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Abstract

The rolle of turbulence in the process of collision and coalescence of small cloud
droplets is still an outstanding problem in the area of cloud physics. In particular,
the growth of droplets in the radius range from 10 to 15 um is not well understocd. .
The present research has been motivated by the curiosity \_vhether or not turbulence

affects the gI‘O\;Jth rate of such small drops.

We developed a method to calculate collision rates or-small hydrodynamically
interacting drops embedded in an external flow field; we call it the lux method. Then,
the method was tested for simple cases of laminar flows such as linear shear and a
two-dimensional deﬁprmation field. The tests were designed not only to validate the
inethod but Wailso to examine the mechanisms associated with the simplified types of

external flows which may be equally important for real turbulent flows.

In order to obtain estimates of collision rates for turbulent flows, the ﬁux method
was used in conjunction with é probabilistic approach. Numerous éi.ﬁiﬁlations of
trajectories of two hydrodynamically interacting droplets in a turbulent field were
carried out. The ratio of the number of collisions to the total number of simulations
gave the probability of collision for different relative positions of the drops. Because
the Reynolds number of the flow around droplets (based on the drop radius and
terminal velocity) is small, the trajectorics were calculated with the help of a model

based on the linear Stokes hydrodynaﬁiics. Turbulence was modelled in the form



\Y
of random Fourier modes with both the space and the time spectrum prescribed.
Both spectra were characterized by Kolmogorov scaling. The space spectrum was
modelled in the inertial and dissipation subranges. On the basis of scale analysis,
only small scale time variations were allowed, and, the so called Eulerian-Lagrangian

time spectrum was applied.

The results show that most collision rates increase muderatély in a turbulent
flow characterized by a rate of energy dissipation of the order of 1, 10, and 100 em?®
sec™®. The estimated increase in collision efficiencies, h'c‘)'\'{'ever, is not uniform, and
a rather complicated relatibﬁ rbe't'ween the increase in the collision eﬁiciencyi and the

parameters—the drop radii, and the rate of energy dissipation—can be observed.



VI

I d r

esume

Le réle de la turbulence dans le processus de collision et de coalescence des gout-
telettes nuageuses demeurc un probléeme important dans le domaine de la physique des
nuages. En particulier, la croissance des petites gouttes de rayon variant de 10 a 15
;¢m reste mal comprise. La motivation prémiere du présent travail est de déterminer

si la turbulence a un effet sur la croissance des gouttelettes nuageuses.

Nous avons développé une méthode dite ‘flux’ pour calculer le taux de collisions
de gouttelettes qui interagissent hydrodynamiquement dans un écoulement externe.
La méthode fut testée pour des écoulements laminaires simples tels qu’un cisaillement
linéaire et un écoulement bi-dimensionnel déformant. Le but de ces tests fut non
seulement de valider la méthode mais aussi d’examiner les mécanismes de collisions
dans les écoulements simples, lesquels peuvent étre aussi importants que ceux régnant

-dans les écoulements turbulents réels.

Afin d’obtenir des estimations du taux de collision dans les écoulements turbu-
lentes, la méthode flux fut utilisée dans un contexte probabiliste. Un grand nombre de
simulations de trajectoires de deux gouttelettes interagissant hydrodynamifiuement
dans un écoulement turbulent a été réalisé. La probabilité de collision pour diverses
positions relatives des gouttelettes fuﬁ calculée & partir du rapport entre le nombre
de collisions et l¢ nombre total de simﬁlations.' Di au faible nombre de Reynolds

de '’écoulement autour des gouttelettes (calculé & partir du rayon des gouttelettes et
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de leur vitesse terminale), les trajectoires furent calculées a I'aide d’un moddle basé
sur I'approximation linéaire hydrodynamique de Stokes. L’écgulement t_urbule_ut. fut
simulé en utilisant des modes de Fourier aléatoires prédéterminés dans jc tonlnps ot
dans P'espace. Les modes ont été établis dans les échelles inertielle et dissipative.
D’aprés une analyse d’échelle, seules les variations tempordﬂ—is des petites échelles

sont permises, et par conséquent, le spectre temporel Eulérien-lagrangien {ut utilisé.

Les résultats montrent que la plupart des taux de collisions augmente modéré-
ment lorsque ’écoulement turbulent est caractérisé par un taux de dissipation de
lordre de 1, 10 et 100 cm® sec™. Toutefois.;l’_es‘t‘.imat..ion ¢ r-J.__l’auguwntal'.ion d‘c[’ﬁéﬂcit‘.é
de collision est non-uniforme et on observe une relation plutdt compliquée entre
Iaugmentation d’efficacité de collision et les parameétres (rayon des goutte]cttéa et

le taux de dissipation énergitique).
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tatement of
Originality

In this thesis, original research directed towards the understanding of the effect

of turbulence con collision rates of drops in developing cumulus clouds is presented.

The following are the original elements of the present research which were de-

veloped, and, later, successfully applied:

¢ The flux method was introduced as a tool with which to quantitatively- deter-

mine the collision kernels and collision efficiencies.

e A numerical model to calculate trajectories of hydrodynamically interacting

drops embedded in an external turbulent field was developed.

e The method of random Fourier modes for turbulence modelling was modified,

and, for the first time, used to model the motion field in a cloud.

e
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reface

How rain forms—a basic part of the education of a meteorology student, yet,
surprisingly enough, a subject of serious research of only the past 50 years; even
more surprisingly, a subject still not well understood, Although, precipitation is gov- 7'
erned by large scale weather systems, microphysics of clouds plays a significant role,
and as such needs to be properly addressed. Thé process. of rain formation under
consideration here—collision-coalescence—is one of the two recognized mechanisms
of rain formation. Tl;e initial growth of cloud droplets is entirely due to condensa-
tion. Condensation produces droplets as big as 10 um in radius but above that size
condensational growth rates become so slow as to be ineffective, and other processes
must take over in order to generate large rain-size drops. One possibility is that the
next stage of formation of precipitation involves the ice phase. Water vapour which
is saturated with respect to liquid water become supersaturated with respect to ice—
thus diffusional growth of ice crystals is vigorous--Vhen ice crystals formed in sgc_h
a way encounter higher temperatures, they melt, and fall down in the form of rain.
This is the, so called, Wegener—Bergeron—Findeisen process. The alternative scenario
does not involve the solid phasé. Due to their different\ terminal velocities, drops
of different sizes will collide and possibly coalesce which is predictably termed as
collision-coalescence.} Metaphoriéally speaking; collision-coalescence is a ‘Cinderella’

among the rain formation mechanisms, since for many years the Wegener-Bergeron-

1' In mechanics of aerosals the analogous process is called coagulation while in the enrly years meteorologists tend
to use the word coalescence. We prefer the term collision-coalescence as it reflects the double nature of the effect.
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Findeisen process was the principal concern of meteorologists. However, the idea
that collisions between drops of different sizes are responsible for the production of
large, rain-size drops, was introduced for the first time in the eighteenth century—
independently, in 1715 by Barlow, and in 1739 by Musschenbroek |[Pruppacher &
Klett, 1980.] Later, Reynolds [1876] even predicted that droplets above a certain
size may grow more effectively by collisions than by diffusion. The concept was then
abandoned for half of a century. Finally, in 1941, Simpson in his presidential address
to the Royal Meteorological Society started a new era by bringing the forgotten idea
of collisional growth to the attention of the meteorological community. (This move
was strongly supported by the observations by pilots flying over India.) Presently, the
observational evidence suggests that the collision-coalescence process occurs not only
in clouds with cloud-top temperatures above zero Celsius but also in clouds where
supercooled droplets are present, at temperatures of the order of 20 C (often referred

to as non-freezing clouds) [Rogers & Yau, 1989.|

There are many aspects of the collision-coalescence process which are not well
explained. In particular, little is known about coalescence. (Most of the research
has been geared toward the much easier to model process of collision.) Experiments
show that collisions of drops do not always result in a permanent union—a thin
layer of air between drops preventing coalescence. For larger drops, the coalescence
efficiency may be then lower than unity [Ochs et al., 1986] which is assumed in most
applications. There is no consensus about the ‘easier’ collision part. Droplets smaller
than 10 pm radii grow efficiently through diffusion, while, according to the laminar
theory, droplets larger than 20 um radii grow efficiently through collisions. Clearly,
there is a size gap where drops do not grow vigorously bj either of these processes.
Also, for the same range of radii, the results of empirical ‘in vitro’ measurements

of collision rates do not converge with theoretical results [Jonas & Goldsmith, 1972
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(this is except for settling in a still fluid.) The fact that there are links missing
somewhere has been known for some time. In particular, in 1939, while Europe was
facing World War II, in the quiet Mt. Washington Observatory in New Hampshire,
Arenberg [1939] was writing: © Turbulence as the major factor in the growth of cloud
drops.” Whether that statement is correct or not has been under investigation ever

since, Incidentally, this is also the subject of this dissertation.

The very basic question posed at the beginning of the research presented here
was that concerning methodology—how to estimate the effect of turbulence, and,
in particular, how to compare it with that of the laminar approximation. Upon
consideration, the estimate of collision rates for pairs of drops by direct examination
of their trajectories was found to be the most viable method. The unavoidable tasks
brought by the above approach were to obtain an instantaneous turbulent velocity
field, and to calculate trajectories of two hydrodynamically interacting drops. By
introducing a concept of turbulent collision efficiency (as in de Almeida [1975]), -the
comparison between collision efficiencies in laminar and turbulent flows as well as a
determination of the role of turbulence were possible. Certainly, the results do not
answer once and for all the Question of how important is turbulence as a factor in the
growth of cloud drops. Hopefully, however, they will serve as a step for thg future

development of the theories of rain formation.



