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Abstract

Landslides and avalanches plunging into lakes or reservoirs located in mountaimn-
ous regions can gencrate large waves which can result in loss of life and significant
property damage. As is the case with tsunamis generated in the ocean by underwa-
ter seismic activity, landslide induced water waves result from the motion of a solid
boundary of the fluid. The present study deals with the mathematical modelling,
of water waves developed in a channel by a moving bed. A set of depth-averaged
governing equations is detived to predict the evolution of the free suiface resulting,
from a predetermined bed motion. These equations, which constitute a generaliza-
tion of the Boussinesq system for waves over a flat bed, include both nonlinear and
dispersive effects. Numerical solutions are obtained by using the fimte difference
method coupled with a Flux Corrected Transport (FCT) algorithm. The resulting,
model is used to predict the waves resulting from simple bed motions. The numer-
ical results show an excellent agreement with corresponding experimental results

obtained by J. Sander at ETH, Zurich.

Sommaire

En région montagneuse, les glissements de terrain et avalanches plongeant dans
les lacs ou réservoirs peuvent provoquer des ondes de forte amphitude constituant
une menace pour les populations et les propri¢tés avoisinantes.  Tout comme les
tsunamis provoqués dans l'océan par une activité sismique sons-marine, les on-
des induites dans 'eau par des glissements de terrain résultent d'un mouvement,
d’une des frontieres sohides du fluide La piésente étude porte sur la modélisation
mathématique d’intumescences engendrées dans un canal par un mouvement du
fond. Des équations intégrées par rapport a la profondeur sont développées en vue
de prédire ’évolution de la surface libite suite & un déplacement prédétermins da
lit. Ces équations constituent une généralisation de la formulation de Boussinesq
s’'appliquant aux ondes propagées sur un fond plat Elles inclnent é la fois des effets
non-linéaires et de dispersion. Des solutions numériques sont obtenues i Paide de
la méthode des différences finies associée aun algotithine de ‘Flunx Corrected Trans-
port’ (FCT). Le modéle résultant est utilisé pour prédire les ondes engendiées pan
de simples mouvements du fond. Les résultats numériques reproduisent tres bien
des résultats expérimentaux correspondants obtenus par J. Sander o ETH, Zaich,
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1 INTRODUCTION

1.1 Theoretical background

In mountainous regions, rockslides, snow or ice avalanches and calving glaciers some-
times enter lakes and water supply reservoirs. In doing so they often generate large
waves which can result in loss of life and significant property damage. One of the
greatest disasters of that type occured in the Vaiont Valley, Italy in 1963 where a wave
generated by a landslide into a reservoir completely destroyed a town and clauned
over 2,000 lives. Similar events dating to, at least, 1731 also occured m many fjords
of Norway and caused hundreds of fatalities. Among other well known examples are
the 1792 catastrophe of Shimbara Bay, Japan; the 1850 and 1905 glacier [alls of Dis
enchantment Bay and the 1958 rockslide of Lituya Bay, Alaska, and finally the [971
landslide in Lake Yan. huin, Peru. The combined death toll fiom all these disasters
exceeds 20,000 people (Slingerland & Voight 1979). Huber (1982) has given details
of five rock avalanches and a bankslide that occured in Swiss lakes between 1923 and
1974; all resulted in serious damage to the shoieline structuies.

Landslide generated waves in lakes and reservoirs have much in common with
tsunamis which are oceanic waves resulting from underwater seismic activity (sece
Voit (1987) for a recent review of tsunamis). Three stages of development are usnally

associated with both of these phenomena:

1. Generation of an initial wave by a motion of the fluid’s boundary

o

Free propagation 1n water of approximately constant depth.

3. Propagation of the wave in coastal waters of nonuniform depth where the shal
lowness results in amplification and strong deformation of the wave profile prios

to the runup on heaches.

One of the important problems arising in the theoretical treatment of these three

stages is the choice of approximations to obtain appropriate mathematical models



Peregrine (1972) reviews important water wave equations and their underlying ap-
proximations.

The equations of the linear (or ‘small-amplitude’) theory are obtained by lin-
eanization of the fiee surface boundary conditions; they are only valid for waves
propagating in water having a depth of the same order as the wavelength (i.e. deep
water waves) and an amplitude negligible compared to the water depth (i.e. small-
amplitude waves). These waves have a tendency to spread out as they propagate.
an effect known as frequency dispersion. In one spatial dimension, if we denote the

respective positions of the free surface and the bed by 1 and A, we can use the velocity

potential @ to write :

Vig=10 (1.1a)
M =¢yand ¢, +gn =0on y =0 (1.1b)
¢zhs + ¢y =0o0n y=—h(z) (1.1c)

[fon the other hand we only know that the water depth to wavelength ratio is small
(1 ¢ shallow-water, or ‘long’ waves), it can be assumed that the pressure distribution
15 hydrostatic or equivalently that the horizontal velocity is uniform with depth. The
resulting nonlinear equations form the basis of the ‘finite-amplitude, shallow-water
theory™

e+ [(h+79)a]: =0 (1.2a)
U+ uu, +gn, =0 (1.2b)

where @ represents the uniform horizontal velocity of the fluid. Waves predicted
by that theory steepen as they propagate under the influence of nonlinearity: this
phenomenon is sometimes called amplitude dispersion.

If in addition to the shallow-water appioximation, it is assumed that the amplitude
to water depth ratio is of small (but not negligible) order, equations can be derived
e which the nonlinear effect of amplitude dispersion is approximately balanced by
the linear effect of frequency dispersion. The resulting weakly nonlinear. dispersive

equations are called the Boussinesq equations. The typical solution of these equations

(8
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is the solitary wave which is a single wave of elevation propagating without change in
form. For waves propagating in water of unit depth, the Boussinesq system (Witham
1974) is

n+{(h+nu)-=0 (1.3a)

1
U+ iy + gy = gﬁrx! (1.4h)

Finally, the neglect of both the nonlinear and dispersive terms in the above the-

ories leads to the ‘linearized long-wave theory’:
e + (k@) = 0 (1.14)

e+ gn. = 0. (1.-1b)

In the following text, the term ‘linear theory’” will only refer to the linearized, small-
amplitude equations and not to the linearized long-wave equations.

Since they represent the most direct threat to shoreline populations and strue-
tures, the shoaling and runup of landslide generated waves and tsunams have ieceived
much attention This third stage of development involves waves in shallow wate
and clearly requires a nonlinear theory. In most cases, the incoming wave is mod-
elled as a solitary wave propagating over a nonuniform (usually uniformly sloping)
bed. Weakly nonlinear, dispersive equations were derived by Peregrine (1967). T'hese
depth-averaged equations are a generalization of the Boussinesq system for waves over
a flat bed. Higher order equations have also been derived (Seabras-Santos, Renouard
& Temperville 1987).

As it approaches the shoreline, the wave front steepens under the ifluence of
shallowness. The treatment of the actual runup depends on the wave characteristics
and on the beach geometry. If the wave slope is small—as it is for most tsunams
and landslide generated waves—or if the beach slope is large, the wave will not have
a tendency to break. If the beach slope steepness does not exceed a certain limit, the
runup can then be described analytically by uniformly valid solutions of the finite-

amplitude, shallow-water (Airy) equations (Carrier & Greenspan 1958, Spielvogel
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1975). Otherwise, it can be modelled by numerical solutions of equations of the
Boussinesq type (Pedersen & Gjevik 1983). For steeper wave slopes or for very mild
beach slopes, the incoming wave will break. Peregrine (1983) reviews the case of
breaking waves.

The linear theory and the Boussinesq system have both been used to model the
fiee propagation stage in water of approximately constant depth. The respective
validity of these models is highly dependent on the characteristics of the initially
generated waves and on the water depth of the region in which they subsequently
propagate.

The choice of an appropriate model for the generation stage still remains an open
question.  Until 1ecently, before the availability of numerical solutions, the linear
theoty was almost the inevitable choice. Therefore, it had to be assumed that the
amphtude of the generated wave was very small relative to both the water depth
and the wavelength. The generation of the wave was often represented as an initial
disturhance (clevation or depression) of the free surface imposed at the end of a
constant depth channel (Kranzer & Keller 1959, Wiegel et al. 1970, Noda 1971).
That initial condition is equivalent to the vertically falling box model used by Noda
(1970) to simulate a vertical rockfall into a channel or to the impulsive upthrust of
a bed’s segment used by Hammack (1973) in the study of tsunami generation. In all
cases, the resulting theoretical problem was similar to the well known Cauchy-Poisson
problem (Wehausen & Laitonen 1960). Mc-e recently, Hunt (1988) used the linear
theory to model landslide generated waves by injecting an instantaneous point source
of flurd through the bottom of a channel; his results were very close to those of Noda
(1970). Solutions of the linear theory aie integrals which are obtained by various
transform methods. These integrals are usually very difficult to evaluate numerically
due to the oscillatory nature of the integrands and the usual procedure is to apply
asymptotic methods (stationary phase and steepest descent) which yield solutions
which are valid only for large time and large distances from the source of generation.

Wiegel et al. (1970) compared their solutions with the experiments of Prins (1958)
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and also performed their own experiments to simulate vertical rockfalls by diopping
vertically falling boxes at the enu of a channel. Noda (1970) compared his theoretical
results with these box diop experiments. In both cases, it was found that the linea
theory was only valid for small height and length of the initial distuitbance (Wiegel et
al. 1970) or equivalently for small length and vertical displacements of the falling box
(Noda 1970). For larger dimensions, nonlnear effects became noticeable as solitary
waves and bores started to develop. Noda (1970) also simulated hotizontal landshdes
by the horizontal translation of a vertical wall. The corresponding experiments of
Das & Wiegel (1972) showed the results of the lincar theory to be only valid for simall
displacements of the wall. The above conclusions were to be expected since the inear
theory is only applicable in the case of small-amplitude waves which in turn can only
be generated by small displacements or dimensions of the moving boundaries.

However, since most of the above theoretical results were only valid for laige
values of time and distance, it was not possible to determine if the lincar theory
only became invalid in the free propagation stage or right from the stat of the
generation. Hammack (1973) looked at this problem in the context of tsunamis
generated by a positive or negative vertical displacement of a segment of the hed.
He considered separately the ranges of validity of the linear theory in the generation
and propagation stages. By scaling the fundamental equations of motion, he found
that, for impulsive bed motions, the linear theory was only correct for generation by
very small bed displacements. For slow bed motions, he showed the lincar theory to
be valid for arbitrary large bed displacements. Using Ursell number considerations,
he also claimed that the Boussinesq system should be preferred to the lincar theory
for the free propagation stage during which nonlinear effects accumnlate with tine
The Ursell number 1s a dimensionless number measuring the relative importance of
nonlinear to linear wave effects (Ursell 1953).

From the above, it appears that one of the main disadvantages of the linear theory
is that it only possesses narrow ranges of validity and thus can only desciibe very

limited generating conditions. Under the influence of frequency dispersion, waves




generated and propagated using the linear theory eventually become independent of
the geometry and time history of the generating process and only depend on the
volume of water displaced originally (Hunt 1988). That description may account for
waves created by rapid rockfalls of small dimensions but certainly does not describe
properly laige progressive bankslides in which the generated wave often propagates
without change in shape, almost as a solitary wave (Huber 1982). Furthermore,
the complexity of the integral solutions even for simple bed motions precludes the
application of the linear theory to more realistic descriptions of the moving bed.
Sabatier (1983) used the linear theory for waves generated by ground motions on a
slope.

. One of the first attempts to use numerical solutions of nonlinear wave theories
in the description of the generation stage was made by Hwang & Divoky (1970).
They used the finite-amplitude, shallow-water equations in two spatial dimensions
to model the tsunami which resulted from the Alaskan Good Friday earthquake of
1964. The effect of the bed motion was incorporated directly in the depth-averaged
continuity equation. In that respect the numerical treatment of the governing equa-
tions possesses the advantage of allowing one to treat nonlinearity and more complex
bed motions with little increase in difficulty over that corresponding to the use of the
lincar wave equations. That is of considerable importance since, as pointed out by
Hwang & Divoky (1970), one of the fundamental problems in the generation phase is
the accurate estimation of the bed motion, not only in its permanent displacement
(as implied by impulsive linear theories), but also in its complicated time history.
Comnparison of their numerical results with limited field data showed an encouraging
agreement.

Raney & Butler (1976) used a similar procedure to study landslide generated
waves but modified the governing equations to include forcing functions accounting
for the volume displacement, viscous drag and “form” drag exerted by a landslide
on the water. Their numerical solutions were only presumed good for the leading

wave since their governing equations did not properly account for wave runup and
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reflection.

The finite-amplitude, shallow-water theory has the advantage over the linear the-
ory of allowing for the propagation of 'arger amplitude waves. However, it can hatdly
be used in the free propagation stage since it ignores frequency dispersion and ulti
mately leads to an infinite ‘vave steepuess. Therefore, as with the case of the huear
theory, the nonlinear nondispersive theory suffers from a narrow range of applicability.

The same can also be said about the linearized long-wave equations (Tuckh &
Hwang 1972) which can be used to some extent in the generation stage but rapidly
become invalid.

The logical alternative to the above theories is to assume that the amplitude to
depth ratio is small and derive model equations which combine the lincar effect of
frequency dispersion and the nonlinear effect of amplitude dispersion. Wu (1931)
derived weakly nonlinear, dispersive (Boussinesq) equations including the effedts of
the moving bed. These equations would appear to constitute a very good model for
the complete description of the generation and propagation stages. Unfortunately,

Wu did not present numerical results for actual moving bed problems.

1.2 Thesis’ outline

The following thesis is concerned with the mathematical modelling of water waves
developed by a moving bed. It was performed at McGill University in conjunction
with corresponding experimental work carried out at the Laboratory of Hydrauls,
Hydrology and Glaciology directed by Dr. Daniel Vischer and affiliated to the Swiss
Federal Institute of Technology in Ziirich. The experiments were made by Johannes
Sander under the direction of Drs. I{olumban Hutter and Daniel Vischer.

The basic idea was to check the validity of a depth-averaged, weakly nonlinear
and dispersive (i.e. Boussinesq) approach to the numerical modelling of water waves
induced by landslides and avalanches plunging into alpine lakes and water supply

reservoirs. The logical starting point was to consider generation and propagation in
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one spatial dimension before studying more realistic problems in two dimensions.

The present study deals primarily with waves generated at the upstream’end of
a long channel. The generation of the wave by the incoming material is simulated
by the motion of an impervious boundary at the end of the channel. The above
schematizations lead to the development of a model which has the advantage of
being applicable not only to landslide generated waves but to all problems involving
the generation of water waves under the action of moving solid boundaries.

The thesis is divided in six sections. In §2, the fundamental equations governing
the motion of an inviscid, incompressible and irrotational fluid 2r= integrated over the
water depth. The resulting depth-averaged cquations give the free surface disturbance
n(z,t) and the depth-averaged fluid velocity u(z, t) resulting from a known bed history
h(xr,t). These high-order equations are a generalization of those derived by Su &
Gardner (1969) for waves over a steady, uniform bed and by Seabra-Santos, Renouard
& Temperville (1987) for waves over a steady, nonuniform bed. The validity of
the shallow-water assumption in problems involving a moving bed is discussed in
Appendix A.

Scaling parameters pertaining to the wave characteristics are introduced in §2.2
in order to reduce the governing equations to a ‘Boussinesq’ formulation in which
nonlinear wave effects are approximately balanced by dispersive effects. The result-
ing equations are identical to those derived by Wu (1981). Appendix B outlines a
derivation of these equations using a more direct pertubation method.

Finite difference schemes are developed in §3 to solve the depth-averaged conti-
nuity and momentum equations. The basic algorithm consists of a simple three step
scheme in which both explicit and implicit finite difference approximations are used.
The Eulerian specification of the flow field is used except in problems involving a
laterally moving waterline. These problems are more easily treated with the help of
the Lagrangian formulation.

Initial conditions and boundary conditions applying to the various types of bed

motions are described in §3.3. A Flux Corrected Transport (FCT) algorithm is pre-

o




sented in §3.4 in order to eliminate spurious oscillations from the computed free
surface profiles.
Five simple moving bed geometries are modelled both numerically and expen

mentally: .

1. Moving vertical wall,

8]

Moving submerged wedge,
3. Moving shelf,

4. Rotating plate,

5. Moving wedge.

The above bed motions are presented and described in §4.1. Apart fiom the ‘rotating,
plate’ wave generating mechanism, the four remaining bed motions arise friom the
horizontal translation of a wavemaker having a variable geometry.

The experimental set-up used by Sander (1988} is briefly described in §1 2 and
corresponding computer models are introduced in §4.3. Appendix C gives the hsting
of the Pascal source codes of the programs.

Comparisons between the numerical and experimental results are treated m §5 I
every cases, the agreement between computed and measured wave heights is excellent
and confirms the validity of the weakly nonlinear, dispersive numerical model for the

simulation of water waves developed by a moving bed.



2 GOVERNING EQUATIONS

2.1 Derivation of the governing equations

We start by considering an incompressible, inviscid and irrotational fluid bounded by
a free surface y = n(z,t) and a bed y = —h(z,t) with the position of the free surface
at rest being y = 0. The total water depth A + 7 is denoted by H (Figure 2.1).

QOur objective in the study of water waves developed by a moving bed consists in

y

T(x.t)

Figure 2.1: Definition sketch for waves generated by a moving bed.

determining the deformation 7(z,t) of the free surface resulting from a prescribed

motion h(z,t) of the bed. The following non-dimensional variables are used:
($7 y7 777 h) = h;l(x,’ y" 1”7 h’)’
(u,0) = (gho) T3 (¢/, v"),
p=7/(pgho),
t = (g/ho)?t,

where the primes denote dimensional (i.e. physical) variables and 2, is a characteristic

value for the water depth. The horizontal and vertical components of the fluid velocity

10
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are respectively u = u(z, y,t) and v = v(z,y,t) The pressure at any point in the tlud
is given by p(z,y,t). The constant fluid density is p and the gravitational acceleration

g acts vertically downward. The fundamental two-dimensional equations of motion

are then:
b oo, .
or + oy (=
Ou du  Qu _ Op -
Gt tUey T T (2=)
dv Ov Ov Jdp ,
i bl = 23
ot e T, T Ty L (23)
du Ov
= _ZZ_q 9
oy oz - =1

Equation (2.1) is the continuity equation for an incompresstble fluid. Equations (2 2)
and (2.3) are Euler’s momentum equations in the x and y directions respectively
and (2.4) is the irrotationality condition. Equations (2.1)-(2.1) are subject to the

kinematic boundary conditions

Oy an

—e ‘) 'r
v, = ot + u’('):v’ (2 0)
oh oh
= o — Uy 26
and the stress free surface condition
ps =0 (2.7)

where the subscripts s and b respectively indicate quantities evaluated at the free
surface and at the bed. The boundary conditions (2.5) and (2.6) state that a flud
particle located at the free surface (or at the bed) subsequently moves along with the
free surface (or the bed). The boundary condition (2.7) simply implies that there s
no pressure acting on the free surface.

Integration of the continuity equation (2.1) in the vertical direction, from the bed

to the free surface, yields

= ”sﬁ + ub% dzx J-n

an oh 0 /’i

Vg — Up u dy (2 %)

11




in which the kinematic boundary conditions (2.5) and (2.6) can be substituted to

give
d 3]
a5 = ul = 2.
5 (ht 1)+ g-l(h+ )] =0 (2.9)
where
(et = L [
u(z,t) = 7 /_h u(z,y,t)dy. (2.10)

Equation (2.9) is the depth-averaged continuity equation. For a known bed history
h(r,t), it gives the evolution of the free surface 7, provided we know the depth-
averaged velocity @. Note that (2.9) is exact since no approximation was made in its
derivation.

For shallow-water wave propagation, it is usually assumed that the horizontal

velocity of the fluid is approximately uniform with depth:
u(z,y,t) ~ °(z,?). (2.11)

By integrating the continuity equation (2.1) using (2.11) and the kinematic boundary
condition (2.6), we can obtain a corresponding approximation for the vertical fluid

velocity:
oh 0, _ 0u
v(z,y,t) ~ —E - é-;(hu) - y-a'i;'.

