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RÉSUMÉ 

~fin d'êtudier l'êvolution dans le temps et dans l'espace du 

niveau critique de l'onde de Rossby. l'êquat1on du ~ourbillon ~arotrope 

non-linêaire est solutionn~e a l'aide d'un modêle numêrique. Le profil 

de vent initial' a la forme d'une tangen-te hyperbolique, et une, onde est 

entretenue a la fronti~re nord du courant; une condition de rayonnement 
. , 

1 i 

de Sommerfeld est utilis~e a la f~ontiêre sud. Des intégrations linéaires, 

quasi-11nêaires et non-linêai~es sont effectuées, et les rêsultats sont 

comparês a ceux d'êtudes antêrieures. 

On dêmontre entre autres choses que pour de fai~les amplitudes de 

1 'onde incidente";(~e sorte que les intêractions non-l inêaires ne 

demeurent important~s que dans la couche critique) un ~tat stationnaire 

est atte~nt, a 1 'extêrieur de la couche critique. Cet êtat est carac­

têrisé par un flux de momentum nul au sud et au nord de la c~uche criti­

que, de sorte que l'onde incidente est totalement rêfl~chie au niveau 

critique. en accord avec une théorie antér1~ure. L'évolution vers cet 
pl 

êtat stationnaire. ainsi que la structure de la couche critique sont 

cependant três diffêrentes de celles obtenues/lors d'intêgrations prêcé-
, - '.. dentes par 'd'autres auteurs. A partir de ces résultats, on discute 

bri~vement de la propagation méridionale des ondes de Rossby vers 

l'équateur. et de leur influencd'sur la circulation tropicale. 

1 .. 

. "'" 
----------~--

f: , , 



\ 
1 

i 
1 
! 

1 
1 

1 

--'---

. , 

( 

ABSTRACT 

The fully nonlinear barotropic vorticity equa~ion 1s 1ntegrated . 
1 in time to study the development of a Rossby wave critical level. The 

initial conditions consist of a hyperbolic tangent shear flow, and a , , 
, ' 

steady forced wave at the northern boundarYi a radiation condition is 

used at the southern boundary. Linear, quas1l1near and nonlinear 

integrations are made, and the results are compared with' previous 

studies ., 

For small values of the perturbation amplitude, such that non­

linear interactions are important only in the crit1cal layer, a steady­

state 1s obtained in the outer domain, in wh1ch the Reynolds stress 
i 

vanishes both above and below the crit1cal leve', and the forced WaMe is , -
totally reflected as suggested by previous analytical non~i~ear steady-

state solutions; the approach to that steady-state, and the structure of 

the critical layer are however quite different from the quasilinear 

1ntegrations p~rformed by othef autho~s. Some conclusions are drawn with 

respect to the forcing of the equatorial reg10ns by merfdfonll1y 

propagating mid-latitude Rossby waves. 
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CHAPTER 1. INTRODUCTION 

'} 
l'> 

<' ( '. 

In order to avoid any/ambigu1ty in the discussion to fo110w, we 

shall first define the terms "critical level ll
, hereafter abbreviated 

C.L., and "crit1ca1 layer". 8y critical 1eve1 we want to refer to 

the singular point occurr1ng in 11nearized hydrodynamic shear flow 

equations, when the phase speed of a disturbance in the direction of 

flow matches the speed of the basic flow. 8y ~~1tièà~ye~w~ want 

, , 

to refer ta a region si,tuated around the critica1 l eve1, hav1ng a width 

which is a function of certain non-dimensional parameters of the problem 

l 

at hand , usua1ly time, viscosity or a wave amplitude, and where nonlinear ' 

and/or viscous terms are important. 

Critical levels are by no means restricted'to atmospheric shear flow 

~quations. They appear in almost every type of shear flow equations, be 

it that of a plasma f10wing in a magnetic bottle, or that of an ocean 

current in wh1ch waves are imbedded. In'this particular study, we shaJl 

restrict ourselves to the'atmosphere, and eY~n then, ~a particular 

type of ~tmospheric wave motion. We alteady know that severa)' types of 

wJve motions are possible in the atmosphere'. To each type 1s assoc1ated 
, 

a wave propagation equation. and these equat1ons. upon linearization, 

and after the assumption of inviscidness has been made, usual1y possess . ." 

a crit1cal level singularity •. We list below, fôr the most wel'-known 
. 

of these waves; mainly gravit y and Rossby waves. ~he governing equations 

that result: , 
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\0' ... 

(1) Vertical propagation of gravit y waves. 

\f + - -1 
Nil 

'Y~ {ü- (.)'1 

, (2) Vertical propagation ot Rossby waves. 

(3) Lateral propagation of Rossby waves. 
\ 

'f ~') + \ ~ - \3." _ ~ oz 1 ~ w: 0 
u-c ~ 

In these equations, ~ stands for the perturbation stream function, 

N is the Brunt-Va1sala frequency, H is the scale height,--cuIQ-'!ioUe 

parameters have the usual meaning. To obtain these ree equatio , 

a solution of the form eik(x-ct) was assumed. The critical level is 

thus situated at the point where ü' = c. This, however. does not render 

the equations necessarily singular. We must also make sure that at this 
l, 

same point the numerator of the terms containing (ü-c) o~ (ü-c.)2 in t 
" , , 

denominator are not equal to O. In the third equation for example. f 
.0 . 

2 

a~Oyy = 0 a,nd ®-;t 0 at the C.L~ there is no crit1cal, level singulari • and 

th~' solutions (and their derivatives) are regular. 

though there might be a point where U = c, there might not be a critical -
\ ' 

level singularity. Equations 1,2, and 3 are so-called steady-state 
iii \ \ 

equations. That 1 s, if we define a new x-coordinate ~ = k{x-ct)" the 
d 

flow will appear steady since we are now moving with the wave. 

However,'critical levels also exist for the time-dependent versions of 



( 
·e / 

1 

1 - 2, in t~e sense that as t -+- III, and the solutions become steady', 

the singularity will appear in the equat10ns. 
1 

The question we m1ght now ask ourselves 1s the following! how 

does one go about solv1ng the s1ngular ~ropagat1on equations? 

We can separate the scientists who treated the ,roblem in two 
'" . 

large groups, m~1nly those who were 1nterested in the cr1t1cal level 

problem as a mathematical c~riosity worth solving for 1ts own sake, 

and those who dealt w1th 1t as a "nu1sance" preventing them from 
, 

tackl1ng a mOre general or interest1ng problem. Chapter 3 looks in 

detail at the work of the scientists of the f1rst group. Let us 

mention here that in the last 25 years or 50, a tremendous amount 

of work has been Aone on the steady-state problems, startfng with a 
d 

very good revie/of the linear,problem by;C.C. Lin (1955), and conti-

nuing further as more sophisticated,mathematical,techniques were used, 

such as matched asymptotic expansions techniques and multiple scaling 

techniques, until the nonlinear problems were solved by Benney and 

Bergeron (1969), Davi's (1969), Kelly and Maslowe (1970), Mas10we (1972, 

1973) ~nd a few others. The linear t1mè-dependent problems were also 
, {t , .. 

tackled. by use of the Laplace transform method by Booker and 

Bretherton (1966) and Dick1nson (1970) to name a few. R1ght now, active' 

is going' on in order to solve the nonlinear time-dependent 

as ind1cated for example in ~rn and Warn (197~). The reader 

ght now well ask h1msel~ what 1s meant by the Inonl1near" problem. 
. ... 

1nce the cr1tical level was def1ned for the l1nearized equations lthat 
, '; '\ 

equat10ns where the nonl1near tenns were dropped). This will be 

/ 

1 

~ 
l 

1 
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answered by 100king at the work of the sc1,entists of the second 

group. 

To exemplify this type of approaeh. let us 100,k for example at 

the problem of the vertical propagation of Rossby waves. It is 
, 

well known that while the flow is generally westerly in the, tempera te 

latitudes', it is easterly near the equator so that it a RosSby wave of 
( 

zero phase speed crosses from the westerly reg1me to'the easterly , ' 

regime, it will encounter a critical l~vel, and the equation describing 

its-propagation becomes singular at that point. For someon~ interested 
o 

in ,the vertical propagation problem. this singularity is sometimes 
, ',';> 1 

viewed as a nuisance., and must be removed. /There are 2 ways to remove 
-

it. We recall that a number of assumptions were made, in deriving t~e . 

4 

propagation equat1ons. in particular that of l.inearity, and that ,bf in­

visc1dness. Now the nonlinear term, generally in the fom of the Jacobian 

J(~, V2~) contains a third order derivative in Y. while the viscous term, 

generally of the form vV-~ contains a fourth order derivative in y. The 

linear inviscid equation, however~ contains only a second order derivat1ve in 

y. and it 1s the co~ffieient multiplyin~t~1s term which disapp~ars as ~-c 

goes ta O. Sa retaining either the nonlinear term or the viscous term, or 

both. removes the singularity. Therefore a choiee has to be made: 50 
. 1 

far, the viscous term, in most studie~,lhas been chosen; there are many 

re~sons for this, thr most obv1ous being that 1t 1s the s1mplest choice 
, 

to make. This however contradicts the invisc1dness assumpt10n; now we 

know that on the scales of motion usually considered in meteorology. the 

, , 

.:. 
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'a 
\ 

atmosphere can be considered for aJl purposes to be approximately in 

viscid. although it is conceivable that due to the large shears develop-

1ng near the C.L.. the viscous terms wf-ll eventually become important. 

What about tüe nonlinear terms? It has been ~emonstrated by Lin 
\ 

(1957) and more specificallrY for our problem by Warn and Warri (1976), 
• 1 

that indeed in the critfcal layer, the nonlinear terms become as 
t~/:7 

important as the linear advection terms in a finite time. Moreover. 

steady-state analytical results indicate that completely,different 

results are obtained when nonl1near terms are retained in the critical 

layer, instead of the viscous terms. Unfortunately, so far, ~he non­

linear time-dependent problem has not yet been solved. either by analy-

. tical means or numerical means. 
jv' 

. This work is therefore dedicated to solving the nonlinear time­

dependent problem for the lateral propagation of Rossby waves, by means 

of a numerical model. By nonlinear. we mean specifically that the 

amplitude of the nonlinear terms will be smal1 enough that the1r effect 

will be felt mainly in this cr1t1cal layer regioni therefore we still 

have a "crritical level" problem. In doing so, we will seek answers to 

the follow1ng questions: (1) 1s it possible to reach sorne steady-state . \ 

\ 

s~m11ar,to those predicted byanalytical srudies; (2) if so, are the 

time scales and amplitudes involved re'al1stic enough that the results 

should be used in steady-state models of wave propagation, particularly 

concerning ~he lateral and vertical propagation of Rossby w~ves; (3) 

what are the effects of adding viscps1ty. or mod1fying the mean flow 

5 
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. 
initially, or using d1fferent types of forcing?; (4) in light of the 

answers, 1s the Rossby wave critical level an important physlcal me­

'chanism' significantly modifying the propagation characteristics ~f 

the medium, or 15 it more or less a mathematical curiosity? The 

answers to these questions wil' be found in the }o'lowing chapters. 

~ Chapter 2 gives a derivation of the model equations. Chapter 3 ~ 

\ 
contains a surve'y of the availabl e analytic,al and numerical' resul ts 

pertinent to our problem. Chapter 4 is devoted to the numerical 

model itself; we have tried ta be explicit enough 50 that the 

experiments can be repeated by any independent investigator.ln Chapter 

5, we discuss the results bf a set 'of l1near integrations, which are 

c~mpared to the analytical results of Dickinson (1970). Finally, the , 
results of the non~inear integrations, and of'various experiments are 

presented in Chapter 6. 

, \ 

1 • 
1 , , 

LLMi . .Id5ii2Zi 

6 

....... 

'1 ., 
'\ 
'1 



" 

\ , 

,.'~.*"_1DMf~""'''';'' •• 2 IIIRI8' '.U.~JX.if..U •• __ .... "".""".'!I.t. 
\ 
\ 

CHAPTER 2'. THE MODEl EQUATIONS 

2.1 DERIVATION 

We shal1 be using tbe approximate meteorological equations for 

large scale,flows (large-scale flows mean1ng flows with a sca1e of 

o (1000 km) at least). These are: 

/ 

~= 
dt 

Qtr :: - l ~ - ~u 
tlt \ e ~ .. ~ 

(2.1) 

(2.2) 

where f = 2wsin~. The effect of the earth's rotation appears as the 

1 inear-- term in u and v 1 and thus" these equations are not mathematica lly 

very different from the Euler equation. Here. x and y repres~nt the 

two cartésian coordinates, x pointing eastward, and y pOinting nort~-

, j ward. The sphericity of the earth 1s accounted for by two assumptions: ...... 

(1) we will require 'cyclic periodicity in x, ,thus model1ng the closed 

nature of a~ospheric flow along a~latitud~ circle; (2} we-will 

replace the variable Coriolis force with a linear approximation. That 
... "\ , 

is, we choose a central latitu~e ~o' (at which y now vanishes) and use 

Taylor's theorem to write 

But ' 

7 
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, 
) 

where th~ constant a gives the.rate of change of f with latitude, so 

that in equation (2.1) and (2.2). 

This is the 'so-called a-plane ~pproximation. The equations thus 
1 

formally describe motion on a plane. with the addition of the B 
, 

terme Defining the vertical component of the vorticity to be given 

by 

it 1s possible to forro the so-called barotropi'c vorticity ,equation. 

using (2.1) and (2.2). We shall further assume the fluid to be 
~ 

i ncompress 1 b 1 e (\/. \) 

so that 

= 0). and two d1mênsional (w = o. ~ l ) = 0), 
'i~ 

and the only compone nt of vort1city present 1s S . We end up with 

(2.3) 

Because ~~. ~ = 'Ô. we rnay define a streamfunction Y (x. Y. t) 
,'*' such that ,; 

of> 
where k 15 a unit vector pointing in the o051tive z direction. and 

, 

1 -~ :. V~ 'Ir + 1 

, 1 

,8 
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Hence. equat10n (2.3) becomes. w1th vÂ = v2 from now on. 

Equation (2.4) lS the non-divergent barotropic vorticity equation. 

It approximates the planetary wave motions in the tempera te latitudes 

(Burger (1958). Pedlosky (1964»). and was shqwn by Charney (1963) to'" 

be a va11d approximation in the tropics under certain restrictions. 

We will thus use it ta modél (in a crude way) the meridional propaga­

tion of Rossby waveS 'tow~rds the equat~r. and study the1r behaviour as 

they encounter a critical level. 

The condition of cyclic period1c1ty in the x direction is accounted 
l ' 

for by defining a length ~ such that a displacement of al1 the variables 

,] in the x direction by A leaves them uncha~ged. A natural choice for this 

length is the earthls circumference,at sorne latitude '0; thus. 

v 
.> ", 

; 

wwlr~ a enotes the earthls radius. With this boundary condition, the 

strearnfunc ion is first partitioned fnto a mean part and a perturbation part 

'Y :: ~(~lt.) 1" ~I ~~J~It.) (2.5) 
1 

where ,"" 
"\lIt ",t:) :: '[ ~ f\~~I~) rM~(fa" + t,l~,\)~t~~ 1 

"",' , 

(2.6) 

and ~ 1s the wave urnber, defined as 

'L1T In\ rrn 
= 7: ~tAI')~o 

\ 



,When (2.5) 1s subst1tuted 1oto (2.4), and the C--) operator. def1ned 
'6l 

as 

(J 

1s appl1ed to the result1ng equation, there results the fol1ow1ng 

equat1on: 

~ 0 
o B (2.7) 

Using the fact that the perturbation w1nd 1s non-d1vergent, !l1', V"'V') 
"'t -1s easlly shown ta be equal to - 6 iji'VT; sinee S· - ~ü • 

. . ~ r" 
one ean 1ntegrate (2.7) once w1th respect to y, to obtain'an equat10n 

governing the mean flow, ( the constant of integration has been set equal 

to zero, since (2.8.a) 1s really just the zonal average of the ,u mo-

mentum equation ): 

where 

. . \l'­
\ 

I 

(2.8.a) 

. , 

10 
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o 

u ..... 

That 1's: the forci ng of the mean f1 ow i 5 done by the action of the , 
wave momentum flux convergence. The second equation 1s'obtained by 

sub~racting (2.7) from (2.4); this yields: 

l "'lf-\- ü~ ~'lJl + "!tv,~t't'I) ~ ltIY',f",) + \~- ü~~) ~ = 0 
bt ~'l b'l _. . {2. 8 • b ) 

. C. 
It 1s the perturbation vorticity equation, and 1t 15 nonlinear because 

of the Jacobian terme 

2.2 NON OIMENSIONALlZATION 
o 

In order to explore more easily the range of parameters of interest, 
13 

and facilitate the analysis of the result5, equation (2.8;b) was non-

dimensionalized in the following fashion. Let L be a typical shear 
> 

scale length, um the maximum initial zonal wind speed, and<ps the 

amplitude of the forced wave at the northern boundary. We a1so 

define 

y = Ly* ; ü = umu* ;c. 'V= 1>s'\'\ x = x*/k 
, ... ~ 

where a"*" denotes a non-dimensional quant1ty. The Laplacian operator 

now becomes 

where 

and 

} 

as2ES& 



~ , .. , 

nCl •• , •• - , • 

is the aspect ratio. The longer the zonal wavelength, the smaller 1~ 
, --

1S. This 1s why for long 'waves one 1s sometimes just1fted fn dropping 
~ . 

the x-derivative of the Laplac1an (see for example Dickinson (1970) ). 
'. 

Subs~ituting the above definitions foto,(2.8.b) and balanc1ng each term. 

we obtain the follow1ng er dtviding through by ~s: 

'":'-..!.. "," u~ 1\# " 

1 Tl" ~ > , 

Mul tiply1ng' the a'bove by L2/k"n, 1eàds to 

...L. P,I \ .... \~ _\) ft ~ ., 

"~\JMI ~,\-~,.. 
. A bâlance between thè f1rst two terms, that 1s the adtect10n term and 
~ , 

, " l 

the vortfcity tendency term g1ves the non-d1mens10nal tfme scale 
, ' , 

We shal' def1ne a1so 

t = t*/ku . m 

, 1 

sa that equat10n ~2.S.b) can now be wr1tten in non-dimensional quant1tfes 

as ' -J 

·12 

~ ~~I .... Ü l'~'f' ~ \~-\i~")) ~\ '" E It ": ~'r,)- E'3'l"':~\'P'): 0 
lit '~ '. ~ (2.9) 

~.' ) • 1 

where stars have been(dropped. We see that ft 1$ almost ident1cal in . 
~ . ~ 

~orm ta (2.S.b) apart fram the nonl1f1ear ..-ameter E. whith now 
. "".,' 'r '\ _ 

rul tip1.1es the Jacobian. and.l$ a measure of the nonl1néar1ty. or. 1IIOre 
1 

spec1f1cally. of the amplitude ~f the forced wave. Equation (2.8.a) a150 

becomes 

" 

,. 

il r,', 

II 



" 

• 

• l' 

We now see that there are thre~ parameters of interest: 6~( and ~ (tlhen. 

diffusion is present, ~ ~s to be cons1dered). We alread1 know thati ~ 
0, ' 

determ1nes the importance of the nonl1near terme We shall look at the 

, meaning of J and ~ in the foll~wing S~·ct1on. Since s1n{knx) and C"OS{knX) 

n~w becomc'sin (nx), ~nd cos (nx). kn should be replaced by n in 

equation (2.6). and k~ ,by n2~.. '", 

Equat1.on ,(2.9) will be'further decomposed into two other equat1ons. 

one for An(y~t) and one~for Bn(y.t). us1ng the Fourier series f~r 'i", • 
, . 

Before d01ng 50, however.owe ~ave to choose a correct fom for the 
, • 0 

Jac;o,bian., It 1s well-known that the analyt1c Jacobian preserves certain 

13 

.. 

1ntegral constra1nts, sorne of wh1ch are mean square vort1city (also called ~ 
, . 

enstrophy). mean k1netic energy and mean vort1city,' in a closeà doma1n, 
• t) ~ 

across the boundar1es of wh1ch there 1s ,no'fnflow of outflow. In .j 

particular. Arakawa.(1966) showed that,when expressed over a gr1d w1th ... - . ~ 

r second order f1nite differ~nces. 

1) l"\~,,,): ~; ~ - ~ \1 . 
~"f)~ tJl la" 

~ 

~ , 

conserves ne1ther e~$trophy 
nor :vortic1ty. 

" 
2) "J'TA ~ ~ t'V) : !. U ~") .:. ~ l ~ \'! ) 

'k ~ '" " 

consèrves only k1netic energy 

3) j'At' {S.v) : \ \'Y'&1~ - ~ \.'Y \1) " 
. \!t, \il \1 l ' '" 

conserves only enstrophy. 

:whereas th~ sum of ~. ~ and ~d1vfded by 3 conserves al1 'thre~ 1ntegral 
. ' ' ,'. .' \ 

constraints. Sinee 'in 'our modei! 'P~is not càr:r1ed exp'l1c1tly'. we ' .. 

cannot .u~e· j~+;' wè therefor,e ch~se'" to '~se J+x,," whiCh conserves ~1-~et1~ 
energy. 'The d~~i~'ation' Of,~'~he 'final three ~p.r~1ctf~e ~uation~ 1s ' . . . 

; , -', \ 1 ~ ~ , • , ~. 

given in Appènd1x A. --TheY' 'are 'w~1~tén as follows: 
.' '",:~' ,1. .' ':, '.' " ., ", " ' 

, ' 
" . , " " • , • 1 , ,,' ) ' 

~ ~ '. w"" ' ' ...', \ ~ • l 

\ 1 ~ ~' ~ " ~ (~ ~ , '. ' 

, ' 
~ ,\ .. 

l, 

, .. ,,~ .. ~ 
\ 1 ~l r r ~ 

, " , ',' 1.' 
, \ 

,~... '. l C 

1 



• 

/ " 
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1 

(2.12) 

(?13) 

where the fo11ow1ng def1n1t1ons have been used: 
III ~41\ 

~~ :: ~;,. ,.'l' SIft ) S 1: _A~~ • ~~ f\'" 
, .... 
,,,-,,.. Pt: , .... -

i ,\ :.,~ ,S e"') j C\ :: 
, .. ~ , 

"" ' 1 l)ft\IIII. ~ 1ft 

l '1 ~ ~\ ,~ 
- \ 

and ft 1s requ1red that·lf-.lho. f+i'N • N represents the nÜtnber of 

Fourier components allowed by the model. and on1y interaction tenns 
" 

w1th positive 1n~1ces 'are retained. Thes! three,equat1ons fona the 
1 \ ~ 1 

basic set wh1eh was integratecl in t1me. In sorne of the experiments ." 
, \ • ,~' : ~ , \.. t ~ - ~ ~ 

a diffusion tenn WBS' added to the perturbation equat10ns. The forro -
~ f ~ , 0 

\ '. , " . 
" ef the d1ffusi;n term ~as ·nnea!,~ ~nd writ~en as 'IV"" ; 

~fAn a~ B~. it 1s eas'ly'sho," to 'be ,esJua1 to' 'iV.t \,,-
, ' , , ' l' 

, 1 

respective1y add~d'I to the r1gh~ hand 'side of.equat10ns (2.11) anet (2.12). 
. 'l' l -, " , ' 

" , l' ' " , , , 

Î ' 
l , 

t.' ~ ~ 1 - " 
, 1 -" - '" ~.". • ' 

:\, \. f~ ~,Ji 

~",'" .., .. 
1 

. ~." 

..... ""~, .. a 
\ \.~ 

, ''{ ' .... ,-

, , . 

, .' 

"1 
1 

1 
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2.3 RANGES OF INTEREST FOR ~ AND ~ 
l ' Since our 5tudy 15 a1med at'the er1tical level development. we 

must be careful in the choiee of the parameters 50 as to stay away f.rom 

instab1l1ty (numer1cal or dynamieal). and make sure that the waves wfll 

1ndeed propagate towards the C.L., and in a time short enough for the 
. 

model to b~ integrable on a computer. 