Turbulence and Collisions
A Critical Review
of Literature

A wide variety of epproaches have been applied in order to find the possible role
of turbulence in the process of collision-coalescence. In this chapter, we present
the major trends as well as emphasize the results which are significant from the
point of view of the present work.

1.1 The Effect of Inertia—Early Research

Most early worki_looked at the effect of drop inertia as thfe exclusive mechanism
to enhance collisions in turbulent media. From a modern point;f view, the, so called,
inertial effect can be briefly defined [Yudine, 1959] as a property of particles having
higher densities than that of the surrounding fluid to leave trajectories followed by
fluid parcels. The noticeable effects of the above are: the lower velocity of the particle
in comparison to the surrounding fluid as well as the retention of velocity correlations
by particles for longer periods of time. Particles (or droplets in our case) of different
sizes exhibit different ‘degrees’ of the inertial effect. In the works by Arenberg [1939)],
Gabilly [1949], and East & Marshall [1954], the relative displacement of two drops

due to the inertial effect was compared to the relative displacement due to gravity.
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While ‘turbulence’ in the two earlier papers was exclusively modelled as a sinusoidal
motion, East & Marshall applied a random velocity field. Although the actual results
of East & Marshall are of historical value now, it is worth presenting both the method

and the results because they influenced future thinking.

In a one-dimensional, random ambient velocity field, the relative (vertical) ve-
locity of drops, w(t) has a Gaussian distribution. Because the motion of drops is
caused by the random velocity, «(t), the variance of the distribution, w(#), must be
solely determined by the random velocity field. Making use of the theory of stationary

random functions, the variance of the relative velocity is

o0
2 _
Uw_/

0

where G(w) is the spectral density function for the random variable w{t) and

%‘G(w)dw, | (1.1)

ot = A " Gw) dw. (12)

Various forms of G(w) have been examined (e.g. Gaussian, uniform, delta, and
Markoff distributions.) For most of them, a similar dependence of the variance of

the drop relative velocity on the variance of the acceleration of the random ficld {#2)

was found
2

o = ot (e - Y | (13)

6ruvr, Gmrr,

where 7, and r,, and m; and m, are respectively the radii and the masses of the
drops, while v is the kinematic viscosity of air. The analogue of the above equation

for gravitational coagulation in a still fluid is

w=g( L S ) (1.4)

Gruvr,  Gmurg

East & Marshall pushed- the analogy even further, by calculating the relative volume

swept by the collector drop as

V = 2m(r, +1p)? /:, E(w)w P{w) dw, (1.5)

e
.
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where E(w) is the collision efficiency which, in this particular situation, is a function
of the relative velocity, w, and P(w) is the probability density. Note that for the

gravitational case

V =n(r + 1) Ew, (1.6)

The collision efficiencies £ and E{w) were calculated according to Langmuir [1948].
East & Marshall examined collision rates for the following situations: random motion
with the r.m.s. value o,, equal to gravity, gravity alone, and random motion with
gravity. Two major conclusions of their research were: 1. The random motion alone
enhances the collisions between droplets of small radius ratios as compared to the
gravitational case. 2. Any fluctuating component parallel to gravity increases the

collision rates. (Note that the fluctuating component which was assumed was of the

=“order of gravity—hence the effect was significant.) The major criticism which East

& Marshall faced was that concerning the actual character of turbulence as opposed
to their mode] of random motion. In particular, no spatial variation of the velocity
was allowed [Saffman & Turner, 1956). This is a criticism rather difficult to refute.
Further, treating hydrodynamic interactions in the same way as for the laminar case
was not correct. Still, the qualitative character of the effect of inertia on collision

efficiencies was captur?"d 1Saffman & Turner, 1956].

1.2 The Rate of Energy Dissipation—A Fundamental
Parameter

In order to enlighten the role of turbulence in the process of collisions between
small cloud drops, a realistic model of turbulence was applied by Saffman & Turner
[1956]. The fundamental assumption of that research was the isotropic character of

the turbulent field which is justified since only the smallest scales can affect collisions
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of small cloud droplets. They recognized that drops may collide due to two possible
mechanisms: their different motions relative to the air and different motions with the
air. While the first mechanism does not allow for collisions of drops of the same size,
the second inherently has no such restrictions. The research delivered by Saffman
& Turner emphasized collisions between nearly identical drops, and, consequently,
did not take the hydrodynamic interactions into account. (The experimental cvi-
dence available at that time [Manley & Mason, 1952] suggested that the collection
efficiency of almost identical drops is equal to unity.) Two analyses were performed,
one concerning exclusively the collisions due to the motion with the air, and another
including all three elements: motion with the air, and motion relative to the air d}w

to turbulence and due to gravity.

The collision rates due to the motion with the air were estimated by calculating

the flux of drops through a sphere of radius equal to the sum of the drop radii, r, + ;.

This flux was estimated as

F = 2x(ry + r2)*|wal, (1.7)

where w, is the relative radial velocity along the radius parallel to the z-axis (note
that turbulence is isotropic). Since 7, + ry is small with comparison to the small

eddies, and, further, using the result obtained by Taylor [1935], the following can be

written

—_— Oug € \?
lwa| = (r1 + 7‘2)%; = (7 +7‘2)( . ) ' (1.8)

1bun

where u; is the z-component of the turbulent velocity, and ¢ is the rate of energy

dissipation. The collision rate is thus

STI'E) 3
1)

N = 'ﬂr1n2(’r1 + 7‘2)3 (Ig;

(1.9)

where n; and n, are the concentrations of drops. Clearly, the collision rates are

dependent on radii as well as on the rate of energy dissipation. With the help of
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the ‘predecessor’ of the stochastic growth equation [Smoluchowski, 1917], Saffman &

Turner concluded that the significant growth of initially uniform droplets may occur

for the rate of energy dissipation equal to 1000 cm?® sec™?.

In the second approach, the path of East & Marshall was roughly followed.
From the results of molecular theory, for nonuniform gases in particular [Chapman &

Cowling, 1970], the collision rate is

N =n(ry +r2)*nyn, f//wP(w) dw, (1.10)

where P(w) is the probability distribution function of the relative velocity. Saffman &
Turner chose the relatively simple form of a three-dimensional Gaussian distribution.
In order to find the variance of the distribution, the velocities of the drops were

decomposed into the motion with the air, u, and relative to the air, q
vi=w+q V2 = Uz + Q2. (1.11)
Clearly, the variance of the relative droplet velocity w is
var(w) = var(v, — v,) = var(u, — u;) + var(q; — qv). (1.12)

In order to evaluate the variance associated with the motion of the air, the properties

of turbulence were exploited once again

ou\? duz\? 1
var(u; —ug) = (r1 + Tz)z(é) = 5(ry + 7“2)2( at; ) = 5(7'1 '*"'"2)25'- (1.13)

i
p

~ The variance of the velocities relative to the air was estimated by averaging the drop

equations of motion in the form

(1.14)

where g is the acceleration due to gravity, and p and p, are the air and drop densities

. respectively. (Analogous equation holds for the second drop.) Without going into the



details of the calculation, let us look at the final expression for the collision rate

N = 2(27.')%(7‘1 + 75)°n g [(1 — ﬁ)-)%(_l- - i)ﬂ(D“‘“)2 +

pa/ 2p0\r7 13 Dt
—— -’
AMotion relutive to the air due to turbulence
1 pNZ0u 71 1v32, 1 -
== s l5—3) &+ s+ )=, (1.15)
3 Po 2pg Ly Ty 9 1
[N , \-——.,-—f
v . . .
Motion relative to the air due to gravity Motion with the air

where %"‘f is the Lagrangian time derivative which was assumed to be equal to the
Eulerian time derivative %“5. Saffman & Turner concluded the following. In hetcro-
geneous clouds, the collision rates due to the motion with the air are higher than
those due to the motion relative to the air (except for very small droplets 1--10 prm
in radius depending on the strength of turbulence.) The collision rates due to the
motion relative to the air will increase significantly for the r.m.s. accelerations of
turbulence of the order of gravity which corresponds to the rate of energy dissipation

of approximately 2000 cm? sec™.

In the paper by Saffman & Turner, a realistic (up to date in 1956) model of
turbulence was used. They assumed a homogeneous and isotropic turbulent field (a
justified assumption on such a small scale), and pointed out that the rate of encrgy
dissipation is the only parameter of turbulence which is crucial for the process under
consideration. In other words, the effect of turbulence on the collisional growth of
cloud drops is solely governed by Kolmogorov scaling. Despite forty years of research,
the fundamentals of the theory of homogeneous turbulence have not been discredited.
However, the entire approach of Saffman & Turner is geared toward finding the effect
of an average turbulent field on collisions. As was pointed out by Narashima [1990],
the averaged turbulent field (as governed, for example, by the Reynolds equations)
is just one of many possible realizations, and, consequently, may not represent the
real field. However, the results obtained by Saffman & Turner should be treated as a

‘first order approximation’ on which to build more refined methods by considering not
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average but instantaneous fields. The major shortcoming of this otherwise magnificent
paper is not including the hydrodynamic forces, but, this would not be an easy task
in the formulation applied by Saffman & Turner. Finally, the use of the Gaussian
distribution of the relative drop velocity seems to be somewhat arbitrary and may

have affected the quantitative results.

