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Abstract 

Shape is a crucial geometric property of surfaces, interfaces, and membranes in biology, 

colloidal and interface science, and many areas of physics.   This paper presents theory, 

simulation and scaling of local shape and curvedness changes in moving surfaces and 

interfaces, under uniform normal motion, as in phase ordering transitions in liquid crystals.  

Previously presented measures of shape and curvedness are introduced in quantities and 

equations used in colloidal science and interfacial transport phenomena to separate shape 

effects from those of curvedness. Considering in parallel the new shape formalism with the 

classical curvature formalism, this paper sheds new light on what effects originate only 

from shape. The new shape evolution equations are solved under uniform normal surface 

flow. It is found that the solutions obey the so-called “astigmatism equation” fixing the 

linear relation between the radii of curvature. Astigmatic trajectories in the shape-

curvedness phase plane, can be clearly classified into two modes: (i) constant shape 

evolution, and (ii) variable shape-variable curvedness.  Shapes between spheres and 

cylinders follow the former mode for large curvedness and transition at smaller curvedness 

into the latter. Shapes transitions between cylinder and saddles only follow the second 

mode. Under geometry-driven stagnation (i.e. zero normal velocity) shapes can be frozen. 

Evolving spheres and cylinders freeze into the same original shape, but perturbed cylinders 

can freeze into a variety of shapes including saddles. 
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The results provide a useful complementary view on how to describe and control shape 

evolution in surfaces and interfaces, of wide interest in soft matter materials.  

1. Introduction 

The separation of shape and size is well established in the physics of particle-fluid 

suspensions, matrix-filler composites and other multi-phase media [1-3]. The effects on 

such separation in mechanical properties, such as viscosity in suspensions and moduli in 

composites [1-3] is of great relevance to design of material systems and processes. In these 

examples shapes are introduced with the use of a shape parameter and/or sphericity index 

while size is introduced using various equivalent diameters, according to applications.  

These indexes have been successful due to accurate predictability. 

In interfacial transport phenomena and related fields [4], shape is usually identified 

using various scalar curvature measures, such as the Gaussian and the mean curvature. 

With these scalar measures one can classify shapes such as saddles, cylinders, and spheres 

[4,5].  On the other hand, it has been shown [6] that curvatures do not separate intrinsic 

shape from the degree of curvedness, such as when comparing large and small spheres or 

large and small cylinders.  In a large range of fields, such as visual recognition [7,8], 

morphogenesis in biology [9], phase transitions in metals [11], a separation of shape and 

curvedness has been implemented and shown to be a very useful approach when these two 

independent quantities need to be established.   For example, in biological studies 

cylindrical bacterial growth through constant shape and curvedness, offers crucial 

advantages such as in cell division [10]. Control and optimization of fluid-solid interactions 

to minimize friction drag is another well-known area were shape determination is of great 

relevance.   
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Having established the importance and need to distinguish shape from curvedness we next 

quantify these ideas by introducing the shape-curvedness space [6], shown in Figure 1.  

This  2D space specify the shape (x-axis, dimensionless) , such as cylinder, saddle or 

sphere and the curvedness (y-axis, with units of reciprocal length L
-1

) which is an 

indication of non-flatness [6]. Fig. 1 shows three characteristic trajectories that specify the 

modes of temporal evolution under motion: (i) shape invariant evolution (vertical line), (ii) 

constant curvedness evolution (horizontal line), (iii) variable shape-variable curvedness 

evolution (arbitrary curve). In this paper we seek to find the specific conditions that lead to 

evolution under constant shape, such as growing cylinders and those conditions leading to 

shape changes, such as a quasi-cylinder becoming a saddle. In this paper we only consider 

non-material local surface patches that exist between two bulk phases, such as the nematic-

isotropic interface during the order-disorder transition. It is worth noting global shape 

evolution is outside the scope of this paper, but our description could be applied locally to 

these cases.  
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Figure 1. Curvedness-Shape space for surface patches.  Evolution of surface patches can be at constant shape 

(vertical purple line), constant curvedness (horizontal blue line), or variable shape-variable curvedness 

(curved red line).  Under the well-known and frequent normal uniform motion, the first or the last mode are 

possible.  