In view of deriving an evolution equation for @, we substitute the approxioma-

(2.12)

tion (2.11) in the r-momentum equation (2.2):

du _0u Op
—+u—+ — =0. 2.1¢
at +u8$ Oz 0 (2.13)
Fquation (2.13) can be integrated from y = —h to n with the boundary conditions
(2.5)-(2.7) to give
a0, . 0 ... 2 _ Oh .
5 (H®) + 5o [H{@ +P)] = po 5~ (2.14)
where the depth-averaged pressure is
pat)=— [ t)d 2
pat) = = [ plz,,0)dy. (2.15)



It is important to note that the depth-averaging of the complete r-momentum equa-

tion (2.2), without the approximation (2.11), yields
d oh

E(H )+—[H (@ +7) + Hu? ~ @ ]—pba (2 16)

with
u?( t)—-—l—- " Yr,y,t)d 217)
x’ - f] —hu 'E7J’ y' ("’ I

Therefore the validity of the approximation (2.11) which led to equation (2.14) implies
that the term H (u?—?) is of small order compared to the remaining terms of equation
(2.16). That requirement is always satisfied for a flat bed, but in the case of a moving
bed, it imposes certain restraints on the bed slope and velocity (Appendix A)

An expression for the pressure is obtained by integration of the y-momentum

equation (2.3) with the dynamic boundary condition (2.6):
" dv
p=tr-n)+ [ Tdy (2 13)
v

where

4_0. 0. 9
di ot oz vdJ

which can be approximated as:

i _

o2
“or Ty

~ ot
The second term on the right hand side of (2.18) represents the correction to the

hydrostatic pressure. Using the approximation (2.12) for v, we can wiite:

dv dh, d(hu); di,

dt dt a7

— i, (219)

or
%} =~f-71-ya
where
o= d('l‘t’ a2, (2.204)
3 = f(_%‘t‘-)i — (hT), T, (2 20h)

13



1= het. (2.20c)

L

Substitution of (2.19) m (2.18) gives

p=(n—y)(1—ﬁ—7)—(”2;y2)a. . (2.21)

The pressure at the bed and the depth-averaged pressure are then:

2 _ h2
m=H(1—~ﬂ—7)~<n . )a (2.22)
__H 1 (7* n*h &S 5
p—g(l—ﬁ—v)—ﬂ<3+ A (223)
Finally, substitution of (2.22)-(2.23) in (2.14) gives:
d a1, ., H? 7 0%k RO
)L(HHHT[H t5 (-8~ )—(3+ 5
_0h n* — h? o,
=5 [H(l-—ﬂ y) - < 5 )QJ (2.24)

Fquation (2.24) together with the continuity equation (2.9) constitute a set of depth-
averaged equations governing the amplitude 7 and velocity & of waves developed by

4 moving bed.
If the bed is not moving, &, = 0 and (2.24) can be simplified. The term ~ defined

by (2 20c) vanishes and 3 in (2.20b) reduces to:
B =Uths + Thyy + T b, + ha,

The resulting equation is then:

J 0 H? H? Oh H?
= —(1-¢)— —a| = — |H(1 - ¢) - = 2.2
‘)t(llu)-i- 5 Ha® + 5 (1-9¢) 3 aJ Em [H(l é) 5 a} (2.25)

where

¢ = — ha =Uh, + Tuzh, + ©h,,.

Equation (2.25) is the same as the equation derived by Seabra-Santos, Renouard &

Temperville (1987).
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For waves over a flat, horizontal bed, v is again zero and since h, = 0, we have

B = ha. The governing equation (2. 24) becomes

a. 0 2 H? H3 e
52(1‘111)%— E([[u +—§-— —5‘(1') = (.3 20)

which is identical to the “correction” equation to the shallow-water theory dernved

by Su & Gardner (1969).

2.2 Scaling of the governing equations

Compared with corresponding ‘Boussinesq’ formulations, the governing equations
(2.24)-(2.26) derived in the previous section include extra terms which are of higher
order. However, for most practical problems, these terms are so small that they
can be expected to have little or no effect on the resulting solutions. If appropnate
scaling parameters are introduced to represent the respective order of magmtude of
the problem’s variables, these higher order terms can be identified and eliminated
Such a procedure not only gives insight into the relative importance of the vanous
terms in the governing equations but also facilitates the computations of numenical
solutions by greatly reducing the length of the equations that have to be programmed

Two scaling factors are usually associated with water wave theories. The water
depth to wavelength ratio is represented by o while € denotes the wave amplitude to
water depth ratio:

g =
€ =

The relative size of these parameters is incorporated in the well known Ursell number

2
Ur=i=a/\

o? h3

which measures the importance of nonlinear to linear effects in wave propagation
(Ursell 1953). Thus Ur < 1 for linear waves, while Ur > 1 for fully nonlincar (Airy)
waves. Our interest lies in weakly nonlinear, dispersive (Boussinesq) waves for which

Ur ~ 1. We therefore assume € ~ ¢? in what follows.

15




For all types of long waves, since the variations of z and ¢ are both small in terms

of the wavelength, we can write
1 - L
(z,t)=—=(z",t7) (2.27a)
o

where the asterisks denote non-dimensional, scaled variables. The relation (2.27a)
implies that the change in the scaled variables is of O(1) for a significant change in
the wave. Furthermore, weakly nonlinear, dispersive, shallow-water waves also have

a small amplitude to depth ratio. The appropriate scaling for n and @ is then
(1,7) = (", T) (2.27b)

which states that a small change in wave amplitude or in depth-averaged velocity
becomes O(1) in the scaled variables.

In the case of a moving bed, scaling factors can also be determined for the bed
velocity hy and slope h,. Clearly, since 1 = O(¢) and h = O(1), we have H = O(1).
Fquation (2.27) can be substituted in the depth-averaged continuity equation (2.9)

Oh I - * *
d—-}-c("‘—a—i-}- h(9E >+eza(ﬁ'—an—+7)' u):O.

to give

i Yoz T oz az~ " Hz=

For the above equation to be consistent, we will therefore impose

57 = olh)’ (2.28)
and

—aﬁ =o(h:)" (2.29)

Or

which leads to the following non-dimensional, scaled depth-averaged continuity equa-

tion:

on* ou*  _ _.on" ou™
he)® “(hg)" - — ] =0. 2.
(he)™ + o +h8x‘ + @ (hs) +6(u e +7 83:') 0 (2.30)

With the help of the continuity equation (2.9), the momentum equation (2.24)
can be rearranged as :

ot _Ou oH H? 0
”(*gt‘ﬂta—r) = Ha-(=1+8+7)+ 5 5-(B+7)
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£ R o (o
r\3 72 T6) ar\ 2 ¢
3 2
7 nh h®\ 0a Oh
+<3 + 5 6)ax+d [H(1 = 3~ )]
which simplifies to
o0u ow dn  HQ 1 /73 nh h1 018" Y
7% T et T Ta Ty (3 > "% ) o
on
2l (nart B+ o)
The terms «, # and ¥ defined by (2.20) can be scaled as follows :
Q" = (€0®)Uoeye + (207) (WU e — W2) (2.320)
B = (e0®)(hU")zopr + (X)) [T (AT )gepe — (hT™),-T0] (2 32b)
7 = (ea?)(hy)i + (20 [@" (hy)oe — (o) T5a] (2 32¢)

and substitution of (2.27) and (2.32) in equation (2.31) gives the following scaled

momentum equation :

o T o (hter ,
(c0) 5 + (80)?3;_ Hleo)al = ! U ) ai_[(faﬁ(h,);. +O(e207)
=3 =2 3

+% (63773 +€2772h %_) —(2:[((02)&;.!.—#()((202)]

o) + 0(d?)]

-

+€ng- [(w?)(ht):- + (60 J(hT*) gore + O(20?)).

Keeping only the terms larger than O(e20?), we obtain

ow" gu” li h
(60')'8—2::' + (€o)T 'é‘lf‘+(€0’)5z—_ = (eo ) [(h)" + (AT") e ]ge e
h2
—(ws)—;— e + Olc0")

in which it was assumed that % = h%. Finally, we can go back to the original

non-dimensional variables to get
2

h h
U+ Wy + 7, = é’[hz + (h)zlie — 5 Tata + O(€*a?)
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h%_ h, _ h, _
= ’g'uxtz + Ehwut + Ehx(uzt ‘f‘ utz) (2.33)

h h _ h —
+§'httr + E(hxt + ht::)u:: + '2'h::ta:u

h
+5 etz + O(€0”).

Fquation (2.33) constitutes a ‘low-order’ representation of the ‘complete’ momentum
equation (2 24). In fact, (2.33) together with the continuity equation (2.9) represent
the Boussinesq formulation of the equations governing waves generated by a moving
bed. The assumptions made in the derivation of (2.33) imply that the waves of
interest, are nonlinear, dispersive, shallow-water waves. Equation (2.9) and (2.33)
therefore constitute a generalisation of the well-known Boussinesq system for waves
over a flat bed.

It 1s important to note that, since z and ¢ are both assumed to be of the same
otder, the operator 0_352()7 in equation (2.33) can be replaced by 5%; which gives the

following equation :

J h?
U4 T+ 0 = ol (F)]oe = = Tam + O(c%0%)
h?_

= ?ul‘l‘t + ghz‘x‘ﬂt + hhz‘ﬂ.’ct (234)

+ghm + hhy Ty + -ghmﬁi
+gh,ﬁ” + O(é*).
The order of appearance of the z and ¢ partial derivatives only depends on the
procedure used to obtain the final governing equation. In the derivation of (2.33), we
assumed w(r,y, t) ~ @(x,t) and depth-averaged the resulting z-momentum equation
(2.13). All these terms of equation (2.24) (or equation 2.33) which would not appear
in the standard Airy equation and which represent the deviation of the pressure from
the hydrostatic state thus came from the depth-integration of the horizontal pressure
gradient ::1;'

However a different procedure can be used. We can start by stating that, to an

order Ofeo), the vertical velocity v(z,y,t) is given exactly by the expression on the
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right hand side of approximation (2.12), i.e.

o o
e,y t) = =% = 3=(kT) — y 3= + O(clo).

—
te
- .
-
ot
—

Then from the irrotationality condition (2.4) (which was not used in the derivation

of (2.33)) we can deduce (Appendix A):

_ h _ y: o W\ _ 5 o _
u=Tu-|y+3 [he + (h0)a]: = | 5 + T ) W + O(c0"). (2.36)
2 2 |
Furthermore, the expression (2.21) for the pressure derived eatlier can be writien as
y? g
p=(n—y +ylh+ (hT)]e + 5T+ O(Fo). (237)

Substitution of (2.35)-(2.37) in the z-momentum equation (2.2) gives

h Y
T+ Ty + 7 = (y + -) [he + (hT0)Jac + (%— + —;)—) T
2

_y[ht + (hﬁ)r]tr - %Hrw + 0(520'3)

which implies that %; = 82; and leads to equation (2.33) or (2.34). The above

procedure is incorporated more systematically in a perturbation approach of the
problem in which the basic variables are expanded in terms of the small parameters
€ and o. Wu (1981) used such a procedure to obtain an equation identical to (2.31)
Appendix B shows a derivation of (2.34) using an expansion method.

Since the dispersive term usually appears as U, in the Boussinesq system, we
will henceforth used the formulation (2.34). It is worth noticing that, altough terms
of O(e?0®) were left out from (2.34), the last term 2hii;, is also O(c*a?) accordimg to
the scales introduced at the beginning of this section. That contradiction originates
in the term (@), which is O(ea®) but gives rise to gh,ﬁm, a term of O(¢a?), when
the partial differentiation is carried out. Therefore the presence of a term of O(c‘o?)
in the final equation is only due to a slight scaling inconsistency and for that reason,
the term %h,'ﬁn is not eliminated from the final equation.

As it was done for the ‘high-order’ equation (2.24), we can reduce the governing

equation for the cases of nonuniform and flat beds. If the bed is sloping but not,
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moving, equation {2.34) reduces to
g, ¢q

h 2
U+ T, + 7, = 5[(hﬁ)r]x, - %Em + O(*a?) (2.38)
h?_ h, _ _ 9 3
s = _.3"uz.7:t + Ehzzut + hhzuzt + 0(5 g )

as denved by Peregrine (1967) in the study of long waves on beaches. If we also
restrict the bed to a zero slope, we obtain the basic Boussinesq equation:
2

h
Uy + Uy + 1y = ?EM, + O(e*dd). (2.39)

In the next section, equation (2.34) together with the continuity equation (2.9) will

be used to model problems of waves generated by a moving bed.



3 NUMERICAL SOLUTIONS

Because of the nonlinear and dispersive terms appearing in the governing equations
obtained in §2.2, it is extremely difficult (if not impossible) in general to detive
analytical solutions to those equations. For that reason, we have to resort to a
numerical method to obtain approximate solutions for the amplitude 5 and veloeity

u appearing in the depth-averaged continuity (2.9) and momentum (2.34) equations

3.1 The finite difference method

The finite difference method is one of the oldest numerical methods used 1 the
solution of differential equations. Because of its simplicity and reliability, it still
constitutes a very widespread tool for the numerical solution of fluid flow problems
For the sake of completeness, a brief elementary review of various aspects of the fimte
difference method follows.

The basis of the finite difference method consists in replacing a function delined
over a continuous solution domain by approximations of that function evaluated at,
discrete locations of the solution domain called grid points. These approximations
may then be used to express the derivatives of the function in terms ol algebraie
equations called finite difference equations. The important consequence of the fimte
difference method is therefore the possibility to transform one or more differential
equations into an equivalent algebraic problem.

In the present problem, we are cencerned with the approximation of dependent
flow variables such as 5, @ and h which are functions of spatial position & and time
t. Thus, we may consider an arbitrary function f(z,t) which is assumed to he the
solution of a boundary value problem defined over a domain0 < z < zy and ) <1 7
tp. The starting point of the finite difference method is to replace this continnous
solution domain by a discrete set of points denoted by (z,,t,) such that 0 < &, Z oy
and 0 <t, < tp wherei=0,1,...,N and j =0,1,..., P (Figure 3.1). The solution

domain thus takes the appearance of a grid and for that reason the points (z,,1,) are
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called grid points. The mesh size in the t-direction is constant and denoted by At so
that tp = PAt. The spatial mesh size is denoted by Az,, a distance which may vary
with time. The finite difference approximation of f(z,t) evaluated at the grid point

(2,7) is denoted by f}.

3.1.1 Eulerian description

Most of the finite difference models used in fluid mechanics and hydraulics involve
an Eulerian description of the flow field. That implies that the flow variables are
calculated at fixed locations in the solution domain and therefore that the grid points
spacing in the z-direction does not change with time. We will only consider the case
where the spatial mesh size is constant, i. e. Az, = Az such that'a:N = NAz (Figure

3.1)

t
5 tet,
'
A 4
- (03 ]
)" t) f,
T ?
Ax '||'1
2 L
At
1
1=0 X
0 X* Xy
] =0 1 2 e N

Figure 3.1: The Eulerian finite difference problem.

At any given time, if f(z,t) has continuous spatial derivatives, it can be approx-

imated 1n the neighborhood of £ = z, by the following Taylor series:

o . — ‘2 2 - '3
f(:c,t):f,-f—(x—r.)aa{-{-(l Qx) Zz":-{-(x 3!3) g?rj;_;.

o
1o
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where f, denotes the finite difference approximation of f(r,,t). Using this Taylo

series, we can write the following approximation for f(z,41,¢):

B L Of  ATOf  ARSPS
far=1fi+ Amb?, + 2 Or? 3! or?

+ O(Art) (31)

The series (3.1) directly gives a finite difference approximation for %JL evaluated at.

=z, :
af . ft-H - fl 0 0y
ey v + O(Ax) (32)

In a similar way, we can approximate f(x,_;,t) by the series

_ of | AP ARPf ] -
fier= £ Axﬂz,+ 2 922 3l ax?‘*'()(A.I‘) (3.3)

from which we obtain

Q_f:_ _ ft_ft-l
0z,  Ar

Equations (3.2) and (3.4) are respectively called forward and backward diflerence

+ O(Ax) (3.4)

equations. In both cases the approximation involves an error term of O(Awr). The

magnitude of this error term is reduced if we subtract (3.3) from (3.1) to obtam

2.[____ fl-H_fx—l 2 ar
dr, 20z +0(A) (35)

which is a central difference representation of gﬁ. A finite difference approximation

for %{- at = = x, can be obtained by addition of (3.1) and (3.3) :

aZf _ fl+l _2fl +fl—l +O

Ac? (3.6
oz? Az? (A7) )

We follow a similar procedure to derive finite difference approximations for the
time derivatives of f(z,¢). At any given location in space, approximations for

f(z,t,41) and f(z,t,) in the neighborhood of t = t,yy can be written as

of | (At)2)? 9*f

R SNy L N (37
PP ey S ) )
and
2 092
7 = J+l _ 9 af (At/2) () f t3 3 8
PP g s S ol (3%)
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Subtraction of (3.8) from (3 7) gives an approximation of %{ evaluated at t = tJ+%:

of _ pri=p 2
TR +O(AR) (3.9)

and addition of the two series gives :

Of _fri-oafrtiif
a2, (At]2)?

1
J+3

+ O(At?) (3.10)

3.1.2 Lagrangian description

In the Lagrangian description of the flow field, the flow variables are not evaluated
in a fixed refetence frame but rather at the instantaneous locations of the moving
fluid particles. In the finite difference method, that implies that the grid moves
with the fluid particles and therefore that the spatial mesh size varies with time,
e, Az, = Azy(t) = (241 — 2u) for i=1,2,..., N ~ 1. Depending on the motion

of the fluid, the space-time grid can then take the distorted appearance of figure 3.2.

t

ST T
xx// //fh
4T

=
T

=0 1 2 N

Figure 3.2: The Lagrangian finite difference problem.



If at in given time we let Azr = r,41 — &, and Az’ = 1, — r,_; (Figure 3.3), we

can approximate f(z,41,t) and f(z,_1,t) by power series about r =, :

3f Az? 62f 5 _

f.+1 fi + Az oz, 5 dI O(A.r ) (311
,0f Az'z()zf .3 o
fra=fik A4 S 5t O(Azr") (3.12)
Subtraction of (3.12) from (3.11) gives
af 1 2y O :
fir1 = fis1 = (Az+ Az )(—9{- + S(A — Ar z)b_;J; + Ofmax(Az?, Ar™)]
a2
= 2Ar1,=—— of (75 (2 )() f, + O[max(Az?, Ar))
dz, az;

where 6z = 1(Az — Az') (Figure 3.3). The central difference formula for the first

x -1 xl X|b1

A X A X

AX, A X,

Figure 3.3: The Lagrangian grid.

order spatial derivative at £ = z, is then

of fimi-fiar
3:1:‘ 2Az,

+ O[max(6z, Az?, Az'?)] (3.13)
The error term in (3.13) is a function of the grid deformation. For a fixed grid of
uniform mesh size, éz =0, Az’ = Az and (3.13) is identical to (3.5). However as the
distortion of the grid increases, the approximation (3.13) increasingly looses accuracy

(Boris 1981). Addition of (3.11) and (3.12) gives

a2f _ ft+l _th + fl—l
9z = L(Az?+ Az?)

(3.14)
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which is also subject to an error term depending on the grid deformation.

For the time derivatives, a procedure similar to the one used in the Eulerian case is
followed. The important difference is that the resulting derivatives are not evaluated
locally but rather following the fluid. They are total (or material) derivatives and

are expressed as :

df, _fIT' - 2 .
a’tH% = N + O(At?) (3.13)
and ol
df, -2y f 2
dtﬂ_% = (A7) + O(At?) (3.16)

3.1.3 Explicit and implicit formulations

When the finite difference method is applied to time-dependent problems, the result-
ing algebraic equations may either have an explicit or an implicit solution. Therefore
a finite difference scheme can be classified as explicit or implicit according to the
algebraic problem to which it leads.

The explicit form may be represented schematically by figure 3.4 in which the dots
and crosses indicate grid points needed in the computations of spatial and temporal
derivatives respectively. Inthat type of scheme, the calculation of the solution at the

‘new’ time is only based on the solution at the previous time.

Jot
fl

b O
—
+
—_

Figure 3.4: The explicit form.




In an implicit scheme, the unknown solution at the new time not only depends on
the solution at the previous time but also on values of the function at this new tiume
This type of scheme leads to a system of equations which must be solved simultane-
ously. Figure 3.5 represents a fully implicit scheme in which all the derivatives ate

)t I o1
fo £ f

- SR

*

Y 2d

Figure 3.5: The fully implicit form.

evaluated at the advanced time. Figure 3.6 shows an implicit scheme proposed by
Crank and Nicolson in 1947. The derivatives are now evaluated at the intermediate

time and calculated by averaging values at the previous and advanced times.

£ £ t
— ¥ +— 1
B RN RS, [*1/2
[} J
fl-l fl 'If‘l
- * o
-1 | j+1

Figure 3.6: The Crank-Nicolson form.

Explicit schemes have the advantage of being simple to formulate but they are

subject to stability conditions which impose certain limitations on the mesh size. On
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the other hand, implicit schemes can be shown to be unconditionally stable but their
tormulation is often complex and requires longer computation times.
In the next section the equations derived in §2.2 will be formulated in terms of

explicit and implicit finite difference methods.

3.2 Finite difference formulation of the governing equations

We will now use the basic principles developed in §3.1 to obtain finite difference

formulations for the governing continuity and momentum equations.

3.2.1 Choice of the flow field description

The first question which must be answered in the application of the finite difference
method to the governing equations (2.9) and (2.34) is whether to use the Eulerian or
Lagrangian specification of the flow field.

Fiquations (2.9) and (2.34) were derived from the fundamental Eulerian equations
of motion (2.1 to 2.3). It would therefoie appear natural to use the Eulerian finite
difference method introduced in §3.1.1. As already pointed out, that method im-
plies that the spatial grid points are not associated with the moving fluid particles
(Lagrangian specification) but rather with evenly spaced fixed locations in the flow
field.

However, in some moving bed problems, the water surface may intersect the mov-
g segment of the bed at a point of zero depth. In such problems, the upstream
boundary of the flow field is constituted by a moving waterline. The ‘moving wedge’
problem mentioned in §1 and presented in §4.1 is an example of such a case. The
major disadvantage implied in the Eulerian treatment of these problems is that the
number of grid points involved in the description of the free surface may constantly
vary. That cieates difficulties in the computer coding of the scheme and almost
invariably requires interpolation or extrapolation procedures. The above remarks

could also be made about the Eulerian treatment of wave run-up on beaches in which




various methods must be used to overcome the difficulties associated with the shote-
line boundary (see for example Hibberd & Peregrine 1979).