1.3 The Diffusion Equation

The analogy between molecular and turbulent diffusion was pointed out for the
first time in the famous paper by Taylor [1921]: “Diffusion by Continuous Move-
ments”. Since then, the idea has been widely employed to describe the ability of
turbulent motion to mix or transport momentum, kinetic energy, heat, particles, etc.
(see for example the text by Tennekes & Lumley [1980].) In particular, in the area
of the mechanics of aerosols, the diffusion equation has been extended to turbulent
motion (various applications can be found in the text by Fuchs [1964].) From the
mechanics of aerosols, the diffusion equation was then introduced to cloud physics.
Smirnov [1968], delivered a through analysis of all the possible factors involved in
the process of coagulation of cloud droplets. (We purposely switch to the term co-
agulation because this is the word preferred by scientists in the field of mechanics of
aerosols.) Diffusion onto a sphere streaming with the velocity v is not governed by
Fick’s second law

on

i V.VDn (1.16)

(where n is the concentration of particles, and D is the coefficient of diffusion) but
instead, it satisfies the Smoluchowski equation [1916]

%g— =V .(VDn - vn). (1.17)

In fact Smirnov used both of the above equations to examine a wide range of processes:
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molecular diffusion, molecular diffusion with gravity, turbulent diffusion, molecular
and turbulent diffusion, molecular and turbulent diffusion with gravity, molecular
diffusion with electrostatic forces, turbulent diffusion with electrostatic forces, and
turbulent and molecular diffusion with electrostatic forces. The resulis were obtained
for collector drops in the range 1-15 pm. Smirnov applied the solution of a steady-
state Smoluchowski equation which was derived by Frisch [1954]. (Frisch calculated
the flux of aerosol particles onto a streaming sphere. This flux, divided by the con-
centration of the collector drops gives the collision rate.) For the case of molecular
diffusion with gravity, Smirnov used a convenient form of the flux in terms of the
nondimensional Reynolds, Knudsen, Stokes, and Péclet numbers. In order to repre-
sent turbulence in these nondimensional numbers, the appropriate values of the time,
space, and velocity scales were applied. (These depend on the kinematic viscosity
and the rate of energy dissipation.) Also, it was recognized that the drop velocity can
be represented by a superposition of the ‘inertial’ (motion relative to the air), and
‘diffusional’ (motion with the air) components. Hydrodynamic interactions were not

taken into account.

A brief summary of the results follows. The effect of turbulence (for the
rate of energy dissipation equal to 100 cm? sec™) was found to be significant for
both molecular-turbulent and molecular-turbulent-gravitational cases compared with
molecular and molecular-gravitational cases respectively. Also, comparisons were
made between the molecular and molecular-gravitational cases—the associated in-
crease of collision efficiencies was tenfold. The model clearly demonstrated that tur-
bulence and gravity reinforce each other leading to highest collision rates. Finally,
no significant effect of electrostatic forces in the cases including both turbulence and

clectrostatic forces was observed.

We start the critical discussion about the approach presented by Smirnov with
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the assessment of the assumption of constant diffusivity. The assumption of constant
diffusivity, which is a correct approximation for molecular diffusion does not work
cqually well for turbulent diffusion. This is because the time scales of interest are
usually not much longer than the Lagrangian time scale characterizing turbulence.
Still, it is reasonable to accept the above as a crude approximation (see Tennekes
& Lumley [1980], p. 226.) Further, Smirnov used the solution of (1.17), where the
collector drop is assumed to stream with a constant velocity (may be not quite appro-
priate for ¢ = 100 cm? sec™®), and he substituted arbitrarily the ‘laminar’ parameters

by ‘turbulent’ ones. It is difficult to estimate the possible errors of the above steps.

~ For all turbulent cases, the inertial effect was neglected because the droplets
considered were small. The error due to neglecting inertia should manifest itself the
least for high radius ratios. Also, no hydrodynamic forces were included which, again,
suggests that the results are more representative for drops of equal than different sizes.

In other words, the results for very small drops of similar size should earn our trust.

In order to examine turbulent collision kernels for collector drops in the range
50-800 um (larger than those which are of our principal interest}, the diffusion equa-
tion for a stochastic process was applied by Reuter et al. [1988]. The rate of energy
dissipation was varied from a few to a few thousand cm? sec™. The basic equation of
Reuter et al. was the diffusion equation in the frame moving with the colleéted drop.

In cylindrical coordinates, (r, ¢, z) this equation is

av v 8V 8V
OV BV - 1.18
5 Hle—vlg-togmtoas =0, (1.18)

where V is the probability of collision between two drops in the period of time between
t and T, v, and v, the drop terminal velocities, and o the coefficient of turbulent
diffusion. V is a function of ¢ and the collector drop position in the moving frame

which also represents the distance between drops. Note that because of symmetry
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of the isotropic and homogeneous turbulent field (which was assumed), there is no
¢-component of diffusion in the latter equation. (1.18) was solved with constant o.
Then, the solution was integrated over the cylindrical volume such that no collisions
were possible between drops coming from outside of the volume during the specified
time period. A slight increase in collision kernels was observed, especially for collector

drops 50 pm in radius.

In a follow-up article, Cooper & Baumgardner [1989] criticized some of the
Reuter at al. assumptions. In the first place, the assumption of constant diffusivity
was disputed on the ground that the diffusion of drops depends on their rclative
distance. More clearly, the eddies which manipulate the diffusion are smaller than or
equal to the distance between drops. Therefore, the size range of the participating
eddies changes with the drop separation. Further, the integration of the probability
V was questioned. While integrating, Reuter et al. assumed that the concentration of
the collector drops is constant. According to Cooper & Baumgardner this is not the
case because in the volume below the collected drop the concentration of the collector
drops is iower due to the fact that some of the random trajectories already passed
through the collected drop. Finally, Cooper & Baumgardner pointed out that in the
Reuter et al. approach, the motion relative to the air (the inertial effect) was not
included. The general conclusion of Cooper & Baumgardner was that Reuter ct al.

overestimated the effect of turbulence.

We agree with the criticism of Cooper & Baumgardner. The additional com-
ment about the method of Reuter et al. which we have concerns the representation
of hydrodynamic forces. Reuter et al. assumed that the probability V is the product
of the probability without hydrodynamic interaction and the laminar collision cffi-
ciency. This may be incorrect. The laminar collision efficiency depends not only on

the drop sizes but also on their relative velocity. With the ambient turbulent field,
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drops approach each other with velocities determined by both their sizes and masses,
and the turbulent field. Also, the effects of shear and rotation due to turbulence were

neglected.

1.4 Modelling Drop Trajectories

Modelling of drop trajectories is geared toward a proper description of hydro-
dynamic interactions. Levin & Sedunov [1966] extended a method which has been
traditionally used for a laminar flow (i.e. calculation of the grazing trajectory) to a
turbulent case. The electrostatic forces were also included. Levin & Sedunov assumed
that turbulent mixing is effective only at large distances. Thus, turbulence can be
neglected when the drops are in close proximity. Once the characteristic distance
was defined, the calculation of ‘turbulent’ grazing trajectory started at the vertical
distance between drops equal to the length parameter characterizing turbulence. The
smallest scales of turbulence were neglected. The results pointed out the impertance
of turbulence. However, the turbulence representation seems to be oversimplified,
and, in particular, there was no justification given for neglecting the smallest scales

of turbulence.

De Almeida [1975, 1976, and 1979|, went a very significant ‘one step’ further.
He developed a method to model an instantaneous turbulent velocity field, and, then,
calculated the trajectories of two drops. The hydrodynamic interactions between
drops were included. The collision rates were calculated on a probabilistic basis
by repeating the trajectory calculations numerous times fq_r different reslizations of
the turbulent field. De Almeida’s results were encouraging—the collision rates, for a
collector drop 15 um in radius, increased by factor 10 or even 100 for energy dissipation

rates as low as 1 or 10 cm?® sec™®. However, there has been a significant amount of
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criticism of the method. Because de Almeida’s research was novel in comparison to
the other approaches, we will present both the criticism in the literature and our

perspective of de Almeida's approach.

The turbulent field was modelled with the help of a Monte Carlo method. The
constraints imposed upon the velocity field was that of the second order structure

function for the longitudinal and transverse velocity components in the form

Brr(v') = [ve(z + 1) — v.(z)] = Cetrd, (1.19)

Bunlr) =Ton(e 47 = wafe)] = 5CeArA, (1.20)

where v, and v, are respectively the longitudinal and transverse components of the
velocity, and C' is an universal constant. Note that the ‘2/3" law holds exclusively
in the inertial subrange. Note also that de Almeida generated a two-dimensional
turbulent field. The chosen value of r was 0.001 cm which is well within the dissipation
subrange for both values of the examined rate of energy dissipat-i;;)n (i.e. 1 and 10 cm*
sec™?). Therefore, de Almeida’s approach was criticized by Pruppacher & Klett [1980]
for using an inappropriate velocity correlation. (Clearly, the velocity field generated
in such a way reveals high and chaotic variability within the range where motion
should be correlated and velocity should be changing approximately lincarly with
distance.) Also, it seems to us that constraining the motion to only two dimensions
was not justified. Although, on average, the problem possesses certain symmetries,
the individual trajectories are by no means confined to a plane. Finally, in the

treatment of turbulence no effort was made to account for velocity-time correlations.