2.3.1 BAROTROPIC INSTABILITY. 
• 0 

l 

, 
1 

The f1~st crfterion we should satisfy is the Ra~leigh-Kuo crfter10n 

for stabil1ty (even though it 1s defined for a linear equat1on). It 

says that 

or , 
• 1 

\everywhere' in ~he domain of fnterest to avoid barotropie 1nstabl1fty. We 
1 f 

will choose the ,followfng initial p~fi1e for the mean zonal wind: 

ü = tanh y 
1 

To ffnd the maximum o~ Üyy ' we set Üyyy =. 0; this g1ves 

sech2y(2tanh2y - seCh2y) = 0 
, " 

\ 
It 1s easy to see that the solutio~ corres~onding jO the maximum value 

of ü,v; i 5 given by . l, 
l ' 

tanh'y = (sech y)'/1.414 

fram ~,t eh we get that __ 

.... '" (Üyy)~X •. : O~78 at y : -0.66 

So we must set \~ 7 0.78 at inittal t1me, 1f w~want ta aVoid the 

4IJ poss1b11fty of'blrotropi~ 1nstabflity. 

" 

\ l' , 
il :K 
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2.3.2 PROPAGATION 

Upon subst1tut1ng a solution of the form' '\' & cp(;':):)e~ in the 1 1 

,11near steady-state barotropic \torti.city e9uat1on ~or constant z,onal 

wind il, there' results ' 

cf>'''l ~ \ ~ - M 'l~) ~ : 0 
. u . 

Defin1n~ the parameter ~ 2 = l~ - i"f\"&) t solutions ~re eas1ly seen to be 
t 1~ \ , 

of the form e Y; if ~ 15 1mag1nary. we have both' ampl1fying and 
~ ,\ 

decaying solutions. use o~ given boundary conditions usually results 
i 

1 n rej ect ion 'of the ampli fyi ng sol ut ion. ln the prob 1 em we are dea 11 ng 
, 

\ 1 .. • 

with,t we want the foryed wave to be able to propagate tOwards ~he C.L." 

without any,amplification or Attenuation, at least for that part of the 

w1nd profile where'Ü : constant. 
/, 

Thus~ for the waves to propagate'without atte~atio~or amplification, 

we require 

• 1 ) 

We have ü = tanh y~. 1 ,1h1tially, and we a1ready' requ1re _~,. 0.78; 
\ " ,., . 

50 th1s teads to 

""l~ < 0.'18 
~ 

Since'for the forced wave, n ~ l, we finally get 
o 

è =< 0.':\" 

. wh1ch -sets lan upper bound on "the value of i if we .Want the forced wave' 
; ,"'" , . , 

. to propagate southWard 'wi,thout attenuat10n 'towards the C.L • 
. l ,,'. ! ::. " -, ',' . '.' i :.~~), ,,':,' ' 

" 

. . , . 
, . 

, -" ' ~ .. , 

-" ' ,.>' ' 

...,. " 

, , , 

, ' 
: l ' .. ~ < : '-).~.. 1 

1
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" 
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2~3.3 TIME REQUIRED TO SET UP THE CRITICAL LAYER \ 

Geisler and Dickinson ~974) defi'ned a parameter. called tc in their 
\ ' , 

paper which is a measure of t flux divergence across th&' C.L.; it 1,s 

indicative of the time required for a l1'near steady solution to be set -

up in the cr1t1ca1 layer., In tems of dimensiona1 quantities. i,t is 

given by 

17 

, - . 
Substituting non-dimensional vari,ab1es. and/using the fact t~at UyyO~ U'$=I\ 

near the crit1cal leve1.: we get that'} 

, , 

\ 

\ 50 we must choose.a sufficient1y 10w val u~ of (!. . i~ we want' the l1near 
\, . / 

\ stea~ solution to be set up in, ,-,rea~OnablY short time (rough1y "' lOté.). 
, .lI;_ '.-

2.3.4 COMPUTATIONAL IN5TABILITY ~ / 

It is hard ta obtain a precise stabil1ty criterion for the time 

scheme we used~ which, as win be seen in Chapter 4 15 an Adams- Moul-ton 

method. using an Adams-Bash~orth'sph~me a~.a predictor •. However, following 

Henrici (1964), we féel it is quite sefe to require 

w~t < J -
\ , 

which 1, the equivalent, criterion for a le~p,frog scheme,. We know that 

, .. for RO$sby wavès •. 

, . ~ .. 
, " 

• ~ '}I -
, '. 

1 ! 1 1 ~ 
~ , 

1', 

, \ . , , . , 

" ' 

~I 

1 

~ 1,' 
" ' 

, 1 
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where .i d~not~s now the y"-wa~enumber. : There are two cases: 

1) Short waves. 

Then, we can approximate wc: iik, and we want to satisfy iikAt< 1; in 
1 

'non-dimensiona1 ùn1ts, this, becomes 
- 1 ut:« <, 

- and since ü ~ 1. we finally get, t:lt< \ 

~,:'!";~ 
, ~'':;.o , .: 

.;' 

2) Long waves. 

~ 

The highes~ freql:tencies will be given by ü ~ 0, so that' we can 'wr1te 

'\IJ\ : ~ l \ü\ -+ ~) 
- • ffftJ4 ~,+t'1, -

The sma 11 est' Il i Il wa venumber i s 1r ln , where 0 -f' 00, s i.nce we will be' 

considering' a semi-infinite domain, whereas the sma11 est Il K'": wavé­

number is wavenumber l, where k IV 1/a, a being the earth's radius. 

In terms of non-dimensional quantities, we get, since K? i min' that 

2.3.5 EXAMPLE 

~ 1 àt < \ 
o 

Many of the integrations to be-described hereafter were 'done with 
- i ~ , ' 

,the fol1ow1ng values of the non-dimensional parameters: E = '0~018, 
, , \ 

0' = 0.16, ~ = 1.6. Il t = 0.036. Ay = 0.00625; this choice corresponds 

ta the fol1owing va)ues of the d1mens.'t~nal parameters: l :: 1000 km. 

k ,= 4xl0-7 m-1 (roughlyequal to wavenumber ~ at 40 degrees, latitude), 
\ ~ . 

U = lOm-s--1, Qa = 1.6xl,O-l1m-ls·l. lly = 6:25-Icm, àf = 2.5hrs, 
m , ~ 

~s= 1.8xl05 m2_s~ It can be observed th~t al1 th~ criteria are 
;;. 

, 1 1 
1 JI: ' '. {~ ~ 

: '.. ,; 'j _ : - '.: ,1 t 

" ',' 

, ' 

, . .. ~ • ,(. 1 •• : 

1 

) 

r 

',1. 

'. 
" ,1 

,r 

\ 

, , 
'. 



,1i!'''i~iU nI laa.tu • 1 

e· , l 

satisfied by this choice, 50 that stability of the model could be 

expected, at least in the linear stage of the integrations. The 
\ . 

l' 

computational sta~il1ty criterion for long waves gave ~~t = 0.396. 

wh1ch, as requ1red, 15 smaller than ~. Val~s of E ,6 , ~ and At 

as a function of the dimensional .p~rameters, k, ~, L, and~s' ~ can be 
, . 

obtained ~sing t~e definitions of section 2.2. \ 

\ 

2.4 BOUNDARY CONDITIONS. 1 
1 \ , l 

1 
/ 

l ' ) 
We have already mentioned ~h~ cyclic ~oundary COndition)iri tbe 

x·direction. There are also two boundary conditions te be ~pecified 

in the y-direction. The demain we shall be considering for th1s 

model extends fro~ y = -~ to Y = yo > O. y = yO corresponds te the 

northern bdUndary. At this'point. a wave will ~e sw'tched-on. as a 
\ 

1 

function of time. of which bothr-the amplitude and phase will be known; 
\ y 

the amplitudes of the rema1n1ng harmonies, for the nonlinear integratdons, 

will be set to zero at thàt point; i.e, 
1 

lP(~t~o,t) ~ Alt)~t1. .. 'tl~)~~ (2.14 ) 

, " \ 

The reason behind this choice 1s that we wish to consider a problem 

where nonlinear interactions a~e important only in the cr1tical layer. 
1 

This 15 one way of satisfy1ng thatGOondition. The southern boundary 

condition 15 a-little more problematic ta define. 1 Sc far three " 

different method~ have been used: The first 15 te lassum~ the~e is a 
\ 

wall and set the amplitudes of the waves to zero at y = O. say. The 
r \ 

second also assumes there 15 a wal', but sets up a sponge layer (a - \ -
'. regfon wherlt same vfscO$i·ty 15 fntroduced) fn front 0i ft, .fn ~rder ta 

" 
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• 

absorb the waves. The th1rd method, used by Ge1s1er a~d ~1ck1nson (1974)1 
. \ 

1s to extend the w1n~,prof11e w1th , l1n~ar w1ng of negat1ve w1nds far 

away fr~ the reg10n of 1nterest,-,up to a wall, fn order that the 

trans1ents and the propag~t1ng or d~ay1ng waves Ire eventual1y 1 

\ \ " 

absorbed as they encounter a l1near cr1t1cal level. The f1rst method 
1 

produces r1ng1ng in the channel, as the waves 1nit1ated at sw1tch-on 
\ \ ' 

t1me bounce bac\ and forth between the two walls, unJess one sw1tches on 

the wave 'very Slt1Y. The re~son_ fO~ th1,S 1s' th~t the freqUen~1e~ of 

these t~ans1ents\re t~olarge for ~~em/to see a C.l. in-the channel, and 

: eventually get absorb~. The second method 15 bJtter, although sponge 

laYers , have' unpred1ctable behav10ur' as l1near or non11near waves cross . 
them; part of th~ wa~e can be reflectÈd as happens with any change in 

, ' 

the index ~f refract10n of a medium, and 1t is never known exactly how 

th1s affects the', S~lu~1on. This approach was tried b~ Ward (1975), and ~ 
1 

found to 9ive incorrect results. Method 3 i$ béttèr.still , a)though ~he 

h1ghest frequency modes exc1tëd by tfie switch-on never see a critical 
i ' . 

level; moreover, th1s method has the .-c:umbersOhte effect of extending the 
l ' , \ - i '- . 

domain of 1ntrrat1on enormous\lY, just to get r1d of trlns1en~s. This 

leads to a very ll~e nLlnber of gr1dpo1n~, only a 5l1li11 fraction of 

wh1ch are 'a ua1ly needed to solve the problem at hand. It prevents 

the use of fine resolut1rn. unless one hls 1 mammoth computer. capable 

of d1gest1 9 all the Irrays needed. for these relsons. we dec1ded to 
\ 1 -

try a fou th method, that"1s t.;» 1mptanent 1 t1me-<lependent radiation 

cond1t1 ' .It Y = O. in order to 1110w the ~rlns1ent5. Ind the waves to 

, 
< " - . 

, " 

l ':' ~ " , 
~ 1.' ('l, ~, 1 f 

~ ,"! 1 \ ' ~ ... 

, J..' :.'. ~ ..... ~,~ ~ 'l'''(~ ",'" , ~', '1 ~ "," 
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propagate free1y to - cO outside the domain of integration. without 
1 

any reflection. This is a better approximation also to what we think 

happens in the real atmosphere. as there are no walls pr~sent at the 

equator. nor sponge layers. nor 200 ms-l easterly w1nds. A full 

description of the radiation condition we shall use i$ given in 

Béland and Warn (1975). However. we will reder1ve it here. for the 
l " 

sake of co~pl~teness. Let us consider the problem of a Rossby wave. 

switched ~n at the northern boundary. at yayO)O' The 1inear governing 
1 

equation. f~r a constant zonal' wind Ü. is 

(2.15) 

Let us f1r~t look at the plane wave solution ei(kx + 'y -U't). After 

substitution of this.solution in (2.l5).-we obtain the well-known 

dispersion, formula 
w = ~ü - \<~_ 

\<~'" 1'l 
The phase speed of the Rossby wave is def1ned as 

t =~ l~t ... l~) 
\ '~'+l" b 

while the group velocity is given b~ 
..... -

with the convention that k ~ O. Waves propagating energy towards y< 0 

must h~ve (c;>y< 0; so for these waves. ~< o. o~. because of our 

convention, .i <: O. Th 1 s means tl1a t the 11 nes (kx +- Jy) = cons tant. 
\ 

slope from the north~east to the south·west (we adopt the usual 
1 T \ ' 

conventio~ that x points to the east. and y to the north). For the 

21 
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FteadY problem ( ~l: 0), let '(J= Ae1kx ~t y = yo,land let \fJ =,(y)eikX 

be a solution; af'ter substitut1ng 1nto (2.15), there comes 

\ 

Two cases ar1 se: 

(a) l. - '(.'l < 0 ,1 cr ') ~~ Non-p!'Opagat1ng wayes. This leads 
Ci K 

l ' ' to an eyanescent waye, and there 1s no problem in choos1flg the correct 

solution, wh1ch 1s the decay1ng one. 

(b) % -~'I.">o i () < \) <:: ~t. 
The solution 1s now 

Propagat1ng wayes. 

where 

~ = A
l
e1llY + kx) T 8

l
e-1(ly - kx) 

.l = ( ~ru -'. k2)i . 

Us1ng the boundary condition at y =4YO gets r1d of one arb1trary constant. 
\ , \ 

However, how does one determ1ne the other? This 15 where the~radiation 

condit1Dn cornes 1nto play: s1mply stated, 1t tells us to choose the 

solution which g1yes a southward propagation of energy, the only 
. ~ , 

energy source be1ng at\y = yO' This 1n
l 
turn impl1es that (Cg), < 0, 

. y 
or k~< 0, or ~< 0; thus. Al = D,-and we haye~ fully determ1ned 

solution. It 1s'poss1ble to proye formally, by look1ng at th~ 
, 

initial value problem that th1s 1s indeed the correct solution. We 

shall be uSing the follow1ng initial and boundary conditions: ' 

." "k,Ij ~ll7.I~Jt)::. cp(c)lt)e'" ~ = Ftt)eC. 

v? 'fl""\~I~) .: 0 
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In the model, y = 0 corresponds to the southern bou.ndary, where the 

radiation condition will be applied. W will further assume that 

from y = 0 ~o y = -00 , Ü is a constant egative wind, and the 
1 

amplitude of the waves at y = 0 is small nough that the linearized . 
barotropic vorticity equation offers a val d approximation. Let 

~(x,y,t) = ~{y.t)einx be a solution of (2.15) (all quantities are 
-

now non-dimensional). We get, aft~r substituting in (2.15) 
o 

. 
) n = 1",2, 3 •••••• , N 

We solve this equation by using a Laplace transform methodi let 
\ . 

The Laplace transformed equation and B.C's become 

~ ( '-) ~ l' (l. ,~ ( - ~ ,) = 0 't"~~ \ ~'t-"m \J -+ ct> u,'\\. - c..M ~ IJ -' ..Il fY\ 

,.. N 

~lOI~) ~ fl~) 

Defining Cr = ,ü- ~/n~ ,we get, rearrangin_g terms', 

Let 

~ _~! ~ 5 A+ ~rt\~" 1 = 0 
~") 1 A + lMU ) 

1: (\'\~'" ç- ~ '" ~Ift~n 1 '11 
-. l ~ "''-M\l ~ 

1 

and choose Re(Q.) -"Oi then, requir1ng the solution ta be bounded at 

y = - ~ , we get 

1:> 1 

Thus we see that in the initial value problem. there is no arbitrariness 
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in choosing the correct solution. Using the inverse Laplace transform •. 
,toUe, 

~{~)t:) =,~ ~ Ft~) e~~e~t <lAI 
,'ln t.. ~ 

,-,~ , 

where as usual. c must be chosen such that all the s1ngularities of 

F(s)eRY lie to the left of the'line Re(s) = c 1n the complex s plane. 

Mak1ng use of the convolution theorem. we can rewrite the above as 
'\: 1 A 

<pt.~,t) ~ \ ft. t- ~) ~(,'t) ch: 
c) 

<.+1.410 

Wl't) -:. ~ ~ eD.~ e.h'r a~ 
(.-~OO 

D1fferent1ating w1th respect to Ys and setting y = O. we get 
t 

~~(OlC.) : S ~(b,t-~) tJY(.'~) c:\'t 
o . \ 

with c+~ 

Mtt't) : '1..2...) ~ e Qtt' <lAi 
'H. 1 _ 

c.-~ 

Noting that as S4..o ) 9..~m',i. we get 
\ \ 

~ t (' lIt. ~~ 1 
JJJ"ltt) ~ ~ \ lQ-I'f\"''l) e'" cl~", ..L, ) tn~ e t\.o 

'L.1h. c. 'l. "" , 

Substituting the definition of Jl in the first 1ntegral. and using 

the fact that 

where ~lt) 1s the so-cal1ed delta function. we obta1n 
. 'k. ~Ih. S II ~~ i"'Cr\) 1 Nt'.\ Ul\~ :: mè At't) '\- ~ \. _ - \1 ~ e aA,. 

"hn c ~ "chi\) 

After substituting the above expression for )W\'t) in the left-hand side 

o of the
l 
equation for q, y(O~ t). we finall~ get: 

, t 
'f\. 

'C/>'1(t>lt)-ff\~ ~()rt) =~ft0~t-t)~l't) ~t (2.16) 

where 

E~$i· 
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Us1ng Abramowitz and Stegun. p. 1024, formula 29.3.48, the above can 
be evaluated, and after a simple manipulation, the result comesout 

to be 
'ILl - ("l) , _ c..,t;\MIJ --

-~ 'lM( \:r{~\ ''S(~\1 'n\'t)~ 1.&'f'J. e . '\'WI41+-1. o\,,..,l\ - --' 

(2.17) 
" 

However, in the model, the unknown variable 1s not ~ but ratherÙct> 
Ot 

50 the boundary condition (2.16) has to be ~ritten for ~ ; to 
ach1eve th1s, take ~ of(2.16): 

'11- ç , t Î ~cf>t - rn~ ,C1>t :; 1.1c.l Sa 4l()\t-~)",\.'l:)c\" ~ 
Using Leibnitz' ru1e to eva1uate the right-hand s1de, we get 

~ 

R.H.S. = ~lo)~+) 'htt) + )0 ~~o;t-'\:) ~t't\ dt 

25 

.1+ We now have to evaluate ~(O,O+) from the boundary conditionV'f'.'Oat t = O'j 
1 

we get. using the definitio~ of V ~ , 

the solution of which 1s 
t ,,.. 'l'l, . 

A-, .. n. C'IIt~ on _{Y\~ ~ 
't'-ne +Q-e 

The two constants A and B can bè eas11y evaluated, us1ng the boundary , ' 

cond1t10~S., at y ';. YO and at YoZ)-(I\l 

, 
1 
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, . , 
' . ~ .' ,'Ii, .:, jl'l.' 1 \, l' 
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" . , 

)~ince ~ require ~ (y.t) to remain bounded as Y" ... 00 , we ~et B = Oi 

we ha vèf a 1s0 1 'Il. '" ,/)'I,~. 
q(~~c ) = &t~+) ~ J\ e 

, 

The correct radiation condition for ~ can'now be wrftten 
, " -t' 

'f'\ { :,,.. 1.."" ( ~\ -~:(\tl -11\& L~\ ':: c,.t~+)e-tf\ ~onl-\:)t-~t~~Qs'tt)'\'\t't)qt 
~l l~~~" 0 . / . 

We have see~ earl 1er' that in our model, ~",,(,X,y, t) = Ansin "nx + Bn cos nx 
, t:j . ' 

while for the·derivation, we have uSed the fom '1'1W\!x,y,t) = Rett(Y,t)ei,n\ 

or, equivalen~ly,_ "\' n = Rel ~",,1 cos nx - Im\~1sin . nx.. We thus have 

the correspondence'Re ~ct>",,\ =.B" , and Im14~\ = _An. Similàrly,'h (t) 

can be ~ritten'as Relh(OZ: >1+ lImth(IItR. Using these definitions, 
... 0 

the above radiation condition can th en be written as a set of two 

coup1ed 'equat1ons for ~n. and ~n ~ 
. , Ô~ _(}1': "W 

26 
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This concludes the dèr1vation of the model equations •. Equat10ns(2.l~. 

(2.l2)and(2.13)wl1l be used to study the evolut1on in t1me of theo 

Rossby wavè C.L.; the~e equat10ns will be solved subject to the boundary 

cond1t10ns(2.l4) and(2.1~. whl1e the profile ü = tanh, y will be " 

specified initially. As yet, there exist no analytical sol'utions to 

the non11~ear t4me-depend~nt problem for Rossby waves (or any ~ther 
. \ 

waves,as a rrjatter of fact)w1th a vary1ng (in y) w1nd prof.ile). However, 

sorne interesting conclusions have been reached uS1ng simpler equations. 

They Will be reviewed in the following chapter, together with,the . 
available numerical results~obtained by solving th~ linear and ". .' Jq~asil1near (and ~ven nonline~r. although in a very unsatisfactory ~ay) 

problems. 

\ 

, 1 

:. 
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CHAPTER 3. PREVIOUS RESULTS 

3.1 ST~DY-STATE LI~EAR PROBLEM 

If we neglect the nonlinear terms 1n{2.&a) and(~.aP) the system 
\ 

reduces to the followingc : 

1) t~. t- Ü ~ \ V'2~ 1 + "00-û ) ~\ = 0 
O't. ~~ , 0 ~~ ()~ 

where ~'is the perturbation stream-function and ü :,u(y) is the mean . , 

zanal wind speed. If we assume a solution of the form 

then, we get 

" \1J' ' 1 ~~~~-Ç.'t) 
l llf\, ~,\.) = q>l~) e 

\ 

where ~ is the{real} wavenumber, and c the real phase velocity. (~e 

assume here that ~-u~~')o everywhere in the domain). 'This' equation 

is similar in type to the Rayleigh eqJation, except for the beta tenn, 
, 

and i~ was solved by Kua (1949). The two basic solutions. obtained by 
) 

using the method of Frobenius (see appendix B) are written as: 
o 

\ 

wher~ the values of the coefficients cn ~nd bn are given, in appendix B. 

Two problems show up: first, it i5 apparent that~the perturbation zonal" 

.wind has a logaritlln1c s-ingular1'1:y at y = 0 ~ (we ag~ assume the domain 

of interest extends from y =:Yo ta y': - (0). This cornes from the ~Io 
l "1 

solution. which upon differentiation w1th respect to y yie1ds a 1ny tenn. 
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1 

This is obviously phys1cal1y incorrect.' The sècond problem app~ars 

w'hen one wants to go fr~ y ~ 0 to y < O. How do weo write 1 n y for 

y<01 It can be shown {Lin (!~44. 1945) and!(Uo (1949) that the 

iric1usion of viscosity in't~e' cr1tical layer region yie1ds new solutions 

in ~1ch u' is not s1~gu1ar anymoré. These solutions a1so show that in 
" , , 

order to match t~l:t~" nviscid~ solution for y '> 0, above the C.L.) with 
\ \ "\::'~J~:\r Ç'I \ 

thè solution for y'" 0, under ~he C.L., the lny term, for y < 0, should 

be written as ln Iy\- i~. This is the so-cal1ed -l( phase shift, a 

result'of reta1ning the viscQus terms in the crit1cal layer reg10n. 

