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RESUME . '
| Afin d'Etudier 1'évo1ution dans le temps et dans 1'espace du
niveau critique de 1'onde de Rossby, 1'équation du tourbillon barotrope
ngn-linéaire est solutionnée & 1'aide d'un moddle nqmérique. Le profil \
de vent initial a la forme d'une tangente hyperbolique, et une onde est

entretenue 3 la frontidre nord du courant; une condition de rayonnement

" de Sommerfeld est utilisée 3 la frontizre sud. Des intégrations linéaires,

quasi-linéaires et ﬁon-11néa1res sont effectuges, et les résultats sont
comparés 3 ceux d'études antérieures.

On démontre entre autres choses que pour de faibles amplitudes de
1'onde 1nc1dente“(§e sorte que les intéractions non-lin€aires ne
demeurent importantés que dans la couche critique) un état stationnaire
est atteint, & 1'extérieur de la couche critique. Cet &tat est carac-
térisé par un flux~de momentum nul au sud et au nord de la couche criti-
que, de sorte que 1'onde incidente est totalement réfléchie au niveéu
critique, entgccord avec une théorie antérieure. L'évolution vers cet
état stationnaire, ainsi que la structure de la couche critique sont "
cependant tras différentes de celles obtenues:lors d'intégrations précé-
dentes par‘d;autrés auteurs. A partir de ces résﬁlpats, on discute
brizvement de 1a propagation méridionale des ondes de Rossby vers
1'équateur, et de leur influericdsur 1a circulation tropicale.
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ABSTRACT

The fully nonlinear barotropic vorticity equation is integrated -
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in time to study %he development of a Rossby wave critical level. The
1nit1a] conditions consist of a hyperbolic taﬁggnt shear flow, and a
steady forced wave at the northern Eoundary; a\radiation condition is
used at the southern boundary. Linear, quasilinear and nonlinear

‘ integrations are made, and the results are compared with‘previous
} studies., ' ‘

For sﬁa]T yalues of the perturbation amplitude, such that non-
linear interactions are important only in the critical layer, a steady-
state is obtainediin the outer domain, in which the Reynolds stress

vanishes both above and below th critica{ level, and the forced wave is

totally reflected as suggested by previous analytical nonlinear steady-

N state solutions; the approach to that steady-state, and the structure of

the critical 1ﬁyer are howeQer quite different from the quasilinear

1ntegratfons performed by other authons. Some conclusions are drawn with
respect to the forcing of the equatorial regions by meridionally

\

propagating mid-latitude Rossby waves.
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CHAPTER 1. INTRODUCTION

Ty YR

In order to avoid any ambiguity in the discussion to follow, we

-

1

i . shall first define the terms "critical level”, hereafter abbreviated

C.L., and "critical layer". By critical level we want to refer to

the singular point occurring in Tinearized hydrodynamic shear flow

I equations, when the pha;é speed of a disturbance in the direction of
! flow matches the speed of the basic f1oQ. By ;;;E?EETNlayer/Wé want
o to refer to a region situated around the critical level, having a width
which i{s a function of certain non-dimensional parameters of the problem
at hand , usually time, viscosity or a wave amplitude, and where nonlinear
and/or viscous terms are important. _

Critical Tevels are by no means restricted to atmospheric shear flow
equations. They appear in almost every type of shear flow equations, beA

it that of a plasma flowing in a magnetic botfle. or that of an ocean

current in which waves are imbedded. In this particular study, we shall
restrict ourselves to the atmosphere, and even then, to_a particular .
type of &tmospheric wave motion. We already know that several types of

vae motions are possible in the atmosphere. To each type is associated )
a wave propﬁgation equation, and these equations, upon 1ineaf1zation. i

and after the assumption of %nviscidness‘has been made, usually possess

a critical leveI»singularity.: We 1ist below, for the most well-known

of these waves, mainly gravity and Rossby wdves, the governing equatioﬁs

that result: . -

\




a solution of the form e

(1) Vertical propagation of gravity waves.

) - - -

(G-c) (5-¢)

(2) Vertical propagation of Rossby waves. \

N e v A\ \ PO
, \\)’bfial& O-¢ TK*”) ﬂtz\\‘,’ ° \
N Y

/

(3) Lateral propagation of Rossby waveg.
W +SL G- Oy _K"‘g\k’ < 0
b O-c¢

In these equations, ¢ stands for the perturbation stream function,

N is the Brunt-Vaisala frequency, H is the scale height, other

parameters have the usual meaning. To obtain these
Tk(x-ct) was assumed. The critical level is
thus situated at the poiht where U = ¢, This, however, does not render
the equations necessarily singular. We must also make sure thaf at this
same point the numerator of the terms containing (u-c) or (i—c)2 int
denoming}or are not equaj to 0. 1In the thi;d equation for exampie.
Bfuyy = 0 and %%-: 0 at the C.L. there is no critical level singﬁ1ﬁ;i s aﬁd
thg’so1ution§ (and their derivatives) are regular. In other words, even
though there might be a point where T = c,athere might not be a critical -
léve1 singulartﬁy. Equations 1, 2, ang 3 are fo-caITed steady-state
equations. That is, if we define a new x-coordinate £ = k(x-ct), the
flow will appear steady §1nce we are now moving with theuwave.

However, critical levels also exist for the time-dependent versions of

1
A
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1=3, in the sense that as t + =, and the solutions become steady,

the singularity will appear in the equations. |
The ques¥1on we mighf now ask ourselves is the fo]lawing: how

does one go about solving the singular propagation equations?

We can separate the scientists who t(gated the problem in two

large groups, m%inly those who were interested in phe critical level :
problem as a mathematical curiosity worth solving for its own sake,

and those who dealt with it as a "nuisance" preventing them from

tackling a more general or 1nterest1n§ problem. Chapter 3 looks in

detail at the work of the scientists of the first group. Let us /
mention here that in the last 25 years or so, a tremendous amount

of work has beén done on the steady-state problems, startfng-with a

very good revieonf the liggar\pro£1em by. C.C. Lin (1955), and conti-

nuing further as more sophistica;ed,mathematica1‘techn1ques were used,

such as métched asymptotic expansions techniques and multiple scaling
techniques, until ;he nonlinear problems were solved by Benney and

Bergeron (1969), Davis (5969), Kelly and Maslowe (1970), Maslowe (1972,
1973) and a few others. The linear timé-dependent ptgblems were also

(74 B
tackled, by use of the Laplace transform method by Booker and

Bretherton (1966) and Dickinson (1970) to name a few. Right now, active'
Kre arch is going on in order to solve the ﬁonlinear time-dependent
propiem, as indicated for example in Warn and Warn (1976). The reader
ght now well ask himself what is meant by the “non]inegr" problem,
1ncg the critical level was gefined for the linearized eg;ations (fhat

!

equations where the nonlinear terms were dropped). This will be
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J(y, V3P) contains a third order derivative in ¥, while the viscous term, |

to make. This however contradicts the inviscidness assumption; now we

answered by looking at the work of the scientists of the second
group.
To exemplify this type of approach, let us 100k for example at

the problem of the vertical propagation of Rossby waves. It is

well known that while the flow is generally westerly in the, temperate
latitudes, i1t is easterly near the equator so that if a Rossby wave of
zero phase speed crosses from the westerly reg1me to the easterly
regime, it will encounter a critical ldvel, and the equation describing
1t§"propagation becomes s1ngu1ar at that point. For sﬁheong interested
in the vertical propagation problem, this singularity is sometimes ;
viewed as a nuisance, and must be removed. There are 2 ways to remove
it. We recall that a number of assumptions were made_in deriving the
propagation equations, in particular that of linearity, and that 6f in-

viscidness. Now the nonlinear term, generally in the form of the Jacobian

A}

generally of the form w*y contains a fourth order derivative in y. The
1inear inviscid equation, however, contains only a second order derivative in
Y, and it is the coefficient mu]tipiyingltﬁis term which disappgars as u-c
goes to 0. So rgtaining either the nonlinear term or the visgous term, or
both, removes the singularity. Therefore a choice has to be made: so ’
far, the viscous term, in most studies,i has been chosen; there are many

reasons for this, thF most obvious being that it is the simplest choice

know that on the scales of motion usually considered in meteorology, the
/
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atmosphere can be considered for a]l purposes.foﬁbe approximately in
viscid, although it is conceivable that due tolthe large shears develop-
tng near the C.L., the viscous terms will eventually become important.
What about the nonlinear terms? It\has been demonstrated by [%;-
(1957) and more specifically for our problem.by Warn and Warn (1976),

that indeed in the cr1t1ca1‘]§yer. the nonlinear terms become as

‘important as the linear advection terms in a finite time. Moreover,

stéady-state analytical results indicate that completely different
results are obtained when nonlinear terms are retained in the critical

layer, instead of the viscous terms. Unfortunately, so far, the non-

1inear time-dependent problem has not yet been soiﬁed. either by analy-

\

;1Fa1 means or numerical means.

~ This work is therefore dedicated to\s01v1ng the nonlinear time-
dependent problem for the lateral propagation of Rossby waves, by means
of a numerical model. By nonlinear, we mean specifically that the
amplitude of the nonlinear terms will bg small enough that their effect
will be felt mainly in this critical layer region; therefore we still
have a "cnitical level" problemf In doing so, we will seék answers to
the following questions: (1) is it possible to reach some steady-state
similar to those predicted by analytical sFud1es; (2) if so; are the
time scales and amplitudes involved realistic enough that the results
should be used in steady-state models of wave propagation, particularly
concerning ;he lateral and verticaI-propagatfon of Rossby waves; (3)

what are the effects of adding viscosity, or modifying the mean flow

v
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1

initially, or using different types of forcing?; (4) in light of the
answers, is the Rossby wave crit;ca1 level an important physical me-
chanism" significantly modifying the propagation characteristics of
the medium, or is it more or less a mathematical curiosity? The

answers to these questions will be found in the'fo11ow1ng chapters.

Chapter 2 gives a derivation of the model equations. Chapter 3 .

contains a survey of the available ana%ytica] and numerical’ results
pertinent to our problem. Chapter 4 is devoted to the numerical

model itself; we haye tried to be explicit enough so that the
experiments can be repeated by any independent investigator.In Chapter
5, we discuss the results of a set of linear integrations, which are
compared to the analytical results of Dickinson (1970). Finally, the
results of the ngkldnear integrations, and of 'various experiments are

presented in Chapter 6.
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CHAPTER 2. THE MODEL EQUATIONS

\ 2.1 DERIVATION

We shall be using the approximate meteorological equations for

large scale flows (large-scale flows meaning flows with a scale of

0 (1000 km) at least). These are: ®
0 2 L3 4hw .
’ dt € (2.7)
T «
/ dt ‘€‘ ‘b\a ; -
: ‘ - (2.2)
é X ,
: = -0
! % ?

i
3
fi -
b
!
)
i
H
L
¥
2
3

where f = 2using. The effect of the earth's rotation appears as the
1inear- term in u and v, and thus, these equations are not mathematically
very different from the Euler equation. Here, x and y represgﬁt the
two cartesian coordinates, x pointing eastward, and y pointing north-

wérd. The sphe;icity of the earth is accounted for by two assumptions:

A

(1) we will require ‘cyclic periodicity in x, .thus modeling the closed

nature of atmospheric flow along a.latitude circle; (2) we'will !

replace the variable Coriolis force with a 1inear approximation. That
-~ ‘ b4

is, we choose a central latituqé $g> (at which y now vanishes) and use

Taylor's theorem to write

* - : %o + o( t)
LA AT
But - .
c“' = D . = ZU -
| AN AL R R L N
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A

where the constant g gives the rate of change of f with latitude, so

that in equation (2.1) and (2.2),
§=5,+ 0y

This 1is ﬁbe\so-caIIed g-plane approximation. The equations thus
formally describe motion on a plane, with the addition of the 8

terﬁ. Defining the vertical'component of the vorticity to be given

!

by

’ S= 0 _d 4§
l ¥ 2y

A

it is possible to form the so-called barotrop{c vorticity equation,
using (2.1) and (2.2). We shall further assume the fluid to be

=
incompressible ( V¥V = 0), and two dimensional (w =0, 3( ) =0),

: 3
so that

- V 'V‘ = a.\_) ~ b—“: = 0 -
“ " ¥ dy

and the only component of vorticity present is S . We end up with

‘ 3 | 3,V

u
o

3t ' : (2.3)

Because ‘7“~13 =(6; we may define a streamfunction Tif (x, ¥y, t)

" “Such that o

‘;-Q’-- zﬁq“‘y :7

[

' -+
where k is a unit vector pointing in the nositive z direction, and

;-S‘:‘Vi‘i"i-ﬁ




A

Hence, equation (2.3) becomes, with vﬁ = v2 from now on,

%tV"Y Y VYY) s 6w, =0 (2.4)

Equation (2.4) 1s the non-divergent barotropic vorticity equation.
It approximates the planetary wave motions in the temperate latitudes
(Burger (1958), Pedlosky (1964)), and was shown by Charney (1963) to°
be a valid qpproximation in the tropics under certain restrictions.
We will thus use it to model (in a crude way) the meridional propaga-
tion of Rossby wavesqtowérds the equatér. and study their behaviour as
they encounter a critical level.

The condition of cyclic periodicity in the x direction is accounted
fo# by defining a 1ength A such that a dis&]acement of all the variables
in the x direction by A leaves them unchgnged. A natural choice for this

Tength is the earth's circumference at some latitude ¢,; thus,

‘ Az Ina wrg,

T o2 Pran) + ¥ a0 (2.5)

v’lhere \ M o~
"5#\ z 2 S A Lg.ﬂ u’mkﬁ« +$(~5\t}mk,..¢.g . (2.6)

ms|
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When (2.5) is substituted into (2.4), and the (" ) operator, defiqu
as 2
\ \
= - \&'ﬂ
50
R
is applied to the resulting equation, there results the following

equation:

iiu( T -
£ (2.7)

_—T-"-.
Using the fact that the perturbation wind is non-divergent, J(¥', V ¥')

-b , S'"'ICE E‘l-bﬁ 'Y

\b‘L

one can integrate (2.7) once with respect to y, to obtain-an equation

is easily shown to be equal to

governing the mean flow. ( the constant of integration has been set equal
to zero, since (2.8.a) is really just the zonal average of the u mo-

mentum equation ):

?‘- H ' §m - (2.8.&)
L 4 . _
where |

Tz -W v e - MW o« XY
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That is, the forcing of the mean flow is done by the action of t‘he
wa;/e momentum flux convergence. The second equation is obtained by
subyracting (2.7) from (2.4); this yields:

. C
It is the perturbation vorticity equation, and it is nonlinear because

of the Jacobian term.
2.2 NON DIMENSIONALIZATION -

o
In order to explore more easily the range of parameters of interest,
@

‘and facilitate the analysis of the results, equation (2.8:b) was non-

d*imensionafized in the following fashion. Let L be a typical shear
scale length, Un the maximum initial zonal wind speed, and(}ss the
amplitude of the forced wave at the northern boundary. We also

define

y=Lly*;us=s umu* S & ?S\V*-, X = x*/k

A

where a"*" denotes a non-dimensional quantity. The Laplacian operator

now becomes

T, V-z*
N v
where ' 14 . & kY
N S’\* * S '{;“l& n
and
: $=




12
6 is the aspect ratio. The longer the zonal wavelength, the smaller it~
is. This is why for long waves one is sometimes Just‘lﬁe& in dropping
the x-derivative of the Laplacian (see for example Dickinson (1970) ).
\ Substituting the above definitions into .(2.8.b) and ba’laﬁcing each term,
( - we obtain the following after dividing through by @ gt -
A , \
\ v U ® - . !
[ ] ﬂ— :\. K (S K - \ N
\' TL'. ‘} / 3 d
’ Mu1t1p1y1ng the above by L?'/kum leads to
i
: \ ‘ &__ ¢
o— ~ ~ -\ ~ S -
TkUm ' \ B ) t“,-m
A balance between the first two terms, that is the advection term and i«
. ) ‘ 1 ‘E\]
‘the vorticity tendency term gives the non-dimensional time scale
t = t*/kum‘ \
( N \
' We shall define also . '
L L s \
) ‘r‘ i N o i ¢
so that equation _(2.8.!3) can now be written in non-dimensional quantities
as
; hw' 'G%Fw + 103 “)“‘ ~e I v\n eIV - 0 (2.9) |
where stars havé beenrdropped. Ne see that it 1s almost identical 1n
\/‘\ .
form to (2.8.b) apart from the nonlinear parameter E which now
. ~ . o A
multiplies the Jacobian, and.{s a measure of the nonlinearity, or, more
specifically, of the amplitude of the forced wave. Equa)tion (2.8.2) also
becomes . o ' "
. Y | -
- A . o &
8T . 3G - | (2.10)
% ‘B\; ) ) '
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We now see that there are three parameters of interest: 6’£ and ¢ (ylienc
diffusion is present, ¥ is to be considered). We a1recdy, know that & . ‘
determines the impo’rtance of the nonlinear term. We shall look at the
meaning of & and (5 in the following section. Since sin(k x) and cos(k x)
now become'sin (nx): and cos (nx), ke should be replaced by n in
equation (2.6), and k2 by n 2:5 o~

Equation (2.9) will be further decomposed into two other equations,
one for A"(y,t) and one'for B"(y,t), using the Fourier series for L AU
Before doi‘no so, however, we have to choose a correct form for the
Jaco,bian.,\ It is well-known that the analytic Jacooian preserves certain

integral constraints. some of wilich are mean square vorticity (also ca'lled‘

enstrophy), mean kinetic energy and mean vorticity, in a closed domain.
across the boundaries of which there is no’ fnflow of outflow. In

particu1ar. Arakawa.(1966) showed that.when expressed over a grid with

. Second order finite differEnces. v
* 3% 3@ _ a8 ‘
1) T 1g,¥)= 2> ¥ _ 3B . conserves neither enstrobhy
3¢ %y ¥y ¥ \ ' nor vorticity. |
‘ » wZF ‘ :
2) ™ (1) = 2 (Savy = 3 (5\;\3\ “ conserves only kinetic energy
¥ " '

3) I (S\’) 2 Wh\ - b \‘i’ “\ conserves only enstrophy.

‘whereas the sum of ) 3 and 3)divided by 3 conserves a'n three integral
constraints. Since 1in our model W“ﬁis not carried expl icit‘ly. we

Xt} we therefore chose to use J*x, which conserves kinetic

cannot use -3’
. energy. The derivation of the fina'l three predictive equations is ” /

given in Appendix A They are written as fo]lows.

w1

¢
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. L}
fel,! p-2, 1 !‘9.-\ N
/ eiﬁs » ¥ (e - L fald™
' h\
\»m U-p\, WAt 2.1 ped, a u p\..t
+C\\ ‘- C‘ Q]* ?‘b? ib.h - D‘? + D? lg (2 1-')

"t kpes .,-n] L QAL et

o 2 3

lp-l\ L ! Y 1

b v .x \Q ‘.\.n ‘»! A
1- ?[ *D, R (2.12)
g ‘ \ J
a .

Z "'L ) (2.13)

BT
T C )
where the following definitions have been used: ‘

T SRS CIINE L R e

(S h ) Y ) ‘A55

o A """"_ Koy . ™ 5”"»' o™ .
RS I CAARANE LR AL
" - - ' ~m nM . ' 'IQ-\M 6~. “ — ' BM'

D, =§HR.3 y O ss\ﬁ':; )D.‘ ‘*gh\.) 30'\’&03':3

~\

and it 1s required that lp~1\>o. P+2§u N represents the number of

Fourier components allowed by the model and only 1nteraction terms

with positive indices are reta'lned These three equations form the
basic set which was 1ntegrated 1n time. In some of ‘the experiments.\:

a d‘lffusion term was- added to the perturbation equat'lons The form .

; of the diffus'ldn term was ‘1inear, and written as w7 ‘\’ s in terms

2 L
of A" and B, 1t 15 easily'shown to be squal to ¥V’ and e,
respective'ly added to the right hand side of equations (2.11) and (2.12).