The trajectory calculations were performed by de Almeida with the help of the

equaﬁon derived by Tchen [1949]. Tchen’s equation was the first to describe the
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gravitational settling of a spherical particle in a nonuniform flow. It reads

dv du 1 du dv
Bpy— = I p, — Iprem 4 p(m —
P, w Ty, o p(dt dt)+
Grovity and bueyuacy Preasure gradient Addcd muss
 du dr
6 —-v s , 1.21
\Lpa(u’_l \/m/ top dr dT ) Vt—1 ( )
Stokes' drag o

o
History term

where ¥ is the mass of a particle, a its radius, u and v are the velocities of the
fluid and the particle respectively, and ¢, and ¢, denote time along the trajectory of
the fluid parcel and the particle respectively. Omne of the assumptions while deriv-
ing this equation was that the density of particles is not much higher than that of
the fluid. Because of the latter assumption, the use of Tchen’s equation met with
criticism from Pruppacher & Klett {1980]). Here, however, we would like to defend
de Almeida. Corrsin & Lumley [1956], and Maxey & Riley [1983] derived a similar
equation (the latter from first principles.) The major disagreement between Tchen’s
version and the later versions of the equation was centred around the, so called, pres-
sure gradient term. This term, however, as was shown by de Almeida, is small and .
“can be neglected. (Altogether the pressure gradient, added mass, and history terms
were neglected.) The next step of de Almeida seems to be more controversial. He
formally substituted the Stokes’ drag term in Tchen’s equation by the expressions
for Oseen drag derived by Klett & Davis [1973], which represents the hydrodynamic
interactions. No formal derivation was given. (Klett & Davis solved the laminar
problem with the inertial effects included in the form of Oseen’s correction to the
Stokes’ drag.) Finally, Pruppacher & Klett noticed that the results of de Almeida for
the laminar case do not agree with those previously obtained by Klett & Davis. The

latter criticism undermines as well the trust for de_ Almeida’s calculations.

The results obtained by de Almeida showed a dramatic increase of the collision

. efficiencies for the turbulent case, in particular, for small collector drops (of radii 15
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and 20 pm), and for the radius ratio > 0.3. It is difficult to assess tho nature of the
errors due to calculation of hydrodynamic interactions. What R}‘:'é:(.:.a’—ll only say is that
the method of Klett & Davis [1973] is inherently not appropria.xt.e for very small drops
(say 15 pm in radius). Further, the effect of turbulence may have been magnified
by the application of the velocity correlations characterizing the inertial subrange in
the dissipation subrange. A qualitative lesson to be learnt, however, is that small-
amplitude spatial variations of velocity (the rate of energy dissipation equal to 1 cm?
sec™?) may be able to influence the relative drop trajectories in such a way that the

cumulative effect leads to an increase in collision efficiencies.

1.5 Experimental Evidence

One would hope that a reasonably designed experiment could resolve the di-
lemma whether or not turbulence enhances collisions between drops. In a series
of experiments, Woods, Drake & Goldsmith [1972], aﬁd Jonas & Goldsmith [1972],
examined collisions of small drops under the influence of a uniform shear flow. They
' argued that the uniform shear represents turbulence relatively well when the drops
are in close proximity. More precisely, the power spectra of the velocity derivatives
have maxima near the wavelength corresponding to the Kolmogorov length scale. If,
additionally, those spectra are sufficiently narrow, the uniform shear representation
may perform fairly well. The major finding of Jonas & Goldsmith was that collision
efficiencies increase appreciably for small collector drops (10-15 pm) for values of
shear from 8 to 18 sec!. However, they were not able to reproduce the experimental
results by theoretical calculations for laminar shear flow. Later, Tennekes & Woods
[1972] demonstrated that even if the uniform shear represents a ‘dissipative filament’,

the velocity distributions inside filaments play a major role in enhancing collision
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I rates. Therefore, the experimental results for a shear flow should be interpreted

cautiously. There are no other attempts at experimental work in this area known to

the author,
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Scale Analysis

Scale analysis is an invaluable first-step approach to the majority of fluid dy-
namics problems. In this chapter we try to assess the importance of the foctors
involved in the process of collisions as well as to justify the methods with which
to investigate collision rates.

2.1 Cloud Droplets

Let us scart the analysis with a single drop in still air under the influence of
gravity. Clearly, the radius of the drop represents the length scale and the drop
terminal velocity, the velocity scale. Small cloud droplets are of the principal con-
cern in this work, therefore, we assume the range of radii from 2 to 20 pm. An
isolated droplet under the above circumstances moves with the, so called, terminal
velocity. This results from the equilibrium between the gravity-buoyancy force and
the hydrodynamic drag force. The drag for drops as small as those considered is well

represented by the Stokes formula
D= 6‘”# TV, : (21)

where p is the dynamic viscosity, r the drop radius, and v, the drop terminal velocity.

Equating the above with the formula for gravity and buoyancy

1
G = Ewr"(p = Pair)¥, (2.2)
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where p and p,;. are the densities of water and air respectively, and g is gravity, leads

to the following expression for the drop terminal velocity

2
U, = g—g(p - pni,.)‘r‘z. (2.3)
In

For example, the terminal velocity for a 15 pm drop at standard temperature and
pressure is equal to 2.7 cm sec™!. Table 2.1 lists values for other droplet radii. The
Reynolds numbers defined as

N

Re = — 2.4
Bp ( )

are listed in Table 2.1 as well. Let us just note that for a 15 pm drop the Reynolds
number is 0.01—a small Reynolds number indeed. Certainly the fact that the Rey-
nolds number is small restricts our methods of treating the hydrodynamics to the

‘convenient’ low-Reynolds-number flows.

The time scale of a drop settling under the influence of gravity is represented by
the drop relaxation time, i.e. time needed for the initially non-moving drop to reach

roughly 60% of its terminal velocity (1 — i factor.) The solution of the equation

d
m-ﬁ + Grpvr ~ mg =0, (2.5)

where n is the mass of the drop, is

v=ryg [1 —exp (ug)] where 7= % (2.6)

7 is called the relaxation time. For a 15 um drop the relaxation time is 0.003 sec
(again, more values can be found in Table 2.1.) The inverse of the relaxation time
is often called the response frequency, o = 1/7. Further, one can introduce the

nondimensional Stokes number
U

Stk = —,

2.7)

where U and L represent respectively the characteristic length and velocity scales of

the external flow. Small Stokes numbers characterize situations where the particle



21

inertia has a small influence on the particle motion. When the Stokes number is
small, the inertia of the drop is small and the drop response to the changes in the
surrounding fluid is rapid. The opposite is true when the Stokes number is large. For
the scales of turbulence which are of interest here, the Stokes numbers are small (for
a 15 pum drop and the rate of energy dissipation 10 ecm® sec™, Stk= 0.02) mcaning
that if not for gravity, drops would follow the flow field closely. More values of the
Stokes number can be found in Table 2.1. The time and length scales of turbulence

will be defined in the following s \.:'éion.

A two-drop ensemble calls for more scales to be defined. In the first place,
there is the distance between the centres (D) as well as between the surfaces (S). At
large separations, the Reynolds number based on D is not much smaller than 1, and
higher order, Oseen representation of the drag force should be considered (as in Klett
& Davis, 1973.) Note that the initial distance between centres required for laminar
calculations is of the order of hundred radii of the collector drop. Fortunately, as
shown in Chapter 8, the interactions between droplets at large distances is negligible
as compared to their relative motion caused by turbulence. Therefore, it is not

essential that the Oseen corrections be included in this research.

The distance between surfaces requires special attention at close separations.

This is when molecular interactions come into the play. The common practice while

numerically examining collisions between drops is to define a collision event as occur-
ring when

S = er, (2.8)

where 7, is the radius of the collector drop, and ¢ is a small number, usually of the

order of 10~ — 10~%. If the small gap between the surfaces of the drops is comparable

with the mean molecular free path, A, the assumption of continuity breaks down, and

hydrodynamic models are no longer valid. The ratio of the free molecular path to
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the characteristic length scale of the flow is referred to as the Knudsen number. For
the atmosphere A = 0.06 pm. Let us calculate the Knudsen number (K) for a 15 pm
drop and € = 1073,

A

A
K=§=;=4. (2.9)
Certainly, we are in the regime where the assumption of continuity may not be valid
(see also Table 2.1.) However, experiments showed [Jonas & Goldsmith, 1972] that
for collector drops as small as 20 pm, ¢ = 107° is the appropriate value {i.e. the
assumption of continuity still holds.) Higher values of ¢ are perhaps better for 10 ym

collector drops. Still, in order to facilitate comparisons with other researches, we will

apply the lower number.

Finally, let us introduce the length and time scales of interaction between two
different sized drops. Due to their different terminal velocities, drops proceeding
with their gravity-determined motion are ‘in contact’ over a finite time—we call it
time of interaction. During that time the larger drop relocates itself by the distance
which can be caleulated from its terminal velocity—this is the distance of interaction.
Before proceeding with the arithmetic expressions of the above, we define the distance
between drops where they start to feel their mutual presence. According to convention
[Jonas & Goldsmith, 1972], this distance for such small drops as those considered here
is of the order of 10 radii of the collector drop. Physically, this means that at that
distance, the velocity genérated by an isolated drop moving with constant velocity in
the still fluid is equal to 1/2e of the drop velocity (based upon the Stokes solution for
an isolated drop.) Therefore, the time of interaction between drops is

10 T

H
U — Ug

T=

(2.10)

where v, and v, are the terminal velocities of the collector and collected drop respec-

tively. (Note that the difference in terminal velocities represents the velocity scale.)
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Further, the distance of interaction is

_ (10 7'1)7.?1

U — Va2

c (2.11)

In Table 2.2 there are tabulated values of the time and length scales of interaction
for different sizes of drops. In the next section we will compare those values with the

appropriate scales of turbulence.

