with regional ischemia
during carotid artery endarterectomies (Trojaborg and Bovsen. 1973). Continuous EEG

monitoring for patient management has begun to be used routinely in a small number of

[ 1)



Chapter I Introduction Thesis

centers (Jordan. 1990, 1992). Jordon and Stringer (1991) have reported a decisive impact
of EEG monitoring on clinical management decisions in 83% of the patients monitored
subsequent to cardiac surgery. EEG monitoring of patients in coma has been performed
which provides clues to the cause of coma as well as prognostic information (Cant and
Shaw. 1984). EEG monitoring has also been used for monitoring barbiturate therapy for
increased intra-cranmial pressure with large benefit (Ropper and Rockoff. 1983).

1.2 Electroencephalogram

The electroencephalogram (EEG) represents the spatial and temporal summation of
inhibitory and excitatory postsvnaptic potentials which occur in the cerebral cortex
{Jordan.1995). It can be recorded from the scalp surface by electrodes attached to the
scalp with conductive jellv. The arrangement of these clectrodes on the surface of the
scalp is based on an international standard of localization (the 10-20 system. Jasper.
1958). The EEG is recorded as a potential difference between pairs of electrodes and each
such pair is referred to as a “channel”. The combination of electrodes and channels
examined at a particular point in time is referred to as a “montage™. After amplification.
the continuous analog EEG can be displayed using paper write-out and oscilloscopic
display. In long-tern EEG monitoring systems, computer-based digital EEG is normally
implemented due to its efficient means of data storage and transmission and subsequent
data processing ability.

1.2.1 Why use the EEG for Monitoring
There are several neurobiologic reasons for using the EEG as a monitor of brain

activity (Jordan, 1993, 1995):
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Chaprer 1 Introduction Thesis

o FEEG is linked 1o cerebral metabolism. The EEG represents the spatal and
temporal summation of excitatory and inhibitory postsynaptic potentials and their
modulation by subcortical projection {ibers. At the cellular level. these interactions
reflect the underlying state of cerebral metabolism. which m wum depends on
multiple factors including synthesis of enzyvmes and energy (Siegel et al. 1989). A
disturbance in one or more of these components will produce a disturbance in EEG.
Hence the EEG is a highly sensitive. although non-specific. indicator ot cerebral
dvsfunction.

o The EEG iIs sensitive to ischemia and hypoxia. and detects neuronal dysfunction
at a reversible stage. The EEG is mainly generated by the cortex pyramidal
neurons which are selectively vulnerable to hypoxia and ischemia. The EEG
begins to deteriorate betore cell membrane tailure and irreversible reduction of
ATP occurs (Heuser and Guggenberger, 1985). Astrup et al. (1981) have
demonstrated that the EEG abnormalities occur before the cercbral blood flow
(CBF) drops 1o 20-25 ml/100g/min. whereas 3vnaptic activity continues until the
CBF drops to 17 mi/100g/min. and that energy failure and cell death are not seen
until the CBF falls to 10-12 ml/100g/min. These observations imply the presence of
a “therapeutic window™ in cerebral injury following the appearance of EEG
abnormalities. Also. the correlation of EEG changes with cerebral ischemia during
carotid artery endarterectomies has been observed by Trojaborg and Bovsen (1973).
This relationship forms the basis of the current use of EEG monitoring during

carotid surgerv (Chiappa et al., 1979: Cho et al.. 1986).
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o EEG is the best available method for detecting seizure activity. For many vears.
continuous EEG outside the ICU has been used in epilepsy units to detect and
localize seizure activity (Gumnit, 1987). Engel (1989) reported a significant
incidence. ranging from 10% to 27%. of acute seizures following head injury.
spontaneous iniracranial hemorrhages and ischemic stroke. A systematic study of
continuous EEG monitoring among the patients in ICU has documented a
surprisingly high incidence of nonconvulsive seizures (Jordan, 1992).

e EEG correlates with cerebral topography. The international 10-20 system for
electrode placement establishes a reliable relationship between scalp electrode
placement and underlyving cerebral topography (Homan et al.. 1987). This attribute
has been de-emphasized because of the precise localization obtained by radiological
methods such as CT and MRI. However, for the ICU patient. transport for imaging
studies is logistically difficult and can be hazardous. The EEG provides useful
information about cerebral localization at the bedside.

These attributes of the EEG have heightened interest in its application as an
electrophysiologic monitor for the patients with acute brain injuries. In addition to these
neurobiologic reasons, the technique of EEG recording from the scalp is non-invasive and
EEG monitoring can be easily set up at the patient’s bedside without any interference
with patient care and medication. The interpretation of raw EEG data, however, requires
skilled personnel who may not be available at all times in the ICU. Many researchers in

the EEG monitoring field ry to overcome this shortcoming by using different data
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processing techniques. Among these techniques. quantitative EEG is the carliest and most
widely used.
1.2.2 Quantitative EEG

A neurophysiologic EEG monitor should continuously record brain activity of the
patients in the ICU over several hours. In order to detect the cercbral dysfunction at a
reversible stage. on-line interpretation of the EEG is crucial. However. the presence of a
neurologist onsite throughout the entire period of recording is quite impractical and the
complexity of the EEG discourages the interpretation by non-expert. In practice. there is a
considerable time lag between recording of the EEG and actual interpretation which
largely reduces the effectiveness of EEG monitoring. Also. visual interpretation of long-
term EEG recording is quite tedious and time consuming and it is difficult to evaluate the
long-term trend of the EEG.

Quantitative EEG (QEEG) relies on the transformation of digital EEG signals into
mathematically derived parameters. These parameters are then interpreted by statistical
analyses based on comparison with data obtained from a population considered to be
normative. The information of QEEG is displayed in a variety of formats including
topographic scalp maps, bar graphs, CSA and density spectra array.

In addition to reducing data and simplifying the interpretation. QEEG can also
facilitate the identification of intervals of physiologic sleep. gradual shifts in dominant
frequency and long-term EEG trends of prognostic significance. In recent studies,
considerable work has been done to estimate the sensitivity, reliability and usefulness of

QEEG for the prognosis of nervous system disorders. In several situations. QEEG is
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found to be more sensitive than conventional EEG. Nuwer (1988) has reported that
QEEG using computer-assisted frequency analysis is more sensitive than conventional
visual analysis in detecting abnormalitics in focal cerebral ischemia. QEEG abnormalities
were found in 94% of 34 patients with completed or partial stroke compared to only 60%
found by visual EEG assessment. Also. Ritchdin et al. (1992) reported that QEEG was
more sensitive than conventional EEG. magnetic resonance imaging or computed
topography scanning as an indicator of cerebral dysfunction in systemic lupus
erythematosus patients. QEEG is also found to be able to increase the sensitivity of some
conventional techniques. Szelies et al. (1994) compared quantitative topographical EEG
with regional glucose metabolism measured by PET with respect to the sensitivity in
classification of mild to moderate dementia. The results showed that combined use of
QEEG and PET was more discriminating and reached higher diagnostic specificity than
each test individually. Moreover, QEEG is demonstrated to be an indicator of brain
perfusion and regional cerebral blood flow (Leuchter et al., 1994; Jibiki et al., 1994), anu
to be useful for the detection of encephalopathy and unilateral cerebral lesions (Jacobson
et al, 1993; Salinsky et al., 1992).

Until now, most QEEG techniques are used in clinical laboratories. There are several
limitations to using QEEG to monitor ICU patients and perform automatic diagnosis.
such as abundant artifacts, fluctuating patient states of alertness, lack of normative ICU
data, and difficulty in detecting spikes, brief seizures, burst suppression and periodic
lateralized epileptiform discharges. These limitations, however, may be overcome and
there are a number of efforts to do so. By new analytic procedures and signal processing

techniques, artifacts can be recognized and often removed (Prior, 1973; Bickford et al.,
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1971. Mavnard and Jenkison. 1984). Spikes. scizures and lateralized epileptiform
discharges can also be detected by successfully developed automatic seizure detection
systems (Gotman, 1982, 1990).

The computer-assisted analysis based on QEEG has been used by several researchers.
however the most sensitive variables to be monitored have not been determined. The tool
most commonly used is the CSA designed by Bickford et al. (1971). Here the frequency
spectra of the EEG activity are computed and plotted against a vertical time scale for
successive epochs. Gross changes can therefore be identified visually. Maynard and
Jenkison (1984) developed a system called the Cerebral Function Analyzing Monitor.
This device bandpass filters (2-20Hz) the EEG. performs amplitude rectification and
smoothing. and then computes five amplitude measures and the percentage of activity in
nine frequency bands which are displaved as a function of time. The Vital Signs
Monitoring Svstem (Chiappa and Hoch, 1993) is another computer-assisted diagnostic
tool. This system plots the trend of the EEG over several hours. Different physiological
parameters are calculated and displayed such as peak. median power and spectral edge
frequency, frequency bin activity totals. frequency bin ratios and intracranial pressure.
1.2.3 Abnormal EEG in Children

EEG abnormalities in children are classified by Lombroso (19835) into three main
categories: (1) abnormalities of background activity. (2) ictal abnormalities, and (3)
abnormalities of states and of maturation.

Background activity refers to the basic EEG rhythms which are present at all times.

EEG background abnormalities correspond to deviations in amplitude and frequency
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composition of these basic thythms in different head regions. Lombroso (1983) reported
that background abnormalities appear to be most suitable for diagnostic applications
especially in long-term prognosis. Other studies also indicate that background EEG is a
good indicator of prognosis subsequent to hypoxic-ischemic injury if recorded for
sufficient duration in all states (Watanabe et al.. 1980). The prognostic significance is
influenced by the timing of the recording. Kayser-Gatchalian and Neundorfer (1980)
demonstrated that recordings within the first 48 hours of the illness serve as the best
prognostic indicators.

Ictal abnormalities are most often assoctated with seizures which appear as sharp wave
and spikes, hypersynchronous rhythmic activity or as paroxysmal slow wave activity. In
children. ictal abnormalities provide prognostic information as well and can be caused by
the involvement of the central nervous system or by metabolic derangement.

The composition of EEG activity in children varies considerably with age. Children
who exhibit sleep rhythms that are uncharacteristic of their age are considered to have
abnormalities of organization in sleep states and maturation. This category consists of
more subtle deviations. some of which are still being investigated and less well
established.

Among the three categories of abnormalities discussed above, background
abnormalities are the best prognostic indicator in long-term EEG monitoring especially
subsequent to hypoxic-ischemic injury. An analysis of background abnormalities together
with ictal abnormalities may give maximum prognostic information, although the
processing of these two patterns may be independent. Background EEG abnormalities

manifest themselves in several forms:
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e [nactive Pattern - This 1s characterized by cerebral activities below 10uv almost
continuously throughout the recording. and unreactive to stimulation. In the
absence of a postictal state. notable hypothermia. high levels of drugs. or severe
derangement in blood gases, this pattern carries a very unfavorable prognosis.

e Burst Suppression - Characterized by pertods of inactive background (lower than
10-15uv) interrupted by synchronous or asvnchronous bursts of activity. The bursts
can be of high or. less often, low voltage. last 0.5-6s. contain irregular slow waves
with or without interspersed sharp transients. In the absence of the factors
mentioned above. a burst suppression pattern heralds an unfavorable outcome
reaching high statistical predictability (Lombroso. 1983).

o Low Voltage Pattern Through All States - This exhibits mixed fiequencies lower
than 10-50uv more or less continuously and in all states. This pattern differs from
inactive pattern only in the degree of voltage attenuation and from burst-
suppression pattemn because of the absence of bursts. If persistent and in the
absence of scalp edema or technical faults (smearing of electrode paste. sweat, etc.).
the prognosis of unfavorable clinical outcome reached statistically significant
values in long-term prospective studies (Lombroso, 1974, 1978).

o Interhemisphere Amplitude Asymmetry - This consists of a persistent voltage
asymmetry in background rhythms between hemispheres (Lombroso, 1980).
Transitory or mild asymmetries are probably of no pathological significance. A
persistent voltage asymmetry recognizable in various states could denote a

depression in one hemisphere or large amplitude activity in the other, both of which

10
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point to an underlying abnormality. These abnormalitics can be intraparenchymal
hemorrhages (Lombroso. 1981): pre- or postnatal vascular accidents: tumors or.
rarely. congenital malformations. The diagnosis of this pattern needs to be very
careful because the non-pathologic factors such as scalp edema or technical faults
(asymmetric c¢lectrode placement. smearing of clectrode paste. sweat. etc.) can
produce similar asymmetries.

o  Monotonous Pattern - This consists of an almost invariant diffuse pattern present at
all times, poorly reactive to stimuli. Bricolo and coworkers (1973) have
demonstrated that an invariant EEG carries a worse prognosis than a cycling
(alternating) EEG. In another study. they also found that approximately 95% of the
patients with a slow and monotonous CSA had unfavorable outcomes compared to
only 30% of those with a changing CSA (Bricolo et al.. 1978). Although the
cveling EEG patterns only weakly correlate with clinical state of the patient. they
still have significant independent prognostic value (Rumpl et al.. 1979). To study
spontaneous variations adequately. the EEG must be recorded over an extended
period of time.

o Absence of Frequency-Amplitude Gradient - The EEG of a normal child shows a
decrement in voltage from posterior to anterior head region. with an accompanying
decrease in slow frequencies in the same posterior-anterior direction. There is a
positive correlation between the severity of illness and the absence of this gradient

(Slater and Torres. 1979). The same study also found that the presence of this

11
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gradicnt is dependent on the patient’s age. In most cases good gradients do not
appear before 3 to 4 months of age and after 10 vears old.

In addition to background abnormalitics and scizures. clinical neurologists are most
often interested in the trend of the EEG over long periods (at least several hours).
especially subsequent to brain injury. since it is a good indicator of state of deterioration
OF ICCOVETY.

