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We have studied a class of dynamical models exhibiting self-organized criticality, which have re-
cently been introduced by Bak, Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987)] by the Monte
Carlo renormalization-group (MCRG) technique. In particular, we estimate critical exponents for
the “sandpile” model in dimensions d =2 and 3 by MCRG, and present numerical simulations for
d =4, which is thought to be the upper critical dimension. Our results are to higher precision than,
although consistent with, the original numerical work on the problem. We further compare our ré-

sults to those of a recent conjecture.

I. INTRODUCTION

Recently Bak, Tang, and Wiesenfeld' * have intro-
duced the concept of self-organized criticality. They
have devised dynamical models that evolve automatically
into a critical state without tuning any parameter. Such
a self-organized critical state is characterized by the ab-
sence of length and time scales and is argued to be re-
sponsible for long-range temporal correlations with
“1/f” power spectrum, where f is frequency, in many
dissipative dynamical systems. This new critical phe-
nomena is fundamentally different from that near a
second-order phase transition. For that case, the critical
point can only be reached by tuning parameters in the
phase diagram, such as temperature, to reach criticality:
Gibbs’s phase rule forbids an inhomogeneous state in
thermal equilibrium, except on, say, lines and points in a
two-dimensional phase diagram. Self-organized criticali-
ty can also be thought of as an attractor of a dynamical
system reached by starting far from equilibrium. In this
regard, there is a close connection to irreversible cellular
automata, which satisfy similar properties.* However,
like standard critical phenomena, a few critical exponents
describe the self-organized critical state, which involves
scaling and universal behavior.

While it has been argued that many phenomena in na-
ture show self-organized critical behavior, a particular
physical system which has served to focus research is
avalanches in sandpiles, although it should be noted that
the experimental situation for 1/f noise in avalanches is
at present unresolved.” Many other experimental repre-
sentations are presumably possible, and some novel appli-
cations of the ideas of self-organized criticality have been
suggested.® For example, scaling in first-order phase
transitions may also be thought of as self-organized in
that the scaling regime is reached without tuning, since
first-order transitions are controlled by trivial stable fixed
points; indeed, a recent study’ indicates the presence of
1/f noise in spinodal decomposition. In this paper, we
will explicitly consider Bak, Tang, and Wiesenfeld’s mod-
el of avalanches in sandpiles.
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The most powerful concepts in phase transitions are
universality and scaling. These allow a unified descrip-
tion of the critical behavior of vastly different physical
systems. It is natural to expect, for self-organized critical
systems, that there are also universality classes in which
systems share critical exponents and scaling functions. In
a recent article, Kadanoff et al.® showed that this is the
case. Again, as in second-order phase transitions, one
would like to accurately determine the critical exponents
in the self-organized system. This is a nontrivial matter.
Tang and Bak? have calculated the mean-field exponents,
which one would expect to be valid at and above the
upper critical dimension; Obukhov’ has argued that
upper critical dimension is d. =4. Hwa and Kardar'® ap-
plied field-theoretical renormalization group to a dynami-
cal equation which they conjecture shares a universality
class with the sandpile model. Their model has d, =4,
with the same mean-field exponents as previously ob-
tained by Tang and Bak. Furthermore, they obtained re-
sults for dimension d <d.. Several exponents found by
them are consistent with the original simulation of sand-
piles by Bak, Tang, and Wiesenfeld,"? although consider-
able numerical discrepancy still persists.

A well-established method for computing critical ex-
ponents is the Monte Carlo renormalization group'!™!®
(MCRG). This method can give more precise numerical
values for critical exponents than direct calculations be-
cause it efficiently iterates the effect of irrelevant variables
away. Usually, it is difficult to find a point on the critical
surface to begin the renormalization-group analysis.
Thus, in applications of MCRG to second-order transi-
tions, the success of the method requires knowledge of
the critical temperature which is, in general, unknown.
However, for self-organized critical phenomena, one
needs only a convenient starting configuration. Hence
for those systems, the MCRG method is, in principle,
easier to use than its counterpart in second-order phase
transitions.

In this paper, we apply the MCRG method!® to the
sandpile model to calculate the critical exponents. Two-
and three-dimensional systems are considered. Since the
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upper critical dimension is believed to be d. =4, we also
directly simulated the system there. We estimate two ex-
ponents, and use scaling relations to obtain others. In
Sec. II we introduce the model and method, and give re-
sults for the critical exponents, while in Sec. IIT we close
the article with a short discussion.