TABLE 2.1

Characteristic Scales of a Single Drop

Radius Terminal velocity Reynolds number Relaxation time Stk for Stk for
(pm) u (cm sec™!) Re T (sec) e=1em? sec™? €= 100 cm? soc™?
30 10.7 0.2 0.01 0.03 0.3
20 4.8 0.06 0.005 0,01 0.1
15 2.7 0.03 0.003 0.007 0.07
10 1.2 0.008 0.001 0.003 0.03
5 0.3 0.001 0.0003 0.0008 0.008
2 0.05 0.00006 0.00005 0.0001 0.001
TABLE 2.2

Characteristic Scales of Two-Drop Interactions

Radius r; Radius rp Velocity scale Length scale Tinie scale Knudsen number
(pm} {pm) vy - vz {cm sec™1) L (em) T (sec) K
30 29.6 0.3 1.13 0.11 2
30 15 8.0 0.040 0.0037
30 4 10.56 0.031 0.0029
20 19.7 0.1 0.67 .14 _ 3
20 10 3.6 0.027 0.0056
20 3 4.7 0.021 (.0043
15 14.8 0.07 0.57 0.21 q
13 8 1.9 0.021 0.0078
15 2 2.6 0.015 0.0067
10 9.9 0.02 0.50 042 6
10 5 0.9 0.013 0.011

10 2 1.1 0.010 0.0088
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2.2 Cloud Turbulence

Even to the naked eye clouds appear turbulent. Yet, rigorous measurements
of the degree of cloud turbulence have only become available in the last thirty years
or so with the help of airborne instruments. With high frequency measurements of
velocity, the velocity spectrum, and, consequently, the rate of energy dissipation in
clouds have been obtuined in a number of flights. The measurements which we are
going to refer to are Ackerman [1967 and 1968], MacPherson [1977], and MacPherson
& Isaac [1979]. The values of the rate of energy dissipation obtained vary between
a few to a few hundred cm® sec™3. As expected, the higher values are representative
of the turbulence in cumulus storm clouds while the lower values are representative
of stratus clouds [Ackerman,1967.] Furthermore, the measurements of MacPherson
& Isaac [1979] show that in summer continental cumulus clouds, the values of € are
generally lower neaf the cloud base (20-80 ¢cm? sec™?) than near the cloud top (up
to 400 cm? sec™®.) In this research, the primary goal is to investigate collision rates
in developing cumulus clouds in which the buoyancy driven turbulence has not yet
reached its maximum strength. The rate of energy dissipation near cloud base seems
to better represent young clouds. Therefore, the values from 1 to 100 cm?® sec™ are
investigated. Also, the above valués have been considered by other researches thus
we will be able to relate our results to previous work. However, in order to find the
lower limit of the rate of energy dissipation which still influences the collision rates,

the lower values, 0.1 and 0.01 cm? sec™® were also included.

It is appropriate for the problem at hand to restrict our interest to only the
smallest scales of turbulence. We are exclusively interested how turbulence modifies
drop trajectories, and, consequently, collision rates on the scale where drops interact

hydrodynamically. (Some researches examined the effect of turbulence on cloud drop
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spectra through large scale mixing processes of cloudy and cloud-free air. These either
involved turbulence parameterization alone [Baker & Latham, 1982] or both turbu-
lence parameterization and gravitational sedimentation [Baker et al., 1984; Jensen
& Baker, 1989]. The influence of large scale, turbulent mixing on collision rates is
not considered here.) The characteristic scales, then, are defined respectively by the

Kolmogorov length, time, and velocity as follows

3\ 3
Mk = (E") T = (%) Ug = (Vf)*, (2.12)
€
where ¢ is the rate of energy dissipation. For ¢ = 100 em?® sec™®, the above quantities

are nx = 0.14 cm, 74 = 0.12 sec, and v = 1.11 cm sec™. More values can be found

in Table 2.3.

The comparison of turbulence scales with those characterizing a pair of drops
clearly points their similarity. In terms of spectra, the action takes place in the upper
range of the inertial subrange and in the dissipation subrange—and this is where our

model of turbulence must perform flawlessly.

TABLE 2.3

Characteristic Scales of Turbulence

Energy dissipation rate Kolmogorov length Kolmogorov time Kolmogoroy velocity
¢ (em? se¢™9) nre (om) Ti (sec) vy (em see™1)
0.01 0.76 3.87 0.20

0.1 0.43 1.22 0.36
1 0.24 0.39 0.62
10 0.14 0.12 1.11
100 0.08 0.04 1.97

1000 0.04 0.01 3.50
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Microhydrodynamics
of Cloud Droplets

In this chapter, we concern ourselves with the motion of the drops. We present a
model with which to calculate trajectories of pairs of drops. Our model is based on
the assumptions that drops behave like rigid spheres and are small enough to cal-
culate forces acting upon them with help of the low-Reynolds-number approach.

3.1 The Low-Reynolds-Number Approach

If the inertia of a drop is small (indeed this is the case as we will show later)
gravity and the hydrodynamic resistance are the only forces acting on the drops.
These forces, according to Newton’s second law, determine the motion. Our task
is to find the resistance. The problem has an additional dimension of complexity
because of the hydrodynamic interactions between two drops. The hydrodynamic
forces can be easily obtained if the solution to the boundary value problem of the
form

1
aa_l:+u.Vu=—;Vp+Uv2u, V-u=0, (31)

is known. Because solution of the full Navier-Stokes equation is by no means frivial,
we apply scale analysis to prove that our problem can be tackled by solving a linear

problem governed by the Stokes equation. Let U, I, and = be the characteristic
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velocity, length, and time scale respectively. Then, (3.1) in a nondimensional form is

Bu’ .
Re Sl= + Rew' - V' = -V + V2, V'ou' =0, (3.2)

e

where prime denotes nondimensional quantities, and the Reynolds and the Strouhal

numbers characterizing the problem are

Ul !
Re= — d Sl=— 3
e=— an oo (3.3)

For a drop which settles under the influence of gravity, the charact.érist.ic velocity
is its terminal velocity while the characteristic length, its radius. Settling in a still
fluid is a time independent process, but the external turbulent field introduces time
variation which may be characterized by the viscous cutoff of the time spectrum
(nota bene equal to the Kolmogorov time scale.) For the rate of encrgy dissipation
e = 100 cm? sec™®, the associated time scale is 0.04 sec. A typical 15 pm drop has
a terminal velocity equal to 2.7 cm sec™!. Introducing the above numbers in (3.3),
we get Re = 0.03 and S] = 0.02. Clearly, the terms on the left hand side of (3.2) are
small in comparison to the terms on the right hand side. Therefore, (3.1) takes the

form of the time-independent Stokes equation

pVu=Vp V-.u

il
©

(3.4)

In the presence of potential forces like gravitational or electrostatic forces, Equ. (3.4)

retains its form as these forces can be formally incorporated in the pressure term.

Thé underlying assumption necessary to proceed with the solution of the Stokes
equation which has not been addressed so far is that concerning the rigidity of drops.
It is known that internal circulation develops inside drops falling through another
immiscible liquid (see for example Pruppacher & Beard [1970].) Due to internal
circulation, the drag on a drop increases. Comparisons of experiments performed

with rigid spheres [Perry, 1950] and water drops [Beard & Pruppacher, 1969] show
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satisfactory agreement between drag on a sphere and on a drop of the same size up
to radii of 500 pm. Therefore, we feel justified to use the rigid-sphere approximation,

and in the following section we will refer to spheres rather than to drops.

3.2 The Resistance Problem

The linear character of the Stokes equation has beneficial consequences for the
process of obtaining hydrodynamic forces, couples, and stresslets. The last are of no
interest to us, yet are considered just for the sake of completeness. Let us expand the

ambient flow in a Taylor series. The two first terms of the series are

'LL,'(X) = TL,'_(XQ) + %6-’83 + 0(622:). (3.5)
3$j _

Upon defining the rate of stress tensor and the solid body angular velocity as

1/0u; Ou; 1/0u; JBuy
E,=EX=c(—=+24) 4 = °,°=_(_*__J. _
i =3 ( 2, + 8:::,-) and Q= 2} 2\az, 8:1:1-) (3.6)

respectively, (3.5) results in

1 = 1;(Xg) + B - 0% + oo X 6X. (3.7)

After Kim & Karrila [1991], the forces, couples, and stresslets for a flow in the form

of (3.7), can be represented by the following matrix equation

F, An Ap ]:5311 Em (:;11 (:;12 vy —u(x,)
Fy Ay Axn By Ba §21 922 Vo — u(xg)
%; =—u|Bu Bz Cun Cp Hy Hp gl ~ gm , (3.8)
S, By By Cs Cx H,; Hp ?—-E e
S, Gun G, H; Hp; My My _E°°
Gy Gun Hy Hyp My Mp i

where A, B, and C are second-rank tensors, G and H are third-rank tensors, and
M is a fourth-rank tensor. The matrix in (3.8) is called the grand matrix. One can

prove that the following symmetry relations hold [Kim & Karrila, 1991]

Agf = Ale (3.9)
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Byf = B (3.10)
Cof =Ci (3.11)
G3f = G (3.12)
HER = HES (3.13)
MZR = M, (3.14)

Note that in the above equations superscripts a and 8 denote droplets and corre-

sponds to subscripts 1 and 2 in (3.8). Also, the grand matrix is positively defined.

The geometry of two drops possesses an intrinsic symmetry—the line through
the centres being an axis of symmetry. Because of this the tensors contained in the
grand matrix can be easily expressed with the help of scalar resistance functions as

follows [Kim & Karrila, 1991]

AP = X Jgdid; + Y (6, — did;) (3.15)

B =Y ey (3.16)

CaP = XSadud; + Y5 (615 — didy) (3.17)

Gefl = XC,(did; — g5,-,.) + Y5 (dibjy. + dibss — 2r£,-r{,-r£k) (3.18)
H = Y ity + ejiadi ey, (3.19)

where vector d; is the unit vector along the line of centres. (An analogous expression
for M5 can be found in Kim & Karrila [1991].) Now the scalar resistance functions
Xag and Y, have a very straightforward association with simple types of motion

such as motion along the line of centers, perpendicular to the line of centers, rotation,

ete.