1.3 Project Definition

The atm of the project is to build a svstem for automated neurophysiological
monitoring in the pediatric ICU. The svstem is to be used as a bedside EEG diagnostic
tool for pediatric patients who may suffer neurologic dystunction such as those
subsequent to cardiac surgery. trauma or hemorrhage.

Such a monitor should mimic the neurologist’s behavior. accepting several hours of
rawv EEG data as input and classifving it as normal or abnormal based on its
characteristics. As background abnormalities appear to be the best diagnostic indicator in
long-term EEG monitoring. several features describing the background abnormalities
have been selected to be used by the monitor for interpretation of the EEG.

Most of the EEGs used to build this system were recorded in the pediatric ICU (at
Montreal Children’s Hospital) to monitor the possible neurologic dysfunction of the
cardiac patients subsequent to cardiopulmonary bypass. Due to the regional blood flow
variation during surgery. these patients may suffer brain hypoxia-ischemia and may serve
as a good test group for this system. The long-term EEGs of patients who are in coma or

have seizures are also used to develop this system.
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Chapter 2 first introduces the EEG recording protocols used in the Montreal
Children’s Hospital including montage. amplification. analog filter and sampling rate.
Mathematical procedures are then presented which transtorm the raw EEG data into the
frequency band arrays on which artifact rejection and feature extraction procedures are
performed. Continuous EEG recording over long periods is subject to various kinds of
artifact especially in the ICU where the patient care and medication are essential. Artifact
rejection is therefore crucial for accurate EEG analvsis. Common types of artifact are
discussed in detail and illustrated. Various filters are designed and compared with cach
other based on their ability to reject artifact. Then the quantitative equivalents of selected
qualitative features are extracted from the frequency band arrays of the EEG. The
obtained parameters are further interpreted by statistical analysis based on a population
considered to be “normative™. The work discussed in this chapter is based on a study by
Anitha K. Pasupathy (1994) and several modifications are introduced to improve the
performance of the system.

Chapter 3 introduces the construction of a knowledge-based expert system which
accepts the parameter values associated with the selected features and classifies the EEG
into one of the several abnormality levels. The system is trained with examples of six-
hour EEG sections interpreted by the neurologists. The feature extraction method
described in chapter 2 is then used to calculate the quantitative values of the selected
features for each six-hour EEG. By using fuzzy membership and neural network
techniques. the system learns and updates its knowledge about the EEG classification by
comparing its performance with the neurologists’ assessment. The structure of the

knowledge base and the inference engine are explained as well.
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The performance of the automated monitor svstem is tested and described in chapter 4.
. The discussion of the possible improvement and the clinical future of the system are also

included in this chapier.
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Chapter 2 Data
Pre-processing and
Feature Extraction

This chapter describes the EEG data acquisition protocol. artifact rejection approach
and feature extraction methods used to obtain the quantitative interpretations of the select
features which describe the EEG background abnormalities. Most of the work in this
chapter is based on a study by Anitha K. Pasupathy (1994) and several modifications are

introduced to improve the performance of the system.
2.1 Data Acquisition and Pre-processing
2.1.1 Data Acquisition

The EEGs were recorded with an 8-channel montage called “Little H™ in the intensive
care unit of the Montreal Children’s Hospital. As depicted in Figure-2.1. eleven
electrodes were glued to the surface of the scalp. The EEG recorded from channels 1 and
4 corresponds to the activity from the frontal head regions of the left and right
hemisphere respectively. Similarly. channels 2 and 5 represent central parietal head
regions. channels 3 and 6 represent the posterior head regions and 7 and 8 represent the
central temporal head regions.

After being picked up by the electrodes, the analog signal is amplified by a factor of
10000 and filtered by a low pass filter (cutoff frequency of 30Hz) to prevent aliasing and

a high pass filter (cutoff frequency of 1Hz) to remove artifacts due to respiration,
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sweating. etc. Then, the analog signal is digitized at a 200 Hz sampling rate and displayed
on a computer monitor using the software MONITOR (Stellate System. Montreal).

Visual interpretation of the EEG involves mainly the assessment of its frequency
composition. The neurologists estimate visually the amount of EEG activity in the
various frequency bands. defta (1-3 Hz). theta (3-7 Hz). alpha (7-14 Hz) and beta (14-30
Hz). compares and correlates them and arrives at a decision about the normality of the
EEG. It would therefore be quite useful to transform the entire EEG into the frequency
domain. Since analysis of the background activity is best achieved by studving long-term
trends. it is preferable to analyze an extended EEG record lasting several hours. An 8-
channel EEG recorded continuously over a period of six hours produces approximately
60 MB of data. Transformation of the EEG into the frequency domain has the added
benefit of data reduction.

The frequency analysis of the EEG record is performed using a software called

ECLIPSE (Stellate System. Montreal). The program divides the entire EEG recording

16
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into cpochs of 30 seconds. each of which is referred to as a “page’. The Fast Fourier
Transform is computed for every 512 sample points (2.56 seconds of EEG) and this
amounts to cleven frequency domain distributions per channel per page. In fact only
28.16 of the 30 sceonds are used. The frequency distribution for each page of a channel is
obtained by averaging its 11 distributions. The band activity is then the average of the
amplitudes of the activity within the frequency range of the corresponding band. The

frequency ranges of the various bands are defined in Table-2.1.

Band Titles Delta Theta Alpha Total
Frequency Range(Hz) 1.17-3.13 3.52.7.03 7.42-13.28 1.17-13.28

Table-2.1 Frequency ranges of different activity bands.

The total band calculated here spans only up to 14Hz although the frequency of
genuine cerebral rhythms can be as high as 50Hz. The reason behind such a narrow band
will be discussed in the section on Artifact Rejection. Once the “activity™ of the EEG is
computed. each channel is associated with four average amplitudes corresponding to the
four frequency bands for every page of the record. The activity values for a frequency
band are then plotted against time as a ‘band array’ for each channel. Activity
computation by ECLIPSE reduces 6 hours of raw EEG data from 60MB to about S00KB.
2.1.2 Artifacts

Artifacts are frequent and often intractable during long-term EEG recordings in the
ICU since the prime concern there is the support of patient’s life and. particularly in the

early hours after surgery. many procedures both diagnostic and therapeutic are in
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progress. The effect of these artifacts on computer analvsis is guite sertous and their
. rejection is essential for authentic interpretation of the recording.

One common type of artifact is 60Hz power artitact. which s due o interference from
nearby equipment or the ground loop. This 60Hz artifact also has harmonics at 120Hz,
180Hz. ete.. Since the signal is digitized at 200Hz and the analog anti-aliasing filter has
not completely eliminated the frequency components above 100Hz, the activity at 120Hz
aliases and appears as an activity peak at SOHz and 180Hz acuvity aliases as 20Hz. The
20Hz artifact contaminates the beta band activity. Figure-2.2 illustrates 6 seconds of an
EEG with 60Hz artifact most prominently visible in the left posterior head regions

(channel p3-cl).
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Q- PY Py

"'v'q\-u".\"
20 HZ Artifact

P3-01 WWWM“
F4.C4 WW’\[MM\‘WMW-\/\ S VADW
€4 Pa P A AR e A A e T e el A TN

P02 e

m b P\ A L A VA
T AN A, [V

-

0 1 2 3 4 5 6 wee

Figure-2.2 Six seconds of an 8-channel EEG recorded by using “little
H™ montage. Channel P,-O, contains 60Hz artifact.

Another important source of artifact is patient movement. including body movement.
contraction of the scalp muscles. blinking. chewing. coughing. swallowing and

. involuntary myoclonic jerks. Muscle contractions due t0 chewing. coughing and

18
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swallowing produce broad band activity referred to as the Electromyogram (EMG) while
the movement of the eyeball produces another kind of activity called Electro-occulogram
(EOG). which is caused by the fact that the eveball is an electrical dipole. Both EMG and
EOG are quite useful for behavioral studies. however. these rlivthms are not of interest
and contaminate the EEG when monitoring cerebral function. The movement of the
conductors that carry current from the scalp electrodes to the amplifier. caused by the
body movement, can induce an electric current due to the eartin’s magnetic field. This
induced current is comparable to the currents of cerebral origin and therefore
contaminates the EEG signals. These patient-generated artifacts are usually spiky.
containing sharp elements and very large amplitudes, and impulsive, not lasting for more
than a few seconds in duration. Figure-2.3(a) illustrates an EEG contaminated by patient-
generated artifact caused by the movement of the conductor of electrode P; and Figure-
2.3(b) shows the total band activity of this EEG where the very large amplitude spiky
components correspond to the patient generated artifact shown in (a).

Artifact due to poor electrode contact is quite inevitable during a long-term recording
and an example is illustrated in Figure-2.4(a). During long-term EEG recording, the jelly
that fills the gap between the electrode and the scalp to make electrical contact could dry
up—énd this may impair the contact. Artifact due to poor contact is characterized by low
frequency and moderately high amplitude. Such artifacts however, are not impulsive and
remain unti] the electrode is glued again. Figure-2.4(b) shows the total band armray

corresponding to the EEG with poor electrode contact depicted in Figure-2.4(a).
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Figure-2.3 Patient-gencrated artifact. (a) Six seconds 8-channel EEG: artifact can be scen
in channels C,-P, and P,-O, due to the movement of the conductor of common electrode
P,; (b) The total band activity of channel P,~O, in which the sharp spike corresponds to the
artifact shown in (a).

2.1.3 Artifact Rejection

As disciussed earlier, the aim of this diagnostic tool is to determine the gross state of
the EEG on the basis of its frequency composition over several hours. It is quite
unnecessary, therefore, to identify and reject specific artifactual EEG waves. Artifact
identification and rejection from the frequency band arrays would be sufficient for our

purpose. It is important to realize that artifact identification can be done visually only by
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Figure-2.4 Sustained artifact. (a) six seconds 8-channel EEG: artifact is observable in
channels C;-P, and P,-0, due to the poor electrode contact; (b) The total band arrays
of channel P;-0, in which the marked activities correspond to the artifact shown in (a).

examining the raw EEG record in the time domain. Suppression of artifacts, however, can
be done in the frequency domain.

The frequency range of background EEG of cerebral origin is 0-30Hz. Faster rhythms
of cerebral origin up to 50Hz may be present but usually correspond to seizure activity.
The beta frequency band (14 to 30 Hz) is commonly affected by medication,
administration of anesthetics and 20Hz alias of 60Hz noise. To remove the effect of the
non-pathological factors, the 60Hz artifact and its harmonrics, the total band analyzed is

from 0-14Hz. Since most background EEG abnormalities manifest themselves in the
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delta and theta frequency ranges. such a definition of the total band is not likely to distort
the interpretation in a significant way.

To reject the artifact due to patient movement and poor electrode contact. a filter
capable of rejecting both impulsive very high amplitude artifact and sustained moderately
high amplitude artifact is required. Today. linear filters are used extensively. However,
they fail to perform well with both the impulsive noise component and the sustained
noise component. A non-linear filter called the median filter has been used successfully
for the impulsive noise component. It replaces the value at each point by the median of
the signal values in some finite neighborhood about that point. The performance of a 5-
point median filter on an EEG with impulsive artifact and on one with sustained artifact is

illustrated in Figure-2.5.

(d)

0 1 2 3 4 5 5 nour

Figure-2.5 Artifact rejection by median filter. (a) The total band array of an EEG
containing impulsive artifact; (b) The band array shown in () filtered by a S-point
median filter; (¢) The total band array of an EEG containing sustained artifact; (d)
The band array shown in (¢) filtered by a 5-point median filter.
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It is clear that the median filter is efficient at rejecting impulsive noise components.
but fails to remove the sustained artifact. Sustained artifacts in EEG recording can
continue over several hours. The median filter fails to recognize them when the entire
neighborhood is artifactual and similar. Therefore a hard threshold should be used.

A median filter with hard-limiter threshold performs well in the rejection of sustained
artifact. The data was first filtered with a 5-point median filter. If the median of any
window of total band activity is greater than a threshold. then the activities in all
frequency bands of that particular epoch for that channel are replaced by the respective
average band activities averaged up to that point in time. The choice of the threshold is
quite critical for the performance of the filter. Extensive EEG review indicates that
genuine fluctuations of cerebral origin in frequency band activity are rarely greater than
25% of the averaged background activity while the amplitude of most artifacts is at least
1.5 times the average EEG background. Therefore, the threshold chosen was 1.5 times the
average EEG activity. Figure-2.6 depicts the performance of a median filter with a hard-
limiter. Clearly, the hard-limiter threshold rejects both sustained and impulsive artifacts
quite effectively. It needs to be mentioned here that the user should ensure that at least
several minutes of “clean” EEG are present at the beginning of the recording so that the
filter is able to recognize the artifact by comparison with this reference.

2.2 Feature Selection
Once artifacts have been suppressed or rejected, the relevant features that will provide

information about the EEG background can be extracted. From the discussion on

abnormal EEG pattern, it is apparent that the nature of background EEG activity is
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Figure-2.6 Artifact rejection by median filter with hard-limiter. (a) The total band
array of an EEG containing impulsive artifact; (b)The band array shown in (a)
filtered by a 5-point median filter with hard-limiter of 1.5 avg: (c) The totai band
array of ar EEG containing sustained artifact; (d) The band array shown in (c)
filtered by a S-point median filter with hard-limiter of 1.5 avg.

primarily assessed on the basis of four aspects. namely. amplitude. Left/Right symmetry.
Anterior/Posterior gradient and variability of the EEG.

To study spontaneous vanability over time and assess long-term trends of the EEG. it
is necessary to analyze an extended EEG record. However, to be most useful, it is
important to obtain information about an abnormal EEG pattern as early as possible,
Taking both these factors into consideration. it was decided that the classification of the
EEG would be done based on 6 hours of recording. The mathematical derivations of the
quantitative features extracted from an EEG prior to classification are discussed below.