‘t - \ . . ¢ \ - . .
, G » P ' . [S2Ns N T \’
‘
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" everywhere in ;he domain of interest to avoid barotropic instability. We

) possibility of'barotropié instability.

ao (> ' | |

{' Since our study 1s aimed at the critical level development, wé

2.3 RANGES OF INTEREST FOR ¢

must be careful in the choice of the parameters so as to stay away from
instability (numerical or dynamical), and make sure that the waves will
indeed propagate towards the C.L., and in a time short enough for the

model to be integrable on a‘computer.

2.3.1 BAROTROPIC INSTABILITY.

The first criterion we should satisfy is the Rayleigh-Kuo criterion
for s;ability (even though it is Qefined for a 11negr equation). It -

says that .
G-y 7 © or, P-Pyy< O

will choose the following initial profile for the mean zonal wind: / .

' ,ﬁ = tanh y

To find the waximum of uyy. we set uyyy

sech’y(2tanh’y - sech’y) = 0

= 0; this gives

It 1s easy to see that the solution corresﬁonding jp the maximum value

of uyy is given by

§

tanh' y = (sech y)‘/1.414 ' . -
from wqjch we get that. , o .

{

.. (uyy)mgx..= 0.78 at y = ~0.66 . -

So we must set (> 7 0.78 at initial time, if we want to avoid the

~




.11near éteady-state barotropic vorticity equation flor constant z\ona'1

' wind i, there results

decaying solutions; use of given boundary conditions usually results

~ 0 this Teads to ’ ’ \

:
R
P
{
.
-
ki
"
<
&
“k,
4t
Y
i
4
b
e
i
4
i
I

Since ‘for the forced wave, n = 1, we finally get

;16 o
\

2,3.2 PROPAGATION

. e
Upon substituting a solution of the form Ye PtyYe  in the /

Py &G' -m 5\ ¢=0
Defining the parameter Qz (g “&) ’ solutions are easily seen to be
of the form e ﬂy 1f 9 is imaginary we have both' amplifying and '

in rejection of the ampiifymg solution. In the problem we are dealing

with. we want the fom;ed wave to be able to propagate towards the C.L.,.
without any amplification or attenuation, at least for that part of the

wind profile where U = constant. ‘
) o

Thus, for the waves to propagate without atteMuation or amplification,

we require . “ > /

Ly i)

o %""18 30, 0<T< Ofy

|

We have i = tanh ys.l,lnith‘lly, and we already require (5 > 0.78; -

m§ < 0.n8 ) ~~

° ' S =< 0\.1% '
_which.sets 'an upper bound on_the value of & 1if we want the forced wave

to propagate southward without attenuation towards the C.L. - |
e . . :’;\;1" LN |
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2;3,3 TIME REQUIRED TO SET UP THE\CRITICAL LAYER N

Geisler and Dickinson (1974) defined a paramete;. called t, in their ‘
paper which is a measure H flux divergence acrossl the c'.L.; it is
indicative of the time requiréd for a linear steady solution to be set
up in the critical layer. In terms of dimensional quintities. it is
given by |

tc :'(@'::3} ) "
K 'y .

Substituting non-dimensional variables, and using the fact that @fﬁ,ﬁ,w\

near the 'criti\ca'l level, we éet that '

tc=('5

3

So we must choose.a sufficiently low value of @ A¥ we want the linear

.\\ steady solution to be set up in Lreaéonab'l} short time (roughly ¢ IOté.).

[ ad
(e

2.3.4 COMPUTATIONAL INSTABILITY : ’ W

It is hard to obtain a precisé stability criterion for the time
scheme we used, which, as will be seen in Chapter 4 is an Adams- Moulton
method, using an Adams-Bashforth ’s;:h\éme as a predictor. However, following

Henrici (1964), we feel it is quite safe to requiré ’
o ' wit <1 -
\

Y

. . ™~
which is the equivalent criterion for a leapfrog scheme. We know that

,‘-for: Rossby waves, . -

w= k(T- =29 | .“°



At

~
(P = 1.8x10° mz-s. It can be observed that all the criteria are

' \ 18.
where % denotes now the ,y'-ml\(enumber.i There are two cases:
1) Short waves. . \
Then, we can approximate we i‘k. and we want to satisfy UkAt<1; in
" non-dimensional units, this.becomes |
> ‘ U At < | )
“and since U § 1. we finally get . A’c<l
, . .
2) Long waves. . -
' .
The highest frequencies will be given by U<0, so that we can write :
lal ,,, = (90 £2) | : |
The smallest " 2" wavenumber 1s T/p , where D-Poo, since we will be’ "
considering a semi-infinite doma'ln. whereas the sma]'llest "K' wavé-
number is wavenumber 1, where k ~ 1/a, a being the earth's radius. sk
In terms of non-dimensional quantities, we get, since K> 2 min® that k
, .

[\G\ + Q_] At <\
/ ST s
2.3.5 EXAMPLE

Many of the 1ntegrations to be descr'lbed hereafter were done wi th
-the following values of the non-dimepsional parameters: E 0.018,
§ = 0.16, (3- 1. 6. At =0.03, 4y = 0 00625; this choice corresponds
to the following va1ues of the d'lmensiomn parameters: L = 1000 km,
k = 4x10° 7 -1 (rougmy equal to wavenumber 2 at 40 degrees latitude),
= 10m-s A , =160 k!, By - 6025 km, At = 2.5hrs,

\ /

1 , , , . \
- N 0 -

i ‘ . ' / / .
1 v
5

Ve, - . - ’
. ‘JM" (e‘ ) N . 3 v , . hl
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satisfied by this choice, so that stability of tﬁe model could be

expected, at least in the linear stage of the integrations. The A *
|

computational stability criterion for long waves gave woOt = 0,396,

which, as required, is smaller than 1. Valyes of £ €, 03 and At o}

as a function of the dimensional -parameters k, "m’ L, and ps. G can be

obtained using the definitions of section 2.2. \
. ‘ [
) ’/

2.4 BOUNDARY CONDITIONS. | - t{
We hive already mentioned thg cyclic ?oundafy condition {in the
x-direction. There are also th boundary conditions to be specified
in the y-direction. The domain we shall be considering for this
model extends from y = -co to y = Yo 0.y = Yo corresponds to the
northern bdundary. At this point, a wave will be swdtched-on as a
function of time, of which both- the amp]itude and phase w111 be known*

the amplitudes of the remaining harmonics, for the nonlinear 1ntegratdons.

will be set to zero at that point; i.e,

‘P'('ﬂ.ao,ﬂ = A) oma + D) wea ‘ (2.14)

The reason behind this choice fs that we wish to consider a problem

where nonlinear interactions are important only in the critical layer.

This is one way of satisfying that @ondition. The southern boundary

condition is a-1ittle more problematic to define: | So far three 1

different methods have been used. The first is to]assumé the}e is a .

wall and set the amplitudes of thg waves to zero at & = 0, say. The A /

~

second also assumes there is a wall, but sets up a sponge layer (a

-

region/whene'some viscogity is introduced) in front oﬁ it, in order to

A
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(@

absorb the waves. The third method, used by Geisler and q1ck1nson (1974)’

is to extend the wind profile with a 11noar wing of nebative winds far
away frog the region of 1nterest.iup to a wall, in order that the
transients and the propadét1ng or décaying waves are eventually |
absoroed as they encounter a linear co1t1cal level. The first method
produces zinging in the channel, as the waves\initiated at switch-on

time bounce back and forth between the two walls, un]ess one switches on

" the wave very sl 1y. The reason for this is that the ffequenoies of

these transientsare todlarge for_ihaofto see a C.L. in the channel, and

. eventually get absorbed. The second method is bé%ter. although sponge

layers have unpredictable behaviour  as 1linear or nonlinear waves cross
them; part of the wave oan be reflected as happens with any change in
the index of refract1on of a medium, and it is never known exactly how
this affects the’ so1ution. This approach was tried b& Hard (1975), and .
found to give 1hcorrect results. Method 3 is bétter.still, a]though.the
highest frequeﬁcy modes excitéd by the switch-on never see a critical

f
level; moreover. this ‘method has ‘the cumbersome effect of extending the

‘domain of 1ntegration enormously, just to get rid of transients. This

leads to a very large number of gridpoints, only a small fraction of
which are actually needed to solve the problem at hand. It prevents \
the use of fioe resolution. uniess one has a mammoth computer, capable
of digesting a1l the arrays needed. For these reasons, we decided to
trf a fourth method, that™is to implement a time-dependeoo radfation

h.at y = 0, in order to allow the transiénté. and the waves to

20
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propagate freely to - o0 outside the domain of integration, without
|

any reflection. This 1s a better approximation also to what we think

happens in the real atmosphere, as there are no waﬁs present at the

equator, nor sponge layers, nor 200 ms”}

easterly winds. A full
description of the radiation condition we shall use is given in
Bélandl and Warn (1975). However, we will ;rederi\le it here, for the
sake of completeness. Let us consider the problem 01:' a Rossby wa"ve,
switched on at the northern boundar\y. at y=y,»0. The linear governing

equation, for a constant zonal wind @, is

DY + T3 -
AR A A S N ¢ S

Let us firs_t Took at the plane wave solution ei(kx + ,Q_y -wt). After
substitution of this.solution in (2.15), we obtain the welT-known
dispersion formula ® = KT - KE
_ 'l

The phase speed of the Rossby wave is defined as .

2 -2 (a2 +23)

w tooka -
while the group velocity is given by PR
' >
ZS: “ U = _ﬂ(?_( V}‘Q‘) :\ P 'LQ“l . -;
() o a2

with t‘he convention that k» 0. Waves propagating energy towards y’< 0
must have (c;)y< 0; so for these waves, kR< 0, or because of our
convention, 1< 0. This means that the 1ines {kx + Qy) = constant,
slope from the north-east to the south-west (we adopt the usual

convention that x points to the east, Snd y to the north). For the

\
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cteady problem ( %{h 0), let P= pelkx aty = yg,-and let Y =¢(y)e1kx
e a solution; after substituting into (2.15), there comes

\ \

| Py + (& -K)p=o0 »

Two cases arise:

(a) S’- <o 3 O 9— : Non-propagating waves. This leads
to an evanescent wave, and there is no problem in choosing the corr'ect

solution, which is the decaying one.

(b) % -gm>° i 0<V < ﬁ’.‘ : Propagating waves.
i 3

The solution is now
W n gty el g oty = k)

where 8 =(Gm- kz)i ’

Using the boundary condition at y =Yg gets rid of one arbitrary constant.
However, how does one determine the other? This is where thezradi\ation
condition comes into play: simply stated, it tells us to choose the
solution which gives a southward propagation of energy, the only

energy source being at\ = Yo This 1n turn 1mp'lies that (c ) < 0,

or k® < 0, or < 0; thus, A.l = 0,-and we have.a fully determ'lned
solution. It is possible to prove formally, by looking at the

initial value problem thet this is indeed the correct solution. We

shall be using the following initial and boundary conditions:’

P, 04) = Pro e = Fe) e
Vi) = 0




Let

|
!

In the model, y = O corresponds to the\southern boundary, where the

radiation condition will be applied. We will further assume that .
fromy =0joy =-00, U is a constant egative wind, and the
amplitude of the waves at y = 0 is small enough that the 'HneJarized
barotropic vorticity equation offers a valid approximation. Let
W(x,y,t) = <}S(,y.t)e'lnx be a solution of (2.15) (all quantities are

now non-dimensional). We get, a}tgr substituting in (2.15)

2 ' - 1 T
by 9+ iBm(Guydp)rimBp=0 3 n=1,2,3.....,
We solve this equat'lqn by using a Laplace transform method; let
¢ =)

L) = Dioé' Atcp(t) &
The Laplace transformed equation and B.C's become
$‘3‘5 (AeemT)+ @ (im - nd3 - adwl) = 0
o0y = Fia) "
Defining ¢ = U- G/n% , we get, rearranging terms;,

ey g (]

A+ tmv

Q

& - S'"' uumcn *h
pnmu

and choose Re()>0; then, requiring the solution to be bounded at

y = -+« , we get
~ %
. Slya) = Fiye

Thus we see that in the initial value proBlem. there is no arbitrariness
' /

23
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in choosing the correct so]ution. Using the inverse Laplace transform,

Ha,t) = 2 g Fla) el e* d

Ccn

where as usual, ¢ must be chosgn such that all the singularities of
F(s)er 1ie to the left of the 1ine Re(s) = ¢ in the complex s plane.

Making use of the convolution theorem, we can rewrite the above as

t | .
Ply) 2 | Fla-2) wir) At
)
37
wer) = - g e™ ¥ A
e - .
C-con

Differentiating with respect to y, and setting y = 0, we get
t

Pylot) = § @,t-7) W) d¢

with vl

‘t
W(’t\ '1.1\'\.& _Qeu

Noting that as s—+w» | Kﬁmﬁ. we get
\ AN

_ ” A . Y2\ AT _l_ ‘It pt g
Niﬂ—gmi SC(Q mE"Y e dn 4 wiim& e dp
Substituting the definition of Q. in the first integral, and using

the fact that 2t
L (e dnh = AW
Tt
where Alr) is the so-called delta function, we obtain
~ m.g neimGy ] ATy
p) = mETAG) + B Si\n’m \1 A
. After substituting the above expression for ps(v) in the left-hand side

A

of thel equation for qSy(O,t).Awe fina]ly get:

\ t
. q)q(bxt) = M‘Sh@b‘ﬂ = SOQ(OJt"k\ }j\kﬂ at (2.16)

where’ e < ::S“ Sp‘-Kaw‘u\yz ‘kc dn

[ +MO
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Using Abramowitz and Stegun, p. 1024, formula 29.3.48, the above can
be evaluated, and after a simple manipulation, the result comes out

to be

h = '72-(:—.,1«2 QLT SRS 'm&.& .17 -

However, in the model, the unknown variable is not ¢ , but rather%g ;
t
so the boundary condition (2.16) has to be written for % ; to -

achieve this, take % of(2.16):

) x
(¢ 8
S -ndlo, = f‘&{(S 4>mt-'m\ma'tl \%‘o
o
Using Leibnitz' rule to evaluate the right~hand side, we get
K

RAH.S. = BOSHhE) + SO%JXO,’C"*) hee) At

. 1
We now have to evaluate 4(0,0*) from the boundary conditionV¥s=0at t = 0°
1
we get, using the definition of VY ,

1
q)"l“! &¢— © 1t = 0%
the solution of which is
m&g _m&
$=Re +Be % . ¢

N

The two constants A and B can bé easily evaluated, using the boundary

conditions aty 2 Yo and at y-, N .o




.
» o Y 26
5 ’ . ! ‘/ '
. . i
v }Since require (P (yst) to remain bounded as y~» =% , we set B = 0;
: ,.;.;M we have] also? : o
T N ¥ . s m \0.
g L ¢(w.<>*\=&(tﬂ= he
Lo 5% .
where G(t) is the forcing. So A = G(O*) /e’ 9%, and- we get
g
-m8
¢ (0,0 = a(oM)e™ " "
/ The correct radiation condition for % can now be written
- p:] g™
28], 8L = ey o fornnende

/ -
We have seen earlier that 1n our model, U(),ﬂ(x,_v,i:) = Ansin nx + Bn cos nx

X\ ' 5 v i
‘ while for the derivation, we have used the form \,(x,y,t) = Rei(é(‘y,t)e '"%.

or, equivalently, \\’n = Reiq)ml cos nx - Imi@,&sin nx. We thus have

the correspondence Re {cﬁmll = 8", and m g = -A",  simitarly, h (2)

can be written-as Re {h(’c )1+ ilmih("c)l. Using these definitions,
jvey

.

the above radiation condition can then be written as a set of two

_ coupled equations for 3A" -and 48" ;
LS N p quat’ 3& %&:@

’

3] (et ane) dntvat |

o (2.18.a)
| - ¢ e O 4t
. + \ gj %t o) R nel « éﬁw'k) ihkﬂl}) l 4o
T i ', &
L ACARER Y i oo [&ao)&m‘tmﬁ Am*) @hi\\u&]‘ o (180)

- [ 1§ gl dmtheot- B m“""ll " Lﬁ

-
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This concludes the derivation of the model equations. Equations(?.lﬁ.
(2.12)and (2. 13)wm be used to study the evolution in time of the,
Rossby wave C. L these equations will be solved subject to the boundary
conditions(2.14)and (2.18, while the profile U = tanh.y will be
specified 1n1t1a11}. As yet, there exist no analytical solutions to
the non11hear the-dependént problem for Rossby waves (or any other
waves,as a métter of fact,with a varying (in y) wind profile). However,
some 1nterestfng conclusions have been reached using sihp]er equatjons.
They will be reviewed in the fo]1owing chapter, together with.the
available numerical results obtained by solving the 11near and
quasilinear (and .even non]inear, although in a very unsatisfactory way)

probiems.
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CHAPTER 3. PREVIOUS RESULTS

3.1 STEA/DY-STATE LINEAR PROBLEM X
If we neglect the nonlinear terms in(2.8a) and (2. 8b) the system
reduces to the following.:
" B - 2! -ty '\ -
\ ' (&*‘U%,,\\V‘\’ ““\(:‘ “3\5)3%-
where ¥'is the perturbation stream function and U =.G(y) is the mean
zonal wind speed. If we assume a solution of the form
0 | ‘q m ct .
\V L"‘r‘yt\ = ¢& ) ( )

then, we get

LG—L)kqhﬂ ->°k2;5) + ((5“6\”) ? =0

where of is the(real) wavenumber, and ¢ the real phase velocity. (we

assume here that (5‘“ >0 everywhere in the domain). ‘This equation

is similar in type to the Rayleigh equation, except for the beta term,

and it was solved by Kuo (1949). The two basic so1ut'lonsp, obtained by

us!ng the method of Frobenius (see appendix B) are written as:

2 3
[ER SRS NS N

! ¢b +%%]ny+c]y+czy +c3y + eee -

where the values of the coefficients Ch and b are given. in appendix B.

Two problems show up: first, it is apparent that~the perturbation zonal

wind has a logarithmic singularity at y = 0 (we aga&n assume the domain
- 00) . This comes from the $,

of interest extends fromy =y, toy=
solution, which upon differentiation with respect to y yieldsa lny term.  °

!
T SNSRI BT Lo R
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' This is obviously physically incorrect.: T!le second problem appgarsl' ‘
vihén one wants to go from y>0 toy <0. How do v;e“ w{te 'Inuy for

y <07 It can be shown (Lin (1944, 1945) and Kuo (1949) that the

irl\c'l usion of viscosity 1n'thé' critical layer region yields new solutions
in wh'lch u' is not siﬁgula? anymore. These solutions also show that in
order to match t nviscid solution for y > 0, above the C.L.,with

the solution for yjo. under the C.L., the' Iny term, for y < 0, should
be written as 1n |yl- if. This is the so-called -W phase shift, a

result of retaining the viscaqus terms in the critical layer region.

Using this information, the inviscid solutions can now be written as

follows:
for y > 0: P' ="Ky + B,
for y < O: q5-=k¢,\f%<|$b } ’

~
~

where for y<0, 1n yeInlyl The viscous matching then requi res B'=BrB.
and AY = A" - BgjTr. Thus,qthere is a jump in the constant A as one
crosses the C.L., here located at y = 0. It\: is an easy matter to ghow
that this iump is related to the jump in the wave momentum flux across
_ the C.L., averaged over one wavelength (this quantity is equivalent to
the Reynolds stress). Let d~= 1, and ¢ = 0 for simp]icity Then we

(Ltmpar%cp,\e rec. 75

can write‘

!

