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Abstract

Psychologists and behavioural scientists are increasing-
ly collecting data that are drawn from continuous
underlying processes. We describe a set of quantitative
methods, Functional Data Analysis (FDA), which can
answer a number of questions that traditional statisti-
cal approaches cannot. These methods are applicable
for analyzing many datasets that are common in exper-
imental psychology, including time series data, repeat-
ed measures, and data distributed over time or space
as in neuroimaging experiments. The primary advan-
tage of FDA is that it allows the researcher to ask ques-
tions about when in a time series differences may exist
between two or more sets of observations. We discuss
functional correlations, principal components, the
derivatives of functional curves, and analysis of vari-
ances models.

Introduction to Functional Data Analysis

New types of data require new tools for analysis.
Our aim in this paper is to introduce functional data
and the methods that have been recently developed to
analyze these data. Although functional data them-
selves are not new, a new conception of them is neces-
sary as a result of the increasing sophistication of data
collection in the behavioural sciences. Data collection
technology has evolved over the last two decades so as
to permit observations densely sampled over time,
space, and other continua; these data usually reflect
the influence of certain smooth functions that are
assumed to underlie and to generate the observations.
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Classical multivariate statistical methods may be
applied to such data, but they cannot take advantage
of the additional information implied by the smooth-
ness of the underlying functions. The functional data
analysis (FDA) methods that we describe here can
often extract additional information contained in the
functions and their derivatives, not normally available
through traditional methods.

The goals of this paper are to survey some of this
methodology rather than to offer a detailed account,
to provide a conceptual and intuitive introduction,
and to provide links to further resources (e.g., Ramsay
& Silverman, 2002, 2005; Vines, Nuzzo, & Levitin,
2005). We aim to show in broad strokes the kinds of
data that can be treated, and the kinds of questions
that can be answered within an FDA framework. We
will illustrate how FDA works in an interesting experi-
mental context on music and emotion that brings
together much of the novelty and power of FDA
(Vines, Nuzzo, Krumhansl, Wanderley, & Levitin,
2006). We chose this example because very different
data from studies in dozens of other domains can be
analyzed under a quite similar approach to that taken
in our illustration. We do not assume any particular
level of background for readers of the present article.
We have attempted to make this introduction intuitive,
rather than mathematical (with references to more
mathematical treatments for those who are interest-
ed), and we have attempted to make this article con-
ceptual rather than a “step-by-step” guide about how
to perform FDA (with references to such resources also
included). We introduce a few equations to establish a
mathematical basis for some of the concepts, but these
require nothing more complicated than first year cal-
culus, and nonmathematical readers can skip these
with no loss of comprehension of the larger concepts
we are trying to describe. By the end of this article, we
hope that readers will be able to know whether or not
some of their own data may be considered functional
data, what advantages they may see by analyzing their
data using FDA, and finally, where to look next to
begin conducting such analyses.

What are Functional Data?

A functional datum is not a single observation but
rather a set of measurements along a continuum that,
taken together, are to be regarded as a single entity,
curve or image. Usually the continuum is time, and in
this case the data are commonly called “longitudinal.”
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Figure 1. An example of functional data: Tension judgments made by four typical
participants in the “auditory only” condition of the experiment described in the
text. Each line represents one participant’s judgment over the 80-second dura-

tion of the musical performance.

But any continuous domain is possible, and the
domain may be multidimensional. In neuroimaging,
for example, the activation levels observed at voxels in
the brain are the responses over the two or three
dimensions of space and possibly time as well. Or, data
may be distributed over a continuous psychophysical
space (such as vowel space, musical pitch space, or
colour space).' In this paper, we deal primarily with

1 By “psychophysical space,” we mean that model of human per-
ception or mental representation that is derived from psychophy-
sical experimentation, and is often represented as a manifold in n
dimensions, and which does not necessarily possess the same
dimensionality as the corresponding physical stimuli that gave rise
to it.

For example, the physical representation of colour hue can be
thought of as one-dimensional: As wavelength decreases, our per-
ception of colour passes through the familiar rainbow from red to
orange to yellow, etc. But our psychological representation is actu-
ally two-dimensional — circular — as evidenced by experimental
findings that colours at the opposite ends of the physical continu-
um, red and violet, are judged to be more similar than colours
that are closer together on the physical continuum such as red
and green. Thus, the psychological (or psychophysical) space is
two-dimensional and continuous, and data collected from judg-
ments within this space could be considered functional in (psy-
chophysical) space. Similarly, judgments of vowel similarity
(Shepard, 1972; Sinnott, Brown, Malik, & Kressley, 1997), musical
pitch (Krumhansl, 1990; Shepard, 1982), and musical timbre simi-
larity (McAdams, Winsberg, Donnadieu, & De Soeta, 1995; Plomp,
1970) suggest three-dimensional representations.

functional data measured over time, but the tech-
niques described can be applied to other domains.

Many active domains of current research in psy-
chology and the behavioural sciences produce func-
tional data. Psychobiological functions that change
over time such as the levels of hormones in the blood,
emotions, or the number and intensity of depressive
episodes, are just a few of many examples. Human
communication — including spoken and signed lan-
guage, music performance and perception — is anoth-
er domain in which the data evolve over time, and the
researcher may wish to test hypotheses about the time
at which certain events, or responses to those events,
occur. Boker, Xu, Rotondo, and King (2002) note that
human communication violates the assumption of sta-
tionarity (i.e., for which consecutive values are depen-
dent over time in a nonpredictable way; for further
discussion of stationarity see Box, Jenkins, & Reinsel,
1994; Hendry & Juselius, 2000; Shao & Chen, 1987)
and suggest that understanding this nonstationarity
may be crucial to understanding the phenomenon.
We believe such cases can be profitably understood
through the application of FDA, and that the nature of
the resulting functions can provide crucial informa-
tion for understanding human behaviour.

Figure 1 displays many of the features of functional
data, and the experiment giving rise to them will be
used throughout the paper as a source of illustrations.
The aim of the experiment was to quantify the relative
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Figure 2. Top panel: Tension judgments for a single participant from Figure 1.
Bottom panel: The first derivative of the tension judgments shown in the top

panel.

roles of auditory and visual information in conveying
emotional and structural aspects of music. The experi-
mental participants were presented with a video-taped
musical performance under one of three conditions:
audio-visual combined (the normal way in which a
video of the performances would be viewed), audio
only, and visual only. The dependent variable was the
continuous records of the position of a slider (linear
potentiometer) that participants controlled to indi-
cate the tension that they were experiencing in real
time. It is apparent from Figure 1 that there exists
considerable detail in these records, and that they
exhibit some features that are stable across partici-
pants, as well as variation that is participant-specific
(including interparticipant differences in motor
action planning, interpretation of the task, and deci-
sion variability), and undoubtedly some high frequen-
cy variation that we will treat as experimental error
resulting from nuisance variables such as measure-
ment error, random factors, etc.

One traditional approach to data analysis would
require that we obtain an average for each of the
three conditions over the time course of the experi-
ment, and compare those means. Yet it is apparent
from Figure 1 that such an average would obscure
interesting time-based variations in the ratings. Using
an ANOVA, we could answer the simple question about
which of the three conditions yielded the highest rat-
ings, and with either planned orthogonal contrasts or

post-hoc tests, we could ascertain which means, if any,
differed from the others. A second traditional
approach might be to treat each observation as a
repeated measure, and conduct an RM ANOVA or
MANOVA, neither of which is satisfactory because of
the obvious autocorrelation between successive points:
With the linear slider used by participants, observa-
tions are not independent because the slider must
pass through intermediate points on its way from one
desired position to another; the data violate stationari-
ty. In addition, there are other factors to consider in
such data, such as regression to the mean, and the
potential underlying phasic attributes of the musical
piece being judged. Finally, traditional GLM-based
methods would not allow for the precise comparison
of interparticipant responses, which may also be of
interest. Although one could conduct correlational
analyses among participants, factors such as differen-
tial reaction times and differential use of the scales
could obscure relations in the data. Thus, traditional
statistics would allow us to answer only simple ques-
tions, and then, only with certain independence
assumptions violated.