2.2.1 Measure of Amplitude

A depressed EEG record is characterized by low amplitude values, which can be
reflected in the total band activity of the EEG., as depicted in Figure-2.7. Since sustained

rather than impulsive amplitude abnormalities are evaluated, the amplitude measure is
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mathematically derived as the logarithm of the average over a 5-minute period of the total
band activity. In a band array. this represents the logarithm of the average of 10 points
since basic calculations arc made every 30 seconds. The reason for using the logarithm of
the average rather than a simple average is explained in the section on statistical analysis.
As a total. an amplitude measure extracted every 5 minutes for 8 channels over 6 hours

amounts to 12*6*8 or 576 values.
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Figure-2.7 Amplitude depression. (a) Three seconds S8-channel EEG with

normal amplitude; (b) Three seconds 8-channel EEG with depressed

amplitude;(c)Total band activity of channel P;-O, of the EEG shown in (a);
2.2.2 Measara@efilbeft/Riglnly Staiamwediy-O, of the EEG shown in (b)-

25



Chapter 2 Dara Pre-processing and Fearure Extraction

Figure-2.8 illustrates two EEG scctions from two patients. one with Left-Right
symmetry and onc without. Their total band activities are shown in Figure-2.9. A simpie
ratio of activity between corresponding channels of the left and right hemispheres could
quantify the level of symmetry. Since a ratio value closer to “17 implies a symmetrical

EEG pattern. the extent of asymmetry is proportional to the absolute difference between |

and the ratio value. The formula for the Left/Right symmetry is given as:

Averaged activity of channel in left hemisphere

R =log(

Here, averaged activity represents averaged total band activity over a S-minute period.
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Figure-2.8 Left-Right symmetry. (a) Three seconds S8-channel
EEG with Left-Right symmetry; (b) Three seconds 8-channel
EEG of asymmetrical. The activity of left hemisphere is

depressed.
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Figure-2.9 Total band activities of the EEGs in Figure-2.8. (a) (b) are
the activities of channel P,-O, and channel P,-Q, of the EEG shown in
Figure-2.8(a): (¢) (d) are the activities of channel P,-Q, and channel P-
O, of the EEG shown in Figure-2.8(b).

Four Lefi/Right symmetry measures corresponding to the four pairs of channels
symmetrically located in the two hemispheres are extracted every 5 minutes of an EEG
record. A quantified 6 hour EEG record is thus associated with 72 Left/Right symmetry
values for each of the four channel pairs, or 288 values.

2.2.3 Measure of Front/Back Differentiation
As explained in chapter 1, a normal pediatric EEG record is associated with a gradient

in amplitude of activity in the low frequencies with amplitude decreasing in the posterior
to anterior direction. This is referred to as Front/Back differentiation. Figure-2.10
illustrates two EEG records and their delta band activities, one with Front/Back
differentiation and one without. A ratio of the delta band activity of the posterior channel
to that of the anterior channel of the same hemisphere reflects effectively the extent of

their differentiation. Two such measures are extracted for every EEG record
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Figure-2.10 Freont/Back differentiation.(a)Three seconds EEG with F/B dif.; (b)Three seconds EEG
without F/B ¢if.; (¢ }(d)Delta band activities of channel F;-C, and channel Py-O, of the EEG shown
in (a); (c)}{N)Delta band activities of channel F,-C, and channel P;-0, of the EEG shown in (b).

corresponding to the two hemispheres. The parameter is derived using the formula given

below.

Averaged delta activity of posterior head region )
Averaged delta activity of anterior head region of the same hemisphere””

R=log(
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Averaged delta activity in the formula above corresponds to an average over a 3-
minute period. For each hemisphere. the Front/Back differentiation extracted from every
6-hour EEG record is described by 72 values. The total number of values is therefore 144,

2.2.4 Measure of Variability

This measure assesses the extent of spontaneous cycling in an EEG record. The delta
band activity of the posterior channels of the two hemispheres is most reflective of a
cycling EEG.

Figure-2.11 illustrates three posterior delta band activities subsequent to artifact
rejection, one with spontaneous variability (a) and two others (b. c) without. Spontaneous
alteration in Figure-2.11 (a) appears in the band array as humps that are significantly
higher in the amplitude and extend over a substantial period. Figure-2.11 (c ) shows an
absolutely flat band activity with no big humps. A solitary large hump such as the one
presented in Figure-2.11 (b) is not representative of variability either. Therefore to
quantify variability, the number, duration and height of the humps are to be quantified.

The band array signals can be considered as alternating signals superimposed on a DC
signal, the DC component being the averaged band activity over the entire duration. By
subtracting the DC component. the quantification of the number. height and duration of
the humps can be accomplished by computing the zero-crossing rate and the energy of the

alternating signal.
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Figure-2.11 Delta band activity of the left posterior channcl of three EEGs. (a)

Showing a good number of broad humps which implics a normal variability; (b)

Having only one big hump which represents an abnormal variability: (c ) Showing an
absolutely flat activity which indicates an abnormal variability;

Figure-2.12 (a) shows a delta band array of an EEG record. having continually
increased amplitude along the entire duration. Such a continual increase is often
encountered in patients after cardiac surgery. The line illustrates the position of the DC
component. It is apparent that, by simply subtracting the DC component. the information
about the spontaneous humps can’t be acquired by calculating the zero-crossing rate and
energy of change, because of the linear amplitude trend. In this case. the linear trend can
be fitted and subtracted from the band array instead of the DC component to remove its
infiaence on both zero-crossing rate and energy of change. as depicted in Figure-2.12 (b).
It needs to be mentioned here that for the recordings which have no amplitude trend
(increasing or decreasing) the fitted linear trend is equivalent to the DC component.

As the name implies, the zero-crossing rate is a count of the number of times the
signal crosses the time axis after subtraction of the trend. which reflects the number of

humps. Since we are only interested in the humps that extend over a substantial period. a
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3-point linear averaging filter is used to smooth out the humps in the band array that lasts

for less than a couple of minutes.

0 1 2 3 4 5 5 houe
A{318)
19U
RIATA] 'l:ﬂd e @
HY3$)
rx
) 1 2 3 P 5 6 nour

Figure-2.12 The delta band activity of channel p3-ol of an EEG having continually
increasing amplitude along the six-hour duration. (a) The mean of the six-hour
activity doesn’t represent the base around which the EEG activity alternates; (b) The
lincar trend of the six-hour activity represents the base around which the EEG
activity alternates.

As mentioned before, not only the number but also the height and duration of the
humps need to be quantified. The extent of the humps is ascertained by computing the
energy of change of the alternating signal using the formula below:

720
2%}

_ in]
E= log([Average band activity]* )

Where “x.” denotes the amplitude of each point of the band array after the fitted linear
trend has been removed from it. There are 720, 30-second epochs in 6 hours.

From the discussion above, it is evidert that in order to quantify variability of an EEG,
both zero-crossing rate and energy of change are essential. A zero-crossing rate and an

energy of change measure are extracted from the posterior channel of each of the two
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hemispheres for delta activity of the 6-hour EEG record and used for further
interpretation.
2.3 Statistical Analysis

Following feature extraction. the 300KB activity file is reduced to a set of 1012 data
values. 376 of which describe its amplitude. 288 describe the Lefv/Right symmetry, 144
describe the Front/Back differentiation and 4 describe the vanability of the EEG. For the
quantitative interpretation of different features of the EEG. these values need to be
reduced further. Unfortunately. the EEG expert is unable to help with the definition of the
quantitative boundaries of the normal and abnormal categories for all of the measures.
since all these values are extracted from the frequency domain. Therefore it would be
preferable to provide the various measures of the EEG as quantitative assessments
indicating normality of the corresponding features. rather than as a series of numerical
estimates that would be difficult for a clinician to interpret.

Interpretation of quantitative EEG measures. as described above. is usually performed
by statistical analysis comparing results to values obtained from a normal control
population. The selection of a representative normal control population is crucial for good
system performance. For this project, since it is impractical to get real “normal™ subjects
to undergo long-term EEG monitoring in the ICU. a group of ten post-cardiac surgery
patients varying from six months to 12 vears old with normal post-operative long-term
EEG recordings and normal short-term neurological outcome were carefully chosen to
form the control population.

2.3.1 Population Distribution

L)
2
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As seen in previous sections, all the features extracted from the frequency band arrays
of the EEG are defined as the logarithm of a certain estimate rather than the estimate
itself. The distribution of the estimates such as average amplitude do not follow the
characteristics of a normal distribution. This may either be due to the biological
mechanism generating the EEG or due to rigid boundaries associated with the estimates
themselves. To facilitate transformation of these distributions toward the normal
distribution. the logarithm of the estimate is used as the parameter definition (Gasser et
al., 1982).

Amplitude Data values from the ten patients of the control population amounting to
2016 points are used to construct frequency distributions of amplitude for each of the
eight channels, as illustrated in Figure-2.13. Skewness and kurtosis of these distributions
are similar to that of the normal distribution. Averages and standard deviations (STD) of
the various distributions appear in Table-2.2.

The last two amplitude measures represent the central temporal head regions. The
inter-electrode distance for these two channels is twice that of the other channels and

hence the amplitude averages are higher than those of the other channels.

Head Region (Channel) Average STD.
Left Anterior 443 0.37

Left Central Parietal 441 0.31
Left Posterior 4.62 041
Right Anterior 448 0.33
Right Central Parietal 4.39 0.32
Righ: Posterior 4.63 0.36
Left Central Temporal 5.10 0.33
Right Central Temporal 5.12 0.32

Table-2.2 Average and standard deviation values of the
eight amplitude distributions of the control population.

33



Chapter 2 Data Pre-processing and Feature Extraction Thesis

Left Anterior Right Anterior

Left Central Parietal

Right Posterior

Left Central Temporal Right Central Temporal

Figure-2,13 Distributions of the eight amplitude
measures of the control population.
Symmetry Data values from the same ten patients are used to construct the four
frequency distributions for the Left/Right symmetry measures. These distributions alse
are close to normal distributions, as shown in Figure-2.14. The averages and standard

deviations of the four distributions are presented in Table-2.3.
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Figure-2.14 Distributions of the four symmetry
measures of the control population.

Head Region Average STD.
Anterior -0.018 0.049
Central Parietal 0.009 0.056
Posterior -0.002 0.083
Central Temporal -0.008 0.022

Table-2.3 Average and standard deviation values of the
four symmetry distributions of the control population.

The distribution from the channel pair that monitors the central-temporal head region
has a much smaller range as compared to the other distributions. The reason is that the
two channels of this pair have a common electrode, C,, and the difference in activity
between hemispheres is therefore much less, when compared to the other channel pairs.

Front/Back Differentiation As discussed in the section on abnormal EEG, the normal
pediatric EEG is reported to present significant Front/Back differentiation when the
patient’s age falls in the range of 4-month to 10-year. Beyond that range, this Front/Back
differentiation is unimportant. Among the ten control subjects, the EEG recordings of the

patients whose age is in the above range are selected to form the control distributions for
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the Front/Back differentiation. Skewness and kurtosis of these distributions consisting of
1800 data values are also similar to that of the normal distribution. The distributions and

the statistical values are presented in Figure-2.15 and Table-2.4 respectively.

Left Hemisphere Right Hemisphere

Figure-2.15 Distributions of the two Front/Back differentiation
measures of the control papulation.

Hemisphere Average STD.
Left 0.13 0.11
Right 0.11 0.12

Table-2.4 Average and standard deviation values of the two
Front/Back differentiation distributions of the control population.

Variability Unlike the other three measures that are extracted once every five minutes,
the variability parameters are extracted only once in six hours. Hence a very small sample
set is available to form the control distributions. Figure-2.16 illustrates the distributions
constructed by 28 values from the delta band activity. Table-2.5 lists the average and

standard deviation values of these distributions.

Parameters Mean STD.
Zero-Crossing Rate: Left 17.72 3.17
Zero-Crossing Rate: Right 17.96 3.19
Energy Exchange: Left -3.64 1.17
Energy Exchange: Right -3.79 1.25

Table-2.5 Average and standard deviation values
of the four variability distributions of the control
population.
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Zero-Cressing Rate Energy Exchange

Figure-2.1$ Distributions of the four variability
measures of the control population

2.3.2 T-Statistic

Eighteen variables are measured from a six-hour EEG recording. eight for amplitude.
four for symmetry. two for Front/Back differentiation and four for variability. Each of the
eight amplitude measures and six ratio measures is associated with a distribution
composed of 72 data values. The amplitude and ratio distributions of a new “normal” six-
hour EEG could be expected to be quite similar to the corresponding distributions of the
control population. An abnormal EEG, on the other hand, would have distributions quite
different from that of the control group.

A measure of the degree of similarity between the distributions of the control
population and the EEG being analyzed would give an estimate of the normality of the
feature concerned. A t-statistic measures the level of similarity between distributions by
comparing their méans and may be used to compare the distributions of each new six-
hour EEG with the control population. Normally, the t-test statistic can be applied only to

distributions that satisfy two conditions: independent samples and normal distributions.
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For the problem at hand. the two samples arc absolutely independent of cach other since
they are from different patients and do not influence each other. The distributions of the
control population obtained for amplitude, symmetry and Front/Back differentiation are
within limits of a normal distribution as discussed ecarlier. The corresponding
distributions of most patients have also been found to conform with the characteristics of
a normal distribution. The t-statistic can therefore be applied to obtain the information
about similarity of these distributions.

Suppose that independent random samples of sizes of n, and n, arc taken from two
normally distributed populations with means u, and u, respectively. Let x; and s
represent the sample mean and standard deviation of the samples from the population
with mean p, and x, and s, the sample mean and standard deviation of the sample from

the population with mean p,. Then the random variable

(X, = X)) = {4, = i)

-

has approximately the t-distribution with degree of freedom given by

df = 1(3,2/)1“,+s§{n2)~
S in) (S/n)

n -1 n,~1

rounded to the nearest integer. The t-curve is symmetric about 0" and extends
indefinitely in both directions. It approaches a normal curve as the number of degrees of
freedom gets larger.