II. METHOD AND RESULTS
A. Two-dimensional model

In two dimensions, the sandpile model consists of a
square array of heights z (x), which represent the slope of
a sandpile at position x=(x,y). To reach the critical
state, one adds units of slope one by one. If the slope at a
particular site exceeds a critical value z., an avalanche
occurs which allows the system to locally relax. The pro-
cess conserves the total slope of the system, except at the
boundaries. Once the excess of slope has been distributed
among the nearest neighbors, the relaxation process is ap-
plied to them, and so on, until all the slopes of the system
are less than or equal to the critical slope. The model for
z.=41is as follows:

z(x)—>z(x)+1, (1
unless z (x) >4, then

z(x)—>z(x)—4,

z(xxtl,y)—z(xtl,y)+1, (2)

z(x,yEl)—>z(x,y1)+1.

The particular value of z, only shifts the value of the
average slope. The boundary conditions are

z(0,y)=z(x,0)=z(L +1,y)=z(x,L+1)=0,

where L is the edge length of the lattice.

To estimate critical exponents, one infinitesimally per-
turbs the system and monitors its response. One unit of
slope is added to random sites, after which the system is
allowed to relax. See Fig. 1. Once the relaxation process
has ended, another unit of slope is dropped, without
resetting the critical state to its original configuration.
The relaxation takes place through avalanches of size s
and duration ¢. The size of the avalanche is the number
of sites that have been affected during the process. Criti-
cal exponents characterize the size s(¢) of an avalanche
of duration ¢, and the size distribution function D (s) in
the critical state. They are defined by

s~ 3)

D(s)~s'"7. (4)

These are the two independent exponents we have es-
timated. Note that the asymptotic behavior of other
quantities can be determined? from 7 and a. For exam-
ple, the power spectrum P (f) as a function of frequency
f satisfies P(f)~1/f%, where ¢=a(3—r). Furthermore,
once weighted by the average response s /¢, the time dis-
tribution D (z) obeys D (¢)~1/t% where b=2—a(3—1).

BRUNO GROSSMANN, HONG GUO, AND MARTIN GRANT 41

FIG. 1. Sites on a 128 system whose value changed at two
times during a large avalanche. Circle shows initial perturba-
tion site, X’s the sites changed after 50 time steps, and +’s the
sites changed after 301 time steps, at the end of the avalanche.
Size of avalanche is essentially region within +’s.

Our simulations were performed on a system of size
256%. We averaged our data over 100 independent
configurations, and each configuration was perturbed
100000 times. The duration of the avalanche was calcu-
lated in a similar fashion to Bak and Tang.”? The time ¢
was incremented every time a new nearest-neighbor gen-
eration is reached, so that ¢ could be thought of as the
linear dimension of the avalanche. The size s was mea-
sured by counting the number of sites affected by an
avalanche. No matter how many times a site has been
touched, it was given a weight of one in the calculation of
the size of the avalanche. There is thus a subtle
difference between the definition of our sizes and the sizes
defined elsewhere.”? The dynamics of the model have led
us to believe that this is the correct quantity to consider,
especially when using MCRG methods: occasionally
sites increase and decrease their values many times dur-
ing an avalanche. Indeed, after an avalanche has taken
place, it leaves the critical state almost unchanged; com-
paring the initial and the final configurations, one often
finds appreciable changes only at the boundaries of the
avalanche. We suspect this is due to the combination of
the criticality of the system and the conservation law
which is present. Figure 1 shows the effect.

To investigate the degree of universality in the self-
organized critical state, different lattice structures, im-
purities, and varying initial conditions were studied. For
a hexagonal lattice, there were no detectable differences
in the exponents, as one would expect. The effects of im-
purity were incorporated by breaking bonds randomly in
the lattice such that no redistribution of slope occurs
across those bonds. Again, the critical exponents did not
seem to change for up to 1 of the bonds being broken,
confirming previous results.” We varied initial conditions
by considering a state with the same slopes at the critical
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state (with, say, 44% sites at the critical value), but ran-
domly dispersed. These random configurations were
probed as before, but now after each avalanche we re-
stored the system to its initial configuration to prevent
the system from relaxing to the true critical state.
Surprisingly enough, we obtained roughly the same
effective 7 for the size distribution, although the effective
a for the growth law was 10% too small, as compared to
the values from the critical state. This indicates that the
differences between the random configurations and the
critical state are rather subtle, and that there is little spa-
tial organization in the critical state. It would be in-
teresting to probe this spatial organization in more detail.