The obvious alternative 1n problems involving a moving waterline is to use a
Lagrangian description of the flow field. In that way, the location of that point of
zero depth is easily followed since it always corresponds to one of the moving prid
points.

We will now describe both the Eulerian and the Lagrangian finite difference for-

mulations of the governing equations (2.9) and (2.34).

3.2.2 Eulerian scheme

The functions 7, @ and h are all specified on the same spatial grid points. Figure 3 7
shows the arrangment of the flow field at any given time. Since we are only dealing
with equations in one spatial dimension, the grid points actually correspond to vertical

interfaces separating fluid elements bounded by the bed and the free surface

R —h

Figure 3.7: Eulerian description of the flow field.

The proposed numerical scheme is divided in three main parts :
1. Explicit solution of the depth-averaged continuity equation to obtain the

29



predicted free surface position.

2. Implicit (Crank-Nicolson) solution of the momentum equation (2.34) to obtain

the depth-averaged velocity.

3. Explicit solution of the depth-averaged continuity equation to obtain the cor-

rected free surface position.

As a prerequisite to the application of the above scheme, we assume that initial
conditions at ¢t = 0 and boundary conditions at z = rg and * = zy are known for
the free surface position n and the depth-averaged fluid velocity u. Furthermore, we
assume that the bed variation h(z,t) is known everywhere in the solution domain.

We now look more closely into each of the above 3 steps :
o Expheut calculation of the predicted free surface position 771",

The depth-averaged continuity equation (2.9) can be written as

on _ gu__On __0h Ok
F TR G ) s iy sl y (3-17)

Using the finite-difference formulae developed in §3.1.1, we approximate (3.17) as :

=] -7
Uiy — Ui
20z

J J
— AP Thi+1 — i1 18
1, (——QAx (3.18)

AR (h{:: — hIH 4+ ki, - h{-l)

= = ads ) ]

4Az
- (B R),

For known values of  and @ at time ¢ = ¢,, equation (3.18) can be used to calculate
explicitly predicted values of the free surface position at time ¢t = t,4; denoted by

~ )41
3t wherer = 1,2,..., N - 1.
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o Implicit calculation of the depth-averaged velocity w™'.

With the help of the finite-difference formulae introduced in §3.1.1 and the Crank-
Nicolson scheme described in §3.1.3, the depth-averaged momentum equation (2.3:)

can be written as :

vi@t vt 4 3@t =rhs, (3.19)
where
a{ h.z-H h_'H-l 4 h_lH-l
o= —qa; AT B IR C T aEn s T qagl
J+1 hJ+1 ,J+l
v2, = -Al_t + 24— —gz - h"l E+ A'xz'zifmf“ +(—)—l—;2-ﬁ'
Uf b‘{+1 h;”.l —1 _2+1 h‘{+l Al
v, = AT A-B- 4A:EC B 2A1:2u'm' - 4A.1:21
and
w h? h? h!
— —] 1 . _ 1 1 1 —1...J 1 1’1
rhs, ul_, (4Arc A+ B 4A$C + ‘2Aa:2u'm‘ + N )
1 D h? h? h?
=) — ) . » 1t -} J _ .4 Al
+ 7 (At +2A A3 E il 2A£2[)
w h? h? I
i b _ ] LI O | gy
tBn ( Az A-B+ 4A:I:C + DAzZ + 4A.n21 )
— F+ [(B* + BI)(r, — 1))/ (8A27)
Also
1
A= SR+ ()
1
B = m[hf(hfﬂ - h{—l) + hfﬂ(hf:ll - hffxl ]
1
C = M(hfﬂ — hH = ki +hy)
D = gl — 20+ L) + KRS = 2 4 )
1
E = [ =207 + W5 = (kg — 207+ A1)
1
F = 4“&;(773:11 - ijll +Tluj+1 - 7);]-1)
1
mf = 'Q‘A_z'(hfﬂ_hf—x)
1 1
D= (W =20 4 R
Tt (At/2)2( 1 ll + ll)
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The only unknown in (3.19) is the velocity field ﬂf“ for:=1,2,...,N — 1 which

obviously cannot be calculated explicitly. By rewriting (3.19) in matrix form as

v’ = RHS
Ol
v v 0 0 Y[ =" [ ths, — vi,a*!
vl v2, w3, . 0 AR rhs,
0 - viyey V2yop V3no || BN, rhsy_;
o .- 0 viy_; v2N_1/ \ﬁﬁ_l \rhsN_ — v3n- luJH

we see that this velocity field is the solution of a system of linear non-homogeneous
equations having a tridiagonal coefficient matrix. That type of system can be solved

by a straightforward elimination procedure.

o Frplicit caleulation of the corrected free surface position i+,

In this last step, we calculate a corrected value nt! for the free surface position
by using the velocity field @*' calculated in the second step. Equation (2.9) is solved

expheitly as -

1 -1ZJ+1 J+1 + u] —ﬁ]
PR S B Fl= /}-H b ]} 1+1 1+1 1—1
o=, A [2 (BT + 7))+ 4 As
= ;2
— Al (“ > ”‘*%A:'“‘ (3.20)
_ At + Il hzill hJ+l + hl+l h 11
4Az
— hH-l _ )

3.2.3 Lagrangian scheme

Figure (3.7) shows a Lagrangian configuration of the flow field. The important dif-
ference with respect to the Eulerian representation of Figure (3.6) is that the fluid

interfaces on which 7.% and h are specified are now allowed to move.
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Figure 3.8: Lagrangian description of the flow field.

As mentioned before, the depth-averaged continuity and momentum equations

(2.9) and (2.34) constitute Eulerian formulations. By introducing the material detiva-

tive (or ‘derivative following the fluid’)

d 90  _0
— = — 4+

dt Ot Oz

and applying it to the free surface position 7

dp _On  -on

dt ~ ot T oz
and to the depth-averaged velocity u

@ _om, o

it~ ot " oz’
we can rewrite (2.9) and (2.34) as :

dn _ dh
@ = Mg,

u _ +£7-_idazz

@ T3y
o dEe  hdhe o dho b dh
the— Y g g T T ey
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Fequation (3.22) is exact while (3.23) is valid up to order O(e?0®). For waves over a

flat bed, equation (3.22) and (3.23) reduce to :

dn
—L = —(h Uy 3.24
L=~ (h 400 (3.24)
du h* du
— = - — = 3.2
T W7 (3.25)
Taking the material derivative of z, we also obtain
e o

which can be used to define the position interfaces z, (i = 0,1,..., N) arising from
the Lagrangian finite difference description of the flow field.

For the finite difference approximation of (3.22) to (3.25), a three step procedure
very similar to the one described in §3.2.2 is used. The only modifications introduced
by the use of a moving grid are the replacement of the constant Az by a variable
mesh size Az, and the displacement of the computation grid calculated from the

fimite difference approximation of (3.26):
It =2l 4 AT 4+ (1 - 0)T) (3.27)

where 0 < 0 < 1.

3.3 Initial and boundary conditions

As mentioned before, the numerical solution of the governing equations requires the
hnowledge of initial and boundary conditions for 7 and @. Some of these conditions
are obvious and atise directly from the physics of the problem while others must be

derived indirectly by using the governing equations.

3.3.1 Initial conditions

In all the problems to be treated in §4, the initial conditions correspond to still water.

Thus

n(z,0)=20 (3.28)
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and

w(r,0) =0 (3.29)

for all z. In finite difference form, the conditions (3.28) and (3.29) become

n° =0 (3 30)
W =0 (330

for: =0,1,2,...,N.

3.3.2 Boundary conditions

In problems where the flow field is bounded by a vertical wall at & = ry, we have the

following boundary condition for the depth-averaged fluid velocity
(o, t) = Wu(t) (3 32)
where %, (t) is the horizontal velocity of the wall. In finite difference, we have
W) = Un(t,). (3 33)
If the wall is not moving, &, = 0 and
= 0. (3.31)

In all the cases to be treated in §4, the flow field is bounded at all times by a fixed

vertical wall at the downstream end z = zy such that
un=0 (3.35)

fory =0,1,2,...,P.

The free surface position 7 at z = zg and z = zn is unknown for £ > 0. There-
fore, unlike the case of the velocity, simple Dirichlet boundary conditions cannot he
deduced directly. However, by combining the velocity boundary conditions with the

depth-averaged momentum equation (2.34), we can derive houndary conditions of
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the Neumann type for 5. For example if %(zo,t) = 0, equation (2.34) evaluated at
z = g becomes
. h,_ h
nz(ant) = hhztux + '2_htux:r: + "2'ht:ct . (336)
r=z9
Equation (3 36) can be further simplified in cases where the bed acceleration at z = z,

15 equal to zero :

h
7]1(1'0, t) = [hhztix + '{;htﬂzzJ . (337)

r=x0

FFurthermore, if the bed slope is constant at = = z¢, we have

h
’Iz(l'o, t) = [Shtﬁzz} (338)
IT=xXg

&

and finally, for a non moving bed at 2 = z¢:
N:(z0,%) = 0. (3.39)

If however, (o, t) = %,(t), for the case of the non moving bed at z = z¢, we can

write :
du,,(t
Ne(To,t) = — d( ) (3.40)

At the downstream end z = z, we will always have :
’h(l‘N,t) =0 (341)

The finite difference approximations of equations (3.36)-(3.41) will be used to-
gether with the other initial and boundary conditions in the numerical solution of

the various problems presented in §4.

3.4 The Flux Corrected Transport (FCT) method

In §4, specific moving bed problems will be solved with the help of the finite difference
approximations derived in §3.2 for the governing equations. In most cases, these bed
motions will be such that strong deformations of the free surface position will occur
over relatively short distances. In other words, considerable variations in 7 (and

consequently on ) will take place over a very small number of grid points.
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It is a well known fact that in finite difference methods the treatment of solutions
with sharp gradients may lead to accuracy and/or stability problems. Standand
techniques available to circumvent these difficultios include gid refinnent m the
regions of sharp gradients and the introduction of artificial viscosity. However, one
of the most effective techmque 1s certainly the so-called Flux Cotrected Transport
(FCT) method which was initially developped by Boris & Book (1973,1975,1976) for
the numerical treatment of shock waves in compressible flows. In view of applying
it to the treatment of the problems presented in §4, we now give a brief summary
of that method.

The first important thing to note is that the FCT method 1s not a numen-
cal scheme in itself but rather a procedure for handling steep gradients solutions
calculated by means of standard numerical techniques such as the finite difference
method. We here follow the general definition of FCT given by Zalesak (1979).

We start by considering the following consetvation equation
wy+ f. =10 (312)

where w and f are both functions of the independent variables o and £, A finite
difference approximation to w is said to be in conservative or *flux™ form if it ean
be written as :

i _ .
= w! — AeT [ Fovugn — Fieoy )]

w

where w and f are defined on spatial grid pomnts r, and temporal g points ¢, The
spatial mesh size is given by Az, = %(.r,H = roy) The terms Fygyn and Foyy
are called transportive fluxes and then functional dependence on f is related to the
specific finite difference scheme which is nsed to approximate (342). For example,

in the case of an Eulerian (fixed grid) Crank-Nicolson scheme, we wonld have

At
Fx+(1/2) = “'“[ |J:|l + :J+l]
4

It can be shown (Boris & Book 1973) that in the regions of steep gradients i

w, finite difference approximations to (3.42) may suffer fiom two possible problems
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First, if the particular integration scheme which is used is of high order (order 2
or above, e.g. leapfrog, Crank-Nicolson, ...), the solution w will show dispersive
‘ripples’.  On the other hand, if a low order scheme (e.g. Lax-Friedrichs, donor
cell, .) is used, the solution will not be affected by ripples but will suffer from
excessive numerical diffusion. A similar result is also obtained if a zeroth order
artifical viscosity is added to a high order scheme.

The basic idea behind FCT is the combination of the best aspects of the above two
schemes: the accuracy of a high order scheme coupled with the diffusive properties
of a low order scheme. The originality of the method is that it constructs a net
transportive flux point by point as a weighted average of a flux computed by a
low order scheme and a flux computed by a high order scheme. This weighting
procedure favors the use of the high order flux except in regions of steep gradients
where the arising dispersive ‘ripples’ are attenuated by increasing the contribution
of the low order flux. Therefore FCT can be thought of as a selective application of
numerical diffusion which is limited to steep regions of the solution domain in which
that diffusion is most needed. That constitute a major advantage over most artificial
viscosity methods in which the solution is usually diffused uniformly over the whole
domain.

The formal FCT procedure can be defined as follows (Zalesak 1979) :

1. Compute 17"1“/2), the transportive flux as given by a high order scheme.

to

Compute Fll-;-(l/z)’ the transportive flux as given by a low order scheme guaran-

teed to give monotonic (ripple-free) solutions.
3. Define the “antidiffusive flux” :
Ao = Fiapm = Fiapy
4. Compute the updated low order (“transported and diffused”) solution :
wit = w — A‘T;_‘[Fﬁ-(lﬁ) - EE(1/2)]'
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5. Limit the antidiffusive flux by using
Avay = G/ Aay with 6 < Cyyy <1

in a manner such that v’*! as computed in (6) is free of extrema not found in

w' or w.

6. Compute the final solution by using the limited antidiffusive fluxes calculated

in (5) :

+1 d - c ¢
w = w — A, 1(14,+(1/'z) - A._(x/'z)]-

The crucial part of the FCT method is obviously the choice of an appropriate selection
rule for limiting the antidiffusive fluxes in (5). This important flux limitation ot “flux
correction” step determines the respective contribution of the dispersive (high order)
and diffusive (low order) effects in the final solution.

For the problems of §4, the simple FCT algorithm proposed by Peyret & Taylor
(1983) will be used to improve the numerical solution of the depth-averaged continuity
equation :

J+1
t

1. Compute 5™ by the high order method described in §3.2.

2. Compute a low order (transported and diffused) estimation 77" of the solution
by using
=141 +1 +1 +1 +1
moo=m el -2+l

where o is an artificial viscosity coefficient.

3. Compute the limited antidiffusive flux A7, /) by using the following sclection

rule :
A.C+(1/2) = S max|0, min(.S8,-(1/2), |A3+(1/2) ySDm)]
with
1
Anl+(1/2) = g(TI.JLl - 7727“)

S = Sign(A‘.’.(]/Q))

A2y = THNEE A
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4 Compute the final solution

)41 c
TI.Ml = 7I{+ —-( +(1/2) A:c—(x/z))-

Although it may not be obvious at first sight, the above algorithm constitutes a

specific example of the application of the formal procedure described previously.
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4 COMPUTATIONS AND EXPERIMENTS

As pointed out in §1, there are numerous instances in which water waves can be
generated in a water body by the motion of the underlying bed. Natural phenomena
such as landslides, rockfalls and submarine earthquakes as well as underwater volcame
eruptions or explosions are a few examples of the many possible sources of such wave
formation. One of the important questions arising in the modelling {(physical o
numerical) of these problems lies in the proper choice of a wave generation mechamsm
which must be as close as possible to reality.

In problems of water waves generated in a channel by underwater earthquakes
(tsunamis) or explosions, the wave generation mechanism usually consists in the
sudden vertical upthrust of a segment of the bed (Kranzer & Keller 1959; Hwaug &
Divoky 1970; Hammack 1973). This disturbed segment remains under water ot all
times.

Waves generated by landslides or other types of sliding material are often simu-
lated by two distinct wave generation mechanisms: the horizontal motion of a vertical
wall and the vertical fall of a box (Wiegel et al. 1970; Noda 1970; Das & Wiegel 1972).
In both cases, the disturbed segment is located at the end of a channel and intersects
the water surface. The logic behind this type of modelling is that the actual wave
generation mechanism probably consists of a mixed horizontal-vertical type of motion
which lies somwhere between the fully horizontal and vertical generation modes.

In this section, we present five cases of wave generation by a moving hed and

describe their corresponding experimental and numecrical models.

4.1 Types of bed motion considered

The present study was made in collaboration with workers at the Laboratory of
Hydraulics, Hydrology and Glaciology (VAW) of the Swiss Federal Institute of Tech-
nology (ETH) in Zurich.

The five following numerical simulations were conceived in conjunction with iden-
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tical laboratory experiments in order to permit a direct comparison of computational
and experimental results. The experiments were performed at VAW in 1987-88 by

Johannes Sander under the direction of Drs. K.Hutter and D.Vischer.

4.1.1 Moving wall

Formally speaking, the horizontal motion of a vertical wall at the end of a long
channel does not constitute an example of wave generation by a moving bed. Indeed,
the modelling of that problem by the Boussinesq theory does not require the use
of the general equation (2.34) but can rather be handled by the simple Boussinesq
cquation (2.39) for waves over a flat bed with appropriate boundary conditions to
model the moving wall.

However, we will still treat this case for two important reasons. Firstly, it con-
stitutes an obvious starting point in the modelling of landslide generated waves.
Secondly, that representation not only gives a rough simulation of the actual problem
but it also can be easily implemented in an experimental or numerical model.

Figure 4.1a shows that arrangement which from now on will be referred to as the
‘moving wall’. The wave generation simply arises from the displacement of the wall

over a distance d with a velocity %,,(t) during a time interval 0 <t < ¢;.

4.1.2 Submerged wedge

The second wave generator which will be considered consists of the horizontal dis-
placement of an inclined plate of constant slope m at the end of a channel (Figure
1.Ib) At t = 0, the channel depth is constant. This wedge shape then moves over
a distance d into the channel with an horizontal velocity %, (¢). The total duration
ty of the displacement is always chosen such that the resulting bed deformation does
not reach the level of the undisturbed free surface. For that reason, we will refer to
this wave generating device as the ‘submerged wedge’. The fact that the moving bed
never intersects the undisturbed free surface greatly simplifies the numerical solution

of the problem by avoiding the treatment of a moving waterline.
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Figure 4.1: Types of bed motion considered.
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Compared to the moving wall, the submerged wedge certainly constitutes a better
representation of the entry of a landslide in water. The model was inspired by the

probable configuration of a mass of granular material which is inclined at its angle of

repose after entering the water.

4.1.3 Moving shelf

This wave generating device constitutes an extension of the previous case, the only
differences being that the wedge now posseses a predefined height less than the undis-
turbed water depth and that its motion takes place some distance away from the
upstream end of the channel (Figure 4.1c). The depth above the shelf is denoted by
hy. The resulting arrangment is referred to as the ‘moving shelf’. This model can
probably simulate the advance of a long strip of material along the bed of the chan-
nel. Contrary to the two previous wave generating devices, the moving shelf could
probably be useful in the modelling of tsunamis.

The model was conceived as an extension of the shelf topography which was often
used in the study of solitary wave propagation (Madsen & Mei 1969; Johnson 1972;
Helfrich & Melville 1986).

4.1.4 Rotating plate

The ‘rotating plate’ wave generating device consists of a plate which is rotated about
a fixed location r = [ at the bottom of the channel (Figure 4.1d). The plate initially
coincides with the bed of the channel and is then lifted with a constant vertical
velocity V' at x = 0 until the slope reaches a maximum value mp,,, at t = t; which is
always chosen such that the deformed bed dees not go beyond the undisturbed free
surface level. Unlike the previous wave generators, the rotating plate does not involve
a lateral translation of the wave generating device in the z-direction. Furthermore,
its tesulting motion implies a strong vertical component.

The rotating plate could well represent the accumulation at the bottom of the

channel of a granular mass which does not travel laterally but rather builds up into
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a sloping heap.

4.1.5 Moving wedge

Compared to the four other wave generating devices, the ‘moving wedge' (Figure
4.1e) probably constitutes the best model for landslide generated waves. It wmvolves
the motion of an inclined wail spanning accross the whole waier depth. The hon
zontal bed velocity 1s dencted by T, (t) and its constant slope by m. The resulting
bed deformation is similar to the case of the submerged wedge except that it now
intersects the free surface. As pointed in §3.2.2, the moving wedge niodel introduces
the difficulty associated with the numerical tieatment of the constantly moving pont

of intersection between the bed and the free suiface.

4.2 Experimental set-up

As mentioned earlier, the five wave generating devices described above were modelled
experimentally at the Laboratory of Hydraulics, Hydrology and Glaciology (VAW)
in Zurich, Switzerland (Sander 1988).

The channel used for the experiments was 16 m long and had a cross section
of 0.3 m x 0.3 m. The bottom and back walls were made of 1 c¢cm thick dark giey
PVC sheets while the front was made of a 1 cm thick plexiglass wall to permit direct
observation of the propagated waves. Two types of wave generating mechanisms were

used.

4.2.1 Rotating plate

For the rotating plate generator, a flat plate 30 to 50 cm long located at the upsticam
end of the channel was hinged to a cylindrical bearing at the bed. The plate was
rotated around that hinge by the vertical traction of an electrical motor. At z =0,
the water was bounded by a vertical plate which was free to move in the vertical

direction as the rotating plate was set in motion.
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4.2.2 Lateral displacements

For all the remaining wave generating devices, a commen basic mechanism was used.
A piston driven by an electrical stepping motor was installed at the upstream end of
the channel. A gearing with cross-like slot guides was used to transform the rotation
of the motor into the horizontal translation of two straight parallel bars. Different
piston geometries were attached to the extremity of these bars to make up the various
wave generating devices.