To test the similarity of the means of two populations. we can set a hypothesis Hy:

1=, The random variable



Chapter 2 Data Pre-processinge and Feature Extraction Thesis

is called a t-statistic. A t-statistic value of 0 implies that the hypothesis is absolutely true
and the greater its absolute value the smaller is the probability that the two means are
equal.

Subsequent to feature extraction from a new EEG to be interpreted. the means and
standard deviations of the 14 parameters (8 for amplitude, 4 for symmetry and 2 for
Front/Back differentiation) are calculated and the corresponding t-statistic values are
computed. If the t-statistic is greater than zero then the mean of the control population is
less than that of the EEG being analyzed. Simitlarly, if the t-statistic is less than zero the
mean of the control population is greater than that of the EEG being evaluated.

The range of t-statistic values extends from -0 to +e0. Its value represents the level of
normality of the measure associated with it. For amplitude, depression in EEG activity is
an abnormality and amplitudes greater than or equal to that of the control population
represent normal EEG. Therefore a t-statistic value greater than or equal to zero implies
amplitude normality for the corresponding amplitude parameter and the probability of
normality is assigned a value of 1.0. It has been observed that a t-statistic value less than -
100 indicates a very severe depression and is therefore assigned a 0.0 probability of
amplitude normality. Then the t-statistic value from -100 to 0 is linearly mapped onto a
probability range from 0.0 to 1.0. The probability of normality of an amplitude parameter

is thus defined as:
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1.0, 120
Py, =1(100+)/100,-100<r <0
0.0, +<-100

The symmetry parameters compare activity of the left hemisphere to that of the right
hemisphere. A t-statistic value of 0 for a symmetry parameter indicates that the EEG
being analyzed is symmetrical and is hence associated with a probability of normality of
1.0. On the other hand. a t-statistic valuc greater or less than zero implies that either left
side is more active than the right side or the right side is more active than the left side and
the EEG is asymmetrical. It has been observed that an absolute t-statistic value greater
than 80 indicates a very severe asymmetry and is therefore assigned a probability of
normality of 0.0. Thus the absolute t-value range from 0 to 80 is linearly mapped onto a

probability range of 1.0 to 0.0. as described below:

0.0. 1 <-80
Py, =5(80-1)/80,-80<r <80
0.0. r>80

In the case of Front/Back differentiation measures. a t-statistic value greater than or
equal to 0 indicates the front back ratio parameter of the EEG analyzed has a greater
mean than the control population and implies an equal or greater differentiation. This is
considered normal and associated with a probability value of 1.0. On the contrarv. a t-
value less than 0 indicates an insufficiency in differentiation in activity between posterior
and anterior head regions. Once again it was observed that a t-statistic less than -50
denotes a very severe lack of differentiation and the probability of normality is set to 0.0.

The probability of normality of Front/Back differentiation is described as:
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1.0, 1200
P, =3(50+1)/50,-50 < <0
0.0. t<£=50

2.3.3 Assessment of Variability

Unlike the amplitude and ratio parameters which are summarized by data
distributions for each new EEG record. variability is characterized by four values each
one summarizing a different aspect of variability. the zero-crossing rate and energy of
change of the delta activity of the two hemispheres. As it is not a distribution, the t-test
cannot be used to assess it. The data values themselves can be assessed by comparing
them with the corresponding distributions of the control population.

A measure of the relative standing of the data values within the distributions of the
control population may be treated as an estimate of the level of normality. For instance. a
zero-crossing rate greater than all sample points of the control population implies
normality in the zero-crossing rate and a value less than all sample points of the control
population implies abnormality. Such a2 measure could be arrived at by computing the z-
score of the parameter value.

Any normal curve is defined by its two parameters: p, the mean about which it is
symmetrical and o, its standard deviation. The percentage of the area that lies to the left
of a given value x compared to the total area under a normal curve gives a measure of the
relative standing of the data value x within this normal curve. This percentage value is
equal to the area that lies to the left of a value z under the standard normal curve (which,

by definition, has a mean of 0 and standard deviation of 1, and the total area under the
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(2) Normat Distribution
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Figure-2.17 Z-score transformation. (a) A normal curve with mean
of 1 and std of 2. The shaded area is 84% of the total area under
the curve: (b) The standard normal curve. The shaded area s 0.84,
Since the total arca under the standard normal curve equals to I,
the percentage of the shaded area is also 84%, as in (a).

curve is 1) where == x—;&. as illustrated in Figure-2.17, and can be read from a standard

table.

If we assume the four measures of the control population. two zero-crossing rates and
two energy exchanges. follow normal distributions, the z-score method described above
may be used to evaluate the normality of these parameters. Subsequent to computation of
the z-score, the two zero-crossing rate values and the two energy exchange values are
converted to four probability values of nomality.

2.3.4 Data Reduction

Following the statistical analysis described above. an EEG is characterized by 18
probability values of normality: 8 for amplitude, 4 for symmetry, 2 for Front/Back
differentiation and 4 for variability. An automated learning machine could be built to

learn the EEG classification knowledge based on these measures. However. the efficiency
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of such a system is dependent on the number of variables provided to it and is better if
fewer variables are input to the system, Therefore it would be useful to minimize the
number of variables provided to such a learning device.

For amplitude. the eight measures are probability values of normality based on the
measurement of the average of the total band activity of a six hour EEG on different head
regions. This average can also be performed spatially since depression in several channels
is worse than depression in only one channel. Therefore the eight probability values are
averaged to form one value which indicates the overall normality of the amplitude.
Similarly, the Front/Back differentiation measures corresponding to the two hemispheres
are averaged to provide evaluation of the normality of the Front/Back differentiation. In
symmetry. however, the situation is a little more complicated. Ordinarily. the neurologist
evaluates an EEG with one severely asymmetrical pair of channels as more critical than
one with several mildly asymmetrical pairs of channels. The simple average may
therefore not be enough to represent the overall evaluation of the symmetry. Here, the

overall estimate of normality of the symmetry is achieved by

1
(‘PSc\' +§Z P{)rhrr)

1|

})()wmﬂ =

Where Pgpy is the probability value of the most asymmetrical channel pair and Pyhep is
the value of the other three pairs of channels.

An EEG is said to be variable if it is characterized by a good zero-crossing rate AND a
good energy of change. The normality of variability is therefore indicated by the

magnitude of the lower of the two parameter values as
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Puor=min{probability of normality of zero-crossing rate,
probability of normality of energy exchange).
The two variability parameters corresponding to the two hemispheres are then averaged
to provide an overall measure of the variability of the EEG.

Front/Back differentiation is a feature largely influenced by the patient’s age. A
probability value of normality of 0.0 for the Front/Back differentiation of an EEG record
would be associated with normal differentiation if the patient is younger than 4 months or
older than 10 vears. Therefore, it would be preferable to transform these probability
values based on the patient’s age before entering the next step. Figure-2.18 illustrates a
significance function of Front/Back differentiation. Sfage). related to the patient’s age.
which is established upon the project expert’s interpretation of published data (Slater and

Torres. 1979). The transformation is described by:

1.0 age <4_month
Pow = ]—Puu / S(age)-ll 0" 4_month<age <10_yvear
1.0, age>10_vear

Where [ ], , means that the value inside | ] would be set to 1.0 if greater than 1.0.

As mentioned earlier, the work described in this chapter is based on a former study of
Pasupathy (1994). Several modifications were introduced to improve system
performance: (1) The wend instead of the DC component was subtracted from the
frequency band array in order to calculate the zero-crossing rate and the energy exchange
for time variability of the EEG: (2) When reducing the four probability values of

symmetry to one, more weight is given to the most severely asymmetrical channel pair
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Figure-2.13 Significance of the Front/Back
differentiation based on the patient's age

instead of calculating the average: (3) The age factor was introduced to transform the
probability value calculated for Front/Back differentiation based on the patient’s age.

The data processing and feature extraction methods described in this chapter are
summarized as follow. Firstly. the raw EEG is split into 30-second epochs. each of which
is called a “page’. The frequency band arrays are then calculated for each six-hour EEG.
The frequency distribution for each page of a channel is computed by Fast Fourier
Transform. For each frequency band, an activity value is calculated for each page of a
channel from the frequency distributions. Therefore, a particular band array of each
channel of a six-hour EEG contains 720 values corresponding to 720 pages. Then, these
frequency band arrays are filtered by median filter with a hard-limiter to reject or
suppress artifacts. Thirdly. eighteen measures are calculated for the four features from the
frequency band arrays. 8 for amplitude, 4 for symmetry. 2 for Front/Back differentiation
and 4 for vanability, For a six-hour EEG. each of the 14 measures for amplitude,

symmetry and Front/Back differentiation gives a distribution composed of 72 values after
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a 5-minute average. whereas onlyv one value 1s calculated for each of the four variability
measures. Next, statistical analysis methods (1-statistic or z-score) are used 0 compare
these distributions and values with the distributions of the control population and produce
cighteen probability values of normality for the cighteen measures. Finally. these
eighteen probability values are further reduced to 4. and a six hour EEG is characterized
by 4 probability values of nommality of the amplitude. symmetry. FrontBack
differentiation and variability. This information is to be further interpreted to classify the
EEG as being normal. mildly abnormal. moderately abnormal or severely abnormal. This
is done by building an automated learning machine and will be discussed in the following

chapter.
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Chapter 3
Knowledge-Based
Expert System

This chapter describes the method used to build a knowledge-based expert system
which accepts the four indices, amplitude. symmetry. Front/Back differentiation and
variability measures of an EEG as inputs. and then classifies the EEG as one of the four

categories, normal, mildly abnormal, moderately abnormal or severely abnormal (Figure-

3.1).
—————t /’-- ‘\\\ I’—- ‘\\
/ LEARNING ‘s’ KNOWLEDGE °,
]
| \_STARTEGY /“™\  BASE s
SYSTEM Seeao " [‘--_-—‘ . SYSTEM
INFUT iV OUTPUT
' ! INFERENCE
{ 1
1
| \‘ ENGINE ) ’

Figure-3.1 A knowledge-based expert system serving as an EEG
interpreter.
Such a system should mimic the neurologist’s criteria for classification. In other
words, it should have the ability to learn the knowledge embedded in the neurologist’s

decision-making about the level of EEG abnormality based on its various characteristics.
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This systern should also be able to organize the learned knowledge in a proper way and

perform the classification task under a suitable inference engine.

3.1 Machine Learning from Examples

The ability to learn is one of the most fundamental attributes of intelligence. which
makes it an important concern for cognitive psyvchology. artificial intelligence.
information science. pattern recognition. education. and related disciplines. The field of
machine learning. which crosses these disciplines, studies the computational processes
that underlie the leamning in both human and machines.

When starting a specitic learning problem. an important consideration is the degree
of supervision available. In some cases. a tutor or domain expert gives the learner direct
instructions about how things should be done or some kind of feedback about the
appropriateness of its performance. Such supervised learning problems contrast sharply
with unsupervised learning tasks. in which these instruction or feedback are absent. The
less supervision the expert can provide, the more inference work the leamer should
perform. Below are listed several strategies which exhibit a trade-off in the amount of
effort required of the learner and of the teacher:

» Rote learning and direct implanting of new knowledge.
* Learning from instruction.

= [earning by analogy.

* Learning from examples.

* Learning from observation and discovery.
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Direct implanting of knowledge into a system needs a well-developed and highly-
organized knowledge source, such as a spelling checking system. in which the knowledge
is implanted directly from a dictionary. Evidently, such a knowledge source would not be
available for classifying background EEG signals.

Both learning from instructions and learning by analogy need the tutor’s direct
instructions, which are precise and quantified knowledge pieces that teach the leamer to
perform a task. Since neurologists commonly evaluate EEGs through visual
interpretation, and classification criteria are neither precise nor quantified. it is not
feasible for the neurologists to provide this kind of direct instructions for the learning
process.

Learning from observation and discovery is sometimes named unsupervised learning
due to the lack of teacher. Normally it achieves the learning purpose by clustering the
data into similarity groups. Such unsupervised learning problems are by themselves hard
to learn and should not be used if any form of supervision is available.

Another way to teach a systemn how to perform a task is by presenting it with positive
and negative examples of the concept to be learned. The leamner induces a general concept
description that describes all of the positive examples and none of the counterexamples.
This strategy is termed learning from examples. For many learning issues, examples, as
highly specific pieces of knowledge, can be designed for the tutors to provide their
supervision smoothly and lead the leaming strategy to an appropriate point between the

two extremes of effort that learner and tutor should give. As we can see, leaming from
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Figure-3.2 The structare of the examples.

examples is a more fitting scheme for our learning issue and the proposed example’s
structure is depicted in Figure-3.2.

For each of the samples, a six-hour EEG record is quantified by four probability values
of normality varying from 0.0 to 1.0 calculated for the four features by the computer. To
simplify further interpretation, we transform these probability values to integers from 0 10
100 by multiplying them by 100. The neurologist is asked to classify each of the four
features and the overall EEG into one of the four categories: normal (NOR), mildly
abnormal (MIL), moderately abnormal (MOD) and severely abnormal (SEV). as
illustrated in Figure-3.2. In total, 188 six-hour EEG sections were acquired from the long
term EEG recordings obtained in the ICU of the Montreal Children’s Hospital and
prepared to serve as the examples. Suitable automated techniques can be developed to

extract the required knowledge implied in these examples. From Figure-3.2 we can see
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that the entire learning system may include two parts. The first part is designed to
transform the computer’s measures for the four attributes into the doctor’s interpretation
of these attributes. Since the quantified measures indicate the normality levels of different
attributes, with 100 implying complete normality and 0 implying maximal abnormality. it
is reasonable to assume that these measures should be highly correlated with the doctor’s
interpretation of these features if the feature extraction methods are effective. Table-3.1
lists the correlation values calculated by using 4,3.2 and 1 to represent the doctor’s
classification of normal. mildly abnormal. moderately abnormal and severely abnormal.
The correlation levels of amplitude. symmetry and Front/Back differeniiation are quite
high and therefore the feature extraction methods of these attributes are efficient. On the
contrary, the correlation value of variability is seriously low, which indicates that the
feature extraction method used for it does not accurately reflect the doctor’s assessment
and needs to be revised. The transformation approach of variability is therefore
distinctive from that of the other three, and the details will be discussed in section 3.2 and
3.3.4 respectively. The second part of the system, which is described in section 3.3, is
implemented to evaluate the effects of different interpretations of different attributes on

the final classification.