Before proceeding with the explanation of the methods which are available to

calculate the grand matrix coefficients, we formally write the set of equations which
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completely describe the motion of two interacting droplets

dvy®

.a—'--"- = F2 iy 3.20
d2e

I =T 3.21

o dt 1! ( )
dzs

o=y, 3.22

7= (3.22)

where

Fe = pA s (x%) = 5] + AP s (c°) - of] - uBip (25 - 057) - wBgP(0f - 0F)

7 M
+uGERES + nGIRES, (3.23)

T{ = uBf [ns(x®) = vf] + uBiP[uy(x°) — vf] — nCE (5 — 02F°) — pCEP (02 - OF)

7

+RHERES + nHRES. (3.24)

3.3 Solutions of the Stokes Equation

Since the beginning of this century, a wide variety of methods have been applied
in order to obtain the flow around two spheres. These are ?.c}lspherical coordinates
methods [Stimson & Jeffery, 1926; Wakiya, 1967; Davis,1969; O'Neill & Mujumdar,
1971a, b], methods of reflections [Happel & Brenner, 1966, Jeffrey & Onishi, 1984;

Jeffrey, 1992], asymptotic methods [O’Neill & Stewartson, 1967; Jeffrey, 1982], and

collocation methods {Ganatos, Pfeffer & Weinbaum, 1978]. It is not our objective to

present a thorough analysis of all these methods, however, the ones which are directly

applied in this research will be described in some detail.

In order to find the resistance coefficients, the following steps are commonly
undertaken. In the first place, the resistance problem has to be decomposed in such

a way that coefficients in the grand matrix (3.8) can be associated with forces and



31
torques for the particular type of motion. (Linearity of the Stokes equation assures
that this can be done.) Then, the Stokes equation (3.4) is solved with the boundary
conditions applied to the surfaces of both spheres. In the solutions presented below
no-slip boundary conditions are assumed on the spheres meaning that the velocity
on the surface of the body is equal to that of the body surface. The case of slip-flow
boundary conditions will be discussed in the next section. With the resolved velocity
field around the spheres, tforces and torques upon the spheres due to the flow are

calculated as surface integrals

Fazf o - dS, (3.25)
Sa

T, = / (x — Xa) X 0 - dS, (3.26)

where ¢ is the stress tensor and x,, is the centre of the sphere.

3.3.1 Method of Bispherical Coordinates

This method is based on introducing special orthogonal coordinates (», &, ¢) in
such a way that the absolute value of 7 is constant on the surface of each of the spheres.
Inherently, n is positive on the surface of one of the spheres while negative on the
surface of the other, The relations between cylindrical and bispherical coordinates
can be found in Happel & Brenner T1965]. The solution of the Stokes equation in
bispherical coordinates is exact, although represented by an infinite series, Note that
the major advantage of special coordinates, in this case bispherical coordinates, is the

formulation of the boundary conditions on the surfaces of the spheres.
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3.3.1.1 Axisymmetric Problem

Let us assume that droplets are placed on the z-axis. Also, let the drops move
along the z-axis. Then, the coefficients X2, represent flows axisymmet;ic about the
line of centers. This axisymmetric problem was worked out with the help of bispherigé.l
coordinates by Stimson & Jeffery [1926]. They considered only the case of equal
velocities, vy = v;. Because the problem is axisymmetric they introduced Stokes’
stream function for cylindricél coordinates, The solution, then, amounts to solving the
vorticity equation. After introducing special, bispherical coordinates, the analytical
solution was represented as an infinite series involving Legendre functions. Maude
[1961]), showed that the Stimson & Jeffery [1926] solution can be easily extended to
the case of v, = —wv,, and, therefore, the general case of arbitrary velocities can be

solved as well (because of linearity of Stokes equation.)

3.3.1.2 Problems with a Plane of Symmetry

In this case, while z-axis is the line of centres, both spheres move in the z
direction and rotate about y-axis. Clearly, the z — = plane is the plane of symmetry.
Notice that considering just translation allows us to calculate coefficients Y4 and Y.

while considering just rotation allows us to calculate coefficients }7&%.

The methodology of a solution to the problem possessing a plane symmetry
was developed by Dean & O’Neill [1963] and O'Neill [1964], and later applied to
the problem under consideration by Wakiya [1967] and Davis [1969]. In cylindrical

coordinates, the solutions for pressure and velocity components are in the form

_EY B S Vs )
p= CZQmCOSm¢, Ur—-zg(ch+um+vm cosme,

m=0
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b=

Uy =

= len/z '
mzﬂ('u.m — vy ) Sinma, v, = 3 Z(*C'Qm + 210,,.) cosmao, (3.27)

m=0

where c is a constant, and Q,,, %, U, and w,, are functions of » and = only. After
the transformation from cylindrical to bispherical coordinates, solutions for the above

functions were found in the form of infinite series of Legendre poiynomials.

3.3.2 Method of Reflections

Some problems cannot be easily treated with help of special coordinates. The
method of reﬁe/ctions'is one of the most 60mm0nly applied approximate methods but
only for largé:c;eparations. The method was developed by Smoluchowski [1911]. The
essence of the approach consists of the assumption that the ambient field around a

particlé' 1s composed of the original field and the disturbance produced by the other

particle. The iterative process leads to a solution in the form of an infinite series.

Jeffrey [1992] used the method of reflections to obtain the solutions for the
case of the uniform straining motion for large drop separations. The solntions were
obtained separately for the case of axisymmetric straining motion—along the line of
centers, z-axis ir our notation (coefficients X &;) and transverse to the line of centers
(coefficients Y., and XY;.) The general Lamb’s solu“;ion of Stokes equation [1932]
served as a starting point. This is a solution in spherical coordinates in the form of
the infinite series of solid harmonics. For the problem at hand, Lambs’ solution was
written for both pressure and velocity outside each of the spheres (hence the method
is called twin multipole expansion.} The pressure and velocity fields were then sought

as superpositions of fields around a single sphere
v=v4v®  p=plh @ (3.28)

Following H&ippel"?sé Brenner [1965], boundary conditions were applied to the following



/

34

three scalar functions
—-.u TaV ' 1 r, -V X u. (3.29)

rather than directly to the velocity.

Because of slow convergence for close proximity of the spheres, twin multipole
expansion is mainly applicable to cases of large drop separations. In the papers by
Jeffrey & Onishi [1984] and Jeffrey [1992] this method combined with an asymptotic
method was used to estimate all the coefficients of the grand matrix for arbitrary

separations.

3.3.3 Asymptotic Methods

Asymptotic methods were introduced to the problems involving hydrodynamic
interactions by O’Neill & Stewartson [1967] for the case of a sphere moving parallel
to a plane. They performed matched asymptotic expansion with the ‘inner’ solution
valid near the small gap between the plane and the sphere and the ‘outer’ solution
valid in the remainder of the fluid. Later, however, it was found that despite the
fact that a complete analysis can be obtained only by considering the entire flow, the
analysis of the flow in the gap alone is sufficient to find the form of leading singular

terms [Cooley & O’Neill, 1969.]

Jeffrey [1989] analyzed the case of two spheres moving along the line of centers
when the spheres are very close. The nondimensional gap between the spheres is
gméll, £ < 1. The solution for the stream function was sought in the form of power
series in . Later [Jeffrey: 1989 and 1991}, the asymptotic analysis was applied to
the prob'l'egn of two spheres in a two-dimensional pure straining motion. Because of

B)
symmetrics of the grand matrix, the solution was obtained for the equivalent problem



a5

of the flow between two deforming spheres. (In the most r.h.s. vector in (3.8), the
ambient strain was modified to account for the deformation of the sphere: E;, — E
and E; — E,.) In short, the steps required to solve the problem were as follows:
transformation to cylindrical coordinates with the line of centers being the z-axis,
defining stretched variables, and expanding the velocity components and pressure
in powers of the nondimensional gap £. In order to ai)ply boundary conditions the

equations for sphere surfaces were expanded in powers of £ as well,

Coefficients G, H and M in the grand matrix for close separation were estimated

with the help of the asymptotic method (see Jeffrey [1992].)

3.4 Molecular Effects

In the Stokesia.u"‘formulation, there is a barrier which prevents drops from col-
liding. This is not in ‘accord with the physical reality because the assumption of the
fluid continuity is not valid when the gap between drops is of the order of the molec-
ular free path. (Note that for the atmosphere the molecular free path is of the order
of 0.1.;,um for typical clouds altitudes.) No 'attempt is known to the author to solve
the collision problem from the raolecular point of view. On the other hand, some
thoughts have been given to incorporate molecular properties into the hydrodynamic
treatment. In particular, the so called slip-flow theory was introduced [Davis, 1972;

Jonas, 1972].

The slip-flow theory assumes that only the velocity component normal to the
surface of the body is equal that of the body surface. The difference of tangential
components of the velocity of the body and of the fluid at the surface of the body

is proportional to the local tangential stress in the fluid. This velocity difference is
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called fluid slip. Schematically, it can be written as
Blve - vg) = £Tp, (3.30)

where 77 and ¢ are the bispherical coordinates (n is constant at the surfaces of the
sphere), and the sign is positive for one drop and negative for the other. g is the
coefficient of external friction. The comparison of the experimental [Brown et al.,
1946] and theoretical [Lamb, 1932] results for capillary flows resulted in the following
expression

B =152, (3.31)

g8

where A is the mean free path. Davis [1972] used the above expression to calculate
hydrodynamic forces for the simplest case of motion along the line of centres. His
calculations shows a substantial decrease of hydrodynamic forces compared to no-slip

calculations. No other related work is known to us.
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Modelling
of the Turbulent
Velocity Field

Turbulence modelling has always been both a very active and a very controversial
scientific subject. Yet the modelling results are seldom satisfactory. In this chap-
ter, we present our motivation behind the choice of the method with which we
simulate the turbulent velocity field as well as the method itself. Also, we describe
some statistical tests which were performed with the obtained velocity field.