Given the importance of decoupling shape from curvedness, in this paper we 

introduce shape and curvedness quantities and incorporate them in the evolution of surfaces 

and interfaces, restricting the surface patch motion to that of uniform normal motion. The 

case of uniform normal motion was previously introduced by [12,13] to analyze metal 

solidification and is the appropriate starting point in this new formulation to the kinetics of 

interfacial shaping. In uniform normal motion only, the uniform normal interface velocity 

is taken into account and no spatial gradients are present [12].  The purely normal velocity 

is accommodated by selecting a moving coordinate system in which tangential velocity is 

zero [14], which is a good choice for non-material surfaces. The shape-curvedness 

approach used in this paper was further extended with great impact in hard materials; see 

for example [15].  Here we extend this shape-curvedness approach to soft matter materials 

undergoing phase ordering transitions under uniform normal motion, where the normal 

velocity V is given by a balance of thermodynamic/elastic driving forcesL  and capillary 

pressure pc [16-20]: 

cV pβ = += += += +L                                                                                                         (1) 

where β is a viscosity coefficient. 

Next we describe the objectives and scope of this work.  The paper compares the 

traditional curvature approach (mean and Gaussian curvature) with the decoupled shape-

curvedness approach.  A few well-known examples from soft matter are firstly re-described 

with the shape-curvedness approach, with the objective of establishing correspondence and 

complementarity. Then we consider temporal surface evolution under uniform motion and 

show that it leads to the “astigmatism equation”, which emerges when there is a linear 
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relation between the two surface main radii of curvature. When the found astigmatic 

evolution is converted into shape-curvedness evolution, we then clearly identify conditions 

that lead to shape-invariant evolution such as in cylindrical and spherical patches and those 

that lead to saddles.  Finally, we take into account stagnation, that is conditions where V in 

eqn. (1) vanishes [21], freezing the evolving shape into characteristic shape-curvature 

families. In particular, we find that the cylindrical shape can evolve and freeze into low 

curvedness spherical patches, intermediate curvedness cylindrical patches, or high 

curvedness saddles and vice versa.  On the other hand, spherical patches always retain their 

shape and stagnation just freezes the curvedness.   

The organization of this paper is as follows. Section 2 treats the geometric 

characterization of surfaces using the well-known curvature approach and it introduces the 

shape-curvedness properties, previously presented in [6].   Examples of the shape-

curvedness method to surfactant packing and capillary pressure establish how shape enters 

into these phenomena. Section 3 presents geometric evolution under uniform normal 

surface motion using first the curvature approach and then the new shape-curvedness 

method. We show how this important motion leads to an evolution according to the 

“astigmatic equation”. We also show how the perturbed cylindrical shape can evolve into 

spherical, cylindrical or saddle patches. As mentioned above we only consider local surface 

patches, uniform normal motion. Global aspects, closed surfaces, velocity gradients, 

changes in the metric are not in the scope of this paper. 

2.  Geometric Characterization of Surfaces: Curvatures, Shape and Curvedness 

 The surface geometry is characterized by the symmetric 2x2 curvature tensor b [4]: 

1 2s 1 1 2 2+κ κ= −∇ =b k e e e e

 
                                                                                             (2) 
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where{
m m

κ ,e }, m = 1, 2 are the eigenvalues and eigenvectors of b , s s∇ = ⋅∇∇ = ⋅∇∇ = ⋅∇∇ = ⋅∇I  is the 

interfacial gradient operator,   Is=I-kk  is the surface unit dyadic, k is the surface unit 

normal, and ∇∇∇∇ is the 3D gradient operator.   The principal curvatures κ1, κ2 (eigenvalues of 

b) define the principal radii of curvature (Rm) of the surface: κm= -1/Rm.  The curvature 

tensor b can be decomposed into a trace sHI and a deviatoric Dq  curvature tensor [22-25] 

as express in:   