Using this information, the inviscid solutions can now be wr1tten as 

fo1lows: 

for y,. 0: 

for y < 0: 
"-

wh~re. for y-<O. ln yelnlyl. The viscous matching thén requires·S ... ·S-.S. 
, 

and A+ = A- - BG:11t'. Thus, there is a jump' in the constant A as one 

crosses the C.L., here 10cated at y = O. It 1s an easy matter to show 
, \' 

that this jump is re1ated\to the jump in the wave momentum flux across 

the C.L., averaged over one wave1ength (this quant1ty is equiva1ent to 

the Reynolds stress). Let ~= l, and c = 0 for simplicity. Then we 

can write 
,.. , 

~ 1 ::. ~ ). l ~cp~ l' ~t/>b \e~ + "',1 
1 

where c,c.'denotes the comp1ex'conjugate. With u' ~ - ~ • 
o~ 

and; v' -= Qï' • 
1 ~ 

/ 
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, one gets 
\ 

u'v' = (i/4)(A*B - AB*) (ct>ay<lb -1\,yc(>a)' 
o 

Noting th'at the Wronskian of the two solutions ~a andft, 1~ defined as 
, 1 

~ ::: 1 <Po. Pb 1 = rj>~ 'fJ'o'fl - cp. Cf>Q.~ ~ cOris.t~nt 
CPQ"l f{1~ J , 

. / 
.. the above expression for U"v"" can be further simplif1ed. 1 The constant 

can be shawn to equal -1. by ev~luating W at y=O. and uSing the fact 

that 1 im <:1>0. ~\A = O. 
'!)-9() ..." 

. ,Thus we get that 

üïYi = -(i/4)(A*B - AB*)~ , 

Since A+ 1 A-. B+' = B: or,e conc1udes that: ,(1) The Reynolds' stress 1s 
• Q • 

constant above and be10w the C.l., and (2) it has a d1fferent value 
, . 

abov~ and bel~w. or~. in other words, there 1s a jump. In the special 

case whJre the wave ~mentum flu~ iS to vanish at y ~ - 00 • the 

jump can be sho,n (see Lin (1967» to be 

l~'1 = -~\~\T l \j'1~~- ~1. 
\ "l. ti'~ Co 

indicates that the derivative 1s to be evaluated at 

the C.L.) . 
1 

'1 

Summariz1ng the results of the steady-state l1near problem, we 
1 

can say the following: 

1} u' has a logarithm1c s1ngular1ty at the C.l. 
1 

2) there ;s â -lt phase'sh1ft in the ln y tenm of the ~b solution. 
1 \ 

3) the wave momentum fl ux ü"VT has a jump across the C.l. 

'", . 
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Let us note that in the cr1t1ca1 layer', the Y.1scous tenns were used to 

pe~1t a matching of the inviscid solutions, s~ that ~roper1y speaking, 
1" / 

we'shou1d be speaking of the iinear IIY1scous ll steady prob1em. 
\ 

3.2 TIME-DEPENDENT"LINEAR PROBLEM 

Thi~ problem (for Rossby waves) was f1rst solved by~Dick1nson'(1970), 

using an equatfon sfmf1ar to that used by Kuo. It 1s a s1mp1ified 

version of the!11nearized barotropic vort1cfty equation~ be assumes the 
, 

y (n9rtH-south)1 sca1e to be much sma11er than the x-scale, so that ~he 
, _ - r 

x-derivative can be dropped in the Lap1acian (this 1s the 19n9 wave 
\ 1 

approximation), and a1so that the mean zonal wind ü has a constant 
" , 

shear, so that one can wrfte u(y) = u'y, where the ~rime denotes a y 

derivat1ve. After substi,tuting a solution of the form 

'f {'JI~'~) ::. ~t~(\) eiK~ 
. 

he ob~ains t~e fol10w1ng equation: 

l %t: + ü'~ %/1 ) ~~'3 T ~'\' '" = 0 

He solves ft as an fnitial, 
, , 

value problem, in-whfch a wave 1s sw1tched 

31 

on at t. = 0, along sorne boundary y=yo~) l, using a Lapl~ce transform 
l ' / Il 

method. He obta1ns a solution. consistfng of a transient oscillating 
, / 

"-in y and t, and a large time quas1-steady part very simf1ar to the 

To11mfen-Kuo solutions dfscussed prev1ous1y in 3.1. Warn and Warn (1976), 
• 1 

in a review of Dfckfnson's paper, found ~ number of errors. so that the 

solutfon we gfve here is taken from thefr note~ for (yt\"»l. élnd t '» l, 

that is for a regfon 1ying outs1de the cr1tical layer: 

1 
_t~t 

- o.e 
<l>h~;~' -::. <Pl ~,.o) - -7.~t1. 

: 
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where cp (y, 00 ) 1,s the solution as t"oo , val1d ins1de or outs1de the 
\ 

cr1~ical layer: \ 
/ 

c:; l~l-) = -~ 1t/1.)~h 'l, \'L~'tt) - t\'f1.t)~" 'S, ~ 'l~Il) 

«>\'veal= \~\~~\<,\1.\~'\") ~(O 
- - / 1 

It can be shown by expand1ng the above 'expressions in powers of y that 

they can,be rearranged in a form very sim1lar to the Tollm1en-Kuo 

1 solutions,' and that 'the -iv in the ~G solution corresponds exactly to 
~ 

- ' 

the -11\ phase shift of the ln y term.- ln other words, as t .... 'oO , 

J , 

the large' time behav10ur devel~ps an' identical phase s~1ft. even though 

no viscos1ty 1s present. This 1s due ta the fact that now the problem 
, , 

1s an initial value problem, and that the solution 1s comp~etely 

determined by the initial conditions. 

One shou1d a1so notice the transient part originating fram the 
ail 

switch-on: at a fixed point in y, ~he solution will osc1llate in time 

with period l/y, and decay ~s 1/t2; at a fixed t1me t. 1t will show 
\ 

oscillations in y wit~waveleng~h lIt and decaying as l/y. Dickinson 
, 

goes on,to show that the ,cr1t1cal layer decreases in width as t-l • The -. perturbatiop zonal velocity was also shown by Warn and Warn (1976) to, 
-

grow indef1nitely 1ike ln t. ; thus the singular1ty 1s ney:er real1zed 

in a finite time. The wave momentum flux eventually reaches a constant 
\ ' i 

val u,e for y ., 0 and thereafter exhibits s~l1 decaying oscillations 

about its value at infinite t1me. S1nce 'ijiVi = 0 for y <'0, a jump, is 

thus rea1ized. 

1 
\ J 
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Summarizing the above results, we can say that the large t1me 

behav~our of the forced linear t1me-dependent problem 1s very sim11ar 

to that of th~ steady-state l1near problem. In particular. one should 

expect: 

1) a -"Ir phase shift in the 1 n y tenn. 

2) a jump in the Reynolds stress -üTVï. 
1 

3) a ln t growth of ut. 

4) ~ decrease in w1dth ~ the cr1tical layer like t-l • 

5) a transient oscillation in time and in space superimposed on 
\ ' 

the larg~ - time solution. 
1 -

3.3 STEADY-STATE NONLINEAR PROBLEM 
, 

This problem was first solved by Benney and Bergeron (969) and 

.. 

independently by Davis, (1969). and later generalized by Habennan (1972). 
1 

They sàlved the following equation: 

, 
where \ 1 

\ ~ 

Yl~,~) = ~ \ ut,,) .. C.) ~~ + f. 'YllJll~) 

~ being the nonlinear parameter (a,measure of the amplitude of the 
1 

perturbation, 'fi an inverse Reynolds number', and \i<Y) a mean zonal flow. 

The C.L. is defined atfY = 0, where U (0) = c. These equations are 

s1mllar to (2.4) and (2.5) • except for the -beta term which is absent 
1 1 1 

here, and tbe viscous terme The addition of the beta term does not 

, 1 
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c~ange qual itatively the resul ts, as long as ~ -luyy}c t;. O. which 15 
, 

the case here. at the C.l. Benney and Bergeron def1ned the parameter 

~ = ~Iz 
f. 

'­
\ 

which is a measure of the effect of the v1scosity versus,that o~ the 

nonl inearities. For t\~) 1. one r,ecovers the results of the l1near 

"viscous" problem, as the v1scous tenns are used in the cr1t1cal layer 

to reso1ve the critical lev~] singularity. For (1 (le l, one uses, ~he 

nonlinear Jacobian to resolve the singularity. Th1s'is the case treated 
'\ 

by Benney and Ber~eron, and Davis. The viscous terms will fti11 be 

used however. but not in the primary balance. This is\w~at 1s meant 

by "nonl i near ll critical 1 ayer. , 

Using the method of matched asymptotic ex~arisions, they obta1n~d 
the following interesting results. There 15 no phase shift in the 

" 
\ - , 

ln y tenn of the Tollmien solutions. That i5, fo",")<O __ ln y = ln \y~ 

and AT; A-, B~; B-. This leads 1n turn to the absence of any 
8 

jump in u'v',aeross the C.L. In part1cular. 1f 1t 1s 0 for y<O, then 

it is also 0 for y,. 0; 1n the,'case where one 1s forcing al wave at _ . 

y : yO"» 0, th1s implies a. total reflection at tl:aé C.L. (ver:sus the 

absorption that resulted in the prev10us analys1s). They also found 

that the mean flow had an 0 {f.} distortion, or, equivalently, that . 
the zero of the mean flow 1s movèd at most by a distance of o( t ). 

'In the cr1t,ical l'ayer 1ts'elf, the harmonies are 0 (i12
) smaller than 

the fundament~l, while they are 0 (t ) smaller outside. 
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Haberman solved a very s1m11ar type of problem, al10wing the 
\ ' . . 

parameter 0 to coyer a wider range of values. He retrieved most 

of Benney and Bergeron' s resul ts for the case Ô <~ 1, and found that 

as 'j\ 15 increased to values )), , the linear viscous results are 

recovered. Tbat ls the ln y phase shlft goes from 0 to -11\ as ~ 

go es from values « 1 to values ~71. The Reynolds stress behaves 

accordi ng1y. , 

Summar1zing the above results, the nonlinear steady prob1em is 

charaeterized by the fol1owing conclusions: . 

1,) there is no phase shift in the ln y terme 

,2) there is no jump in the Reynolds stress. 

3) the mean flow distortion is b{ ( ), th'e width of the c:ritical , ., 
• lit. 

. layer is O( (. ), and tjle amplitude of the harmonies ln the 
"'./ 

eritieal layer is O( ~IJ") smaller than that of the fundamental. 

3.4. PREVIOUS NUMERICAL STUDIES 

A number of numerieal experiments were undertaken in order to 

study the time-dèpendent Rossby wave errti~al level problem. Some 

of the most important resu1ts will now be discussed. 

3.4.1 LINEAR PROBLEM 

Bennett~d Young 1 (1971) did a numeriea1 integration of the linearized 

barotropie vort1e1ty equat10n 1n t1me, uSing a l1near wind profile and 

a foreed wave at a northern boundary. The1r intention was to study 
, 

the propagation of p1anetary waves in the presence of a critical leve1. 
1 

~ This situation 1s usua11y eneountered in the tropies. where p1anetary 
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waves propagating southward from the tempera te latitudes usually meet 

easterlieSi if the1r phase speed 1s.such that 1t matches the speed of 

the mean wind, they encounter a C.L. Their results agree with those of 

Dickinson (1970). They reach a quasi-steady-state, in wh1ch the wave 

transports zonal momentum northward. which. according to Eliassen and 

Palm (1961) is indicative of a southward energy transport. South of 

the C.L., the wave momentum flux is very small. and they conclude that 
, '\ \ 

"the wave-mean.flow interaction represents an absorption of wave 

energy". 

3.4.2 QUASILINEA~ PROBLEM 

Geisler and Dickinson (1974) took a furthe~ step ahead and considered. 
• 1 

the following "quasilinear" model: 

\\~ +~ t" ) \ ~ 'l1J ~ ~,,~) ~ ~ ~-U".,") 'V'Ii = S~ ~lt) 
~ = - l, \. U''Ir') 

where S 1s a vorticitr source north of the ~.~ •• and U = umtanh ~JL) 
, 

at t = O. and \f (x.y,t) = Ret q,(y,t)eikxl. In other words, they allow 
1 \ 

the result1ng forced,wave to interact with itself ta modify ü, while ne-

glectin~ny self-interaction which would lead ta the excitation of 

hannonics. They fôund that after the switch-on Idf the vort1citysour~.e 

far north of. the C.L., a ledge develops in the mean flow profile, and 

the C.L. mayes northward until (? -Üyy ()O at initial time) becomes 

negativei at that point, the C.L. stops its northward migra!ion, and 

starts mov1ng southward until ~-Uyy changes' s1gl\ aga1n, and the 

process is repeated again, until eventual1y a steady-state 1s rea~hed, 
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in which ~ - Üyy = 0 at the C.L., the profile having a well defined 

ledge, and the C.L. ~eing situated somewhat north of 1~s initial 

position. This oscillation of ~ -Üyy is well correlated with an 

oscillation in the wave momentum flux~, which 1s positive when 

~-Üyy 15 positive. and negative, in the other case. ~ eventually 
\ 

deca1s to zero north of the C.L. (it is always zero south of the C.L.). 
1 

indicating the presence of a reflected wave at the C.L. which transports 

as much energy northward as the forced wave does southward. The whole 

process i5 found tQ depend on a few critical parameters. The time 

required to set·up·the>critical layer is controlled by the parameter 

.1.. ~- Ü'j 
1,;. C :. --

, \c ü'a. ......., 
'3 1 

The longer the wavelength. and the smal1er the shear. at initial time. 
\ 

the longew it takes ta initiate the process. They also found that the 
\ 

steady-state deformation of the mean flow was proportional ta the 

strength of the source, and to tc' 

We shall now diseuss in more detail the5e results. One of the 

steady-state features is that ~- Üy'Y'~ 0 at the C.L. What does this 
-C.' .. 

implyl Sinee we are in the steady-state. we can Use the results of 
\ 

3.1, and set, ~- Üyy to 0 in the'Tollmien-Kuo solutions. It is easy 

to check that apart from changing the values of the coefficients an' 

bn, and cn' th~s has the important result of eliminating the "1n y" 
1 : " 

term from the ~b solution. Therefore there-is no phase shift problem, 

and since the Reynolds stress. as before~emains constant above a~d 

below the C.L., with A+ = A- an~ B+ = B-. the jump disappears. Since 
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~ 1s 0 under the C.L., at the steady-state. 1t 1s also 0 everywhere. 

Thus Geisler and D1ck1nson 's result 1s not surpr1s1ng: the s1ngularity 

has been removed by the fact that ~ - Üyy = 0 where ü = O. In a way. 

there i s no longer a Il cri t i ca l 1 eve l prob 1 em" • We reca 11 tha t Benney 

and Bergeron a1so had ~= 0 everywhere; however. and this is the , 

interest1ng part, t~eir proftle had (üyy)c ~ 0 (in their problem. it 

1s equ1valent to ( ~- Üyy)i 0). Sc even though an 1dent1çal result 
\ 

1s obtained (at least for ~). the mean flow con{jguration seems to 
t, 

\ ' 

be different. We have to point out here that Benney and.Bergeron get 

a mean f10w distortion term. which must be added to the original 

profile. I~ is poss1ble that when 1t 1s taken 1~to acc~unt to 

evaluate Üyy ' th~ result 1s a1so zero like 1n Geisler and D1ck1nson~s 

analysis. Yet, even then. one would have to account for the presence 

in the critica1 layer of all the hàrmon1cs. wh1ch. as ment10ned before, 
1 

-,j are al'! essential result of Benney and B.ergeron~s anal:!s1s, whl1e they 

are altogether absent 1n Ge1s1er and 01ck1nson ' s model. Accord1ng to 
-

Warn and Warn (1976), th1s seems to be hard to just1fy. In fact, they 

have shown that for t = O(~-~). the non11near ~acob1an becomes of 0(1) 
~" l 

(in the cr1tical layer). and therefore 1t 1s not perm1tted to neg1ect 

1t as Ge1s1er and Dickinson did. if one~wants to make consistent 
G 

,~ 

approximations. . r 

- . --
All these considerations very natu~a11y 1ead uS,to the next step, 

which is to perform a fully nonlinea~ integrat1on. and hopefully resolve 
"l" 

th1s d1lemma. In other words, is ~ - ~y effect1vely reduced to 0 1n 
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the steady~state, even in the fu11y non11near prob1em? And then, 1s 
" 

it possibl'e to reach a steady-state simila,r to the one obtained by 

Benney and Bergeron? Or 1s ~e steaay-state simi1ar to Geis1er and 

Dickinson' s1 Answers to these questions will be found in the fol'lowing 

pages. Before discuss1ng our mode1 resu1ts, we sha1l however review 
" an attempt that was made to solve the non1inear prob1em numerical1y. 

3.4.3 NONLINEAR PROBLEM 
,. . 

Ward (1974) attempted to solve numerical1y the non1inear time­

dependent prob1em. His mode1 equations are s1mi1ar to ours. He 

adopted a linear wind profile. In his thesis, he deseribes, among 

-other resu1ts, two types of nonlinear integrat10ns. ln the f1rst o~~ 
, ~-

~_......---

one wave is foreed, and the other higher harmonies are-allowed to 

develop through nonlinear interactions with the forced wave. In the 

other, two waves are forced, and again higher harmonies are allowed 

to develop. In both types, ~ is either set to zero or allowed to 

uehange. 

Before we go on diseussing his resu1ts, a few remarks should be 

made. The nonlinear amplitude parameter he uses has a value of 0.32, 
~ . 

so that t = 0.56. Now recall that the width of the 'er1tical layer 

1s of 0(i'2). The implications are that: (1) the model is presumably 
1'-

nonlinear everywhere, because of such a big value of E , and thus the 

r 

prob1em is altogether different from that treated by Benney and Bergeron, 

where nonlinearities are i~portant on1y in the er1t1ea1 layer, and (2), 

sinee his domaintextends from y = 1.6 to Y = -1.6, we conc1ude that 
11 
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the critica,l layer boundary 15 dangerOus~se to the wa,.' .... so that 

the poss1b11ity of contamination from the southern computatibnal 

bO~ndary iS\ very re~ ';he numerical'model itself, in our opinion, 

1s not wel1 suited for such a study: the resolution~ (~y = 250 km) is 

much too coarse to reso1ve the~ne detaUs of the nonl1 inear interactions 
, . . 

in the critical layer, the Jacobian is neither energy-preserving or 

enstrophy-preserving, and fina1ly, the southern boundary is a so1id 

wall., It is th~s not surprising that his integrations never exceed 

6, or 8 days, and even at that time, the results shou1d be treated with 
1 

caution. 

_ For t~e first type of integr~~s, he observes ~he fo1lowing: in 

the caSe ,where ~=, 0, ü"'vl drops to zero af'ter 6 days; the non1 inear 

amplitudes .exçe1m the 1inear amplitudes by'a factor of 2 or 3 in the 

evanescent region (south of the C.L.). As we sha11 see later, we got 

~n a ltogether di 'tferent ~esu1 t ~ For the case wheore ~~ 4 0, up to 6 

days, the integration proceeds as in the' quasi1inear case. This is 
.., " 1 

not surprising, as it takes sorne time for the nonlinear terms to start 
~ .. 1 r (' 

'1 modifying the"results. In the second type of integ~ati~s, the model 
r 

is obviously nonl1near everywher~. The case,. ~~ 0 yie1ds the 

\ following resu1,ts: there is a northward migration of tt1e C.L., but: 

~ithout any 1edge formation in the mèan:win~ profile; in other words, 

there is no tendency for the mean flo~ to deve10p a curvature such as 
l' 

. to drive'~ - Üyy to zero at the C.L. He a1so observes a greater 

penetration of wave'energy south of the C.L." After 6 days, however, 
" - - . ~, .". 

the integration starts diverging, and again, n~steady-staté is reached. 
\ . 

We'sha11 see 1ater that our resu1ts disagree wi'th his. 
\ ' . \ . 

l , 

J 
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Summ1ng up the preced1ng considerations, we see that the-nonlinear 
, , ' 
" 

time-dependent probl em i's still .unsol ved analytically,' and that the 

~nly numerical approaoh to it does not give sat1sfactory answers, due 

in part to the crudene~s of the model, and also to the fact that only 

thé very early transie~t development was studied, and for a very 
J 

limited ch01ce of parameters (in fact, only one set). Ih the text to 
\ 

follo~, we intend to do a thorough examination of the, problem, exploring 

the full range of ~aram~ters involve~, and integrating until somé 
, 

steady-state is reachéd (at least in the oùter solution, i.e., away 

from the C.!.). To achieve this goal, great care was given to the .. 
finite difference v'ersion of the governing equations; this we will 

.. 
now describe, befor~ going on to discuss the results themselves. 

\ 

.. 
ri 
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, " CHAPTER 4. THE NUMERICAl MODEl 

In order to be able to 1ntegrate the mode", equat10ns on a 

computer, they have to be approximated by a correspond1ng set of 
• 

finite difference equations. It is.weli-known that fin1te d1fference 
- , 

equations have solutions of their own, which may (or may not) bear 

any resemblance with the analyt1cal'solut10ns they are supposed to 
""----- ... 

approximate. And if, as in our case, the analytical equat10ns possess 

regions of rapid variation' t one has ta be extremely careful in the 

r choice of a numerical s'Cheme. We will now describe the choices we , 

made, and reasons supporting these chOices. 

4.1 SPATIAL DIFFERENCING 
~ 

The domain of integration èan be thought of as a channel encirclfng 

rthe earth; the northern bo.undary, s'i tua teèl a t y 0 = y 0 > 0, cons'i s ts of 

a wavy wall, along which flows a westerly current. This current has 

a north-south shear (of hyperboli'c tangent type). énd somewhere be-q.,een 
, ! 

the southern bou~ary and the no~thern' boundary, the speed goes to zero: 
1 

this willc be referred to as tPe C.L. Further south, the flow 1s 
\ {. 

easter1y, unt11 the IIradiationlt-/bo~ndary is reached. Waves imp1ngent~ 

on,this boundary are a11ow~d to pass through, without any reflect1ons~ , 
',,-

as long as the flow remains essent1ally.1inear. What happens dur1ng 

the integration is as fQllows: as the fl~w goes a10ng the northern , . 
> , , " 

boundary, steady w~ves (c,= 0) are generated; t~~se waves pfopagate 
, Q 

,# 

1 
1 

" 
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" 
sou thwa rd unt il they reach the zero w1 nd 11 ne" tha t 1 s, the1 r C. L • 

There an interaction tak~'place, which we want to study. What goes ' 

through the C.L. ~ventuatl~ reaches the radiation boundary and simply 

escapes outside. Since the waves are in an evanescent regime south 

of the C.L., their amplitudes are"'very_ smal1 when they reach 'this point, 

and the assumption that they can be treated 1inear1y was always well 
i 

verified. 
'1 

Free ~odes can a1so be generated at switch-on time. However, it 

can be shown (Warn, private communication) tha,t for the particu1ar 
\ 

configuration chosen. the on1y al10wed modes are a;set for which 

C < - \ - ~U ' wi th 0 <: O.~. Thus', these modes are' regul ar (they do 
" . 

not have _a C'. L.), and neutral. 5ince many of the experiments ,were done , . 
with ~ = 0.16, they were not excluded- by this critérion. However, 

inspection of the resu1ts seems to indicate that no ,such free modes 

were present, or, if they were, that theip"amp1itude was small enou.gh 
/' -

to be unnoti ceab1 e. , / ' 

r As mentioned before. the ~ivat~ves are evaluatéd ~xactlY (apart 

from the. fact'that only a -limited number of waves can be carried). Grid' 

pOints are used to eva1uate the y-derivatives. The cbot~e ~f a grid 

length was d~ne in the fo110wing w~~ear ';tegrations 
~ , 

were done. until eveR~lfing the gridlength did not produce 

any important change in' the results up to a given integration time. 