\ ] 1
where ¢,c.-denotes the complex conjugate. With u' = - %‘-}"—a , and; v’ =2%2m'

29




" one gets w

%
TV = (1/4)(MB - ABY) (¢, By -, Py)-

~

Noting that the Wronskian of the two solutions ¢, and§ is defined as

!
Ps P
¢m§ ¢\n§

the above expression for U'V' caf\ be further simplified. ' The conétant

W=

= ¢m¢bb“ ‘P\' ‘Pq.s%« cOris.t_ant

can be shown to equal -1, by evaluating W at y=0, and using the fact
that 1im 0. i
WO q)“%‘f) l

. .Thus we get that

i

u'v' = -(1/4)(A*B - AB*). J

Since A $ A, g% = B‘,_or.e concludes that: (1) The Reynolds' stress is
constant above and below t‘he C.L., and (2) it has a different vaiué
above and below, or,. in other words, there is a jump. In the special

case whére the wave momentum f'lu; is to vanish at y =& - o0 , the

>
»

jump can be shoyn (see Lin (1967)) to be

[Tu] = ~TAGT (T 6).
\ 20,
(@ subscript-"c" indicates that the derivative is to be evaluated at

the C.L) -
-b)

\

Summarizing the results of the steady-state linear problem, we

A

{
tan say the following:
]

1) u' has a logarithmic singularity at the C.L. '

2) there is a - phase shift in the In y term of the ¢>b' solution.
l .
3) the wave momentum flux u'v' has a jump across the C.L.
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’ peémit a matching of the inviscid solutions, so that ﬁroperly speaking,

he obtains the following equation:

Let us note that in the critical layer, the viscous terms were used to

we should be speaking of the iinear "viscous" steady problem.
\ R

3.2 TIME-DEPENDENT LINEAR PROBLEM

This problem (for Rossby waves) was first solved by Dickinson’ (1970),
using an equation similar to that used by Kuo. It is a simplified
version of the/1inearized barotrop*c v&rticity equation! be assumes the ‘
y (nbrtﬁ-éouthi scale tq be much smaller than thg x-scale, so that the
x-derivative can be dropped in the Labﬁacian (this is the lpngrwave
approximation), and also that the mean zonal wind ﬁ\has a constant
shear, so that one can write t(y) = ﬁ'y, wﬁere the 5r1me denotes a y

derivative., After substituting a solution of the form

Y(ruk) = Glag) gk \

d - -
(‘En:+ Y% %’a\\?\ﬁ * (Sq,'h
He solves it as an initial  value problem: in-which a wave is switched

A

on at t. = 0, along some boundary yqy05> 1, using a Lap]ace transform /h
method. He obtains a solution consisting of a transient oscillating

in y and t. and a large time quasi-steady part very similar to the \
Tollmien-Kuo solutions discussed previous]y in 3.1. warn and Warn (1976),
1n a review of Dickinson's paper, found a number of errors, so that the
solution we give here is taken from their note: for yt>»1, and  t1,

that is for a region lying outside the critical layer:
) - RO\

-t
N

\ . 1 -
Pluf = Glaee)~ 22 oy™s?) + o'e )




where qb(y.oo ) is the solution as t-»co , valid inside or outside the
critical layer: .
Pl = =(T)o" ¥, (29") - W) 4P T,(298)  ye
. y \ '
Plym) = ly\” K, (21a1") . 4o
. / |

It can be shown By expanding the above ‘expressions in powers of y that

they can. be rearranged in a form very similar to the Tollmien-Kuo

' solutions, and that the -iw in the yrosolution cor%esponds gxactly to

the -1 phase shift of the In y term.- In other words, as t=» o0 s
the large time behaviour éeve1qps an identical phase shift, even though
no viscosity is present. This is due to the fact that now the problem

is an 1n1t1a1\va1ue~prob1em. and that the solution is completely

" determined by the initial conditions.

the transient part originating from the
- .

switch-on: at a fixed point in y, the solution will oscillate in time

One should also notice

with period 1/y. and decay ﬁs 1/t2; at a fixed time t, it will show
oséi11ations in y with wavelength 1/t and decaying as 1/y.\ Dickinson
goes on to show that the critical layer decreases in width as t']. The
perturbation zonal velbcity was a1£3 shown by Warn and Warn (1976) to.
grow 1ndef161te1y like 1n t. ;\thus the §ingu1$rity 1s never realized
in a finite time. The wave momentum flux eventually reééhes a constant
value for y > 0 and thereafter exhibits small décaying osEi]lations
about its value at infinite time. Since u'v’ = 0 for y<O0, a jump.is
thus realized. ’ \

- ‘/
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Summarizing the above results, we can say that the large time

behav!our of the forced linear time-dependent problem is very similar
to that of the steady-state l1inear problem; In particular, one should

‘ exﬁect:

1) a - phase shift in the 1n y term.
2) a jump in the Reynolds stress -u'v'.
3 alnt Qrowth of u'.
4) a decrease in width ;¥ the critical layer like 7,
5) a transient oscillation in time and in space superimposed on
- the Targﬁ-: time solution. |

3.3 STEADY-STATE NONLINEAR PROBLEM

\
This problem was first solved by Benney and Bergeron (1969) and

independently by Davis. (1969), and later generalized by Haberman (1972).

|
They solved the following equation:

BECHY Ty By ¥y + ET0TYH) = ¥ VY

where

-
Winw) = (LTm-c)dy+ £ ¥imy)

é being the nonlinear parameter (a. measure of the amplitude of the

perturbation, ‘¢ an inverse Reynolds number, and G(y) a mean zonal flow.

The C.L. is defined atjy = 0, where U (0) = c. These equations are
similar to (2.4) and (2.5) , except for the beta term which is absent

here, and the viscous term. The addition of the beta term does not

N i N

33




34

change quafitative'ly the results, as long as (5 -'(uyy)cst 0, which is -

the case here, at the C.L. Benney and Bergeron defined the parameter

¥ .
LA s

which is a measure of the effect of the viscosity versus that of the
nonlinearities. For A»1, one recovers the results of the linear
"viscous" problem, as the viscous terms are used in the critical Tayer
to resolve the critical level singularity. For 0 « 1, one uses the
nonlinear Jacobiaq to resolve the singularity. This is the case treated
by Benney and Berg;ron, and Davis. The viscous terms will Ftﬂl be
used however, but not in the primary~ balance. This is what is meant
by "nonlinear" critical layer. ’ "
Using the method of matched asymptotic exparlsions, they obtainéd
the fo'l]owihg interesting results. Th‘gre {s no phase shift in 4the
In y term of fhé Tollmien solutions. That is, fory<O0, Iny = n \vb
and AT = A7, BY = B". This leads in turn to the agsence of any
jump in U'v'.across the C.L. In particularj. if it is 0 for y <0, then
it is also 0 for y»0; in the case where one is forcing a wave at |
y = ¥g» 0, this implies a. total reflection at the C.L. (ve(sus the
absorption that resulted in the previous analysis). They also found
that the mean flow had an 0 (:é) distortion, qor, equivalently, that

the zero of the mean flow is moved at most by a distance of o £ ).

' \
"In the éritjca'l layer itself, the harmonics are 0 (£I2) smdller than

the fundamental, while they are 0 ( € ) smaller outside.
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Haberman solved a very similar type of problem, allowing the
parameter A to\céver a wider range of values. He retrieved most
of Benney and Bergeron's results for the case N<<1, and found that
as N is increased to va1uesl79 | , the linear viscous results are
recovered. That is the 1n y phase shift goes from 0 to -iT0 as A
goes from values << 1 to values v71, The Reynolds stress behaves
accordingly. » )

Summarizing the above résu]ts, the nonlinear stea@y problem {s

characterized by the following conclusions:

1) there is no phase shift in the 1n y ternm.

2) there is no jump in the Reynolds stress. '

3) the mean flow distortion is O(€ ), the width of the critical
layer 1s 0(£™), and the amphtude of the harmonics in the

critical layer is 0( € ') smaller than that of the fundamental.

3.4, PREVIOUS NUMERICAL STUDIES )

A number of numerical experiments were undertaken in order to
study the time-dependent Rossby wave cnitical level problem. Some

of the most important results will now be discussed.

3.4.1 LINEAR PROBLEM f

Bennett%\d Young,(1971§) did a numerical integration of the 1inearized
barotropic vorticity equation in time, using a 1inear wind profile and
a forced wave at a northern boundary. Their intention was to study
the propagat\ion of planetary waves in the 'presencé of a critical level.

|
This situation is usually encountered in the tropics, where planetary

- .-
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waves propagating southward from the temperate latitudes usually meet
easterlies; if their phase speed is.such that it matches the speed of
the mean wind, they encounter a C.L. Their results agree with those of
Dickinson (1970). They reach a quasi-steady-state, in which the wave
transports zonal momentum northward, which, according to Eliassen and -
Palm (1961) is indicative of a southward energy transport. South of

the C.L., thq wave mbmentum flux 1s very small, and they conclude that

“the wave-mean flow interaction represents an agsorption of wave

/
1

energy"”. -

3.4.2 QUASILINEAR PROBLEM

&

Geisler and Dickinson (1974) took a further step ahead and considered

the fo]10w1ng “quasilinear" model:
@5‘._‘\':%% %,J&q'vm* ‘5“}) M (Q”G\m\\vm = S&‘ﬁlt)

Fo i At

where S is a vorticity source north of the C.L., and U = u,tanh (y/L)

at t = 0, and Y (x,y,t) = Reicp(y.t)eikxz. In other words, they allow

the resulting forced,&ave to interact with itself to modify U, while ne-
gléctinqﬁny self-interaction which would lead to the excitation of
harmonics. They found that after the switch-onlaf the vorticitysdurgé
far north of the C.L., a ledge develops in the mean flow profile, and
the C.L. moves northward until (b 'ny (>0 at initial time) becomes
negative; at that point, the C.L. stops its northward migration, and

starts moving southward untﬂ (‘5 -U,., changes sign again, and the

yy
process is repeated again, until eventually a steady-state is reached,
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in which @ - qu = 0 at the C.L., the profile having a well defined

ledge, and the C.L. being situated somewhat north of {its initial

position. This oscillation of @ -uyy is well correlated with an ’ '
oscillation in the wave momentum flux U'v', which 1s positive when

@3- uyy is positive, and negative in the other case. u'v' eventually

decays to zero north of the C.L. (1t is a]ways zero south of the C.L.),

indicating the presence of a ref1ected wave at the C.L. which transports

as much energy northward as the forced wave does southward. The whole

process is found to depend on a few critical parameters. The time £

required to set-up the critical layer is contro11ed by the parameter
£ o= O Um

<
. —‘l.
Uy e

The longer the wavelength, and the smaller tﬁe shear.lat initial time,
the longer it takei to initiate the ﬁfocess. They also found that the
steady-state deformation of the mean flow was proportiona] ta the
strength of the source, and to tc‘

We shall now discuss in more detail these results. One of the
steady-state features is that (5 - u = 0 at the C.L. What does this
imply? Since we are in the steady-state. we can use the results of
3.1, and seta@- uW to 0 in the Tollmien-Kuo solutions. It is easy
to check that apart from changing the values of the coefficients L
bn’ and Cpo this has the important result of eliminating the "ln y"
term from the ¢, solution. Therefore there is no phase shift problem,
and since the Reynolds stress, as before,remains constant above and

below the C.L., with A* = A” and B* = B”, the jump disappears. Since

\




38

u'v' is 0 under the C.L., at the steady-state, it is also 0 everywhere.
Thus Geisler and Dickinson's result is not surprising: the singularity
has been removed by the fact that (}'- ﬁyy = 0 where U = 0. In a way,
there is no longer a "critical level problem". We recall that Benney
andlBergeron also had u"v' = 0 everywhere; however, and this is the
interesting part, their profile had (4, ). # 0 (in their problem, it -

yy’e
is equivalent to ( 3- G )4 0). So even though an identical result

(=
js obtained 2at least foiyﬁTV1). the mean flow configuration seems to
be different . We have to boint out here that Benney and.Bergeron get
a mean f10w\distort1on term, which must be added to the original
profile. It is possible that when it is taken into account io
evaluate ﬁyy. thg result is also zero 1ike in Geisler and Dickinson™s
analysis. Yet, even then, one would have to account for the presence
in the critical layer of all the harmonics, which, as mentioned before,
are an essential result of Benney and Bergeron's analvsis, while they
are altogether absent in Geisler and Dicﬁinson's model. According to
Warn and Warn (1976), this seems to be hard to justify. In fact, they
have shown that for t = O(QTvz). the nonlinear gacobian becomes of 0(1)

(in the critical layer), and therefore it is not permitted to neglect

" it as Geisler and Dickinson did, if one_wants to make cqgsistent

approximations. \T\\\\\\\\\\\\;\

A1l these considerations very naturally lead us to the next step,

which is to perform a fully nonlinear 1ntg§rat10n, and hopefully resolve

this dilemma. In other words, is (5 - ﬁyy effectively reduced to 0 in

¥
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-other results, two types of nonlinear integrations. In the fjrst_9n94 ’
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[
the steadycstate, even in the fully non11near problem? And then, is - s
it possible to reach a steady-state similar to the one obtained by
Benney and Bergeron? Or is the stedﬂy state similar to Geis]er and ]
Dickinson's? Answers to these questions will be found in the following
pages. Before discussing our model results, we shall however review

an attempt that was made to solve the nohlinear problem numerically. {

3.4.3 NONLINEAR PROBLEM

boa

Ward (1974) attempted to solve numerically the nonlinear time- ]

dependent problem. His model equations are similar to ours. He

adopted a linear wind profile. In his thesis, he describes, among

T WU IrP S

one wave is forced, and the other higher harmonics aFeﬂgilowed to
develop through nonlinear interactions with the forced wave. In the :
other, two waves are fbrced, and again higher harmonics are allowed

to develop. In both types, ?b_-iis either set to zero or allowed to

« change. -

Before we go on discussing his results, a few remarks should be
made. The non1iNear amplitude parameter he uses has a value of 0.32,
so that é“'= 0.56. Now recall that the width of the critical layer
is of 0({?2). The implications are that: (1) the model is presumably
nonlinear everywhere, because of such a big value of £ , and thus the
problem is altogether different from that treated by Benney and Bergeron,
where nonlinearities are important only in the critical layer, and (2),

since his domain‘extends fromy = 1.6 to y = -1.6, we conclude that
4

w



" 6 or 8 days, and even at that time, the results should be‘treated with

_to drive'@>- ﬁyy to zero at the C.L. He also observes a greéter

L=to el
DTN T AN e S 0 YA TN A M 1y 3+ o
<
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the critical layer boundary is dangerousTY'!’Bse to the walls, so that i

the possib111ty of contamination from the southern computational

f \

boundary is very re The numerical model 1tse1f in our opinion,

is not well suited for such a study: the reso1ut10n (Ay = 250 km) is

much too coarse to resolve they®ine details of the nonﬂinear 1nteractions

in the critical 1ayer. the Jacobian 1s neither energy preserving or
enstrophy-preserving, and finally, the southern boundary is a solid

wall. It is thus not surprising that his integrations never exceed '

caution.

For the first type of 1ntegrg§ﬁ’ts, he observes the following: in
the case where QU =10, U'V' drops to zero after 6 days; the nonlinear
amplitudes exc€® the linear amplitudes by 'a factor of 2 or.3 in the
evanescent region (south of the C.L.). As we shall see later, we got
an'altogether different result. For the case whéte QQ'# 0, up to 6

days, the integrat1on proceeds as in the quasilinear case. This is

not surpr1s1ng, as 1t takes some time for the nonlinear terms to start

modifying the results. In/the second type of integrati®ns, the model

is obviously nonlinear everwherg. The c‘aselg—iio yields the .
f9110w1ng results: there is a northward migration of the C.L., but’

ithout any ledge formation in ‘the méanjwind_trofile; in other words, - )

there is no tendency for the mean flow to develop a curvature such as

penetration of wave energy south of the C;L." After 6 days, however,
. -

the integration starts diverging. and again, no steady-staté is reachedf

We:'shall see later that our results disagree with his.
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Summing up the prggeding consideratioﬁs. we see that the:non1iqear
time-dependent probléh is stil1.unsolved analytically, and that the
only numerical approaéh to it does not give satisfactory answers, due
. 1n’p$rt to the crudene}s of the model, and also to the fact that only
the very early transient development was studied, ahd for a very
1im%ted choice of param;ters (in fact, only one set). In the text to
fol]ov, we intend to do a thorough examination of the problem, exploring
the full range of paramefers involved, and integrating until some
' steady-state is reached (at least 16 the odfer solution, i.e., away
from the C.L.). To achieve this goal, great care was éiven to the

finite difference version of the governing equations; this we will

&
now describe, before going on to discuss the results themselves.

%
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e : CHAPTER 4. THE NUMERICAL MODEL

In ordet\to be able to integrate the model: equations on a
computer, they ha‘e to be approximated by a corresponding set of
finite difference'equations. It is,well-known that finite differénce
equations have solutions ef their.own, which may (or may not) bear
any resemblance with the ana]yt1ca1 so]utions they are supposed to
approximate And if, as in our _case, the analytical equations possess
regions of rapid variation , one has to be extremely careful in the
choice of a numerical scheme. We will now describe the choices we

made, and reasons supporting these choices. ~

4.1 SPATIAL DIFFERENCING

\

The domain of integration éaﬁ be thought of as a channel encircling

the earth; the northern boundary, situated at y = y0>' 0, consists of

a wavy wall, along which flows a westerly current. This current has

a north-south shear (of hyperbo]tc tangent type), and somewhere between
the southern boundary and the northern/boundary, the speed goes to zero:
this wi11 be referred to as the c. L Further south, the flow is
easterly, until the “radiation“ bo?ndary is reached. Waves impingent,
on this boundary are allowed to pass through, without any reflections,

as iong as the flow remains essentially linear. What happens during

" the integration is as follows: as the flow goes along the northern

boundary, steady queg (c = 0) are generéted; these waves propagate

*

™

>

&
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southward Jntil they reach the zero Qﬁnd 1ine, that is, their C.L.
There an interaction takeg place, which we want to study. What goes
through the C.L. bventua;f; reaches the radiation boundary and simply
escapes outside. Since the waves are in an evanescent régime south

of the C.L., théir amplitudes are“very.small when they reach ‘this point,
and the assumption that they can be treated linearly was always well
verified. \ '

Free modes can a1sg be generated at switch-on time. However, it
can be shown (Narn: pr{vate communication) that for the particular
configuration chosen, the only allowed modes are a-set for which

€<=\~ Q/g , with §< 05. Thus, these modes are regujlar (they do
not have a ClL.)? and neutral: Since many of the experiments were done
with & = 0.16, they were not excluded by this criterion. Hoﬁever, )

inspec;ibn of the results seems to indicate that no such free modes

were present, or, if they were, thét thgjr“amp]itude was small enough

to be unnoticeable. -

~ Rs mentiqned before, the‘yxég:;vatives are evaluated éxactly (apart l
from the factithat only a -limited number of waves can be carried). Grid-
points are used to evaluate the y-derivatives. The chofce of a grid

length was dbne in the following way: a-set of nonlfnear “integrations
P N -

~ were done, until eventuaTT§/H;1f1ng the gridiength did not produce

any important change in' the results up td a given 1ntegratioq time.

This &iered the following choice: \

Ay = 0.00625 (625 k)

W Bt Tap . L2 NS
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As we shall see later, such a fine grid length is needed if one wants
to integrate long enough tg‘reach a nonlinear steady-state., The width
of the channe1‘was chosen to represent roughly the propégation of a
wave from the temperate latitudes to thg equator; this in turn yielded
a choice gf 601 grid points. The C.L. was positioned at nf=ié01. that
is, 401 grid pqints south of the forcing. Again, it was checked that
the distance between the forcing boundary and the C.L; did\pot affect
significantly the critical level de&eIopment. We doubled the distance
from the C.L. to the‘forcing boundary: the wave structure/(aﬁp1itude
and phase) remained almost unchanged in the corresponding or averlapping
parts of the domain. A small delay was 1ntroduced because it took
longer for the wave to reach the c.L. ‘Otherwise, everything else
proceeded in a similar fashion. Fig.4,1 shows the mean wind profile,.

. . /
and the domain configuration. ' ‘ . .

. Most of the y-derivatives were of’o(lly?) accuraéy. That 1is :

e . Sl - S

= - \

1

+ 0(8y%)

»

© g2 3 B +hy-9) U o(nd)
‘ 3yt m{;& ' :
. ’/ | 0

The ﬁyy term was evaluated with a' fourth-order scheme, and SO were

the perturbation vorticities in some cases.
‘ |

N
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Fig. 4.1 - Hy-i)erbolic tangent shear flow profile in dimensionless units.