1 2 1 2s κ κH + D ;  2H= + ; 2D -κ=κ=b I q                                                                                 (3) 

The reader is referred to Appendix A for the mathematical detail.  The magnitude of the 

deviatoric curvature D is a useful non-sphericity index since it vanished for a sphere (D = 

0); without loss of generality we use D>0.   Defining the deviatoric curvature tensor 

sH D= = −f I -b q , we find by using b and f, the mean H, Gaussian K, square deviatoric D
2
, 

and Casorati C curvatures [6,26] as follows: 

( ) ( ) ( ) ( )2 21 1 1 1
H= : ;K : ;D : ; :

2 2 2 2
s s s s s s s s sC⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ε I ε b ε b ε b I f I f I b I b            (4)

 

 where s s= − ×ε k I is the surface alternator dyadic.  These curvatures are summarized on 

Table 1.  
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Table 1. Four curvatures based on the curvature tensor b and deviatoric curvature tensor f.  

 

Curvatures Symbols Relations Tensor 

Contractions 

Principal 

Curvatures 

Mean H H ( ): / 2s s s⋅ ⋅ε I ε b
 

1 2
κ

2

κ+

 

Gaussian K K ( ): / 2s s⋅ ⋅ε b ε b
 

1 2
κ κ

 

Deviatoric D 2H -K
 

( ): / 2s s⋅ ⋅I f I f
 

1 2
κ

2

κ−

 

Casorati C 2 2H +D
 

( ): / 2s s⋅ ⋅I b I b
 

1 2

2 2κ

2

κ+

 

 

The usual surface patch shape characterization is based on the HK or equivalently HD 

curvatures, shown in Table 2. 

 

Table 2. Surface shape classification according to the HK(HD) method.  

Surface Patch Curvatures 

cylinder (ridge,rut) H=D;H=-D, K=0 

spherical cap D=0, K>0 

saddle H=0, K<0 

H: mean; D: deviatoric, K: Gaussian curvatures 
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In this HK characterization, the intrinsic surface shape and the magnitude of curvedness are 

co-mingled since these curvatures are not dimensionless.  To decouple these two quantities, 

the shape-curvedness (SC) classification was proposed [6], which uses Casorati’s C 

curvature (see Table 1) and a normalized function of the ratio H/D: 

12 H
S tan

Dπ
−−−−

    
====     

    
                                                                                                                    

(5) 

The shape index (-1< S <+1) gives a continuous evolution between shapes, with S = 0 

denoting a saddle, S = 1/2 a cylinder and S = 1 a sphere; for a surface patch the sign of S 

defines the concavity, with S = +1/2 the cylindrical patch is concave up and for S = -1/2 

concave down.  The SC classification corresponding to Table 2 is shown in Figure 2, 

adapted from [7]. 
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Figure 2. (a) Classes in shape space; adapted from [7].  (b) Curvedness space for a constant shape, showing 

changes in Casorati’s C curvature.   
 

Expressing {{{{ }}}}H, D in terms of {{{{ }}}}S,C , shows that the HD scheme comingles shape S and 

curvedness C : 

(((( ))))2S S
H Csin ;   D Ccos ;K C cos S

2 2

π π
π            = = = −= = = −= = = −= = = −            

            
                                                         (6) 

In this convention H<0 (H>0), when -1<S<0 (0<S<1), and D>0 for -1<S<1.  If we consider 

the transformation between the HD and SC systems, we find: 

S S
sin Ccos

dH dS2 2 2

dD dCS S
cos Csin

2 2 2

π π π

π π π

                
                                            ====                                        −−−−                
                

                                                                         (7) 

then it follows that when HD are fixed (dH=dD=0)  then SC are also fixed ( dC=dS=0) , 

but if only H is fixed then only a function S=f(C) if fixed and in principle different shapes 

with different curvedness can meet the H-constraints. Some representative examples of the 

SC approach based on soft matter models follow. 