This yielded the fol10wing choice: \ 

.. 
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As we sha11 see la_~er. such a fine grid length i6 needed if one wants . 
~-

___ to integrate long enough to reach a nonlinear steady-state. The width. 
\ 

of the channel was chosen to represent roughly the propagation of a 

wave from the tempera te latitudes to th~ equator; this in turn y1ielded 
1 • 

a choice of 601 grid points. The C.l. ~as positioned at n 1=,201, that 

is, 401 grid points south of the for,cing. Again, it was checked that 
- , 

the distance between the forcing boundary and the C.l. did not affect 
\. 

s,ignificantly the critica1 leve1 development. We doubled the distance 
, ," 

from the C.l. to the forcing boundary: the wave structure; (amplitude 
. 

and phase) temained a1most unchanged in the corresponding or Qverlapping 

parts of the domain. A small delay was introduced because it took 

longer for the w~,vE! to reach the C.L. Otherwise, everything e1se 

proceeded in a similar fashion. Fig.4.l shows the mean wind profile" 

and the domain configuration-. 

Most of the y-der1vatives ~~re of-O(~y~) accuraby• That 1s 
, \ 

" f = ~4 = 
Y b~ 

f =~'\:: 
yy ~1. 

. '1 

"(~+h~) .. ~t:'r~~1-"'1~· + C~h{\ 
b..~1. . 

The Üyy term was evaluated with a1fourth-order scheme, and ~o were 

the perturbation vorticit1es in sorne cases. , ' 

1 
1 
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Fig. 4.1 - Hy:perbolic tallgent ahear flow profile in dimenaionle8s unit •. 

Wave source ia at y=2. S. D .. ahed Une repreaenta louthern 
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boundary of fine meab ( ày=O. Ô062S ) integration. 
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However, we found that wi th such a small Gy, the 1mprovement hl 

aecuracy was not worth the extra amount of comput1ng t1me requ1red for 
{) 

a fourth-order,scheme. A fo~rth-order scheme would in fact probably 
\ 
be more useful for the non11near Jacobian. 

At the two boun~aries, i.e. n = 1 and ,n = 601, these formulas 
"", \ 

cannot be used. This 1s one of the problems created by the use of 
"" -

f1nite difference equations: how'does one evaluate ~ or ~~ at 
" , b'!) ,~ 

, the bôundaries? There 1s-, as yeti no exact way to solve the problem. 

Several approximations exist. e1ther in the form of an off-centered 

scheme, or in the form of an extrapolation formula. The off-centered 

schemes consid,ered were the following : 
\ 

-t ~ = 1: L ~ l"l t b.~) - il'211 + otb~) 
~~ 

-\~.: i l ~l~)\- 'H t')1:.b,) t- ~l ~ t~~)l + Ol~~'l) 
-z.b~ 

{II)' ~ t {\.~) +- {t" t 1.1,,) '- 'Z.~l~ tb'5\ 1 -+ ~l'~) 
à.,'1._ 

f" = \.. 'Z.~,,) - s.Çl" i:~~ +'\~l ~ 1: 'l."l- ~l ,,'J:3~~) 1 + o(~~'I.) 
f:t."J 1. 

• 
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'The extrapolation formulas considered/were the following: 

Fl = F2 

Fl = 2F2 - F3 

Fl = F4 - _3F3 + 3F2 
\ 

(linear> 

(quadratic) 

The following quantities have to be evaluated at either one or the 
, 

47 

two boundaries: (An)y' (Bn)y' (An)yy, ,(Bn)yy'and ü. In order to choose the 

best possible scheme,at the southern boundary, the following experiment 

was performed: a nonlinear integration was done with the southern 

boundary 200 grid points fromrthe C.l., and another w1th the same 

boundary displaced 400 gr1d points from the ~.l. Since a radiatiQn 

condition is used in both, we assumed' that the ~esults obtained from 

the second integration, at a point situated 200 grid points from the 

C.l. were true. and we adjusted the B.C.ls of the first integration sd 

as ta yield a similar result. This showed that the best choice w~s: 

\3\ = ~1. 

L~~~\~,1\: Llt\,..)~,1'1 

'Llt~)~~1\ = t t~)~" 1'1. 
That is we assumed the values of ü and the values of the perturbation 

o 

vort;,city at the boundary to equal' their respective values at the 
'-

first interior point. (An>y and (Bn>y were g1ven by'the off-center;d 

second order scheme (th1s der1vative has to be evaluated in the 

( 
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radiation condition). At the northern boundary the choice is more 

arbitrary; since we are forcing a wave at this boundary. however, the 

consequences are in a way less important. In any case,we chose a 

second-order off-cen~ered scheme for (An)yy and (8n)yy. 
l , 

4.2 TIME DIFFERENCING 

Five different schemes were tested with the model. They are t~e 
~ "-.:: 

following: 
1 

1) Matsuno's simulated backward differenc~ method: 

f * ( t+ At) .. f ( t) = ~ ~ llt . 
o-t t 

, . ,. 
1 . 

f(tt ~ t) - ~(t) = .~ l ~t 
/' l)t ~~ 

where a "*" denotes' a tentati~e (~irst guess~ value. 

2) Leapfrog method 1 
f(t+ II.t) = <t-, At) + 2A. t l\ 

3) Adams-Bashforth method 

_ f(t+M) = f(t) ~(t \\.\; 1. ~\1:-M:) Od: 
t 1 

4) Adams-Moulton method. 

1 f(t+tt\ ~l~) .. \\ t~ + \{\~ '* 

\" 
Il 
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where ~\ is obtained by uSing\scheme (3), for examp1e. 
tJt t+l* ' 

(5) Lorenz' scheme 

"'"ft lt""~t.) :: -Çlt) +- !t\t CI.'t 

~ ttt-J\t.) : çt~) ... t \ ~~ '" \t\-t~~ ') ~~ 
For 1inear and quasi1inear integrations, al1 these schemes worked wel1, 

e~cept possib1y for scheme 1, which required the use of a much smaller 

time step (by a factor of 3 or ~); even then sorne damping is present. 
, . 

This was recognized by ~atsuno (1966), who in fact does not recommend . 
\ . 

• use of his scheme for long term integrations. which is our case. For 

non1inear integrations. scheme l fails completely, as the model becomes 

unstable, even with a very small time step. Scheme 2 has the advantage. 
1 

with scheme 3)of being a one step method. It hast however, the undesi-

'rab1e effect of time-sp1itting (one of the two numerica1 solutions 
. 

changes sign every tim~ step). This can be corr~cted by the use of 
Il 

time fil ter, first designed by Robert (1966) and later analysed by 

Asse 11 n (1972). ~J1 th a value for the fil ter parameter of 0.002, the 
1 

integration behaved quite \'Iell, af'ld the results were quite similar to 

"those of the o~~er 3 schemes, even after 2400 time steps, which was, 

the ~sua1 ,1ength of the: integration period (w~th Â t = 0.036). Scheme ' 

3 was ~ighiy ~ecommended by Lilly' (1965), as he found it was thé best . . 
, 

overall scheme,he tested: it al10ws a time step compara~le to that 

of the leapfrog scheme. has no time-sp11tt1ng, and a very smal1. 4f 
"amplification tenn. As shown by Henric1 (1962, 1964)., it can be 

l, 

.. \ 
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used in conjunction with scheme 4. as in'the case o~ a multi-step ~ethod: , 
scheme 3 is then used as a predictor, and scheme 4 as a corrector. One 

~ 

can then iterate, and reduce the numerical error to a pre-specified 

value. This was the scheme adopted by Dietrich (1973); he found it to 
, 

give very precise resu1ts. This is the scheme we fina11y chose to 

adopte It was found that' one iteration on1y was-necessary for 
J 

convergence. The time step, as mentioned before was ~t = 0.036. Lèt 
, 

us note fina11y that scheme 5 is real1y a slight1y modified version ~f 

scheme 4, since it differs on1y i~ the predictor. Whe~ tested. it 

yie1ded resù1ts which were simi1ar(to l%} to scheme ~ 

4.3 THE POISSON EQUATION 

The two predictive equations for An and B are of the non-homogenous n _ 

Poisson type. Defin1ng cp (y,t) = lJAn or ~Bn • and 1etting the 
- r"t. M: . 

righ~ hand side of eqUations.à, (2.11) and (2.12) equa1 sorne func,t,ion 

F(y.t), we can rewrite (2.11) and (2.12) in the form: 

(4.3) 

\ 

F(y,t) is a known function of y and t; t~e prob1em 1s then to solve 

for the perturbation stream fu~ction tendency •. Once ~(y,t) 1s known; 
" 1 

(4.1) and (4.2') 'are used to advance one step in time~ and the whole 
1 l' 

process is repeated aga1n~ ~here are many schemes available~to solve 
1 .. . 

such an equation. We chose the so-called "directll method, because of 

. \ 
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its simplicity and speed. First, a particular solution is sought for 

the finite difference versi~n of (4.3); the grid points are numbered 

from m = 1 to m = Mt and (4.3)_15 wr1tten as 

cp? + <P.~ - ('l.T'rn'l.{à.~'l)cp~ :,fn-~~~ : C 
, ""'1-\ ""'-tir.."'" 

(4.4) 

'. 
where superscript IIp" denotes the part1cular solution. Using arbitrary 

"guess" values for n. P and ril,P /bP. . 1s calculated, and the 
~ m-l T m' Tm+l 

proc~ss is repeated unti11>~ is obtained. A few things shou,ld be said 

about this particular solut1on:' f1rst, it can be shown that it grows 

roughly like m2; to see this, let n2Jà~«2 (in our model, for n=6, ! 

and thè values quoted before, n~6 Ay2rv O(lO-4»; then, by an iteration 

procedure, it can be shown that (\;, 
~:tI'I\·1 . 

cp ~ ~ ~2 (m- k )cR + (m-1) <Pi - (m-2) c{>l 

In particular, if we l,et c~ = c, a constant, and '1>2 =~l =~, then,' 

for m ')-) 1 , 
m2 

cf>p ~2 c + l{l 
m 

In second place, associated w1th the finite-differencing, there is a 

round-off error; th1s round-off er~r, because of the marching process 

eventually grows sufficiently to contaminate the result (it grows also 

like.m2). So some care must be taken to e11m1nate this sourc~of 
, 

error. We will come back ta th1s later. F1nally, we should mention 
'5' 

that the gyess values used dur1ng the integrat10n were the values of 

the streamfunction tendency at the prevÏQUs time step, thus forcing 

the particular solution to be quite nea~ the true solution. The 
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o 

homogeneous solution to (4.4) 1s obtained by substituting q>h = erm 
m 

(where thé superscr1pt "h" now stands for homogeneous). We obtain the 

basic solution: 

where: 

cJ..: iM ( 'Z..,. M'L/; ~~2.) ~ \,} l1.:,.IW\'l~ ~~.)~ - '\ 

Z. 

~:: ~ l1..+ Mt&~;)_ ~ ~'I..ffI'l,~,,\)1_ ~ 

Z. 

It 15 easily sh~wn that in t~ as Ô.y~Of and n26«1, 

(4.5) 