Wave source is at y=2.5. Dashed line represents souiherr;

boundary of fine mesh ( Dy=0.00625 ) integration.
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However. we found that with such a small Qy, the improvement in

accuracy was not worth the extra amount of computing time required for
a fourth-order scheme., A foyrth-order scheme would in fact probab1y
ge more useful for the nonlinear Jacobian.
At the two boundaries, i.e. n =1 and n = 601, these formulas -
| cannot be used. [ﬂjs 1s one of the problem; created by the use of h
finite difference equations: how does one evaluatg %g or’ézé
' . the boundaries? There is-, as yet, no exact way to solve the problem.
Several approximations exist, either in the form of an off-centéred
scheme, or in the form of an extrapolation formula. The off-centered

schemes considered were the following :

D

.g.k) = + L‘(‘(‘Qt bﬂg) - ‘G(‘ﬂ] '.\. 0(&\9)
Ay '

4

*s': T L3t - u¢ (yeou) +4Cazon) o oty?)
(T ' |

~

L gy = Ldi) +£ln £ 200) = 240y 20y ] + O(by)
Ayl - -

fuy = L 240) - 510y 18 tg(q £ 209) - £Ly3389)] + o(ay?) :
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The extrapolation formulas consideréd/were the following:

Fl=F
Fy = 2F, - Fy (1inear)
Fy = Fy - 3F5 + 3F, (quadratic)

\ .
The following quantities have to be evaluated at either one or the

two boundaries: (An)y, (Bn)y, (An) ,(Bh)yy‘and G: In order to choose the

Yy

best possible scheme at the southern boundary, the following experiment
[

was performed: a nonlinear integration was done with the southern

boundary 200 gfid points from the C.L., and another with the same .
boundary displaced 400 grid points from the C.L. Since a radiation 1
condition is used in both, we assumed that the nesults obtained from

the second integration, at a point sitﬁ;ted 200 grid points from the
C.L..were true, and we adjusted the B.C.'s of the first integration so

as to yield a similar result. This showed that the best choice was:

\=0

AN “—‘“%ﬂ 2
| \U%-Q“X\ = LBy ]a \ ‘ | \

That is we assumed the values of U and the values of the perturbation
vorticity at the boundary to ggua]'their respective values at the
first interior point. (An)y and (Bn)y were given by ‘the off-centered

F 4
second order scheme (this derivative has to be evaluated in the




radiation condition). At the northern boundary the choice is more
arbitrary; since we are forcing a wave at this boundary however, the
consequences are in a way less important. In any case,we chose a

second-order off-centered scheme for (An)yy and (Bn)yy

4.2 TIME DIFFERENCING

Five different schemes were tested with the model. They are the
. - ~N

fol1owiqg:

1) Matsuno's simulated backward difference method.
folt+Dt) - F(t) = ¥ | M
W(beBt) - F(t) = M|

] .
Flts Bt) - /‘f(t) - g!m&c

where a "*" denotes a tentative (%1rst guess) value.

2) Leapfrog method

\

\
f(t+Dt) =f(t-nt) + zu%{ }
3) Adams-Bashforth method

f(t+ht) =|f(t) +(1a_§\ t_u\&t

/ )
4) %dams-Moulton method.

 fltepr) 7 W b%_(bﬂ{,, ?a\ m:) e
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(4.1)

(4.2)

LY



where éi\ is obtained by using|scheme (3), for example.
ol 1

(5) Lorenz' scheme

£, Geedt) = ) + %S‘\ at
%(tﬂ\q = ) + -{Q’*\t ét \M

t«ut
For 1inear and quasilinear integrations, all these schemes worked well,

except possibly for scheme 1, which required the use of a much smaller .
time step (by a factor of 3 or 4); even then some damping is present.
This was recognized by Matsuno (1966), who in fact does not recommend

e

use of his scheme for Tong term integrations, which is our case. For

nonlinear integrations, scheme 1 fails completely, as the model becomes .

unstable, even with a very small time step. Scheme 2 has the advantage,
1

with scheme 3,0f being a one step method. It has, however, the undesi-

"rable effect of time-splitting (one of the two numerical solutions

chénges sign every time step). This can be corrected by the use of
time filter, first designed by Robert“(1966) and later analysed by
Asselin (1972). With a value for the filter parameter of 0.002, the

integration behaved quite well, and the results were quite similar to

“those of the other 3 schemes, even after 2400 time steps, which was.

the lﬂsuﬂ length of the integration period (w1th At = 0.036). Scheme
3 was high]y recommended by Lilly (1965), as he found it was the best

overall scheme_he tested: it allows a time step comparable to that

of the leapfrog scheme, has no time-splitting, and a very small "
-amplification term. As shown by Henrici (1962, 1964), it can be
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used in conjunction with scheme 4, as in the case of; a multi-step method:
scheme 3 is then used as a predictor, and scheme 4 ;s a corrector. One
can then iterate, and reduce the numerical error %o a pre-specified
value. This was the scheme adopted by Dietrich (1973); he found it to
give very precise results. This is the scheme we f1na11y chose to

adopt. It was found that one iteration only was—-necessary for
convergence., The time step, as mentioned before was C&t = 0.036. Let
us note finally that scheme 5 is rea]iy a slightly modified version of
scheme 4, since it differs only in the predictor. Wheﬂ tested, it
yielded results which were similar(to 1%) to scheme 4. - -

4,3 THE POISSON EQUATION
The two predictive equations for An and Bn are of the non-homogenous
Poisson type. Defining ¢ (y,t) = 3A or dB , and letting the
- j &n gn e
right hand side of equations” (2.11) and (2.12) equal some function
F(y,t), we can rewrite (2.11) andf(2.12f in the form:

Py~ Mg = Fla®) ™ . (4.3)

F(y,t) is a known function of y and t; the problem is then to solve
for the perturbation stream function tendency. - Once P(y,t) 1s known;
(4.1) and (4.2) are uséd to advance one step in time: and the whole

|

process is repeated again. ~There are many schemes available:to solve

.
such an equation. We chose the so-called "direct" method, because of

|




51

its simplicity and speed. First, a particular solution is sought for

the finite difference version of (4.3); the grid points are numbered
fromm = 1 tom = M, and (4.3) is written as

P ? ‘o 2 - 2 -~
(Pﬂm-\ + - (21- t\'?&ﬁta )¢? = F &tb = CM (4'4)
where superscript "p" denotes the particular solution. Using arbitrary

"guess" values for cpp ] and ¢pm, Pp . is calculated, and the
process is repeated until tpM is obtained A few things should be said

about this particular so'lution. first, it can be shown that it grows

roughly 1ike m2

; to see this, let nzéA:;«Z (in our model, for n=6,
“ and the values quoted before, n2.£ Ay2~0('|0'4)); then, by an iteration

procedure, it can be shown that 3
Qs om-1

(Pm ~ E (m-,Q)c + (m—l)¢2 - (m-2)¢.I

In particular, if we let cg = c, a constant, and <[>2 -fl)-| =@ , then,’
for m W1, \ 9 ‘

‘ q;:; © —;— c+ P

In second place, associated with the finite-differencing, there is a
round-off error; this round-off error, because of the marching process
eventually grows sufficiently to contaminate the result (it grows also
1ike _mz). So some care must be taken to eliminate this source of
error. b;le will come back to this later. Finally, we should mention
that the guess values used dur'lnp theyintegration were the values of
the streamfunction tendency at the previous time step, thus forcing

the particular solution to be quite near the true solution. The ‘

S-
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homogeneous solution to (4.4) is obtained by substituting CP': =e™m
(where the superscript "h" now stands for homogeneous). We obtain the \

basic solution:

olfm Bm
CP:“ = D‘ e + Dze (4.5)
where:
. %= O (2+ Mﬂ'[ts\b‘ N \IL’L*"?‘ aw)? -
/ 2
. o= (1« m&&\g \j\q,m'l&%t)q_q

Z

It is easily shown that in tM as bLy—»0, and n28<<1.
°‘ m(}lly. @= -n £§Ay., that is, we recover the ana]ytic homogeneous

so1ution (since (m-])A y =y). The solution is r efined in terms of
the following parameters: let A= ﬁif, r = °*_‘_ze , and make

s

substitition m = m-M; then, (4.5) becomes - T~
cp:‘ = DT(e( A +r)(m-M)) + D, (sinh r(m-M) e?‘(m'M)) (4.6)

The constant 01 is easily evaluated in the following manner: at the
14

northern boundary, the stream function tendency is specified and

s

j.
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equal to, say, F; we then get

L1

P

D, = F-gf

h
Pl e by = D B

The constant D is obiained by using the radiation condition (2.18‘).
However, since R-" and %{3 are coupled in (2.18.a) and (2.18.b), a

little algebra is necessary in order to get DZ’ This is done in

Appendix C. Once D] and D2 are known, the total solution is simply

. written

P O +
This solution now has to be corrected for round-off error, which,
however small, might eventually contaminate the integration after a
few thousand time steps. We shall use a method dgveloped by Dietrich
(private communication) : we back-substitute ¢m into (4.4), and
evaluate .the corresponding Cp? which can now be writt?q as ¢ +£m,
where Cn is the exact original rjght hand side, and im corresponds
.to"the error introduced in the forcing field evaluated using our
solution @ . Once €  is known, a new particular solution ]mp is
calculated for the forcing field "- £ ". Since the solution ¢M is
exact, we use a guess value of 0 for IP and X? , and we repeat the

P\““%\\mmr:lg procedure described before to get 1\ ® . The homogeneous
| “er

" solution l h is of the same type as (4.6):
.

O ' I = ‘B [ (-3 +r)(m- MSJ.,[) [sinh r(m- M)ea(m M)]

(4.7)
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"Again, D3 is easily evaluated, using the fact that CPM is exact, so
‘that, we get l y = 0; this gives: D3 = 0; D, is eva'luated uging the

r

radiation condition (see Appendix C). The compléte so]ut‘ion is then @

given by

‘ - o § cpm +Im -

-

. . The, procedure can be repeated any number of tikes, untﬂ a prescribed

A

lerror 1imit is rgached. In our integrations, one error scan was found

S

3 ~ to be sufficient for convergenée,. Let us mention finally that the

\

scheme was tested up to wave number 24 (. gf = 23.04), with 601 grid {
points, for a 2400 time step integration. The solution was well-behaved,

o
pad

and whenacompered with the results of the Hneardzheory, was found to

&

be very precise.

4.4 THE FORCING .

’ | B
Unless otherwise specified, the following procedure’ was “adopted for

the switch-on: at m=M, or y=(M-1)Ay=y0, the stheamfunction tendency

was specified. We rewrite (2.6) in the following way:

2 B Pt
P LMY LY

Waolxaysts) =& (y,t) cos (mx- @ (v,t)) (4.8)

where:

. dn(y,’vi \h2(y,t) +B2(y,t)
Balrst) = tan” (4, 1,018, (,0)). e

Neachoose o (yo,t) =1,d (yo,t) =0 for n'> 1, and Ql(yO’t) = T4, °

T e v
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Coa The unit 3mp11tude for0(1(y0,t)'was achieved in a certain lapse of time,

usua]]y 96 A t. 'The -above two consfderatipns completely determine 0

t 3A_ and 3B  aty = (M-1)Qy. >
& DBy S
More.formally, we have. : '

0

N n>Ti > 0598 =0, ;o 38,
nel i 0<t 96Ot = 14960t \fz’)s%%,

1/7(964t ¥2)

0

R ny0; t>96At; %i =0 - %&. 1.

n >

Thevreason behind the slow switch-on is to prevent the buildup of a
“Targe gradlent in thﬂ wave momentum flux near the’ forcing boundary.
Jhis gradient, if allowed-to become important, deforms thegnéan flow
considerably, and the characteristics of the initial wind prot%]e are
‘changed significantly. In fact, after a certa1n number of experiments,
we found out that the best procedure was to let the integrationﬂbe

) )
Tinear during the sw1tch-on. a]]owing the fundamenta] harmonic to "build

¥p s1ow1y throughout the hannel without affecting the mean flow, and

.only then allowing the "ghgration to be quas111near or nonlinear. It N

; was ver1f1ed that the Pesults did not depend on the switch-on procedure(

| qs such. * As long as.the switch-on: time is large enough to prevent: the
wave momerttum flux from affecting the mean f10nunext to tbe forcing
boundary, the results are quite insehsitive to the foliowiﬁbnmanipu]a-
tions: doubling or quadrupling the switch-on time only delays the

linear stage of the critical layer builﬂ-up. without affecting the non-

o
o

11nea;_stage very much; letting U be  constant (in time) in the uppér
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7
200 grid points leaves the results essentially unchanged, as the mean

+
IfJ

flow deformation_there is always 0(10'4) o} less; letting the integra--~
tion be nonlinear during switch-on time did produce a slight deformatio;
of the mean flow near the forcing boundary; however, for values of’£<0.{,
this deformation was eventually smoothed out, and the results were not
affected significantly.

This therefore completes the descr?p;ion of the pumeri;a] mode]l
Before going on to describe the results of nonlinear integrations, we
wil; briefiy comment on a set of linear integrations, designgd to test
the coding, and compare them with the analytical resu1t§ avaf]ab]e,

in order to check the Bcébragy of the finite difference equations (at

léast, the lipnear part of it). §

o
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-~ CHAPTER 5. LINEAR INTEGRATIONS

/

5.1 STANDARD INTEGRATION .
In order to check the coding, a standard integration was performed,

the results of which were compared with Dickinson's (y970) analysis.
The wind profile is somewhat different, since he used a linear wind
profile, versus our hyperbolic tangent prof}le. -However, in the .
critical layer region, both profiles have a more or less 1linear éheJr, '

\ and as will be 'seen, the results, at }east qualitatively, do not seem
to be éffected.at all by\this fact. ~He also made a long wave approxi-
mation (that is, he neglected the x-part of the Laplacian), while we
kept tris term; Since ¢ = 0.16, this term i¢ small, and again, its
presence does not lead to different‘resuIts.

v

One resuft predicted by Dickinson is that the width of the critical”

layer should decrease as t'1. Fig. 5.1 gives a plot of the width as

a function of time. It can be seeh to effectively decrease as t'].
The width of the critical layer was estimated from the momentum flux

divergence at the C.L. We measured the distance required for u'v' to

decrease b} ?'3$ders of magnitude across the c.L., from the 1ingar .

steady—stétg value north of the C.L., to its value south of the C.L.
’ (u™v* = 0 for y<0). . \ _ )
Anofher reéu]t is that the perFurbation zonal wind u' should increase
‘as Int aF the C.L. (gprn ang'WErn'(1976). Fig. 5.2 gives a p1o; of
u' at three points : y = £ 0:025, and y.= 0. At the C.L., it
effective1yljncéeases like/ln t (notice the logarithmic scaie); away

from the C.L., it starts increasing until eventually the critical

raa
o

adf*
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A o . . . ~ \\ .] a
P Fig. 5.1 - Width of critical layer as 2 function of time, as measured .
A . from Reynolds stress jump in linear integratign; @=1.6, b
/ é =0. 16. , »
!
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Fig. 5.2 - Perturbation zgnal wind as a function of time in linear

integration; 1. y=0.025, 2. y=0.0, 3. y=-0.025,

s
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. layer thickness is such that the 2 points y =*0.025 are outside of

the ;ritical layer: the growth then stops, and u' thereafter oscillates

TR T RS R T

in time around some constant value (this is not shown on the graph).

According to Dickinson's results, a jump should develop in time | 1

\ for u'v'. Since there are no energy sources south of the CiL., it
vanishes for y<0; north of the C.L., it should reach a steady-state
value,- depending only on the wave amplitude and phase.at the forcing

level (all other parameEers being held constant)., Fig. 6.1 gives a

plot of u'v' at a point situated 3u§t‘be1ow the forcing, while Fig. 6.2
give; a similar plot for a pgint situated below the C.L. It gs seen
that the npmeric§1 result reproduces almost exactly the analytical
result. In particuHar, one should note the presence of small decaying
oscillations around the steady-state values; they are due to the s

presence of transients generated by the switch-on. As we have seen >

earlier, they also appear in Dickinson's solution as terms of the form
eiyt/ytz. That is, at a fixed\y, there is a decaying oscillation in
time of frequency y. . This is the reason why the oscillations ha&e a
higher frequency in Fig. 6.1 than in Fig. 6.2; the point above the

C.L. is situated at a-value of y'

2.4, while the point below is at © 4
y = = 0.625 (the forcing is aty

2.5). If one looks at u'v' at a,
given time, as a funct‘on of y instead (see Fig. 6.3.a for ex;mpIe) <‘
one sees fhe jump across the.C.L., and also small oscillations in y,
superimpo;ed on a constant value. ' The oscillations have a wavenumber -

,t, and their amplitude also decays as y']. 'CThis is not apparent in

O 5
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fig. 6.3.a , since the profile shown is for a nonlinear 1ntegration;
and at that time, the configuration ;as already startedffo depart
' from that of the linear stage. The preceding remarks were however
verwfied for 11near integrations). That is, ;s one moves away from
the C .s the profile becomes less wavy, and as.time 1ncreases, the
osc111ations deve1op shorter and shorter’ wave]engths.

So far, however, these are only qua11tat1ve\compar1sons. It is
possible to get a measure of the accuracy of the model by evaluating
-the logarithmic phase shift (Qe recall that one of the features of
Dickinson's solution as t—se is to exhibit a -7 phase shift in the

L

In y term). Writing

A B
Iny = 1nlyl - 18, y<0

. &
where now © =9 (t) since we have a time-dependent problem, it is
W

possible to evaluate, with a certain precision, this phase shift from
the numerical results. ,This is done in the following way. Using

Warn and Warn's results, we write

P (yst) =Ply,e0) + 0(1/yt?) (5.1)
,where ¢ly,oo J are essentially the Tollmien-Kuo solutions,- corresponding

to the steady-state inviscid 'problem, that is:

® ly.o) = AP, + BY

From the numerical model, we also have that (see (4.8))

(5.2)

<PU-;) - aly,t,)e 1B OE)
"

) (5.3)

e

N
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. wheré & (y,t) and R(y,t) respéctively refer to fhe amplitude and
phase of the wave as|given by the numerical integration. Equating ' | ‘ *
(5.1) and (5.3), and neglecting the 0(1/yt2) term, we then obtain a |
relationship between A, B and the numerical solution. Letting Qhe\

symbols "+" éndl"-" denote as usual the upper (above the C.L.) and

lower (below the C.L.) solutions, we can write:

+ _ at,t +,+
- = A'¢; + B'¢B (5.4.a)

¢

So far, we have four unknowns (A*, BY, A” and B™) and only two

equations. The other two equations are obtained by differentiating ¢f

™ and ¢- with respect to y; this/gives:
« + =\ + .+ + +
| SR+ Be (5.4.b)
\ ¢y = ¢ay + ¢by Wit

i \

It is then a simple matter to obtain the values of the constants A and
B from (5.4.a) and(5.4.b); usiﬁg the fact that the Wronskian of the

two solutions is simply -1,_we get:

o At = ¢+¢+ - ¢+¢+
y'b by
+ _ o+ttt
B = $ ¢ay ¢y¢a (5.5)

B =¢ ¢ay = ¢y ¢a
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Once Pa and qu are evaluated using the results of Apbendix B, and sirice
@ and qSy are known from the numerical integration, the constants A and B
are easily evaluated; it was also verified that to 0(1/yt), A and B are
insensitive to the choice of a given y to evaluate (5.5)(1.&. they are
indeed constants).