2.1 Statics  

(i) Shape equation for anisotropic surfaces    

In the statics of surfaces and interfaces the shape equation is [16-20]:  

2

s 2

S
: 2 : H bCsin

2

γ π
γT kk I

k

    ∂∂∂∂     − = − + =− = − + =− = − + =− = − + =         ∂∂∂∂         
                                                                      (8) 

where γ (k) is the interfacial tension, :T kk  is the bulk stress load, 
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2 2

s : /γI k∂ ∂∂ ∂∂ ∂∂ ∂  is the Herring’s pressure [17,18] and  (((( ))))2 2

s
b 2 : /γ γI k= + ∂ ∂= + ∂ ∂= + ∂ ∂= + ∂ ∂ is the 

anisotropic tension; more general equations that include director orientation are not 

discussed for brevity.  We note that the shape equation (8) contains the Casorati curvature 

as well. Defining : aT kk ≡≡≡≡ , we find that solutions to the shape equation (8) are grouped 

into three  characteristic SC static modes: 

(((( ))))

(i)no load,flat surface  :                a 0,C 0

(ii)no load,saddle surface :            a 0,S 0

(iii)load,curved shapes:                 Csin S / 2π Λ

= == == == =

= == == == =

====

 

 

where the constant Λ=-a/b.  As shown in Fig. 3, these three modes in the statics of surfaces 

and interfaces are the main axes of the CS plane and hyperbola-like trajectories.  

 

Figure 3. Three possible shape-curvedness modes: (i) flat surface (C = 0), (ii) saddle surface (S = 0) and (iii) 

arbitrary shapes (((( ))))(((( ))))Csin S / 2 const,C 0,0 S 1π Λ= = > < ≤= = > < ≤= = > < ≤= = > < ≤ . 

 

The SC approach gives a compact representation to the solutions of the anisotropic shape 

equation (8). 

(ii) Surfactant self-assembly and parallel surfaces   
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In a family of parallel surfaces schematically depicted in figure 4a, the relationship 

between the area Ao on the parent surface and area ( )A λ  at a distance λ from the parent 

surface is given by [14]: 

( ) ( ) ( )2

1 2

o

A
h 1 2H K 1 1 0

A
  >

λ
= = − λ + λ = − λκ − λκ                                                           (9) 

where h is the area magnification factor. In surfactant self-assembly h is fixed by the 

surfactant self-assembly process [5].   Integrating the area magnification factor h with 

respect to λ from 0 to l (surfactant molecule length),  and dividing by l  one finds the 

surfactant packing factor f (S,C): 

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))
(((( ))))

2

2

CS
f 1 C sin cos S

2 3

sin S / 2 sin S / 2 4(1 f )cos S / 3
C

2cos S / 3

π
π

π π π

π

l
l

l

    = − −= − −= − −= − −    
    

− + + −− + + −− + + −− + + −
====

                                          (10 a-b) 

Fixing f=1/3,1/2,1, one finds three characteristic SC pairs: 

 

(i)planes : f 1;C 0

1
(ii)spheres : f ;S 1; C 1

3

1 1
(iii)cylinder : f ;S 1/ 2; C

2 2

l

l

= == == == =

= = == = == = == = =

= = == = == = == = =

 

These results agree with the standard surfactant packing model and show how pure shape S 

and curvedness C adapt to the surfactant factor f ,as shown in figure 4b. 

 

 

 

 

 

k

Parent surface
λ=0

   λ coordinate surfaces
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Figure 4.  Parallel surfaces (a) and effect of packing parameter constraint (b) in the SC description. 
 

