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Abstract

Let ¢ be a rank 2 Drinfeld A-module over the ring 4 of polynomials over some
finite field F,. We give a bound on the norm of those primes p of A which are factors
of Py(js) for two distinct polynomials d € A. We then show that the number of
supersingular primes of ¢ with norm smaller than z is >> loglogz. We investigate
the endomorphism rings of supersingular Drinfeld A-modules over finite fields. Under
a mild hypothesis, this leads to an upper bound of z3*log?z for the number of
supersingular primes of ¢, with even degree, and norm smaller than z. Finally, we

present the problem of the average distribution of supersingular primes of Drinfeld

modules.

Résumé

Soit ¢ un A-module de Drinfeld de rang 2 sur 'anneau A des polynémes sur un
corps fini Fy. Nous bornons les premiers p de A qui apparaissent dans la décomposition
en facteurs premiers de Py(j,4) pour deux polyndémes distincts d € A. Nous montrons
alors que le nombre de premiers supersinguliers de ¢, de norme inférieure & z, est
> loglog z. Nous étudions les anneaux des endomorphismes des modules supersin-
guliers sur des corps finis. Sous une hypotheése additionnelle, on obtient alors une
borne supérieure de z3/%log® = pour le nombre de premiers supersinguliers de ¢, de
degré pair et de norme inférieure & z. Finalement, nous présentons le probleme de la

distribution en moyenne des premiers supersinguliers d’un module de Drinfeld ¢.
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Introduction

We investigate in this thesis the distribution of supersingular primes of rank 2 Drinfeld
modules, or elliptic modules. The theory of Drinfeld modules over {unclion fields
shows strong analogies ;;rith the theory of elliptic curves:.- To see this in our particular
context, we first review the problem of the distribution of supersingular primes of

elliptic curves.

Let E be an elliptic curve over Q. The structure of its endomorphism ring End( £)
is well known. It contains the multiplication-by-m maps [m], and then Z C End(£).
If End(E) is strictly larger than Z.”_li*"lé\a;\s'-r‘.‘:o be an order (@ in a quadralic imaginary
extension of Q. The curve E is then said to be a complex multiplication curve, or Lo

have complex multiplication (by O).

If E is an elliptic curve defined over a finite field F,, the ring End(E) is always
larger than Z, since it aiso contains the Frobenius automorphism of F,,. The possible
endomorphism rings of elliptic curves over finite fields were studied by Deuring, who
proved that End(E) is either an order in a quadratic imaginary extension (and the
curve is said to be ordinary), or an order in a definite quaternion algebra (and the

curve is said to be supersingular).

If E is an elliptic curve defined over Q, the reduction of E over the finite ficld [,

4
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is an elliptic curve over this field, for all but finiiely man; grimes p. We denote this

_elliptic curve by E,. It is then natural to ask how often supersingularity happens. I

E is a complex multiplication curve, the question was answered by Deuring [3]. Let
7g(z) = #{p £ z: E, is supersingular}.

Then Deuring showed that

1e. supersingularity happens for half of the primes. In general, Deuring also gave
a criterion to detect supersingular primes of a curve E. Let Py(z) be the monic
polynomial whose roots are exactly the j-invariants of the elliptic curves over Q with
complex multiplication by the order | |

0,,:4‘5%/‘:‘1}.

Theorem (Deuring’s Criterion) Let E be an, elliptic curve defined over Q. Then
p is u supersingular prime of E if and only if tﬁe;"; ezists a pasitivé.-z'nteger d such
that

Pije) =0 modp

and p does not split in the quadratic eztension Q(v1)/Q.

Until recently, it was not known if, given an elliptic curve E/Q without complex
multiplication, there are infinitely many primes p such that the reduction of E at p is
supersingular. Elkies answered this question [7], and it was shown by Elkies (8] and

Murty [21] that

mg(z) > loglogz

under the generalised Riemann Hypothesis. Recently, some uuconditional estimates

were obtained by Fouvry and Murty [10]. Murty also noted that an upper bound



of O(z>*) frllows fromtha work of Kaneko [19]. For elliptic curves over Q without

complex multiplication curves, we nave:

Conjecture (Lang-Trotter Conjecture)

wp(z) ~ cElgﬁc'

Recently, Fouvry and R. Muriy [10] showed that he Tang-Trotter conjecture is true

on average.