To begin the FDA approach, we make the assump-
tion that the underlying process generating the data is
smooth. The tension in music experienced by a listen-
er rises and falls in response to features in the music
that evolve over time, and typically without abrupt,
instantaneous changes. The observed data are subject
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to measurement error and other types of local distur-
bances that may mask this smoothness, but FDA
includes techniques to identify the smooth sources of
variation by filtering out the unwanted variability.
Other examples of processes assumed to be smooth
include the depression level of a patient over time, the
evoked response potential (ERP) measured on the
scalp with surface electrodes, finger tapping in
response to mental imagery or synchronously with an
auditory stimulus, body core temperature, and the
flow of blood through a region in the cortex in
response to event-related tasks.

The continuous underlying process may be
observed not only at multiple time points (the dis-
crete observations which, in our music data, are taken
10 times per second), but at multiple manifestations
as well (the tension curves are replicated across partic-
ipants). FDA was designed to take advantage of replica-
tions, and in particular those produced by controlled
experiments.

When we say that a curve is smooth, we usually mean
that it is differentiable to a certain degree, implying
that a number of derivatives can be derived or estimat-
ed from the data. These derivatives, especially the first
two, “velocity” and “acceleration,” often have interpre-
tations relevant to the study, and thus analyzing these
derivatives can be an important component of FDA
(Vines et al., 2005). For example, we might want to
know the rate of change in tension in response to a
particular musical event, in addition to the level of
tension. Useful derivative estimates require both a
number of sampling points and a signal-to-noise ratio
that is sufficiently high, features that are not often
found in the kind of longitudinal data that are sub-
jected to hierarchical or multilevel linear modeling.

Derivatives are used in other ways in FDA, and the
exploitation of derivative information is a central
theme. Figure 2 shows the functional observation of
tension for a single participant; on the top, the dis-
crete raw data are shown as points and an estimate of
the smooth underlying tension curve is indicated by a
continuous line. In the lower panel, the first derivative
of this curve estimate is displayed. The use and inter-
pretation of derivatives in functional data is a rather
new, specialized topic in FDA (see Ramsay &
Silverman, 2005; Vines et al., 2005). Intuitively, one
can imagine the ways in which such derivative infor-
mation can reveal patterns in a (functional) dataset
that address important research questions. In the case
of depression levels in patients, one might want to
know not just when they reach a peak, but how rapidly
they rise and fall (the first derivative). In studies of
regional cerebral blood flow (rCBF), one might want
to know not just which neural structures are being

supplied by blood at a given point in time, and not
just how fast the blood is traveling from one region to
another, but whether the blood flow rate shows signifi-
cant acceleration or deceleration in response to par-
ticular tasks.

An Overview of Functional Data Analyses

FDA extends the capabilities of traditional statistical
techniques in a number of ways. Studying the variabili-
ty of a dataset when the observations are curves
instead of points requires that standard tools be adapt-
ed for this functional framework, and that new tools
be created to take advantage of the unique character-
istics of functional data. For example, the availability
of derivatives permits the use of differential equations
as models, and thus introduces descriptions of the
dynamics of processes as well as their static features.
Since the underlying processes one studies with FDA
are, by definition, changing over time (or space, or
some other continuum), the ability to quantify these
dynamics is a principal advantage of these techniques
over traditional static techniques.

A comparison of FDA with traditional multivariate
statistics (MVA) is valid at many levels. In classical sta-
tistics, a sample of discrete points is taken from a large
population. This sample may contain many sources of
variation: Initial variability across the units being mea-
sured, measurement error, variability due to sampling,
inability to reproduce the treatment conditions exact-
ly from one unit to another, and the systematic vari-
ability that is the goal of the analysis. In a functional
setting, a sample of curves is taken from a larger popu-
lation of curves. This functional sample contains the
same sources of variation as does a discrete sample;
now, however, there is the additional challenge of
quantifying variability within and across curves as
opposed to discrete points.

The relationship between FDA and models for
repeated measures or longitudinal data of the mixed
effects and structural equation varieties is even closer.
As a rule, FDA is concerned with data able to support
the estimation of more complex curves than is usually
the case with these older approaches. FDA data tend to
have a higher signal-to-noise ratio in each observed
value, and to be observed over a number of sampling
points ranging from 20 or 30 to tens of thousands or
more. As a result of this greater resolving power, the
estimation and use of information in derivatives tends
to be central to FDA. (For reviews of multivariate
methods for longitudinal data see Cudeck, 1996, and
Pinhiero & Bates, 2000; Ramsay, 2002 provides further
detail on the relationship between FDA and other lon-
gitudinal data approaches.)

A typical analysis of functional data begins by using



nonparametric smoothing techniques to represent
each observation as a functional object. The original
data are then set aside, and the estimated curves them-
selves are used for the rest of the analysis. Further pro-
cessing of the curves is also possible, such as the taking
of derivatives or performing transformations.

These functional objects are next usually repre-
sented in a Cartesian coordinate system with time
along the x-axis and the value of the dependent vari-
able along the y-axis. At this point it may be apparent
that there are two sources of variability in the curves
that comprise the functional data, each one corre-
sponding to one of the dimensions of the graph of the
curve: “Amplitude variability” having to do with varia-
tion in the shapes of the curves as reflected in peaks
and valleys (along the y-axis), and “phase variability”
having to do with shifts in the timings of these fea-
tures (along the x-axis). If appropriate, this amplitude
and phase variability can be extracted and removed
through scaling and curve registration techniques,
respectively, after which these sources of variation can
themselves be further analyzed and related to one
another, or to create individual difference profiles for
experimental units or participants.

As with traditional techniques, the exploration of
functional data is often preliminary to more struc-
tured analyses, and we have found that plotting
observed effects is a crucial stage in the interpretation
of these analyses that can greatly aid in choosing fur-
ther analyses (cf. Cleveland, 1993; Tufte, 1983; Tukey,
1977). Given a single functional variable, we may want
to estimate the correlation between curve values taken
at two time points s and ¢ the result is a smooth bivari-
ate correlation function r(s,#) that is the analogue of
the correlation matrix in MVA. Principal components
analysis (PCA) is as valuable in FDA as it is in MVA for
exploring the structure of the correlation function,
and PCA has been adapted to permit the smoothing of
estimated functional principal components.

A functional linear model may involve functional data
on either side of the equation, and usually in conjunc-
tion with multivariate observations. For example, a
functional analysis of variance (fANOVA) involves a
functional response modulated by a set of experimen-
tal conditions, and in this context it can be useful to
view indicators of effects such as Fratios and squared
multiple correlations as themselves functions of time
or whatever other continua are involved. This intro-
duces interesting new versions of the multiple com-
parison problem, and solutions are presently under
development.

Linear models involving functional covariates
require the estimate of regression functions as opposed
to MVA’s regression coefficients. Functional indepen-
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dent variables also introduce the need for imposing
smoothness on their regression functions because a
functional covariate can represent a number of
degrees of freedom for fit that exceeds the sample
size, and this could in principal produce overfitting of
the response data.

When a data set involves two or more variables,
investigators are usually interested in how they co-vary.
The cross-correlation function r(s,t) then consists of
estimated correlations between one set of function val-
ues at time s and the set of functions values at time t.
This information can be displayed graphically, but we
usually want to supplement such displays by methods
that look for more specific correlational structures.
Canonical correlation analysis is perhaps more useful
in FDA than it tends to be in MVA, in part because
canonical variables can be smoothed to avoid having
them reflect too much uninteresting high-frequency
variation.

Boker et al. (2002) describe an interesting example
of functional data in which windowed cross-correla-
tions are used to identify linkages between functional
variables that may be specific to certain time intervals
that may be lagged by an amount that must be esti-
mated from the data. Their experiments involving ges-
tures and body movements for couples during conver-
sation and dance are compelling illustrations of the
spirit of FDA at work. We now consider the stages of
FDA in more detail.

Applying FDA
Discrete Functional Data

We use the notation x(tj) for the value of a contin-
uous underlying process at time tj, and the notation Yi
to indicate a corresponding noisy observation of the
process x(t), where j = 1,...,n. A single functional
observation therefore consists of n pairs (tj, yj) , and
we want to use these data to estimate characteristics of
x(t) such as function or derivative values at unob-
served time points.