We recall rfr'om the resu'ltc discussed in chapter 3 %gt matching between
(P‘:énd ¢ can be effected by writing In y = 1In(y|-ir for y <0, or equiva-
'Ie'tmt'ly, 'Iett'lng. the two constants A and B above and below the C.L. be related

as follows with now In y = In{y|for y<0:

B*=B = B

AT -A+1rr3-(———;-)

..C

And effectively, as time increases, the numerical model yields exéct'ly these
results. Fig.a 5.3, for example, is a plot of the real part cf the logarithmic
phase shift as a function of time; it is seen to converge to -r quite nicely.
{Notice again the presence of a decaying oscillation in time. This 1s due to. the.
" presence of the eiyt/yt term in (5 4, a) and the eiyt/yt term in (5 4.b). ;
other words, the result is accurate to 0(1/yt) or O(ys) wh1chever is greater

( the O(y ) error comes from the use of a finite number of terms in the

X
Frol;enius method). For example, in Fig. 5.3, at tﬁ86.4, and for y=0.5, this

gives absolute errors of 0(0.02) and 0(D.004) respectively for the 0(1/yt)

and O(ys) neglected terms. When an average in time is taken to eliminate the

effect of the e iyt term, we get a value for the phase shift of 3.15, ’ -y v

a value quite close to Tr. The fo'llowinq vaTues are

¢
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also obtained for the imaginary part of the phase shift, and BY and
B - At this point, we should clarify thg following: the so-called
logarithmic phase shi#t is in general a complex number. At first sight
it is hard to see how © could have an imdginary part when we write for
y <0, Iny = M\yl - 10 . One should remember that this is really only
a convenient way of writing the jump in the constant A acrosé the C.L.
This!jump is determined by including neglected terms in the equation.
It so happens that {n the linear-viscous problém it can be inte}preted
“as a -iw phase shift in the In y term of the Frobenius solution

-(and thus as an acceptéble definition of the Wogarifhm of a negative

\ number). »However,/this is not generally the case: in Haberman's ana-
lysis, the phase shift caﬁqpé seen to vary continuously from -T to 6.
Although it is still called a "logarithmic phase shift", it is hard
to interpret it as the ]o&arithm of a negative number. Moreover, it
has 53 far been impossible to péd&e thaf the "phase.shift" is always a
real ;umber, evgn fhoygh it has always turned out to be so for the
problems already'sblved. Thus, for the nonlinear time-dependent

problem{ it is ;heoretica11y possible to have a complex phase shift.

Im(e) = 0.05
"BY = 0.44+ i 0.14

B™ = 0.45 + 1 0.15

As can be seen, B* and B” match almost exactLy. and the phase shtft is

" seen to bé a real number to-3 significant figures.
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Let us note finally that there is also another way of getting tﬁe
real part of the phase shift, using (3.1); 3777 is obtained from the
médel. and-it is-easy to show that B is equal to (P(y,t) at the C.L.
(y=0), again to 0(1/_yt2) (recall that @, (y=0) = 0, and ?b(y'=0) =1).

A T phase shift is again obtained; however, this method does not prove
that the phase shift is real,/fontrary to the prev?pus one, as only
the real part of 8 enters in the evaluation of u'v'

We should stress here the importance of this quantity. We have
already shown that the real part is ré1;ted to the jump in GTV?. and
thus to the energy flux: a zero part would thus imp]y total reflection
of the wave at the C.L.. The complete phéﬁe shift (real and imaginary
part, if it is non-zero) is also related to the amplitude and phase
of fhe forced wave. In fact, knowledge of the Frobenius solution, and
of AT and B at all times at a forcing boundary is sufficient to deter-
mine the solution completely in the whole domain (above and under the “
C.L.) oncethis.phase shift is known. This remains true for the non- -
Tinear problem, in the outer domain (i.e. away from the C.L.), up t6
a certain accuracy. The change in time of the loga;ithmic phase shift
is directly re1ated to the change in time of the slope of the phase of
the forced wave,.and thus to the change in time of u'v' and of the
energy flux. ' ‘

In summary, the results ofathe linear numerical integration show a

h%gh degree of accuracy, even for a long integration pefiod (2400 time

steps, or 250 days)7 The fact that the mean flow is of hyperbolic .




tangent tybe, and that the x-part of the derivative is kept, contrary

»

to Dickinson's analysis, does not seem to affect at all the critical
layer development. A1l the fine scales generated by the transients
in the linear theory are well represented, and their frequencies and
© amplitudes seem to correspond -to the theory. The -7 logarithmic
phase shift of the iarge time solution is recovered, indicating the
adequacy of the grid length and the time steﬁichosen. as well as the

finite difference schemes. Of course, this experiment says nothing

about the accuracy of the nonlinear finite difference Jacobian, there
being no analytical solutions’of théAnonlinear problem we could use

as a means of comparison.

5.2 FORCING EXPERIMENTS

-

Two types of forcing were tested;sthe first one was designed to

EIEARCE s i S e T e iR

= study the effect of a finite time forcing : that is, the streamfunc-
f tion amplitudé at Y=Yy is brought back to .zero after a given time.
(See Fig. 5.4). Nothing particularly interesting hagpens in this
case. The wave momentum fluxes north and south of the C.L. more or

less follow the behaviour of the forced wave. Areiind the C.L. the

WRS cww L anywE— YT v

momentum flux reaches a maximum some time qfteﬁ the forcing has been ’ o s ‘f
Fe brought Bgck to zero, and thereafter decays 1tself.to zero. The
effect can be thought of as that of a wave packeé propagating towards t
, the C.L.; when it reaches the QtL.. it is "absorbed", and the

amplitude eventually decays back to zero.

L = g o o- 3 - B rve e e A PR €




- \

o PRIRY 1) o AL £
. LT e cnpa, e e R PRTRVEIERO conory e e R T

J \

\ ” »

68

N
(54)
¥

*

RS Yt
FRRR %

]
-
)
t

f

*
o

P ety
s
7
.

‘f
’
UL VEPRVIREY AN

ats

o P Y
—
°
-
.
=

{\EL%. 5.4 - Amplitude of the forced wave
L . as a function of time;
' \ &\ \

. . experiment,

»
1

°

-

s}

at y=y, in forcing experimer_x'ts,

second experiment, -~----- first
o

¢

S v e T GRS 2w #1482

e P ST Y

WEL D et Tk imeada

WX 2™ v e e lr s Ve o om



IR I B e e IR R TR PR AL TR S e e 0 TS

|
/ !

N !
'
.

v
+

IR N i .

The other type of forcing 1s a/oombination standing wave.forcing.
and stationary wave forcing (see'Fig. 5.4). The amplitude of the
standing wave was chosen to be 0.25, w period‘of 120 time steps.
or 4,32 time units. Now a standing wave is really the sum of 0
waves, each propagatingpin an opposite direction, with the same
frequency. and pa]f the amp]itude; Since frequency is reiated to phase

speed by ¢ = W/k, # a"d w=2M/ ywhere T is the period, e have,

'with k = 1 for the forcing wave (in non-dimensional units) that

= &+ 1.45. Now we recall that [ = tanh y ', and is thus qiways sma]ler
than ¢.” This has the fo]iowing implications: the wave propagating to
the east, with ¢ =-1.45, will be in an éyanescent regime; the other
wave, propagating to the west. with ¢ = -1.45 will see‘pq critical |

ievei. and will thus be abie to propagate freeiy across the shear flow.

" This further implies that a non-zero positive u'v' should be observed

south of the stationary wave's C L. This is in fact what we get: in
Fig. 5.5, we have a piot of V'V’ as a function of. time, south of the
Q;L. Clearly, the average of u'v' in time yields a positive value,
0v6x19”3) which is not the case when forcing only with a stationary
wave (see fig..6.2 for example). This is interesting, for it offers

a means by which energy can propagate southward to large distances
without encountering critical Tevels. In the atmosphere. stationary
waves are usually forced by orographic or land-sea temperature
contrasts. If this stationary wave, for some reason, starts pu]sating.
it behaves exactly like a standing wave, and energy might be able to

i .
propagate towards the subtropical latitudes.

\
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.decreases as & increaSes all*other parameters being held cegstant

L
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5.3 VARIATION OF THE & PARAMETER

A series of runs where made with different d va?ues, namely
d = 0.04, 0.16, 0. 3;6 and 0.64. For a shear scale Tength of 1000 km, |
these values COrreSpond rougnly to uave numbers 1, 2, 3 and 4. at
Y= 38°N. A1l other parameters were kept unchanged from their
"standard" values. Using arguments similar to those invoked by Bennett -
and Young (1972), one can conclude that an increase in é resu1ts in a
decrease of the WKB-defined y-wave number: i.e.

1(39 i. G- “35 - 6‘X |

s -

)

This in turn means that the wave momentum flux north of the C.L. should § |
also decrease as § increases, since if we assume a sglution of the form

¢ - Aei(kx+]y), where ¢ is‘given by the above expression, it'is easy to

show that , -
u - aq, a;l -t K& \ \1
— = “
L ] N h

where we have assumed Q(y) ~ 0, a constant..Thus an increase in &
produces a decrease in Q , and_hence, a decrease in u'v'. We list

below the different steady-state values of a number of parameters

" of interest, as /a function of & :

@

. .
rrene A < 1 R R R o . R T S T g R




N 4

§ | B | WV 7Q(deg.)
08 | .42 | .60 -2
"l .16 476 | .56 -19
' .36 449 | .51 9.9
64 | .41 .42 2.5. -

18] is the n;odulus of th; constant multiplying the Py solution. MWe
have already noted that the jump across the C.L. in u'v' is proportional
to|B|2 (gée (3.1)). It can be checked that this is Erue for the above
valdes. B, is the phase of the forced wave south of-the C.L. Since u'v’
is constant and equal to zero in this region, 8. is constant for y< 0.
F'ig 5.6 gives a plot of & as a functwn of §. It is interesting to note
" that the re]ationsh1p is linear; we see that since the phase of the forced -
wave is f1xed to T/4 at ¥=Yq» the value of the phase south of the C.L.
has to increase with & in order for u'v' to decrease north of the C.L.
Apart]from the above considerations, no. significant differences .
whatsoever were observed 1n thé critical layer deve1op%ent between our
resutts and Dickiﬁson s, obtained using fhe long wave approximation
(i.e. d = 0). It seems that the only effect of ¢ is to change the phase
and the amplitude of the wave slightly, 1eav1ng the mechanism of the

" critical layer formation and development unchanged.
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Fig. 5.6 - Phase of the forced wave as a function of & for
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A series of runs were made with the following valies of (3: 1.0,

1.6 and 2.0, the other parameters having their standard value. Again,

we should expect u'v' to change with' ; that is, it should increase

as (@ increases, since now Uy) increases with (5 . . We 1ist below the

values of parameters of interest as a function of (5:

e |8 uv' 0_(deg.)
1.0, [, 877 | .3 25
1% 476 | .56 -19
‘ 2.0, | .67 | .69 | - -47

¥

2

- As expected, u'v' ificreases with (b . Again the jump relationship
: n "

by

is almost exactly verified fgr the above gi.ven values of |B|] and (5

We had mentioned before that the parameter t. =Q in non-dimensional

units. And effectively, as ¢ ‘was increased, the development was

found to be delayed accordingly. We have also plotted in F'ig. 5.7 .

as a function of Q. Again, it is interesting to note that the
re1at10nsh1p seems. to be 1inear. Also, for (¢=0.78, that is at the

‘lower 1imit for stabﬂity, we see that 9= 45 deg., which is the phase
i

of the forced wave at y' = = Yoe
Apart from thes,e observations, the cri tical 'layer deve]opment

proceeded as it did in the standard 'lntegratwn
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CHAPTER 6. NONLINEAR INTEGRATIONS

b \

6.1 STANDARD INTEGRATION

The integration to be described winl be réferred to as the "standard"

integration, for 1t will be used as a basis of comparison with other runs

=P

where the parameters will be"a]fowed to vary, the foréiné modified or
d1ffusion terms will be added.
are &= 0.16, £= 0. 018 (5- 1.6, N = 6 (N designates the number of

harmonics), and At = 0, 036, AY = ,00625. € = 0.018 corresponds to
@ 1.8x10°n%s T with u_ = 10 ms™! and L = 103 A1 other details

The parameters used in the standard run

|
are the same as for the linear tntegratfons. In describing the results,

Q‘Qe will be looking at a number of different quantities, such as the -

(B L (i.e. §§-%tr

In order to compare "the evaluation of some of these ‘quantities with

wave momentum flux uav , ), etc.

the results obtained by Geisler and Dickinson (1974), we have done a quasi-

Tinear integration, ‘using the same set of parameters except that N
6.1.1 WAVE MOMENTUM FLUX ’ \

By wave momentum flux {denoted u‘v'), we mean the total wave, momen-
We sha]] first look
The

tum f]ux, that is the sum for the six harmonics.
y at this quantity at two fixed points 1n y, as a function of time.
firstxpoint is 1ocated just south of the forcing level {more precisely

* aty = 2.4, the forcing being at'y = Yo = 2. 5).
of U'V' as a function of time at y 2.4,

Fig. 6.1 gives a plot

regimes . The first one, (we"ca11 it the Tinear regime), is for all

t
'
. EY
i
i
B
=}
[
-
. .
»

One can observe three different'

76
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¢ Fig. 6.1 = u'v as a function of time at y=2.4; 1. linear integratio‘n,-

‘

2. nonlinear integration, 3. huaailinear integration;

B=1.6, £=0.16, £=0.018, N=6.
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purposes 1dent1cal‘to what was observed 1p a linear integration. It
corresponds to the stage where there is a slow build-up ;f the

harmonics through: nonlinear interactions. .Regime 2 is characterized
by a decrease in u'v' from the linear steady-state value to a value near
0. Notice that the small “eiyt" qsc111at10ns superimposed on the mean
linear value of GTV?St11! P?PS}St during this decay. Regime 3 is
‘characterized by a glowly oscillating GTV‘jaround 0, with, again, thé

"eiyt" oscillation superimposed on it. Since at that time the wdQe source

1s‘sti11 on, this j%pTieé a complete reflection of the wave energy at i
the critical levei;'thus the nonlinear integration gives a result which is
completely differen% from the ‘1inear 1ntegration{ i.e., tﬁé sieady-sfate

* (away from thg cr1t§ca1 Tayer) being characterized by a wave.reflection
instead of a wave absorption. This result is completely in accord with
Benney and Bergeron’s (1969) aﬁa]ysis, who first proved the existence of
suchasolution by showing .that their steady-state had a zero jump in the
Reynolds stress across the C.L.; since it hid to vanish at y— - 0, it

had to bg zero everywhere. On the same figure, we have plotted the )
evolution for a qhas111near 1ntggraﬁ10n (curve 3). It is obviously quite
different. GQ (1974) however showed that eventually the same 5te§dy—
state is reached, after a number’of“sucééssive'decaying oscillations

around zero. It was not poss;b1e (due fb computer time and storage \
1imitations), to integrate loﬁg enough to check that this was 1ndeeq,

the case. Nevertheless, the behaviour spem% to be‘gua11tat1vely :

. similar to- the results they‘bbtéineq i.e., a rapid decrease of U'V, to -

/
x
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l' , @ negative value followed by a rise. We should point out here that our -
model is quite q1fferen@ from theirs jn many aspects. One of these '
differences and not the least, is that in their model, the %% term is -
multiplied by a function OEEALE m\\(-q~3+5.)\ where a and y, are chosen
such that {t4)xo near the forcing level, andfy)s\ near the criticaTileveT"
« (This fact, we should also point out, is not mentibneq‘in)their paper, :
although it was mentioned by Ward (1975))‘ It is not obv1ops to us what
the effects of such-a procedure are in a lohg_termiintegraéion; it seem§
‘conceivable that it could affect the steady-state results. 5
Fig. 6.2 is a plot Pf u'v' at a point situated midway)between the A
C.L. and the southern boundary, i.e. at y = —.0.625. As- expected, after | . i
an initial rise, during the perio& where the critical }ayer is just ‘ ‘
startind'to build. up, the evolution in time js characterized by aﬁ déci]— °
lation around a value of zero. Two stages can be observed; the first
one is a linear stage, in which the evolution is given by a s]owlyrdeca-
ying oscillation, as in the linear integration, and the second one during
which there ;s a sudden increase in the amplitude .of the oscillations,
although the meag is sfi?],rough1y‘z;ro. Note that the beginning of the
second ‘stage ‘coincides with tﬁat of Fig. 6.1. Moreover, no signfficant
\d1fferences were. observed hgtyeen‘the quasilinear .and non]fnear integ;$f10n§.
\Tﬁﬁs, whether’ the model’;s 11near, quasilinear or nonlinear, there ;s no

significant transfer of energy through the C.L., u'v' being 0(10'2) smaller

at all times. - ‘ 1 i - ‘

) »
: - ' ‘
, .
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Let us'look now at u'v' as a function of“j at a given time. Fig. 6.3;a

gives the wave momentum flux of each component Just at the Beginning of
N T
stage 2. The usual linear quasi steadypstate configuration‘is realized

for the forced wave, -inctuding the small e1yt osc111ations At that time,

A

the other harmonics have non-zero u u'v' only 1n the critical layer reg#on

Fig. 6.3.b is a similar graph, for stage 3. The wave momentum f]ux,has
) - ° s

dropped to a value near zero for the forced wave, except in the critical

| s
layer itself| A1l the other harmonics havé zero or near-zero momentum

flux outside the critical layer region, while in th crdtica] layer itself,

each harmonic has a non-zero momentum flux. It is 1ear then that in

) 'the critica] layer itself, no steady-state is r‘% hed. In fact, it might

eventua11y become wunstdble due to the large shear develop1ng in this

region. It is obvious that the numerical model’ is incapable of reso1v1ng
L ]

-the finer and finer scales that are appearing, and hence, we had to stop

the integrations before any kind.of "steady situation" had developed in
, A .

the critical layer itself. However, outs1de the-critical layer region,

the mode] can be cons1dered to show the steady solution. * _ / T~

Summing up the above cpns1derat10ns. we can say the following: above
the cr1tica1 1ayer. the non]inear 1ntegrat1ons yie]d a qua51 steady-state
.characterized by a zero wave momentum f1ux, 1nd1cat1ng‘the presence of |
a reflected wave at the C.L.; this result is altogether d1#ferent from
the linear or quasilinear 1ntegrat10ns, e]though in the Jast ca;e, it ‘
is possible thatqan identical steady-§tate is reached, although la?er in -

time.  In the critical layer,itself, finer and finer scales of motion

" are developing, and no steady-state is reached: howeyér.ﬁidsta@il}ty N
- ey : ¥ ‘.“
i v &' : & v
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could be a possible outcome, leading to a fu11y turbulent critical layer.
Below the critical layer, their isho time-averaged energy flux, so that

the C.L. can be thought of as a barrier to wave enewgy Prbpagation% ulti-

mately reflecting back all 1ncom1ngﬂenergy flux towards the source.