['or the moving wall, a simple vertical plate was used. In the case of the moving
wedge, it was replaced by inclined plates with slopes of 15, 30 or 45°. The submerged
wedge generator was obtained.by placing a moveable vertical partition above the
inclmed plate at £ = 0. For the moving shelf, a long, shallow rectangular box was
installed in front of the vertical wall piston. Again the water was bounded at 2 =0
by a vertical partition

The electrical stepping motor turns at a constant frequency. By neglecting its
initial acceleration and final deceleration, it can be shown that the rotation of the
motor gives rise to an horizontal piston velocity which has a sinusoidal variation in
time (Sander 1988). The piston velocity can be expressed as :

Uyw(t) = v" sin {7:'[7'1 + Q-?—i.—;—ﬁ—)t]} (4.1)
whete trepresents the non-dimensional time and t; is the total duration ot the bed
motion. The maximum piston velocity is denoted by v*. The parameters 7; and
2 depend on the specific wave generating device which is used. In all experiments,
i, () 15 non-negative at all times (i.e. no pulsating motion of the piston). For the
moving wall, moving shelf and moving wedge, we always have ; = 0 and 7, = 1. For
the submerged wedge, values of 7, = %,% and 1, = %, % are also used.

The resulting horizontal displacement d of the wave generating device was always

predefined in cach experiment. By integration of (4.1),
ty _ . Y. T
d= / Uy(t)dt =v / sin q —{tym + (o — m)t]p dt
0 0 tf
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from which we can deduce the following expression for the total duration of the bed

motion :
7(ry — 11 )d
by =— ( 2 (1.2)
v*(cosTT — CcosWT,)

Equation (4.2) will be useful in the development of the computer models which

will be presented in the next subsection.

4.3 Computer models

Five computer programs were developed in order to model the various cases of waves
induced by a moving bed described in §4.1. We now give an overview of these pro

grams’ general characteristics and a description of their source code.

4.3.1 General description

All the computations were performed on IBM PC or compatibles computers of the
XT and AT type.

The programs were edited, compiled and run with the help of the TURBO PAS
CAL package (versions 3.0 and 4.0). The graphical output was produced by PLOT-
CALL 1.0.

Depending on the extent of the solution domain, the total computation time fo
each problem rauged from 3 to 10 hours.

The source codes of the five programs arc listed in Appendix C along with the
definition of the variables and of the constants used to specify the initial parameters of
the problems. Table 4.1. gives the name of these programs and the wave generating,
mechanisms to which they correspond. All these programs have the same main
structure, which can be divided in 3 basic parts.

A first set of procedures specifies the initial and boundary conditions for the
dependent variables 7 and @. The initial conditions always correspond to g bl
water surface and are given by equations (3 30) and (3.31). The boundary conditions

depend on the geometry and the type of displacement of each particular problemm (see
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§3.3.2).

Type of wave generation | Name of program
Moving wall WALL
Submerged wedge SUBWED
Moving shelf SHELF

Rotating plate ROPLATE
Moving wedge WEDGE

Table 4.1. Types of bed motion considered and corresponding computer programs

A second group of procedures insures the proper mathematical modelling of the
evolution h(, t) of the moving bed. That part of the program is very important since
the bed displacement history directly influences the characteristics of the resulting
wave prolile

The core of the programs involves the application of the numerical methods of §3
to the solution of the governing equations. This segment of the programs therefore
petforms the actual calculation of  and @ resulting from a known bed motion with
approprtiate initial and boundary conditions

For the reasons already pointed out in §3.2.1, both the Eulerian and the La-
grangian fimte diffetence schemes are used. The Lagrangian scheme is applied to the
moving wall (program WALL) and the moving wedge problems (program WEDGE),
which ate the two cases involving a point of intersection between the water surface
and the wave generating device. The treatment of the three other cases (programs
SUBWED, SHELF, ROPLATE) relies on Eulerian schemes.

In the case of Lagrangian computations, a fourth set of procedures was developed
for the task of reallocating the moving spatial grid points to their new location at
every time step.

In order to avoid possible accuracy or stability problems, the FCT scheme de-
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" scribed in §3.4 was implemented in each program to eliminate non-physical ripples
in the calculated wave profiles. The scheme proved to be necessary in all the prob
lems treated except for the moving wall where a satisfactory solution was obtained

whithout the use of FCT. .

We now proceed to a separate description of each program.

4.3.2 Program WALL

The WALL program models the moving wall problem. It is listed in Appendin
on pages C-2 to C-7 The main program is relatively short and rehies on the nse ol
various procedures.

The procedure ‘Initial_Cond’ creates an initial spatial grid having a constant mesh
size ‘dx’. It also specifies on each grid points (: = 0, 1,2,...,n) initial values ‘ethal|s]’
and ‘ul[{]’ for the free surface position and the depth-averaged velocity which corre
spond to equations (3.30) and (3.31), i.e. fluid at 1rest.

The velocity boundary conditions are implemented by the procedure ‘U_Bd" which
uses equations (3.33) and (3.35). The free suiface boundary conditions are based on
equations (3.40) and (3.41) and calculated by the procedure ‘Etha_B¢’

The horizontal motion of the wall is modelled by the functions ‘Vpiston’ and
*Accpiston’ which respectively give the velocity and acceleration of the wall at any
given time. The function ‘Vpiston’ is based on equation (4.1) with 7y =0 and 7, = |

To obtain the numerical solutions of the governing equations, the thiee step
scheme proposed in §3.2 is inco1 porated 1n thiee distinct procedures.

The procedure *Continuity_Predictor’ calculates a predicted value ‘etha2{d” (4
1,2,...,n—1) for the free surface position using equation (3 24) with the ‘old” values
‘ull)]” of the velocity field. The procedure ‘Momentum’ solves equation (3.25) by
using an implicit (Crank-Nicolson) finite difference scheme.

The updated velocity field ‘u2[z]’ (: = 0,1,2,...,n=1) is obtained as the solution
of a tridiagonal matrix system by the procedure ‘Tridiag’.

Finally, the procedure ‘Continuity_Corrector’ also solves (3 24) but uses the values
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‘u2[z)’ of the updated velocity field.
At ecach time step, the updated location ‘x2[i]” of the moving grid points is deter-

mined by means of two procedures : ‘Approx_Interfaces’ and ‘Interfaces’. The first

one gives the approximate location of the grid points (or fluid interfaces) as given by

cquation {3 27) with § = 0. The procedure ‘Interfaces’ is used after the ‘Momentum’

procedure and solves equation (3.24) with § = 1/2.

4.3.3 Program SUBWED

This program uscs an Eulerian finite-difference scheme to model the waves generated
by a moving, submerged wedge. It is listed on pages C-8 to C-17 of Appendix C.

The main program begins by the imposition of initial conditions and velocity
boundary conditions via the procedures ‘Initial.Cond’ and ‘U.Bc’. The velocity
boundary conditions (3.34) and (3.33) are used.

The free surface boundary conditions are handled by the procedures ‘Etha_Bc.
Pred” and *Etha-Be-Corr™ 1n accordance with equations (3.38) and (3.41).

The evolution of the moving bed is treated by the procedures ‘Bed.s-Moving’
and ‘Move_Bed’ which are based on equation (4.1). The procedure *Stationary_Bed’
15 used to specifly the topography of the bed once its motion has stop.

The continuty equation is again solved in two steps by the procedure ‘Conti-
nuty Predictor” which uses the finite-difference expression (3.18) and by ‘Continu-
ity -Corrector’ which uses (3.20).

The updated velocity field *u2(e] is calculated by the procedure ‘Momentum’ in
accordance with the impheit (Crank-Nicolson) scheme presented in §3.2.1). To reduce
the computation time, two distinct procedures are used separately for calculations
duting the bed motion (proceduie *Momentum_Fxt’) and after the bed has come to
test (procedure *Momentum-Fx'"). Both procedures use the ‘Tridiag’ matrix solver.

The procedure FCT corrects the updated free surface position ‘etha2[:]’ by using

the Flux Cortected Transport (FCT) algorithm presented in §3.4.
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4.3.4 Program SHELF

This program modelling the generation of a wave by the motion of a shelf s hsted m
Appendix C, pages C-18 to C-27.

The source code is almost identical to SUBWED. The only differences ate in the
specification of the bed motion and in the free surface boundary conditions caleulated
by the procedure ‘Etha.Bc’. The upstream and downstream boundaries now bo'',
consists of fixed vertical walls over a non-moving bed and the conditions (3.39) and

(3.41) are used.

4.3.5 Prograsn ROPLATE

This program models the rotating plate problem described in §4.1 4. The hsting of
ROPLATE can be found on pp. C-28 to C-37. Again, this program closely resembles
the other two ( SUBWED and SHELF) using an Eulerian scheme.

The main difference is now in the specification of the bed motion which does nof
imply an horizontal sinnsoidal velocity as given by (4.1) but rather a vertical pull of
constant velocity (Figure 4.2a).

The upstream free suiface boundary condition at 1s now given by equation (33 37)

4.3.6 Program WEDGE

This program (pp. C-38 to C-47) treats the moving wedge problem of §1.1.5  As
mentioned before, it uses a Lagrangian finite difference scheme. It constitutes a gen
eralisation of the program WALL in which the complete governing equations (3.22)
(3.23) are used instead of (3.24)-(3.25).

The upstream boundary condition, now consists 1n a laterally moving point of
zero depth. Instead of using the equations derived in §3.3.2, we simply express the

free surface boundary condition at this point by the equation
T’(I07t) = h(‘c(h t)

which 1s used in procedure *Etha_Bc’.



Furthermore, the upstream velocity boundary condition is now calculated by a
simple extrapolation (procedure ‘U.Bc_Corr’) of the values of the velocity field at the
grid points ¢ = 1 and 2.

The modelling of the moving bed is now done by the procedure ‘Find.Depth’.
Unlike the previous cases, that procedure allows the use of an interpolating polyno-
mital 1n order to simooth off the transition betwecn the sloping segment and the flat
patt of the bed (Figure 4.1¢). The interpolating polynomial is given by (Pedersen &

Gjevik 1983) :

1
p(s) = g(s‘* — 55"+ 155% = 165 + 5) (4.3)
where
s = %(.r, )

and

r, = position of the foot of the wedge,

m = slope of the wedge,

i, = required length of the smoothed transition.

This feature was added in order to investigate the effect of the slope discontinuity on

a

the evaluation of the fitst order spatial derivative 5% at T = 1.
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5 COMPARISON OF RESULTS

Graphical outputs obtained from the five computer models described earlier will now

be presented and compared with corresponding experimental results.

5.1 Moving wall

Figure 5.1a gives a representation in the x-t plane of a wave generated by the lateral
motion of a vertical wall. The wave profiles were computed with the program WALL
based on the Lagrangian scheme described in §3.2.3. The initial spatial mesh sie
was set to Az = 0.25 and the temporal mesh size to At = 0.25. The FCT algonthm
was not used in the numerical solution. For the case shown, the motion of the wall
was governed by equation (4.1) with n, = 0, 7, = 1 and v* = 0.2. The wall moved
from z = 0 to £ = 1.67 in a time ¢; = 13.12 as calculated from equation (:.2). The
instantaneous position of the wall is indicated by a line which becomes parallel to the

time axis for t > 13.12.

Figure 5.1a: Wave generated by a moving wall.
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As described in §2.1, all the variables were non-dimensionalized according to a
characteristic depth h, which was chosen to correspond to the free surface level at
rest

Figure 5.1b shows a comparison of the above numerical output with results ob-
tained fromn a channel experiment at VAW-ETH. The channel had an initial depth
water depth of h, = 15 cm. The parameters governing the motion of the wall were all
identical to the ones used in the computation. Results are presented as wave height
recordings measured at eight locations along the channel. The experimental results
are represented by a solid line and the computational ones by a dashed line.

It appears that the general agreement between computed and measured wave
profiles is quite good. The free surface disturbance initially takes the form of a single
hump  As it tiavels down the channel, the initial wave splits into a large leading wave
followed by a train of smaller, dispersive oscillations of decreasing amplitude. It can
be shown (Sander 1988) that the leading wave matches almost exactly the sohtary
wave solution of the Boussinesq equation.It is worthwile noticing that the numerical
model not only predicts the shape of that leading wave but it also gives a very good
representation of the trailing dispersive waves.

However, there is a slight difference between computed and observed peak ampli-
tudes  Although the calculated peak of the initial disturbance (gauge 1) is very close
to the measured vabie, it appears that further downstream, the calculated amplitude
s slightly larger. That small difference could probably be attributed to the neglect in
the mathematical model of the dissipation effects associated with the water viscosity
and the wall friction in the channel.

The agreement between computed and measured values indicates that our model
can account properly for wave amplitudes in the order of 25% of the undisturbed
water depth. Such values of the relative wave amplitude could probably not be treated
using the ‘small amplitude’ theory. Figure D.1 in Appendix D shows a comparison
between experimental and computational results for which a reasonable agreement

was obtained even for a leading wave amplitude of more than 0.5.
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Figure 5.1b: Wave generated by a moving wall. Maximum horizontal veloaity of
the wall v* = 0.2; total displacement d = 1.67; duration of the motion t; = 13.12
Experiment —, computation - - -.




5.2 Submerged wedge

The so-called ‘submerged wedge' problem was the first moving bed problem to be
treated in this study. For that reason, numerous computations were performed and
supplementary results are presented in Appendix D.

Figure 5.2a represents the propagation of a wave generated by a moving submerged
wedge having a slope of 0.268 (15°) and a sinusoidal velocity described by equation
(41) withmy =0, 7, =1and v" = 0.2. The foot of the wedge moves from z = 0 to
r = 1.67in a timet; of 13.12. The wave generation and propagation were computed
Ly the program SUBWED. The Eulerian scheme of §3.2.2 was used with a constant

spatial mesh size of 0.25 and a temporal mesh size of 0.25.

Figure 5.2a: Wave generated by a submerged wedge.

Unlike the case of the moving wall which we just described, the submerged wedge
problem uses the FCT algorithm of §3.4. As already mentioned, the necessity of FCT
m the subme.ged wedge problem (as well as in the three remaining cases involving
a motion of the bed) can be explained by the fact that sharp variations in the bed

elevatiou (and consequently on 7 and ) occur over only a few spatial grid points
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during the generation phase. That explains why FCT was not needed in the moving
wall problem which was simply modelled by the Boussinesq system for waves over a
flat bed with appropriate boundary conditions to handle the moving wall.

Figure D.2b in Apppendix D shows computational results obtained without the
use of FCT for the bed motion conditions stated ecarlier. When compared to the solul
line of figure 5.2b which was obtained from measureinents in a channel expetiment,
we see that the computed wave profiles of figure D.2b are unsatisfactory. A train of
non-physical oscillations is trailing the leading wave. These ‘wiggles’ ate especially
important in wave profiles computed during the generation phase.

The results of a cornputation using the FCT algorithm with a diffusion constaat o
of 0.2 are shown in figure 5.2a and represented by a dashed line m figure 5.2b (these
results are also shown on figure D.2a but with a different scale).

The agreement between computed and measured wave wave heights (Figure 5.25)
is even better than in the case of the moving wall. The calculated peak ampli-
tudes now closely match the experimental values. Although the dissipative effects
associated with the experiment are still probably present, it would seem that a co
responding diffusion is introduced in the computed profiles by the vse of FCT

Again, we observe that our model permits appropriate representation of both the
leading wave and the trailing sequence of smaller dispersive waves. To reinforee that
statement, computations were carried out using the lineatized long-wave equations
(1.4) and the shallow-water, finite-amplitude equations (1.2) in non-dimensional form
(i.e. g replaced by 1). The results are shown in Appendix D in figures 1.2¢ and 1).2d
We observe that both theories aie unable to predict the occurence of the traling
dispersive waves. Furthermore, in both cases, the calculated leading wave is vahid
only for a short time. As it travels downstream, its amplitude becomes overestimated
and, in the case of the finite-amplitude equations (Figure D.2d), it suffers from an

excessive steepening.
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In order to confirm the validity of our weakly nonlinear, dispersive approach, the
results of two other sirnulations are presented. Figures D.2e and D 2f both involve the
same displaced bed volume as the case we already described (Figure 13 2a), The wave
profiles of figure D.2e were ubtained by reduring the amplitude »* of the sinusoidal
wedge velocity from 0.2 to 0.1 and by increasing the duration £; of the bed motion
from 13.12 to 26.23 in order to obtain the same displaced volumie. Sinularly, in tiguie
D.2{, v* was kept at (.2 but the slope was increased from 0.263 (15°) to 0.577 (30°)
thus reducing the motion time from 13.12 to §.94. The conclusion which can be
drawn fiom comparison of figures D.2a, D.2e and D.2{ s that the far field behaviows
of the wave depends on the bed motion history and not ouly on its final displacement.
This fact contradicts the conclusion which can be derived from the small-amplitude
theory (Hunt 198%) and which states that, under the influence of dispersion, all waves
created by the same resultant bed displacement should ultimately become identical

Supplementary results are presented on figures D.2g, D.2h and D 2 to conlirm

the validity of the model.

5.3 Moving shelf

As mentioned in §4.1.3, the ‘moving shelf’ wave generator is similar to the case of the
submerged wedge. The interest of this wave generator lies in the fact thal the initial
free surface disturbance is induced some distance away from the origin  ‘Therefore
the moving shelf could probably be useful in the study of waves generated away from
the shoreline such as tsunamis.

Computations and corresponding experiments were petformed to model the prop-
agation of a wave generated by the motion of a shelf Laving the following charactes
istics:

e depth of water above the shelf b = %ho with h, = 15 c¢m in the experiment,

e slope of the depth transition m = 0.577,

e initial position of the top of the transition = 53,
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e distance travelled by the shelf d = 1.67,
o duration of motion ¢y =13.12.

The resulting wave profile is shown in the z-t plane in figure 5.3a. The numerical
results are compared with experimental values in figure 5.3b. The computations were
performed with the program SHELF. The spatial and temporal mesh size were again

set to 0 25. Flux Corrected Transport was used with ¢ = 0.2.

Figure 5.3a. Wave generated by a moving shelf.

The mitial disturbance is split up into a right running and a left running wave.
A5t 1eaches the ongin, the left running wave is reflected and starts to trail the right
tunmng wave  Figure 5.3b indicates a very good agreement between c.mputed and
expernimental values.

The only observable difference is in the amplitude of the trough which follows the
reflected wave  The calculated amplitude 1s slightly higher than the observed one.
However, as time increases, the numernical and experimental wave heights become

equel (see gauges 3 to 6)
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5.4 Rotating plate

The ‘rotating plate’ problem is the only one which does not involve a sinusoidal
motion of the wave generator. The motion here simply consists of the rotation of a
flat plate resulting from a pull of constant velocity applied at = = 0.

The program ROPLATE was used to calculate a numerical solution for the wave
height - The results are shown in figure 5.4a and compared with experimental data
in figure 5.4 In both cases, the plate had a length { = 3.33 and was rotated for

ty =3 with a vettical velocity V =01 at £ =0

Figure 5.4a. Wave generated by a rotating plate.

[n spite of the apparent simplicity of the wave generating device, the agreement
between computed and observed wave heights is not as good as in the previous cases.
Figute 5 4b shows that the computed wave amplitude (dashed line) is always slightly
larger than the experimental values (solid line) even in the initial generation stage.
Fhetefore. unlike the case of the moving wall. the difference in amplitude cannot be
stmply attnbuted to dissipative effects in the wave channel.

It can also be observed that at gauge 1 (z = 10.3), the observed disintegration

62



O-‘]E CC\_L::' ' ;___‘

©.10 r=103

c.c= -

oO.1 = Couwge I

c.1c r=07

o.Cc= -

.1 E Cowegs = L

O.'TC‘l =310

O.CEm -
s ———

Q.1 = T

Q.71 CH

C.C=—

.1 &

.1 CF

0.0 =~

.1 =E—

C.1 O

C.CE-

Q.1 S

O.1 O

o.0=—

O E-

Q.1 OF

.05

ml

Figure 5.4b: Wave generated by a rotating plate. Length of the plate { = 333
vertical pull velocity V = 0.1 at z = 0. duration of the bed motion t; = 50, final
slope mpqr = 0.24. Experiment ——,computation - - -.

63



of the imtial disturbance into shorter humps is not clearly defined in the computed

results

The above comments can also be applied to the results shown on figures D.3a and
D 3hof Appendix D

Two reasons may explain these small discrepancies. First, it is possible that
the imposition of a constant and impulsive pull velocity at the end of the plate
cavses slight mstabilities in the numerical model. Secondly, it appears that in all the
summlated rotating plate problems, the final slope was rather low (= 0.2). Thus the
totation of the plate maily induces a vertical motion component to the water layer
above it In these conditions. the depth-averaged velocity assumption made in the
soverg equattons s pethaps inappiopriate.  Nevertheless. apart from these minot
diff erences, the correspondence between nurnerical and experimental results remains
quite satisfactory  As seen in figute 5.4b; the wodel gives a good representation of

both the leading and traling waves

5.5 Moving wedge

e last moving bed problem that was considered involves the generation of a wave
by the lateral displacement of an inclined wall intersecting the water surface.

As mentioned carher, the ticatment of this problem is complicated by the presence
ot a moving waterline The program WEDGE was used to compute the resulting
wave profiles The FOT algouthm was again used in this case. Without FCT, the
computed solutions suffered from severe instabilities.