~ -
~~~a.y, a,: -n {!Ay~~that 1s. we rècover _the analyt1c homogeneous 

-------solution (since (rn-l) à y = y). The solution is r terms of 

the fol1ow1ng parameters: let C\:~, r = ~ ,and make 
1. 'Z. 

substitution m = rn-Mi ~hen, (4.5) becomes 

~.~ = Oy{e{ ~ +r)(m-M}) + 02 (s1nh r(m-M) e" (m-M» -' 

The constant Dl 1s_eas11y evaluat;d in the follow\ng manner: at the 

northern boundary, the stream funct10n tendency 1s spec1fied and 

- "-;!. 

WU! til.mGt. .. t .=A ai 

52 



, 
equal to, say. Fi we then get 

1) + rl..P .. 'F 
l 't'M 

. \ 

-
The constant O2 is o~a;ned by using the radiation condition (2.18). 

However, since ~n and ~n are coupled in (2.l8.a) and (Z.18.b), a 

little algebra is necessary in arder ta get O2, This is done in 

Appendix C. D'nce Dl and O2 are known, the total solution is simply 

, written 

This solution now
1 

has ta be corrected for round-off error, which. 

however small, might eventually contaminate the integration after a 

f~ thousand time steps. 
i;.r' 1 1 

We shall use a method developed by Dietrich 

(private communication) : we ,back-substitute ~ m into (4.4), and 

evaluate .the corresponding cm' which can ~ow be writt~n as c +~m' , • m 

where cm is the exact original ~ight hand side, and ~m corresponds 

,to"the erro~ introduced in the forcing fieJd evaluated using our 

solution ~m' Once "m is known, a new particular solution lmP is 

calculated for the f~rCing field u_ Emil • .5ince the solution cfJM is 

~ exact, ~e use a guess value of 0 forll~ and J..'r : and we1epeat the 
~ ~.\ 
l '~~~marChing procedure described before to get ~ ~. The homogeneous 
, h 
f "er Il ,solution 1 15 of the same type as (4.6): : -, m 
! 
i 

o • 
"'" 

{4.7} 
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'Again, D3 1s easily eva1uat,ed. us1ng the fact that CPM 'is exact, 50 

h' ' 
that we get \;;. M = 0; this gi~es"D3 = 0; D4 15 eva1uat~d uS'ing the 

radiàtion condition (see Appendix Cl. ~he complete solution 1s then 

given by 

ù 

The, procedure can be repeated any number of t1mes, unti1 ,a' pr~scr,ibed 
• .. t.,) 

,Ierror 1im1t 1s yhed. In ou~ integrat1ons, onè error sca,n was fOI,l~~1 

to .be sufficient for convergen~e. Let~s mention f1na1ly that the . .. 

scheme was tested up to wave number 24 (, { = 23.04). with 601 grid 

points. for a 2400 time. step integration. The"sôiution was well-behoaved. 

and when~compàred with the resu1ts of the linea~heory~ was found' to 

be very precise. 
, 

4.4 THE FORCING 
, . \. 

Un1 ess otherw1 ~ specified, t~e followïng 'procedu>e' wa.s? âdopted for 

the switch-on: at m=M.' or y={M-l) 4y=yo' the s'ftteamfunction te!'ldency 

was specified. We r~rite (2.6) in the follow1ng way: 

54 

, 

(4.8) 

where: 

et n (y .t.t-) = VA~ (y, t) +'B~~. t}' 
i' 

~~(y,t) = t,an-1 (An(y,t}/B~(y,t». 

0' 

4 1 

'Weôchoose. cx,(yo,t) = l'c(n(Yo-,t} ;"0 for n")' l, and (31 (yO,t) =:nJ4. 

, , 

f-
I 
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• 
" 1 
~ The unit amplitude forD<l(yO,t)'was achieved in a certain lapse of time., 

usualJY 96 Â t. The ·above two consi'derati.ons completely det~nnine 

oA and b 8 a t y = (M .. l) ô.y • ô,r stn . 

!> 1 

More.fonnally, we have. : 

t '> 0 j ~n = 0 , ~B = 0 
~n. 
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n=l ; 0< t ~ 96 à t3 hA = 1 ~6 At , it:n {2}) ~n = 1/(96àt '12) 

n., 0; t )96~t) ~'''n = 0 ; 
~ " 

'bB ::: 0 
M:.n. 

Th·'a,. reason behinCf the slow switch-on is to prevent the buildup of a 
.. "l • \.J -Jfàrge gradient in t~ wave momentum flux ne1ar. the' forcing boundary. 

. ' • ÏI 

Jhis gradient; if al1owed' to become important, deforms the mean flow 
u 

" 

considerably, and the characteristics of the initial w'flnd prof'i1e are 

changed significantly. In fact, after a certain number of experiments, 

we found out that the best procedure was to.let the integratio~.b~ 
-. c • • . \ 

linear during the switch-on, allowing the fundamental harmonie to build 
. i • " 

~p SlO~~Y throughou~ the Fhan~el without affecting the mean f'ow, and 

,only th en allowing the .... gration to be quasilinear or nonlinear. It 
_ -: ... 0 - <l 

was verified that the résults did not depend on the switch-on procedure 

~s such. a As long aS.,the switch-on ,tiÎne is large enough to prevent' the 

wave mome~tum flux from affecting the mean flo~"next to tQ~ forcing 
. , . 

bound~ry, the r~sul~s ar~ quite insensitive to the ~onowiil'g"~anipula-

tions: doubling or quadrupling the switch-on time only delays the . . 
linear stage of the cr.itical layer builtl-up, without affecting the non-

, • a 
o Q 

~, , 
linear.stage ve~y muchi lett1ng Ü be'co~stant (in time) in the ~ppèr 

" f' 

" . 
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200,grid points leaves the results essentially unchanged, as tne mean 

flow deformation there is always O{lO-4) o~ less; letting the integra-~ 
r 

tion be nonlinear dur~ng switch-on time did pro~uce a slight deformation 

of the mean flow near the forcing boundary; however, for values of€<O.l, 

this deformation was eventually smoothed out, and the results were not 

affected ~ignificantly. 

This therefore completes the descrfption of the numeri~al model. 

Before going on to describe the results of nonlinear integrations, we 
1 

will briefly comment on a set of linear ;ntegrations, designed to test 
\ 

thf coding, and compare them with the analytlcal r~sults available, 

in' order to check the accOura~y of the fin,; te difference equations (at 

léast. the linear p~rt of it). 

. ' 

1 
• c 

.. 

! 1 
\ '0) 
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CHAPTER 5. LINEAR INTEGRATIONS .\ 

5.1 STANDARD INTEGRATION. 

In order to check the coding. a standard integration was perfonmed, 

the rèsults of which were compared with Dickinson's (y970) analysis. . 

The wind profile 15 somewhat different, since he used a linear wind 
, 

profile, ver~us our hyperbo1ic tangent profile. -However, in the 

critical layer 'region, both profiles have a more or 1ess l1near sheair, 

and as will be 'seen, the resu1t$, at least qualitative1y. do not seem 
,\ , 

to be affected at a11 by this facto . He a1so made a long wave approxi-

mation (that 1s, he neg1ected t~e x-part of the Laplacian), whi1e we 

kept this terme Since ~ = 0.16, this t~rm is sma11, and again, its , . 
presence does not lead ta different results. 

~ 

Orie result predicted by Dickinson is that the width of the critical ' 

layer should decrease as t- l • Fig. 5.1 gives a plot of the width as 

a function of time. It'can be se~~to effective1y decrease as t-1 

The width of the critical layer was estimated frèm the momentum flux 

divergence at the C.L. We measured the distance required for u'v' to 
, . . -, . .... - . 

decrease by 2 orders of magnitude across the C.L •• from the linear 
. \ 

steady-stat~ value north of the C.L., to its value south of the C.l. 

• (u'v' = 0 for y< 0). 

Another resu1t 1s that the perturbation zonal wind u' should increase ! . , 
'as ln t a~ the C.L (~arn ahfS 'Wal'n' (l976). Fig.' 5.~ gives 'a plot of 

57 

u' at thr'ee points: y = :t 0~'025, ,and y r= O. At the C.L., it 

effectively increases l1ke ·1 n t (notice the'logar.ithmic scal e); aWfY 
, ,J , f 

frolJ) the C.l., it sltarts increasing untl1 eventually the critical 
o 

• 
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Width of critical layer al a functio~ of Ume, as measured 

from ReynoCds strels jump rn rrne'ar fntegratfqn; ~ =L 6, 
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v layer thickness is such that the 2 points y \= :0.025 are outside of 

the fritical layer: the growth then stops.' and u' thereafter oscf11ates 

in time around sorne constant value (th1s' fs ,not s~own on the graph). 

According to Dickinson' s resul ts. a jump shou1d develop i'n time 

for u'v'. Since there are no energy sources south of the C;L •• ft 
1 

vanishes for y<O; north of the C.L.. it should reach a steady-state 

value"depending only on the wave amplitude and phas~at the forcing 

1eve' (all other parameters being held constant). Fig. 6.1 gives a' 
_' l, plot of u'v' at a point situated Just below the forcing, whfle Fig. 6.2 

gives a similar plot for a point s1tuated be10w the C.L. It~s seen 

that the n~merical resu1t reproduces almost exactly the analytfca1 
, 0 

resu1t. In particular, one should note the presence of sma11 decaying 

oscillations around the steady-state values; they are due to the 

pre~ence of trans;ents generated ny the ,switch-on. As we hav~ seen 

ear1ier, they a1so appear in Dickinson's solution as terms of the form 

e iyt /yt2. That ·15, at a fixed\ Y, there is a decaying, oscillation in 

time of frequency y. , This is the reason why the oscillations have a 

higher frequenéy in Fig. 6.1 than in Fig. 6.2;' the point above the 

C.L. 1s 'situated ,at a-·value of y' = 2.4, while the point below is at 

y = - 0.625 (the forcing is at y = 2.5). If one looks at ~ at a. 

~iven time, as ~ funct(on of y instead (see Fig. 6.3.a for ex~p1e) ( 

one sees the jump acrOS5 the_C.L •• and a150 smal1 oscillations in y, 

superimposed on a constant value •. The osçi11ations have a wavenumber 

,t" an4 thei r amplitude a ho decays as r -1 • (Th 1 s 15 not apparent 1 n 
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fig. 6.3.a' , since the profile shown is for a nonli~ear integration, 

and at that t1me, the configuration has already started to depart 

from that of ttie linear stage'. The preceding remarks were however 
,1 , 

verified for l1near integrations). That iS t as one moves away from 

th'e c~. t the p,rofi 1 e becomès 1 ess wavy. a~d as. t1~e incr'eases, the 

oscillations develop shorter and shorte~'wavelengths. 

So far, however, these are only qualitative compar1sons. It 1s 

possible ,to get a measure of the accuracy of the model by evaluating 

-the 10gar1thmic p~asé shift (we recal1 that one of the features of 

Dickinson's solution às t-.~ is to exh1b1t a -~ phase sh1ft in the 

1 n y te~)., Writing 

1 n y = 1 n Iyl - H~, y <: 0 

\ 

where now e = e (t) si nce we have a time-dependent prob 1 em, i t i s ' 
'Ii: 

possible to evaluate t with a certain precision, this phase shift from 

the numerical resu1ts. 1 This is done in the f0110wing way. Using 

Warn and Warnls resu1ts, we write 
, 2 

c:p (y, t) = cp (y ,oo) + 0 (1 /yt, ) 

61 

(5.1 ) 

1 where 4>(Y.~ ) are essentia11y the Tollmien-Kuo solut10n~.·corresponding 

to the steady-state inviscid'problem, that is: 

({> (y,oo) = Af>a + 811, (5.2) 

From t~e numerical model, we a1so have that (see (4.8») 

cp(y,~) = ~(y,t.)e-i~{y.t) (S.3.) 

. \ 

• 
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where ~ (y,t) and (y,t) resp~ct1vely refer to' the amplitude and 

phase of the wave as given py the numerical integrat1on. Equating 

(5.1) and (5.3). and neglectlng the O(1/yt2) term, we then obtain a 
1 \ 

relationship between A, B and the numer1cal solution. Lett1ng the 

symbols "t" ând, "_II denote as usual the upper (above the C~L.) and 

lower (below the C.L.) solutions, we can write: 

(5.4.a) 

50 far, we have four unknowns (A+. B+, A- and B-) and only ~wo 
, + 

equations. The other two equations ar~ obtained by differentiatiag ~ 

'" and ~ - wi th 0 respect to y; t~i 5 Ig1ves: 

(5.4.b) 

It is th en a simple matter to obtain the values of the constants A and 
, 

B from (5.4.a) and(5.4.b); usfng the'fact that the Wronskian of the 

two solutions 15 s1mply -l, we get: 
\ 

A+ = ,+,+ - ,+,+ 
Y b by 

B+ = ,+,+ - ,+,+ 
ay y a 

A- = ';'b -, 'by 

B = ,-,- -.- ,­ay y a 

tS.5} 
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Once ~a and ~b are evaluated using the resülts of Apperydix B, and sirice 

~and ~y are known from the numerical integrat1on, the constants A and B 
\ 
are easily evaluated; it was also verified that to O(l/yt), A and B are .. 
insens1tive to the cholce of a given y to evaluate (S.S)(i.e. theyare 

1ndeed constants). 
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We recall from the results discussed 1n chapter 3 that matching between 
~ 

r:pJ.nd cp- can be effected by writing 1 n y ~ 1 n 'y\ -1lf for y < 0, or equiva-
, . 

léntly, letting the two constants A and B above and below the C.L. be related 

as follows with now ln y ~ ln(y\for y< 0: , 

1- - ( ~ -'il" ) A =A+1rrB- e 
'il' 
~.c 0 

rAnd effec.tive1y.,' as time increases, the numer1ca~ mod~l yields exactly these 

results. Fig. 5.3, for example, is a plot of the real part of the lGgarithmic 

phase shift as a function of t1me; it is seen to converge to "\T quite nicely. 

fNotice again t~e pr~sence o~ a decaying oscillation in time., This i~ due to: the­

'presence of the eiytyyt2 term'in (S.4.a) and the e,yt/yt term in (S.4.b). In 
l ' 

other words, the result 1s accu rate to O(l/yt) or O(y6) whichever is greater' 

( the O(y6) ~rror cornes from the use of a finite number,of terms in the 

Frobenius method). For example, in Fig. S.3, at t=86.4, and for 'y~O.S, this 
\ -

g1ves absolute'errors of 0(0.02) and 0(0.004) respectively,for the O(l/yt) 
, 1 

and ,O(y6). neglec.ted terms. When an average in time is taken to elim1nat~ the 
, , il 

effect of the eiyt term, we get a value f~r the phase sh1ft of 3.1S, .... 
l ' 

a value quite close to Tl. The followin~ values are 

,- . 
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Fig. 5.,3':' Real part ôf the logarithmic phase shift Q , as a function, 
, r 

of time, in linear integration;(5=1.6, 6 =0.16. 
'1 

o 

(, 
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o 

a1so obta1ned for the imag1nary part of the phase sh1ft, and S+ and 

S- .. At this point, we shou1d c1ar1fy the follow1ng: the so-ca"ed 
l , 

10gar1thmic phase sh1ft 15 in general a complex number. ~t, first sight 

1t 1s hard to see how e could have an 1màg1nary part when ~e write fot 

y < 0, lny = In\y( - 1&. One shou1d 'remember that th.1s 1s rea11y only 

a convenient way œf wr1t1ng the jump ~n the constant A across the C.L. 

This !jump 1s determined by 1nc1uding neglected tenms in the equation. 

It so happens that in the linear-viscou5 problem it can be 1nterpreted 

as a -i1\ phase sh1ft in the 1 n y term of the Frobenius sol ut10n 

o(and thus as an acc~ptable definit10n of the ~ogarithm of a negat1ve 
, 

number). However, th1s 15 not general1y the case: ~n Haberman's ana-", . 
lysis, the phase sh1ft can4fe seen to vary cont1nuously from -1fto O. 

Although 1t 1s sti11 called a "logarithmic phase shi ft" , it 1s hard 
Î • 

to interpret 1t as the )ogar1thm of a negative number. Moreover t 1t 
." '" .., 

has 50 f~r been impossible to prove t~at the "phaseoshift" 1s always a 
~ 

real number, ev~n rho~gh it has always turned out to ~e 50 for the 

prob1 ems al,ready 'sbl ved. Thus, for the nonlinear time-dependent 

problem, it is theoretically possible ta have a .comp1ex phase sh1ft. 

Im( e) = 0.05 
, T . 
B = 0.44 + 1 0.14 

S- = 0.45 + 1 0.'5 
, . 

As can be seen, ST and S- match alm05t exactly, and the phase shtft 1s 
", 

, seen to be a rea l number ta-- 3 s 1 gn i fi cant fi gures. 

\ 
- 1 

1. 
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Let us note f1nally that there 1s also another way of ge~ting the 

real part of the phase shift, us1ng (3.1); u'v' 1s obta1ned from the 
1 

model, and·1t is'easy to sbow that B 1s equal to q>(y,t) at the C.L. 

(y=O), again to 0(1/yt2) (recall that<Pa(Y=O) '= 0, and ~b(y'=O) = 1). 

A ~phase 5h1ft 15 again obtained; however, th1s method does not prove 

that t~e phase shift 1s real ,Ifontrary to the prev1"ous one, as only 

the real part of e enters in the evaluation of ü'v'. 

We should stress here the importance of this quantity.' We hâve 

al ready shown that the real part i s rèl a,ted to the jump in u' v~, and 

thus to the energy flux: a zero part would thus imply total reflection 

of ~he wave at the C.L •. The complete phase shift (real and imaginary 

part, if it is non-zero) is also related to the amplitude and phhse 

of the forced wave. In fact, knowledge of the Frobenius solution, and 

of A+ and S+ at all times at a forcing boundary 1s sufficient to deter­

mine the solution completely in the whole domain (abciv~ and under the 

C.L.) oneethis,phase shift is known. This'remains true for the non- • .. , 

linear problem, in the outer domain (i.e. away from the C.L.), up to 

a certain accuracy. The change in time of the loga~ithmic phase shift 

is directly related to the change in time of the,slope of the phase of . . 
the forced wave ~ and thus to the change intime of u 1 v ' and of the 

t. • 
energy flux. 

, 

In summary, thè results of the linear numerical integration show a 
, . 

high degree of accuracy, even for a long integration period (2400 time . 
, . 

~ teps. or 250 days) 1 The fact tha't the mean fl ow ï s of hyperbo 11 c 

~ 
,1 
'1 
1 
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tangent type, and that the ~-part of the derivative 1s kept, contrary 

to Oickinson's ana1ysis, does not seem to affect at al1 the cr1tical 

layer deve10pment. All the fine scales generated ~ the transients 

in the linear theory are well represented, and the1r frequencies and 

L amplitudes seem to correspond,to the theory. The -1T logari'hmic 
. 

phase shift of the large time solution is recovered, ind1cating the 

adequacy of th~ grid 1ength and the time step chosen, as we11 as the 

finjte difference schemes. Of course, this experiment says noth1ng 

about the accuracy of the nonlinear f1nite difference Jacob1an, there 

being no analytic&l solutions'of the nonlinear problem we could use 

as a means of compari so'n. 

5.2 fORCtNG EXPERIMENTS 

Two types of forcing were tested;~the first one was designed ta 

study the effect of a finite time forcing: that js, thestreamfunc­

tion amplitudé at y=yo is brought back to.ze~o after a given t1me. 

(See Fig. 5.4). Noth1ng par~icularly 1nteresting hagpens in this 

case. The wave momentum fluxes,north and south of the C.L. mo~e or 

less follow the behaviour'of the forced wave. Aroünd'the C.L. the 

momentum flux reaches a maximum some time afte~ the forcing has been 
A' 

brought back to zero, and thereafter decays 1tself to zero. The 

effect can be thought of as that of a wave packet propagating towards ~ 

, the C.L.; when it reaches the ~~L., jt is ~'absorbedll, and the 

amplitude eventually decays back to zero~ 

P 
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The other type of forcing 1s Jcomb~nation standing wave forcing, 
, \ 

an~:stationary wave forcing (see' Fig. 5.4). Jhe amplitude of the 

standing wave was choseij,to be 0:25, D~' period'~f 120 time ~~eps. 
or 4.32 time units. Now'a standing wave,,.is rea11y the sum of Jo . ' 

, ~ 

waves, each prQpag~tingc in an opposite direction, with the same 

frequency, and half the amplitude. Since frequency i5 related to phase 
" (J fi 

speed by c ; W /k.1 ~ .anl w = '2Tr/T ,where T is the period, we have, 
.. 

'with k = 1 for the fprc~ng wave 
> , 

(in'non-dimensional units) that 
1 

, ' , ", 
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" C = t 1.45 •. Now we recall that 
,<, 

cr = tanh y', and is thus ~ways smal1er ' 
" '. 

() 

, 

than c.' This has the following implications: the wave propagating to 

the east, with c :-'.45, will be in an evanescent regime; the other 
• 

wav:. p,ropagating to the ~est, with c = -1.45,. will see' nq critical 

level, and will, thus be able to propagate freely across the shear flow. 

This further imp1ies that a non-zero positive u'v' should be observed, 

south of the stat10nary wa'v~1 s C.L. This is in fact what we get: in 
r 

Fig. 5.5, we have a plot of ~, as a function of, time, south of the 

C~L. Clearly, ~he average of u'v' in t1me yields a positive valu~ 

(N6xlO-/3) whic.h 1s" not the case when forcfng only with a stat10nary , , 

wave (see fig •. 6.2 for example). This 1s 1nteresting, for it offers 
. 

a me,ans by which energy can propagate southward to large distances 

without encountering"critical levels. In the atmosphere, stationary 

waves are usually forced by orographic or land-sea temperature " 
~ 

contrasts. If~th1s stationary ~ave, for'some reason, stàrts ~ulsating, 
<> , 

it behaves exactly li ke a startd;ng wave". and energy, might be able to 
\ , 

propa~ate towards the subtropical latitudes. 

,<> 



r 
t a ~,; 
" 

b 
/ 
!' , 
f-
~, 
~ 
il, 

f, 
f' 
i 
~, 

~ 

~ 

-.. • 0 
)( 

~ -
~. 

• 

, . 

Ir 

0-0 

' 0 

-----

Il' r 

o· 

• 

25·0 

, 

'~"' __ w'_"" ___ I"fI",,'_, ____ _ 

Tp 
.50·0 

1 

70 

Fig. 5.5 - "'\i'i'Vi'" at y=-O. 625 for coupled sta~ionary and standing wave 
1.. *, 

,- forcing, as a function of ti.~e: ~ =1. 6, J =0. 16. 

" 

. ! 

.. ,~ .. ~,,~,.:,~~~ 



1 
, r 

:,1 
, 1 

, 
~ 
l' 
1 

·~"""'*I,,,,,om~~lII/'hh~I,'''''''''._._4 .. = ..... __ 1 • .., ___ 1111 .......... ""' ..... 1 .. ' _tt ... M.IMII""' .. __ ._"'._,,_ •. _ ... _ ... ,'_ .. M .......... __ ._. __________ , __ , 

"" 

o 

/ 

5.3 VARIATION OF THE 6 PARAMETER 

-~ ... ' 

A series of runs wheré made with dÙferent ~ values, namely 
,1 • 

~ = 0.04, 0.16. 0.~6 and 0.64. For ,a shear scal~ length of 1000, km,' 1 

these values èorrespond rougnly to wave numbers 1, 2.3 and 4, at , ~ , \.. ' 

~= 3SoN. All other parameters were kept unchanged fram their 

"standard" values. Us1ng arguments simflar ta thase invoked by Bennett .", 

and Young (1972), one can conclude that an 1ncrease in d result~ in a 

decrease of' the WKB-def1ned y-wave humber: i.e. 

,t\~) ;; l ~-~'n - '& l' 
i ' v 

.decreases as d increa.ses, a,,"other parameters bei'n~ held ~~tant. .. 

This in tur~ ~eans that the,wave momentum flux north of the C.L. should, 

al 50 decrease as 0" i ncreases. si nce if we as sutne a sôfuti on of the form 

~= Aei(kx+1Y), where Q is given by the above expression, it is easy to 

show that 

where we have a~sutned ~(y) ~ 1, a constant., Thus an 1ncrease in ~ 
- , 

produces a decrease in ~ , and.hence, a decrease in u'v'. We list 
, 

below the d1fferent s~eady-state values of a number of paramete\s 

of i nteres t, as la fun~ti on of (Ç : 

1 l, 



Û, 

" 
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~ IBI , -u'v' ,.:~(de9 ~) 

.04 .492 .60 '-24 
"" 

.16 .476 • 56 -19 

• 36 .449 • 51 -9.9 , 0 

.64 " . 411 .42 ,2.5 " 
". 

I~"is the modules of the constant multiplying the fb solution. We 

have already noted that the jump across the C.L. in u'v' 1s proportional 

tolBI 2 (s'ee ('3.1»). It can be checked that t~is is true for the above 
• 1 

val~es. e: is the phase of the forced wave south of" the C.L. Since u'v' 

is constant and equal ~o zero in' this r~giont a_ 1s constant for y <. o. 
Fig. 5.6 9}veS a Rlot ofe .. as'a fun~tiQn Of4. It is intéresting to note 

• . . 
that the relationship-.is l inear; we see that since the phase of the forced , 

. , 

wave lOS fixed to Tf 14 at y=yO' the value of t~e phase' south (If the C.L. 
1 

has to i ncrease wi th 6 1 n order for u' v' to decrease nQrth of the C. L. 
1 

Apart t'rom the, above considerations, no, sign,if1cant differences 
o \ r 

whatsoever were observed in thè" critical layer development between our 
l ,.) 

results and Dicki~son's, obtained using the long wave approximation " 
~ , 

(i.e. l = 0). It seem~ that the only effect of 0 1s ta change the phase 
t 

and the amplitude of the wave s11ghtly, leaving the mechanism of the 

critical "layer ,formation and development unchanged. , ~ 
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5.4 VARIATION OF THE BETA PARAMETER 

A series of runs wer~ made 'w1th the follow1ng valt.es o-f (3: 1.0, 

1.6 and 2.0, the other parameters hav1ng the1r standard value. Agai", 

we should expect u'v' to change w1th'~; tha~ is, 1t should increase 

as '2 1 ncre~ses, si nce now ~ (y) 1 ncrea~es wi th ~ •• We 1 i st bel ow the 

values of param~ters of 1nterest as a function of ~ : 
" 

~ IBI u'v' e-Cdeg. ) 

l , 

1.~ 1\ :477 .36 25 

1.6 .47'6 .56 -19 

2.0 , .467 :69, - -47 

. As expected," u'v' 1nc,reases with '~ • Again the jump relat1onsh1p 
, \ 

is almo~t exactly verified f~r the above gi'ven values of IBI and~. 

, " 

We had mentioned before.that the pàra~eter te =ÇI in non-di~ensional . ~ 
units. And effectively, as ~ 'was incr~ased, the development was .', # ~ 