 

 

2.2 Kinematics  

In addition to statics,c SC descriptions also are found for  kinematics and shape evolution 

of surfaces and interfaces. The surface normal velocity V under a phase ordering 

conservative phase transition (see eqn.(1)) is given by the net sum of the stress load 

: aT kk ≡≡≡≡  (these are thermodynamic and elastic forces) and the capillary pressure 

(((( ))))2 2

s
2 : / Hγ γI k+ ∂ ∂+ ∂ ∂+ ∂ ∂+ ∂ ∂ [17,18]: 

2

s 2

S
V : 2 : H a bCsin

2

γ π
β γT kk I

k

    ∂∂∂∂     = − + = += − + = += − + = += − + = +         ∂∂∂∂         
                                                      (11 a-b) 

where the direction and magnitude of V depend on a, b, C and S; here we use the 

nomenclature of eqns.(6,8) .  If the stress load is zero we recover the usual motion by mean 

curvature and if the capillary pressure is zero we recover the constant speed phase ordering 

transformation, as introduced in eqn.(1).    Stagnation (V = 0) arises under static 

equilibrium given in eqn. (8) and Figure 3.One can see that in the general case, when a and 

b are given , stagnation if it happens, will depended on specific values {{{{ }}}}* *S C of shape and 

curvedness: (((( ))))* *0 a bC sin S / 2π= += += += + .  When surface evolution comes to a halt, a frozen 

shape may appear. 
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Returning to the general time evolving case, the two characterizing limit behaviors 

described by eqn. (11) are: (i) constant shape S evolution which fixes the ratio H/D to an 

arbitrary constant and (ii) constant curvedness C in which the sum of the squares H
2
+D

2 
is 

fixed to another arbitrary constant. These are schematically shown as circular and radial 

trajectories in the DH plane shown in Figure 5.  

 

Figure 5. Shape (S)-curvedness ( C)  trajectories in the HD curvature space. Circular trajectories corresponds 

to constant C and radial trajectories to constant S. These trajectories correspond to solutions of eqn.(11). 
 

For instance, a flat patch curving into a cap, we have 2K C====  and when curving into a 

saddle 2K C= −= −= −= − .  Shape invariant changes retain a constant S, such as in a growing 

cylinder where S=1/2 but in this case the curvedness C will decrease.   Hence temporal 

evolutions plotted in DH space can be associated with distinct degrees of shape changes. 

 

3. Geometric Evolution under Uniform Normal Motion    

In this section we describe the surface evolution under uniform normal motion, 

which is widely present in phase ordering transitions in soft matter systems, where the 

velocity vector is normal to the surface patch and constant. We first provide results for 

curvature evolution and then we present shape evolution. 
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(i) Curvature Evolution 

The curvature kinematics is described [27-29]: 

( )2 2H H D V,   D 2HDV,  K 2HKV= + = =& & &                                                                                     (12 a-c) 

where the sign of V is determined by eqn. (11). As shown in Appendix B  the first integral 

for the curvatures’ evolution is the relation: 

( ) ( ) ( ) ( )2 2K t =H t -D t =-mD t                                                                                               (13) 

where m is a shape parameter: 

: 1, ;   : 1 / 2, 0; : 0, 0Sphere S m Cylinder S m Saddle S m= ± → ±∞ = ± = = >  

Here we consider m → ±∞  , since by definition eqn. (6)   D > 0 in all cases. We note that a 

basically equivalent equation to (13) was derived in [12] but not in terms of D and that no 

connection with shape  was established.  

 Introducing the radii of curvature (κm= -1/Rm ) into eqn. (13) we find: 

( ) ( )2 1

2
R t =R t +

m
                                                                                                               (14) 

which is the well-known astigmatism equation [30,31].  Using the radius of curvatures 

plane ( R2 versus R1) , Figure 6 shows that for each shape m, the geometric evolution 

follows an astigmatism line of slope +1.  For a sphere the line traverses the origin.  Lines 

parallel to the sphere describe evolution of patches of shapes between spheres and saddles. 