Replications of this underlying process may be avail-
able. Again, by replications we mean either multiple
samples of a single process (improving our estimates of
the actual shape of the curve that represents the
underlying process), or multiple participants providing
data on the same dependent variable(s). Earlier, we
pointed out that FDA is intended to be used on data
that come from a smooth and continuous process.
However, virtually all data collection that we know of
produces noncontinuous observations, taken as sam-
ples at discrete points in time. Even when the sampling
rate is very high (as in audio recordings routinely
made at 44 KHz or even 192 KHz sampling rate), the
points, technically, are not continuous. Thus, when we
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refer to discrete observations, the assumption is that
enough observations exist to model the underlying
process (cf. Nyquist, 1928; Shannon, 1949), and this is
largely a matter of experience, experimenter intuition,
and trial-and-error. Thus, because FDA attempts to
model a smooth process from discrete points, it is gen-
erally inappropriate for small datasets, and its greatest
advantages over traditional methods of analysis occur
with especially large datasets.

The ith replication of the underlying process is
written as x;(t), and data values corresponding to time
points tj; are written as yi (and where t can take on any
real values). Often the observations are taken at the
same arguments tj for each replication; in this paper,
we will assume for notational simplicity this is true,
that is, that t; = tj for each i, although in actual appli-
cations the locations and even the number of time
points can vary from replication to replication. This
might occur, for example, in an experiment in which
a dependent variable was to be observed at precise
points in time, but one or more measurements were
taken somewhat off-schedule. This happens often in
clinical settings. Imagine one wanted to measure
blood serum concentrations of a particular pharmaco-
logical agent and blood samples are scheduled to be
drawn at 60-minute intervals. A given sample for a par-
ticular participant or trial might be drawn some min-
utes earlier or later than the nominal time due to fac-
tors external to the experiment or due to experi-
menter error (e.g., Nuzzo, 2002). Such variability can
be handled with techniques described in the section
“Registration of Functional Objects” below (see also
Ramsay & Silverman, 2005).

Although measurement error usually does exist in
the observations yj, we will assume for the moment
that the tj are measured without error. We can relate
the discrete observations to the underlying smooth
process through the equation yj = xi(tj) + &ij, where
each ¢ is the disturbance or error term, assumed to
be distributed with mean zero and finite variance o°.

Building Smooth Curves From Discrete Data

The first step in a functional data analysis is to con-
vert the raw data into functional objects. To do this, a
curve is fit to the discrete observations, which approxi-
mate the continuous underlying process. Then the
discrete points are set aside and the functional objects
retained for subsequent analyses.

A common procedure in statistics, mathematics,
and engineering for representing discrete data as a
smooth function is the use of a basis expansion.

Xi(t) =ci1 ¢1(t) + ... cik Px(t) + ... + ¢k P(t), (1)

where K indicates the number of basis functions and
fi(t) is the value of the kth basis function at argument
value t. The basis functions fx(t) are a system of func-
tions specially chosen to use as building blocks to rep-
resent a smooth curve. There are many different types
of basis function systems, of which the best known are
powers of t or monomials, used to construct polyno-
mials, and the Fourier series used for periodic curves.
The cik are the basis coefficients and determine the rela-
tive weights of each basis function in constructing the
built curve for curve i. Estimating a curve that is
expressed as a basis function expansion then reduces
to the essentially multivariate parameter estimation
problem of estimating these coefficients.

When curves are not periodic and are complex, so
that a low-order polynomial cannot capture their fea-
tures, the most commonly used basis functions are the
B-spline functions (de Boor, 2001; Shikin & Plis, 1995;
Unser, 1999), and these will be used in this paper to
represent the tension curves in our illustrative music
and emotion study. B-splines are essentially polynomi-
als joined end-to-end at a set of interval boundaries
called knots. This structure allows for differing
amounts of smoothness or roughness at various places
along the curve, that is, each strand between knots
can be parameterized in an optimal fashion. Knots are
often chosen to be equally spaced, but they may also
occur at the exact times the data were actually
observed, or at prespecified time points of interest. B-
splines are characterized by their order, which is one
larger than the degree of the polynomials from which
they are constructed; for instance, B-splines of Order
3 comprise quadratic curves joined at the knots, and
B-splines of Order 2 are constructed from piecewise
lines (i.e., line segments). A set of B-splines, com-
posed of a B-spline which has been replicated and
shifted down the number line, can serve as basis func-
tions. Across a wide range of datasets, it has been
found that Order 4 B-splines appear reasonably
smooth to the eye and thus they are often used in
standard smoothing packages.

B-splines are normalized so that for any fixed value
t, the sum of all B-spline basis functions at that point is
one. This normalization means that a coefficient cix is
approximately the value of the curve being fit at the
location where the kth B-spline basis function achieves
its maximum.

The basis coefficient weights are chosen so that the
constructed curve will optimally fit the data for a cer-
tain degree of smoothing. The amount of smoothing is
controlled by the number of basis functions used: The
greater the number of basis functions K is, the more
the built curve will exactly fit or interpolate the dis-
crete points; the smaller K is, the more the curve is a



smoothed version of the points, but at a cost of a
reduced capacity to capture sharper features in the
curves.

There is a decision associated with choosing the
number of basis functions, often framed in terms of
the bias-variance trade-off common in many statistical
analyses. A high number of basis functions will yield a
curve that is more faithful to the observed data (low
bias) but that is often less smooth (high variance).
Using a small number of basis functions will produce a
curve that places less importance on interpolating the
discrete points (high bias) but more importance on
smoothness (low variance). Put another way, under-
smoothing of the curves leaves in artifacts and variabili-
ty (“noise”) that are not truly part of the process being
observed; the resulting curve may thus represent per-
turbations in the observation process that do not per-
tain to the analysis being sought or the research ques-
tion being asked. On the other hand, over-smoothing
discards small-scale, high-frequency behavioural data
that may be part of the process we wish to observe and
analyze — maybe even the most interesting part! Thus,
there is an art associated with building a curve through
basis expansion, and the analyst should cautiously
experiment with various parameters, driven by theories
about the underlying process whenever possible.
Finally, a data-driven approach to basis function speci-
fication is also possible; functional principal compo-
nents analysis, described below, can be viewed as a
method for constructing an optimal orthogonal basis
of fixed dimensionality, and these are often referred to
as empirical basis functions. Automatic methods for basis
expansion is an area of active research (e.g., Koenker
& Mizera, 2004), but in their present state of develop-
ment should not take precedence over informed and
careful judgment.

Another way to build a smooth curve from discrete
data is through the use of a roughness penalty (PEN
below). Here we have direct control over the amount
of smoothing, and the problem is formulated as a
direct trade-off between fitting the data and produc-
ing a smooth curve. We often fit the data using as our
goal the minimization of the least squares criterion
SSE = ¥jlyj - x(tj)}*. The smoothness of the fitted curve
can be quantified using the criterion PENg = [{D* x(s)}*
ds, which many readers will recognize as the integrat-
ed squared second derivative. This penalty describes
the total curvature in the curve x, and is popular in
the smoothing literature (Simonoff, 1996). The small-
er the size PENg is, the closer to a straight line the
curve will be. Of course, these two criteria, data fit and
smoothness, are normally in conflict, and we can put
them together to create a penalized residual sum of
squares

Introduction to Functional Data Analysis 141

PENSSE) = SSE + A PENo. (2)

The smoothing parameter A controls the amount
of importance we place on each of the two competing
goals: As A approaches infinity, the curve approaches
the straight line obtained from a linear regression; as
A approaches zero, the curve approaches a direct
interpolant of the data, with cubic polynomials con-
necting the observed points. The roughness penalty
method makes explicit the bias-variance trade-off
explicit, and allows us to directly quantify our priori-
ties through the choice of A. Again, automatic meth-
ods exist for choosing the best value of A, the most
popular of which involves a technique of partitioning
the data called cross-validation (Ramsay & Silverman,
2005). However, knowledge of the process generating
the data and a spirit of experimentation often prove
to be the most important tools in the area of spline
smoothing (as they often are in all data analysis).

The use of roughness penalties is not limited to the
creation of a functional object from discrete data. The
idea of making explicit the competing goals in an
analysis is a powerful one in the field of statistics.
Green and Silverman’s (1994) book contains many
examples of applications of this idea. Since they lend
themselves naturally to working with curves and
smoothness, roughness penalties are also very helpful
for adapting the tools of classical multivariate statistics
to an FDA framework.