Let L be a field over A, i.e. an F,-algebra morphism v : A -+ L, where [/ is
an overfield of F,. Let A = F,[T] be the fing of polynomials in one iﬁdeterminatc
over finite fields, and G, be the additive group scheme over L. A rank 2 Drinfeld
A-module ¢ over a field L is a ring homomorphism

Q'J:A — End;_,(@a)

a - Qg

with some additional properties (see Chapter 1 for more deta,ils). Thén the multipli-
cation-hy-a maps ¢, form a subring of End(¢) isomorphic to 4. Over L = F (T, the
quotientheld of A, either End(¢) = A, or End(4) contains an order of a quadratic
imaginary held extersion of F,(T"). Over L = A/p, End(¢) is either a commutative
ring or an ordezz in a quaternion algebra over F,(T'). In the latter case, we say thal
@ is supersingular. Then, given a rank 2 Drinfeld A-module defined over A, and p a

regular prime, let ¢, be the reduction of ¢ on L = A/p, and
Te(z) = # {p € Spec A : |p| € z and ¢, is supersingular} .

Brown [2) showed that the theory developed bnyeﬁ:ing for cli-iptic curves over finite

fields transfers to the case of Drinfeld modules, and then showed that

" wy(z) 3> logloglog z.

6



Following the same ideas, but with sharper estimates, we improve this lower bound
to /loglogz (Theorem 3.2). This can be further improved if we know an analog
to the result of Gross and Zagier [14] on singular moduli. More precisely, let Py(z)
be the polynomial whose roots are exactly the j-invariants of the rank 2 Drinfeld
A-modules with complex multiplication by A[v/d}. We show that if p divides Py, (js)
and Py, (74), then degp < degdyd; (Theorem 2.1). This generalize a result of Dorman
[5], and we use it to get a bound of loglog z {Theorem 3.3). All those estimates hold

unconditionally, since the Riemann hypothesis is proved in the case of function fields.

We then turn to the problem of finding upper bounds to m4(z). In the classical

case of an elliptic curve E, these can be obtained via the l-adic representations

peL : Gal(Q/Q) — GLa(Zy).

By Serre’s Theorem, g, the reduction mod [ of the representation pg , is a surjective
map on GLy(F;) for all but finitely many {. Upper bounds then follow applying the
Cebotarev’s Density Theorem and the generalized Riemann Hypothesis to the finite
Galois extensions K;/Q, where K is the fixed field of ker 5,. In the case of Drinfeld
modules, there are similar representations over the g-adic Tate modules of ¢ (see for
exarnple [13]), but the analog of Serre’s Theorem is not known. This would be an

interesting question for future research.

Another way to approach the problem is to find elements of small norm in End(4).
Then, the supersingular primes of ¢ with |¢| < z will be found as factors of Py(j,),
where d is of small norm, and w4(z) can be bounded above., This is the subject
of Chapter 4. We first find 2 families of maximal orders which are candidates for
the endomorphism rings of supersingular Drinfeld A-modules over the finite fields
Afp, when degp is even. In each of those maximal orders, we find elements of small
norm. It is still to be shown that these 2 families cover the isomorphism classes of

the endomorphism rings of supersingular Drinfeld modules over A/p. We would then

7



have
ns" ™ (z) < 2%/ log’ z
where

even

Ty " (z) = #{p € Spec A : degp is even, |p| < z and ¢, is supersingular}
(Theorem 4.10).

Finally, we present in Appendix 1 some questions for further research. By Deur-

ing’s criterion for Drinfeld modules (Theorem 1.15),

1 =z
2log,z

mg(z)

when ¢ has complex multiplication. In general, we compute the average

& Y Tap)z)
KaKb lel<Kq
<Ky

where ¢(a, b) is the Drinfeld A-module given by
Y{T) + aF + bF?, a,b€ A,b#0.

As in Fouvry and Murty [10], we expect to obtain an average distribution of l—;%, ie.

the Lang-Trotter conjecture would hold on average for Drinfeld modules.