The saddle line is normal to the astigmatism line and hence evolution under uniform 

normal motion can predict saddle shapes only due to a stagnation process,  where V = 0.  
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Figure 6. Evolution under normal uniform motion (V=const.; eqn. (13)) showing the sphere (light blue dot-

dash line), saddle (dark blue dash line) and astigmatic trajectories (green double dot-dash line) found from 

eqn.(14). Evolution is along the positive slope lines, with m defining the ratio between K and D. Since the 

astigmatic trajectories are normal to the saddle line, this means that saddles can only form through freezing 

(V=0).  
  

Figure 7 show the curvature trajectories in the HD plane obtained by integrating                                

eqns. (12 a-b), which were validated with the analytical solutions provided in Appendix B.  

The diagonals correspond to the cylinder, the parabolas to saddles and the horizontal to 

spheres. The origin corresponds the flat surface. Cylinder and sphere expansion start at the 

flat origin.  In agreement with the astigmatism equation (14), saddles can only form saddle 

ruts and saddle ridges when V = 0.  The particular saddle is defined at the intersection of 

the saddle line (vertical axis) and the astigmatic line  K mD= −  (see Appendix C), yielding 

D m= . Thus on the vertical H=0 line we find saddles whose Gaussian curvature is –m
2
. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Deviatoric curvature D as a function of mean curvature H. Sphere and cylinder trajectories pass 

through the flat surface origin.  Saddles can be formed from saddle ridges and saddle ruts through stagnation 

(normal velocity V=0).  The trajectories obey the astigmatism eqn. (13).  
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(ii) Shape Evolution 

Using the transformation matrix in eqn. (7), the SC evolution is: 

( )

( )

2V sin os sin
2 2

2
cos sin sin

2 2

dC S S
c S C

dt

dS S S C
V S

dt

π π
π

π π
π

π

    = +    
    

    = −    
    

                                                              (15 a-b) 

For ( )0V ≠  , the only steady state is the flat surface. The shape invariant evolution is  

 ( )cos sin sin 0
2 2

S S
S

   − =   
   

π π
π                                                                                     (16) 

corresponding to spherical ( 1S = ± ) and cylindrical ( 1/ 2S = ± ) patches.   

Next, we describe the astigmatic flow in the SC morphological space. Using the 

transformation matrix and eqn. (13) the shape-curvedness evolution is: 

2 28
cos

2 4

S m m C

C

π ± +  = 
 

                                                                                                (17) 

shown in Figure 8.  As per eqn. (17), the only constant shape evolutions are the sphere 

( 1,S m= ± → ∞ ) and the cylinder ( 1/ 2, 0S m= ± = ).  At C = 0 the shape is undefined. 

Growth (dissolution) is downwards (upwards).  Dome shapes grow towards spherical 

shapes and saddle ridges towards perfect saddles. 
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Figure 8.  Trajectories in morphological space.  Curvedness as a function of shape for evolution under 

uniform normal motion. Growth (shrinkage) is downwards (upwards). 
The geometric evolution is characterized by the change of curvedness with respect to 

changes in shape: 

( ) ( )

( )2

sin cos cos sin
2 2 2

cos

S S
m S m S

dC

dS S

π π π
π π

π

   − −   
   =                                                        (18) 

which diverges for cylinders and spheres and vanishes for saddles.  Under growth or 

decreasing C, trajectories that start close to spheres or cylinders remain nearly shape 

invariant. On the other hand, for starting shape between -1/2<S<1/2, changes in shape are 

stronger and saddles are realizable.  