found to?e delaye~ accordingly. We have a1so plotted in Fig. 5.7 ê_' 

as a function of (? Again, it is interesting to note that the 

r~lationship seems to be lin~ar. Also, for ~::.0.78, that 1s at the 
, - , , 

-)ower'11mit for stability, we see that e,,=,45 deg., which' is the phase 
. \ 

of the forced wave at y'~ YO. . ' 

Apart from thes.e observations t the' critical lay~r development 
-

proceeded as 1t d1d in the standard integration. 
" 
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CHAPT ER 6. NONLINEAR INTEGRATIONS 

6.1 STANDARD INTEGRATION 

The 1ntegrat10n to be descr1bed will be rèfe\'"l"ed to as the "standard" 
, 1 

integration, for it will be used as a basis of comparfson wfth other runs 
o ~ ~ ri 

where the parameters will be-'allowed to' vary, the forcing modified or 
.. 

diffusion term5 will be added. The paraffleters used in ·the.~tan~ard run 

are d= 0.16. E = 0.018',('= 1.6, N = 6 (N des1gnates 'the number of 
\ '" , 

harmonics), and At = 0.036, ÂV = .00625. ~ = 0.018 corresponds to 

"cA= 1.8xl05m2s-1 witli um = 10 ms-l and L = 103km;t' All other deta11s 
, \ 

are the same as for the l1near 1,ntegratfons. In descr1b1ng the results, 

»~e will be looking at a number o~ different quant1't1es, such as the , ' 

wa ve mom;nturn fl ux U'~I , ,~~ (1. e . ~ .. h:r~.. ), etc. 

In order to compare' the ,evaluation of sorne of theie'quantities wi~h 

the results obtained by Geisl er ~nd Dickinson (1974), we have done a quasi'-
c 

11near 1ntegration, 'using the same set of parameters except t,bat"N"= 1. 

6.1.1 WAVE MOMENTUM FLUX 
, 

" 8y wave mo-rnentum flux {denoted u'v') 1 we Mean the total wave momen-
• " - ~ ,! 

tum flux, that i5 the sum for the six harmonics. ~e shall f1rst look 

) at this quant1ty at two fixed points in Y, as a funct10n of time. The 

first ,point is located just south of the forcing level {more precisely 
• 

~t Y = 2.4, the forcing be1ng at 'y = yo = 2.5). Fig. 6.1 .. g1ve~ a plot, ' 
of ~ as 'a funct10n of time at Y = 2.4. One can observe three different -

, , ' ; 

reg1mes. T~ f1rst one, (we 'ca11 ,it the linear regime), 1s for all 

o 
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..) 

purposes 1dent1ca1 to wbat was observed in a 11near 1ntegrat1an. It 
\ 

corresponds to the stag~ where there 1s a slow buHd-up of the 

harmon1cs through' nonl1near 1ntéract1ons. , Règ1me 2 1s characterized 

, 

by a decrease in ~ from the l1near steady-statè value to a 'value near . , ' 

O. Notice that the small He1ytH oscillations super1mposed on the mean 

l'1near value of u'v'st111 pers'1st, during this,decay. Regime 3 15 
" , ï 

'character1zed by a slow1y osc1llat1ng ~.around O. with. aga1n, the 

"e iyt" osci11 at10n superimposed on 1t. S1nce at that time the wa'~e source 
. , .,. " 

1s still on, th1s imp1ïes a complete ref1ection of the wave energy at 

the cr1tical 1eve1;'thus the non1inear integrat10n gives a resu1t which 1s, 

comp1etely d1ffer'ent fram the '1inear 1ntegrat1on,' Le. J t~~ steady-state 

\ (away· from the cr1tica1 layer) being character1zed by a waveoref1ect1on 

1nstead of a wave absorption. This result is comp1ete1y in accord with 

Benney and Berger.on 1 s (J969) ana1ysis, who first proved the existence of 
• suchaso1ution by showing .that their steady-state had a zero jump in the 

Reynolds stress acrQss the C.L.; since it had to vanïsh at y ... - ~ • it 

had to be zero everywhere. On th~ same figure, we have p10tted the 
• 1 

evo1ut1on for ~ quasi11near 1nt~grat1on (curve 3). It 1s obv1ous1y qa1te 

d1fferent. G~ (1974) however show~ that eventua11y the same steady ... 
~ 

state 1s reached. after a numbe~~of successive decaying osc111~tfons, " ... ~ ; . 
around z~ro. It wa~ not possible (due to computer t1me and storage 

< -

limitations), to hltegrate long enough ta check that tli'1s was indeed._ 

the case. Nevertheless, the b,ehaviour s~ems to be '~ual1tatively: ,', 
o • 

s 1 m~ 1 ar ta. the resu 1 ts they obta 1 ne~ i "e.. a rap i d decrease of u i ~ ~ to .-

.. 

1> " 
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, . 

a negat1ve value followed by arise. We should point out here th~t our 

model 1s qu1te d1fferent from theirs in many aspècts. One of these' 
'. .. .. 

differences and not the least ... 1s that in the1r model, the, ~ term is 

multiplied by a 'function ~("I)=lJI+~~t--~+"l,)l where a and yO ar~ chosen 

such that ~~)~~ ne~r the forcing level, and~,)':a\ near the cr1tical level.. 

, (This fact, we should also point out, is not mentione~,1n'their paper, 

although it was ment10ned by Ward (1975)~ It is not obv1ous to us what 

the effects of such'a procedure are in a 10n~ term 1ntegration; 1t seems 

conceivable that it could affect the steady-state results. 

Fig. 6.2 is a plot of ~ at a point situated midway between the 

C.L. and the southern boundary, t.e. at y = - 0.625. As, expected, after 

an initial rise, during the period where the cr1tfcal layer is Just , 
. \ . 

starting to build. up, the ~volution in time is characterize'd by an oscil-

lation around a 'value of zero. Two stages can be ob~erved; the first 
, , 

one is a linear stage, in which the evolution is given by a slowly deca­

ying oscillation,' as in the l1near i.ntegration, and the second one during, 

which there i s a sudden i ncrease i n, the ampli tude .of the oscill at10ns , 

although the mean 1s still, roughly zero. Note that the beginning of' the 
"" . 

seconp ·~tageocoinc1des w1th that of Fig. 6.1. Moreover, no significant 

79 

o , ' 

\ ' . , 

differences ~ere, observed between ~he quasilinear ,and nonlinear integrations. 
~ ':1 ' .. 

. ' a 
" / Thus, whether' the model ïs l1near, quas111near ,or nonlinear, there 1s no 

s1gnificant transfer of energy through the C.L., u'v' be1ng 0(10-2) smaller 
o • 

at all t1mes. 
( 
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Let us'look now at u'v' as a funétion of 'y at a given time. Fig. 6.3.a 

gives the wave momentum flux of each component Just at the beginning of 
"-

stage 2. The usual l1nea.r quasi stead.Y.tstate configuration' is reali.zed 
. - iyt ,/ .. 

for the forced wave, 1ncluding the small e oscillations. At that time, 
1 

" ~ 

the other harmonics have no~-zero üïV' only in th~ critical layer re~on. 
Q -, 

Fig. 6.3.b is a ~lTilar graph, fo~ stage 3. The wave momentum flux,ha.s ... 
dropped to a value near zero for the forced wave, except in the critical 

1 

layer itself~ All the other hanmonics havè zero or near-zero momentum 

flux outside the critical laye~ region, while lni th crjti~al layer itself, 

each harmonie has a non-zero momentum flux. It is lear th en that in . . 
. the critica,l layer itself, no steady-state is r~ hed. In fact, i.t might 

ev~ntually become ~nstable due to the large ,shear,developing: in this , 

~egion. It is obvious that the,numerical mode1' is incapable of resolving 
• ,the finer and finer scales that are appearing, aad hence, we had to stop 

the integrations before any kind-of "steady situation" had developed in 
/ ..' d r'~ 

6> -

the critical layer itself. However, outsi4e the·critica1 layer region, 

the mode) can be consjdered to show the steady solution. w 

Summing up the above QPnsiderations, we can say the fQllowing: above 

the cri tica1 1 ayer, t'he non1 inear integratibns yi·e1 d a quasi steady-state 
, , 

• , Il 

.character1zed by a zero wave momentum flux, indicatin~ the presence of 

a reflected ~ave at the C.L.; this'~esu1t is altog~the; d1tferent ~r~m . 

the 1 inear or quasi1inear integrations, al though in the ~last case, it 

81 

js possible that a~ identical steady-hate is.-reached, althou9,h later in' ~ , 
- . 

t1me •. In thè critical la~ertitself, 'finer and firer s:ales of motion 
" 

, are developing, and no ste~dy-state 1s reached: howeJ~r,. 1nstabjJJty 

. .~ 

" 

,\ 
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Fig. 6.3. a ':' \iiVï as a function of y for nonlinear integration, 

at t=43; ~=1.6, J=O.16, ~=O.018. N=6 . 

. "\ 

, 

" " 

~-------~~----------~oo~------------~~~~~ 

Fig. 6.3. b Same as fig. 6. 3. a. except, at t=69. 
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.­
could be ,a possible outcome', leading to a ful1y turbulent ar1tic~l layer~ 

Below the cr1t1cal la1er, the1r 1s"o t1me-averaged ener.gy ~lux, so that 

the C.L. can be thought of as a barrier ta wave enetgy propagation, ulti-
.... • 1 

mately reflecting back all incom1ng energy flux towards the source. 
--j 

6.1.2 ~ -U~~ TER~ 

GD pointed out the importance of (2-U~".) (called ~eff) in their 
• 1 

83 

model (see chapter 3). Fig. 6.4.and Fig. 6.5 show ~eff as*a funct10n \ 
. , 

of y at T=43, and 86,'for the nonlinear and quas11inear integrat10ns 
1 

respectively. T = 43 corresponds roughly to the beginning of ~tage 2 '. . 
in the nonlinear integration. In the nonlinear case, ~eff has gone 

, 1 
negative at two places, north of the instantaneous C.L. We should 

"\, 
,\ 

mention here that in the nonlinear integratio~, ·as in the quas11inear 

integration, the C.L. never moves more than a distance o~O (€ ) (roughly 

5 ?r 6,'gridpoints) towards the source. We notice also the appearance in 

the ,profile of ma~y wavelike ostillations in y, which are absent in the 

quas11inear integration (see Fig. 6.5). As time increases, the nonlinear 
\ 

~eff develaps finer and finer scales of oscillations, and it eventual1y 

becomes negative quite far north of the instantaneous C.L., whereas the 

quasilinear ~eff remains roughly steady throughout the rest of the 

integration -period, always being negat1ve at or very near the C.L ••. Th1~ 

last remark agrees with the fact that u'v' near the forcing became nega­

tive after ~ ff went negative and remained negative for the rest of 1 e '\ , 
the integrat10n periode However, in the nonlinear case. as we have seen, 
• 1 ~ 

- the evol ution of n was quite d1fferent. And 1t 15 har~ to find any 
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Fig. 6.4:& 

. , 

... 
'Fig. 6.4.b -
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... . 
~-~yy as a function of y in nonlinéar integration 

\ 

at t=43; ~ =1./J. cf =0.16, t=0.018, N=6. 

1 

\ 

.. .. -
Samè as fig. 6.4.a, except/ at t=86: 4. 
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clear-cut relation betwe~ ~eff and üTV1. It might still be possible 

that (?eff triggers\the drop in ~'V' _ in the non1inear 1ntegration, since 
, 1 

at that time the harmonies are still small, and their effect on the mean 
• 

flow, for exa.mple, l'through t.he u'v' term is also smal1 compared to that of 
• 

the fqrced wave. 'However, as time increases, their importance increases 
\ " 

and eventual1y becomes comparable to that of the forced wave, in the 
l' • 

cr!tical layer. In 'fact~ Warn and Warn (1976) showed that on a time 

scale of O{€ -il, the vorticity of all ~he harmonies becomes of the 

same order a's that of the primary wave". And in--the present case, for 
- ~ 1 

f = 0.018. this is T""O(7). However, as can be seen fr~m Fig. 6.1, 

the drop in u' Vi occurs at Tc:. 40, al thoug-h the non11near fntegr.ation 

(and the quasilinear) start depart~ng from the linear at T~ 29. To 

check out whether'the evo1ution of~ had any relation with the non-

1 inear time sca1e €. -i, we did a series of integrations with E:= 0.006, 
\ 

0.012, 0.018 and 0.024, a11 other parameters being identica1. Using 

the ~ = 0.024 1ntegration to scale the resu1ts, we have plotted the time .. 
- ' / r.equired for u'v' at y = 2.4 to decrease to zero as a f~nction'of E • 

The resu1t is shown in fig. 6.6. The full curve be~the curve obta1ned 

by assuming an E -i time scale. As can be seen there 15 a surpr1singly 

good agreement with the observed values. T s would seem te 1ndi-
, / 

/ 

Qate that in the nonl inear integrationyi't H the" E" parameter which 
- / 

governs the evolution of u'v', and since E. multiplies the nonlinear 

Jacobian, this tenn IIIJst cer~~be as important' as the (!o- û~~ 
term in reaching a steady ~~te of zero mbmentum flux. In other words. 

// , 
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A-' 
even though GO'S exp1anation is probab1y correct for the quasi1inear 

case, it ~es not ho1d in the fu11y non11near equation, ~here one must 
1 , 

teke 1nto account the nonl1near Jacobian. Moreover. Fig. 6.6 seems to 

ind1cate a strong relationship between the value of the nonl1near 

Jacobian and the ~rop in ulve. 

One thing we eou1d say a1so about Fig. 6.4 is that the finer a'n~ 

f1ner sea1es of (?eff eould very possib1y 1ead to instabili,ty (we shall 
- '/' ' 

come baek to this 1ater). In any event, they also show the need for a 

very fine,reso1ution in dea1ing with the non1inear problern. It 1s the 
~ 

" appearance of theke finer and finer scales' which f~reed us to stop the 

integration at T=86. 

6.1.3 MEAN FLOW DEFORMATION 

By mean f10w deformation, we mean the differenee between ü(y,t) and 
1 

ü{y,O), where u(y,O) is the hyperbo1ic tangent shear f10w profil~. 

Aècord1ng to Benney and Bergeron's (1969) analysis, this deformation is 

of 0 Cf ) in the critical layer. In other words, for example, the 

critieal1eve1 never moves more than a distance of 0 (E.). We have 

plotted in Fig. 6.7 a profile of the deformation as a function of y. 
" 

The values seem to be in aceord"w1th'Benney and Bergeron's resu1ts.One can 
" , 

, 

a1so notice that away from the C.L., the deformation becomes quite 

s~a11: th1s 1s to .be expected s1nce in the outer region, the f10w can, 

be assumed ta be 1inear. Also, the defo~at1on 15 negat1ve everywhere, 

1nd1cating the wave and the harmonies are actual1y decelerat1ng the 

mean zonal floWi that is, ~ 1s,< 0 everyWhere; th1s 1mplies u becomes 

more negative for y<.. 0, and less positive' for y)' o . . 
, 1 

\. 
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6.1.14, WAVE AMPLITUDE AND PHASE 

Fig. 6.8 and Fig. 6~9 are plots of the amplitude and phase at two 

different ~imes. narnely T=43 and J=99. As can ~e seen. south of the 

C.L., we have an exponential decay of wave amplitutle, torresponding to 

the evanescent regime, whlle north of the C.L,., the waves show an 

oseill ating behaviou~. Accordi ng to T. Warn (private eOll111uni ea,tion), 
~ ~ the amplitude of the harmonics for 0 «( 1 .(, t< 0 (f') should be 0 (E:. ') 

'. 
smaller than that,of the forced wave in the critical ~ayer, and 0 (E) 

smaller away from the critical layer. As can be seen in Figs. 6.8 , 
\ ~ 

and 6.9, this 1s roughly the case in the eritical layer (E ~ .IS). 

However, outside, the amplitudes are larger than Q(E). We note however 
-l that T=43 or T=69 15 al so roughly 0 (~ ), so that we are near1ng the 

c "" 

• 

time limit valid f~r the scaling to hold. For a linear zo~al wind profile, 

t~is time limit can be obtained in the ~~llowing way, us1ng Warn and 

Warn's "(1976) solution for yt"l'l l, w1th y IV 0(1) (that is, away from the 
'~ 

erltical layer). We have 

90 

(6.1) 

Now, in the nonlinear Jacobian, the lowest order term is given by the. 

~yyy terme (tbis can be seen by inspection of (6.1»; using (6.1), we 

can write that 
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:rig'.-. 6. 8.a - Wav~ amplitudes as a function of yat t=43; ~=!. 6, 

J =0.-16, E =0.018, N=6. 
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Fig. 6.9.a - Phases of the waves as a function of y at t=43; ~=l. 6, 

6'=O.16,-E=O.0!J' N=6. 
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fig. 6.9.b - Same al {tg. 6.9.&, except a~ t=69. 
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S1m11arly, the vort1city tendency term can be appr6x1mated by 

where again (6.1) was used. It is now easy to see that these two terms 

balance each other when Et = 1, or, in other words, when t = 0 (e- I
). 

Since so far there does not seem to be any important differences between 
l , 

Our linear results and Dickinson's, we think that this scaling is , -

probably correct also for our problem. Again according to Warn, for t~ 

O(ë"'), it is not clear what an expansion in powers of E for the nonlinear 

solution should look like. However, we checked that for t = 0 (~-~~, 
" 
the amplitudes of the harmonies oU,tside the critic_al layer are indeèd 

o ( f,. ) small er than that of the forced wave. For t? 0 u(~·1 }, i t is 

'possible ~hat .;nstability might set in, caused for example by the large 
1 

• 1 

shears that,appear in the critical·layer. However, in this case, no 

sustained growth was noted, and the picture at T=86 shows a simi~ar 

amplitude pattern. 

Looking at the phase diagram, we notice that south of the C.L., the 

phase lines are essentially vertical, painting out the fact that the 

Reynolds stress 1s zero in that region. North of the C.L., at T = 43, 

the forced wave displàys a N-E - S-W tilt, indicating a northward wave 

momentum flux and southward wave energy flux. The phase is fixed at 

450 at the northern boundary. The discontinuity in phase north of the 
-./ 

C.L. is associated w1th a nodal point in the amplitude. At T = 69, we 

notice the p~ase of the forcedwave is vertical both above and below the 

93 



, 0 

, 
the C.L., indicating that the wave momentum flux has dropped to zero 

and thus the presence of a reflected wave at the C.l •• Thé harmonies 

a1so display vertical phase lines, exéept in the critical layer where 

a distortion is apparent; this distortion, and non-zero amplitudes in 

the cr1tical layer, in turn generate momentum fluxes. indicating tnat 

no steady-state has yet been reached in the critical layer itself. We 
- \ 

• 
should also notice that the phase of the harmonies 1s not fix~d at the 

. 
forcing boun~ary. the amplitudes being set to zero at this point. 

F1nally, we have plotted in Fig. 6.10 the total stream function.field 

at five different time intervals for the linear, quasilinear and non-
, 

linea~ integrations. Looking at the nonlinear case, we notice an 

eastward movement of the cat's eye; corresponding ta the phase change of 

the forced wave. In the thtrd picture. the phase is es~entially vertical, 

and we have attained the "quas i" steady-state configuration. As time goes 

on. we see finer scales appearing in the cat's, eye and abovei it is not 

94 

if) 
clear whether these are due to sorne instability slowly setting in. or if they 

are part of a final steady-state configuration in the critical layer itself. 
\ 

The phase is however still vertical throughout the channel width. The 
c 

'quasilinear field ;s decidedl~ ~ifferent as to the shape of the cat's eyes 
u 

themselves, and also as far as the movement of the cat's eye 1s concerned. 

We notice that there 1s a steady eastward drift of the catis eye throughout 

al1 the integration~eriod. due to the fact that the phase of the forced 

wave never stabil1zes to a constant value in the y direction. The linear 

field 15 essential1y steady after the first picturei the çat's eyes are 
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Fig. 6.10 Total stream function ,field at five different times: t=17, 

34,51,69 and 86; (a) tinear, (b) quasilinear, (c) nonlinear 

( N=6 '). 
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1 
"skewed" towarc!s the N-E, and remain so, because of the steady stàt.e 

jump in the Re/nolds stress, associated with the jump ,in,the slo~e of the 
Î 

phase of the forcing wave. 
1 -\ 

6.1.5 LOGARITHMIC PHASE CHANGE 

We hav~ a1ready pointed out, in discussing the linear resu1ts that 

the ti,me dependent l inear inviscid pp()blem yields a logarithmic phase shift 

which is the same as that obtained from th~'sr~-state linear viscous 

probl em; tl1at is, as one goes from y>O to y< 0, the l'l n yU tenn in the 
• 

Tollmien-Kuo solution can be writte'n as 

• 1 
1) ln y <t/ for y.., 0 

2) lnl;\-ilf for y< 0 
, 

This is equivalent to having a jump in the constant A which multiplies '\ 

1 

the CPo..solution, wh en we simply let ln'j=ln\~\ for y< 0 and y~ O. Now , 
1 

if one dea1s with the nonlinear problem, it would prove interesting to 

check if the same analogy e~ists between the steady state nonlinear-viscous 
, 

probl em and the time dependent nonl ;near ~v; scid probl em; frpm '.the res~l ts 
1 • 
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we have already ~escribed, it is obvious that this is probably the éase, since 
, 

we have pointed out ~hat a zero jump in the Reynolds stress across the C.L. 

is associated with a zero logarithm;c phase shift. Nevertheless, 1t might , 

prove interest1ng to proceed as we did for the linear integration"and 

evaluate the constant, A, B and the associated logarithm phase shtft 

directly"from the numerical solution for the amplitude and phase of the 
o 1" .-o wave. Thus' the following approximation will be made, fOllowing the results 

b 

1 
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>ïD,f Warn (private communi,ation). Away from the nonlinear critical layer, 
y 

we will assume that the solution 'S given by'a series of the.form 

, . 
where the first term is the zonal Mean flow. the second. the Frobenius 

solution with tim~ dependent coefficients and the' third contains 'part 

of the nonlinear corrections. 
-' 

In order to use the scheme derived in 
\ ~ '1: 

Chapter 5. we-'wl11. tr.uncate the seri es before the 0 (L ') term. Thus • 
, 

our results should have a relative error of a lèast 0 (el
l2.. ); with the 

value,of t used. this is roughly equal to Ô (15%), which 1s quite large, 

since.the actual value can be 4 or 5 times that order. There are also 
. t' ' 

trans i ent terms, of the form Il el!l~"c.1. 1,1 whi ch can contri bute to the 

error. However. as t,me increases, their effect should become less and 

less important. Finally, the Frobenius series themselves we are using 

are g1ven to 0 (y6), 50 that we cannot move too far away from the C,. L. 

Tak1ng into account these considerations. several points (in y) were 

chosen, and the error was found (us1ng l1near ~nd nonlinear results) to 

be minimized around y=0.5. Fig! 6.11 gives \ a plot of e =- 8"" c:s, , the 
. 

complex logarithmic phase shift thus obtained as a function of time. Look-
, ~ 

1ng at the real part, we notice.a su~prisingly good agreement with Benney 
\ .. 1., . 

and ~ergeronls result, at t large. After an initial transient increase. ~ 

decreases,to Tr, duri~g the linear stage; as non11nearities start acting, 
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éi 

1t further decreases slowly ta a value very near 0, corresponding to the 

steady-state value of Benney and Bergeron's result. This, of course, follows 

0' 
\ 
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Fig. 6.11 -\ Complex logarithmic phase shift as a function of Ume in 

nonlinear integrat~on: ~ =1. 6, l =0.16, E=o. 018, N=~. 
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closely the evolut1on of üï.VT. In fact. as we have ment10ned before, a , \ 

s1milar result can be obta1ned,using this quantity to evaluate e~. 'Now, in 

both Benney and Bergeron's and Haberman's analyses, Si always turned out to 

be zero. wê have plotted on the same f1gureS1 as a funct10n of t1~e. 

As can be seen 1t 1s zero 1n the linear stage, but 1ncreases s11ghtly as 

the nonl1near terms start grow1ng, hav1ng a value of ~ 0.5 - 0.6 during 

a large part of the integra~1on •. The significance of this result 1s not 

clear. It could simply be erroneous, since it 1s well ins1de the error 
\ 

marg1n (we neglect the t ~ 75-80 results which are getting imprecise). 

However. no such error seems to be apparent in the en terme We have 

looked at thè algorithm used to eyaluate 9" and,ep and the error, at 
, 1 • 

first g1ance should be equ[lly well, distributed between è" and 9i . This 

is not the case when one evaluates A and B. It 1s possible to show for 

example that B is more precise than A. Now, s1nce 
/ 
1 e ~ l (~- ~+) ~~ 

\!l\l ~ 

a 

and we have ~. B 1 0, it follows that ~ get &r ~ ei = 0, we need A+ = A­

.. Because of the error in At. and' A-, this /s not the ca~e. When the prod'tict 
'\ / 1 . 

formed. 1t happens that the real part 1s given by the sum , 

approxima~èly equal and of opposite; s1gn. while for thf{ -. ' 

• the signs are identical. In other wards, 1n one ~se. the 
r ' 