Frgutes 55 and 5 5b give the evolution of a wave created by the motion of a
wedge of slope m = 0.268 which moves with a sinusoidal velocity from r = 0 to
r= 1671 a tune of 13.12. In figute 3.5b, the instantaneous position of the moving
waterline 1s indicated by a curve m the z-¢ plane.

It appears that, during the initial rise of water, the z-coordinate of the waterline

temaims at = 0. As soon as the wave leaves the origin, the water depth comes
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back to its undisturbed level as indicated by the position of the waterline which stavs

ln

constant at z =~ 1.67.

Figure 5 5a: Wave generated by a meving wedge

As before, the numetical output of figure 5.5a is compared with equivalent exper
imental results in figure 5 5b. The agreement 1s excellent The computed amplitude
and wavelength of both the leading and traihing waves match almost perfectly the
experimental values

The effect of the bed slope discontinuity on the evaluation of the derivative h, . was
studied by replacing that discontinuity by a smooth transition as given by equation
(4.3). No improvement was observed 1n the computed solution.

Another simulation was made to investigate the validity of the model in cases
involving a steeper wedge slope. Figure D.4 shows calculated and measured wave
heights for a moving wedge of slope m = 1. As in the previous case, the computation:,
closely match the experiment.

The above results show that the Lagrangian treatment of the moving waterhne
gives unexpectedly good results in spite of its relative simphaty Furthermore! they
confirm the validity of the proposed model for the accurate descripiton of waves

generated by moving boundaries
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6 CONCLUSIONS

Natural phenomena involving the generation and propagation of water waves devel
oped by moving boundaries sometimes can constitute a serious threat to both coastal
populations and man-made structures. Landshde induced water waves in lakes and
tsunamis are well documented examples of this type of problem.

In the preceding sections, a mathematical model was developed for the modething,
of water waves generated by a moving bed As a starting point to more realisti
representations, only one-dimensional, frictionless problems wete considered

The model relies on a set of depth-averaged continuity and momentum equations
which constitute a generalization of the Boussinesq equations accounting for the un
steady and nonuniform bed topography This theory is hnuted to wave propagation
in shallow water but it presents the advantage of combining in an approvimate
balance—the two fundamental eflects of nonlinearity (or amphitude dispersion) and
dispersion (or frequency dispersion). This feature elimmmates questions abont the
range of applicability of the theory and 1n that respect constitnte a major advantave
over small-amplitude and finite-amphtude (Airy) theones.

A simple numerical solution to the governing equations was obtamed by means
of fimte difference approximations In order to imcrease the accuracy, the compnted
wave profiles were tieated with a simple Flux Corrected Transport (FCT) algonthin
That scheme was not only uscful in upgrading the accuracy of the solutions it also
lead to accurate solutions in cases where a stable solution could not even he obtamed
without FCT.

The numerical results presented in §3 showed an excellent agreement. with cor
responding experimental results. The amphtude, wave length and veloaty of both
the leading wave and dispersive trailing waves were very well predicted by the model
(except perhaps in the case of the rotating plate for which the shallow-water appros
imation u(z,y,t) ~ u(zr,t) was maybe inapplopriate).

Therefore, we conclude that the nonhinear. dispersive, shallow wat + wave math
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ematical model presented herein constitutes a very good representation for the gen-
eration and propagation of waves developed by a moving bed.

Further studies could be directed towards the treatment of problems in two spatial
dimensions and on a more realistic representation of the moving bed in which the

moving solid boundaries could be replaced by a sliding granular material.
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APPENDIX A

Validity of the shallow-water
approximation




As pointed out in §2.1, the depth-averaging of the z-momentum equation
shows that the ‘shallow-water’ approximation—which merely consists in replacing
u(z,y,t) by u(z,t)—is only valid if H{u? — G?) is small compared to the remaining
terms of the equation

0 0 —_ ol
5 (HT) + - ((H@ +5) + H( - @) = p,,g;l. (A1)

In other words, for u2 — #? to be negligible, we must show that it is of higher order
than the expressions developed for p, and p. From (2.22) and (2.23). we see that the
order of p, and p is determined by the order of the factors e, 3 and ¥ (equation 2.20)
in terms of which they are expiessed In the scaled equations (2 32) for a™ 3" and
v*, we saw that the higher order terms wete O(c?0?). We therefore must determine
under what conditions the difference u? — @2 becomes smaller than O(c%a?).

We first rewrite the approximation (2.12) for the vertical velocity as :
v = [hy +Thy + (y + b)) (A2)

Combining (A2) with the irrotationality condition

Ju Ov

_—= — Al
9 - 0z’ (A3)
we obtain
13} ,
0—;: "‘(‘lj'Jr'h)ﬁ”—D (A4)
where
D=hy,+2h,0, +h,, 7.
Integration of (A4) from y to 5 gives:
H? h)?
= uy + Uy [T—Q‘-j——_—:—i)—-} + D(n—y) (AD)
and from the definition (2.10) of the depth-averaged velocity, we have :
H? H
E:—;;/;nhudyzu,—kﬂzr?—-{-D—Q—. (A6)

A-2
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Subtracting (A6G) from (A5), we get

I h)? H -
u~—ﬁ:?‘t’”[—6~—(—y—i—é—)—}+l)[5—(y+h)]. (AT)
Note that (AT) can be rednced to
/ 2 h? ;
u=u - (y + é) [ht + (hﬂ)r].c - (%— + F) Upr + 0(6202)

as 1 equation (2.36). Squaring u in equation (A7) gives

i (y+h)?

w? =t + sz,r[ ]+2ﬂD[g—(y+h)}

6 2
HY  H%(y+ k) (y+ h)!
TR : A3
ot [36 6 ' 1 (A8)
- H> Hy+h)? HYy+h) (y+h)°
+3””D[_15‘ 1 6 T
| H? 5
+ D¢ T”(y +h)+ (y+h)
and applying the defimtion (217) of 42 to (A8), we finally obtain
— ) H? H? H?
ut — u* :'ﬂiz-&g—}-ﬁer—lg +D2-1—2—. (AY)
For waves over a flat honizontal bed, D = 0 and (A9) reduces to
— . H1
u —ut =0, — (A10)
45

as denived by Su & Gadner (1969)  The difference u? — @2 as given by (A10) is
O(e?o') and 1s always neghgible relative to the O(e20?) pressure terms. Therefore.
we condude that there is no restriction on the applicability of the *shallow-water’
assumption w(roy f) >~ u(r.t) tor long waves over a flat bed.

However, af the bed v in motion. D is non-zero and depends on the slope and
veloaity of the bed  \.suming the orders of magnitude of the slope % and veloaty

h ) O M
",!’ to be unhnowns, we can use the scaling factors defined by (2.27) to write

D™ = —{ov(h)i + 2eou(h, )W + eop(hz)z. T (All)

A-3




where it is assumed that g and v respectively represent the order of magmtude ol

the slope and velocity of the bed, 1. e.

oh

3 = O(pe),
dh
'a—[' = Q(r)

As mentionned before, the first term on the right hand side of (A9) will alwans be

smaller than O(e*g?). Therefore, for the difference u? — @ to be negligible, we newd

i’

E“DT)--<O(<202) (N2
and
, H* ,
D? T O(a?). (A\13)

Using the scales defined in (2 27) and (All), we see that the conditions (A12) and
(A13) tespectively imply .
(co?)w
(Fo)p

and

)
4721/"

((203)/12 < '
2
(ca=)jev
In the above inequalities, if we assume that the Ursell number is approximately equal
to 1. 1.e. € ~ g2, the most stringent restrictions on the bed’s slope and veloaty are

found to be:

p<landwv <

The slope of the bed must then he

— < 0O(1) (AL
dr

and 1ts velocity
dh .
— < 0fr) (A19)
at



We conclude that for long waves generated by a moving bed, the approximation
wlre oy t) >~ule,t)is only vabd if the conditions (Ald) and (A15) are satisfied. Nev-
crtheless, the very wide range of realistic bed motions that can be described within
the Inmts of (Al14) and (A13) justifies the elimination of the term H(u? — @?) from

the governing momentum equation (2:24).

Finally, we observe that these conditions aie satisfied by the scales

dh

Td—.rj: O(O’) (\1())
oh -
i (er) (A7)

which were assumed e the reduction of the governming equations to a "Boussimesq’

otderin 22 Wiath (A16) and (A17). the term D given by (All) becomes Ofco?)

and from (AY) we therefore obtain

as i Wua (1981)
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APPENDIX B

Derivation of the governing cquations
using an expansion method



The momentumn equation (2.34) of ‘Boussinesq’ order was obtained by scaling
ands ehimmating the higher-order terms from the ‘complete’ depth-averaged equation
(224)

An alternative procedure can be used to derive equation (:2.34) directly from the
fundamental equations of motion The method basically consists in expanding the
dependent variables of the problem in terms of the small parameters o and ¢ defined
m §22 These expansions are then substituted in the equations of motion and the
boundary conditions, and coeflicients of like powers of ¢ and ¢ are equated. The
onginal problem s then effectively split mto simpler sub-problems each associated
with aspecific order of magnitude indicated by the power of the small factors o and
¢ 'T'he solution to the exact hydrodynamic problem can then be approximated b
the sum of the solutions to these sub-problems, from order zero up to the required
()](l('l

The above procedr te, which is based on the introduction of one or moie small
patatneter(s) an view of simphifving the solution of a complex problem. is called a
perturbation method The tormal application of perturbation methods in the theors
ol shallow-water waves has been deseribed by Friedrichs (1948) and Keller (1948) We
here extend the procedure described by Peregrine (1967) to account for the effects of
moving bed The following dervation is limited to two spatial dimensions. although
the treatment of three dimensions does not present further difficulties

We recall from §2.1 the fundamental equations of motion in dimensionless form

%+%=Q (B1)
%+u%+v%=—gg, (B2)
gil -3—% (B4)




and write the boundary conditions (2.3)-(27) as -

t % + udc t (r, ) B3
C= = — aty = .
ot ar Y (), (B2

= I = e B
v = o " Ygp sy = - (. t), (B6)
p=0at y=_(r,t) (BN

where the wave amplitude 1s now denoted by ¢ (as opposed to 1 §2). Using, the
kinematic boundary conditions (B5) and (B6), we mtegrate the continnity equation

(B1) over the depth to obtain

o oQ O |
a o T T (1)

where

Q= /” wdy (139)
~h

\s 1 §2.2, the independent vanables o and ¢ are scaled as
|
(rot) = =(ry, 1)) (1310)
a

where the scaled variables are here denoted by the subsenipt 1 (an asternish was used

in §2.2). We also assume that

o _ (Y (O .
oc ~\ae), " \ar), 7\, )

The dependent variables ¢, u, p and @ are expanded as .

( = QG+ +3C0+ (13124)
wo= wg+ eup+Cug o - (B12h)
P = ptepm+prt (B12¢)
Q = Qo+ Qi+ Qr+ - (B12d,

and for (Bl) to be consistent, we write

v=0a(vg+c + ). (B312¢)
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At order zero (1e o = ¢ = (). the solution will be taken to be still water, so that
Po= -y (B13)

which implies that ¢, ug, v, (%’—;)0 and @, are all equal to zero. The still water
solution was imphately included 1n the derivation used in §2.2 when we wrote 7@ =
()(¢), 1 = O(¢j and b, = O(eo) Note that if (B11) and the expansions (B12) are

actially substituted in the equations (B1)- (BY) the zeio-order equations turn out to

e
(l)C() 0 . 0/1
-2 — 1} - = | .
ot +(')x,[('+“))“°] <0t>0
i}ll() i)(lo ()CO —0

o, T Uoy p
dfl ().’Ll ()1'1
which are the well-known Any (finite-amphtude, shallow-water) equations.

The first order <olution 1s detived as tollows At O(¢) = O{o?), the nrotationality

condhtion (B1) becomes

Juy
dy
since vy = 0. Hence,
Uy = uy(ry,ty) (BL4)
and therefore, from (BY) :
Ql - }le]. (}313)
The O(¢) y-momentum equation is
I _
dy

and hom the stress free boundary condition (B7)
Potepr =0at y=(o+ €.

we obtam

p] = C]. (816)




Substitution of (B14)-(B16) in (B2) and (B3) gives the following tust-otder equations

'()(1 ()(h“l) o ()/I ~
o Ton - T\ (o
01[1 ()Ql
it e
a1, + = or, =0 (BIS)

which are the linearized long-wave cquations. The first-order vertical veloaty compo
nent v; is deduced by integrating the fitst-order continuity equation (B1) with respect
to .

()Il.l

'y = "J‘)‘—l‘*“ (s )

whete Vi (x1, 1)) 1s an arbittary function arising from the integration. Using the fist

order kinematic boundary condition at the bed

Jh Jh . p
ry= =] —1 ¢ = -
‘ ot o, vyT o

we deduce

oh idh ey
W=~ —] —uy— = h7:+—
iy, Yo . A
and can then write
dh Adhuy) Ju,
- - [ ZZ) _ — 1319
o1 ( dt ) or y(')x, | )

The above proc dure is 1epected in order to derive the second-order equations
At O(€®) = O(ea?), rrotationality (Bd) gives

0?12 (()1)1

(??j N (?l‘]

in which (B19) can be substituted to obtain

Ouy a [oh J*(huy) Aty
dy Oz, \ ot Jr? Jr)x,

Integration with respect to y leads to

Uy dJd [k D (hy) vt it
uz =21 0]~y At I Art 2 it

(1320
()£1
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where {0,(ry, #y) is an arbitrary function of integration. The O(e?) y-momentum

cqnation

apg 001

Ay 94
now 1« ludes the effect of the local vertical acceleration of the fluid. Hence, from

(319), we have -

(')ﬂ ad (oh 02(hu1)+1 0%y
0,0z, " Vot,00,

dy O\ ot
and imtegration with respect to y gives
J [ oh Plhuy)  y? 0w
be = Yar, )/1 ( )l Y ()tl(}l‘l 2 ()/101‘1 ( )

m which the boundary condition (B7)
p=ptepiteEp=0aty=(+e +€¢

has been wsed to determune the arbitrary function arising from the integration From

the defitntion (B9) of QQ, we also have

, (1 0
tQ, = / euydy + / etuy dy
0 —h

so that, from (1320)

J oh d(huy) h3 90%u,
_ W, _rgu 29
= G+ h 2 01‘1 K ) oz, ] 6 Oz (B22)

Substitution of (B20) (B22)n (B2) and (B3) gives the following second order equa-

a6 | 0@, dh o
on ton (0t) ’ (B23)

0(72 + y (')U] 3(2
i’)tl 0 8171

As pomted out by Peregiine (1967), the fir,t-order linearized long-wave equations

tions

=0, (B24)

(B17) and (B18) are only valid for small values of ¢,. After only a short propagation
time, the second order effects of amplitude and frequency dispersion included in (B23)

and (B21) effectively become first-order effects. The final governing equations must
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therefore include “fiist-order variablcs incorporating second-order terms™. For the
wave amplitude, we let .

n= el 4 (1325)

For the horizontal fluid velocity, we introduce the depth averaged velocity which we

define as
T o= L (eQy + *Q;)
- h-+—776l ¢ e
2 h o Oh (')(/zul)] h* 0%y
= 1 . I ———— — [N NSRRI . - 3
e {L”zm-l [(ar)l T | T (120)

Note that the choice of @ to incotporate second-order effects s not the only alterna
tive. The final governing equations can also be formulated 1 terms of the veloaty at

the bed (Madsen & Mei 1969) or by means of the velocity at y = 0.
w(r,0,t) = cuy + U,

Combining (B17) and (BLI8) with (B23) (B26), and going back to the ongimal

variables, we finally obtain

on 0 Ok .
'a—t-f-'é;(/l-*-n)u]— '—’(,j‘[, (“Jl}

(32X)

ou + _du i on h 9% [0k O(hw) ht Pu
—tU—+ — == e ————
ot dz Oz 20tdz | Ot dr 6 Otoa?
Equations (B27) and (B28) are respectively identical to equations (29) and (231)
derived in §2. The depth-averaged continuity equation (B27) is exact while the depth-

averaged momentum equation (B23) has an ertor termn of order O(ctat)



APPENDIX C

Computer programs




Program WALL

Purpose of the program

Modelling of nonlinear,

a channel by a moving vertical wall.

Definition _of the constants

n
dx
dt

totald

taax
vstar
lastT
lastX

gl,...,q8 :

Definition

Tatal
In1ti1al spatial mesh size at t = 0,
Temporal mesh si:e.

Total length of the channel.

Total duration of the sinulation,
Amplitude af the sinusoidal

number of spatial gri1d points 1 =

wall velocity.

Time at which the motion of the wall stops.

Final :i-coordinate of the moving wall,

Location of the eight gauges measuring wave amplitude.

of the global variables

ethal

as

etha2 :

ul

u?

x1

%2

t

1

iter
gaugel...
gaugeB
disk

Height of the free surface above 1ts undisturbed

time t.

Height of the free surtface above 1ts undisturbed

time t + dt.
Depth-averaged velocity at time t.
Depth-averaged velocity at time t + dt.

Fosition ot the spatial grid points at time t.

Position of the spatial grid points at time t + dt.

Time,
Loop counter.
Mumber of time steps

Grid points corresponding to the gauges’
Text f1le used to store the resuits.

£-2

involved 1n the computation.

location.

level

level

dispersive, shallow-water waves generated 1n

ot

at



Program listing

Progras WALL {(1input,output);
uses crt,qraph3l;
(ss4s323s3884Exper1mental conditions ¢ WAVE.DAT 1394383 s8iiisfisisss;

CONST

=]

n

dx

dt
totald
tmax
vstar
lastT
lastX
gl

92

g3

g4

g5

gb

q7

g8

oo

n
[ S L
MU NN O
LA (N e

.
—_ed e e N B b w8 S e A e b

I TR T TR
e
.- r
-

.
4 O e

1IN T 1 I 1]
. .

NO N B LN e e O = OOWN
N UtO s e

- Wwh e Us e wE ae

TYPE
vector = array (0..n] of real;

VAR
ethal,etha?,ul,u2 : vector;
xi,x2 : vactor;
t : realy
1,1ter 1 1ntegers
gaugel,gauge2,gauged,gauged : integers
gaugeS,gaugeb,gauge’ qauged : i1nteger;
disk : text;
Function VPISTON(t:reali:real;
begin
1f t (= lastT
THEN
vpiston:= vstar % sin(pi#t/lastT)
ELSE
vpriston:= 0.0;
end;
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Function ACCPISTON(t:real):reals

begin
1f t <= lastT
THEN
accpiston:= (vpiston(t+dt)-vpiston(t-dt))/2/dt
ELSE
accpistont= 0,03
end;

Procedure INITIAL_CONDITIONS;

begin
for 1:= 0 to n do ethallil:= 0.0;

for 1:= 0 ta n do utlil:= 0.0;
for 1:= 0 to n do x1Cil:= i#dx;

end;

Procedurs CONTINUITY_PREDICTOR;

begin
for i:= | to n-1 do
etha2l13:= ethalla1l - dt#{i+ethall1]) ®#(ull1+13-ull2-1])
il +11-xtl1-11);
end;

Procedure CONTINUITY_CORRECTOR;

begin
for 1:= { to n-{ do
etha?2lil:= ethalf{i] - dt#(1+0.5%ethat(11+0.5%etha2l11)
#0. 5% ((uila+1J~ulla-10)/{x103#1)-x101-11)
+(u201+13-u201-1 1) 2 (x20i#11-x201-11) )3

end;

Procedure ETHA_BC;

begin
etha2[0):= etha2(1] + dx*ACCPISTON(t);
ethaZ2f{nl:= etha2ln-11;

end;
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Procedure TRIDIAG({a,b,c:vector; var x:vector; rhs:vector;

var
sult : real;
1 : 1nteger;

begin
for 1:= first+]l to last do
begin
auli:= al11/bl1-11;
bl1l:z= bi1l - mult ® cli1-11;

rhsf{il:= rhsl1] - mult # rhsl1-13;

end;
x[{lastl:= rhsllastl/bllast];

for 1:= last-1 downto first do x[il:=

end;

Procedure MOMENTUM;

var diagl,diag2,diag3,rhs : vector;

begin
for i:= 1 to n-1 do
begin
diagifil:=
diag2f1l:=
di1ag3f11l:=

1f 1 = 1 THEN

first,last:inteqger);

( rhsh] - clhilex{1#1] ) /7 b1

~2/3/(sqr{x201+1]1-x20i N +sqr(x2[11-x201-11});
1 + 4/3/(sgr(x201+411-x201 ] ¢sqr (x2[1 1=-x2[1-11));
-27/3/tsqr(x201+411-x201 1) +sqri{x201]1-x201-11) )

rhslil:= utli1l - 2/3/(sqrix1lr1+11-x1l1)+sqr{x1l1l-x101-11))
s{utfa1+11-28ui11+uil1-11)

- dt#0.5

#{ (etha2l1+1]-etha2l2-13)/{x20{1+41]1-x201-11)
+(ethatfr+1i-ethall1~-11)/(xt[1¢ld-x101-11) )

~ d1aglliJ#VPISTON(L)

ELSE

rhsl1l:i= ullil - 2/3/(sqrix1l1+11-xil1 1) +sgr(xtl1l-x1l1-11))
#(ull1+1]1-28ull114ula-11)