Attributes Amplitude Symmetry Differentiation Variability

Correlation 0.89 0.82 0.86 0.32

Table-3.1 Correlation values of the extracted probability of normality
values of the examples with the doctor’s evaluation for them.

When the neurologists evaluate EEG recordings, they often have some difficulty

deciding which one of two adjunct classes an attribute belongs to. Therefore they may
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give an interpretation like “the overall EEG is mildly to moderately abnormal™. After
. discussing with the ncurologists. we decided to accept the three intermediate classes of
normal-mild. mild-moderatc and moderate-severe. We are thercfore dealing with a total

of seven classes of abnormality.

3.2 Fuzzy Membership Learning

The aim of this step is to find the relationships which lead the precise probability value
of normality calculated for each of the first three features to a classification similar to that
of the expert. [f a six-hour EEG section has a computer output for amplitude of 75. what
would the expert say about it’s amplitude. normal or mildly abnormal? And what is the
probability that it is called normal? How can we model the computer’s intrinsic precision

together with the human’s vague knowledge about EEG?

. 3.2.1 Fuzzy Sets Theory

Most of our traditional tools for formal modeling. reasoning and computing are crisp.
deterministic and precise in character. But in many areas such as expert system,. pattern
recognition and artifictal intelligence, two complications arise (Zimmermann. 1983):

e Real situations are very often not crisp and deterministic and they cannot be
described precisely.

e The complete description of a real system often could require far more detailed
data than 2 human being could ever recognize simultaneously. process and
understand.

Zadeh, who established the fuzzy set theory. writes (1965):™ The notion of a fuzzy set

. provides a convenient point of departure for the construction of a conceptual framework
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which parallels in many respects the framework used in the case of ordinary sets. but is
more gencral than the latter and. potentiallv. may prove to have a much wider scope of
applicability, particulariy in the fields of pattern classification and information
processing. Essentially. such a framework provides a natural way of dealing with
problems in which the source of imprecision is the absence of sharply defined criteria of
class membership.”

At a2 more elementary level, one can consider fuzzy set theory to be a generalization of
ordinary set theory: the theory of collections of things. A fuzzy subset of some universe U
is a collection of objects from U/ such that with each object is associated a degree of
membership. The degree of membership is always a rcal number between zero and one.
and it measures the extent to which an element is in a fuzzy set, or in ordinary sct
theoretic terms, it measures the plausibility of an element being in a particular set.

3.2.2 Construction of Membership Function

The theory of fuzzy sets provides a strict mathematical framework in which vague
conceptual phenomena can be precisely and thoroughly studied. In this framework the
computer's precise output may be irterpreted in the terms of fuzzy propositions by means

of membership functions.

Interpretation_of Membership  When choosing the method for constructing a
membership function, the interpretation of membership is of utmost importance. The
most common and well-studied is a probabilistic interpretation based on the notion of
frequency probability (Borisov et al., 1982). A frequency probabilit;-, P(4) is a number

around which the frequency of the occurrence of the event 4 V,(4)=K,(A)/N
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oscillates, where K (.)is the number of occurrence of . in N trials. By definition.
P(A)y= Elim Vi(A). The membership function of the clemenis u<l in the set S is
identificd with the probability density u, (1) = P(x,(u) =1} = Py (1), where

l.---ueS
Q.--uegS

Zs{u) = {
Furthermore. subjective probability (Raiffa. 1968). deterministic (Allen. 1974). and
possibility-oriented (Borisov et al.. 1982) interpretations of membership are also studied

in depth and widely implemented.

Basic Methods of Constructing Membership Function Two groups of methods of

constructing the membership function of a fuzzy set based on expert estimates can be
identified: direct and indirect (Blishun. 1989).

Direct methods are characterized by the fact that the expert directly assigns the rules of
determining the values of 2 membership function which characterizes the notion. Direct
methods are used as a rule for describing notions which possess measurable properties
such as height, weight and volume. In this case it is convenient to assign values of
degrees of membership directly. Methods based on a probabilistic interpretation of
membership function u,(x) = A (). i.e. as a probability that the object usU will be
assigned to a set which characterizes the notion S are also viewed as direct. A direct
assignment of membership may be biased. For example. there is a subjective tendency to
shift the estimates toward the end-points of a scale. Hence. direct measurements based on
direct determination of membership should only be used in the case when the errors are

either insignificant or improbable.
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In indirect methods. the values of the membership function are selected in a manner
that satisfies a priori stated conditions. The e¢xpert information is only an initial
information that needs further processing. Additional conditions could be imposed on the
form of the information obtained as well as on the processing procedure. Indirect methods
are based on weaker requirements for the expert information. For example, the complex
notion “beauty”. unlike “length™ or “height”. possesses no universal measurable
properties which would define the concept. In these cases. only ranking measurements
based on pairwise comparisons of objects are used. Indirect methods are more time
consuming but are more robust to distortions in the initial information.

Moreover, the membership function may reflect the opinion of a group of experts as
well as the opinion of a single expert. so that at least four groups of methods arc
available: direct and indirect for a single expert. and direct and indirect for a group of
experts. For a detailed analysis of constructing a membership function, other
characteristics such as procedure of collecting the initial data. type of measurements and
type of membership scale are also used.

Practical Implementation For our problem, the amplitude, symmetry and Front/Back
differentiation of the EEG are measurable unlike the complex notion of “beauty™. In fact,
the measurement of these three features has already been done by using feature extraction
methods which act as the ruler in the case of “height”. and the probability values of
normality are just the result of the measurement. However, unlike the “height” case, the
EEG expert is unfamiliar with these results and therefore cannot assign the value of the

membership function directly. A mathematical model is established to automatically
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estimate the probability density function A («) from statistical data. which makes our
method of constructing the membership {unction lie somewhere between the direct and
the indirect group. Two EEG experts evaluated the EEG sections. But since their work is
not independent from cach other, it 1s better to consider it as a single expert case.

Assume that we want to build 2 membership curve for the fuzzy subset “normal
amplitude™. In this case. the computer's calculation for the EEG’s amplitude is defined as
the empirical objects U on an interval of [0. 100]. and the fuzzy subset notion “normal
amplitude™ is represented by S. Using the probabilistic interpretation based on the
frequency probability. the membership function is gz (#) = Pz, (1) =1) = P ().

Consider that there are 150 six-hour EEG sections used as training examples. each of
which has the data struciure shown in Figure 3.1. In order to build the membership curve
for "normal amplitude”. the data used here is the 150 computer calculations for EEGs’
amplitude _and the corresponding expert's classifications. The detailed algorithm for
evaluating the frequency probability P(7s(i)=1) is:

(a) Divide the range of the computer's value. from 0 to 100. into twelve bins: <0, 1-10.

10-20, 20-30. 30-40, 40-50. 50-60, 60-70, 70-80. 80-90. 90-99, >100.

(b) For every bin B; ( { € {0.11] ). calculate the number of training examples (AN})
having a computer's value of amplitude in bin B;. For example, if among 150
training examples. there are 17 for which the computer's calculations of amplitude
are in the range (80.90], then ANg=17.

(c) For every bin B; (i € [0.11] ), in the training examples which account for AN;.

calculate the number of events (4NN;) for which the expert's evaluation of
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amplitude is normal. If in the 17 examples above, 16 are classified as having

normal amplitude, then ANNg=16.

{(d) For every bin B8; (i € [0. 11] ). calculate its frequency probability (FPj) for

"normal amplitude™: FP, = ANN, /AN, . For the example above, £Pg of normal

amplitude = 16 /17 = 0.94.

Table 3.2 shows the AN ANN; and FP; calculated for "normal amplitude”.

B, <0 t-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-30 | 80-90

90-99 | >100
AN, | 4 3 5 4 | 21 13 | 20 13 14 17 T 5
ANN, | 0 0 0 0 3 5 10 3 2 16 1 15
FP, | 0.00 | 0.00 | 0.00 | 0.00 | 0.095 | 0385 | 0.5 | 0.615 | 0.857 | 0.941 | 1.00 | 1.00

Table-3.2 The AN, ANN, and FP; values caleulated for the
subset "normal amplitude”.

By plotting FP; against the twelve bins . we acquire the primitive membership curve

(Figure-3.3) for "normal amplitude”,

Since the calculated FPy(S) is the estimate of P(ys(i}=1) and equals P(ysfi)=1) when

the sample number N—c, noise is inevitably introduced into this primitive membership

curve. Therefore it is reasonable to expect a better membership function by using a well-

defined reference functicn to fit the primitive curve.
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Figure-3.3 Primitive membership curve for
“normal-amplitude”.

So far. many membership functions have been proposed. however. there is still no
svstematized conclusion about when and how to use which function. since the choice ot
the membership function is largely application dependent. We propose to use reference
functions of the S-tvpe. which resembles the normal probability distribution
(Rommelfanger, 1993). The most often used S-shaped function is the exponential

function

c
,US(N) = 1+ exp-—a(u—b]

in which & is the inflexion point . « is the slope of the function and ¢ is the scale.
Figure-3.4 shows the original membership curve and its fitted exponential function by
using Levenberg-Marquardt nonlinear optimization method (Press et al., 1992).
Unimodal functions. which will be encountered ip “mild abnormal™ or “medium
abnormal™ cases, can also be described by representing the increasing and decreasing part
separately. Figure-3.5 illustrates this optimization process step by step. First. separate the

unimodal curve at the point of maximum value: Second. fit the increasing part and the
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decreasing part separately: Third, combine the two fitted exponential curves as:

Up=Min[U;, Ug.
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Figure-3.4 Using exponential function to fit the
original membership curve
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Figure-3.5 Optimization steps for
unimodal functions.

For each attribute, we only construct the fuzzy membership functions for the four main
classes, not the three intermediate classes. The reason is that 18R training examples are
too small to construct membership functions for seven classes, and the embedded noise

may make the construction impossible. Therefore, any attribute evaluated as an
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intermediate class will be set to the nearest lower class. For instance. if the amplitude of
an example is evaluated as mild-normal. it would be transformed to mild to implement

this strategy.

3.3 Neural Network Learning

When a neurologist gives an overall evaluation for the EEG. a complex process takes
place in his or her mind. A moderatc amplitude may be given more weight than a
moderate Front/Back differentiation and may carry a larger influence on the final
interpretation, Again. he may think the normal svmmetry and mildly abnormal symmetry
are almost the same, but a severely abnormal symmetry will be totally different. Although
all these thoughts and processes obtained from the experience are stored in his mind. it is
nearly impossible to explain it verbally in a formal way. We need a system which can
automatically learn and encode these thought processes from the training examples and
then serve as a classifier.

Before going further. let us discuss a little the issuc of noise. Noise. as the probabilistic
introduction of errors into data, is inevitable in real-world applications. We call a set of
training examples noisy if a probabilistic process is involved in their generation. Noisy
training examples are sometimes contradictory. Commonly. a contradiction means that
there exist two training examples with the same inputs but different outputs. In our
situation, this contradiction has another kind of meaning. Assume there are two training
examples fE£;,C;} and {E3,C2} in which the four feature’s classifications of £ are better
than those of E2 so the final evaluation C; should be better than or equal to C».

otherwise there could be a contradiction. Unfortunately. our training data is very noisy

60



/i

Chapter 3 Knowledee-Based Expert Svstem Thesis

and these two kinds of contradiction can be found in our training instances. A
contradictory training data set is sometimes called nonseparable training examples due to
the fact that you cannot separate the class C; from C2 based on these training instances
regardless of which method you choose. Therefore when selecting the learning strategy.
the ability to handle noise and nonseparable training data becomes an important factor.

3.3.1 Why Use the Neural Network Models

Normally, researchers i learning from examples associate themselves with one of
three paradigms. inductive learning (especially rule induction). instance based leaming
and neural networks (Langley. 1996). In order to evaluate the appropriateness of these
three techniques to the task at hand, we have to ponder several detailed issues. such as
noise-tolerance. representation, ease of retraining and the amount of training data.

Rule induction employs a statistical evaluation function to incorporate attributes into
condition-action rules, decision trees, or similar logical knowledge structure (Langley.
1996). Most early leaming algorithms in the rule induction framework assumed that
every instance was correctly classified as positive or negative with respect to the desired
con.ept (Koloder et al., 1985). These strategies had almost no noise-tolerance and a
single contradictory example would throw the entire learning sequence into confusion.
New systems try to fix this drawback by labeling the instances with certainty factors or
setting production rules with different reliabilities. The possibility of implementing such
techniques in this EEG classifier, however. is verv poor because it is extremely difficult
for the neurologists to give certainty factors to their evaluations. On the other hand, since

the leamned knowledge is represented as production mleé, retraining procedure will
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include reorganization of these condition-action rules. and setting reliability 1o the rules
may make the burden of retraining even more serious.

Instance-based lcarning simply stores training instances in memory and applics them
to new situations through matching techniques. The basic requirement for an instance-
based system is a big. pattern-rich training database. For our EEG classification approach.
there are four description attributes cach of which contains four levels of interpretation.
so the total pattern number desired is 4¥=2356. But in practice. we only have 18§ training
instances. Subtracting the ones that have identical descriptions (their classifications may
be different). the remaining patterns reside in 30-40. only one-seventh of the total pattern
number. With such a small portion of patterns. it is difficuit to implement this paradigm
for the task at hand. Furthermore. instance-based learning also has problems in dealing
with the contradictory training examples. as discussed above.