4.1 Considering a Method

In a significant number of instances, the knowledge of statistical properties of a
turbulent velocity field alone is insufficient for modelling purposes. Thesel are situa-
tions involving movements of particles or bubbles suspended in fluids as well as flows
of chemically reacting fluids. In particular, the treatment of the relative motion of
interacting droplets, an inherently nonisotropic process, is not easy without modelling
the evolving instantaneous velocity field. (At least, this has not been successfully ac-
complished so far.) According to the current state-of-the-art knowledge, small-scale
turbulent velocity fields which are believed to have an influence on the relative motion
of interacting droplets, can be modelled either by the direct numerical simulation or

by the method of random Fourier modes [Fung et al., 1992].

Ve
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The direct numerical simulation (DNS) amounts to a numerical solution of the
time-dependent Navier-Stokes equations. With more and more powerful computers,
direct simulations have become possible. (The first three-dimensional simulation was
performed by Orszag & Patterson {1972].) For the Reynolds number based on the
integral scale of atmospheric turbulence, the number of degrees of freedom is Ref
(three-dimensional flow). Resolutions that high are not possible with the current
size of computers, and will not be possible in the near future. At present, spectral
methods used in DNS’s have, at maximum, 846° degrees of fréedom [Lesieur, 1990,
p. 317). Consequently, high Reynolds number simulations are impossible. Intrin-
sically, DNS’s are not able to reproduce the pure inertial (zero dissipation) flow as
this would require an infinite number of degrees of freedom. Still, the comparison
of the results produced by DNS’s with experimental data is definitely encouraging,
especially for smaller scales. With the appropriate external forcing, Kerr [1990] was
even able to ’r'eproduce k% spectrum for a substantial period of time (though for
a moderate Reynolds number, 86 in particular). With all its limitations, the DNS
approach seems to be suitable for investigating particle dispersion (see for example
Riley & Patterson {1974]). However, the computational requirements (both speed
and memory) are much beyond what was available for the present research. Thus,

we direct our attention to the other previously mentioned method.

The method of random Fourier modes was introduced by Kraichnan [1970] as
a tool with which to exarr'lint:a\' dltflision of particles. This very convenient method
represents a turbulent velocity field in the form of a series of random Fourier modes.
The ‘randomness’ of the modes arises from generating the wavenumbers, frequencies,
and amplitudes of the Fourier modes with the help of selected random numbers. More
specifically, these random numbers are ﬁltergd and scaled in such a way that the

flow is incompressible, and a specific kinetic energy spectrum, E(k) is realized. The



39

original method was later used and modified by a number of authors. Maxey [1987]
presented an elegant extension to the method allowing application to an arbitrary
energy spectrum. Fung et al. [1992] modified the method to include not only the
wavenumber but also the frequency spectrum. Here, the user-friendly formalism of
Maxey [1987] will be used, enriched, however, Hy the representation of the frequency
spectrum as in Fung et al. [1{992]. Before proceeding with the actual method of

turbulence generation, a brief summary of some statistical properties of turbulence is

in order.

4.2 Some Aspects of Statistical Description of lso-
tropic Turbulence

We make no attempt to present a comprehensive review of various aspects of
statistical theories of turbulence. Rather only the basic ideas and formulae, crucial for
the understanding of subsequent sections, are briefly summarized. For more in-depth

analyses consult Batchelor [1953], Panchev [1971], or Monin & Yagloin [1975).

Let us recall once again the basic assumptions: turbulence is homogencous,

isotropic and stationary; also, the flow is incompressible. The four-dimensional

(space-time) two-point correlation function for a velocity field is defined as

Rii(r,7) = uwi(x, t)u;(x + r,t + 1), (4.1)

where u;(x,t) are the velocity components and the overline represents the cnsem-
ble averaée. For multidimensional random processes, the following thco‘i"em holds
[Cramér, 1940]: The necessary-znd sufficient condition that R;;(r,7) be the correla-

tion tensor is that it can be expressed in the form

Rij(r,7) = / / f d*k / dw@,-,.(k,w)e*tk-'fw), (4.2)
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o

where ®,;(k,w) is the tensor, called the space-time spectrum such that

/// ddk/ dw‘I)ij(k,w) < 0, D= .X.,;X_-;‘I)ij(k,(.d),

and ® > 0 for an arbitrary choice of complex constants X;. Clearly,

1 o o _
‘I’ij(k, U) = Wf/f dr/ dr Rij(r,’f')e-"(k'r"'wr)_

®;;(k,w) is an isotropic second order tensor and thus can be expressed
(pij(k: UJ) = A(k, W)kikj <+ B(.‘i‘., w)é'ij.

Further, the continuity equation for incompressible flow yields

0 0
é?iR,'j(I‘, 'T') =0 and —5-?1—1:-R,-j(r, T) =0.

Substituting for R;;(r, 7) its spectral representation (4.2), gives the following

ki®;k,w) = k®y(k,w) = 0.
Multiplying (4.5) by k; and using (4.7) results in the condition
A(k,w)k?* = —B(k,w).
The spectrum can now be written in the form
®,;(k,w) = Alk, w)(kik; = k2655),

or formally,

ik, ) = $(k, ) (8 — 1),
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(4.3)

(4.4)

(4.5)

(4.7)

(4.8)

(4.10)

The turbulent kinetic energy spectrum is probably the most commonly used

spectral function. In four-dimensional space, it is defined as

E(k,w) = %/|;|=k ®,;(k,w)dS (k).

(4.11)



Then, the average turbulent kinetic energy is calculated as

g2 o +oo,
- = / dk.[ (kW) dw,
2 0 -0

where g is the r.m.s. velocity. Substituting (4.10} into (4.11) we obtain

E(k,w) = dnk?o(k,w).

For the three-dimensional spectrum, ¥;;(k)

U,(k) = (2—?153 f//: uy(x, t)ui(x + r, t)e~*"d’r,

the energy spectrum, E(k) is defined as

E(k) = % L |, Falk)ds (i)
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(4.12)

(4.13)

(4.14)

(4.15)

Also, the following relations between quantities defined in the three- and four-dimen-

sional space can be identified

E(k) = /’“" E(k,w)dw and  T;(k) = /_‘” Dk, w)dw.

Finally, we introduce the time spectra: Eulerian, x;;(w)

1 =
Xij (UJ) / C_tWTRiJ'(T)dT,

=% N

where

=]

ugx, t)u{x,t + T) = Ry(r) = .[ e"""Tx@f(dq)dw;

-0

and Lagrangian, 9;;(w)

1 <
191_7(&)) = E;T-./ G_leRt'j(T)dT,

where

[=+]

v.;(a, t)v,-(a, i+ T) = R,’j(‘r) = / eiwrﬂij(w)riw.

~00

(4.16)

(4.17)

(4.18)

(4.19)

(420)

A
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In the latter expression, v;(a,t) represents the velocity of a fluid particle (Lagrangian
velocity), and a is the initial position of the fluid particle. Again, x;;(w) can be

obtained by integration of &,;(k,w)

xi;(w) = ///_: @, (k, w)d’k. (4.21)

Note that similarly to the energy spectrum, E(k), the trace of x;;(w) integrates to

the total kinetic energy

2 1 o
-1 / ee(w)do. ) (4.22)

i+ ]

Later, our attention will be dedicated to the energy spectrum, E(k) and the
time spectrum, x;; because these spectra are frequently modelled and verified exper-

imentally.

4.3 Energy Spectra

i
N
Tt

As the turbulent energy cascad'éé-‘-from large to small scales, the anisziropy
characterizing larger scales disappears. The small scales are therefore homogeneous,
isotropic, and statistically stationary. This idea was for the first time introduced by
Kolmogorov [1941} who termed such a small-scale velocity field as locally isotropic.
The concept of local isotropy is narrower than that of isotropy introduced by Taylor
[1934]. The locally isotropic flow is also statistically stationary, and the restrictions
defining isotropy are imposed only on the distribution laws of differences of velocities
(not on the dis}'ribution laws of velocities themselves.) As a consequence, for high
Reynolds 11umi3er flows, the energy spectrum is distinctively different for small and
large wavenumbers. Kolmogorov’s first similarity hypothesis states that the small-
scale motion, if scaled by ngx and vg (the Kolmogorbv length and velocity respec-

t.i'vely), depend;fjénly on the energy dissipation rate and the fluid kinematic viscosity:

N
/.
=

N
/
./ ;’, -
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E(k) = E(k;¢e,v). (This is the, so called, equilibrium or universal range.) While Kol-
mogorov's second similarity hypothesis assumes that for scales large in comparison
to 1k, the viscosity of the fluid has practically no effect, and E(k) = E(k;¢). ('This

defines the inertial subrange.) Scale analysis of the problem yields
E(k) = aefi ¥, | (4.23)

(Nota bene the above expression appeared for the first time in the papers by Obukhov
[1949a, b].) The inertial subrange exists only for large Reynolds numbers. In the casc
of large energy containing eddies it is expected that E(k) = E(k;¢, S), where § is the
average strain of the flow, and the spectrum differs from one flow type to another.

(For the details of the scale analysis see Tennekes & Lumley [1980], pp. 262-265.)