~ dt*0.5

#( {etha2[1+1}-etha2l1-13)/(x201+¢11-x2[1-11)
+{ethalli+1l-ethallai-12)/(x10a+¢1]-x101-113s )

end;

TRIDIAG(d1agl,d1ag2,d1ag3,u2,rhs,1,n-1};

end;

Procedure APPROX_INTERFACES;

begin

for i:= 0 to n do x2[1):= x1[1] + dt*ull:];

end;
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Procedure U_BC;

begin
u2l0l:= VPISTON(t);
u2lnl:= 0.0;

end;

Procedure INTERFACES;

begin
x2{01:
for 1:= 1 to n do
begin

x100] + 0.5#dt #(ull0J+u2[01);

x2011:= x10i1] + 0.5#dt#(ull13+u2011);

1f (x201-1X=gl) and

(x2[11>g1)

then 1f (g1-x2[1-11) <= (x2[1]1-g1)

1§ (x201-11{=g2) and

(x2[11>g2)

then 1f (g2-x201-11) <= (x2[11-g2)

1f (x201-11¢(=g3)

and (x2[11>g3)

then 1f {g3-x2[1-11) <= (x2[i1-¢3)

if (x201-11(=g4)

and (x2[11>g4)

then 1f (g4-x2[1-13) <= (x2[1]1-g4)

14 (x201-11=g5)

then 1§ (g5-x201-11)

if (x201-11{=gb)

and (x2[11>g3)

{= (x2[11-¢3)

and (x2[11>géb)

then if (go-x2[1-11) <= (x2[i1-g6)

1f (x201-11{=g7)

and (x2[11>g7)

then 1§ (g7-x201-11) <= (x2011-g7)

1f (x201-11<=g8)

and (x2[11>g8)

then 1f (gB-x2[1-11) <= (x2[11-g8)

end;
end;

Procedure DRAWBED;

var x{ : real;

begin
HiRes;
GraphWindow(50,40,389,139);
GoToXY(8,23);wra1teln("TINE = °
pirston VELOCITY "WWPISTON(t)

Syt:5:2,7
$9:3, ACC =

then gaugel:= 1-|
else gaugel:= 13
then gauge2:= 1-}
else gaugeZ:= 1j
then gauged:= 1-1
else gauged:= 1;
then gauged:= 1-1
else gauged:= 1;
then gaugeS:= 1-1
else gauged:= 1;
then gaugeb:= 1-1
else gaugeb:= 1;
then gauge7:= 1-1
else gauge’:= 1;
then gauge8:= 1-1
else gaugeB:= 1;

*yACCPISTON(t):5:3) 3

draw(round(x2{01/totald#540),0,round(x2[0}/totald#540),100,1);

x1:= lastX/totald * 540;
drawl(round(x!),100,540,100,1)3;
ends:
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Procedure DRAWSURFACE(v:vector);
var x1,yl 2 real;

begin
for 1:= 0 to n do
begin
x1:= x2011/totald + 540;
yl:= vli] # 60;
plot(round(x1),70-round(yl),1)};
end;
end;

BEGIN {main}
ClrScr;
t:=0.0;
1ter:= 0;
vel:= 0,03

assigni{disk, 'B:RES139.D0C’);
rewrite(disk);

INITIAL_CONDITIONS;

While t < tmax do
begin
:= t + dt;
1ter:= 1ter+l;

CONTINUITY_PREDICTOR;
ETHA_BC;
APPROX_INTERFACES;
U_BC;

NOMENTUM;

MOVE_CELLS;
CONTINUITY_CORRECTOR;
ETHA_BC;

DRAWBED;
DRAWSURFACE (etha2);

i1f (iter mod 2) = O THEN

begin
writelnldisk,1ter div )3
writeln{disk,etha2lgaugell);
writeln(disk,etha2iqgauge2l);
writeln(disk,etha2lgauge3l);
writeln(disk,etha2lgauge4dll;
writelnidisk,etha2lgaugeS]);
writeln(disk,etha2lqaugebl);
writelnl(disk,etha2lqauge71);
writeln(disk,etha2lgaugeBl);
writeln(disk);

end;

c-7




for 1:
tor 1:
for 1:

end;
close(disk);
END.

=9
=0
=0

to n do ethall1l:= etha2l1];
to n do ullil:= w211
to n do x11):= x2[il;




Program SUBWED

Purpose of the program

Modelling of nonlinear, dispersive, shallow-water waves generated 1n a
channel by the aotion of a submerged wedge.

Definition of the conmstants

n : Total number of spatial grid points (1 = U, 1,...n),
nl :n - 1.
dx : Spatial mesh si1ze {constant).
dt : Temporal mesh size.
tmax : Total duration of the simulation.
endaotion : Total duration of the bed mation,
vstar : Amplitude of the horizontal, sinusoidal velocity of the
wave generating device.
slope : Constant slope of the submerged wedge.
xsin : Parameter detining the sinusoidal velocity of the
bed, Xsin = T3 Ty
eu : Implicitress parameter for the depth-averaged velocity.
en : Implicitness parameter for the wave amplitude.
eh : Implicitness parameter for the bed position.
Definition of the global variables
hi : Position of the bed at time t.
hmid : Position of the bed at time t + dt/2.
h2 : Position of the bed at time t + dt,
ethal : Height of the free surface above 1ts undisturbed level at
time t.
etha2 : Height of the free surface above 1ts undisturbed lesel at
tipe t + t.
ufl : Depth-averaged velocity at time t.
u2 : Depth-averaged velocity at time t + dt.
diagl...
di1ag3 : Diagonals of the tridiagonal matrix system (section 2.2..0).
rhs : Right hand si1de of the tridiagonal matrix system (section
dhdt : Bed velocity.
acc : Bed acceleration.
slopel : Slope of the bed at time t.
slope2 : Slope of the bed at time t + dt.
A...F ! Groupings of vari1ables used 1n the 1mplicit sclution ot the
momentum equation.
t: Time,

s




vell
velmid
vel?
disp
displ
totaldisp
totaldispl
1
1ter
battos :
bottosl :
disk :

time t.
time t + dt /2.
time t + dt.
ang t + dt.
and t + dt/2.
at time t +
at time t +

of the wedge at
of the wedge at
of the wedge at

Hori1zontal velocity
Horizantal velacity
Horizontal velocity
Displacement of the wedge between t

Displacement of the wedge hbetween t

fumulative displacement of the wedge
Cumulative displacement of the wedge
Logop counter.

Number of time steps i1nvolved 1n the
Gr1d point corresponding to the foot
Grid paint corresponding to the foot
Text fi1le used to stare the results.

dt.
dt/2.

computation.

Program listing

Program SUBWED (1nput,output);

uses crt,graph3;

(ssxxsssssssssstExperimental conditions :

CONST
n
nl
dx
dt

tmax =

endmotion
vstar
slope
Xsin

eu

en

eh

TYPE
vector

VAR

WAVE.DAT

600;
299;
0.25;
0.25;
1255
= {3.116;
= 0.2;
= (1. 2685
= 1.0;

inoH U

x range of sinus velocity 3

il
oo O
(AN 4 Ip s
- we ae

= array [0..n) of real;

hi,h2,hmid,ethal,etha2,ul,u2 : vector;
dragl,di1ag2,d1ag3,rhs : vector;
dhdt,acc,slopel,slope2 : vector;
A,B,C,D,E,F : real;
t : real;
vell,velmd,vel2 : real;
disp,displ,totaldisp,totaldispl : real;
1,bottoa,bottost,1ter : 1nteger;
disk : text;

of the wedge at t + at.
of the wedge at t + dt .

-
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tmant]

Procedure U_BC;

begin
u2f0l:
u2inl:
end;

0.0
0.0

.
’
.
s

Procedure INITIAL_CONDITIONS;

begin
for 1:= 0 ton do
begin
hifil:= 1.0;
ethatlil:= 0.03
ulli1l:= 0.0;
end;
end;

Pracedure MOVE_BED;

begin
for 1:= 0 to bottom do
h2{13:= 1.0 - slope # (totaldisp-1#dx);
for 1:= 0 to bottoaml do
hmid[11:= 1.0 - slope * (totaldispl-1#dx);

for 1:= bottom+! to n do
h2f13:= 1.0;
for 1:= bottoal+1 to n do
haidCil:= 1.0;
end;

Procedure BED_I15_MOVING;

begin
vell:= vstar # sin{ 0.5%#p1 - (0.5%endmotion-(t-dt))#xsin/endmotionkpr };
velmid:= vstar # sin{ 0.5#p1 - (0.5¢endmotion-(t-0,.5#dt))#xs1n/endactiontp1 J;

vel2:= vetar # sin( 0.5%#p1 - (0.5%endaction-t)#xsin/endaotion#pr );

displ:= 0.5%#(vel f+velmid) * dt/2;
totaldispl:= totaldisp + displ;
bottoml:= trunc(totaldispl/dx);

disp:= 1/3#(velli+velmid+vel2) * dt;
totaldisp:= totaldisp + disp;
bottom:= trunc{totaidisp/dx);

MOVE _BED;



1f bottoe = 0

THEN
begin
acci0l:= (h2[0]1-2#hmd[0J+h1[0]) /sqr (0.5¢dt);
for 1:= 1 ton do acclil:= 0,0;
end
ELSE
begin
tor 1:= 0 to bottome-1 do
accl1J:= (h2011-2¢hm1d11+h101]) /sqr(0.5#dt);
acclbottoml:= acclbottom-11;
for 1:= bottoa+! to n do
accli1l:= 0.0;
end;

for 1:= 0 to n do
beqgin
1f htila]

1.0 THEN slopefl13:= 0.0
ELSE slopell1l:= slope;

1f h201) = 1.0 THEN slope2l11:= 0.0
ELSE slope2l1):= siope;

dhdt[123:= (h2[13-h1l311)/dt;

end;
end;

Procedure STATIONARY _BED;

begin
1f (t-endsotion) (= dt then
begin
sound (100);
delay(1000);
NoSound;
for 1:= 0 to n do acclil:= 0.0;
for 1:= 0 to n do
begin
1f h2011 = 1.0
THEN
begin
slaopelli1l:i= 0.0;
slope2l11:= 0.0;
end
ELSE
begin
slopeilili= slope;
slope2{11:= slope;
end;
dhdtl11:= 0.0;
end;
end;
end;




Procedure CONTINUITY_PREDICTOR;

begin
for 1:=1{ to nl do
begin .
etha2l1l:= ethall1] - dt#( ( 0.5#(h1l11+h2[11)+ethall1d )
+ (ultl1+i1-ull1-1))/2/dx
+ ulli1J#( 0.5#(slopetlil+slope2(1])
+ (ethalli+i)-ethatl1-11)/2/dx )
+ dhdt{:11 )
end;
end;

Procedure ETHA_BC_PRED;

1f t <= endmotion
THEN
etha2{0J:= etha2ll1} - dx # (h200]/2#(h2[01-h1(01))/dt
#{ull21-2%ul({)+ull0]) /sqr {dx))
ELSE

etha2f0]1:= etha2lll;
etha2lnl:= etha2lnil;
end;

begin
|
|

Procedure CONTINUITY_CORRECTOR;

begin
for i:=1 to nl do
begin
etha2f11:= ethall1) - dt#( ¢ 0.5#(hi(1)+h201 1) tethallal )
#0.25% (w2141 1~u2[1-13+ulla ¢t J-ull1-11))/dx
+0.3#(ull13+u2l1 1)
# ( 0.5t(slopellrl+slope2i: ]
+ (ethalli+1)-ethall2-11)/2/d4 )
+ dhdtl11 )3
end;
end;

Procedure ETHA_BC_CORR;

begin
1f t <{= endmotion
THEN
etha2{0):= etha2(1] - dx # (h2{01/2#{(h2(01-h1001)/dt
#(u2{21-2#u20114u2(0]1) /sqr(dx}))
ELSE

etha2{01:= etha2ll];
etha2lnl:= etha2inll;
end;
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Frocedure TRIDIAG(a,b,c:vector; var x:vector; rhs:vector; first,last:integer);

var
ault : real;
1 % 1nteger;

begin
for 1:= first+] to last do
begin
mult:= af13/bl1-1];
bli1l:= bl1] - mult # cl1-11;
rhsfil:= rhsl1] ~ mult # rhsl1-11];
end;
x[lastl:= rhsl{lastl/bllast];
for 1:= last-1 downto first do x[11:= ( rhsli) - clal#xC2+411 ) / biil;

end;

Procedure MOMENTUM_Fxt;

begin
for 1:= 1 to nt do
begin
u2l13:= ulli1ld;
A:= ( (1-eh)#sqri(h1(211) + eh#sqgr(h2011) )/3/sqridx)/dt;
B:= ( (1-eh)#hil1leslopetl1] + eh#h2[1]#slope2l1] )/2/dx/dt;
C:= (slope2(1] - slopellrl)/dt;
D:= (l-eh)#hi{11/2%(hil1+11-2%#h1013+hi01-1])/sqr (dx)
+ eh#h2[11/2¢(h201411-228h2011+h202-11) /sqridx};
Ez= ((h2[1+11-2#02011+h2[1-11)~-(hi(1+1)-2#h1l11+h101-11))/sqr(dx)/dt;
F:= ((1-en)#(ethatl1+1l-ethall1-11)+ens#({etha2l1+11-etha2f1-11})/2/dx;
dragif1l:= -eu#u2i11/2/dx - A + B + eu*h2{11/2/dx % C
- eu#h2[11/2/sqr (dx)#dhdtl11];
diag2(1):= 1/dt + 28A - 1/dt#D - euth2(11/2%E
+ eu#h2{11/sqr{dx) #dhdtl11];
dirag3(1l:= eu#u2(11/2/dx - A - B - eush2021/2/dx * C
- puth2{11/2/sqr(dx)#dhdt{11;
rhsfi1l:= ull1-11 #((1-eu)#ulf11/2/dx - A + B - (1-eu)*h1[11/2/dx*C
+(1-eu)#h1[11/2/sqr {dx)#dhdtl11 )
+ ulf1d #(1/dt + 2%n - 1/dteD + (1-eu)*hil11/2#E
-{1-eu)*h1l11/sqr(dx)edhdtl1] )
+ulli+1] #(-(t~euw)#ulf211/2/dx - A - B +(1-eu) #h1[11/2/dx#C
+{1-eu)*h1[11/2/sqr (dx) *dhdti11 )
- F
+ ({1-eh)shif1l+eh*h2011)/2 # {accli+ll-accl1-11)/2/dx;
end;
TRIDIAG{d1ag!,drag2,d1ag3,u2,rhs,1,nl);
end;
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Procedure MOMENTUM_Fx;

begin
for 1:= 1 to n{ do
begin
u2f1l:= utl1l;

sqr (h2011)/3/sqr (dx)/dt;

h2lil#slupe2(11/2/dx/dt;
h20131/2#(h201+11-2#h2[11+h201-11)/sqgridx);
{(1-en)#{ethall1+l]-ethatl1-1))tens(etha2l1+l]-etha2l1-11))/2,dx;

Mo w >
s 8s 88 ae

diaglili1l:= -euxu2l11/2/dx - AR + B;
diag2(1l:= 1/dt + 28A - 1/dt#D;
diag3l1]: euru2l13/2/dx - A - B;

rhsli1]:= ulli1-§]1 #(C¢t~eu)*uil1l/2/dx - A + B)
+ ull1] #(1/dt + 2#A - 1/dt*D)

ulf1+1) #(-(1-pu)®ull21/2/dx - A - B)

F3

[

end;
TRIDIAG(diagtl,diag2,d1ag3,u2,rhs,1,n1)});
end;

Procedure MOMENTUM;

begin
1f t (= endmotion THEN MOMENTUMN_Fxt
ELSE NOMENTUN_Fx;
end;

Pracedure DRAWBED(v:vector; no_points:integer);

var x1,x%.,yl,y2 : real;
color : 1nteger;

begin
HIRL:,
GraphWindow({50,40,589,159);
6aToXY(35,20);wrateln{ "t = " ,t:6:3);
( tor 1:= 0 to no_points do drawlround(i/no_points#540},730,
round (1 /no_poi1nts#540),20,1);}
for 1:= 0 to no_points-1 do

begin
x1:= 1/no_points % 540;
yl:= vi1] * 30;

x2:= (1+1)/no_points # 540;
y2:= vi1+11 # 30;
draw(round{1/no_points%540) ,60,round(1/no_points*540),0,1);
draw(round(x1) ,60+round(yl),round(z2),60+round(y2) .1}
end;
end;



pRs—_—y

Procedure DRAWSURFACE (vivector; nao_points:integer);

var x1,22,yl,y2 : real;

begin
for 1:= 0 to no_points-1 do
begin
x1:= 1/no_points # 540;
yi:= vi1] # 3003
x2:= (1+1)/no_points # 3540;
y2:= vi1+1] # 300;
drau(round(xl),60—round(y1),round(x2),60-round(y2),1);
end;
end;

Procedure FCT(var vt:vector);
const sigma = 0.2;

var
vtd,delta,Dc : vector;
Di,sign,max,e:n : real;

begin
deltal0l:= 0.0; deltaln-13:= 0.0;
for 1:= 1 to n-1 do
vtdl13:= vt[1] + sigmak{vtl1+1] - 2.08vtl2] + vtl2-11);
for 1:= 1 to n-2 do
deltal1]1:= vtdli1+1] - vtdli];
for 1:= {1 to n-2 do
begin
1f deltal1] > 0.0 then sign:
1f deltalil = 0.0 then sign:
1§ deltali1l ¢ 0.0 then sign:
Di:= (vtf1+1) - vk[11)/B.0;
1f signideltali-11 (= sign#deltali+l]
then wmin:= sign#deltali-1l
else min:= sign¥deltali+l];
1f abs(D1) <= min
then ain:
1f 0.0 >= min
then max:= 0.0
else max:= min;
Dcl13:= sign¥max;
end;
for 1:= 2 to n-2 do
vtl1l:= vtdf{11 - (Dclil - Del1-11)3

1.0;
0.0;
-1.0;

u o

H

abs (D1);

end;




BEGIN
ClrScr;
t:= 0.0;
iter:= 0;
bottom:= 0;
totaldisp:= 0,0;
bottoml:= 0;
totaldispi:= 0.0;

assign(disk, “B:107.D0C");
rewrite{disk};

U_BC;
INITIAL_CONDITIONS;

DRAWBED (hi,n ) ;
DRAWSURFACE (ethal,n);

While t < tmax do

Begin
1terz= 1ter + 1
t:= t + dt;

1f t <= endmotion THEN BED_IS_MOVING
ELSE STATIONARY _BED;

CONTINUITY_PREDICTOR;
ETHA_BC_PRED;
MOMENTUM;
CONTINUITY_CORRECTOR;
ETHA_BC_CORR;
FCT{ethal);

DRAWBED(h2,10);
DRAWSURFACE (ethaZ2,10);

1f (iter aod ?) = O THEN

begin
writeln(disk,1ter div 2);
writeln(disk,etha2l201);
writeln(disk,etha2l601);
writeln(disk,etha2{1201);
writeln(disk,etha201801);
writeln(disk,etha20(2401);
writeln(disk,etha203001});
writeln(disk,etha2l3601);
writeln(disk,etha2{4201);
writeln(disk);

end;




For 1:= 0 to n do
Begin
ethalli1l:= etha2lil;
ulfile= w211
End;

For 1:= 0 to n do htl1l:= h2011;
End;

closeldisk);
END.

c-18




Program SHELF

Purpose of the program

Modelling of nonlinear, dispersive, shallow-water waves generated 1n a
channel by the motion of a shelf.

Definition of the constants

n : Total number of spatial grid points (1 = O,1,...n).
nt : n - 1.
dx : Spatial mesh size (constant).
dt : Temporal mesh size.
tmax : Total duration of the simulation.
endmotion : Total duration of the bed motion.
vetar : umplitude of the horizontal, sinusoidal velocity of the
wave generating dev/ice,
slope : Constant slope of the depth transition between the shelt and
the channel bottom.
xsin : Parameter defining the sinusoidal velocity of the
bec, Xsin = 7,-7,.
tnitp : Initi1al <-coordinate of the top of the depth transition.
hbox : Height of the shelf,
eu : Implicitness parameter for the depth-averaged velacity.
en : Implicitness parameter for the wave amplitude.
eh ¢ Implicitness parameter for the bed position.
Definition of the global variables
hl : Fosition of the bed at time t.
haid : Position of the bed at time t + dt/2.
h2 : Position of the bed at time t + dt.
ethal : Height of the free surface above 1ts undisturbed level at
time t.
etha2 : Height of the free surface above 1ts undisturbed level o
time t + dt.
ul : Depth-averaged velocity at time t.
u2 : Depth-averaged velocity at time t + dt.
diagi...
di1ag3 : Diagonals of the tridiagonal matrix system (section 2.2.0)
rhs : Right hand side of the tridiagonal matrix svstem (section
dhdt : Bed velocity.
acc : Bed acceleration.
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slopel :
slope?
A...F :

'

t
vell :
velmid :
vel2 :
disp :
displ :
totaldisp :
totaldisp!
shel fd
1
1ter :
bottom :

bottom!l
top :
topt

disk

Slope of the bed at time t.

Slope of the bed at time t + dt.