Chapter 1

Function Fields and Drinfeld
Modules

1.1 Function Fields

We define here function fields, and review some of their properties, namely the Rie-
mann Hypothesis, the Cebotarev Theorem and the Riemann-Hurwitz Formula. See

[9] for more details.

Throughout this thesis, let F;, be the finite field with ¢ elernents, ¢ = p* with
p#2

1.1.1 Definitions

Definition 1.1 A function field (of 1 variable) over F, is an estension K/F, such
that

(i) the transcendence degree of K[F, is I;

9



(11) K is finitely generated over Fy;

(iit) By is algebraically closed in K.

Let K be a function field over IF,. A primne divisor of K is an equivalence class
of places of K which are trivial on Fy. Let P(K) be the set of prime divisors of K.
For p € P(K), the completion of K at p is denoted by K. It is a local field, wilh
valuation ring O, and maximal ideal my. The finite field O,/m, is called Lthe residuc
field at p, and denoted K, . For any p € P(K), we define the norm |p| and the degree
degp by

#(0p/mp) = [p| = ¢™°8P.

Let D(K) be the free abelian group generated by the elements of P(K). It is called
the group of divisors of K. Each divisor of D(K) can be written as

a=>3 ayp
b

where p runs over the prime divisors, the a, are integers and all but finitely many of
them are zero. We say that the divisor a is positive, or that a > 0, when a, > 0 for
every pime divisor p. Finally, for any a € D(K), we define

lal = ]___[ ]plqp:

P
which also gives

dega = Zap deg p.
P

Let A = F,[T] and F = F,(T') denote respectively the ring of polynomials and
the field of rational functions in an indeterminate T'. Then F is a function field over
Fy (with genus 0). The prime divisors of I consist of the prime ideals p = (p) of A,
and co, the place at infinity, which is also called the prime at co. For a € A*, we
define |a| and dega by

dega

|a| = "% = |a],

10



where a = (a). Then, for f = § € F*, we define |f| and deg f by

If[ — qdcgf — qdcga—dcgb_

The completion F,, of F' at the infinite prime is F,((T"?)), the field of formal
Laurent series in T-!. The (unique) extension of | | to Fy is also denoted by | |.

Let F., be the algebraic closure of Fi,, and € the completicn of the algebraic closure

Fe. Let § = € — F, be the Drinfeld “upper half-plane”.

1.1.2 Riemann Hypothesis

Let K be a function field of 1 variable over F,, and denote its genus by gx. Define
the {-function of the function field K/F; to be the Dirichlet series

k(s)= JI Q=1p™)7= > la™.

eP(K s DK
rEP(K) I120)

We also define
Zuli)= ¥ o

s €D(K}
a>0

such that (x(s) = Zx(g™"). Then

(1) The Dirichlet series (x(s) converges in the right-half plane Re(s) > 1; {x(s)

is an analytic and non-zero function in this region.

(2) {x(s) has a meromorphic continuation to the whole complex plane, with
only poles being simple poles at s = 0 and s = 1. We also denote this analytic

continuation by {x(s).

(3) The function Zx(t) satisfies the functional equation:

(VE)' Zi(t) = (VA Zx ( 1 ) .

ot

11



(4) The function (x(t) satisfies the functional equation:
gox (g (s) = g1~ 5),

One can also show that
Lk(t) L
R 1.1
T= - (-0

with Lx(t) = ag+ait+. ..+ az,t*9¥ is a polynomial with rational coefficients, which

Zx(t) =

can be written as
K

Lg(t) = H(l — wit)(1 — wit)

=1

with

wiw; = ¢ for1 <1< gg
We can then state the Riemann Hypothesis for function fields:
Theorem 1.2 (Riemann Hypothesis)
(a) The zeros of {k(s) lie on the line Re(s) = 1;
(b) The zeros of Zx(t) lie on |t| = ¢~1/? ;

(c) |wil = Wil = /g fori=1,...,9x .