6.1.2 (3-Ty, TERM

6D pointed out the impor¥ance of @-3q5‘(ca11ed Qﬁeff) in their
model (see chapter 3). Fig. 6.4.and Fig. 6.§ show Qbeff asfa function
of y at T=43. and 86, for the nonltnear and quasilinear ihtegrations
respectively.1 T =43 corrgsponds roughly to the beginning of_gtageiz
in the nonlinear 1nte‘gration. In t/he nonlinear case, @eff has gone | ‘\
negative at two places, north of the instantaneous C.L. We should ) E
mention here that in the nonlinear integration, -as in the quasilinear v
integration, the C.L. never moves more than a distance of- 0 (¢ )(roughly
5 or 6(§ridpoints) toward§ the source. We notice also the appeafance in
the profile of many wavelike oscillations in y, which are absent in thé
quasi]ine§r integration (see Fig. 6.5). As time increases, the nonlinear
G%ff develops finer and finer scales of oscillations, and it eventually
,becohes negative quite far north of the instantaneous C.L., whereas the
quasilinear G%ff remains roughly steady throughout the rest of the
integration -period, always being negative at 6r very near the C.L.. This
last remark agrees with the fact that u'v' near the %orcing became nega-
tive after Qleff went negative and remaned negative for the rest(of |
the integration period. However, in the nonlinear case, as we have seen,

. a N
" the evolution of U™V' was quite different. And it is hard to find any




Fig., 6.4.a - (é-’ﬁ'yy "ag a function of y in nonlinéar

at t=43; @=1.6, £=0.16, £=0.018, N=6.
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except for quasilinear integration.
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clear-cut relation betwedh (..o and UV'. It might still be possible
that e’eff triggers the drop in U™V’ in the non]inear integration, since

at that time the harmonics are still small, and their' effect on the mean

flow, for example, "through the u u'v' term is also small compared to that of

the forced weve. ' However, as time increases, their importance 1ncrease§
and eventua‘l‘l\y becomes cgmparab'le to that of the forced wave, in the /
critical layer. In 'fact‘, Warn and ﬁarn (1976) showed that on a time
scale of 0(2'*). the vorticity of all the harmonics becomes of the
same order as that of the primary wave. And in-the present case, for
£ =0.018, this is T~0(7). However, as can be seen from Fig. 6.1,
the drop in u'v' occurs at T& 49, al thoyg’h the non1'1near- integration
(and the quasilinear) start departing from the 1‘1near at T2 20. To
check out whether the evolution of u'v' had any relation with the non-
linear time scale E'*. we did a series of 1ntegrations with €= 0.006,
0\.012. 0.018 and 0.024, all other parameters being identical. Using l
the £ = 0.024 1ntegf'at1on to scale the results, we have plotted the time
required for u'v' at y = 2.4 to decrease to zero as a fun/ction‘of g.
The result is shown in Fig. 6.6. The full curve be‘ g the curve obtained
by assuming an g -t time scale. As can be seen, there is a surprisingly
good agreement with the observed values. T s would seeﬁl to indi-
aate that in the nonlinear integration /{t i§ the "€ " parameter which
governs the evolution of u'v’, and srfnce € multiplies the nonlinear
Jacobian, this term must certainly be as important as the (5- U%
term in reaching a steady/stéte of zero mdbmentum flux.ﬁ In other words,
/ ‘ .
e : ‘ " /

/ / ) ~
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Fig. 6.6 - Time required‘or u'v  to decrease by two orders of maéni-
tude at y=2.4, as a function of €; all values scaled by those

of the Er=0.0é4 integration. Full line is proposed theoretical .
; S

curve.



v
)
” / M
) ’ ‘
N .

eJEﬁ though GD's explanation is probably correct for the quasilinear
case, it qus not hold in the fully nonlinear equftion. Qhere one must
take into account the nonlinear Jacobian. Moreover, Fig. 6.6 seems to
indicate a strong reiétionship between the vglue of the nonlinear
Jacobian and the drop in u'v'. )

One thing we could say also about Fig. 6.4 is that the finer dnq '
finer scales of (Seff could very possibly lead to 1nstab111;y (we shall
come back to this later). In any e&ent, they also show the ﬁeed for a

very fine-resolution in gga11ng with the nonlinear problem. It is the

" appearance of theée finer and finer scales which forced us to stop the

integration at T=86.

6.1.3\M£AN FLOW DEFORMATION
By mean flow deformation, we mean the difference between u(y,t) and
u(y,0), where u(y,0) is the hyperbolic tangent shear fTOJ profile.
According to Benney and Bergeron's (1969) analysis, this deformation is
of 0 (€ )_1n the critical layer. In other words, for example, the
crifical level never moves more than a distance of 0 (£). We have

p]otted in Fig. 6.7 a profile of the deformation as a function of y.

The values seem to be in accord ‘with Benney and Bergeron's resulfs.One can

also notiée that away from the C.L., the deformation becomes quite
small: this is to.be expected since in the outer region, the flow cﬁn,
be assumed to be linear. Also, the deformation is negative everywhere,
indicating the wave and the harmonics are actuél]y dece]erat1n§ the
mean zonal flow; that is, %g is < 0 everywhere; this implies U becomes

more negative for y< 0, and less positive for y>O0.
o

’ |
N
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. 6.1.4 WAVE AMPLITUDE AND PHASE
Fig. 6.8 and Fig. 6%9 are plots of the amplitude and phase at two
different times. namely T=43 and J=§9. As can be seen, south of the
C.L., we have an exponent1a1 decay of wave amp11tude. torresponding to
the evanescent regime, while north of the C.L., the waves show an
oscillating behaviour. According to T. Warn (private communicationj,
the amplitude of the harmonics for O (€'"‘) <t<0 (€") should be 0 (E"‘)
smaller than ;hat‘of the\forceq wave in the critical layer, and 0 (€ )
| smaller away from the critical layer. As can be seen in Fig§. 6.8 |
and 6.9, this is roughly the case in the critical layer (i"zﬁ.lﬁ).
However, outside, the amplitudes are larger than O(£ ). We note however
that T=43 or T=69 1§ also roughly 0 ( e ), so that we are nearing the
time 1iﬁit vaT{H for the scaling to hold. For a linear zonal wind profile,
this time 1imit can be obtained in the fipllowing way, using Warn and
Warn's "(1976) solution for‘yt7?]. with y~ 0(1) (that is, away from the
critic;; layer). We have - /
4 ) ‘ "gt

t = - q ss @ B
CP(.‘M) ~ Py ) Tqr *‘ ) (6.1)

Now, in the nonlinear Jacobian, the lowest order term is given by the.

Cﬁyyy term. (this can be seen by inspection of (6.1)); using (6.1), we
can write that ;
/ eI(w v-f) ~ € 0(<pcp.ﬂ\ ~ O(EY)
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Fig. 6.9.a - Phases of the waves as a function of y at t=43; @=1.

§=0.16, -£=0.018, N=6.
7

U
v
———

.
L
e
-
I 3

“
e
()

ﬂfig. 6.9.b - Same as ffg, 6.9.a, except at t=69.
i _

92

.O\

-~

/




e -

g il i A ]

Similarly, the vorticity tendency term can be approximated by

2 T " O Pyye) ~ O

where again (6.1) was used. It is now easy to see that these two terms
balance each other wﬁen €t = 1, or, in other words, when t = 0 (Ef').
Since so far there does not seem to be any important differences between
our linear results and Dickinéﬁn"s. we tHink that this scaling_ is

probably correct alsc for our problem. Again according to Warn, for t»

O(fv). it is not clear what an expansion in powers of £ for the nonlinear

iplution should look 1ike. However, we checked that for t = 0 (sfza,
the amplitudes of the harmonics outside the critical layer are indeed
0 ( £ ) smaller than that of the forced wave. For t»0 °(e”'), it is
‘possible xhat.ipstabi1ity might set in, caused for example by the Iarge
shears that appear in the critica1'1aye}. However, in this case, no(
sustained growth was noted, and the picture at T=86 shows a similar
amplitude pattern. A

Looking at the phase diagram, we notice that south of the C.L., the
phase 1jnes are essentially vertical, pointing out the fact that the
Reynolds stress is zero in that region. N;rth of the C.L., at T = 43,L
the forced wave displays a N-E - S-W tilt, indicating a northward wave

momentum flux and southward wave energy flux. The phase is fixed at

45° at the northern boundary. The discontinuity in phase north of the

_ )
C.L. is associated with a nodal point in the amplitude. At T = 69, we

notice the phase of the forced wave is vertical both above and below the
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the C.L., 1nd1éat1ng that the wave momentum flux has dropped to zero
and thus the presence of a reflected wave at the C.L.. The harmonics
also display vertical phase lines, except in the critical layer where
a distortion is apparent; this distortion, and non-zer6 amplitudes in
the critical layer, in turn generate momentum fluxes, indicating that
no steady-state has yet peen re?ched in the critical layer itself. We
should also notice that the phase of the harménics is not fixed at the
forcing boundar;. the ampilitudes being'set t; zero at this point.

Finally, we have plotted in Fig. 6.10 the total stream functjonnfield
at five different time inter&a\s for the linear, quasilinear and non-
linear integrations. Looking at the nonlinear case, we notice an
eastward movement of the éat's eye, coréesponding to the phase change of
the forced wave. In the third picture, the phase is essentially vertical,
and we have attained the "quasi" steady-state configuration. As time goes
on, we see finer scales appearing in the cat's eye and above; it is not
clear whether these are due to some instability slowly setting infsgr if they
are part of a final steady-state configuration in the critical layer itself.
The phase is however still vertical throughout‘the channel width. The
“quasilinear field is decidedly different as to ihe shape of the cat's eyes : -
themselves, and also as far gs the movemeat of the cat's eye is concerned.
We notice that there is a steady eastward drift of the cat's eye throughout
all the integration-period, due to the fact that the phase of the fo}ced
wave never stabilizes to a constant value in the y direction. The linear

field is essentially steady after the first picture; the cat's eyes are
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Fig. 6.10 - Total stream function field at five different times: t=17,

A

, 34, 51,69 and 86; (a) linear, (b) quasilinear, (c) nonlinear
S ( N=6).
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which is the same as that obtained from th\e‘s?:éhxly-state l1inear viscous

\
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"skewed" towards the N-E, and remain so, because of the stea&y state

Jump in the Rey’no]ds stress, associated with the jump .in the s]oé'e of the
' . -

phzlase of the forcing wave. ; !

)
6.1.5 LOGARITHMIC PHASE CHANGE

We have already pointed out, in discussing the linear results that

4
the time dependent linear inviscid pngblem yields a logarithmic phase shift

problem; that is, as one goes from y >0 to y< 0, the "In y" term in th'e

Tollmien-Kuo solution can be written as
) Iny * for y>0
2) Tnlgl-im for y< 0

N

This is equivalent to having a J:ump in the constant A which multiplies

R
the ¢, solution, when we simply let Iny=1nly| for y<0 and y>0. Now .

if one deals with the nonlinear problem, it would prove interesting to

check if the same analogy exists between the steady state nonlinear-viscous
prob]em and the time dependent nonlinear inviscid problem; fron1\the resu]ts

we have already described, it is obvious that this is probably the case. since
we have pointed out that a zero jump in the Reynolds stress across the C.L.

is assogiated wiéh a zero logarithmic phase shift. Nevertheless, it might
prove interesting to\proceed as Qe did for the linear integration,, and
evaluate the constant§ A, B and the associated logarithm phase shift

directly  from the numer1c91 solution for the amp]itgde and phase of the

wave. Thus the following approximation will be made, following the results




P
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» of Warn (private communigation). Away from the nonlinear critical layer,

we will assume that the solution is given by a series of the form

- . . .
Wiranr = STondy + e[brygar8eig e rce] +o(e)

A

where the first term is the zonal mean flow, the second, the Frobenius
solution with time dependent coefficients and the third contains part
of tﬁe nonlinear corrections. In order to use the scheme derived in
Chapter 5, we“Qi11 truncate the series before the 0 Zs?‘) term. Thus,
our results should have a relative error of a least 0 (¢ ); with the
value: of € used, this is roughly equal to 0 (15%), which is quite large,
since the actual value can be 4 or 5 times that order. There are also
transient terms, of the form " é%ié}? which can contribute to the

error. However, as time increases, their effect should become less and
less important. Finally, the Frobenius series themselves we are usipg
are given to 0 (yG). so that we cannot move too far away from the C.L.
Taking into account these considerations, several points (1p y) were
chosen, and the error was found (using linear and nonlinear results) to
be minimized around y=0.5. Fige 6.11 giv'es\a plot of | ©=8,+r (§; -, thé

i

complex logarithmic phase shift thus obtained as a function of time. Look-
PN

ing at the real part, we notice a surprisingly good agreement with Benney

. and Bergeron's resu]t; at t la}ge. After an initial transient increase, &y

decreases to Tr, during the linear stage; as nonlinearities start acting,

it further decreases slowly to a value very near 0, corresponding to the

steady-state value of Benney and Bergeron's result. This, of course, follows

t
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6.11 - Complex logarithmic phase shift as a function of time in
AN

nonlinear integration; (ﬁ=l.6. {=0.l6. £=0.018, N=\6.
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- Because of the error in At and A™, this
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closely the evolution of u'v'. In fact, as we have mentioned before, a.
§1tqilar result can be obtained using this quantity to evaluate 8,\. 'Now, in
both Benney and Bergeron's and Haberman's analyses, 61 always turned out to
be zero. We have plotted ‘on the same figure 61 as a function of tige.

As can be s;aen it is zero in the linear .;,tage, but increases slightly as
the nonlinear terms start growing, having a value of ~ 0.5 - 0.6 during

a large part of the integration. . The significance of vthis result is not
clear., It cou'lg simply be erroneous, since it is well inside the error
margin ’(we neglect the t ~ 75-80 results which are getting ‘imprecise).
However, no such error seems to be apparent in the e“ term. We have \
hzoked at the algorithm used to e/ya}uate On and‘Bi. and the error, at
first glance should be equ{ﬂy we]ll distributed between én and 61. This

is not the case when one evaluates A and B. It is possible to show for

3

example that B is more precjse than A. Now, since

/

i

e = l(‘R- P\*'} ﬁ*
. e @
and we have (’: » B {o. it follows that 7 get er = 61- = 0, we need At
/

o

A L]

s not the case. Nhe/n the product
1(A'-A+)B* s formed, it ﬁappens that til/'ae real part is given by th.e sum
of two terms, approximately equal and of opposite. sign. while for the
1magin$ry par ,_‘the'signs are identical. In other words, in one case, the

noise (or the &rror) adds u/p, and in the other, it cancels. This 1is

" probably tt{e reason for the non-zero 01. Another| possibility of course, is

that it might l/)e feature of the n'on'l'ihgar t/1me-dependent problem. This "

could be confirmed ty an analytical solution of the problem.. \

) / B

v N




,\ , ‘ 100

Looki&g at 8% and B”, we find that they match hcross the C.L., the
match being complete as soon as the linear stage sets in. The evolution
in time of the solution ‘can now be described as fol]ows. in the linear
stage, we have 6=n,h#9 ’ B" =B : The phase of the primary wave is
fixed at T/4 at y = Yo slopes towards the C.L., where it becomes

‘'vertical, with a constant value, dependent on‘@,‘ and the distance between

the forcing and the C.L. As the nonlinear terms start growipg, B startschanging
slowly; south of the C.L., the phase of the pr{mary wavé, while remaining
constant in the y-direction, slowly increases to T/4; in so doing, the

slope of the phase north of the C.L. diminishes, and u'v' falls to 0, when

" the phase is W/4 everywhere; at that point B reaches a steady value,

0 = 0 (and 8y = .5or 0). Thus, even though the model is Tinear away from

the C.gi, the non]inear 1nteraotionsoccurr1ng in the critical layer force
a change in A and B , whith in turn modifies the solution everywhere.
This shows the importance of the logarithmip phase shift: the evolution
in time of this quantity is very simply related to the.change in the

primary wave.

6.2 VARIATION OF THE Ef PARAMETER -

L]

In order to investigate furpher the paraoeter range of éhe problem, a
series of jntegfations were performed with the following values of £ :0.04,
0.16, 0.36 and 0.64. The evolution in time of the corresponding u uv' at
y %= 2.4 is presented in Fig. 6.12 (south of the C.L., the wave momentum flux,
oscillates around zero in all cases). Looking first at the linear stage,

we notice, as mentioned béforer that u'v' decreases with increasing & .

max.

/e
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Fig., 6.12 - 0y’ at y=2.4as a funct
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ion of time in ‘nonlinear integration

for different values of &;(=1.6, £=0,018, N=6, and

&§=0.04,0.16, 0,36, 0.64.

-




: tually rises back to positive valués.~ One would be tempted to think that

) . &=10.04, 0,36 and 0.64 is different from that of & = 0.16. Instead of ‘

. | | 102

» - '
' |

- i
We also notice that for t = 0 (£ ) the nonlinear &'V starts departing

from its linear ya]ue. But now, as one can\see. thg bghav1our for

slowly osciltating around a value of 0, u'v' becomes negative, and leven-

this behaviour is in accord with that observed by Geisler and Dickinson in
their model; however, quasilinear integrations with the same Va1ues ofd,

y yielded quite.different values of u'v'. We checked that these results were

; not model-dependent, by modifying the forcing, procedure, letting u constant
‘\ﬁn the upper grid points, checking the Poisson equation scheme, ete...
Th? réason behind this strange Sehaviour_is probably'tpe following: the
two time scales 0 (E'*) and 0 (ifq) are probably not well enougﬁ separated
when a value of 0.018 is used for € . We have seen thqf for Benney and

!

/

H
Bergeron's results to hold, the nonlinear interactions have to be negligible

: outside the critical layer. However, as shown in section 6.1.4, on a time
scale of 0 (qu); the model should become nonlinear everywhere. This means
that the amplitudes of the hﬁrmonics should become eventually of the same
order of magnitude as that of the fundamental in and out of ihe‘critical Iayer:

VT Iﬁ’bur case, E'i =7, and 2'1 = 54, In other words, our period of integra-
tion clearly extends into the fully‘nonlinggr regime. And in ?act. if we
lodk at the amplitudes of the waves, we notice that they beéome as big as
that of the primary as t increases past 0 (i.'1). To check, that this might
prove to be the correct explanation, an integration was done with €= 0.010,

and $= 0.64. This gives €1 =10, and €7 = 100, so that the two time

3 ~
O - .

2

\
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scales are well separated. The ‘fol'lowing result was obtained . the fall

of u'v' to zero was delayed due to the '}a\rger g -t time scale. However.,

now, instead of going negative with values of 0(10']). u'v' oscillated

around zero, with an amplitude never exceeding 0(1x40’2); in other words,

the behaviour was similar to the standard &2 0.16 case. Similar résults

were also obtained for: the £= 0.04 and &= 0.36 cases, thus adding more
weight to this explanation. The fact that our standard integration did

benave according to Benney and Bergeron's analysis is thus in : a way
fortuitous. Since our first results were obtained with £ = 0.018 and N @
§= 0.16, and it is :)n'ly\'later that we varied the parameter Y » We chose

to keep it as, the standarg! integration, as the higher value of £ used ¢

)

ts us to show more clearly the existence of the "quasi steady-state"
characterizing the third stage. | |

The conclusion we draw from this experiment is that quite small values
of € are needdd to separate]the two time scales € Y and £V : this separa-
tion is needed if one wan{pﬁ to observe Benney and Bergeron's results,
in the outer domain, at least. For higher values of ¢ (greafer than say
Q(‘IO'Z))'. the fall of u'v' to zero, even thou§h it happens faster, might

\ .
be mixed with non'linear phenomena in the outer region.

6.3 VARIATION OF THE BETA PARAMET ER

In these experiments, all parameters had their standard value, except
for} which was allowed to take the following values : 1.0, 1.6, and 2.0.
_ The (‘.\- 1.0 integration deveIoped instability; zonal wavenumber 2

{
proved to be uns&% and grew almost at the start, eventually overtaking j
' /

A
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|
the primary wave. After some time, the radiation condition failed, and a

blow-up was experienced, Although it is hard to pinpoint the cause of the
on]inear instability, we suspect it is the deformed basic flow; the

a 1t10n of the forced wave to the hyperbo]1c tangent shear flow is probably
unsthble to wavenumber 2 for that value of (3 . Lorenz (1972) studied this
prgblem, and showed that this is indeed a p;ssible mechanism of barotropic
ipstability. In any event. we have plotted in Fig. 6.13 the growth tn..
of the wave amplitude at a fixed point in y. We notice that the
growth is exponential for t < 25, with a doubling time of 18. As the
amplitude gets larger, it starts interacting non1inear1y with the q}her\ o
components, and departs’ from exponential growth. We shou{d:note here that
a quastlinea} integration with the same paﬂf@?ters remainee stable, and
produced an altogether different result. This is then clearly a case where

a quasilinear approach would produce an erroneous result since“neglect\ofl

the self-interaction of the wave chan?es an unstable /problem into a stable
one. , \ _

The (= 2.0 case yielded a truly intriguing result. Fig. 6.14 gives a
plot of u'v' at y = 2,4 for the qua3111nean and the nonlinear integration

(curves 1 and 2). As can be see », \in both cases, after a certain time

during which the critical layer is et up.‘the wave momentum flux 1ncreases’
relatively abruptly before eyentually decreasing again. In hoth curves 1
and 2, (Pefs, has turned negative at t=30, that is, shortly before the
. rise. According to Ge1sIEr and Dickinson, this should be associéted with

‘a decrease in u'v'; this is clearly not the case. In order to get .