Groupings of variables used i1n the i1mplicit solution of the
mamentum equation.
Time,

Hori1zontal velocity
Hori1zontal velocity
Hori1zontal velocity
Displacement of the
Displacement of the shelt between t and t + dt/Z2.
Cumulative displacement of “he shelt at time t + dt.
Cumulative displacement of the shelf at time t + dt/2.
Depth of the fluid above the shelf (= 1.0 —hboxl.

Loop counter.

Number of time steps 1nvolved i1n the computation.

at time t.
time t + dts2,
time t + dt.

and t + dt.

of the shelf
of the shelf at
of the shelf at
shelf between t

Grid poaint corresponding to the lower end of the depth
transition at time t + dt.

Grid point corresponding to the lower end of the depth
transition at time t + dt/2.

Grid point corresponding to the higher end of the deptn
transition at time t + dt.

Gri1d point corresponding ta the higher end of the depth

transition at time t + dt/2.
Text f1le used to store the results.

Program listing

Prograa SHELF (1nput,output);

uses crt,graph3;

(teerssssesssrsstrbxperimental conditions ¢

CONST
n
ni
dx
dt
tmax
endaotion
vstar
slope
Xxs1in
initp
hbox
eu
en
eh

TYPE
vector

5003
499;
0.25;
0.25;
1203
13.0;
0.2;
0.577;

—
.

-e

)

| L VT LN | N I

SoocoWwm
NN OO

e wn ae () we
wd
(%]
(2]

= array [0..n] of real;
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[

VAR

hi,h2,hmid,ethai,etha2,ul,u2 : vector;
diagl,diag2,d1ag3,rhs : vector;
dhdt,acc,slapel,slope2 : vector;

A,B,C,D,E,F : real;

t : real;

vell,velmid,vel2 : real;

disp,displ,totaldisp,totaldispl : real;

shelfd : real;
1,bottoa,bottosl,top,topl,1ter : 1nteger;

disk : text;

Procedure U_BC;

begin
u2i0l:= 0.0;
u2lnls= 0.0
end:

Procedure INITIAL_CONDITIONS;

begin
for 1:= 0 to n dao
begin
ethallil:= 0.0;
ullzl:= 0.03
end;
for 1:= 0 to top do hilil:= shel#d;
for 1:= top+l to bottom do hi[il:= 1.0 - slope # (totaldisp-1#¥dx);
for 1:= bottoa+l to n do hifil:= 1.0;
end;

Procedure MOVE_BED;

begin
for 1:= 0 to top do h2[il:= shelfd;
for 1:= top+! to bottom do h2[il:= 1.0 - slope # (totaldisp-i1#dx);
for 1:= bottom+l to n do h2[11:= 1.0;

for 1:= 0 to top! do hsidl1]:= shelfd;
for 1:= topl+l to bottoml do hmidl1l:= 1.0 - slope # (totaldispl-1%ds);
for 1:= bottoal+!l to n do heid{2l:= 1.0;

end;

Procedure BED_IS_MOVING;

begin
veli:= vstar # sin{ 0.5#%#p1 - (0.5#endmotion-(t-dt))#xsin/endmotiontpi };
velmid:= vstar # sin{ 0.5#pi - (0.5¢endeotion-(t-0.5#dt))Exsin/endaationsp1 };
vel2:= vstar # sin( 0.95#pi - (0.5¢tendmotion-t)#xsin/endaotion%pr );
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displ:= 0.5%(vell+velmd) * dt/2;
totaldispl:= totaldisp + displ;

bottoml:= trunc(totaldispl/dx);

topl:= trunc((totaldispl-hbox/slope)/dx);

disp:= 1/3#{vell+velaidtvel2) * dt;
totaldisp:= totaldisp + disp;

bottom:= trunc{totaldisp/dx);

top:= trunc((totaldisp-hbox/slope)/dx);

MOVE _BED;

fo; 1:= 0 to n do acclil:= (h2[iJ-2#¢hm1d[11+h1[1])/sqr(dt);

for 1:= 0 to n do
begin
1§ (h1l11 = shelfd) or (h1lil
THEN slopella1l:= 0.0
ELSE slopell1l:= slope;

"

1.0)

1f (h2[11 = shelfd) or (h2[11 1.0)
THEN slope2l1l:= 0.0

ELSE slope2l1l:= slope;

dhdtlzl:= (h2[11-hilil)/dt;
end;
end;

Procedure STATIONARY_BED;

begin
1f (t-endmotion) <= dt then
begin
sound (100);
delay (1000);
NoSound;
for 1:= 0 to n do acclil:= 0.0;
for 1:= 0 to n do
begin
1f (h2[1] = shelfd) or (h2[11 = 1.0)
THEN
begin
slopell[1]:
slope2[11:

nw ou
oo
o O

end
ELSE
begin
slopel[1]:= slope;
slope2lil:= slope;
end;

dhdt{11:= 0.0;
end;
end;
end:
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Procedure CONTINUITY_PREDICTOR;

begin
for 1:= 1 to nl do
begin
etha2lil:= ethall1]l - dt#{ ( 0.5#(hil1)+h2[1))+ethall1ld )
+ (ulla+11-ull1-11)/2/dx
+ ullil#( 0.9%(slopell1l+slope2lr])
+ (ethatli+il-ethall1-11)/2/dx )
+ dhdt{11 ;3
end;
end;

Procedure CONTINUITY_CORRECTOR;

begin
for 1:= 1 to nl do
begin
etha2lil:= ethall1l - dt®( € 0.95#(hi{11+h2[1])+ethall1] )
2#0.25%(u20a+13-u201-13+ulla+td-utfn-13) /dx
+0.5%(ull11+u2011)
# ( 0.5%(slopetl1l+slope2(1])
+ (ethatli+tl-ethall1-11)/2/dx )
+ dhdti1d );
end;
end;

Procedure ETHA_BC;

begin
etha2f0]:= etha2(1l;
etha2inl:= etha2lnil;
end;

Procedure TRIDIAG{a,b,c:vector; var x:vector; rhs:vector; first,last:integer);

var
mult : real;
1 : 1nteger;

begin
for 1:= first+l to last do
begin
mult: {(11/bl1-1];

= a
bl1l:s= bl1] - mult # cli1-117;
rhsl1J:= rhsl1] - ault # rhsli1~11;
end;
xllastl:= rhsllastl/bllast];
for 1:= last-1 downto first do x[11:= ( rhsl1] - cl1lex[2+#11 ) / bl11;

end;
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Procedure MOMENTUM Fxt;

beqgin

for 1:= 1 to n! do

begin

u2f1d:= ullid;

{ (1-eh)#sqgr(h1l(i]) + eh#sqr(h2[11]) }/3/sqr(dx) /dt;
{ (1-eh)#hi1l1)¥slapellr] + eh#h2l1]1#slope2l1] )/2/dx/dt; ,
(

A:
B:
C: siope2f1] - slopeil1l)/dt;

D:= (1-eh)*h1[1]/2*(h1£1+1]-2*h1[1]+h1[1-1])/sqr(dx)
+ eh#h20131/28 (h201+1]1-2%#h2021+h2[1-11)/sqr (dx):
((h2[1+1]-2*h2[x]+h2[1-1])-(hl[1+1]—2ih1[x]+h1[1-1]))/sqr(dx)/dt;

1

E:

F:= ((l—en)*(ethal[1+1]-ethal[1-l])+en*(eth32[1+1]—etha2[1-l]))i2/dx:

diaglli1l:= -eu®u2[211/2/dx - A + B + eush2011/2/dx * C
-~ eu®h2l11/2/sqr (dx)#dhdt[11;

d1ag2l11:= 1/dt + 2#A ~ 1/dt#D - eurh2[13/2+*E
t eu*h2l11/sqr (dx) ¥dhdti{11;

diag3l1l:= eu#u2{11/2/dx - A - B ~ eush2[11/2/dx # C
- euth2(13/2/sqr (dx) #dhdtl1];

rhslid:= ullai-1) #({1-eu)#ull13/2/dx - A + B - (1-eu)#hl1l11/2/dx*C
t{l-eu) *h1l11/2/5qr {dx) %¥dhdt{1] )
+utlad #(1/dt + 22A - 1/dt#D + (l-eu)*hl1{11/2#E
-(l~eu)®h1f13/sqr (dx)#¢dhdt{1] )
+ull:+41] #(-(1-eu)¥ull21/2/dx - A - B +(l-eul#h1[11/2/du*C
+{1-eu)#*h1[i1/2/sqr (dx) #dhdt{11 )
- F
+ ((i-eh)*h1[:)+eh®h2[11)/2 % (accli+il-acel1-11)/2/dxs

end;

TRIDIAG(dlagl,dxagZ,dlaQS,uz,rhs,l,nl);

end;

Procedure MOMENTUM_Fx;

begin
for 1:
begin

=1 to nl do
u2i1l:= ull1d;

sqr (h2011)/3/sqr (dx) /dt;
h2(114slape2(11/2/dx/dt;
h2[1]/2*(h2[1+1]-2lh2[1]+h2[1-l])/sqr(dx);
((1-en)*(etha1[1+1]-etha1[1—1])+enl(eth32[1+l]-ethaZ[x-l]))/2/dx:

(1) ay 1} (1]
nounow o

Mo mw >

diagifil:= -eu#u2(11/2/dx - A + Bj
drag2l1l:= 1/dt + 2#¢A - {/dt«D;
d1ag3li1l:= eu#u2(11/2/dx - A - B;
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rhsl1]:= uilz-11 #{{1-euw)#ulf11/2/dx - A + B)
+ ulfil #(1/dt + 2#Q4 - 1/dt#D)
+ ull1+1] #(~(1-eu)#ulf1l/2/dx - A - B)
_F;

end;
TRIDIAG(d1agl,d1ag2,diag3,u2,rhs,i,nl);
end;

Procedure MOMENTUN;

beg:in
1f t (= endeotion THEN MOMENTUM Fxt
ELSE MOMENTUM_Fx;

end;

Procedure DRAWBED(v:vector; no_points:integer);

var x1,x2,yl,y2 : real;
color : 1nteger;

begin
HiRes;
Graph#indaow(50,40,589,159);
GoToXY(35,20);writeln("'t = ",t:6:3);
{ for 1:= 0 to no_points do draw{round(1/no_points#540),90,
round{i/no_points#540),20,1);}
far 1:= 0 to no_points-1 do

begin
x1:= 1/no_points # 540;
yl:= vi1] % 30;
x2:= (1+1)/no_points # 540;

y2:= vi1+11 * 303
drawl{round(x1),60+round(yl),round(x2) ,60+round(y2),1);
end;
end;

Procedure DRAWSURFACE(v:vector; na_points:integer);

var x1,x2,y1,y2 : real;

begin
for 1:= 0 to na_points-1 dao
begin
x1:= 1/no_points # 540;
yle= vi1]l # 300;
x2:= (1+1)/no_points ¥ 540;
y2:= v[1+11 % 300;
draw(round(x1) ,60-round(yl) ,round{(x2),60-round(y2),1);
end;
end;
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Procedure FCT(var vt:vector);

const si1gma = 0.2;

var
vtd,delta,Dc : vector;
Di,sign,max,min : real;

begin
deltalOl:= 0.0; deltaln-11:= 0.0;
tor 1:= 1 to n-1 do
vtdl11:= vt{1]1 + s1gma#(vtl1+41] - 2.0#%vtl21] + vtli-11};
for 1:= 1 to n-2 do
deltali1l:= vtdl1+1] - vtdl11;
for 1:= 1 to n-2 do
begin
1f deltali1] > 0.0 then sign:= |
1f deltal1l = 0,0 then sign:= 0
1f deltali1] ¢ 0.0 then sign:=-1{
Di:= (vtl{1+1] - vt[11)/8.0;
1¥ signideltali-1] <= sign*deltali+l]
then ain:= sign*deltali-11]
else min:= sign#deltali1+1];
1f abs(D1) (= m1in
then ain:= abs{D1);

0
0
0

-a we we

1 0.0 >= mn
then msax:= 0.0
else max:= min;
Dcl{trl:= sign*amax;
end;
for 1:= 2 to n-2 do
vil1l:= vtdl17 - (Dcl11 - Dclx-11)3
end;

BEGIN {main}
ClrScr;
t:= 0.0;
1ter:= 03
shelfd:= 1.0 - hbox;
totaldisp:= 1n1tp + hbox/slope;
totaldispl:= totaldisp;
bottoe:= trunc(totaldisp/dx);
bottoml:= bottonm;
top:= trunc(initp/dx);
topl:= top;

assign{disk, "B:RES72.D0OC");
rewri1teldisk);

U_BC;
INITIAL _CONDITIODNS;

DRAKWBED (h1,n) ;
DRAWSURFACE (ethal,n);
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While t ¢ tmax do

Begin
1ter:= 1ter + |;
t:= t + dt;

1¥f t <= endmotion THEN BED_IS_MOVING
ELSE STATIONARY_BED;

CONTINUITY_PREDICTOR;
ETHA_BC;

MOMENTUN;

CONTINUITY _CORRECTOR;
ETHA_BC;

FCT{etha2);

DRAWBED (h2,n);
DRAWSURFACE (etha2,n);

1f (1ter mod 2) = O THEN

begin
writeln{disk,1ter div 2);
writeln(disk,etha2l91);
writeln(disk,etha2{43]);
writeln{disk,etha2(1161);
writeln(disk,etha2(1571);
writeln(disk,etha2(199]1);
writeln{disk,etha20(2401);
writeln(disk,etha2(2811);
writeln(disk,etha2(3231);
writeln(disk);

end;

For 1:=1 tao n! do
Begin
ethalli1l:= etha2l11];
uili1ls= u2l13;
End;

For 1:= 0 to nl do hil1l:= h2(11;
End;

close(disk);
END.
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Program ROPLATE

Purpose of the program

Modelling of nonlinear,

dispersive, shallow-water waves generated 1n a

channel by the motion of a rotating plate.

Detinition of the constants

n
ni
dx
dt
tmax
endaotion
vertvel
pivloc
eu
en :
eh :

Definition of the global

Total number of spatial grid points t1 = 0,1,...n},

n - 1.

Spati13l mesh size (constant).

Temporal mesh size.

Total duration of the simulation.

Total duration of the bed motion,

Constant vertical velocity applied to the plate at : = u.
sx-caordinate of the point around which the plate rotates.
Implicitness parameter for the depth-averaged velocity.
Implicitness parameter for the wave amplitude.
Implicitness paranmeter for the bed position.

variables

hi
h2
ethal
etha2
ul

diragl...

diagd :
rhs :

dhdt
slopel

slope2 :
A...F :

t

1
1ter
pivot
disk

uz2 :

Position of the bed at time t.

Fosition of the bed at time t + dt.

Height of the free surface disturbance at time

Height of the free surtface disturbance at time t + dt.
Defth-averaged velocity at time t.

Depth-averaged velocity at time t + dt.

Dragonals of the tridiagonal matri: system (section 3.2..7.

Right hand side of the tridiagonal matri: system (section 7.

bed velocity.

Slope of the bed at time t,

Slope of the bed at time t + dt.

Groupings of variables used i1n the i1mplicit solution of
momentum equation.

Time,

Loap counter.

Number of time steps i1nvolved 1n the computation.
Spatial grid point corresponding to x = pivsloc.

Text fi1le used to store the results.

the
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Program listing

Program ROTATING_PLATE (1nput,output);

uses crt,graph3;

(exsesisstsssstsbxperiaental conditions :

CONST
n = 600;
nl = 599;
dx = 0.25;
dt = 0.25;
tmax = 125;
endmotion = 8.0;
vertvel = 0.1;
pivliac = 3.3333333;
eu = 0.3;
en = 0.93;
eh = 0.3
TYPE
vector = array [0..n} of real;
VAR

hi,h2,ethal,etha2,ul,u?2 :

slopel,slope2,dhdt
di1agl,di1ag2,di1ag3,rhs

Procedure U_BC;

begin
u2i0l:=
u2lnl:=
end;

0.0;
0.0;

Procedure INITIAL_CONDITIONS;

begin
for 1:= 0 to n do
begin
hili1l:= 1,04
ethalif1l:= 0.0;
ulfild:= 0.0;
end;
end;

t
A,B,C,D,E,F :
1,1ter,pivot :
disk :
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Procedure RAISE_BED;

begin
for 1:= 0 to pivot do
h2l11:= 1.0 -
for 1:= pivot+l to n do

h2{11:= 1,0,

tfor 1:= 1 to n! do
hegin
slopetl:13:= (hi{1+41]1 - hil1-1]1)
slope2l1]:= (h2{1+11 - h2[1~-11)
dhdtl11:= (h2f1] - hil11) / dt;
end;
end;

Procedure STATIONARY _BED;

begin
1¥ (t-endamotion)
begin
sound(100);
delay(1000);
NoSound;
for 1:= 0 to n do
begin
slopeil1]:
dhdtl1]:=
end;

{= dt then

= slope2l1];
0.03

end;
end;

Praocedure CONTINUITY_PREDICTOR;

begin
for { to n!l do

ethall1l - dt#(

1:=

etha2li1]:=

+ utfl1]1%(

(prvlioc - 1%dx) # vertvel*t / pivloc;

/ {2.0%dx);
/ (2,0%dx);

( 0.5%(h1l11+h2[1]1)+ethatllr] )

# 0.9%(ullr+11-ulla1-11)/dx
0.5%#(slopeil1l+slape2(11)
+ 0.5#%(ethall1+{1-ethall1~11)/dx

+ dhdtii1l };

end;
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Procedure ETHA_BC_PRED;

var
termi,terma2 : real;

begin
1¥f t (= endmotion
THEN
begin
termiz= h200] # (ullil-ull0])/dx
# (h2011-h2L001-h1013+h1[013) /dx/dt;
term2:= h2001/2 = (h2001-h1L0])/dt
* (ull2)-2#ull1]4ull01)/sqr(dx);
etha2f0]:= etha2f11 - dx ® (terml+term2);
end
ELSE
etha2fl0l:= etha2lll;
etha2inl:= etha2lnt];
end;

Procedure CONTINUITY_CNRXECTOR;

begin
for 1:= 1 to n! do
etha2lil:= ethalf1] - dt#{ ( 0.5%#(hil11+h2l11)+ethatil1] )
#0.25%8 (w201 41 1-u2l1-1J+ulla#tl-ultl-11)/4dx
+0.9%(ulil11+u2011)
*# ( 0.5%(slaopell1l+slope2ir])
+ 0.5%(ethalli+il-ethat(r-11)/d» )

+ dhdt{11 );

end;

Procedure ETHA_BC_CORR;

var
terml,tera2 : real;

begin
1f t ¢(= endmotion
THEN
begin
tersli:= h2[0] # (u201]-u2[01])/dx
# (h2011-h2[0]1-ht{11+h1[0]) /dx/dt;
term2:= h2{03/2 # (h2[{01-h1[01])/dt
* (u2021-2#u2011+u2[01)/sqr (dx);
etha2l01:= etha2[1] - dx * (terml+teral);
end
ELSE
etha2l0l]:= etha2(1l;
etha2lnl:= etha2intl;
end;
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Procedure TRIDIAG(a,b,c:vector; var x:vector; rhs:vector; first,last:integer);

var
ault : real;
1 : 1integer;

beqin
for 1:= first+] to last do
begin
aultz:= al11/bl1-11;
bli1l:= bl1] - mult # cl1-11];
rhsla13:= rhsl11 - ault % rhsi1-11;
end;
x[lasti:= rhsllastl/bl(last];
tfor 12= last-1 daownto first do x[1l:= ( rhsl1] - cf1]#xL1413 ) / bl11:

end;

Procedure MOMENTUM Fxt;

begin
for 1:= 1 to n!t do
begin
u2l1ls= ull11;
Ar= { (l-eh)#sqr(h1fil) + eh#sqr(h2{11) )/3/sgridx)/dt;
B:i= ( (l-eh)®hil1l#slopell1] + eh#h2[1)#slope2l1] )/2/dx/dt;
C:= (slope2l1] - siopell1])/dt;
D:i= (1~eh)7nll11/2%Ch101+11-2%h10i3+h1l1~11)/sqr (dx)
+ ehxh2011/2%(h201+413-2%h2013+h2{i-11)/sqgr {dx};
E:= ((h201413-2#h2[13+h201-11)-(h1C1+1)-2%h1l11+h1f1~113))/sqr(dx)/dt;
Fi= ((l-en)®(ethall1+!]-ethall1-11) +en*{etha2l1+11-etha2l1-11)}/2/dx;
diaglf11:= ~eu*u20131/2/dx - A + B + eurh2[11/2/dx + C
- eu#h2(13/2/sqr(dx) #dhdtl1];
diag2l1l:= 1/dt + 2%A - {/dt#D - euxh2{11/2%E
+ eu#h2l(11/sqr {dx) *dhdt[11];
diag3f1l:= eu*u2{211/2/dx - A -~ B ~ eurh2011/2/dx * C
- eu®h2[11/2/sqr (dx)#dhdtl[1];
rhsli1J:= ull1-13 #((1-eu)*ull11/2/dx - A + B - {i-eu)#h1[11/2/dx*C
+{1-eu)*hi{11/2/sqr{dx)*dhdti1] )
+ullad #{1/dt + 2¥A - 1/dt*D + (l-eu)*hil1)/24E
~(l-eu)*hif11/sqr (dx) #dhdt{1] )
tulli+13 #(-(i-ew)*ull11/2/dx - A - B +(1-eul*h1l11/2/dx+C
+(1-eu) *hi[11/2/5qr(dx) #dhdtf11 )
_F;
end;
TRIDIAG (d1agl,d1ag2,d1ag93,u2,rhs,1,nl);
end;
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Procedure MOMENTUM Fx;

begin
for 1:= 1 to nl do
begin
u2f1l:= ulli1l;