Basis function expansions, whether roughness
penalized or not, are by no means the only options for
smooth curve-fitting, and Fan and Gijbels (1996) can
be consulted for information on local polynomial
smoothing, for example.

Registration of Functional Objects

Consider a case in which we graph our dependent
variable (on the y-axis) as a function of time (on the x-
axis). As mentioned above, it is common in functional
data analysis to speak of two types of variability in the
observed curves: amplitude variation, which deals with
the differences in height between the curves, and
phase variation, which deals with the differences in
timing of important features between the curves. For
example, pure amplitude variation might occur when
two individuals react simultaneously to the same musi-
cal event, but differ in the intensity of their reaction,
giving rise to two curves of different heights (but with
temporally synchronized peaks). Pure phase variation
might occur when the individuals react with the same
intensity to a specific musical event, but differ in when
they react, giving rise to curves that are temporally
misaligned (but with concordant amplitudes).

The possibility of phase variation is characteristic of
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functional data. Often in functional data, it is the
amplitude variation that is of primary interest, since
this describes how the heights or intensities of the
curves vary among participants (or among any groups
that may exist), and in this case it can be critical that
phase variation is first removed. In other circum-
stances, the phase variation is actually the measure of
interest and can be analyzed itself. For example, one
researcher may be interested only in the extent of
responses, and regard variation in the timings of reac-
tions to be a nuisance (the result of differing decision
times, reaction times, and neural clock speeds among
participants); one would then seek a technique to cor-
rect event times for certain participants so that all
reactions are simultaneous. Such an approach would
be consistent with the notion that the dependent vari-
able is tracking an underlying process that has peaks
and valleys at certain objective time points, with the
timing variations representing simply individual differ-
ences in reaction time that are not of relevance to the
study. Another researcher, however, may wonder
whether the phase variation is itself due in part to the
experimental manipulations, and want to study this
issue. In either case, the separation of these two curve
characteristics in some way is required.

It is helpful to think of time as being a variable that
can be manipulated. In the case of the tension ratings,
clock time can be different than reaction time, and we
would usually like to transform the clock time for each
rater to reflect a standardized biological time. In time-
warping registration, the idea is to scale, by locally
shrinking or expanding clock time, the moment each
response was recorded for each subject so that it con-
forms with a standardized biological time. In some
simple situations, this may be a matter of a simple lin-
ear transformation of the timings for certain individu-
als. But often a more complex time-warping function is
required that stretches time over some intervals and
compresses it over others.

We call our time warping function h(t). When a
process is running faster than the standardized time,
h(t) > t; if it is running more slowly, h(t) < t. If our
original curve is x(t), the registered curve would be
x[h(t)]. Mathematical procedures have been devel-
oped to estimate time-warping functions for a dataset,
and they have the following characteristics. First, we
normally expect the time-warping function to leave
the beginnings and ends of the data curves intact.
That is, h(tp) = to and h(tend) = tend. Secondly, we
impose an assumption of monotonicity (an ordering
assumption) in that we require that the events in the
registered curves occur in the same order as those in
the unregistered curves. In mathematical terms, we
would require then that h(te) > h(t;) IFF te > ti, which

implies that the time-warping function is monotonical-
ly increasing. Lastly, we have the goal that our regis-
tered curves all possess the same shape as the original
curves — that is, only the amplitudes are different, but
the peaks and valleys occur at the same time. This
would mean that the registered curves in the dataset
are proportional to one another. In mathematical
terms, we say that if curves x1 and Xo are proportional
then x1(h(t)) = a xo(t) for a positive constant a.

To estimate the time-warping functions for a
dataset, we again call upon the idea of roughness
penalties. As before with the curve estimation, we have
two competing goals in registration: On the one hand,
we want to line up all the features of the curves, and
on the other hand, we do not want the time-warping
function to be too rough, because taken to an
extreme this would be “overregistering” the curves in
the same way that it is possible to “over-fit” a model to
data. In order to balance these two goals in our regis-
tration procedure, we need quantitative measures of
each. For the first registration goal, researchers have
developed a “misfit” measure MF, quantifying the
amount of misalignment between features of the
curves, which is analogous to the sums of squared
errors in curve estimation (Kneip, Li, MacGibbon, &
Ramsay, 2000; Ramsay & Li, 1998). To quantify the
second goal of a smooth time-warping function, a
standard roughness penalty R is used, which is usually
the integrated squared second derivative of the time-
warping function h. Again as in curve estimation, the
estimation of the time-warping function is achieved by
minimizing the overall criterion MF + AR, where A is
the smoothing parameter.

The registration procedure requires a standardized
curve to which the observed curves will be aligned. In
practice, a “gold standard” curve is often not available,
and so one must be constructed from the data. A
good method is an iterative one: Find the mean func-
tion of the original curves in the dataset; register the
original curves to this mean curve; find a new mean
function of these registered curves; and repeat.
Usually only one or two iterations are necessary, and
registering the curves to the initial mean function may
even be satisfactory. As in traditional data analysis, a
good rule of thumb is to inspect the results at each
stage to make sure they make sense! The experi-
menter may have some knowledge about the underly-
ing process that the curves are intended to represent,
and this can inform smoothing and registration opera-
tions. For example, if the experimenter knows that
two peaks of activity existed in the original stimulus set
at particular points in time, she or he would obviously
want to avoid any registration solution that collapses
those two peaks into a single peak.



Adaptation of Classical Methods for Functional Data

Functional analogues for many multivariate statisti-
cal methods have already been developed and pub-
lished in the FDA literature (Guo, 2002, 2003;
Vidakovic, 2001). These include simple linear models,
ANOVA, generalized linear models, generalized addi-
tive models, clustering, classification, principal com-
ponents analysis, and canonical correlation analysis.
In this section we will describe the functional princi-
pal components analysis and the functional linear
model; these are good representative examples of
adapting multivariate methods to the functional
framework.

Functional Principal Components Analysis

Principal components analysis (PCA) is a data
reduction technique conducted when one wishes to a)
reduce the number of (possibly) correlated variables
to a smaller number of uncorrelated variables, and b)
reveal latent structure in the relations between vari-
ables. PCA finds the linear combinations of variables
that highlight the principal modes of variation.

For functional data, on the other hand, the princi-
pal components are defined by PC weight functions
varying over the same range of t as the functional
data. The PC weight functions serve the same purpose
as the multivariate principal components: to charac-
terize the principal types of variation among the
observed curves. These components can also be rotat-
ed to enhance interpretability. Each unrotated com-
ponent is associated to an eigenvalue that indicates
the variance in the modality that the component
defines, and the sum of these eigenvalues indicates
the total variability accounted for by the associated PC
weight functions. Principal component scores for each
curve can also be computed for each rotated or unro-
tated principal component. Thus, the only critical
change in moving from multivariate to functional PCs
is that the components are functions rather than vec-
tors.

Functional principal components analysis may also
incorporate a roughness penalty into its methods in
order to ensure that the estimated principal compo-
nents are sufficiently smooth. A common roughness
penalty is the integrated squared second derivative of
the principal component curve; this penalty was also
used in the section on curve-fitting.

As with principal component vectors in classical
PCA, we may wish to rotate the principal component
functions to increase interpretability. A functional
analogue has been developed for the classical VARI-
MAX rotation strategy, which finds principal compo-
nent curves whose values have greater variability about
zero. However, as in multivariate analysis, there is no
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essential requirement that the rotation maintain
orthogonality. Other tools of classical PCA can also be
used in the functional case; scree plots are helpful to
determine the number of principal component curves
to retain, and plotting scores of the participants on
the first two principal components can highlight hid-
den types of subject groups.

Finally, we may choose to apply functional PCA to
various derivatives or mixtures of them in order to
study variation in, for example, velocities and acceler-
ations.

Functional Linear Models

Most aspects of the multivariate linear model are
readily applicable to the case of functional data. This
section will discuss simple linear models, but the same
tools can then be generalized to create functional
nonlinear models, functional generalized linear mod-
els, and so on. In the functional setting, either the
response, the predictors, or both variables are curves.