; , I ) /

i - .
A\
. .
a
1
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Fig. 6.13 - Growth of wavenumber 2 as a function of time in

nonlinear integration; (5=1.0, & =0.16, £=0.018, N=6,
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Fig; 6.14 - UV at y=2.4 as a function. of time in nonlinear and
&

quasilinear integrations for@ =2.0; 1: quasilinear, £=0,018,

2. noplinear,£=0.018, 3. nonlinear, € =0.010.
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a better separation of the tiﬁe scales, another 1niegration was done with.
g = 0.010’(curve 301n Eﬁg. 6.14). Again, a similar behaviour was observed.
A careful 1nspect1onfo¥ the output revealed the following: after the 1inear
stage, the phase of the forced wave south gf the C.L. has its linear value
of -49 degrees; north of the C.L., u'v' ig.constant in y, and has its linear
"steady-state" value of 0.69. It then starts growing slowly, being larger
near the forcing, than near the C.L.; it can also be seen to slope from NE
to SW. Simultaneously, the wave amplitude grows, until it attains a maximum
amplitude of 2.5 at y = 1.75, South of the C.L., however, the phase of the
wave has been steadily decreasing towards T/4. We noticed also that for the
¢ = 0.010 éase.(&eff_ was still positive (0.85) when the increase in u'v'
started. The amplitudes of the other harmonics were also very small at that
time (roughly 0 (&) smaller than the fundamental). A short time after the
maximum value of u'v' is reached at y=2-4, it becomes again constantain y
north of the C.L., and then proceeds to decrease slowly, remaining constant
in y. \

It seems that we can attribute the increasg in u'v' to the increase in the
fﬁrced wave amplitude; the .slope of the phase of the forced wave remains
more or less constant next to the forcing wa{] during the increase. This
growth in amplitude is clearly a nonlinear ﬁﬁéﬁ;menon. and since a some~
what similar behaviour is obtained in the quasilinear integration, its ori-
gfn 1ies probably in a wave-zonal flow 1nteraction:mechanism, which for lack
of analytical results is hard to pinpoint. One conclusion we draw from this

experiment, and the preceding one, is that the model is quite sensitive to

variations in the béta pa;ameter. é} seems that only for some limited range

B




. needed to get more insight on the effect of (5 in the nonlinear critical

108

of (3 the results of Benney and Bergeron can be reproduced with a time-

dependent nonlinear model. Here again, an analytical theory would be

layer development.
6.4 DIFFUSION . ’

/
A few experiments were done with the term VV‘Q" added to the right hand
side of the predictive équations. The values of Vv were chosen, taking intd

account the value of the parameter

<]

< s

?\ = "(E'#')_ ‘J

defined in Benney and Bergeron (1969)%2%& Haberman (1972). A<« 1 corres-

G s

ponds to a very small diffusivity; thi‘fc;‘fi:iaas the case treated by Benney

and Bergeron. Haberman extended their anglysis to the cases A = 0(1) and

values > 1, the logarithmic phase shift changes from 0 to -W (see his

fig. 1). This further implies that the Reynolds stress jump across the

C.L. should reappear as A is increased, or as € {is decreased, with v
finite. These results of course were derived for steady-state models,

and it is not clear that they should apply to time-dependent models.
However, since so far the correspondence seems to hold true in many aspects,

.

the following experiments were done: £ was set to 0.018 as in the standard

5 4

and 2x10°
A= 0.01.and 0.1 respectively.. Fig. 6.15 is a plot of u'v' at y = 2.4

integration, and ¥ chosen to be equal to 2x10°

)
A3 1; he showed in particular that as A is increased from values <<1 to i
» giving ‘

for the above two cases,-and for the standard integration, as a function

]
-
o
-
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of time. For A= 0.01, the results are very close to those of the
stgndard integration. Howeveq. for the %= 0.11 case, somé important
differences arise : even at the end of the integration, a small jump
in U™V’ remains across the C.L. A rough evaluation of the associated
phase shift gave a result which is in the range obtained by Haberman, in
his Fig. 1, for that particular value of A . The inclusion of this
diffusion term also hadthe ef\fect of smoothing out the wavy oscillations
in y of the (3 - ‘u'yy te‘rm: and alsc’ol decreasing the amplitudes of the
harmonics. The Geff. tgm, after becoming slightly negative around
t=45, returned to a positive value of 0.1~70.2 for the rest of the
integration period. '

We concl\ude from this experiment that the effect of diffusion, apart
from smoothing out fine scale oscﬂl’at'lons and dec‘reas*lng slightly the
amph'thde§ of harmonics, is to lead to a small but finite jump at the

C.L. in the wave momentum flux, as suggested by Haberman.

6.5 LARGE € CASE

»
So far, we have only investigated the small € parameter range; in

particular, we have shown that for values of E~0(10’2). all the results
described in the s}:andard case hold in the interval 0( e,'i) <t <o 2'1).
Now.\y\ many physical applications, £ is quite large. In order to study
the development for a larger €, an integration was performedlwith '
€= 0.18, that is a value ten times larger than before: We will now(

describe the results.

H e

110

&



Obviously, the two time scales are now almost identical,'since
0(,E'§) % 2, and 0( E‘]) £ 5. Hence, we should expéct the model to

become nonlinear everywhere much faster than before. This was indeed

~ observed, since the model became unstable roughly at t = 25 (becaase of

the failure of the radiation condition). However, quite surprisingly,

in the small time span 0<t<20, a dévglopment qualitatively similar to

that of the €= 0.018 case was observed. We have plotted‘in Fig. 6.16
u'v' as a function of y-at t = 8.6 and t = 19.2, As can be observed, at
t = 8.6, a linear “quasi-steady—staté" has developed:, in whicﬁ the
Reynolds ;tress is constant above the C.L., ‘and jgpps to zero across it.

1
As t increases, u'v’ decreases to zero, and the jump disappears complete-

.ly;fthis.is realized at t = 19, During this time'span. the wave momentum

flux of the other harmonics remains very small (of 0( 10'2))at most, even
though at t=19, their amplitu;es are getting to be of "the order of that
of the primary wave. We should néte that there‘is no increase in the
amplitudes of theiharmonic51 or of the primary wave, south of the C.L. at
that tiﬁe: they all display a; exponential 1ike decay for y<O0. This is
clearly a different result from that obtained By Ward (1974).

Ano;her of Nard's contentions is that when nonlinear interactions are
aliowed, the 1edge observed 1nﬁ5e151er and Dickinson's experiments does
not form. Insteq@. the mean flow supposedly loses momentum uniformly, and
the profiIe‘is s]ow\y drawn upwards towards the source. We have plotted in
Fig. 6.17 the mean flow configuration at t =4.3and t = 19 2. At t =4.3,
the critical layer has not yet developed, Pnd the profile 1s almost similar

\ 4
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to the {nitial profile, exd@pt for a small deformatior near the forcing .

boundary (which does not affect the deye[opment). However, aﬁ t =19.2,

we can observe a well-defined ledge. The C.L. has moved northward by a

distance y = 0.25, that is, a distance which is in agreement with our

previous experiments (i.e. 0(£)).  Thus the result again disagrees
somewhat with Ward's. )

' The conclusion we draw from this experiment is that egéh for a

'moderate1y 1§rge value of £ , the transient nonlinear critical layer

deve]opment is similar in all respects to the(sma11 €' case. The important
difference is now that because of'the coalescence of éhe 271 and ’E'* time
scates, the "outer so]uéion steady-state" does not appear, and the model
becomes rapidly fully nonlinear, and eventually, in our case, unstable.
The cause of Fh1s instability is hard to specify: it could be 5 numerical
instability, for the radiation éondition was derived for linear conditions

at y = 1.25; the limited number of harmonics (6) could alsp be a possible

cause.
6.6 FORCING EXPERIMENTS

Two experiments weré conducted in order to check the effect of a
finite time forcing. apd that of a standing wave forcingy~thé forcing
procedure uged was previously described in section 5.2; in the first-
experiment; ;owever. thg‘forced wave amplitude was brought back toa

value of 0.1 instead of 0 as numerical problems were encountered for

the latter value. _

o I

4

\

@
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In the ;1rst e#periment (i.e. that of a finite time forcing) the
following results were obtained: after an'initial increase in u'v’ near
Y=Y s the wave momentum flux decreases to a smaller value corresponding
to that of the linear steady-state value for that particular value of '
the forcipg amplitude; the initial pulse/eventually reaches the C.L.,
where it 1s absorbed, without producing pny nonlinear critical layer
deve]opment. during the course of the integration, however, @ff does
develop a number of wavy oscillations similar to thg ones observed in
the standard case. At the end of the integratton period, some indication
of numerical 1nstab111t}‘1s present: the cause certainly lies in the

~ fact that the profiles show quite large oscillations of fineJ and finer

iyt terms, whose "effect" is

scales. These are produped by the e
enhanced by the fact that the “steady" values are now very small. The .
mesh finally proves to be too eparse to resolve the oscillations.
In the second experiment. the fact that some energy is a1ﬂowed to

leak through the C. L.. since one of the. two traveling waves has no. C.L. ’
and is able to propagate free1y. eventually produces an increase in the

- amplitudes of some of the harmonics south of the C.L. Again the radiation
cond?tton fails rapidily, and atter a sudden increase in u'v' south of~the

C.L., a blow-up is experienced.‘ Nortp of the C.L., the deve]gpment follows

., closely the pattern set by the standard integration. A Jump develops and

eventua]ly. there is a decrease in the yave momentum flux; the process is

however 1nterrupted abruptly by what is happening 1n-the‘south.
r LA .
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The conclusion we draw from these experiments {s that the model is
certainly not suited to yield definitive results for this type'ofiexperi-
ments : the boundary condition was not designed for such forcings; never-
theless, the earlier part of the development seems to agree with what was
said e;rlier. Of particular interest is the problem of the finite time
switch-on;)it would be ‘interesting to see {f for some cnitica1iamp11tude
a nonlinear critical layer development could be triggered, even though |
the forcing amplitude has been bfought back to zero. Some changes in the
model will have, to made before that problem can be tackled. As ﬁpr the
second problem, it 1; not clear yet what type of boundary cond1t16n would

be best suited.

4

\ t
6.7 EFFECT OF INITIALLY DEFORMED MEAN FLOW OR "WAVE-WAVE ONLY" INTERACTIONS

Under this heading, we shall describe two éxperiménts- the first one

was designed to check the importance of the "zero" harmanic (i.e. the

mean flow deformation). in the evo]ution of the critical layer. To achieve

this, only wave-wave 1nteractions were allowed. The parameters had their
usual standard values. This means that (2,8.2)s replaced by 3$ 0. The
results, surprisingly enough, were almost identical to those of the 1inear

. integration. The wave momentun #?%x is identical, in time and in space,

16

the forcéd_wave amplitude agd phase almost equal to thgir linear countgrpart;

The anithude of the harmonics themselves is at least 0('9-) smaller than
that of the fundamental throuéhout\the integration peniod. Thus, even
though it is quite small, the mean flow deformation is of paramount

importance in the evolutidn towarﬂs the nonlinear steady-state. '

}
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 In the second experimeng. we performed\h 1inear integration using

' the deformed mean flow of the standard nonlinear integration at t=60.48

as the initial mean Q1nd profile. At this time, in the nonlinear

. l .
integration, u'v' has fallen to zero north of the C.L., and (B-uyy has

‘gone negative at three or four places around the C.L., now at y = 0.03,

The idea béhiqd the experiment is to see if a linear steady state solution

t = 60.48. Th

can be obtaineg{ which would resemble the standard nonlinear solution at

solution did poésess some of the features of the nonlinear solution. For
example, u'v" north ﬁf the C.L. does decay to zero; it however does not
remain zero, and starts oscillating around this va]ue the integration
did not extend long enoudh to see if this osci]]ation would even;ualIy
decay to zero. In Fig. 6.18, we have plotted thé 1inear wave’amplitude
at t = 35, along with thg amplitude of the corresponding forced wave in
the nonlinear 1ntegrat10n.‘ As can be seen, they show a similar shape,
even tﬁoughfthe‘valués are‘somewhat different. The phase structure is
similar at that time, u'y' being zero in boéh cases. Nobinstability was
observed, even though the Rayleigh criterion was violated (it is however
only & necessary condition). - /

1

We draw the following two conclusions from these experiments: 1)

Neglect of the mean flow interaction term in the nonlinear problem leads

to a completely erroneous résult. at least for the case where a C.L. 1s
present; 25 use of an observed "defoymedf pfof1le to construct a linear
steady“ tate solutfon will probably give a regsonable result, at least

for the case of yeak{ngniipearities.

results confirmed only partly this hypothesis. The linear

M7
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Fig. 6.18 - Primary wave amplitude in deformed mean flow integra-

tion. Curve labeled "L" is for linear integration, and

- "NL" for nonlinear integration. -
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/ ' CHAPTER 7. CONCLUSION

At the beginning of this work, we have put forth a number of questions.

We, feel we are now in a position to answer these questions, and perhans add

»
Al

a few additional comments to what has already been said. - ,

The main result'of the thesis is to have shown that it is indeed possible

. to reach a steady-state for the nonlinear Rossby wave critical level problem,

ef least in the outer layer, which is similar to the one obtained by Benney
and Bergeron, and Davis. This,steady-steté, as we have seen, is quite diffe-
rent from the linear steady-state, 'in that it is characterized by -a total
reflection of the wave at the C.L., in contrast to the absorption which
characterizes the linear problem. This steady-state differs also from that of
a quasilinear integration in many respects: even though they both predict a
zero jump in u'v', the structure of the critical layer is merkedly ddfferen?,
due to the presence of higher harmonics. It was also shown that the approach
to tpat steady-state is cqmplete1y different, in that the cyciing of wave
momentum flux in and out of the critical layer region is totally absent, and
that no definite correIation between the oscillations of §5 vy and the evo-
lution of u™v' was found. In all of the integrations for which a critical level

concept holds, no significant propagation of wave energy south of the C.L.

'was-observeé. A final remark that shou]ﬁ also be made abont the main result

{s the following:- the steady-state that we reach 1n the outer layer shou\d

really be called a "quasi" steady-state, for the transients excited by the

switch-on procedure eventually\grow in time, such that for t"VO(e 1). the

. model becomes nonlinear everywhere, in whicn case the critical level concept
|

fails to apply. Due to resolution problems, it was not possible for us to

€\

\ ~




@.

120

integrate long enough to oltain useful information about‘what happens
after that.

/interestfng results were also obtained from a number of different
experiments, two of which.we shall discuss here. In one of .these, we added
an eddy diffusion term'to the vorticity equation. The results tended to support
Haberman's conclu;ien that as viscosity 1s.1ncreesed. a jump in u'V' reap-
pears. In other words, the ratio of nonlinearity to viscosity is also of

{mportance in the time-dependent problem, as quite different results are ob-

tained depending on the value of the " A" parameter. In the second experiment,

\
the value of ¢ was increased tp 0.18, that is a value ten times larger than

that of the standa;d experiment. Now for such a large value!, ‘the concept of a
critical level singu1ar1ty barely app11es. since presumab1y the nonlinear
terms should be retained in the equation for the whole domain.’ Nevertheless,
a deve]obmentgguiée similar eya]itative]y. and for some time, quantitatively,
to that of the small € case was observed. In particular, the migration of the
C.L..was again of 0(2.). and a total reflection of the wave was observed, with
the corresponding disappearance of the jump in u'v'. The interest in this
case 1ies in the fact that in the atmosphere, va1ues of £ of 0(10° ) are .
more often encountered than those of 0(10 2y,

Before going “on to ta1& of the relevance of these results éo the "real"
atmosphere, we would 1ike to make three remarks. The first is about the mi-

gration of the C.L. In all of our experiments, this migration is at most of -

- 0(€); and once the C.L. has migrated this distance, 1t,siops. Thus, it does

|
not make much sense to try to:exp]ajn the displacement of a zero wind line

N

|

\

]
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over many ﬁp#dreds or thousands of k110meter§ by a critical layer inte-
ractio; ( in our €= 0.18 integration for e;amplg. the migration was less
than 6 °lat. ). This is not to say ihat a zero wind 1ine cannot move for
such a large distance: but the mechanism by which the migration is effected
is certainly not a critiéal layerainteractton. The secoqd is aboyt the argu-

-

L
ment that adding nonlinearities in a critical layer problem could permit

~ energy transfer through the C.L. For any prob]emxfbr which a critical level

singularity can be defined ( and that implies a small € ), this is not the -

case ( we assuﬁe here that the U profile is such that the waves are evanescent
south of the C.L.; obviously, if one forces from the evanescent side of the

C.L., then wave energy propagation across the critical line is possible). C D)
The third and final remark is about using critical layer concepts for cases

where € is large. This is incorrect. This remark is related to the previous

one in that it is quite possible that for a large € , some energy transfer

might be observed. For example, waves could be excited south of an il1-defined cA.

This 1is however a completely non]inear phenomenon, and none of the con-
clusions cbtained using critical layer theory remain valid anymore.

We now arrive at the final and perhaps most important question: is the
Rossby wave nonlinear critical . level an important phendmenon in the
atmosphere? We should stress here that the barotropic vorticity‘equation is
obviously a very crude approximatibn to the atmosphere; and as such, all
our conclusions should be viewed 1n 1ight of @his limitation. That being
understood, we can say the following. For small values of ¢, that is of 6(10'2);

the time scales involyed are so large that it is quite improbable that a

{
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it s too short even for a linear critical layer development, nothing much can
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nonlinear steady state may ever be reached, due to the natura¥ variability
of the atmosphere. For the standard integration, assuming the values given in

section 2.3.5 for the dimensional parameters, it would take 175 days to reach
-1

the steady state. For wavenumber 10, and a maximum wind speed of 20 m-s
this drops to 17.5 days, still a quite large delay, although it is more reasonable.
For values of £ of 0(107'), the critical layer development is much faster.

As an example, our large & experiﬁent. for the values quoted above, gave times

of 60 days and 6 days resbectiveTy. The last value is clearly small enough for

the phenomenon to happen. Still smaller values wo&]d be obtained for a higher

wind speed. However, for such values of ¢ , the concept of a critical level

becomes questionable, although the development ( at least for £-0.18 ) seems

to be qualitatively similar to the standard small £ ca;e. Another aspect that
should be taken into account is the time scale of the natural variability of

the atmosphere. If this time scale is long enhough, then obviously it could be

possible to get a nonlinear critical layer development. On theﬂotﬁer H%nd, if

be said. In fact, we could summarize the above considerations in the following
way.

Let ﬁs ﬁefine some c11mato]o§1ca1 mean state of the atmosphere, charac-
terized by a mean wind prof11e'ﬁ. and some forcing acting on a ve#y large time
scale ( 1n fact tweo ). Then, if we let tg stand for the time sca]e of the
natural variability of the atmosphere ( this would imply for example that
the C.L. would move 1n time due to some external cause ), t, for the time
scale of tbe Tinear critfcal layer, and tNL for the time scale of the non-

linear critical 1ayer. the following four cases couid poss1b1y describe

[

what happens in the atmosﬁhere:
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: £
time scale interyal steady state phase shift
e ™
) tu'v tNL . | ?
tL< tu( tNL - N - (9"“)? 1
t:‘:l < tL -7

In other words; if tn'is larger thag tNL’ the steady state configuration
would be characterized by a zero logarithmic phase shift, and no jump in
vy across the C.L. Then, one could say : yes, the non11ﬁear Rossby wave
critical Ievel is an 1mpor£ant phenomenon in the atmosphére. If on the other
haﬁd tﬁAfiNL’ then our study cannot be used to reach a conclusion. This would
be an 1ntereéting problem to study. If tL< tﬁf<LtNL' then it is only possible
that a -7 phase shift, and henge a linear critical layer phenomeno;. might
be a correct representation of the situation. This prob]gm could also be tackled
usthg a model quite similar to. ours. Finally, for tu'< EL' no conclusion can
as yet be reachéd. Thus we see that it is poss}bIe to answer that question only
if tu is known, and > tNL.‘ For a1fﬁ%he other cases, we can only speculate.

/In any case, we feel that one of the most important resultsof this sthdy
is with resp‘: to other types of atmospheric waves. The reason is that the -
results obtained for the Rossby wave, although they cannot be extended to

gravity waves, for example, c]early show that a totally different result is

obta1ned from a non]inear critical level than from a linear critical level.