noise (or the rror) add5 up, and in the other, it cancels.' This 1s 
. \ 

. probably the re son for the non.zero ei . Anotherl poss1b111ty of co.urse, 15 
. \ , 

that it might be feature of the non11nrar time-dependent problem. This 
1 J 

could ~e confi~d ~ an ana~yt1cal solution of the problem.< 
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1 t • IL Looktng at Band B:. we ftnd that they match lacross the C.L., the 

match being complete as soon as the 11near stage sets tn. The evo1ut1on 
, \ 

tn t1me of the solution 'can now be described as fol1ow~: in the 1inear 
" 

stage, we have &=lt,At*f, B+ = B-. The phase of the primary wave is 

fixed at 1f/4 at y = yO' 510pe5 towards the C.L.. where it becomes 

'vertical, with a constant value. dependent on~)' and the distance between 

100 

the forcing and the C.L. As the non11near tenns, start grow1rg, B staruchang1~ 

510w1y; south of the C.L •• the phase of the pr1mary wave, whiie r~a1ning 

constant in the y-direct10n. slow1y increases ~01\/4j in ~o doing. the 

slope of the phase north of the C.L. d1m1nishes, and ~'fa1ls to 0, when 

, the phase 1s ~/4 everywhere; at that point B reaches a steady value. 

er = 0 (and et = .5 or 0). ,Thus. even though t~e model is l1near away from 

the .c.b. the non'11nea~ intera9t1onsoccUr~ring f'n the critical layer force 

a change in A and B • whiéh in turn mo~fies the solution everywherè. 

. This shows the importance of the logarithmic phase sh1ft: the evolut10n 
\ -

, 1 

in time of th1s quantity 1s very simply related to the change in the 

~ primary wave. 

", 
6.2 VARIATION OF THE <f PARAMETER 

1 
In order to investigate further the parameter range of the problem. a 

series of .1nteg~at1ons were perfonned with the f011ow1ng val ues of J : 0.04, 

0.16. 0.36 and 0.04. The evolution 1n time of the correspond1ng u'v' at 
\ 

y: 2.4 15 pre5e~ted 1n Fig. 6.12 (south of the C.L •• the wave momentum flux, 

osc111ates around zero ln al1 cases). Look1ng f1rst,~t the 1inear stage, 
, 

we notice, as ment!9ned béforer that uiv 1
max • decreases w1th increas1ng ~ • 

l, 

'" .... ----------~----~ 
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Fig. 6.12 - u'v' at y=2.4 a.s a. functio'n of Ume in 'Jilonlinear integration 
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for differentvalue. of6·:~=1..6, f=O,.018, N=6, and 
1 

6' =0.04,0.16, 0: 36, 0.64. Il 

<. 

! . 

, , 

-j 

1 



,: 
, ' 

, 
.' i 
Î 

\ ' 
J 

\ 
p 

.UIIA aBI cl " 

We a1so notice that for t : 0 (f; -il the nonl1near lüIy1 starts departfng 
" 

from its linear value. But now, as one can see, th~ behaviour for 

,s:, 0.04, 0:36 and 0.64 1s different from that of ~ = 0.16. Instead of 

s10wly oscillaïing around, a value of 0, ü'v' becomes negative. and ~ven-
-' 

tually r;ses back ta positive values •. One would be tempted ta think that 

this behaviour 1s in accord with that obser'ved by Geisler and Qickinson tn 
, \ 

thefr model; however, quas~linear 1ntegrations with the same values of~, 
, 

yielded qu1te.d1fferent values of~. We checked that these results,were 

not model-dependent, by modifying the forcing. procedure, letting Ü cons~ant 

'ln the upper g!'id poi nts, checking the Poisson equation scheme, etc •• " 
, ' 

The rèason behind this strange behaviour is probably- the following: the 
, 

two time sca1es 0 (E -il and 0 (f. -1) are probably not we11 enough separated 

when a value of 0.01S is used for (. We have seen that for Benney and l' 
'" 1 

Berg~ron's results to hold, the nonlinear interactions have ta be negligible 
1 

outside the crit;cal' layer. However, as shawn in secti9n-6.1.4, on a- time 

scale of 0 te.-l >: the model should become nonlinear everywhere. This means 

that the amplitudes ~f the harmonies should become eventua11y of the same 

order of magnitude as that of the fundamental in and oU~,of the 'crit1cal layer. 

In' -our case, e-i = 7. and f-l = 54. In other words. our peri ad of 1ntegra-
o 

tion clearly extends into the fully nonlinear regime. And in fact, if we 
\ 

lodk at the amplitudes of the waves, we notice that they become as big as 
- ' 

that of the primary as t increases put 0 (t..1). To check, that this might 

prove to be the correct explanation. ~n integration was done with ~'=, 0.010. 

and [= 0.64. This g1ves E -1 = la, and f. -1 = 100, 50 t .. t the two time 

1 

211 
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scales are well separated. The fol10w1ng result was obta1ned the f,al1 

of 'u l Vi to zero was delayed due to the 1a\rger E -i t1me scale. However" 

now, instead of going negative w1th values of 0{10·1), ~I oscfllated 

around zero, with an amplitude never exceed1ng 0(1x10-2}; in other words, 

the behaviour was similar to the standard 6~ 0.16 case. Simi1ar results . 
were a1so obtafned for the 6= 0.04 and 0= 0.36 cases, thus add1ng mo~e 

\ 

weigh~ to th1s explanat10n. The fact that our standard integration d1d 
, . 

behave accord1ng to Benney and Bergeronls analysis 1s thus in ' a way 

103 

fortuitous. Since our first r.esults were obtained with ~ = 0.018 and "'"' t}' 
4 

6 = 0.16, and 1t fs only later that we var1ed the parameter 6 • we chose 
l ' 

to keep ft as/the standar~ integration. as the higher value ~f E used 

, permAs us to show more clearly the exf:stence of the l'quas1 steady-state" 

characterizi~9 the -thfrd stage. 

The conclusion we draw from tHis experiment is that quite small values 

of të. are needect to separat~\ the two time scal es E. -i and f -1: thfs separa­

tion is needed if one wan~ to observe Benney and Bergèron's results, 
l , 

tri the outer domain, at least. For higher values of ~ (greaier than say 

0(10-2»', the fa11 of u'v-I to zero, even thou§h ft happens faster, mfght 
, \ 

be m1xed w1th nonlinear phenomena in the outer region. 
/' 

6.3 VARIATION OF THE BETA PARAMETER 
, ~ 

-' 

In these experimènts, -all' parameters had their standard value, except 

for~ which was al10wed,to take the followfng values: 1.0, 1.6, and 2.0. 

, The ~= ~l.O intégrat10n developed 1nstabl1itYi zonal wavenumber 2 

proved tg b~ u"~ and grew alm6st ai the st~rt. eventua:1Y'overtaklng 

l UJ) 
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the primary wave, After some time, the radiation condition fa11ed. and a 

blow-up was exper1enced, Although 1t 1s hard to pinpo1nt the cause of the 

onlinear 1nstab111~y. we,suspect 1t 1s the deformed basic flow; the 

104 

a 1t1ory of the forced wave to the hyperbol1c tangent shear flow 15 probably 1 _ 

unst bl~ to wavenumber 2 for that val'ue of (?>. Lorenz (1972) stud1ed this 
il 

pr lem. and showed th~t this is ihdeed a po~sible mechanism of barotropic 

In any fvent. we have plotted in Fig .. 6.13 the growth iln. 

of the wave amplitude at a"fixed point in y. We notice that the 

growth is exponential, for t < 25, with a doubling time of 18. As the 
L 

amplitude gets larger, it starts interacting nonlinearly with the other\ . ~ 

components, and departs'from exponential growtn. We should note here that 

a qUaS~linea; integrat10n w1th the same pa~ters remain~·stable. and 

produced an ~ltogether different result. This 1s th en clearly a case where 

a quasilinear approach would produce an erroneous re$ult s1nce' neglect
l
ofl 

the sef(-1nteract1on of the wave chan~es an unstable;problem 1nto a stable 

one. 

The (!»= 2.0 case y1elded a truly intriguing result. Fig. 6.14 gives a 
, 1 

plot of u'v' at y = 2.4 for the quasilinear'and the nonlinear 1ntegration 

(curves 1 and 2)1. As can be see , in both cases, after a certain t1me 
1 

during which the cr1t1cal layer s et up, the wave momentum flux increases 

relat1vely abruptly before e entually de~reas1ng aga1n. In both curves ~ 

. and 2, Ç» eff. has turned negative at t=30, that 1s, shortly before tlfe 
" " ,rise. According to Ge1s1er and Dickinson, this should be associated w1th 

'a decreasë in üTV'i this 1s clearly not the case. In order to get 
r 

" 
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Fig. 6.13 - Growth of wavenumber 2 a.s a function of ~ime in 

DonUnear in'tegration; ~ =1.0, cf =0.16, E.=0.018, N=6. 
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1 a better separation of tbe time sca1es, another integration was done w1th. 

~ = O.OlO (curve 3 1n Fig. 6.14). Again, a similar behaviour was observed. 
! ~ 

A carefu1 inspection ,of the output revea1ed the fo110w1ng: after the 1inear 
Il: 

stage, the phase of the forced wave south of the C.l. has it.~ 1inear value 

of -49 degreesi north of the C.L •• u'v' 1~constant in y. and has 1ts l~near 

"steady-:state" value of 0./69. It then starts growing slow1y, being larger 

near the forcing, than near the C.L.; it can a1so be seen to slope from NE 

to SW. Simultaneous1y, the wave amplitude grows, unti1 it attains a maximu~ 

amp1itud~ of 2.5 at y = 1.75~ South of the C.L., however, the phase of the 

wave has been steadi1y decreasing towards ~/4. We noticed a1so that for the 
1 

~ = 0.010 ~ase, ~eff. was still positive (0.85) when the increase in u'v' 

started. The amplitudes of the other harmonies were a1so very sma11 at that 

time (rough1y 0 (~) smaller than the fundamental). A short time after th~ 

maximum value of u'v' is reached at y=2.4. ft becomes again constant in y 
u 

north of the C.L., and then proceeds to decrease slow1y, remafnfng constant 

in y. 
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It seems that we can attribute the increase in u'v' to the increase in the 
\ 

forced wave amplitude; the .slope of the phase of the forced wave remains 

/ more or less constant next to the forcing wall during the increase. This 

growth'in amplitude i$ c1ear1y a non1inear phenomenon, and'since a some­

what simi1a'r behaviour 15 obtained in the quasilinear integration, its orf-
" 

gin lies probably in a wave-zonal flow interaction mechanism, which for 1ack 

of analytica1 resu1ts i5 hard to pinpoint. One conclusion we draw from this 

experiment, and the preceding one. is that the mode1 is quite sensitive to 
, , 

variations in the beta parameter. ~ seems that only for sorne 1imited range 

\ 

U&ik4J&J,.&.,f.SSà&& j 2 
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of @ the resul ts of Benney and Bergeron can be reproduced wi th a time­

dependent nonl1near model. Here again, an analyt1cal theory wou1d be 

, needed to get more 1ns1ght on the effect of 0' in the non11near cr1t1ca1 

layer de~e1opment. 

6.4 DIFFUSION 

1 ~ 
A few experiments were done w1th the term vV~ added to the r1ght hand 

s1de of the predictive equations. The va'kles of " were chosen~ tak1ng intb 

acco~t the value of the parameter 

o 

~ef1ned in Benney and Ber~eron (1969)-%d Haberman (1972). ~« l corres .. 
-,. 

•• "l- ..... 1:. 

ponds to a very small diffusivitYi th1s)was the case treated by Benney 
)It_ .. .,.. 

and Bergeron. Haberman extended their an~lysis to the cases ~ = 0(1) and 

~) 1; he showed in part1cu1ar that as '?t 1$ 1ncreased from values <.< 1 to 

values ~ 1, the logar1thm1c phase shift changes from 0 to -1\ (see h1s 

fig. 1). This further 1mplies that the Reynolds stress jump across the 

C.L. should rea~pear as Ï\ 1s 1ncreased, or as E 1s decreased, with " 

finite. These results of course were derived for stéady-state models, 

and it 1s not clear that they should apply to time-dependent models. 

However, since 50 fa~ the correspondence seems to hold true in many aspects, 

the fol1owing exper1ments were done: ~ was set to 0.018 as in the standard 
-5 -4 1ntegrat1on, and ~ chosen to be equal to 2x10 and 2x10 ,g1v1ng 

~= O.Oloand 0.1 respect1vely.; Fig. 6.15 1s a plot of u'v' at y::: 2.4 
a 

for the above two cases,;and for the standard 1ntegrat1on, as a funct10n 
\' 

.. 
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of time. For rt = 0.01. the results are very close to those of the 
i , 

st~ndard 1ntegration: Howeve~. for the ~ = 0.1 case. sorne important 

di,fferences arise: even ~t the end of the integration. a sma11 jump 

in üTV1 remains across the C.L. A r~ugh evaluation of the associated 

phase shift gave a result which is in the range obtained 6y Haberman. in 

his Fig. 1, for that particular value of. ~. The inclusion of this 

diffusion term also had[the effect of smoothing Q~t the wavy oscillations 
~ 

in y of the Q - Uyy term. and also[ decreasing the amplitudes of the 
, 

harmonies. The ~eff. t~rm, after becoming slightly negative around 

t=45. returned to a positive value of 0.1 ""0.2 for the rest of the 

\ integration periode 

We eonclude from this experiment that the effect of diffusion, apart 
1 

\ 

from smoothing out fine scale oscillations and decreasing slightly the 

amplit~de~ of harmonies, is to lead ~o a small but fihite jump at, the 

C.L. in the wave momentum flux, as suggested by Haberman. 

6. 5 LARGE e CASE 

• Sa far, we have only investigated the small e parameter range; in 

particular, we have shown that for values of Eo.I0(10-2). a11 the results 

descr'ibed in the standard case hold in the interval O( ~-t) < t (O( t:-l ). 
: 

NOW.~ many phys1cal applications, f 1s quite large. ln order ta study 

the developmént for a larger e. , an 1'ntegrat10n was performed l with 
1 

f= 0.18, that is a value ten times larger than before. We will now 

describé the results. 
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( 
.~ Obviously. the two time scales are now almost 'identical,\since 

a{ f. -il ~ 2, and o{ ~.;1) ~ 5. Hence, we should· expêct the model to 

become nonlinear everywhere much fâster than before. This was indeed 
-

Observed, since the model became u~stable roughly at t = 25 (because of 

the failure of the radiation condition). However, quite surprising1y, 
\ CI 

in the small time span 0,< t < 20, a dev~lopment qua11tatively s imilar to 
, . 

that of the', €= 0.018 case w~s observed. We have plotted in Fig. 6.16 

u'v' as a function of y'at t = 8.6 and t = 19.2. As can be observed, at 
, 

t =·,8.6, a 1 inear "quasi-steady-state" has developer1:. in which the 

Reynolds stress is constant above the C.L., 'and j~mps to zero, across it. 
1 \ 

As t increases, ~ decreases to'zero, and the jump disappears complete-
r 

.1ya,rthi$., is rea1 ized at t ,= 19. During this time span, the wave momentum 

fl~~ of the othe~ ha~nics remains very small (of O( 10-2»at most, even 
~ 

though at, t=19, their amplitudes are getting to be of'the order of that 

of the primary wave. We should note that there is no increase in the 

amplitudes of the ;harmonics, or of, the primary wave, south of the C.L. at 
1 1 - f 

that time: they al1 display an exponentia1 l1ke decay for y<O. This 1,s 

clearly'a different result from that obtained by Ward (1974). 

Ario~her of W,rd's contentions 1s that when nonlinear interactions are 
1 4 

allowed, the ledge observed i~efsler and Dickinson's experiments do es 

111 

not forme Instead, the mean flow supposed1y'loses momentum unifonnly, and " 
" ' 

the profile'is slowly drawn upwards towards the source. We have plotted 1n 
.. ~ \ .. 

Fig. 6.17 the mean f10w configuration at t = 4.3 and t = 19.2. At t = 4.3, 
1 

the critica1 layer has not yet developed,'~nd the profile 1s almost sim11ar 

\ \ 

. , 

''\ 

\ . 
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to tne tnit1a1 proflle; exd~pt for a sma'1 deformat10~ 'near the forcing. 

boundary (which does not affect the deYel.op~nt). However. a~ t ::: 19.2. 

we can observe a well-def1ned ledge. The C.L. has moved northward by a 
, " . 

distance y ::: 0.25. that is, a distance which is in agreement with our 
, , 

prev10us exper1ments (i.e. O(E ». \ Thus the rtesult again d1sagrees 

somewhat with Ward's. 
\ 

\ The conclusion we draw fram this exper1ment is that e~n for a 

maderately large value of f • the ttans1ent nonl1near cr1t1cal layer 
1 

development is s1milar in all respects te the'sma11 E:case. The important 
, \ f 

d1f,ference 1s now that because of1the coalescence of the t-1 and t-i t1me 
1 

sca4~s, thé "outer solution steady.state lt does not appear. and the ~del 

becomes rap1dly f~lly nonlinear. and eventually. in our case, unstable. 

The cause of th1s 1nstab111ty 1s hard to spec1fy: it eould 'be a numerical 
1 • 
\ 

instabil ity, for 'the radiation condition was derived, for l1near conditions 

at y = 1.25; the limited number of harmonies (6) could also be a possible 

cause. 

6.6 FORCING EXPERIMENTS 
, . 

Two exper1ments were cond~cted in order to check the effect of a 

firtite tim~ forcing, ard that of a standing wôve f~rcing;',thé forcing 

procedure used was prev10usly described in section 5.2; in the f1rst-
. " 

experiment. however. the,forced wave amplitude was brought back tOta 
\ 

value of'O.1 1nstead of 0 as numer1ca1 problems were encountered for 

the latter value. , 1 

If 

. ' 
, " 

: ' 

• 
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In the f1rst experiment (i.e. that of a f1ntte,time forcing) the 

fo11owing results were obtain~d: after an' initial tncrease in l:j'i"yi ,near \ 

Y=YO' the wave. momentum flux decr,eases,to a smaller value correspondmg 

to that of the linear steady-state value for that part1cular value of \ 
1 

the forcing amplitude; the initial pulse eventual1y reaches the C.L., 

where ft is absorbed, without producing,any non1inear crit1ca1 layer 

,developmenti dur1ng the course of the integration, howeve~ ~ff. does 
\ 

deve10p a number of wavy osc111atio'ns $~ml1ar to t"f!'ones observed in ~ 

tre standard case. At the end of the in~egration period. sorne ind1cation 
1 \ ~ -

of numerical 1nstab11ity 1s present: the cause certain1y lies in.the 
-' 1 . fact that the profiles show quite large oscillations of finer and finer 

~ca 1 es. These are p~odufed by the e i~t tenns. 'whose Iteffect" i s 

enhanced by the fact that the "steady" values are t'lOW very" small. The \ 
" rnesh fina11y proves ta be tao coarse tO'resolve the oscillations. 

1 / 

, In the second experiment. the fact that some energy is a1~owed to 
1 , . 

1eak through the C.L., s1nee one of the. ~wo traveling waves has n~ C.L., 
'" \ • 1 \ ' 

and 15 able ta propagate free1y. eventually produces an increase in the 
- \ 

amplitudes of some of the harmonies south of the C.L. Again the radiation 
, -

condition fa11s rapidly, and after à sudd~n 1ncrease in u'v' south of the 
, . 

- , 
C.L.. a blow-up 1$ experienced. Nort~ of the C.L. t the deve~ipment fo1

1

10ws 

o close1y the pattern set by the standard integration. A-jump develops. and 
t ~ J.... , 

/ , 
eventua11y. there is a decrease in the wave momentum flux. the process is 

.' 1 l . 
however in~errupted abruptly by what i$ happeni~g in -thé:south. 

, . 
, 
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/. 
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The concluston we draw from these experiments i~ that the model 1s 
1 1 1 ( 

çertainly ~ot suited to yield definitive results for this type of, experf-

ments : the boundary condition was not desfl9ned for such forcings; never­

theless. the earlier part of the development seems to agree with'what was 
1 

said earlier. Of particular interest is the problem of the finfte, time 
1 \ 

switch-on; ft ~ould be '1nteresting to see if for some crjt1cal ,amplitude 

a nonlinear critical layer development could he trig~ered. even though 
l ' • 

the forcing amplitude has been brought back to zero. Some changes in the 

model win have/,to m~de before that problem can be tackled. As ~or the 
, 

second problem~ it is not clear yet what type of bou~dary condition would 

be best suited. 
\ 
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6.7 EFFECT OF INITIALLY DEFORMED MEAN FLOW OR "WAVE-WAVE ONLY" INTERACTIONS 
\ , 

Under this heading. we shal' describe two experim~nts; the first one 
1 

was des1gned to check the importance, of the "zero" harmàlnic (i.e. the 
- " 

mean flow deformatio~). in the evolution of the critical layer. To.aeh1@ve 

this. only wave-wave interactions were allowed. The ,parameters had their 

usual standard val~es. This mea~~ ~hat (2~8.a~s replaced by ~ = O. The 

re5ult5. surprisingly enough. were almost 1dent1cal to those of the linear ' 

, 1ntegrat1on. -The wave moment~ ~x 15 ident1cal. in time ap~' in. space, 

~ the forced wave amplitude and phase almost equal to the1r linear counterpart. 
> - '/ .' , 

The amplitude of the harmonies themselves 1s at least O( E) smaller than 
" 

tl'lat of the fundamental throughout -'the 1ntegrat1on petiiod. Thus, even .. , --
1 • \... \ 1 

though 1t 1s quite small. the mean" flow' defonnat1on 15 of pa~amount 

, importance in the evolut1on towards the nonl1~ear steady-state. \ 
, , 

. ' 
" ' 

o 

-
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In the second experiment. we perfonned 'a l1near 1ntegration using . -
, the defonm~d mean ,flow of the standard nonl1near 1ntegration at t=60.48 

/ 

as the initial mean wind profile. At this t1me, 1,n the nonlfnear 
- 1 

1ntegration. u'v' has fal1en to zero north of the' C.L.. and (2-uyy has ' 
! 
'gon~ negat1ve at three or four places around the C.L •• now at y = 0.03. 

Th, idea behi~d the exper1ment 15 to ,ee if a_linear ~teady state solution 
, 

can be obtain~. whic~ would resemble th~ standard nonlinear solution at , 

t = 60.48. Th~ resu1ts conf1rmed on1y partly th1s hypothes15. The l1near 

50lut1~n did po~sess some of the features of the nonlinear solution. For 
\ ' l' _ 

examp1e, üTV' north ~f th~, C.L. does d~Cay to Jero; 1t however does not 

remain zerp. and starts osc11lat1ng around th1s value: the integrat10n 
• 1 

did not extend long enoagh to see if this oscillation would eventually - . 
decay to zero. In Fig. 6.18. we have plotted the l1n~ar wave, amplitude 

at t ~ 35, a10ng w1th th~ amplitude of the corresponding forced wave in 
r 

the nonl1near integrat1on. As can be seen,-they show a si~1lar shape. 
; 

even though ·-the 'val ues are somewhat differ~nt. The phase structure 15 

s1mi1ar at that t1me. ~I be1ng zero in both cases. No'instabil1ty was 

ob5erved. even though'the Rayleigh criterion was violated (1t 15 however 

only à necessary condition). 
1 

, \ 

We draw the follow1ng two conclusions fram these experiments: 1) 

Neglect of the~ean f10w interaction term in the nonl1near prob1em leads 
l ,.," '" 

1 • • • 1 

to a completely erroneous result. at least for the case where a C.L. 15 , . / . , 

presenti 2) u'se of an' observed "defonned" prOfile to construct a linear 
: . . 

st;teadyo tate SOluti~. wt11 probably give a l'USo.able result. et least 

for he case of weak nonl1neartt1es.. _ ' . 
, '., ,: ~ ;' - , 

. ' 

• 1 " . , 
" • " 

: i: " 
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/ CHAPTER 7. CONCLUSION 

At the beg1nn1ng of th1s work. we have put forth a number of qüest1ons. 
""- ' , 

T 

We, feel we are now in a position to answer these questions. and perhaps add , 
~ , 

a few add'itional cOl1l1lents to what has already been sa1d. . . 
The main result of the thesis is to have shown that 1t is indeed possible 

• é> , 

, , ta reach a steady-state for the nonlinear Rossby wave critical level problem, 

at least in the outer layer, wh1ch 1s s1m1lar to the one obia1ned by Benney 

and B~rgeron, and Davis. This steady-state, as we have seen, i5 quite diffe­

rent from the linear ,steadY-5tate, :in that it is characterized by, /a total 
1 . 

,reflect10n of the wave at the C.L., in contrast to the absorption wtrfch 

characte~1ze5 the l1near problem. T~is steady-state differs a150 from that of, 

a quasil1near integration in many respects: even though they both predict a 

zero jump in u'v'. the structur, of the critical layer 1s markedly d~fferen~. 
, . \ \ 

due to the presence of higher harmonies. It was also shown that the approach 

to trat steady-state is c~letely different, in that the cycling of wave 

momentum flux 1n an~ out of t~e crit1cal layer reg10n 1s totally absent. and 
, • 1 

that no def1nite correlation betwee~ the oscillations of ~~Uyy and the evo-

lution of ~ was found. 'In al1 of the integrations fqr which a cr1tical leve1 
.-

concept ho1ds. no s1gnificant propagation of wave energy south of the C.L. 
, , 

- ' 
'was ob5erved. A f1nal remark that shou1d also be made about the main result 

1s the fol10w1ng;- the steady-state that we reach in the outer layer s~ou1d , 