The simplest case is when the response y;(t) is func-
tional, and predictors xjj are multivariate. In this case
the model is

Vi = 2Xij Bj(o + €i(n)» (3)

and we note that this is simply a conventional regres-
sion analysis for each value of t. Consequently, the
regression coefficients Bj(t) are functions of time.
These regression coefficient curves show how the
effect of the predictor changes the response at each
time t. In fact, the conventional univariate regression
problem simply describes how the predictor affects
the response in the snapshot of time when the data
were collected. However, a new feature in the func-
tional situation is the possibility of forcing the regres-
sion functions to be smooth by adding one or more
roughness penalties to the usual least squares criteri-
on, in much the same manner as we did in (2). We
will apply this form of the functional linear model to
the tension data in Section 3, where we discuss the
effects of experimental conditions on the tension
curves.

Functional predictors xi(t) with a scalar response y;
are also possible. Here the coefficients are also curves,
and they describe the contribution (at every point in
time) of the pattern of independent variables toward
the scalar dependent variable. The model looks like
this:

yi = Jxi(s) B(s) ds + & (4)

where B(s) is a regression coefficient function and ¢; is
a disturbance or error term. The integral of the prod-
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uct replaces the sum of products in the classical linear
model.

But a new problem now intrudes here: Since, in
effect, each time point is analogous to a new indepen-
dent variable, implying in turn that we have an infinity
of independent variables at our disposal, we have the
problem that this model can fit any finite set of data
exactly. To keep the model from being trivial and
therefore impractical, we must impose a roughness
penalty on the regression function (s). By ensuring
that B(s) is sufficiently smooth, we also can discover
whether the model works or not.

The case of functional predictors and functional
responses is still more complex: The regression coeffi-
cients are then two-dimensional functional surfaces
B(s,t) rather than one-dimensional functional curves.
These surfaces detail how each point in time of the
predictor curve x;(s) affects each point in time of the
response curve yi(t). The model can allow for delayed
or lagged influence; for a given point in time, the past
pattern of the predictor can influence the present
point in the response curve. Future behaviour of the
predictor variables may also affect the response curve
at any given point; we call such predictors oracles. In
general, the influence of the predictor can be moder-
ated so that any portion of the predictor curve is
included in the linear model. The coefficient surface
will reflect the windows of influence chosen. Further
details can be found in Ramsay and Silverman (2002,
2005).

Goodness-of-fit diagnostic techniques from classical
linear models can be adapted for the functional case
as well. The difference is the dependence of these
procedures on time t in the functional setting. In a
functional residual analysis, the residuals are now
functions of time, and a graphical plot of the residual
functions that show a trend over time is suggestive of a
model with a poor fit. A functional principal compo-
nents analysis of the residuals may reveal the presence
of previously unknown patterns in the data that were
not captured by the linear model.

Furthermore, goodness-of-fit statistics can be calcu-
lated by using functional analogues of the sums of
squares. In the functional response/multivariate pre-
dictor situation, the sums of squared errors function,
for instance, is

SSE(t) = Xi [yi() - Zi B(9 ] )

where Z; is a row vector of covariate values. Similarly,
the sums of squares for regression is

SSY(t) = Xi [yi(t) = "u(0 1% (6)

where “u(t) is the overall mean function. From this we
can calculate the squared multiple correlation func-
tion RSQ with values

RSQ(1) = [SSY(t) — SSE(t)]/SSY(1). (7)

We can also calculate the mean square error func-
tion MSE with values MSE(t) = SSE(t) /df(error), where
df(error) is the degrees of freedom for error, or the
number of observed curves N less the number of coef-
ficient functions B in the model. Similarly, the mean
square regression function can be determined, with
values MSR(t) = [SSY(t) - SSE(t)]/df(model). Finally,
we can compute the Fratio function Fratio(t) =
MSR(t) /MSE(t).

Inferential Statistics

Determination of statistical significance for func-
tional models is an open area of research, and Ramsay
and Silverman (2005) discuss a variety of issues and
summarize current work.

A simple method for expressing statistically signifi-
cant regions of regression coefficient curves involves a
pointwise comparison of the Fratio function values to
the critical values of the F distribution with appropri-
ate degrees of freedom. Regions in which the Fratio
function exceeds the critical value threshold are statis-
tically significant. This pointwise method is not fully in
the spirit of functional data analysis, however, and
more appropriate methods might be found in the sim-
ulation and resampling of the observed functions.

Differential Equation Models

A central theme of FDA is the use of information in
derivatives such as velocities and accelerations. This
leads naturally to models for data in the form of dif-
ferential equations. A differential equation expresses a
relationship that holds between a function and one or
more of its derivatives. For example, the function x(t)
= e" can also be expressed as the equation Dx(t) =
kx(t), where the notation “Dx(t)” means “the velocity
or rate of change in x at time t” or “the derivative of x
att.”

Differential equations are standard mathematical
tools for physical and biological scientists and for
engineers, but seldom appear in behavioural science
literatures. Nevertheless, they offer some exciting pos-
sibilities as modeling tools. Methods for estimating dif-
ferential equations such as principal differential analy-
sis (Ramsay, 1996) are a part of the FDA arsenal. See
Ramsay (2000) for an example of the use of a differ-
ential equation to model some exceedingly complex
handwriting data.



Autocorrelation
Let {a;} M-} be a periodic sequence, then the auto-
correlation of the sequences is the sequence
N-1
pi =ch, +1 (8)
j=0
where the final subscript is taken modulo N. The auto-
correlation is simply the correlation of the sequence
against a time-shifted version of itself. The autocorre-
lation RF(t) is defined as

Ri(t) = %, g [0 fle+ 1) (9)

Techniques do not presently exist for accurately
calculating the correlation between two functions that
are themselves serially correlated and nonstationary
(Box et al., 1994, but see Huitema & McKean, 1998
for a discussion of the loosening of restrictions in
some cases). In many functional datasets, successive
observations of the dependent variable are intercorre-
lated, as is often the case when the investigator is tak-
ing measurements of a continuous variable that, when
changing from one value to another, must pass
through intermediate values. Examples include neu-
rophysiological measures such as heart and respira-
tion rate, hormone levels or serum blood concentra-
tion levels of a substance, or the movement of a
human-controlled input device (such as a slider). In
data from brain imaging experiments, both the spatial
extent and the level of the blood oxygenated level
dependent signal are intercorrelated: The likelihood
that a given voxel will be activated in an experiment is
dependent on whether an adjacent voxel is activated
(spatial extent) and the amount of activation at a par-
ticular time ¢ is dependent on the activation at time ¢
1. Thus, in all these cases, a given observation is
dependent on adjacent observations, violating the
independence assumptions in classical MVA.

Alternative windowed cross-correlation methods
for functional data that violate the conditions of sta-
tionarity are currently in development (by our labora-
tories and others). Key to our approach is the setting
of boundary conditions, that is, computing a correla-
tion in two different ways, one of which is known to
overestimate and the other of which is known to
underestimate the true degree of relation between
two or more variables. Boker et al. (2002) introduced
a windowed cross-correlation method that can com-
pute correlations under such circumstances, and that
does not assume stationarity. (If we let a vector repre-
sent the sequence of observations obtained in an
experiment, a subset of contiguous observations sam-
pled from that vector is often called a window.) With
functional data, one might consider the minimum
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and maximum correlation values obtained from such
moving window analyses as boundary conditions for
the true value of the correlation between the variables
of interest. Often with functional data, there are a pri-
ori reasons to choose a window of a certain size based
on a consideration that it likely contains stable or sta-
tionary data due to the time course of the underlying
process. Haemodynamic lag, for example, suggests
that observations within a time period of 1.5 seconds
or so can be windowed for such a cross-correlational
analysis.

Bootstrapping

As with conventional statistical analyses, bootstrap-
ping (Efron, 1979; Efron & Tibshirani, 1993) can be
an effective tool for providing estimates of the sam-
pling distribution of an estimator by resampling with
replacement from the original sample. Two articles on
bootsltrapping offer a good starting point for the
interested reader. McKnight, McKean, and Huitema
(2000) introduced a method based on Freedman
(1984) for bootstrapping datasets with autoregressive
properties. Bootstrapping was recently combined with
FDA to evaluate the range of forecasts of sulfur dioxide
levels near a power plant (Fernandez de Castro,
Guillas, & Gonzales Manteiga, 2005).