1.1.3 Cebotarev’s Theorem

We state here an explicit version of the Cebotarev density theorem for function fields.
We specialise to the case of extensions E/F, where F = F,(T), but one could develop
the theorem for any Galois extension E/K of function fields, as in [9]. Let G be the
Galois group G = Gal(E/F). For p an unramified prime ideal of A, let

)

12



be the Artin symbol of p relative to the extension E/F. We denote by L the algebraic

closure of Fy in E, and let
N =[L:F];
M =[E:LF].
Let C be a conjugacy class in G, and denote

P (E/F) = {peSpecA : pis unrafﬁliﬁed in E/F}
{p € Pur(E/F) : degp = k}
Cu(E/F;C) = {p € P(E/F) : (§£—F) =c}

P(E/F)

Then, using the Riemann Hypothesis, one can show that

Theorem 1.3 (Cebotarev’s Density Theorem) (/9, Proposition 5.16]) Let ¢ be

the Frobenius element of Fy, i.e.
¢z — z
Let a be a positive integer such that
res;, T = res, ¢° for any T € C.

Then, for k # a mod N,
ICK(E/F;C)| =0

and fork=a mod N

oy e

<lelg (1442,

where the O-constant is absolute.

13



(This is in fact stronger than what is given in the statement of Proposition 5.16 of

(9], since we are in the particular case of Galois extensions over F,(1").)

Let

vrc(E/F;w)=#{pePw(E/F) o] < 5, and (—) :c}.

Then

ne(E/F;z) = ) |C{E/F;C)

gz

> IC(E/F;CY.
Katin

1.1.4 Riemann-Hurwitz Formula

Let E be a finite separable extension of a function field K over IF,. We define the

different D x to be the divisor of D(E)

Dp/x = ) m(P)P

where P runs over the prime divisors of E/F,; (see [9, p. 24] for a more precise

definition). One can compute that

0 if P is unramified
m (B) =

(e(Plp) — 1) if B is tamely ramified.

The case of wild ramification is much more subtle, but will not be needed in this

work.

Theorem 1.4 (Riemann Hurwitz Formula) (f9, p. 24]} Let E/K as defined

above. Then

298 — 2=[E : K](29K — 2) + deg Dg/x.

14



1.1.5 Quadratic Reciprocity

Finally, we state here the quadratic reciprocity over function fields. The details can

be found in [22].

Let Oy and me be respectively the valuation ring and the maximal ideal of the
completion Foo = F((T7!)) of F = F(T) at the infinite place. Any f € F* can be

written uniquely as cu 798/ where

a € F

q

u € 0L ={fe0,:f=1modmy}.
We then define
w(f) = @
s f = ()T = {

Theorem 1.5 (Quadratic Reciprocity) Suppose a,b € A* are non-zero coprime

) -

where (a,b)o is the quadratic Hilbert symbol at co.

polynomials. Then

We explicitly compute (a, b)q, as

deza deh degh {g-1)/2
(S = (12)
for any a,b € F*. If a,b € A*, we can rewrite the last expression as
(@, b)e0 = (—1)%F 482 484 (51 )%Bb (5op p)dc8e (1.3)

15



1.2 Drinfeld Modules

We review here the basic facts about Drinfeld modules, which were first defined in

[6]. The material of this section can also be found in {11], {13] or [15] for example.

1.2.1 Definitions

Let L be a field over Fy; with an F,-algebra morphism
v:A— L.

We will always have that «y is an injection, or the reduction map mod p, for p a prime

ideal of A. Let L{.’F}-be the ring generated by L and F under the relations
Fec=c"F foranyce L.

If we identify F with the Frobenius automorphism z — &% of ¥, L{F} is naturally
a subring of End;(G, ), where G, is the additive group scheme of L. Each element of

Endz(G,) can be written uniquely as a left polynomial
ZC;P, € L.

These polynorhials are multiplied by substitution, corresponding to composition of
endomorphisms in the ring Endg(G,). For u € L{F}, let degu be the degree in F
of the left polynomial u.

Cefinition 1.6 A Drinfeld A-module ¢ of rankr > 0 over L is a ring homomorphism

$: A -— L{F}

a —— Qg
such that

16



(i) Ya € A, deg ¢ = rdega;
(it) ¢. has constant term v(a).

If the map v : A — L is injective, then ¢ is satd to have gemeric characteristic; if

not, its characteristic is Ker 7.