. We fee1 it wou1d thus prove worthwhile to study the case of other atmosphe-

ric waves ( gravity waves, for exanple ) since the time scales 1nv01ved

' might be more relevant to the atmosphere. Such studies might show that a linear
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1

treatment of the C.L. {s Wwrong, and lead to new results. Another field worth

L}

looking into is that of the vertical propagation of Rossby waves, in the
presence of a C.L. So far, only linear or quasilinear studies have been made.

The results obtained using a nonlinear model could prove to be very ‘inte-
, ‘ |

resting, particularly with respect to the sudden stratospheric warming

pheﬁ:omenon. We finally conclude by noting that this study has raised a lot

[
of questions, some of which we intend to pursue further in the near future.
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APPENDIX A: THE MODEL EQUATIONS

Equation(2.4)can be written as

j %,.E+ T.S) + €3¢ <o .’ (A-1)
where :
’ N .‘ N M ,
Ylagt) = 2 Sl p{"bg)t) Ow mix + %{mt)mM’g A(A-Z),
i Mg
L. N A g" ’
=9y = 2’5[5 o MR 4 S uoomnl (A~3)
and ‘ \ )
Am m “l ™~ BM ~m 2 m
S = P\%-méﬁ ;¢ S= 3‘”- (9 : (A-4)

The n=0 harmonic corresponds to the mean flow; t‘he‘\harmonics are

trunicated at n=N (usually 6 in the model), and no negative wavenumbers

.are allowed., We are using the energy-preserving Jacobfan, that is we

write

!

) - 2 LS8R (s (a-5).

- &

125

3
o
%
o
d
y
1
i
:
§
:
;



AT AL TSIV sk AN o

where:

|

=0

N W '
2, 0)= 1 ¥ Al

mQ

oy

S8y = 2

bm\ii(

Mz0-4z0

i ( * }
Substitution of (A-2) and (A-3) in (A-5) yields:

R

o mg vndn )

m,
v MA (y Qa:- (;z

A\

]

(A-6)

oo ml :
O, g ks + D, owmma cnly

M\l . ' M.l u
T O, weng e s+ D cmmqmnlrx) )

Ci o= 3 (S AY)
du
M\& Ly Y
C; =2 (8 )
M\l w
C; = %‘\\S AQ)
X g™
cy =2 .
+ tgls e )

pmh. Samh‘f, |
ot ')
SRR
o = s%e,

We will be using the following identities:

/

* . sin nx sﬂ'lnﬁx = 3{cos(n-Q)x - cos(n+Q)x)

AY

sin nx cosx = s(sin(nf)x + sin(n+Q)x)

sin Qx cosnx = #(sin(Q-n)x + sin{n+Q)x)

cosnx cong ¢ §(cos(n-9)x + cos(n+))x)

9

!

(A-7)\
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fhe zonal g‘ow equation (2.13) 1s obtained by integrating(A-1) from 0

We gedt -

\ A

to 27 , using the following identities:

" \
.

ar '
(sin nx cos ﬂx dx = 0

q\"

(-]
L‘Ssin nx sin Qx dx = g* n=] , |
Gl .o ongg -
m ;-
a5 Scos nx cos Qx dx = Y "=y \ (A-9)
\ S 0 n#Q
aw At —

Ssin fix dx = = gcos nx dx = 0
o uwr !

N
. mim Hm
3Bl 86
M=o

/

since B® ‘\’(y.t), and substituting for c3 " and 62 » we get

7. 13N 30

Agam. we have S= - bst: »- S0 that we can mtegrate once with respect

to y, to fina'l'ly obtain(z 13): Y\ S

2= SRS -8 (A-lo)
meo

3 -
The A? equation is obtained by multip]ying(A-1) by sin px, and taking

Sbk )ad4  of the resulting equation. In the "} " part of the

Jacobian, only the C n,4

4

and C4 terms contribute; we have:
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N & ar
}'Zi; 2;}[ S (M‘\U“‘Q)IX Mo 0 + m(md)m?qr) dy ’g o
%27{ ({ C: = S(M(Q ) e e el A pa ) d £ .g
. , :

Using formu’las (A-8), the integrals can be rewritten as follows :

oN L 'l-ﬂ' :
e
\'z l 2 iQC "g LM(M'Q- p)# ~ cnfm-Q+ p)s & mz(ml-f)d m(mhp)q d'xg
T de () - ®) Ny
N
-1Y 2 i Rel L g Y_mktwe)m cm.@.-mp)m + o mel-p)d <o +l+)p)q]o\l%
S . ) ® .

Using 0\‘9). we get the following results for the above eight integrals

(e.g. —ch\dd

() =4 forn=pif () =-iforn= R \

(2) =-4 forn= R -p | (6)=iforn=Q+.p

(3)=iforn=p-.l_ (M =-tforn=p-8

(4) = -3 for n-e -p-2 (8) = 4 form=-p - |
N /

7
i

Since we require n % 0, (4)and (8)must be discarded; the ‘final result
js then:

) _
?,l Q 9.! 2 9, 1 Q—e,l 9.1,Q 912 1
“C\ z C\ \l -G« ‘g A-1

/

I




where it is understood that only terms with positive indices are

re\tained, and pr 2 < L, "The " gﬁ" part of the Jacobian is
integrated by parts to yield terms of the form

[ T0-+S0 1o 7

| \ ‘ !

where the parenthesis encloses a product of 3 trigonometHc functions.

y ~
The first parenthesis is obviously 0, and we are left with

'MQ
zz 2 (‘(?D [‘M(M-ﬂm o ps ~ m&ml)m awops | Ay
Ms0 Yx0

\

Mo Q=¢

. —12 2 (190 mR 'Hl‘[mkm 1)4 cmrrﬁ + an\q-(),xmw] d«

Again, using (A-8j, the integrals can be simplified as fo'l'lo]ws:

v N .1 2w B
- ":‘Z‘-_o ;.. ?D:‘ ‘:—“ﬂ Leoatmnet- 0) 4 + el p )t ~ eralmedki p)g ~ ol mekep) 5 ] dg
, L] -] (I')

o) ) )]
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LTS )_ oot g {_Qan-l- A8 + o m-eg)ae coﬁ(zm-l° )4 +mw4+v)«] a

M~\‘l '2YY (‘)

Using(A-Q). we then get the foHowing results for thé above™ 'Integrals.

(1) =-2fprn=R+p - (8)=-tforn= L+p
(2) =~2.forn=Q -p . (6)=\— . forn=9-p
(3)-iforn~=p-Q (7)) =-¢forn=p -4
(4) 4forn=-p-Q (8) =-4 forn=-p-Q

¢

LN
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Again. we discard (4) and (8)stnce ny 0; the result 1s finany

E &DP-Q R Qopn ?«'?) :‘P-l bo.-v.q Dy P'L/! 1

Al (A-12)

~ \

The complete JacobTéh can now be writtel as (@-:11) - (A-12). The beta

term gi ves:
i .
-4 . ' z - P -
(SPMZ" i &cos nx sin px dx Ter Sosin nx sin px dxg pB (A-13) |
The vorticity tendency term gives ‘ . ‘\‘

ﬂ N

\ ‘o’:&i \J“ Mmmwprx M-\ - S { c&vmm\m’qm

We can further 1solate the wave-zonal flow interaction termsin the
following way. First notice that these term‘s\are characterizéd he
appearance of a zero value in one of the two indices ‘n,Q in the\
interaction terms "¢"*! " and "D"’Q ". This_is because, as noted
earlier, harmonic number zero corresponds to the zonal fllow. Looking
at (A- 'H) and (A-12). we note that a zero index can appear when either
2 #0, or{p-8( = 0. For. 0= 0, (A-11) is identically zero, while

(A-12) yields

0 .-p,0 p,0
Ps0 _ Ps0 _ -p,0 _ P - - g
pra {0f0 - 080 - 0?0 0, -0y -,
Now, as me@d before, we retain only interaction terms with positive
nce D,P 'Sﬁgg. we end up with |

: ef .
‘\ »(zS p‘“ﬁ'

indices;
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Extracting now the terms with Ip;- £l =0 in (A-11) and' (A-12), and noting
that C?’p is zero, we get

AT S |
which can be written as /

] P).- ¢*g?
. 4 §3,0°9)- Sl

; Using the fact that B0 ‘f N 83 -u and S‘s B vy = -uy. the wave-zonalflow
| »* interaction terms can be written as ' |

% }-5 ¥, 3.(5E)- 5,8 % |
/ This is ‘the energy-preserving form for the linear Jggobiqh. Now in our
model, we found that because of the erf'or introduced by evalua'ting the
1Y (\;.\,%?) derivative at the first-‘l;tterior grid point (notice that

By

ﬁy is not given on the boundary and has to be computed by an off-centered

[ .
difference scheme), it did not matter whether the energy-conserving form

was used or the simpler form

3—1 TS‘S +%° /.,.,73

which has the advantage of avoiding the computation of ﬁy at the boundary.

Since 1ntegrations with both forms y'le'lded simﬂar results, we chose to

use the 1atter form as it was simpler to 1mplement The nonlinear part
of the Jacobian does however remain energy—cpnserv1ng. We can now

write down the complete predicti ve equation for the Ap\ component; with
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" the linear wave-zonaI f]ow interaction terms {solated, by starting the
summation in (A-ll) and (A-12) at =1, and'requiring |{-p|# 0, since
these terms are now written separately. This y'le]ds:
- ?ﬁl\l 9 kl &- ll
%t ?[us ' gms Sy - z;\& N
+C‘i - Gy 1*?(. ? x D, *+Dy 1
- (A-15)

/ ') >
where we require\n-pl# 0, p+2% L, and agair; retain only the interaction

terms which have positive indices.
Equation(z 12) can be derived in a simﬂarlfashion. We muttiply(A-1) by

cos px, and integrate from 0 to 2w . In the " %\5 " part of.the Jacobian,

only the C:"Q‘ and Cg Q‘ terms contribute, and we get :

i i QC Mll S LCUQ-(‘\\“Q)mWJPI; - ua.(md)mm‘q'ldm
mzo- Q=0

Al L i M's [_cm\m—l)m g +u¢\mﬁ)mm'd1 Ax

[, %19 \-o

Again, using (A-8) and (A-9) we obtam :

: "7_11(1 “S[cos(n- ﬁ(ﬂp)x + cos(n- &(+§)x - cos(n+ 9633p)x - cos(nzﬁsp)x] dx

mze A=u
A

|
\,. 1w ! i

Ii IQC mey g[c_:os (n- & -pYx + cos(n- & + p)x + cos{n+ -p)x + cos{nt 1 + p)x dx
o 920 ° ’?\ (5) 2 (6) \ (7) ] (8) )




with the following values for the integrals (of the form %Tr S° ( Y%): /o

- ’/
f
(1) =-4 forn=p+d (5) =2 forn=  +p -
/
(2) =-tforn=4-p C(6) =4 forn= Q-p i \
(3) ='iforn='p-Sl i (7) =4 forn=p -1 // \
) (4) =4 forn=-%-p (8) = 4 for n =—p-R
Again, () and (8)are discarded, and we get:
< 0 Q 2 el ptd Rpd .x X
s Uglal -Q. 13 Uddad) o A .
q ZQ , -C, &C., + 0, *Cl ) ! | (n-17)
Q=0 \ & .
\ In the 'f %m" part of the Jacobian only the D"' and- Dsl terms contribute,»
and integrating by parts as for the A? component, we end up with the
foﬂowing
w1 (I
D LAY ' " v . .
- T[:;Z_ : ng an\m Nk W + Pnkmil) s v ps | M

1

N L
t %L Z: 7;. L [nmu ) Mem + Mkml)mnm‘vx] &

P Using (A-8) and (A-9) we get
! w

}L i i f sz.m.gVeos (n- 1 g)x-cos (n-% -;p)x + cos(n »9»;)x1-cos (nt {21 ;p)x] dx #

;20 23

-

N oL
“'?i 7:?\1; “@os( 0 -n-p)x-cos ( L-n+p)x+cos(n+Q-p )x-cos (nt Q+p)x ] dx
o So0 (5) 6 m (8)

et W4 e e - o aee



with'

(1) ifor n=p+ 4 | (5) =4 forn=Q- p
(2) = -4 forn={-p : (6) = -4 forn=0+p
(3 =tforn=p-§ | (7) =4 forn=p -4 .
(4) = - & forn=-p-Q (8) = -4 for’nl=-p‘.Q

Discarding (4)and (8} we get :

[ 4 e

|1
\ 9\”‘1 Q«f-k Pt p-pd el o
le 2 *0y -0y . +D, .S

-

(A-18)

‘Again, we can write the linear interaction terms separately by extracting

the =0, p -Q =0 and 1Q-p=0 terms from (A-17) and (A-18} their sum is

' P . 0,p
-4(0,2*% + D,0P) + 3pe

" or, in terms of A and Bp: o

AN -S%A

| 0 - )
Since By = - 1, and S‘a = - Ty, » we can rewrite as :

¢
AICANE Ty

The beta tern integrates to :
!

i [R Smmmwch 'Y SM“M‘”]MMX ’H’Q’P‘?

M=o

@3 -
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and the vorticity tendency term to:

N “lL an | EM \1‘". 1 Ia %?

:L- N wl-%sin nx cos px dx + 3 .{,,S:os nx cos px dx | = 52 S
The complete /equat1on can now be written: /

of
P_ h? ?-ll 19\2 Qkk.k PQDQ \v‘l‘).
25 = o{ia,-o o) 4 m GG )
0, v, 03
(A-19)

where we requirelp-2 £ 0, p +A¢ L, and we retain only interaction
terms with positive indices. Equations(A-10), (A-16)and (A-19)are the

three predictive equations used in the numerical model.
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APPENDIX 8 : TOLLMIEN-KUO SOLUTIONS
!
! v

|

The equation to be solved is

cp"--(g_;}g\»f«’)?‘)-() | (B-1)

~.
N

At y = 0, U = ¢, so that there is a regular singular point at y = 0.

Let : . .
. " f
$iw)= ((3_' ¢ . o(’)
O-C .
Then : |
¢" - ¢ =0 (8-2)
. ' 0 ’
Let : -
et g(\o\ = i Gm"ﬁm . (B-3)
v e -\
- (B-4)
B o T, W
w0 <
Let y-Yo = Y, Ye being thé point where ﬁn= ¢c; we expand around this
point u and "" in Taylor series:
u-c¢=Yu' +Yu" + Y GO¥ o+
c 7z < % ¢
2 - _§
- W =i =
u-uc+Yuc +1?_. uc+
Using the fact that (1+x)'] = 1-x+x2-x3+..., one obtains the following
series for fbo'):
fly) = a.,/ an+ Ay +a 2, a S+ a 4*-.()(5) (B-5)
= A /y + g QY+ Ay agy 4 sy Y
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% = e (51-@)TL 4+ &
Ye 1o _ .
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Substituting (B-4) and (B-3) in (B-2) gives the indicial. equation for r;

the two roots\are",‘r-I and r=0. Choosing r =1 yields the fo'l16wing fonﬁulae

- for the "bn" coeffjcients ( the substitution n-—+n+l has been made ).

1:1 .

b, = L,.' ’
2° =%

b3 2 %-1Bq*ah,

20 00 00 e

. 1Y '
bn: a. b, + qbbm-z oot qm_'sb|

%

f“(m-!s

nyl

(B-6)

Since the two roots of the indicial equation differ by an integer,

another linearly independent sdlution is given by:

\

B = € gadmy +] Coy”

' . hd

M=o

|

(B-7)

Substituting- (B-7") ‘and (B-3) into (B-2) yields the following formulae

for the “cn'\v coefficients:

- v

o ‘ A

hz : 8- frt+ g, - '56\02
- ’L R N

-

SO 0l ) o TOT AW = P g



4

Q€2+ Qo v QG = 5&_‘3‘5

b

e v e s 9

Cp = G Cpy* Qo t bt QL G-(ma1)Ch, !
: y M2 | ‘ (B-8)

tim- Yy

(B-7) and (B-4) are the so-called "Tollmien solutions" (here, a " Q"
term is added in the Rayleigh equation), rewritten explicitly t;e'lo\;l

\
as: 1 |
‘ \

¢Q= ’1 T b.l\fifbbvfb fg“’qf--r t bmym :

[ d \

Byi Vv Chaliny + Ceyl v QY e+ (Y™
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. APPENDIX C: THE RADIATION CONDITION

|

The integral appearing in \(2.18.a) and (2.18.b) is evaluated using the
» \
trapezoidal rule; that is, we let t={At, 2=0,1,...,L, and we write:

Lot
g ‘x% . lg{ {40 v260n) + 08 + o 4 2 (0ont) faw]
A )

It is obvious that the values of the stream function tendencies at talAt
are unknown; so we break up the right hand side of (2.18.a) and (2.18.b)
into two parts: one which contains known values ( that is values evaluated
at t=(L-1) At and less ) and on; containing the ﬁnknown values. The part
containing values at t= (L-])At and 'les;s will be designated by w, in (2.18.a)
and wB.iﬁ (2.18.b). We further let B ;ng A, stand for %_E‘m)m;"and %\m,
respectively, and let hR(.O.At) and hI(.QAt) stand fgr Re&(t){ and Im?_h(t)g

in (2.17). We also let :

’Nb(o

h

A=Ay + AL = Cpl & Dyhy & AT

‘n _ph P _ . p -~ ,
B,= Bm*Bm‘CBIm*Dme* Bm \

‘ T g
with - \‘ / ' T
Mﬁw—m .
m= ¢ -
Aty

H,=¢e v Rim- M) \

“h" and “p" s‘tanc‘l for homogeneous and particular solution resf!ecti\iely. We

recall that the uhknowns are DA and DB’ CA ,énd CB having been determined by

using the r‘orther‘n boundary condition. We also define:

M=o ol o b (6= 4Seas
© o R a B ]

\

2
ot




FEIOE

= g
ol

4

Mo

In all of the above, "{ " designates the time stﬁep, "m" the gridpoint

__and "n" the wave number. Substituting in (2.18a) and (2.18b), we obtain /\~
the following

i

CoOT* Dyt mGT,+ m€" QgH,= "8 by LRIAS X)%\x:x

' ‘ th (c-1)
r m{_ W LAf T DA - AR - m§ Af
I 1 - P x
CoAT, +Dglth, * mE "G T mE D, = BE W[ 8]+ (T + Dy, ]
[ . !
x t\% \qt(o\lnfk CeT, + Dn“'l RN T\ (c-2) "
Equations(C-1) and (C-2) form a set of two equations in two unknowns
D, and bB‘ Noting that ho(0) = 0, we get .
D = Db&"%“x"’)“\s"' QA . ‘ 4 i
k .
S (c-3)
» 0, = Dalfmuin). @
: ® : - : .
' k\\‘i ué.u “\ . ; (.c‘4)
0O 1
\ Co {
\ q




¥

/ \ BTV
where : ' N \ | :
& =G [ B L] - ¢ (47,4 0d T, - 87 B h]- K0E-mE"n! -,

\' .
®, = & ‘*q‘f \"IMI‘.& ~Ce (g, ”'“&‘hl\l* n! La{ hgte) - N ST
and are known quantities. Solving for D, and Dg 1n (C-3) and (c-4), we

finally get / .

2 -®56 + (i "\&m“t)@t\

X C (c-8)
i t b“.-‘m& ‘lt“.\i*_ B‘L . .
-\ k 1
|
B& = ®l\e 4 (bw,. mg"‘nJ@g
L] / 4 Q“—— \
(,Ml, *m&‘“\-&'.y' + ot , ’
| \ | " (c-6)
where D M '
8 - % \\I(o) L “ - \
Y N | .
\ ? . ~N /




We note in passing that the evaluation of DA and DB requires the
knowledge of all the previous values of the str"eamfunction tendencies
(in wA and NB) at y = 0, and thus a non-negligible amount of core
memory has to be used to store these values at every time step. ane

o P\ A
DA and DB are knoym, Am and Bm' or, equivalently, T and %

can be computed, and one can proceed with the time differencing scheme.

g
'
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