Practicalities

Functional data share characteristics with other
types of data such as time series or multivariate
datasets. Yet in real-world situations, data can rarely be
classified exclusively as one type or another. Some
datasets may be unequivocally functional. In these
cases, for example, derivatives play an important role
in the analyses; data are collected at a very fine resolu-
tion; the observed function is very smooth; and many
replications of the process are available. Other
datasets, when some of those characteristics are miss-
ing, may straddle the fence between “functional” and
“multivariate” (or “time-series”). Still other datasets
may be decidedly nonfunctional. So for most datasets,
a variety of tools are available for analysis. Functional
data analysis tools are best used when there are too
many data points for a repeated measures ANOVA, for
instance, when traditional methods ignore correla-
tions between datapoints, or — and perhaps most
importantly — when the research question focuses on
precisely when in a time series (or where in a multidi-
mensional psychophysical or Cartesian space) a signif-
icant result occurs rather than collapsing across all the
observations for a mean or summary difference
between conditions. FDA methods are also most help-
ful when derivatives of the observed functions are
important and physically meaningful. Note that the
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Figure 3. For the same four participants from Figure 1 in the audio only condi-
tion, the functional objects obtained after expanding the scaled raw data with
6th order B-splines as described in the text. Note the similarity to Figure 1, indi-

cating the quality of the B-spline estimation.

previously mentioned techniques of Boker and col-
leagues (2002) can also be used for these purposes.
Software for the analysis of functional data using
standard FDA techniques, including those described
here, is available for the R, S-PLUS, and Matlab pro-
gramming languages. The functions with their docu-
mentation can be downloaded from the web site
www.functionaldata.org. These languages are easily
extensible for customized functions and more
advanced techniques for researchers with some pro-
gramming experience. New techniques and software
are being developed and shared with other
researchers. A background in introductory calculus
and statistics is necessary for the basic use of these
techniques; familiarity with differential equations,
matrix algebra, and more advanced multivariate and
nonparametric statistics would be helpful to better
understand the concepts. Analysis of functional data
using these techniques may require more time of the
analyst than it would for multivariate data using stan-
dard techniques. Most of this extra time stems from
the need to represent the discrete observations with
functional curves, using the basis expansion tech-
niques described earlier. This is not a fully automatic
procedure; the analyst needs to use prior knowledge
and expectations of the process to best represent the
data with smooth curves. The rest of the analysis may
follow along straightforward lines, if, for example, a
functional linear model or functional principal com-

ponents analysis is all that is required. More compli-
cated analyses may require additional programming
and time from the analyst.

Case Study: Perceived Tension in Music Over Time

Vines et al. (2006) sought to understand how the
physical gestures of professional musicians might con-
tribute to the perception of emotion in a musical per-
formance. Twenty-nine musically trained participants
saw, heard, or both saw and heard performances of a
Stravinsky concerto by a clarinetist. All participants
performed the same task: a continuous judgment of
experienced tension in the musical performance,
made by moving a slider up and down to indicate min-
imum or maximum tension. The position of the slider
was translated into a discrete value along a continuum
from 0 to 127, and was sampled every 10 ms. This
example illustrates the ways in which continuous mea-
sures (location and time) can be discretized for analy-
sis purposes in FDA. The principal research question
of interest was how similar the rated tension experi-
ence was for each sensory modality, as a way to under-
stand the similarities and differences in musical ten-
sion conveyed by the different sense modalities. A sub-
sidiary research question concerned where in the
piece, if at all, the auditory versus visual modalities
carried the most influence on the overall experience
of tension by an audience member.

The analyses in this section used FDA software
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Figure 4. Functional mean curves (across participants) for the three conditions of the

experiment.

implemented in Matlab. To begin, the raw data were
appropriately scaled by transforming them to z scores,
in order to account for differential use of the slider
device. Each of the 30 observation records consisted
of a vector of length 800, from data collected every 10
milliseconds for the duration of the 80-second perfor-
mance (one participant had to be excluded due to
equipment failure, resulting in a total n of 29). The
values ranged from 0 to 127 depending on how much
of the range of the slider each participant used. To
account for differences in individual use of the slider,
each vector was scaled by its median. That is, the
median of a given vector was subtracted from each of
the 800 observations in that vector. This procedure
centres each participant’s ratings so that a score of
zero refers to the middle-most tension felt by the par-
ticipant during the performance. Then the vectors
were scaled so that the maximum score corresponds
to a value of 100 and the minimum a value of 0, so
each participant’s ratings are comparable on an inter-
val of [0, 100]. Note that this scaling does not equate
the level of tension between two or more participants;
rather it allows us to compare the maximum and mini-
mum tensions reported by participants during their
experience of the performance.

Functional objects were then created from the dis-
crete, scaled vectors. That is, each vector of observa-
tions was represented as a smooth curve. First, 150
Order 6 B-splines were used as a basis expansion for
each curve. In a sense, this represented an initial
reduction of data, since the 800 observations were
now summarized using 150 basis coefficients. Order 6
splines were used because they ensure that the first
and second derivatives of the resulting curves would
be composed of Order 5 and Order 4 B-splines,
respectively and thus still be smooth (DeBoor, 2001;
Shikin & Plis, 1995). Then each curve was smoothed
by a small amount to take out a bit of roughness.

The raw data were previously shown in Figure 1

and the functional objects created from them are now
displayed in Figure 3. A noticeable alignment can be
seen at about the 30-second mark in the Audio-Only
group. This sudden rise and then drop in tension was
seen less clearly in the Audio + Video and Video-Only
groups (not shown). It is the goal of the analysis to
find the times in the performance when the three
groups differ most strongly and to quantify what form
these differences take. To facilitate this next goal,
mean functional curves across participants were creat-
ed for each of the three conditions. These mean func-
tional curves are shown in Figure 4. Among the first
things we note in a visual inspection of the resulting
figure is that the auditory-only judgments track quite
closely to the auditory + visual judgments throughout
most of the piece. Note also that the visual compo-
nent diverges from the auditory and the auditory + visu-
al at certain points in the piece, notably around sec-
ond numbers 18 and 34. We will return to this shortly.

Functional Principal Components Analysis

As in a multivariate dataset, a good exploratory
technique for these curves is a principal components
analysis. In the functional case, the principal compo-
nents are curves instead of vectors; however, the inter-
pretation is very similar: The resulting principal com-
ponent functions highlight the directions in which the
dataset most varies. We performed a functional princi-
pal components analysis (fPCA) on the entire dataset
to explore the modes of variation in all the partici-
pants. The principal component functions were
smoothed slightly to aid in interpretation. Then the
first three principal components were rotated using
the VARIMAX criterion, three having been chosen
here as in multivariate analysis on the basis of a satis-
factory amount of variance having explained the com-
ponents being interpretable. This procedure attempts
to transform the principal component curves so that
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Figure 5. Effects of the rotated functional principal
components (fPC) on tension judgments. In all
three panels, the mean of participants’ tension
judgments is shown as the black line; the purple
line shows the mean plus the principal compo-
nent; the yellow line shows the mean minus the
principal component. Top panel: The first compo-
nent, accounting for 48% of the variance, indexes
the degree to which a subject’s judgments are
expanded or compressed (amplified or attenuat-
ed) from the mean. Middle panel: The second
component, accounting for 15% of the variance,
indexes “start” effects, that is, the degree to which
participants’ judgments started out high or low.
Bottom panel: The third component, accounting
for 14% of the variance, indexes edge effects, that
is, the degree to which the beginning and ending
of the piece are seen as more or less extreme than
the middle of the piece.



their values are either shrunk to zero or strongly posi-
tive and negative. This aids in the interpretation of
the curves and does not affect the orthogonality of the
components. The following graphical tool is helpful
to visualize the effects of the principal components:
The mean curve for the dataset is first plotted; then a
small multiple of each principal component is added
to and subtracted from this mean curve and plotted
on the same axes. Thus we can more clearly see the
times in the performance where the participants feel
strongly differing tensions.