A:
B:
D:
F:

sqr(h2€11) / (3#sqr(dx)s#dt);

slope2l11#h2(i] / (4xdx#dt);
h2011/28(h202411-2#h2{11+h2[1-11) /sqr (dx);
((l-en)#{ethalli+ll-ethalfi1-1])+ent({etha2(1+1]-etha2l1-11))/2/dx;

diaglli1l:= -eu*u2l11/2/dx - A + B;
diag2l11:= 1/dt + 2%A - 1/dt*D;
d1ag3fil:= eu*u2(1./2/dx - A - B;

rhsii1l:= ulfi1-13 #(€{1-eu)2ull211/2/dx - A + B)
+uil1] #(1/dt + 2%A4 ~ 1/dt*D)
+ ull1+1] #(-(l-eu)®*1011/2/dx -~ A - B}
- F:

end;
TRIDIAG(di1agl,d1ag2,diag3,u2,rhs,1,n1);
end;

Procedure MOMENTUM;

begin
1f t <= endmotion {nen MOMENTUM_Fxt
else MOMENTUM_Fx;
end;

Procedure DRAWBED(v:vector);
var x1,x2,y1l,y2 : real;

begin
HiRes;
GraphWindow(30,40,589,159);
60ToX¥(35,20) smwriteln ('t = *,t:5:3);
for 1:= 0 to nl do
begin
x1:= (1-1)/{(nl) # H540;
yli= vi1] # 30;
x2:= 1/(nl) * 540;
y2:= vi1+1] % 30;
draw(round(x1) ,60+round(yl) ,round(x2) ,60+round(y2),1);
end;
end;
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Procedure DRAWSURFACE(v:vector);

var x1,x2,yl,y2 : real;

begin
for 1:= 0 to nl do
begin
x1:= (1-1)/{(nl) * 540;
yl:= vIi11 # 300;
x2:= 1/{n}) % 540;
y2:= vi1+1] *» 300;
drau(round(xl),60—round(y1),rnund(x2),60-round(y2),1);
end;
end;

Procedure FCT(var vt:vector);

const sigma = 0.2; °

rd

vtd,delta,Dc : vector;
Dil,sign,max,min : real;

var

begin
deltal0l:= 0.0; deltaln-13:= 0,0;
for 1:= 1 to n-{ do
vtdlrd:= vti1] + sigea®(vtLi+1] - 2,08vt[i] + vtli-11);
for 1:= 1 to n-2 do
deltalil:= vtdl1+11 - vtdl11;
for 1:= | to n-2 do
begin
1t deltalil > 0.0 then sign:
1f deltal1] = 0.0 then sign:
1f deltal1]1 < 0.0 then sign:=-1,
Diz= (vtl[1+11 - vt[11)/8.0;
1f sign#deltali-11 <= sign#deltali+1]
then min:= sign*deltali-1]
else mn:= sign#deltali1+1];
1f absi{D1) <= ain
then ain:= abs (D1);

1f 0.0 >= min
then max:= 0.0
else max:= min;
Defil:= signtmax;
end;
for 1:= 2 to n-2 do
vtli1}:= vtdl1) - (Dclil - Dcli-11);
end;
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BEGIN {main}
t:= 0.0;
1ter:= 0;
pivot:= truncipivloc/dx);

assign(disk, 'B:RES232.D0C");
rewrite(disk);

U_BC;
INITIAL_CONDITIONS;

DRAWBED(h1);
DRAWSURFACE {ethal) ;

While t ¢ tmax do

Begin
1ter:= 1ter + {;
t:= t + dt;

1f t (= endaotion then RAISE_BED
else STATIONARY_BED;

CONTINUITY_PREDICTOR;
ETHA_BL_PRED;
MOMENTUNM;
CONTINUITY_CORRECTOR;
ETHA_BC_CORR;
FCT{etha2):

DRAWBED (h2) ;
DRAWSURFACE (etha2) ;

1¥ (1ter maod 2) = 0 THEN

begin
writeln(disk,1ter di1v 2);
writeln(disk,etha2l62]);
writeln(disk,etha20124]);
writeln(disk,etha2018641);
writeln(disk,etha27248]1);
writeln(disk,etha2{3101);
writeln(disk,etha2(372]);
writeln(dicsk,etha2i434]);
writeln(disk,etha2{4941);
writeln{disk);

end;

For 1:= 0 to n do
Begin
ethatlil:= etha2lil;
ullrl:=u2i11;
End;

for 1:= 0 to n do hifl1l:= h2[11;

End;
closefldisk);
END.
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Program WEDGE

Purpose of the program

dispersive, shallow-water waves generated 1n
(moving wegde).

Modelling of nonlinear,
a channel by a moving i1nclined wall

Definition of the constants

dx

dt
totald
taax
vstar

slope :
lastT :
: Final

JastX
smooth

gt,...,q8

: Total

n: Total number of spatial grid points (1 = O,0,...n}.

Initi1al spatial mesh si1ze at t = 0,
Temporal mesh size.

length of the channel.

Total duration of the simulation.

i Amplitude of the sinusoidal wall velocity.

Constant slope of the moving wedge.
Time at whaich the motion of the wedge stops.

between the

w-coordinate of the moving wall.
i Farameter controlling the lenght of the smoothed transitian

inclined wall and the channel bottom,
Location of the ei1ght gauges measuring wave amplitude.

Definition of the global variables

ethal Height of the free surface above 1ts undisturbed level &t
time t.
etha2 Height of the free surface above 1ts undisturbed level at

time t + dt.

ul Depth-averaged velocity at time t.
u?2 : Depth-averaged velocity at time t + dt.
hl Fosition of the bed at time t.
haid : Fosition of the bed at time t + dt/2,
h2 : Positicon af the bed at time t + dt.
x1 : Position of the spatial grid po.nts at time t.
xmi1d : Fosition of the spatial grid points at tims t + dt/Z.
x2 @ Position ot the spatial grid points at time t + dt,
dhdxt : Slope of the bed at time t.
dhdxei1d : Slope of the bed at time t + dt/Z.
dhdx2 : Slope of the bed at time t + dt.
t Time,
vel Horizontal velocity of the bed.
totaldisp Horizontal displacement of the bed
1 Loop counter.
1ter Number of time steps involved 1n the computation.
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gaugel...
gauge8 : Graid points corresponding to the gauges location.
disk : Teut file used to store the results,

Program listing

Prograa WEDBE (1nput,output);
uses crt,graph3;

{xxrrztesrzssrssasssfExperinental conditions : WAVE.DATI9##4EREsesitsrirrtsrss)

CONST
n = 3500;
dx = 0.25;
dt = 0.25;
totald = 125;
tmax = 125.0;
vstar = 0.2;
slope = 0.268;
lastT = 13.116;
lastX = 1.67;
saooth = 0.23; { 2tsmooth/slope = lenght of smoothed transition |
gl = 6.73;
g2 = 17.13;
g3 = 27.43;
g4 = 37.73;
gS = 4B.13;
gb = 58.43;
g7 = 68.73;
g8 = 79.13;
TYPE

vectar = array [0..n] of real;

VAR
ethal,etha2,ut,u2,hl,h2 vector;
x1,%x2 vector;
dhdx1,dhdx2 : vector;
hmid,xard,dhdxm1d : vector;
t,vel,totaldisp : realj;
1,1ter : ainteger;
gaugel,gauge?,gauged,gauged : integer;
gauged,gaugeb,gauge’/ ,gauge8 : integer;
disk text;
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Function plssreal):real; {interpolating polynoaial J

begin
p:= 1/32 # (s#sksks¥ses ~ J#skghsis + 15¢sqr(s) - 16#%¥s + 5);

end;

Procedure FIND DEPTH (t:real; x:vector; var h:vector; var dhdx:vector);

var
wedgebottoam,beginsmooth,endsmooth : real;

begin
1f t <= last?
THEN
begin
totaldisp:= vstar#lastT/p:1 # (1 - cas (pr#t/lastT) ):
vel:= vstar # sin(pi1#t/lastT);
end
ELSE
begin
totaldisp:= 2#vstar#lastT/p1;
vel:= 0.0;
end;

wedgebottom:= 1/slope + totaldisp:
beginsacoth:= wedgebaottom - sapoth/slope;
endsmooth:= wedgebottoa + smooth/slope:

for 1:= 0 to n do
begir
1¥ x[11 (= beginsmooth
THEN
hl{i1l:= 1 - (wedgebottoa-x[11)*slope
ELSE
14 x[11 >= endsmooth
THEN
hii1l:= 1.0
ELSE
hf13:= 1| - smooth * p{(x[1]1-wedgebottom)#slope/saooth);

end;

for 1:=1 to n-1 do dhdx[1]:= {hL1+13-hl1-13)/(x{1+11-x[1-11);
end;

Procedure INITIAL_CONDITIONS;

begin
for 1:= 0 to n do x1[11:= 1%dx;
for 1:= 0 to n do ethatf{1l:= 0.0;
for 1:= 0 to n do ulf1d:= 0.0;
FIND_DEPTH(O,x1,hi,dhdx1);

end;
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Procedure APPROX_INTERFACES;:

begin
for 1:= 0 to n do
begin
xardl1l:= x101] + dt/2%ull1];
x2011:= x101] + dt*ull1];
end;
end;

Procedure CONTINUITY_PREDICTOR;

begin
for 1:= 1 to n-1 do
beqgin
etha2l1l:= ethall1l - (h2[11-htil11])
- dt * (ethatfi1l+htl1l)
£ (ulli+1)-utla~-10) /7 (x1l2#t3-x101-10);

end;

end;

Procedure CONTINUITY_CORRECTOR;

beqgin
for 12:= 1 to n~-{ do
begin
etha2l13:= ethallxl - (h2l11-hi1l11])
- dt # 0.9#(ethallil+ethazl1)+hifn]+h2011])
# 0.9 #( (ulli+il-uiln-t)/(xi0a+t)-x101-1 1)
+{u201411-u2{2-1 1) /7 (x20x+1)-x201-11))

end;

end;

Procedure FS_BC;

begin
etha20(01:= - h2{0];
etha2ilnl:= etha2ln-11;
end;

Procedure U_BC_PRED;

begin
u2l0l:= ull03;
u2{nl:= 03
end;
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Procedure TRIDIAG(a,b,c:vector; var x:vector; rhs:vector; first,last:integer);

var
mult : real;
1 : 1integer; .

begin
for 1:= first+1l to last do
begin
sult:= al1l/bl1-11;
bfi1l:= bl1] - ault # cl1-1]3;
rhslil:= rhsl11 - mult # rhsl1-1];
end;
xflast]:= rhallastl/bllast];
for t1:= last-1 downto first do x[11:= ( rhsl1] - cl1l#xfi+11 ) / bl11l;

end;

Procedure MOMENTUM;

var
dragl,diag2,d1ag3,rhs : vector;
dxl,dx2,dx1sq,dx2sq : real;
A,B,C,D : real;

begin
for 1:= 1 to n-1 do
begin
dxis= x101+11-x1l1-1173
dx2:= x201+11-x201-1133;

dxlsq:= 0.5#(sqrixif1+11-x1[iJ)4sqrixil1l-x1{1-11));
dx2sq:= 0.5¥(sqr{x201+131-x2013)+sqr(x20131-x201~11));

1/76% (sqrth1f1])+sgr (h2(11));
0.5¥(hil11#dhdx1011+h2[1 I*xdhdx2(21);
0.5# (dhdx2011-dhdx1L11);
0.25#(h2[11-h1l11);

oo wD
PP
Houwon o

~A/dx2sq + B/dx2 + C/dx2#h2[1] - D/dx2sq#h2[11;
1 + 2%A/dx2sq + 2#D/dx2sq*h2{1];
-A/dx2sq - B/dx2 - C/dx2#h2[11 - D/dx2sq#h2[11];

diagilil:
di1ag2{i}:
diagdli11]:

1f 1 = 1 THEN
rhsl1l:= - dt*0.5
#( (etha2li+ll-etha2la1-11)/(x2014¢1)-22{1-11)
t{ethalli+tll-ethalli-13)/(xtl14¢f3~x101-13) )

tulla1-11% ( -A/dx1sq + B/dxt - C/dx1#hi{1] + D/dxlsq*hi[11])
tulf1]l ® (1 + 2%A/dxlsq - 2#D/dx1sq*hil1] )
tulf1+i]l® ( -A/dxi1sq - B/dx! + C/dxi#hil1] + D/dxisq*hi{1])

+ 0.25#(ht[21+h201 1) #(dhdx2[1]1-2%dhdxm1dl1]+dhdx1(1]) /dt
- dragll{11#u2{03]
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ELSE
rhsl1l:= - dt#0.5
#+( (etha2li+t]-etha2l1-11)/(x2(1+13-x20(1~-11])
+{ethatli1+il-ethatlr-1 D/ {(x11+1]1-x1[1-17) )

+ull1-11#%# ( -A/dxlsqg + B/dx1 - C/dx1#hil1] + D/dxisqthi{1])
+ull1l # (1 + 2%¥A/dxlsq -~ 2#D/dx1sq#hli1] )
+utli1+11#% ( -A/dxtsqg - B/dx1 + C/dx1#¥hil1] + D/dxlsq#hil1])

+ 0.25#(h1(11+h201 1) #(dhdx2(11-2%dhdxmi1d(1]1+dhdx1{11) /dt:
end;
TRIDIAG(diagl,d1ag2,d1ag3,u2,rhs,l,n-1);
end;

Procedure U_BC_CORR;

begin
u2l0l:= uw2{1) - (x20131-x20013)/(x2027-x2011) * (u202]) - u2lil);
u2lnl:= 0.0;

end;

Procedure INTERFACES;

begin
¥2001:= %1001 + 0.5%#dt#{ull0J+u2{01);
for 1:= 1 to n do
begin
¥2011:= x{01] + 0.5%dt#(uilil+u2i1);

1f (x2L1-11<¢(=g!l} and (x2[13>g1)
then 1f (gl-x2[1~-11) <= (x2[1]1-gl) then gaugel:
else gaugel:

o
—

1f (x2[1-13¢=g2) and (x2011>g2)
then 1§ (g2-x2{1-11) (= (x2[11-g2) then gauge2:

i
-
i

else gauge2:= 13

if (x201-13<¢=g3) and (x2[11>g3)
then 1§ (g3-x2[1-11) <= (x2[11-g3) then gauged:= 1-1
else gaugel:= 1;

if (x201-11<{=qg4) and (x2[11>g4)
then 1f (g#4-x2[1-11) <= (x2[11-g4) then gauged:= 1-1
else gauged:= 1;

1f (x201-13¢=g5) and (x2[{11>g3)
then 1f (g5-x2(1-11) <= (x2[11-g5) then gaugeS:= 1-]

else gaugeS:=

|
-
-

if (x201-11¢(=gb) and (x2[11>gé)
then 1f (gb-x2[1-11) <= (x2{11-gb4) then gaugeéb:= 1-1]
else gaugeéb:

1]
—
-

if (x201-11<=g7) and (x20[11>g7)
then 1f (g7-x2[1-11) <= (x2[13-g7) then gauge7:

]
-
[

else gauge7:= 1;
1§ {x2[1-11¢{=gB) and (x2[11>g8)
then 1§ (g8-x2[1-11) <= (x2[1]1-gB) then gaugeB:= 1-1
else gaugeB:= 1;

end;
end;
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Procedure DRAWBED;
var z1,2x2,yl,y2 s real;

begin
HiRes;
GraphWindow(50,20,589,139);
GaToXY(8,23);
writeln( TINE = “,t:35:2,° wedge VELOCITY = °,
vel:9:3,° slope = ‘,slope:b:d);
x1:= totaldisp/(l/slopettotald)*540;
draw(0,10,round(x1),10,1});
x2:= (totaldisp+2/slope)/(totald+!/slope)#340;
drawlround{x1),10,round{x2),130,1);
draw(round(x2),130,540,130,1);

end;

Procedure DRAWSURFACE(x,v:vector);
const pred_amp = 0.2;

var xl,yl = real;

begin
for 1:= 0 to n do
beg:in
x1:= (x{11+1/slope)/(totald+!/slope) # 540;
yi:= vi11 * 603
plot(round(x1),70-round(yl},1);
end;
end;

Procedure FCT(var vt:vector);
const sigma = 0.2;

var
vtd,delta,Dc : vector;
Dl,si1gn,max,min : real;

begin
vtd{0}:= vtio]; vtdinl:;= vtinl;
for 1:= 1 to n-1 do
vtdl13:= vtl{1] + sigeas(vtla+1] - 2.0#vtlil + vtl1-11);
for 1:= 1 to n do
deltafil:= vtdf1] - vtdli1-13;
for 1:= 2 to n-1 do
begin

1f deltalal > 0.0 then sign:= 03
1f deltalil = 0.0 then sign:= 0.0;
1f deltal1l ¢ 0.0 then sign:=-1.0;

Diz= (vth1] vtli1-11)/8.0;
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if sign#deltali-11 (= sign#deltali+!]
then min:= sign#deltali-11
else min:= sign¥deltali+ll;
1f abs!%i) (= min

then ai1n:= abs(D1);
1f 0.0 >= min

then aax:= 0.0

else max:= min;
Dclil:= sign*max;

end;
for i:= 2 to n-2 do
vilil:= vtd{i1l - (Dch1411 - Dcl11);
end;

BEGIN {mainl
ClrScr;
t:= 0.0;
1ter:= 03

assign(disk, 'B:RES39.D0OC");
rewrite(disk);

INITIAL_CONDITIONS;

DRAWBED:
DRAWSURFACE(x1,ethal);

While t < tmax do
begin
te= t + dt;
1ter:= 1ter + 1;

APPROX_INTERFACES;
FIND DEPTH{t,x2,h2,dhdx2);
FIND DEPTH(t-dt/2,xmid,hm1d,dhdxm1d);

CONTINUITY _PREDICTOR;
FS_BC;

U_BC_PRED;

MOMENTUM;

U_BC_CORR;

INTERFACES;

FIND _DEPTH(t,x2,h2,dhdx2};
CONTINUITY_CORRECTOR;
FS_BC;

FCT(etha2)g

DRAWBED;
DRANSURFACE (x2,etha2);
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1f (1ter mod 2) = O THEN

begin
writeln(disk,1ter div 2};
writeln(disk,etha2lgaugell);
writelntdisk,etha2lgauge2l);
writelnidisk,etha2flgauge3l);
writeln{disk,etha2{gauged]);
writeln(disk,etha2lgaugefl);
writeln({disk,etha2lgaugebl);
writeln(disk,etha2lgauge7l);
writeln(disk,etha2f{gauge8l);
writeln(disk);

end;

for 1:= 0 to n do

begin
ethall1l:= ethaZ(11];
hifil:= h2l11;
x1011:= x2011;
dhdx1T13:= dhdx2[11;
ullids= u2l11;

end;

end;
close(disk);
END,
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APPENDIX D

Supplementary results
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Figure D.1: Wave generated by a moving wall. Maximum horizontal velocity of the wall v* =
0.4; total displacement d = 2.5; duration of the motion ty = 9.82. Note : The time coordinate
corresponding to t = 0 may shghtly differ in the computations and erperiments.
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Figure D.2a: Wave generated by a submerged wedge. Slope m = 0.268;maximurm
horizontal velocity of the wedge v* = 0.2; total displacement d = 1.67; duration of
the bed motion t; = 13.12.
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Results obtained without the




Figure D.2c: Wave generated by a submerged wedge. Computations based on the

linearized long-wave theory.
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Figure D.2d: Wave generated by a submerged wedge. Computations based on the
shallow-water, finite-amplitude theory.




[ ——

.08 T T T T T T T T T
77 04 x = 45 .
.00 /\\
i /\ x =150 -
- x = 2525 -
B x = 355 -
- x = 46.0 .
~ x = 56.25 1
u x = 66.5 N
- x = 77.0 N
L ) 1 ] ) ] ] Il i
0,0 0.25 0,50 0,75 1,00 1,25

t (102)

Figure D.2e: Wave generated by a submerged wedge. Slope m = 0.268;maximum

horizontal velocity of the wedge v* = 0.1; total displacement d = 1.67; duration of
the bed motion ¢y = 26.23.
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Figure D.2f: Wave generated by a submerged wedge. Slope m = 0.577;maximum
horizontal velocity of the wedge v* = 0.2; total displacement 4 = 1.14; duration of
the bed motion t; = 8.94.
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Figure D 2g: Wave generated by a submerged wedge. Slope m = 0.268;maximum horizontal velocity
of the wedge v* = 0 4; total displacement d = 2 5, duration of the bed motion t; = 9.75
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Figure D.2i: Wave generated by a submerged wedge Slope m = 0.577:maximum horizontal velocity
of the wedge v* = 0.2; total displacement d = 0.85, duration of the bed motion t; = 4.73.
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0.1 at = = 0; duration of the bed motion ty = 5.0; final slope mu., = 0.1.
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Figure D.4: Wave generated by a moving wedge. Slope m = 1;maximum horizontal velocity of the
wedge v* = 0.2; total displacement d = 1.67; duration of the bed motion ¢, = 13.12.