While in the inertial subrange energy is merely transported from larger to
smaller scales, most of the dissipation takes place in the vicinity of the wavenumber
k = 1/nk, in the, so called, dissipation subrange. The form of the energy spectrum
in the entire equilibrium range has not been established successfully (in the dissi-
pation subrange in particulé..y:,). Because in the dissipation subrange the similarity
hypotheses were of little use, éﬁe’éﬁfﬁf@na;gy—transfer hypotheses were introduced.
Let us start with the dynamic equation for file correlation tensor, Ry;(r, 7). This can
be directly derived from the Navier-Stokes equation, and, for the general case of a

time-dependent process, has the form

%%(?I"."i) = 7;5(1‘, t) + P,;j(l‘, t) -+ ZVR,;J'(I', t), (4.24)
where - T
0 (7 — 1/ 0p;  Opih
Ti(r,t) = 6—m(uiukuj - w.,-ukuj) and Pis(r,t) ‘= ;(—ar—: - —5;7) (4.25)

Primes denote field variables taken at x+r as opposed to those taken at x. The

eépplication of a Fourier transform in the form e [I°2 e~%rd® to (4.24), and,
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subsequently, the condition of isotropic turbulence lead to

k.t
aiéf—’-—)- = T(k,t) — 2vk*E(k,1). (4.26)
In the above expression, T'(k,#) represents the Fourier transform of T;;(r,t) and its
more detailed form will not be introduced here. (For details see Monin & Yaglom
[1975], p. 123.) The Fourie: transform of P;;(r,t) vanishes for isotropic turbulence.

Now let us integrate the spectral equation {4.26)

6 k
E( Ydk' = =-W(k,t)=2 K2E(K 1) di, 4.27
2 [ b (1) -2 [ KB (427)
‘*—-—-\r—" ~ - 4
I 111
0 f B(K,t) di = (k £) = / KRE(K, ) dF, (4.28)
k

-l

| v
where the physical meaning of the terms is as follows:

1. Energy associated with macro scales.

II. Rate of energy transfer from macro to micro scales.

III. Energy dissipation rate of macro scales.

IV. Energy associated with micro scales.

V. Energy dissipation rate of micro scales.
W(k,t) = [~ T(k',t)dk’ is the unknown rate of transfer of energy through the
wavenumber k. Many hypotheses have been introduced in order to model the time-
independent rate of energy transfer, W(k): Obukhov [1941], Kovasznay [1948], Hei-
sm&berg [1948], Pac [1965], and others. All of them have some flaws, the discussion
,{of which is beyond scope of this review. A thorough discussion of these hypotheses
Ican be’ found in Monin & Yaglom [1975] pp. 212-235. Here, the Pao hypothesis will

be presented because of reasons which become clear later.

For a statistically stationary process, Pao assumes the following form of the .

rate of energy transfer in the universal range (micro scales)

W (k) = a(k)E(k), (4.29)
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where o is derived using dimensional reasoning as
o(k) = a bkt (4.30)

@ being a constant. Substituting (4.29} and (4.30) into the differential cquation

dW{k 2
- dé ) _ T (k) = 20 k*E(k), (4.31)
and, then, solving it for E(k) gives
-4 S ve-tiph
E(k) = Ak 7 exp (—Eaue Lok ) (4.32)

An approximate value of the constant A is estimated by substituting the above ex-

pression into
€= QV/ k*E (k) dk. (4.33)
0

The final form of the spectrum is
= aetk - exp(—Savetid :
E(k) = aetk % exp (—aaue R ) (4.34)

Measurements show that constant « is approximately equal to 1.5 [Grant ef al., 1962;

Gibson, 1963). Spectrum (4.34) reduces to the —2 law, (4.23) for small wavenumbers.

Plenty of experiments have been conducted in order to verify Kolmogorov's hy-
potheses as well as various forms of the energy spectrum. There is a general consensus
that in the majority of flow types both of Kolmogorov’s hypotheses are true or, at
least, provide a good first order approximation (see for example Mestayer [1982]).
The experimental results overwhelmingly support the —% law in both experimental
settings and geophysical ﬂbws. The forzﬁ of the energy spectrum in the dissipation
subrange is not well established. Instrumental limitations do not allow measurements
of the spectrum below the Kolmogorov length. Most measurements of energy spectra
have been performed with hot-wire or hot-film anemometers. The ability of such

instruments to register small scale variations is limited by both the finite size of the



46
instrument and thermal inertia of the wire [Hinze, 1975]. With the scant data avail-
able, the Pao spectrurﬁ performs better when compared with measurements than the
spectra obtained by Kovasznay and Heisenberg [Pao, 1965). The data sets used in
» the comparison were the energy spectra in a tidal stream {Grant et al., 1962], and
a round air jet [Gibson, 1963]. The more recent data in a tidal flow [Gargett et al.,
1984] are similar to those obtained by Grant et al. Because both the spectrum by
Pao and the data by Gargett et al. are compared with the data by Grant et al., one
can indirectly draw a conclusion that the Pao spectrum is in even better agreement
with the data by Gargett et al. than those by Grant et al. Still, one should bear in

mind that all the comparisons are made with a very limited and poor data pool.

4.4 Time Spectra

A transplantation of Kolmogorov’s similarity ideas into the frequency domain
lead to the derivation of an expression for the Lagrangian frequency (time) spec-

trum [Inoue, 1951]. Using purely dimensional reasoning he obtained for the inertial

subrange

1911(&)) = ﬁLew'r", (4.35)

where 3, is a constant presumably of the order of unity. The inertial subrange is
confined between the energy containing range and the dissipation subrange. The
lower limit being defined by the inverse of the integral Lagrangian time scale and the

upper by the Kolmogorov frequency [Corrsin, 1963]:

1 1 ¢ '
WL TL .:;_2f0 Riul(r)dr an wK \/: (4.36)

In a similar way, the Eulerian spectrum was derived by Corrsin [1963]. However, the

measurements of Comte-Bellot & Corrsin [1971] put the Kolmogorov scaliﬁg for the
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Eulerian spectrum in question. The estimate of the Eulerian Taylor (time) microscale,

w2y dw’ (4.37)
0 Adi

) 2u?

A= = !
exceeded that supplied by the theory. This fact inspired Tennekes [1975] to scek a new
theory. He calculated an estimate of the Eulerian microscale assuming that advec-
tion of small eddies by large eddies is governed by Taylor hypothesis. The important
assumption made in the derivation was that micro scales are statistically indepen-

dent from the energy containing eddies. The result was in accord with the formerly

mentioned measurements. The form of the time spectrum derived be Tennekes is
Xai(w) = Bpethiuw}, (4.38)

where 8z is a constant presumably of the order of unity., This hypothesis is often
called random sweeping hypothesis, and has been in the centre of controversy since

it was introduced (see Nelkin [1992]). However, the experimental evidence seems to

support the form of the Eulerian spectrum derived by Tennekes [Praskovsky et al., - -

1993). The lower and upper limit of the inertial subrange for the Eulerian spectrum

are
1 1 q

TR 'ql—jfo Rii(T) dr b i ( )

where 7z is the Eulerian integral time scale.

Wep =

Fortunately for us, because of the small scales which are considered here, there
is no need to worry about the sweeping effect of large scales. Therefore, even if the
required time spectrum is Eulerian in natﬁre, the mathematical expression similar to
the Lagrangian spectrum will be applied. In this we follow Fung et al. [1992] who
used for such a spectrum the term Eulerian-Lagrangian spectrum. The Eulerian-

Lagrangian time spectrum takes then the form

Xa(w) = BeLew™, | . (4.40)
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One can conclude that the small scales under consideration and the eddy-containing

large scales are decorrelated for the purpose of our investigation.

4.5 The Method of Random Fourier Modes

In this section, we present the method of random Fourier modes as well as the
modifications which apply to the problem at hand. Let the flow be represented by

the series of random Fourier modes as follows [Kraichnan, 1970]
N

us(x,t) = > {b{"™ cos (k™ - x + wt) + c‘-"’ sin (k™ « x + w™1)}. (4.41)

n—l
After Maxey [1987] et k and w be random vanables with the probablhfy density

™ must be chosen

functions p;{(k) and p,(w) respectively. The coefﬁments ™ and !
in such a way that the flow is incompressible, and the two-point ve]o?sity--correlation
corresponds to the desired energy spectrum. (Again we follow Msaxey [1987].) The

condition of incompressibility

Ou;

R

2. =0 = b . kM =M. kM =g (4.42)
is satisfied for coefficients of the form -
PR
(n) _ /. i vy (n}
b = T(k,w) [&j -t ]b,. . (4.43)

The functicn I'(, w) scales the coeﬂicmnts so the desired energy spectrum is obtained
while the coefficients b( ) are random Gau531an \anables with zero mean and unit
variance (similar relations hold for c(")) For I‘(k, w) to correctly represent the energy
content of the modes, notﬂﬁgply‘"the-“ﬁélue of the energy spectrum for a specified
wavenumber and freq};iéﬁg‘;y- must be accounted for but also the frequency of oécurrence

of these modes—this is where the probability distribution functions come to work.

Let the velocity correlation tensor be written in the form

Ry(r,7) = / / f Bk f dw{p1 ()pa(w) ws(x, )y (x + 1,8 +7) ¥ (4.44)
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Substituting (4.41) in (4.44) results in the following expression

Ry(r,7)=N f//_: dk /:: dw{?l(k)pg(w)l"g(k, v) [6“ _ ALLJ

Equation (4.2) can be rewritten with the help of (4.10) and (4.13) as

Rij(r,7) = fff—: ik f_: dw{‘;k,_,&(k,w) (6 -

Finally, the comparison of (4.45) and (4.46) gives the scaling function I'(k, w)

] cos(k - r +w'r)}.

(4.45)

k;f;j] cos(k - r + w'r)}. (4.46)

E(k,w)

21 ) =
Tk w) = N Op )

(4.47)

In order’ to obtain the 