The effect of the first functional principal compo-
nent is displayed in the top panel of Figure 5 along-
side the mean of participants’ judgments. The princi-
pal components in FDA are curves. We can see that the
effect of the first extracted component is that of atten-
uation or amplification — we might label this compo-
nent “compression/expansion,” referring to the
strength of an individual’s reactions to the underlying
tension events. Participants with a high score on this
component (purple line) experience an amplified
effect as compared to the mean effect: a strong drop
in tension at about Second 35. These participants also
report a sharp increase in tension at about Second 65
after a period of low tension for 30 seconds. On the
other hand, participants with a low score on this com-
ponent (yellow line) report a more attenuated experi-
ence: The drop in tension at Second 30 is not as
noticeable, and the tension remains high for the next
35 seconds and beyond.

The effect of the second principal component is
displayed in the middle panel of Figure 5. It appears
that this component identifies the “start effects” of the
participants’ experiences. A high score on this compo-
nent indicates a participant who reports a high level
of tension in the beginning of the piece but then
experiences typical tension throughout the rest. A
participant with a low score on this component starts
with a level of tension lower than average.

The effect of the third principal component is dis-
played in the bottom panel of Figure 5. This appears
to identify the “edge effects” of the ratings.
Participants with a high score on this component will
begin with a high rating of tension, immediately com-
pensate with a lower rating, and then conclude the
piece with a high rating again. Those with a low score
will begin with a low rating and also conclude with a
low rating.

Functional Linear Model

A linear model of the tension ratings was built
from the functional data to better quantify the effects
suggested by the principal components analysis.
Recall that in the musical tension study, participants

Introduction to Functional Data Analysis 149

were assigned to one of three conditions in a between-
participants design: Audio + Video (the natural condi-
tion, in which the performance was both heard and
seen), Audio Only (the sound was on but the image
was turned off), and Visual Only (the sound was off
but the image was turned on). The predictors were
scalars: dummy variables indicating the group (or con-
dition) membership of the participant producing
each tension rating. Since the responses were func-
tional objects, the resulting regression coefficients
were also curves rather than scalars, and they allow us
to determine where in the performance the experi-
mental condition most affects the tension ratings. The
coefficient curves were smoothed slightly to aid in
interpretation.
The linear model can be written as

yi(t) = Po(t) + P1(t) ARi + Ba(t) VR; + &(t). (10)

Here the dummy variables AR and VR are such that
AR; = 0 if the ith participant experienced the perfor-
mance with the audio removed (Video Only), and 1
otherwise, and VR; = 0 if the ith participant experi-
enced the performance with the video removed
(Audio Only), and 1 otherwise. So an average tension
rating for the participants in the Audio-Only group
would be Bo(t) + P2(t); for those in the Video-Only
group it would be Bo(t) + P1(t); and for those in the
Audio + Video group it would be fo. Notice that this
linear model is built with the baseline effect being the
presence of both audio and video rather than the
absence of both. Furthermore, the coefficients refer
to the effects of the removal of sensory inputs rather
than the presence of them. This is because the condi-
tion of no audio and no video could not be measured
easily, so the standard of reference must be the “natur-
al” condition of Audio + Video, and changes to this
condition measured in subtraction rather than addi-
tion.

The coefficient curves for this linear model are
plotted in Figure 6. The baseline curve of the natural
condition (blue line) shows a moderate drop in ten-
sion at about Second 30, as expected, with a subse-
quent increase in tension at Second 65 and beyond.
The “video removed” coefficient (red line) shows the
effect of removing the video component of the perfor-
mance. As in a scalar regression coefficient, values
near zero indicate a smaller effect of the predictor,
and strongly positive or negative values point to a larg-
er effect. From this we can see that, compared to the
“nothing removed” (Audio + Video) condition, the
“video removed” (Audio Only) group does not experi-
ence much difference in tension from the beginning
of the performance wuntil about Second 30. From this
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Iigure 6. Coefficient curves for the functional linear model of tension. These
curves allow one to visualize the effects of removing one of the sensory channels
(audio or video) from the “natural” condition of audio + video.
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Figure 7. The fitted curves from the linear model for the three experimental
groups, averaged across participants.
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Figure 8. Comparing means for the Audio + Visual and Audio-Only groups. The
dashed line represents the F-value for the hypothesis that the two group means
are different with alpha=.05. When the F-value rises above the dotted line, the
difference between groups is significant.

point until the end of the piece, the effect of remov-
ing the video is to decrease the tension as compared
to the baseline group. This effect is moderately low,
meaning that the Audio-Only group does not differ
greatly from the Audio + Video group throughout the
piece. On the other hand, the coefficient for the
“audio removed” (Visual-Only) component (green
line) shows a stronger effect. Areas of greater change
in tension are seen specifically at about Second b5,
Second 10, Second 20, Second 30, and especially from
Second 35 to Second 65. A sharp decrease in tension
at Second 30, reported by participants experiencing
the audio component, was not seen by participants in
the Video-Only group. And their subsequent experi-
ence from Second 35 to Second 65 was not one of sub-
stantially lowered tension, as it was with the Audio-
Only and Audio + Video groups.

Fitted values from the linear model for the three
experimental groups are plotted in Figure 7. Here the
net effect of the regression coefficient curves can be
more clearly seen. The Audio-Only group (red line)
showed judgments that were quite similar to the
Audio + Video (green line) group for the duration of
the performance, differing only in intensity at the
peak at Second 30 and during the periods of lull and
closure from Second 35 to Second 75.

The Video-Only group (purple line), on the other
hand, shows a markedly different pattern of tension
throughout the piece. Most noticeable are the attenu-
ated peak at Second 30 and the report of average ten-
sion from Second 35 to Second 65. During this latter
span of 30 seconds, the visual signal is evidently
responsible for higher tension ratings than the audio
or audio + visual. This led the experimenters to re-
examine the original performance in an effort to
understand why this might be so. The point at which
the visual information first breaks apart most clearly
from the other channels (around Second 32) coin-

cides with a long rest in the piece. The performer
draws the clarinet away from his mouth, relaxes his
entire body for one second or so, and then takes a
deep breath in preparation for playing again. There is
no evidence of this activity in the audio-only channel,
but in the visual channel it is quite obvious that the
performer is making preparatory gestures in anticipa-
tion of playing. This gesture serves as a cue to the
viewer that something is imminent, and may underlie
the ratings of increased tension at this point. Why the
ratings in the visual condition stay uniquely high for
the next 30 seconds — or why the audio + video partici-
pants did not respond similarly to this visual cue —
remain topics for further investigation.

Functional Analysis of Variance (fANOVA)

A functional analysis of variance (fANOVA) can be
performed on the regression curves derived in the
previous section. Here, for the sake of simplicity, we
have chosen to conduct a one-way fANOVA with pre-
sentation condition as the between participants factor,
and we have analyzed two conditions: the audio-video
(AV) and the audio only (AO). Hy is that these two
curves are the same, Hj is that they are different. Our
research question asks if the addition of visual infor-
mation to the auditory information makes a signifi-
cant impact on the experience of participants, and if
so, how much? Perhaps most interestingly, we are now
in a position to ask when in the performance these dif-
ferences are significant.

Referring to Figure 8, the y-axis shows values of the
F function, and the dashed line represents the .05
level of significance, at F= 4.4 (for df= 2,18). FDA tools
calculated this /*value at every point in time; when the
F~value is above 4.4, the difference between the AV and
the AO groups is significant at .05. (At present, such
tools are rather primitive and do not take into
account family-wise error rates, nor do they have an
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easy means of determining power. These issues are
under development.) The presence or absence of
visual stimuli differentiates the experience for the two
subject groups, so the visual component (or its inter-
action with the sound) is assumed responsible for any
differences between the curves. We see clearly that
there exists a significant section that lasts from 51.3
seconds to 53.8 seconds. The researchers closely
examined the frames of the video corresponding to
this section and discovered that the music and the
performer’s gestures are in some sense at odds with
one another, which may account for the statistically
significant difference between AV and AO here.
Musically, the piece becomes very soft. Visually, the
performer takes on an intense expression in his face
with his eyebrows raised, and his body moves in a ris-
ing motion even beyond the sounding of notes, dur-
ing rests. All of this visual activity contrasts with the
sonic content, which conveys a sense of total calm and
quiet. The performer’s body movements and facial
expressions clearly indicate that he had a highly emo-
tional experience during this portion of the perfor-
mance. This high level of emotion was conveyed to
the AV participants via the visual modality. The affec-
tive response of the AV group, as indicated by the ten-
sion judgment, maintained a significantly greater
magnitude than that of the AO group because of the
visual content in the performance. This is a subset of
the period of time during which participants in the
visual-only condition were also showing high amounts
of tension.