Let ¢ be a Drinfeld A-module of rank r over F'. Then ¢ is completely determined
by ¢, the value of ¢ at T. We then write it as

br=v(T)+auF+...+aF, ;€ L, 1<i<r, a, #0.

We consider here rank 2 Drinfeld A-modules, or elliptic modules. Such a Drinfeld

A-module can be written as
¢r = 4(T) + aF + bF?, a,be L, b#0.

We also denote it by ¢(a, b). The j-invariant j4 of ¢(a,b) is

. attt

Je = -
Definition 1.7 A morphism, or isogeny, between 2 Drinfeld A-modules ¢ and 9
over L is an element ¢ € L{F} such that co¢s = Yaoc foralla € A. Ifc€ L*
and Y, = co ¢g0c”?, then i and ¢ are isomorphic. Non-trivial isogenies ezist only
between modules of the same rank. For ¢ a rank 2 Drinfeld A-module defined over L,
the set of L-isogenies ¢ — ¢ is denoted by Endr(¢), and is a ring under the usual
operations. We denote by End(¢) the ring Endy(d).

The following Theorem then justifies the definition of the quantity j4:

Theorem 1.8 (Gekeler [11, Lemma {.1]) Let L be algebraically closed. Then two
elliptic A-modules ¢(a,b), and ¥(a',b') are isomorphic if and only if 74 = jy.

17



There is an analytic description of rank 2 Drinfeld modules over €, in terms of
A-lattices. In fact, the category of such modules is equivalent to the category of
A-lattices of rank 2 in €. Hence, by Theorem 1.8, GL,( A)\ ) parametrises the set of

isomorphism classes of rank 2 Drinfeld A-modules over ¢ by the analytic map

§:GL(AN\H = ¢

This j-function is the analog of the Dedekind j-function, and enjoys many of the
same properties, as will be seen in the next sections.
1.2.2 Complex Multiplication
Theorem 1.9 Let ¢ be a rank r Drinfeld A-module defined over L. Then
(i) End(¢) is a projective A-module of rank < r.

(i) If ¢ is of generic characteristic, then End(¢) is a commulative A-module

of rank < r.

Let ¢ be a rank 2 Drinfeld A-module defined over L. It is clear that A C End(¢),

and ¢ is called singular when End(¢) # A. In order to describe singular modules, we

need

Definition 1.10 A gquadratic imaginary eztension K/F is a field eztension of di-

mension 2 over F' such that oo does not split in K.

The following Lemma characterises those extensions:

18



Lemma 1.11 Let K = F(\/a), with a € A*. Then

(1) if dega is even, and sgn a = 1, oo splits in K/ F;
(i1) if deg a is even and sgn & = —1, then oo is inert in K/F;

(iii) if deg a is odd, then co ramifies in K/F.

Let Og be the integral closure of A in K. An order O of K is an A-subalgebra
of Og whose field of fractions 1s K.

Definition 1.12 Let O be an order in o quadratic tmaginary extension K/F. A
singular rank 2 Drinfeld A-module ¢ 15 said to have complez multiplication by O if
there is an embedding © C End (¢).

Let Po(z) be the monic polynomial whose roots are exactly the j-invariants of all
the singular rank 2 Drinfeld A-modules defined over € with complex multiplication
by ©. We consider the special case K = F(/d) for some d € A, where d is a
fundamental discriminant, or equivalently square-free, and @ = Og = A[vd]. Then
denote Py(z) by Py(z). The roots of Py(z) are called the singular moduli associated

to d. By the analytic parametrisation, we can write

Pz) = I (=-3(0)

OCEnd(4)
= JI (@-i(r), (1.4)
diac?‘l):d
where the product is over the equivalences classes {7] of quadratic imaginary elements

of discriminant d over A. Let h(d) be the class number of Og.

Theorem 1.13 Let d € A be a fundamental discriminant, and let Pi(z) be as in
(1.4). Let T be such that j(r) is a singular moduli associated to d. Then

19



(1) 7(7) is integral of degree h(d) over A;

(i) The R{d) Galois conjugates of j(7) over Ok are the valies j(7'), where

f

7' runs through the equivalence classes [7'] of imaginary quadratic elements of

discriminant d over A;

(ii-ﬁ_) Pi(z) is a polynomial of degreg‘h(d) over A.