really _ be call ed a tlquasi" steady-state, for the trans 1ents ,exc1ted by the . . , 

5witch-on procedure eventually grow 1n t1me, such that for tNQte. -1), the 
, \\ 
J. d 

model becomes non11near everywhere, 1n which case the cr1t1ca1 level concept 
. 'f 

fa115 tO,apply. Due to resolut1on problems, 1t was not possible_for us to 
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integrate long ~nOUgh~ta~n usefu1 tnfo~ati?n about what happens 

after that. 

Interesting resu1ts were also obta1ned from a number of different 

experiments, tWo of which we shall d1scuss here\ In one of ~hese, we added 
;:t> 
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an eddy diffusion term\to the vort1c1ty equation. The results tended to support 
-

Haberman's conclusion that as viscos1ty 1s. 1ncreased, a jump in ~ reap-

pears. In other words, ~he ratio of nonl1near1ty to v1scos1ty 1s also of . 
1 

importance in the time-dependent problem, as qui~e'different results are ob-
o \ 

tained' depending on the value of the ,. ;\" parameter. In the second experiment •. 
\ 

the value of E was 1ncreased tp 0.18, that 15 a value ten times larger than 
1 1 . 

that of the standard experiment. Now for such a large value~ .the concept of a 

crit1cal level s1ngularity barely applies.·since presumably the non11near 

terms should 'be reta1ned in the equation/for the whole doma1n: Nevertheless. ~ 
, . 

a development qUite similar qual1tatively. and for some time. quant1tatively. 
~ 0 

• 1 ~o that of the smalt e c~~e was obsèrvr. In particular. the migration of the 

C.L •. was aga1n of O(~). and a total reflect10n of the wave was observed. with 
1 

the correspon~1ng ~isappearance of the jump in ~I. the interest in this 

case lies in 'the fact that in the atmosphere. valu~s of ~ of 0(10-1) are, 

more often e"counte~ed th an those of 0(10-2).1 

Before going·ori to talk of the relevance of, these results ~ the "real" 

atmosphere, we would like to make three remarks. The f1rst 1s about the mi­

gration of the C.L. In all of our exper1ments. th1s migration is at most of ' 

- O(r. li and once the C.L. bas mgrated this distance, it, stops. Thus, it does 
1 

not make much sense to try to:expla~n the displacement of a zero wind line 

) 

1 1. 
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over many h~~dreds or thousands of kl10meters b,y a crttical layer tn'te-
• 

raction ( in our t:: 0.18 integration fOr e.xamp1e. the migration was less 

than 6 0 lat. ). This is not to say that a zero wind line cannot move for 

such a large distance: but the mechan1sm by'which the migration 1s effected 

1s certainly not a cr1tical layer interactton. The seco~d is ab~ut ~he argu-
l 

ment that adding nonlinearitfes in a critica1 layer problem could permit 

energy transfer through the C.L. For any problem\ for which a crit1cal 1evel 

, s1ngu1ar1ty can be defined ( and that 1mplies a small ~ ). this is not the 

case ( we assume here that the fi profile is such that the waves are evanescent 

sout~ of the C.L •• obv1ously, if one forces from-the evanescent side of the 

C.L., then wave energy propagation across the cr1tical line is possible). 

The third and final remark 1s about using critical layer concepts for cases 

where E is large. This 1s incorrect. This remark 1s re1ated to the previaus 

one in that it 1s quite possible that for a largé € , sorne energy transfer 

a a 

• 

, 

" 

might be observed. For example, waves could be exc1ted south of an il1-defined c.~. 

lhis is however a comp1ete1y non1inear phenomenon, and none of the con-

clusions c~tained using critical layer theory remain valid anymore. 

We now arrive at the final and perhaps most important question: is the 

Rossby wave nonl1near critica1 ". level an fmportant phenômenon in the 

atmosphere? We should stress here that the barotropic vortic1ty equation i5 
, 

obvfously a very crude approximation to the atmosphere; and as such, al1 
, , 

our conclusions should be vfewed in light of :his limitation. That b~ing 

understood. we can say the fol1owing. For 5mall values of Ç... that i51 of 0(10-2): 

the time scales involved are 50 large that it i5 quite improbable that a 

dJff&&4i ,UM$J] §11§Y2!M 
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nonltnear steady state may ever be reaehed, due tG the natural var1ab111~y 

of the atmosphere. For the standard 1ntegration, assum1ng ~he values given in 

section 2.3.5 for the dimensiona1 parameters, 1t would take 175 days to reaeh 

the steady state. For wavenumber 10, and a maximum wind speed of 20 m_s·', 

th1s drops to 17.5 days, still a quite large delay, although it is more reasonable. 

For values of ( of 0(10.1). the critiea1 layer deve10pment is much, faster. 

As an example, our large t experiment, for the values quoted above, gav~, times , 
, 

of 60 days and 6 days respective1y. The last value is clearly sma11 enough for 

the phenomenon to happen. Still smaller values wou1d be obtained for a h1gher 

wind speed. 'However, for such values of ~ , the concept of a critical level 

becomes questionab1e, although ~he development ( at least for~=0.18 J seems 

to be qualitative1y similar to the standard small f case. Another aspéct that 

should be taken into account is the time scale of the natural variability of 

the atmosphere. If this time scale 1s long enough, then obviously it could be 

possible to get a nonlinear critical layer development. On the,ot~er hand, lf 

it 1s too short even for a linear crit1cal layer development, noth1ng much ean 
c 

be said. In fact, we could summar1ze the above considerations in the fo110wing 

way. 
, 

Let us def1ne some climatologieal mean state of the atmosphere. charae-

terized by a mean wind profile ü, and some forcing acting on a very large t1me 
,. r. .. ~ ) ... 

scale ( 1n faet t~cO). Then, if we let ta stand for the time seale of the 

natural var1ability of the atmosphere ( th1s would imply for examp1e that 

the C.L. wou~d mave in t1me due to some external cause ). tL for the tlme 
, 

\ 

~cale of tb~ linear crit1eal layer. and t NL for the time scale of the non-

l1near crit1cal layer, the fol1ow1ng four cases coùld poss1bly descr1be . -
'1 ./ 

what happens 1n the atmosPhfre: 

",QiI;;.42& 



" 
" 
,. 
l 
{ 

<'?.t""~"~:':.I"'''1t'j~~~~P;''M .. _"..,._tl_4_.'''' •• ____ ca_ .......... _. ______ 2 .. ______ ,_,_ .... ~,_. __ .... __ b ___ _ 

,/ 

\ 

'1 ' 

" . 

ttme scale interval 

1 ta '> tNL 
1 

ta l'\J t NL 

ta oc:: t NL 

,/ 

steady' state phase shift 

e.o D 

? 

-te. -'R )1 

" ? 

In other words; if to';s la~ger thaB t NL , the steady state configuration 

would bé characterized by a zero logarithmic phase shi ft, a~d no jump in 
--u'v' across the C.L. Then, one could say: yes, the nonlinear Rossby wave 
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critical level 1s an important phenomenon in the atmosphêre. If on the other. 
6 

hand tu~tNL' then our study cannot be used to reach a. conclusion. This would 

be an interesting pr:oblem to study. If tL < ~\< "tNL , then it 1s on~y possible 

that a -1\ phase shift; and hence a linear criticàl layer phenomenon. might 
\ 

be a cor.rect representation of the situation. This problem could also be tackled 

usfflg a model quite similar to,ours. Finally, for ta< tL, no conclusion can 

as yet be reached. Thu$ we see that it is possible to answer that question only . . 
if tu is known~ and,> tNL.' For alFt.he other cases, we can on1y speculate. 

yIn any case, we feel 'that one of the most important resultsof this study , 

is with resp~ to other types of atmospheric waves. The reason is that the 
~, Q • 

results obtained for the "Rossby wave, although they cannot be extended to 

gravïty WilV,!!S. for example, clearly show that a totally d1\fferent result is 

obtain~d from a nonlinear critical level than from a linear critical level. . , ~ 

We fee' it would thus prove worthwhi~e to study the case of other a~sphe-
, , ~ 

ric waves ( gravit y waves, for exan.~le ) since the Ume scales involved 

might be more relevant to tbe atmosphere. Such studies might show that a,linear 

, ' 

\ 
j tSM h ;U::::;;:;:.j.t~G'...i'8il!Iit.i!&iale:4.~ 1jf,~.J!g;,...i < 
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treatment of the C.L. 1s wrong, and lead to new results. Another field worth 
~ 

100king into is that of the vert!cal propagation of Rossby waves, in the 

presence of a C.L. So far, only linear or quasilinear studies have been made. 

The results obtained using a nonlinear model could prove to be very'inte-
, ' 1 

resting. particularly with respect to the sudden stratospheric warming 

phe~ornenon. We finally conclude by noting that this'study has raised a lot 

of questions, sorne of which we intend to pursue further in the near future. 
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APPENDIX A: THE MODEL EQUATIONS 

Equation(2.4)ca,n be written as 

(A-Ü 

where : 

(A-3) 

l'II'. 

and l' 

(A-4) 

, 
The n=O hannon1c corresponds to the mean flow; t,he hannonics are 

o , \ 

truncated at' n=N (usually 6 in the model), and 'no negat1ve wavenumbers 

lare allowed. We are us1ng the energy-preserv1ng Jacob1a~, that 15 we 

wr1te 

Jl't' , \ ) s }~ l ~ ~) - ~f; t ~ \;) 

• 
(A-S) -

125 
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\ . 
Substi tution of (A-2) and lA-3) in (A-S) .rields: 

, 

N "" 1 

~ t~\t~) = t l 9.(. C.flt\l~~ M'" Ce) QtJ - C:I~ft\1 ~ itt 
'!l l'ft:. 1=0 

Mit MIt \) 
+ C~ <.b?('t\QCJ~h~ - L\{ ~~~ ~~III lA-6} 

, . 

We will be using the following 1dentities: / 
" 

.. ~ sin nx sinb = i{cos{n-Q)x -: cos{n+R)x) 
, 

si~ nx cosQx = i(s1n{n~)x + s1n(n+2)x) 

sin Qx cosnx = i(s1n{Q-n)x + sin(n+~)x) i (A-a) 
'" 

cosnx cos~x = l(cos(n-Q)x + cosln+~)x) 

, ' 

-----'----------------_ .... ~" 
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, 
The zonal 'tl'ow equation (2.1~) is obtained by integrating (A-J) f~m 0 

to 2 TT" • us1ng the fOllowing 1dentftfes: 

.. 

d 

We get 

'1«" : 

tn-\sin nx cos ~x dx = 0 
o \ ' 

~'l~sin nx sin ~x dx = (t 
1:., , , 10 

'l1r 

, ~ ~cos nx cos R,x dx = f i 
'Q 1 lo 

n =' ~ 
n ~ ~ 

n'= 2 
n # 2 

'kT 'l1f 

in- S sin nx dx = L S cos nx dx = ci 
, 0 1.1t' 0 1 

., 
'~ 0 __ \" !!l ( II'\.IWI 1 ~.~) 

b\:. ~~ - L?. \ c." - C'l 
n\:1) 

. / 

since BO = ~(y.t). and sub~tituting for c~·n and c~·n, we get 

(A .. 9) 

Again, we have ~: - ~ " so that we can integrate'once with respect 
• ", t 't 

to y. to ffnally obtain (2.1~J: 
y 

\ 

(A-10) 

" Il 

The A'P equation h obtaiRed by mult1plyi,ng(A-l) by sin px, and taking 
t~ . 

ir\ l )c\~ of the resultfng equation. In the "t," part o~ the 

Jacoblan, only the c~·l and c~'~ terms contributei we have: 

1 1 
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, . 
(N ~ ___ .A \"11' • ' -'iLt\ lc.;t\t\( ..... lh)~ ... fI'I +""OItt).c IIAoip.!l),clII ~ 

A. 

\ Us1ng formulas CA-sJ. the integra1s can be rewritten as fo11ows : ' 
, . 

'-~ \.. 'Lon-, -' ' 

~ t 1 t l c. ... ~ \, l cdI( ... -l-I')1I - cu:(. "'-~. 1'}tI + cm.l-!-f)""-<n(M.hpp) cl,! ~ 
~~IQ ).-=- Cl) (2)' (t) (If), . ' 

N ~ 7' t '1.11' , 

-t):'1- l ~~'f' L <} ( ~\~-f)l7\. - ~l~-"""fJ~ +- Glt{M .. t·,)1It -c.cc.tJh')~~f ~ 
. ~ •. \:. \ ,Ltrr 0, l~~ . ,(~) (.,) . '. 8) ~ 

. - , 

Us1ng~-~ we get the fo11owing r~sults for the above ei~ht integrals 
l 'l"ft 

(e.g.~~ ~ ),,!C ) 

(1) ':: t for n = p T.st 

(2) = -1 for n = 1.-p 

( 3) = t for n = p -.l 

(4) = -i for n'~ -p-~ 

\ "-

(5) = - 1 for n = ~ \_p 

(6) = 1 for n = i +. P 

(7) = -i for n = p- ~ 

(8) = 1 for\n = - p -~ 

Since we requ1re n 7/ O.(4)and(8)must be discarded; the/final result 
1 

15 then: " 
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where it is understood that only térm$ with positive indices arè 
\ 

reta 1 ned. and p "t" l. ~ L. ',Th~ Il ~It part of the Jacobian i s 

1nte9rated by part~ to y1eld terms of the form 

,r 

" 

\ 

where the,parenthesis encloses a product of 3 tr1gonometric functions. 
\ " The first parenthesis is obv1ously O. and we are left w1th 

\ 

N ~ Q 1ff" 

-fi.. l \ ~ t)~' iTT Ço [~lM.~)~ (w,) p"'''' ~\~t)lI tIOf1t 1 d'1 
n\~O t.,6·h '." , 

Aga;n, using~-8L the integrals can be s1mp11fied as follows: 
(. ' 1 

\ N L. l '"" 
- ~ [. 1. V fl~' t \ lto-;,\:m.l- ,)~. + (J)Q.\N\-t .. ~)~ ... t.n'fM·!=-p)1J - (b)l~t~~"),,, ] ~ 

111=0 t:o '\11' 0 
, 1 (\), ("l) (l) (If) 

..., ~ t l... " 

" ... ~ ï. l p~I,:l- \ ~~M.l-f)~ ... ~l~:-~.F)III~ CO)k~-vYt ~~\.1Wt+t+1')'1] <11 
• l'fI:lJ Qr.o 't~ ~ (s) (,) ('1) (8) 

U~ing(A-~. we then get the fol1ow1ng results for. thè above"'1ntegrals: 

(1) = -1 fpr n = '.l T P. \ 

(2) = .. 1-fo"r n = ~ - p 

(3) = i for n· = p - ~ 

(4) = 1 for n :: - p -~ 

"­ , , 

\ 

.. 

(5) = -1 for n = .t T P 
\ 

\ 

(6) = - l·for n = ~ - p , 

, (7) = - i fo'r n = p - ~ 

(8) = - i for n = - p -Q 

1 

i 

" .. , 

" 
~ .). , 

\, 

, ',,-,> 
/ ..... ' 

, " 
','! 

,\ , 

, ' , 
.1' 
04-:rb}~ 

'.' 

l' 

'1 

" , 

" 

, . 

~ J ' 

~ .. 
" 

.', 
1 

'" :'1 
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l , 

Aga1J1, we d1seard (4) and (8) stnce n "» 0; the resu1t 1s 'f1nally 
" \ --- , , 

, ' \ '\ 

----' . 
The complete Jacobian can now be wr1t~as (A~ll) - (A-12). The beta 

1 

term gives: . 
~ 1 W W 

(?l' L 1 iirP,"\COS nx sin p;dx - ~sn, ~Sln rix sin 'px 4· -i{!PsP 
~"O 0 -" 0 

The vorticity tendency tenm gives: 
\ 

We\can further isolate the.wave-zonal fJow interaction terms1n the 
1 

\ follow1ng w~y. F1rst notice that these terms,are char.acterized b~ 

appearance of a .zero value in one of the two indices n,Q in the 

interaction terms '''cn,g Il and "Dn.~ ". This~is because. as noted 

earlier. harmoniè number zero corresponds to the zonal fhow. ,Looking 

at (A-11) and (A-12). w~ no~e that a zero index can appear when e1ther 

~P- ~I • o. For~ Q. 0, (A-11) Is ldentlcally zero, .dtl1e 

(A-12) yie1ds , _ 

(p,O p,O -p,O p,O --p,O p,O '] 
p/4 L Dl - Dt . - 0, - - ~4 - D4 - D4 .$ 
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(A-12) 

<A-13) 

(~-'4) 
1 J 

. New. as mentio~ befo~e. we retain on1y i,nteraction, tenms with positive 

Indices.; ,~ Dl ,0 = • ta~, we end up wlth " ' 

C -\ l2l°<a-
\, -..,. 

.. 
\ ' ~ 

. 1 



1 
" Extracting now the terlns with Ip-~I :·0 in (A-11) and'(A .. 12). and notfng 

that c~·p 1s zero, we get 

~ \ _ c:J
' + O'toJ'~ 

which can be written as / 

et 0 

-~ ~ ~ (. S ~,f) - se> B P 1 
, '1 l 'b') ,~ ) 
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Using the fact that' BO = 'fi • ByO = -u and fO= BO = -u • the wave-zona1 flow ) , n y 
interaction terms can be wr1tten as 

This 1s the energy-preserving form for the linear Jëcobian. Now in our _ '1"" ' 

model, we found that because of the error introduced by evaluating the 

~ (~~) derivative, at the first 'l~terior grid point -(notice that 
o~ -

Uy is not given on the boundary and has to be computed by an off-centered 
i _ , ... 

difference sCheme). ft did not matter whether the energy-eonserving form 

was used or the simpler,form 

which has the advantage_of avoiding the compu~ation ~f üy at the boundary. 

Since 1ntegrations w1th both formsyielded' simflar results. we chose ta 
\ 

use the latte,r fOrln as it was ~impler to implement. The nonlfnear part 
, 

of the Jacobian does however remafn energy-~nserving. Ne can now 

write down the complete predictive equation for the AP component: w1th 
, - '.. \ ' 

, \ 

\ \ 
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1 \ \ \ 

, the linear wave-zonal 'flow interaction terms isolated, by starting the, 
\ \ 

sunvnation in (A-11) and tA-12) at l= l, and>requiring \.l-plf 0, since 
,ru \ 

" 

) (A-1S) 

l '! '" 
where we require ~ .. p, + o. p+2( L • and again retain only the interaction 

/ \ "J 
terms which have positive indices. 

, 

Equation (2.12-) can be derived in a similar Ifashion. We multiply(A-l) by 
• 

cos px, and i ntegrate from 0 to 2lt'. In the I\.Q. Il part of, the Jacobi an, _ b~ 

only the C~'~ and c~,~ _ terms contribu~e. and we get : 

# ' 

N ~ l t« -1,1. l. ~C~I l ç l ~\~·~)""~~IJ - Cb4..\~4th~l" 1 d..1, 
.. ~~ 1."11" 6 ' 

N L. 'l '1. ... 

-\- !. l.. l). ~" 1. ~ l ~ \.tV\-l)". te:I fi' + tM.~~l)'A cm llf1 ~IJ( 
1. \ 'l1\' () 

lY."o tWill 

Again, using (A-S) and (A-~). we obtain : 
N ~ ",.1 \11' ' • 

-~ ll~('1 ~) (cos{n-l-p)x + cos{n- 1 +p)x - cos{n+-! -p)x .. cos{n+~+p)x] dx 
,...:.1:10 \ 0 (l). _ (2) , {3} _ (4) 

1 

N "" 'l."\I" _ ' li 

+ ~ L 1. Q.(~\lr\~os (n- ~ '-p)x + costn- .l. + p)~ + cos{n+ ~ -p)x + cos (n+ i + p}x dx 
IW\::D ~:() 0 ~ (5) (6) (7) (S) 

- ""'-
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"fi" 
wi th the fo 11 owi n9 va 1 ues for the ~lntegra 15 (of the fOrln ln- S~ ( ) c\;r) : 

(1) = - i for n = p -t t 

(2) = - i for n = l- p 

, (3) = i for n =' p - ~ 

(4). =iforn=-~-~ 

Again. (4) and (S)are discarded. and we get: 

~ 

. (5) = i for n = ~ -t p 

(6) ~ i for n = ~-p 

(7) = i for n = p - ~ 

(8) = i for n =-p- ~ 

'L.. -

1 
1 , 

1 

1 

r ~ nc p-I,Q ~-~,l ~~I~ ftl.l l-,l \,-1..1' 
7i L. y., c?- - ~1. - ~ "" C; + ~ ~ ~ ) '(A-17) 

q~o ' ~ 

In the 1: ~II part of the .JacObian,. only the ~.t. and- D~,l terms contribute,; 

and integrating by parts as for the À! ~omponent, we end up with the 

following: 
ta "" l'II,l 1.... . \ /' 

-!. Il. ~ 1>1. 1) lQM\~M-l)~ MwI~1 of" ~(",+It)fl( ~ti)1l1 Wt 
-'" 1.1t' .. r 

'-'&0 'ho ... _ 
N \.. '1# 

+ 1. l 'L ~ 'Dl,""t ~ \ (~~l'M)f]lIWII~fl\ + ~tnl.l)I'fI~~ y~ 
""=0 ~o b • .. , . 

. Us1 ng (A-8) and (A-9). we get l ..., 1.. II\lt \1f • . 

i Il ?tl1 ~~feos(n-l-p)x-cos{n-l. .tp)x t cos(n~~"f)xi..cos(ni:~ tp)x1 dx 
~~.l~d 0 ( 1) (2) (3) l' (4). .. 
tJ \.. Q 'I:It'" 

-+iL Ifl\ {;1t~OS ( ~ -n-p lx-cos ( 9. .. n-tp }x-tcos (MQ-p )x~cos (n+ .2 +p)x 1 dx 
~=o ~~Q 0 (5) (6) ~ (7) - , (8) 

/ 



-, 

w1th: 
\ 

(1) = i for n=p+.t 

,(2) = -i, for n = ~ - p 
/ 
(3) = i for n = p - R 

(4) = '. i for n = -p - ~ 

Disearding l4)and t8~ we get : 

/ -
(5) = t for n = Q - p 

(6) = -1 for n = Q + p 

(7) = i for n = p - ~ . 

(8) = -1 for n = -p - Q . 
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(A ... 18) 

'Again" we can write the linear interaction terms separately byextracting 

the ~= 0, p - Q. :: 0 and ~-p=O terms from(A-17)and(A-18}; their su~ is 
, 0 1 0 ,O,p 

-HD2P. + 03 tjp) ; ipCi §&~-

or, in terms of Ap and Bp: . 1 

60 P 1 1L ) ~~? - S~1b;1 
&0 
~ =. ü ; we can r.ewrite as ., yy 

o -
Sinee By = - ü~ and 

-i ? \. -cr Sl\~ - F\f ü~~ ) 
The beta tenn integrates ta : , . . 

N \.1t" ~"' 

C? 2>'t\lf\~ l-) ~~" ~",c\n - ~""l) Mwa~" ~llt ~1. ~ y~f\? 
'l1f ~ 1.11' #0 Il -, 

",-0 ... 

, / 
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t 
1 , 
I­
I. 

l , 

and the vort1c1ty tendenoy term to: 

~~r i s r t.rS·s 1 n nx cos px dx -t t J;.~ços nx co's px dx1] = ~ ~ S~f 
l~ .. l '0 0 

" 

The complete /equat1on can now be written: 

-

, 

where we require{ p- 2.' :f; 0, p + J.~ L, and we retain only interaction 

terms with positive indices. Equations (A-10), (A-16) and (A-19) are the 

tnree predictive equations used in the numerical model. 
\ 

1 1 

\ 1 
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(A-19) 



APPENDIX B TOLLMIEN-KUO SOLUTIONS 

The equation to be solved is 
• 

CP", - ( ~-~ ... 0(
1

) ~ • Q 
\ u - (... , 

At Y = O. ü = C. so that there 1s a regular s1ngular point at y = O. 

Let: 

( \'0"- ~ J(~)':: - + 
"0 - c. ' 

Then : 

Let: 

.. 
~Cl\~) ~ ~n i b~~"" 

",wQ 

..;-~ .. 
Let y-yc = Y. yc being the point where ü = Ci we exp and around this 

point ü and ~in Taylor series: 

., 

ü - c = Yü' 't y2ÜII + y3 
c ! c -; 

2 '-il ü"= un + Yü" l + y u + 
c C "2. C 

:-u '" + c: ••• 
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(B-1 ) 

(B-2) 

(B-3) 

(B-4) 

Using the fact that (l'tx)-l = 1-X'tx2-x3i ...• one obtains the fo110w1ng 

series for f(y): 
, 0 o (B-5) 

1 . 

--~-----~--- ._--~ --~ 

, 1 

( 



r 
.1 

( 

r ... 

o 

" 

where 

0. :: ü~ - (l> 
-\ --, u, 

• tilt' ~\I + ,v, 

1 

-,_l'\. 
.. \Je. 

li -

-VU 
\Je. -
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Substituting (B .. 4) and (B-3) 1n (B-2) gives the, 1ndicial. equat10n for ri 

138 

the two roots,are','r-1 and rcO. Choosing r=l yie1ds the following formu1ae 

for the "bn" coeff]cients ( ,the substitution n ~ n.-1 has been made ) • 

. 
o.., ~I 
T 

0._\ ~'\ 't qob, 
fD 

• t.. 

b
n

: G\-\b ... , .. qbb",.~ + ••• + QI'/\_'!ob. 

\ ' mlOl-I~ 
I[ 

,\ 

n >1 

Since the two roots of the 1ndicia1 equation differ by an integer, 

another linearly independent solution is given by: 

00 

cPb(~) ;. C r!>o. h~ + i C,... 'fin (B-7) 
MltO 

Substituting. (B-7') 'and (B-3) into (B-2) yields the following formulae , 

for the "cnl~,coaffic1ents: 
~ Il ,# 

ri 

• 

Ço = , 
C\1 '= 0 

è
2

: ct_,Cf' ... ~O'D - )Gb2. 

'l... ' • 

/ 

,. 

'" ,'., 

\- ~-____ ....J.L.l-1 ------------..... _'""' ..... = __ Il'r. .. ""'"'.= •• _".,~,,.,.,; ... ~1::'r. .. """'">,.....~._. ____ ..;.( ___ ..... 9 
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C
3 

= 0_, C Z + '\oc., t Q,4 - '5 c..~'!1 
,(., 

\ 

cn = o.., '/VI-' + QoC~.1. 't- •• ~ ... Q"".~~-\~.\)C.b"rl 
l M~ \ (8-8) 

(8-7) and (8':4) are the so-called J' Tol1mien.sofutJons" (her~. a "Q>" 
, \ 

term is added in the Rayleigh equation). rewritten explicitly below 

as: 

) 

~ , 
1 

\ , 

1 

, 
" 

, \ 
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~NDIX C: THE RADIATION COND'ITION 

The 1ntegral appearfng in \(2.1S.a) and (2~lS.b) 1s evaluated using the 
, \ 

trapezoidal rule; that is, we let t:1A.t, ~s O,l,.\.,L, and we write: 

L.A\: 
SI\(.\) dt # ~ l ~lo) +-1.·R~t) "" tfltbt) +- ... ~ 2{(lL·'lAt) ~ ft~t) 1 
o ~'1. 

, 1 

It is obvious that the values of the stream function tendencies at t.l~t 

are unkn~n; so we break up the right hand side of (2.l~.a) and (2.1S.b) 

into t~o parts: one which contains known values ( that is values evaluated 
" , 

at t::: (l:"l) llt and less ) and one containing the unknown values. The part 

140, 

containing values at t ~ (l-l)~ t and less will be designated by wA in (2.l8.a) 
. ~ 

and wB in (2.1S.b). We further let Bm and Am stand for ~B\ ' and '~A\ 
• 1 Ot bt) l'III~~ ~ t6\:~ ".,.ta~ 

respectively, and let hR(.Q.tH) and hl(!At) stand ~?r R~(t}~ and Imth(t)~ 

in (2.17). We also let: 

.. -, .... 

~: ~ + ~ = CA lm '" DA"m + ~ 

\ 1 

with 
-1 

• .1 

. , 

• ?\ ~MI.K) 
\-\~ : ' e ~ n~tW\- H) 

"h" and '''pli stand for homogeneous and particular solution respectively. We 
, " 

recall that th~u~known~ are DA and DB' CAftnd CB having been determined by 

uSing the rlorthern boundary condition. We also def1ne: . ' 

~, =- - ~ \ =' l l ~\.p- '\Ç~~, .. ,,)+~ t-,i 1~~) 1 
o~ ,~b ~~~4 , . . '\ 

" , 

,,' , 

, . 

" , 



o 
\ 

In al1 of the above, 111." des1gnates the time step, "mll the gridpoint 

and IIn ll the Wave number. Subst1tut1ng in (2.18a) and (2.18b). we obtain 

the following 

b ' 

T ~ "'1,(0) l Ar '" (p.'t, + DA\\.1 + We, - ~l'p _hl~"1.'6,V 
r \ 

Equations(C-l) and (C-2) form a set of two equations in two unknowns 

DA and DB' Noting that hR(O) = 0, we get 

• 
~\\, + Me&'lt. " , 

\ 

, \ 

0tl = b~ \ tq ~(., \\.)+ ~ 
:: 

~\\ ," ",5. 'IL ~ \ 

• 

; 12 J& 
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o 

(COo3) 

" 
(C-4) 

" 

l' : 
1 
1 

1 
1 . , 
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where ~ 

®" ': -" [ ~ \ttol 't.1- CPt l ~'I 1 + ~~ '11. Il!'' 'è~ L ~ h,:lo)1- l1P.r .. t'r\t'\ ~~ -\)(lA 

\' 
e>~ ~ c~ l ~ ~"lt,1 -Ce, t~, ~IV\' Ihl, 1 '" ~r l ~ ~:Ib) 1- b.ê.(7 - ~t'h t; ~ oVe 

and are known quant1t1es. Solving for DA and DB in CC-3) and (C-4). we 
finally'get 1 

\) ::; - <8>~ ~ "" \~".+ rt\~I', \-\.) a~ 
, A 

(C-5) 
, 1 

-
ti 

®. ê" ~ b\\, '" ~~IJ\ ~I)G>, ", -
l~~,tll~\Jl.~·~'L+ Q~' 

," 
(C-6) 

whe;'e 

If 

O' 
-~ f .. 

..' 
, . 



o 
.. 

We.note in pass1ng that the evaluat10n of DA and DB requ1res the 

knowledge of all the previous values of the streamfunction tendencies 
1 

(in WA and WB) at y = O. and th~s a non-negligib1e amount of core 

memory has to be used to store these values at every time step. Once 

DA and DB are kno~n, ~ and Bm' or, ~qufva1ent1y. ~ and ~ 
can b~ ~omputed, and one can proceed with the time differencing scheme. 

' .. 
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