Compared with rule induction and instance-based learning, neural network learning
has more advantages for our task. Briefly stated. a neural network model (also called a
connectionist model) consists of units that are arranged in layers and interconnected by
weighted connections, as pictured in Figure-3.6. These connections are used to pass the
data through the units. The network learns the input patterns by changing the values of
their weights. With suitable weights the network can model any computable function.

Perhaps the strongest appeai of the reural network models is their suitability for
machine learning. Machine learmning in connectionist models consists of adjusting

connection weights to improve performance of a network. This is a very simple and
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A B C D
Figure-3.6 A feedforward, two layer network.

pleasing formulation of the Icaming problem. It abstracts out cssentials of learning and
invites the construction of general algorithms.

Neural network models can be especially good at handling noise. A lot of learning
algorithms for network training arc able to leam knowledge from contradictory training
data without any extra rules, which makes them handle the noise in the training examples
in a very natural way. Moreover, since cells can easily examine large numbers of inputs.
they tend to be less sensitive to on-line noise; the greater number of correct input
variables can outvote the fewer number of incostect input values.

Another major attraction of neural network models is that they can serve as knowledge
bases for classification expert systems. Most importantly, learning algorithms allow us to
generate knowledge bases automatically from training examples. This is particularly
convehient for retraining the system because the old knowledge base can be simply
replaced by new network weights without any extra effort to reorganize the knowledge

base.

63



Chapter 3 Knowledoe-Based Expert System Thesis

The neural network leaming scope is usually arranged into two ficlds. single-layver
leaming problem and multi-layer learning problem. This classification is based upon a
definition about separable function and nonscparable function. Assume therc exists a
Boolean function which can describe the relationship between the inputs and the outputs
of a network, then this Boolean function is called a separable function if it can be
computed by a single-cell linear discriminant model: otherwise it is a nonseparable
function. Most of the common Boolean functions such as AND. OR, NOT or selector are
separable functions. whereas the XOR function is a nonseparable function. Figure-3.7
depicts the case space of these two functions. The left picture shows a separable function
space which can be separated by a line. whereas the right illustrates a nonseparable
function space.

In real applications. sometimes it is hard to tell whether a system function is separable
or nonseparable and whether the single-layer model or the multi-laver model should be
chosen. If we are primarily interested in constructing a model from training data that will
generalize well, then the only reason to use a multi-layer network is to fit the training data
better than would be possible with a single-layer model so that better generalization
might be achieved. Therefore if a single-layer model fits the training data as well as a
multi-Jayer network. then the single-layer model should be used. In this case the single-
layer model will be faster, simpler and quicker to retrain.

In the next two sections, both a single-layer model and a muiti-layer model are created
and trained by using corresponding learning algorithms, and the resulis will be discussed

in the next chapter.
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Figure-3.7 Separable and nonseparable functions. The left picture shows a
scparable function space which can be separated by a line, whereas the right
illustrates a nonscparable function space.

2.3.2 Learning in Single-Cell Models

In connectionist models, a k-layer model is defined as a network where cells are
grouped into k+/ subsets (layers) such that cells are connected only to cells in the next
layer. A single-cell. linear discriminant model is a single-laver model (without
intermediate cells) tn which all the input cells are connected to a single output cell. We

can construct our single-celli model as pictured in Figure-3.8.

INPUT PATTERN
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SEVERE
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Figure-3.8 The structure of the single cell network.
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Perceptron_Learning and LMS Perceptron learning is the most important “early™

learning algorithm. This algorithm requests that all the inputs. outputs and weights are
integral and updates the weights by using 7 ="z £*. in which EX is the input of one
training example. J¥ is the old weight vector and #™ is the revised weight vector. The
perceptron convergence theorem (Minskey. 1961) proves that for a finite set of separabie
training examples. E. the perceptron learning algorithm will produce a set of weights. ¥,
that correctly classifies all EXE after a finite number of change steps. The perceptron
learning algorithm has limited power since it can only be used for separable training data
sets. This shortcoming is fixed by the pocket algorithm with ratchet (Gallant. 1986)
which is a recent extension of perceptron learning and shows a better ability to handle
nonseparable training data.

The least mean square algorithm (LMS). also called Widrow-Hoff rule. is another
important single-cell learning algorithm which tries to find an optimal set of weights. ¥,
that minimizes the mean squared error (MSE) based on the gradient descent algorithm.
Compared to the perceptron learning algorithm. the LMS has several advantages:

¢ [t can do a better job with nonseparable data (but not necessarily better than the
pocket algorithm).

[t generalizes the training data rather than only finding a solution. as illustrated in
Figure-3.9 (a).

e Itimproves the speed of learning by adjusting the magnitude of the change.

e It is better suited for output values that are continuous.
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Of course the LMS algorithm also has its drawbacks. A major disadvantage of LMS is
that it overemphasizes the far-out cases. as shown in Figure-3.9 (b).

Since our training examples are nonscparable and the outputs of the examples are
continuous. the Least Mean Squarc algorithm is more suitable than the Perceptron
lcarning algorithm. The gradient descent algorithm. as the basis of the LMS. is discussed

int the next section.

Figure-3.9 Merits and demerits of Perceptron algorithm and LMS algorithm.
(a) LMS algorithm genecralizes better than perceptron algorithm; (b) LMS
algorithm is more sensitive to the far-out samples than perceptron algorithm.

Gradient Descent Gradient descent is a basic technique that plays an important part

in most connectionist learning algorithms, especially LMS and backpropagation.

Suppose we have a differentiable function ¢ that takes a set of network weights
W= (wm_c...wp‘,d,) and the training examples for a p-input single-cell probiem, and

produces a measure of the error, &), for those weights. The error surface gives the error
for every set of weight values, . Because the error function is differentiable, we can

ccmpute its multi-dimensional derivative (or gradient) vector
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CcE e
Ve={— e
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at any point in weight space. The gradient gives the direction in weight space that would

result in maximum increase of the error when an infinitesimally small weight change is
made in that direction. Letting p be a small positive number. we can compute the revised
weight vector W° by W™ =W - pVe(¥). This immediately suggests a learning
algorithm: start at some arbitrary set of weights, /¥, and continue to evaluate - Ve(W)
while taking small steps in that direction until some stopping criterion has been reached.

Least Mean Square  Assume there are N training examples {ERY with corresponding

corect output {(CKl. then the mean squared error. & is given Dby
1 q 2 h

N
W) = %;Z(W- E¥ —-C*)? =(W.E - C)". The gradient vector
ket

l
ce ce
Ve=(— T
‘7“",,;1,0 mi’ptl.p

—— = 2(W-E-O)E, =2S-C)E,

where S is the weighted sum for the output cell. Because we must specify a step size. o,
for the gradient descent. we can absorb the factor of 2 into p. Then the final form of the
Widrow-Hoff algorithm is " = + p(C~ S)E. This updating procedure is also called
the delta rule because &is sometimes used to represent the error. (C-S).

Gradient descent algorithms are not guaranteed to find a global minimum, even if they

converge. Sometimes following the derivative will lead to a local minimum, but not the
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global minimum. A very nice property of LMS is that there is no local minimum to worry
about, since it can be proven that the LMS algorithm must converge to a global minimum
{(Widrow and HofT., 1986).

Below is listed the detailed training algorithm for the single-ceil model pictured in
Figure-3.8.

1) Choose a small positive value for p. the step size. and assign randomly selected

small initial weights {I¥; ;} to the 16 inputs.
2) Repeat until changes in the mean squared error. €. become sufficiently small.

2.1) Take the next training examples. E. with correct output C.

I
2.2) Calculate the weighted sum. § =, + 2 W

Jul

E,

J

2.3) Update weights: #,,,, =W,,,  +p(C-S)E,

ey
2.4) Update step size: p" = p*{, where £=0.9999.
For the algorithm above, several practical considerations need to be mentioned:

e Input values. If the neurologist’s classification for the amplitude of one training
example is normal, then the cell that represents normal-amplitude will be fired,
having input value of +1, while the other three cells that represent mild, moderate,
and severe-amplitude will not be fired, having input values of 0. If this evaluation is
mild-normal, then both the cells that represent normal-amplitude and mild-

amplitude will be half fired, with values of 0.5.

e Output values. The output value is in the interval [0.2, 0.8], with 0.2 representing

severe, 0.4 representing moderate, 0.6 representing mild, and 0.8 representing
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normal. If the doctor’s classification for one training instance is mild-normal, its

output will be represented as 0.7,

¢ When to update. By definition, Ve is computed for all training examples before
updating the weights. But both practice and theory indicate that estimating Ve from
a single training example and updating the weights is more efficient (LeCan et al..
1989).

e lterative learning. Normally there are two kinds of training process: one-shot
learning and iterative learning. One-shot learning examines each training cxample
only once in the course of computing a set of weights for the network, while
iterative learning examines each training example many times. either cycling
through the set of the examples or choosing one at random for each cycle. In our
algorithms. we use the iterative learning at random which i1s more powerful than
one-shot learning. but of course slower.

® Initial weights. Initial weight values are set to small, randomly generated positive
and negative quantities in the interval [-2/p.2/p] where p is the number of the input
cells.

e Choice of p. Appropriate choice for p is problem-specific. But it is probably best to
keep it less than 0.1. Here we set the initial p=1/(p+1i). where p is the number of
input cells. We also change p for each iteration by a factor ¢=0.9999. This will
make p decrease when the error decreases, leading to asymptotic convergence, the

characteristic of gradient descent. The decreasing factor ¢ is obtained by manual

intervention.
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r
® Bias, /I, is the constant term when computing, S = + ZH/’ | E f . which can
Pl ‘
1=l

greatly increase the separating power. To calculate the bias, simply add an
additional 0" input. ihen the bias is exactly the same as a weight from an input that
is always +1.

e Where to stop. The changes in the mean squared error is monitored during the
training process and the algorithm stops when this change is less than 0.005 during
1000 iterations.

3.3.3 Learning in Multi-Layer Models

Backpropagation, rediscovered by Rumclhart. Hinton. and Williams (1986). is
currently the most important and most widely used algorithm for muiti-layer
connectionist learning. Its rapid rise in popularity has been a major factor in the
resurgence of neural networks.

Backpropagation is an algorithm for learning in feedforward networks using mean
squared error and gradient descent. Compared with the LMS algorithm. backpropagation
uses activation functions and works on multiple layers, whereas LMS operates on a
single-cell model with no activation functions.

We start with a feedforward network with a set of weights #; ; and a set of training
examples {EX, CK}. The activations for all the intermediate cells and the output cells can

be computed as:

S, = ZW:'J”J'
i
u = f(S;)
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where the activation function, fix), is

S(x)=

I+e¢™"

The derivative of this sigmoid function evaluated at x is

f'(x)=g;(l+c")"

=_(I+c-.r)-2e-.t(_])
l !

= 1—
1+u"‘( 1+¢”

X

NS =e(1-u).

For the gradient vector Ve = (o'wm ) . We can prove that (Gallant. 1993).

(C,=u))f'(S,)) If u, isanoutput unit
where & = (ZW S)/'(S,) for other units.

Bt m
">

The detailed algorithm is as follows:.
1) Choose a small positive value for p. the step size. and assign randomly selected
smail initial weights {I¥; j} to all cells.
2) Repeat until changes in the mean squared error. €. become sufficiently smatl.
2.1) Take the next training examples. £, with correct output C.
2.2) Forward propagation step: Make an input-output pass through the network

to compute weighted sums, $;, and activations. #; = f{S;). for every cell.
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2.3) Backward propagation step: Starting with the outputs, make an output-
input pass through the output and intermediate cells computing:
f’(Sr) = H‘(] _ur)'

(C, —u)f'(S,}Y if u isar output unit
S, = (ZW 50 (S,) for other units.

m
mimeey

2.4) Update weights: w, = 1w, +pdu,.

2.5) Update step size: p° = p*£. where ¢=0.99995.

The practical considerations are simtlar to those encountered in LMS described in the
last section, except that because of the usage of the activation function ffx). the
backpropagation error. & can have local minima. so we are no longer sure of finding a
solution with a global minimum squared error. This is unavoidable, and the only casy
countermeasure is to try starting again with different initial random weights.

Most applications of backpropagation to free-network problems make use of a 2-layer
network. A major reason for this is that intermediate celis that are not directly connected
to output cells will have very small weight changes and will leam very slowly. Another
reason for restricting attention to such configurations is that now the only remaining
topology decision is how many intermediate cells to use. Here, we also construct a 2-
layer network with 16 inputs and one output for our learning problem (Figure-3.10).
Different numbers of intermediate cells are tried for this system and their generalization

ability is discussed in the next chapter.
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Figure-3.10 The structure of the two-layver network. The number of
the intermediate cells ts unknown and will be determined upon their
generalization abilities.

3.3.4 A Network for Variability

In chapter 2. we discussed the feature extractior: method used for variability. Two
quantities were calculated for each hemisphere: the zero-crossing rate and the energy of
change in the delta band array of the posterior head region. Probability values of
normality of different parameters are arrived at by using the z-score method. Then the
four probability values are reduced to one by choosing the smaller one of the two
quantities in one hemisphere and averaging the values of the two hemispheres. However.
at the beginning of this chapter, it was shown that this probability value fails to represent
the degree of variability that was assigned by the neurologists. One reason for this failure
is that in addition to the delta band activity. the alpha band activity may also reflect the
variability. Lack of analysis of this band may therefore partially influence the results.