Summary of Findings

The auditory and visual components of this partic-
ular performance conveyed some of the same experi-
ence of tension, during particular portions of the
piece. It has long been suggested in theories of art
and aesthetics that the gestures made by an artist reflect
emotional intent, even when the gestures themselves are
not the primary object of evaluation by the perceiver.
For example, in Japanese ink paintings, the gestures
used by the painter and the resulting brush strokes
are believed to convey the emotional state of the artist
at the precise moment of the gestures (Davey, 1999).
The data here provide evidence that the gestures and
movements of a performing musician — even in the
absence of sound — are conveying some of the same
information as the sound itself in many cases. In other
cases, as we have seen, the visual channel is providing
complementary and different information than the
audio channel. Much remains to be studied in this
domain. We have included this example both because
of its novelty and because it illustrates that certain
interpretations of a dataset are made easier with FDA.

Other Examples

There are many other examples of functional data
to be found in psychology and many of the techniques
just described would be applicable in these cases as
well. Many studies in psychology, electrical engineer-
ing, and linguistics concern temporal synchrony/asyn-
chrony. For example, Cummins (2003) studied speech
synchronization: Native speakers of English were
asked to simultaneously read an unfamiliar passage of
text, and the degree to which their utterances were
temporally synchronized was studied. Of interest was
whether or not the participants improved with prac-
tice. Replications existed at the level of participants (n
= 27) and at the level of trials (each participant read
five text excerpts). For each paired reading (n = 27 x
5 = 135), the median asynchrony, in milliseconds, was
computed at three temporal positions: the onset,
medial, and final vowel onsets. FDA would permit the
researcher to construct a synchrony curve for each
participant pair — or for the participants all taken
together — and to analyze the first versus last trial, or
the five trials together, without having to conduct tests
at only three time points. FDA thus allows the
researcher to use all of the information available — not
just those at certain time points. This could reveal any
latent information about when during the trials partic-
ipants were maximally or minimally synchronized, and
an analysis of derivatives could reveal information
about the manner in which participants “sped up” or
“slowed down” in order to achieve synchrony. These
micro-variations in time synchrony could inform cog-
nitive theories of time-keeping and central clock
mechanisms.

In studies of motor planning and coordination,
tapping tasks are often employed (Rosenbaum,
Kenny, & Derr, 1983; Schulze, Luders, & Jancke,
2002). Participants are asked to tap their fingers
either to a presented sequence, or to their own “pre-
ferred tapping rate.” Again, FDA allows the researcher
to move beyond summary statistics that collapse over
the time period of the experiment, to more closely
analyze effects as a function of time, as well as the deriv-
atives of any timing and motor responses obtained.

Evoked Response Potentials (ERPs) are collected by
placing electrodes on the surface of the scalp, and
electrical activity is measured in response to various
stimuli or tasks the subject is asked to complete. In
such studies, the ERP signal is typically collected from
32, 64 or 128 channels distributed around the skull,
and it is of interest to understand how the ERP signal
varies across time and across sites. Somewhat similarly,
positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) track the blood-
oxygenated level-dependent signal in the brain, and



reveal brain regions and neural networks that are acti-
vated during particular cognitive tasks. These studies
produce millions of datapoints every few seconds, and
the points are correlated both in space (a group of
neurons is likely to be active if an adjacent group of
neurons is) and in time (neurons active at any time t
are likely to still be active at t + 1). These data thus
consist of highly intercorrelated observations, and are
most often analyzed using statistical methods that
attempt to correct for multiple comparisons and such
intercorrelations (e.g. Friston et al., 1995;
http://www.fil.ion.ucl.ac.uk/spm/; http://www.mrc-
cbu.cam.ac.uk/Imaging/Common/). FDA techniques
are beginning to be applied to neuroimaging data
(Beckman & Smith, 2004; Valdes-Sosa, 2004; Viviani,
Gron, & Spitzer, 2003).

Other recent applications of FDA include the analy-
sis of esophageal bolus flow (Stier, Stein, Schwaiger, &
Heidecke, 2004) and analysis of gene expression
arrays (Barra, 2004).

Conclusions
We described a number of places in the behaviour-

al and life sciences research in which functional data
may be found, and the tools we have outlined here
could potentially reveal relations not as easily seen
with conventional statistical approaches. In many
cases, FDA will allow the researcher to ask questions
that either could not be asked, or would be computa-
tionally cumbersome to ask, using traditional statisti-
cal methods. In this respect, FDA represents both nov-
elty in analysis and parsimony in execution. Moreover,
functional models facilitate a visual representation of
the data, and thus provide explanatory power.

We illustrated key aspects of FDA using real data
from a study of musical emotion. Note that in this
example, as in most functional datasets, several key
features were present:
¢ The data were drawn from a continuous measure

(position of a slider that theoretically varied contin-

uously both over its range and over time);

® We can assume that the process generating the data
is a smooth, continuous one;

¢ The dataset contained replications (10 participants
in each of three conditions);

e The curves are differentiable, and the derivatives
are a potential source of additional information
about the nature of the data; and

e Fach functional data curve constitutes an observa-
tion (rather than the individual points that make
up the curve being considered observations).
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We showed that an advantage of employing FDA for
datasets such as this one is that we can exploit these
features to reveal information not otherwise attainable
in the data. In particular, amplitude and phase vari-
ability in the curves can be examined or eliminated
(depending on the researcher’s hypothesis), curve
registration allows us to view and analyze the underly-
ing process of interest, and derivates of the curves can
be analyzed to reveal dynamic aspects of the process.
In addition, FDA contains methods for constructing
correlations and Principal Components that are them-
selves curves, and thus allow us to track when in the
time series (or where in a spatial series) any significant
differences between and among curves exist. In con-
structing functional Ftests, we can avoid the problems
of multiple comparisons inherent in treating each
point on the curve as an observation, by creating I
function curves that relate directly to the dynamic
character of the data.

FDA comprises a set of rapidly evolving tools. FDA
comprises a set of rapidly evolving tools. A good deal
of this research energy goes into refining existing
methods such as the functional linear model and prin-
cipal components analysis, but we tend to see two
problems specific to FDA that are attracting particular
attention. The first of these is the simultaneous model-
ing of amplitude and phase variation, as opposed to
the procedure described in this paper of using regis-
tration methods to remove phase variation before
modeling amplitude variation. This integrated
approach seems important because amplitude and
phase can interact in interesting ways, and also
because independent variables that affect amplitude
variation can also affect phase as well. This is obviously
the case for the effect of gender on growth curves, for
example. A second general trend is toward using
dynamic models, often expressed in terms of systems of
differential or difference equations, to study rates of
change directly. A good sample of current work of this
nature can be found in Walls and Schafer (2006). We
provided links to a web site which is constantly updat-
ed so that the reader can access software tools to per-
form his or her own functional data analyses.
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Résumé

Les psychologues et spécialistes du comportement col-
lectent de plus en plus des données tirées des processus
sous-jacents continus. Dans le présent article, nous
décrivons un ensemble de méthodes quantitatives,
I’analyse de données fonctionnelle, qui peut

répondre a de nombreuses questions auxquelles les
approches statistiques traditionnelles ne peuvent répon-
dre. Ces méthodes sont utiles pour 'analyse de données
communes en psychologie expérimentale, notamment les
données visant des séries temporelles, les mesures
répétées et les données s’échelonnant dans le temps ou
I’espace comme c’est le cas pour les expériences en neuro-
imagerie. Le principal avantage de ’analyse de données
fonctionnelle est qu’elle permet au chercheur d’examiner,
lors de I'analyse de séries temporelles, quand des dif-
férences peuvent-elles exister entre deux ou plusieurs
ensembles. Notre discussion traite des corrélations fonc-
tionnelles, des composantes principales, des dérivés des
courbes fonctionnelles et de I’analyse des modeéles de
variances.
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