(iii) Frozen Shapes 
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As discussed in Section 2.2, under stagnation conditions (V = 0) driven by 

thermodynamics and geometry (eqn.(11),  we find the two necessary conditions that 

completely specify the frozen shapes: 

(((( ))))S 2
Csin , tan S

2 m

π Λ
Λ π     = == == == =    

    
                                                                                           (19) 

where the constant  Λ is defined in Section 2.1.  Conditions for characteristic frozen shapes 

found from eqn.(19) are: 

(i) saddles:S 0,C m, 0Λ= = == = == = == = =   

(ii) cylinders: S 1/ 2,C 2 / 2Λ= ± == ± == ± == ± =  

(iii) spheres: S 1,C Λ= ± == ± == ± == ± =  

For flow under mean curvature, (((( )))) (((( ))))2 2

sV 2 : / H / bCsin S / 2 /γ γ β π βI k= − + ∂ ∂ == − + ∂ ∂ == − + ∂ ∂ == − + ∂ ∂ = , 

stagnation arises when 0Λ ==== and only static saddles can form.  For the general case, for a 

given Λ, we find that the curvedness of the frozen shapes increases with S. The stagnation 

flow trajectories (V=0) are superposed in the CS plane with the astigmatic trajectories 

(replotted from Figure 8) in figure 9. For a given (m, Λ) the crossing between the full line 

and the freezing line gives the selected shape.  For (m=0, Λ= 2 / 2 ) the selected frozen 

shape is a cylinder of curvedness C=1. 
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Figure 9.  (Left  panel) Trajectory phase-plane with the trajectories from Figure 8 superposed with stagnation 

lines (green curves) which are solutions to eqns.(19).  For a given (m,Λ) the crossing between the full line and 

the freezing line gives the selected shape.  For (m=0, Λ= 2 / 2 ) the selected frozen shape is a cylinder of 

curvedness C=1.(right panel) Starting with a spherical (A), trough (B), and saddle rut ( C) patches (orange 

dots) evolution with freezing leads the spherical, trough and saddle rut with increasing curvedness (purple 

dots) , but saddle-like figure freeze at higher curvature and spheres at lower curvatures. 
 

These results show that if one starts with a uniform distribution of shapes between spheres 

and saddles under decreasing C conditions (growth towards flat planes), potential static 

spherical shapes will be closer to flat surfaces than cylinders and saddle ridges. Such 

scenario is depicted on the left panel of Fig. 9 where the orange horizontal line represents 

the uniform distribution with the same initial curvedness, whose trajectories lead to 

different final curvedness under decreasing C conditions, where the frozen state is 

represented by the purple dots. It should be noted the frozen saddles have higher 

curvedness than the frozen spheres. Under increasing C conditions, the same effect is 

predicted. 

 

4. Conclusions 
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 In this paper we introduced a previously presented approach [8] to decouple shape 

from curvedness, to analyze basic equations of interfacial transport phenomena. The 

objective is to disentangle the unique effects from shape from curvedness as these are 

fundamental to biological morphology, interfacial phenomena, and phase transitions in soft 

and hard materials.  We demonstrated   the usefulness of shape methodology by applying it 

to the surfactant packing parameter case and to the normal motion of surfaces for 

diffusionless phase transitions.  Using a simple surface kinematics, that is uniform normal 

motion, we derived the shape-curvedness equations. We compared the results of this 

kinematics by finding analytical solutions for trajectories in curvature HD space and in 

morphological SC space.  We found that uniform normal motion leads to “astigmatic” 

trajectories in which the radii of curvature are linearly dependent at all times. On the 

morphological space, we showed that the astigmatic trajectories can be clearly classified 

into two modes; (i) constant shape evolution, and (ii) variable shape-variable curvedness.  

The shapes between spheres and cylinders follow approximately the former mode for large 

curvedness and then transition at smaller curvedness into the latter mode. Shapes between 

cylinder and saddles only follow the second mode. Under geometry-driven stagnation (zero 

normal velocity) shapes can be frozen. Under given thermodynamic conditions growing 

spheres freeze later than cylindrical which in turn freeze later than saddle-like patches.  The 

results provide a complementary view on how to describe and control shape evolution in 

surfaces and interfaces of great relevance to biological, colloidal and interfacial science.   
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