After extensive observation, we realized that neither delta band nor alpha band can reflect
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the vaniability with their own zero-crossing rate and cnergy exchange parameters. So.
there may exist some interaction among the activities of these two bands which reflects
the variability of the EEG bu; is difficult to acquire by observation. When calculating the
probability values of normality of different quantities. we assume that the larger the
quantity value, the greater the probability of normality of that parameter. For instance. a
zero-crossing number greater than all sample points of the control population would
imply a 100% normality of zero-crossing rate. But this assumption maybe not correct.
The largest probability of normality for the zero-crossing rate of the delta tand array over
six hours may lie in a particular range. say. 17-18 times. and the further a zero-crossing
number is away from this range the smaller the probability of normality may be. In this
case, it is very difficult to calculate the probability value of normality for the zero-
crossing rate and energy exchainge quantities since it is hard to tell where this normal
range lies. Our problem is that we have eight quantities: zero-crossing rat¢ and energy
exchange of delta and alpha band activity of two hemispheres which are thought to reflect
the variability of a six-hour EEG in some way, either by themselves or by their
interactions. We try to determine what the relationships between the eight parameters and
the variability of the EEG are. To solve this problem, we can construct another 2-layer
network which uses the eight quantities as the inputs and the expert’s classification of
variability as the outpui and train the network by using the examples. Through the
training process, the re’ationships between the eight parameters and the variability of the
EEG will be encoded in the weights of the network automatically. The network is trained
with the backpropagation algorithm introduced in the last section and the result will be

shown in the next chapter.
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3.4 Knowledge Base and Performance

Our knowledge basc includes four parts: age factor for front/back differentiation, fuzzy
membership functiens fer amplitude. svmmetry. and F/B differentiation. network for
variability (network B), and network for final evaluation (network A). Except for the age
factor. which is obtained from the neurologist’s interpretation of published data (Slater
and Torres. 1979). the knowledge in the other three parts is learned from the training
examples. Fortunately. both our learning strategies for fuzzy membership and neural
networks are such that they allow us to generate the knowledge base during the learning
process without any form of reorganization.

Figure-3.11 pictures the entire system’s structure and shows an example to illustrate
its performance. Assume there is a six-hour EEG section frorn a patient who is eleven
months old. After processing by artifact rejection and feature extraction strategies, the
values calculated for amplitude, symmetry and F/B differentiation are 77. 82 and 49.
Subsequently, the age factor, which is 0.74 corresponding to the patient’s age of 11
months (0.9 years). is obtained by checking the age factor database. and then the
Front/Back differentiation value 49 is divided by 0.74 to get the ttansformed value of 66.
Tten, the fuzzy membership base is checked to obtain the membership values for 77. 82
and 66. These membership values are then applied directly as the corresponding inputs of
network A. Next, network B employs the 8 parameters of variability as the inputs and
calculates its output as 0.7; since 0.7 is half way between normal and mildly abnormal.
The last four cells of network A are set to 0.3, 0.5, 0, 0. Finally, the overall result, 0.7, is

calculated from network A, which classifies this six-hour EEG recording as mild-normal.
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Chapter 4
Results and
Discussion

4.1 Training and Testing Data

Seventy four long-term EEGs recorded at the Montreal Children’s Hospital were used
as the training and testing data for the expert monitoring system. Among them. sixty nine
were recorded in the intensive care unit after corrective cardiac surgery. and five were
recorded at another monitoring unit for suspected seizures or coma. The recordings were
interpreted by two neurologists and every six-hour section was graded for each of its four
features and evaluated as one of seven abnormality levels. Every one of the seventy four
EEGs vields one to three sections depending on the length of the recording. In all. a set of
188 sections was available from the seventy four EEGs for training and testing the expert
system. There are several ways in which 2 data set can be divided into training and testing
subsets, each of which has its own merits and demerits (Devijver. 1982).

One techrique, which is called the resubstitution method, uses the entire data set to
train the system and the same data set to test it as well. Normally, this technique is used
with a perceptron-like leaming algorithm since one essential property of the perceptron
learning algorithms i> that they converge to one hyperplane that correctly classifies all the

training data. Obviously, this method is not suitable for our leaming problem in which the
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training data set is nonseparable and the performance results are not replicated by
independent testing data.

The holdout method. the most obvious alternative to the resubstitution method.
requires the data to be partitioned into two mutually exclusive subsets and uses one for
testing and the other for training the expert svstem. This scheme suffers from making
poor use of the data since a learning system trained on a larger data set will. in general.
perform better than one that is trained on a smaller data set, especially when the sample-
size is small or incomplete.

Leave-one-out is a method that tries to compensate for this demerit of the holdout
method and make efficient use of the available data. By this technique. if the sample size
is N, the system is trained with (NV-1) samples and tested with the last one. This is carried
out N times until all the samples have been used for testing. Here for each run almost the
entire sample-set is used for training and ultimately all samples are used in the tests,
though each run consists of independent training and testing sets. However, the extensive
computation involved in the N training sessions is a big drawback of this technique.

The rotation method is a compromise between the holdout and leave-one-out methods.
For this method, the N samples are divided into r sets with N/r samples each. In each run
one of the  sets serves as the testing set while all the others are used to train the learning
machine. The performance of the system is then arrived at by calculating its added
performance for the r runs. The rotation method reduces both the poor data utilization
inherent to the hol;lout method and the computational complexity associated with the

leave-one-out method.
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In this project. the rotation method of performance estimation was used. The 188
samples were divided into six subsets v+ith 31 or 32 samples cach. For cach series. five
subsets were used to train each part of the system and one was used to test. Six training
and testing runs were carried out and the performance was the summation of the six runs.

4.2 Results

4.2.1 Results of Fuzzy Membership

Six training and testing runs were carried out to train the system and test the
performance. Figures-4.1. 4.2 and 4.3 demonstrate the training process and the
membership functions obtained for amplitude. symmetry and Front/Back differentiation
in training series 1. In each figure, the first four graphs delineate the estimated frequency
probabilities for twelve bins ("0”) and the fitted exponential functions for the four classes:
normal. mild. moderate and severe: the fifth graph outlinzs the combination of the four

fitted curves which partitions the total value space into four successive but overlapping

subspaces.
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Figure-4.1 Amplitude Membership Functions.
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Figure-4.2 Symmetry Membership Functions.
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Figure-4.3 F/B Differentiation Membership Functions.

From these figures, it can be seen that the four abnormality levels are not equally
distributed in the value space of the computer’s output. Some of these subspaces are
narrower and some are wider. Moreover, the increase and decrease slopes of most bell-

shaped membership functions, as the membership curve obtained for moderately
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abnormal Front/Back differentiation. are not symmetrical. All of these may indicate that
the neurologist’s assessment of abnormality for these features is a nonlinear process.
Besides, in all the three features. the normal subspace overlaps the moderate subspace
which means that the noisc levels between the computer’s quantitative measures and the
neurologist’s evaluation of the three features are high.

Through these fuzzy membership functions, the computer’s calculation for each
feature has been matched to the doctor’s classification. The accuracy of this matching is
examined by using corresponding testing examples of different training sessions and the
summation of the outcomes is listed in Table-4.1. The “same level™ categories present the
percentage of the zxamples for which the fuzzy membership functions’ classifications are
the same as the doctor’s ones. The “less than half level™ categories present the percentage
of the examples that the fuzzy membership functions” results are only half level away
from the doctor's classifications (for example. one is mild and another is mild-normal)

plus the examples that have the same classification.

Amplitude Symmetry F/B Dif.

Test Train | Test Train Test | Train

Same Level | 61% 62% | 55% | 36% | 65% | 68%

<HalfLevel | 90% | 90% | 90% | 91% | 86% | 86%

Table—4.1 Evaluation of the transformation
ability of the fuzzy membership functions.
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For all of the three features. the results are similar. For testing data, about 35%-65% of
the instances arc appraised as the same class as the neurologist’s evaluation, and only less
than 15% arc more than half level away from the desired outputs. It needs to be noted that
there is almost no difference between the results of the training and the testing data.

4.2.2 Results of Final Evaluation Network

The artificial neural network (ANN) models shown in Figure-3.8 and Figure-3.10 were
trained with the Least Mean Square and backpropagation algorithms. The gencralization
ability of different network models for the training and the testing data is revealed in
Table-4.2. in which the neurologist’s interpretation for the four features serves as input,
and the output of the network is compared with the doctor’s assessment of the overall
EEG abnormality. The neural network architectures are expressed as strings. showing the
number of inputs, number of nodes in hidden layer and number of outputs. The variable
@ indicates the average of mean squares of the differences between the actual and the
desired outputs at the end of training over six runs. Most of the models achieve 70%
correct classification for both training and testing data. and over 95% are within half level
distance from the neurologist’s outputs.

Comparing the 2-layer models with the single-layer model ( the first row in Table-
4.2), even the best of the 2-layer models can only achieve the same generalization ability
as the single-layer model does, despite the iteration number of the 2-layer modeis being
ten times that of the single-layer model. The learning performance of these two kinds of

models is compared in Figure-4.4. Evidently, the single-layer model converges much
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faster than the S-intermediate-cell 2-layer model. It is concluded that the single-layer

models are more suitable than the multi-layer models for this Icarning problem.

Train Test
ANN | Weight | lteration O Same <Half Same <Half
Number Level Level Level Level
16-1 16 10000 | 0.0036 70% 98% 69% 97%
16-2-1 34 100000 | 0.0043 68% 97% 69% 97%
16-3-1 51 100000 | 0.0042 67% 98% 67% 96%
16-4-1 68 100000 | 0.0043 67% 98% 68% 96%
16-3-1 85 100000 | 0.0042 69% 98% 69% 97%
16-6-1 102 100000 | 0.0042 67% 98% 66% 97%
16-7-1 119 100000 | 0.0043 67% 97% 67% 96%
16-8-1 136 100000 | 0.0039 68% 98% 68% 97%
16-12-1 204 100000 | 0.0042 68% 98% 67% 97%
16-16-1 272 1006000 | 0.0040 69% 98% 66% 97%
16-20-1 340 100000 | 0.0041 66% 98% 66% 97%
16-24-1 408 100000 | 0.0042 68% 98% 65% 96%
16-28-1 | 476 100000 | 0.0041 68% 98% 67% 97%
16-32-1 544 100000 | 0.0039 69% 98% 67% 97%

Table-4.2 The genceralization ability of different networks for the
final evaluation on the training and testing data.
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Single-layer model ()

8-hidden-cells 2-layer model (..)

Mecan Squared Error
o
2

............

o

Tteration
Figure-4.4 Comparison of the convergence velocity
of the single-layer and the two-layer networks.

4.2.3 Results of EEG Variability Network

Similar to that pictured in Figure-3.10, the architecture of the network for variability
has eight inputs., one-layer hidden cells and one output. The training results (Table-4.3)
reveal a reduced accuracy of classification by comparison with the other three features
(Table-4.1). The statistical data in Table-4.3 shows that the correct classification
percentage is less than 20% in all the models while the parallel values in table-4.1 are in
50%-60%. Also only about 40% of the testing instances are within half level range from
their desired output against the 85% in the other three features.

The reasons for the present drop of accuracy in variability classification are complex
and the most important one seems to be that the criterion used by the neurologists for
classifying variability is different from that extracted by computer. The details of this

issue and the possible solution will be discussed in section 4.3.
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Train Test

. ANN San.n: <Half <O!l'1t3 Sarflc <H:5|.] f <Of1c
Level Level Level Level Level Level

8-2-1 20% 39% 89% 20% 39% 89%

8-3-1 20% 39% §9% 20% 39% 89%

8-4-1 19% 40% 89% 20% 40% 89%

8-5-1 20% 39% 89% 20% 39% 89%

8-6-1 20% 39% 8§9% 20% 40% 89%

8-7-1 19% 41% 89% 19% 42% 89%

8-8-1 20% 39% 89% 20% 39% 89%

8-10-1 20% 39% 89% 20% 39% 8§9%

8-12-1 15% 41% 89% 19% 42% 90%

8-14-1 20% 39% 89% 20% 39% 89%

. 8-16-1 20% 39% 89% 20% 39% 89%

Table-4.3 The generalization ability of different networks
for the EEG variability on the training and testing data.

4.2.4 Results of the Euire System

Until now. all parts of the system. their structures, implementation methods and
effectiveness have been presented. The capability of the entire expert system built for
background EEG classification was evaluated as the cumulative result of the test data of
the six runs (Table-4.4), in which the quantitative measures of the test instances were
used as the input of the inference engine depicted in Figure-3.11, and the output 6f the

. system is compared with the neurologist’s interpretation. The single layer model and the
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12-intermediate-cell 2-layer model were used as the final evaluation network and the

EEG variability network of the system respectively.

Results Doctor
Computer | Normal | Nor-Mil Mild Mil-Mod | Moderate | Mod-Sev | Severe
Normal 2 1 0 0 0 0
Nor»ii | 37 § 20 1 3 0 0
Mild 4 9 6 6 1 0
Mil-Mod 0 1 6 7 0 1
Moderate 0 0 0 2 2 1
Mod-Sev 0 0 0 0 4 - 0
Severe 0 0 0 0 0 0

Table-4.4 Comparison of classification results from the
automatic method and the human expert.

In the 7 * 7 matrix presented above, rows represents the system’s classification for the
testing instances and the columns correspond to the neurologists™ evaluation. The dark
shaded cells in the main diagonal represcat the concordance of the two kinds of
classification. and the light shaded cells stand for the instances whose system’s outputs
are half a level away from the expert’s classification. As we can see, the results are very
encouraging and -most of the instances fall in the shaded area. Table-4.5 shows the
statistical assessmeat of the results above. Almost 40% of the total testing instances are
classified as the same class as the neurologists’. If we add the cases with a half level

deviation, the total percentage of instances which are considered as having acceptable
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results reaches 90%. In contrast. the instances whose classification error exceeds one

class are less than 3%.

Degree Percent
Same Level 10%
Half Level 90%
One Level 97%

Table-4.5 Percentage interpretation of the
results presented in Table-d.4.

4.3 Discussion

Many systems have been developed to assist EEG monitoring by extracting difterent
kinds of features from the EEG. But in most cases. the users are expected to interpret
these features by themselves. This would largely impede the utility of these systems in
the ICU during long-term EEG monitoring where expertise may not be present all the
time. The system developed in this project tries to remove this drawback by automating
the entire process of EEG interpretation.