We performed MCRG calculations using the size of
the avalanches as the renormalized quantity. After per-
turbing the critical state, we studied the subsequent relax-
ation of the critical state by applying a majority-rule
transformation to groups of b¥=29 sites, letting the sites
vote whether they participated in the avalanche. In the
case of a tie, the choice was made at random. Then the
renormalized size of the avalanche was calculated on the
new lattice. We analyzed the data by simply fitting to
find exponents in the renormalized configurations and
particularly by using a matching criterion to find a.!' '3
After the irrelevant variables have been iterated away,
the probability distribution function will remain invariant
under further renormalization-group transformations.
We expect that, after a finite number of iterations, contri-
butions from the irrelevant variables will be negligible, so
that any quantity determined after m blockings of a sys-
tem of size N should be identical to those determined
after, say, m + 1 blockings of a system of size Nb?. How-
ever, since the larger lattice has been renormalized once
more, quantities will be at different times ¢ and ¢’. Hence,
close to the fixed point, one can expect a matching condi-
tion to hold, s (N, m,t)=s (Nb% m +1,t"), from which the
time rescaling factor ¢’/t can be calculated, and the ex-
ponent a obtained, since t'/t =b9/%. Thus

_dlogyy2
“ log ot /t’

Simply fitting to the distribution of sizes gives
7=2.0610.05 , (6)

independent of the level m of renormalization. We ap-
plied the matching criterion to a system of size 128 re-
normalized m times and one of size 256* renormalized
m +1 times. The results are shown in Fig. 2. The value
obtained for the time dependence of s is

a=1.5410.02 . (7

The growth exponent a is relatively insensitive to m,
which confirms that we are close to the fixed point.

Our results are reasonably close to those of Ref. 2. As
mentioned above, Hwa and Kardar'® have proposed a
continuum model they conjecture shares the same univer-
sality class as that of the sandpile model. Their model,
which they solve by a dynamic renormalization group,
has an upper critical dimension d, =4. In particular, for
d =4, they give 7=(11+d)/6 and a=2. While their
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value for 7 is close to ours, we do not find agreement with
their a. Presumably, this is because their results apply to
a different universality class.

B. Three- and four-dimensional models

The algorithm for the three-dimensional system is a
straightforward generalization of Eq. (1) above. The typi-
cal size of our system was 64°. Because the number of
possible values for a site increases with dimension, which
in turn decreases the chance of obtaining large
avalanches, the number of steps per independent
configuration was increased to 500 000.

The same MCRG method discussed above was used.
The renormalized data for s (¢) are shown in Fig. 3, which
are not as good as those for the two-dimensional system,
due to longer transients. Indeed, even when the system is
close to its asymptotic regime, the convergence toward
the limiting value is still slower than in d=2. In any
case, we estimate

7=2.33+0.06 (8)
and

a=1.78%0.06 9)
for d =3.

Our study of the four-dimensional sandpile model was
done as above. The typical size of our system was 50*
and each independent configuration was perturbed
1000000 times. Because of limited computer memory,
we could not use the MCRG method to obtain the value
of the growth coefficient. Nevertheless, we report direct
estimates of 7 and a. For d =4, we find

0.2

0.1 [— 1

o-1.54

FIG. 2. Matching for a, plotted vs size s for 256 and 128
systems. Large (small) system blocked 1 (2), 2 (3), 3 (4), and 4 (5)
times, shown by +, 00, X, and A, respectively. Smallest sys-
tems compared are 82. Results shown cannot be distinguished,
though O (1) matching, which is not shown, gives different re-
sults.
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FIG. 3. Results for renormalized s (¢) for 64* system, blocked
0, 1, 2, and 3 times, from top to bottom.

7=2.5£0.15 (10)

a=1.9%+0.15 . (11)

These are consistent with Tang and Bak’s® mean-field re-
sults, which Hwa and Kardar'® recover at the upper criti-
cal dimension (d,=4) of their model. Although our re-
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sults are to relatively poor accuracy, they suggest, in
agreement with Obukhov,’ that this is the upper critical
dimension of the sandpile model. To provide a convinc-
ing demonstration of d. =4, however, requires higher ac-
curacy in d =4, as well as study of d > 4.

III. CONCLUSIONS

In conclusion, we have presented the first extensive
MCRG calculations for the sandpile model. The fact
that the renormalization group quickly converges to a
growth exponent is quite consistent with the existence of
a self-organized critical state in the model, and shows the
power of the dynamic MCRG method. The numerical
results of Bak, Tang, and Wiesenfeld! 73 are consistent
with ours, although ours are to higher accuracy. Howev-
er, those of the conjecture of Ref. 10 are not, as discussed
above. Nevertheless, as the dimensionality of the system
increases towards d =4, the exponents converge to those
of the model considered by Hwa and Kardar, indicating
the possibility that the models share an upper critical di-
mension. In the future, we shall study the criteria which
determine universality classes in self-organized critical
phenomena.
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