In the system. artifacts were identified and rejected from the frequency band arrays of
the EEG. The main reason for performing artifact rejection in the frequency domain
rather than in the time domain is that the features used for EEG interpretation in this
system were extracted from the frequency domain to represent gross state of the EEG
background over several hours. Therefore, it is not necessary to identify and reject

specific artifactual EEG waves. Furthermore, it is quite difficult to anticipate the

88



Chapter 4 Results and Discussion Thesis

waveforms of the various artifacts and it is computationally ¢conomical 10 reject artifacts
in the frequency domain (Barlow., 1986).

Since the qualitative EEG features used by the neurologist include not only amplitude
but also frequency information about the EEG. the quantitative measures of these features
were extracted from the frequency band ammays of the EEG. The measures extracted for
amplitude. svmmetry and Front/Back differentiation by using t-statistic analysis based on
a control population quantifv the EEG quite cffectively. and the probability values of
normality obtained were highly correlated with the expert’s visual interpretation. By
using fuzzy membership techniques. these probability values were then mapped into the
neurologist’s assessment for each of the three features. S-shaped membership functions
were chosen to represent the distributions of the neurologist’s levels of normal. mildly
abnormal. moderately abnormal or severely abnormal. since they resemble the normal
probability distribution and may reflect the pattern of human language and thought. For
further development. other membership functions could also be tested and compared in
order to find a best fitted function type. For every nomality level of each feature. a
histogram was computed and fitted to S-shaped functions through error optimization
methods. The unimodal functions were described by fitting both the increasing and
decreasing parts to S-shaped functions rather than fitting it to a bell-shaped function. This
1s based on the consideration that tiese unimodal functions may not be symmetrical,

As mentioned before, the probabilify values of normality obtained for EEG variability
over time by using the z-score method could not demonstrate the abnormalities observed

by the neurologist on visual analysis. In order to solve this problem. a two-layer neural
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retwork was established to classify EEG variability based on the measures of zero-
crossing rates and energy exchanges of the delta band array. The classification abilitv of
this subsystem was presented in Table-+.3. Its classification error is quite high when
compared with that of the other three features. The reasons of this low  accuracy are
complex. EEG varniability over time is defined as the extent of spontaneous cyveling in an
EEG record. Many studies (Bergamasco et al.. 1968: Bricolo et al.. 19735: Garrel et al..
1979: Rumpl et al.. 1980: Karnaze ct al.. 1982) indicated a clear correlation between the
presence of this spontancous fluctuations and a favorable clinical outcome. The subjects
of most of these studies were post-traumatic comatose patients aged at least several vears.
Most of our subjects. however, are post cardiac surgery infants who suffered pain and
received sedatives during the recording. The influences of the patient’s age. sedatives and
the unstable sleep induced by the pain on this spontaneous alteration pattern still remain
unclear and may affect the doctor’s judgment. Furthermore. most of the studies
mentioned above used this spontaneous cycling together with typical polygraphic sleep
patterns although some of them considered it as an independent prognostic value. Due to
these factors, when evaluating the variability of the EEG samples. our project experts
prefer to combine the EEG variability with the typical polygraphic sleep patterns such as
spindles. k-complex and vertex sharp waves. Automatically identifying these waves from
long-term EEG is, however. very difficult, either in the time domain or in the frequency
domain. After further investigation. we found a close correlation between level of the
EEG depression and presence or absence of sleep cycle features based on the
neurologist’s interpretation. In fact, for our training examples, the cross-correlation of the

neurologists’ classification for amplitude and the combined feature of EEG variability
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and sleep cvele 1s as high as 0.8, A similar finding was reported by Watanahe and
coworkers (1980), In their study. they indicated that the classitication of the background
EEG depression was well correlated with the disturbance of sleep cyvele in the full-term
newborns with perinatal hypoxia. It may be reasonable. therefore. to rebuild the system
by using the three features of ampiitude, symmetry and FrontBack ditferentiaticn.
removing the variability. Table-1.6 presents the testing results of the svstem trained by
three features in which a twelve-input single-laver network similar to that shown in
Figurc-3.8 was used as the final evaluation network. It performs better than the system
trained by four features and increases the percentage of correct classitication by almost

5% (Table4.7).

Results Doctor
Computer | Normal | Nor-Mil | Mild | Mil-Mod | Moderate | Mod-Sev | Severe
Normal 8 3 0 0 0 0
Nor-Mil 16 23 5 3 0 0
Mild 3 9 3 2 1 0
Mil-Mod 0 1 6 7 0 1
Moderate 0 0 0 8 1 1
Mod-Sev 0 0 0 ¢ 5 0
Severe 0 0 0 0 0 1

Table-1.6 Results of the system trained only by amplitude,
symmetry and Front/Back differentiation.
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Degree Percent
Samge Level +5%
Hal{ Level 91%
One Level 97%

Table=$.7 Percentage interpretation of
the results presented in Table-4.6.

A single-layer neural network was used for evaluation of the overall normality level of
the EEG based on the classifications of different features. By considering both the
generalization ability and computational efficiency. this single-laver network was proven
to be more suitable than the two-laver networks. This may reflect that a lincar function
can be used to represent the relationship between the inputs and the output of the
network. Twelve inputs that represent every normality class of the three features were
used (sixteen for four features) in this network because different classifications for one
feature may influence nonlinearly the final evaluation. If using three inputs instead of
twelve {(one for each feature). the relationship between the inputs and the output of the
network may no longer be linear.

The whole system contains no training data specific values in the learning algorithms.
Therefore. the exact same procedures could be repeated for another training data set or for
a different type of abnomality. This is convenient for retraining the system in further
development.

By comparison to Pasupathy’s study (1994), the results presented in Table-4.6 are
quite encouraging. The correct classification rate increases from 23% to 45%. The

instances classified with an error exceeding one class (here the class means the four main
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classes) decrease from 35% to 3%. This improved performance may be due to following
reasons: (1) Available training data increases from 60 six-hour EEG sections 1o a total of
188. This not only trains the system more completely but also expands the scope of
technology which can be implemented. (2) Fuzzy membership and ncural network
techniques handle the noises better than the version space technique used by Pasupathy.
which is very crucial in this system due to the fact that the training data ts extremely
noisy. (3) The whole svstem is divided into several subsystems. such as fuzzy
membership functions. a network for variability assessment and a network for final
classification. This may simplify the task of each step and facilitate the error detection in
an carlier stage. (4) The age factor is introduced in Front/Back differentiation assessment.
which was not emphasized by Pasupathy.

Table-4.6 shows that most of the examples are classified as normal or mildly
abn;rmal. In fact. about eighty percent of the total six-hour EEG instances used in this
study show normal or mildly abnormal background activity while only twenty percent
were assessed as moderately or severely abnormal. This biased training data results in an
incomplete learning of the assessment of severely abnormal EEG patterns in both fuzzy
membership functions and neural network weights. The constructed system. therefore.
exhibits an increased misclassification rate from normal EEG pattern to severely
abnormal EEG pattern.

The weights obtained for the 12-input single-laver network -z= listed in Table-4.8. We
can se¢ that the differences of the weights between the successive nodes that represent

different amplitude level are greater than that of symmetry and Front/Back
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differentiation. [t reveals that the amplitude. which indicates the degree of the EEG
depression. is a more important feature than the svmmetry and the FrontBack
differentiation and a variation in amplitude will greatly influence the neurologists”
assessment of the EEG abnormality. This may be due to the fact that amplitude directly
represents two abnormal EEG background patterns: clectro-cerebral inactive pattern and
low voltage pattern through all states. As discussed in the section on abnormal EEG of
chapter 1. if persistent. both of these two patterns are well correlated with unfavorable
clinical outcome. Moreover. since low voliage patern differs from the ¢lectro-cerebral
inactive pattern only in the degree of amplitude antcnuation, these pattern can easily be
discriminated by the svstem using amplitude classification. Somctimes., burst-
suppression. another important background EEG pattern. can aiso be reported as
generalized depression by this amplitude measure. The reported degree of depression is
altered depending on the height and duration of the bursts. the duration of the suppression
and the persistency of the burst-suppression pattern. This representation of burst-
suppression by amplitude measure is therefore very imprecise and far from the clinical
requirement. In recent clinical studies. more and more researchers showed that the EEG
burst suppression pattern was highly predictive of unfavorable outcome (Lombroso.
1983: Rowe et al., 1985: Holmes et al.. 1993), and it is very crucial to add another
measure that could precisely identify this patiern.

Table-4.8 also shows that the weight differences between the symmetrical and mildly
asymmetrical nodes are much smaller than that between the moderately asymmetrical and

severely asymmetrical nodes. This increased influence on the assessment of EEG
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abnormality mayv retlect that transient or mild asyvmmetries are probably of no
pathological significance. as reported by Lombroso (1983). The symmetry measure used
in this syvstem ts based on the amplitude. but in some cases the symmetry in frequency is
also of interest (Shagass et al. 1988). A symmetry measure in both amplitude and
frequency may theretore be more representative and useful although the frequency
measurement is casily disturbed by high frequency components induced by sedatives.

such as the midazolam that is often uscd in our paticnts.

Feature Class | Runl Run2 | Run5 Run4 Run3 | Run6

Bias 0215 0.222 0.200 0.214 0.206 0.207

Amplitude | Normal 0.297 0.295 0.306 0.508 0.292 0.291

Mild 0.140 0.145 0.148 0.143 0.158 0.143

Moderate | -0.043 -0.040 -0.036 -0.038 -0.045 -0.043

Severe -0.181 -0.217 | -0.231 -0.215 -0.231 -0.224

Symmetry { Normal 0.145 0.159 0.156 0.176 0.140 0.154

Mild 0.118 0.105 0.115 0.142 0.117 0.119

Moderate | 0.043 0.021 0.036 0.087 0.009 0.056

Severe -0.152 | -0.094 | -0.080 | -0.120 | -0.029 | -0.083

F/B Diff. | Normal 0.108 0.115 0.120 0.085 0.123 0.117

Mild 0.058 0.068 0.070 0.033 0.066 0.067

Moderate | 0.087 0.023 0.032 0.051 0.024 0.022

Severe -0.014 0.005 0.006 0.028 -0.016 0.012

Table-1.8 Weights obtained for the 12-input single-
laver networks after training in the six runs,
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There 1s another important EEG pattern called generalized high-amplitude slow-wave
activity which needs to be incorporated into this system. Chiappa (1979 reported that
generalized slowing is one of the first few signs of ischemic brain damage. In
methodology. this excessive high-voltage slow activity can be characterized as increased
low frequency components together with high amplitude. But since only three of the

EEGs recorded at the Montreal Children’s Hospital were considered as showing

]

xcessive high-voltage slow activity. the quantification of these attributes was not
feasible.

When interpreting pediatric EEG. it is important for the ncurologists to take the
patients” age into account since the EEG of children varies extensively from nconatal up
to about 10 vears old. As mentioned in the section on Front-Back differentiation. an EEG
pattern considered normal for a 3-month-old may be an abnormal pattern for a 3-yvear-old
child. Ideally. it would be better to define age intervals. such as <4 month. 4month-1year,
1-4 vears. 4-10 vears and >10 vears within which the characteristics of a normal EEG
recording are not expected to vary extensively. Independent “normal” control populations
for the various age intervals could then be established and the system could be trained
and tested for each of these intervals. However. in practice. the realization of this aim will
inevitably encounter the difficulty that recordings for every age interval have to be
collected.

Besides background abnormalities, seizures also provide important prognostic
information. Although some studies reported that epileptiform activity was not as

predictive of outcomes as background activity (Holmes et al. 1982),
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clectroencephalographic seizures. whether associated with clinical manitestations or not.
are highly correlated with poor outcomes (Rome ot al.. 1983). Recent long-term EEG
monitoring revealed that seizures among patients with acute brain injury are far more
common than previously recognized. Jordan (1992) reported a signitficant incidence. up to
35%. of secizures in an analvsis of 124 monitored patients. Lowenstein and Aminoff
(1992) described 47 comatose patients. in 80% of whom EEGs suggested nonconvulsive
scizures. Therefore, the combined use of this background EEG monitoring system
together with computer-based automatic seizure detection syvstems (Gotman. 1982, 1990)
may provide more useful diagnostic information.

The present monitoring system was built to receive six-hour raw EEGs as input and
classity them to different background abnormality levels. The reason for using a six-hour
EEG section as the analvzing unit is because it provides information about the EEG trend
and this is of clinical interest. The assessment of the EEG trend is sometimes used for
high risk patients 1o determine the adequate depth of anesthesia (Halimi et al.. 1990).
More often, the EEG trend is monitored for changes in the CNS function and condition
during surgery. In a study of 92 patients monitored by an EEG-trend-analyzer during
carotid surgery. EEG-trend-analyzer showed a sensitivity of 100% for ischemic events
(Loeprecht et al.. 1985). The EEG trend monitoring is particular useful in postsurgical
intensive care to determine whether the patient is undergoing deterioration or recovery.
To be most useful. the final monitoring svstem should be able to provide the information
about background activity. trend and seizure occurrence of the EEG recorded in the last

six hours and update these information every hour.
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In clinical use. non-pathological factors such as medication or patient’s anesthetic
level need also be incorporated into the monitoring svstem. Drug-induced amplitude
aticnuation. burst suppression, or scizures have to be excluded. High {requency
components introduced by sedatives should also be considered caretully.

With the valuable carlier work of Anitha K. Pasupathy. an cffective knowledge-based
EEG monitor system in pediatric intensive care unit has been construcied. The overall
svstem performance is quite encouraging. For further development. more long-term EEGs
should be coliected to train the system. espectally the severely abnormal ones. Inclusion
of few more quantitative measures and small age intervals suggested above would also

enhance the system performance.
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