Proof: See [11] and {16].

1.2.3 Supersingular modules and supersingular reduction

Let p = (p) be a prime ideal of A. Then F, = A/p =~ Faer. Let ¢ be a rank 2

Drinfeld A-module of characteristic p over L = [y, i.e.
~:A— L

is the reduction map mod p sending a to a mod p. Let 7 be the Frobenius automor-

phism of F,

qiegr
T H— T .

Then 7 € End(¢), since
TOPa =0T

for all a € A, ¢ being defined over ;.

Definition 1.14 The Drinfeld module ¢ described above is supersingular if the fol-

lowing equivalent conditions hold:

(1) ¢, is purely inseparable, i.e. ¢, = F* for some integer h;
(2) There is no p-torsion points, i.e. Ker(¢,) = 0;
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(3) Endp($) is a non-commutative ring;

(4) Endp(¢) is a mazimal order in the unique quaternion algebra over F' which

s ramified at p and oo, and unramified elsewhere.

The equivalence of those properties is proved in {11, Thm 5.3] and [13, Proposition

4.1]. A Drinfeld module which is not supersingular is said to be ordinary.

Let ¢ = ¢(a,b) be a rank 2 Drinfeld A-module cf generic characteristic over F
defined by

dr=v+aF +bF* abc A b#0. (1.5)

Let p = (p) be a prime ideal of A. For u = ¥ ;. F* € ¢(A), let
umod p = Z(c; mod p)}"
The reduction of ¢ at p (or at p) is then the A-module ¢, defined by

¢p: A — IFP{]'_}

e — ¢ mod p.

¢y 1s a rank 2 Drinfeld A-module over the residue field F, for all p = (p) such that
p1{b. These are called the regular primes of ¢. For those primes, we say that p (or
p) is a supersingular prime for ¢, or that ¢ has supersingular reduction at p (or p), if
¢, is a supersingular A-module. If not, we say that p (or p) is an ordinary prime for

@, or that ¢ has ordinary reduction at p (or p).

The following theorem is the statement of the criterion of Deuring, which allows

the detection of supersingular primes of elliptic curves, in the context of Drinfeld

modules.

Theorem 1.15 (Deuring’s Criterion) [2, Lermma 2.9.3] Let ¢(a,b) be the rank 2
Drinfeld module as defined by (1.5). Let p = (p) be a regular prime of ¢. Then ¢ has
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supersingular reduction at p if and only if there exists an order O of an imaginary

quadratic field extension K of F such that

(1) Po(js) = 0 mod p;

(2) p is inert or ramified in K.
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Chapter 2

A bound for the prime divisors of

the resultant

2.1 Introduction

Let ¢ be the rank 2 Drinfeld A-module defined over F
¢r = y(T)+ aF + bF?, a,b€ F, b#£0,

with j-invariant

We prove in this chapter the following Theorem:

(2.1)

Theorem 2.1 Lei d;, d; € A be two distinct fundemental discriminants, and let p

be a prime element of A such that
P | Pdl(j‘?S) andp | sz(jé)'
Then degp < degd, d,.
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For at least one of d; or d; of even degree, the result was proved by Dorman (sce
(4] and [5]), as a corollary of the explicit factorization of

Jd,d)= I (G(r)—j(rpla—2re),

[r).ir
disc{T)=d)
dise(r!)=d,

where w and w' are the number of roots of unity in the quadratic orders of discriminant

d and d' respectively.

It should be noted that we cannot apply Dorman’s result in our work, since in

the next chapter, we are going to apply Theorem 2.1 with d; and d, odd degree

polynomials in order to get lower bounds on my(z).

We prove Theorem 2.1 following the ideas of Kaneko [19] which proves a similar
result for elliptic curves. His proof depends on the arithmetic of quaternion aigebras
over Q. We can transfer the proof to the case of Drinfeld modules, since the structure

of quaternion algebras is similar over any global field.

2.2 Quaternion algebras

We review here the basic facts about quaternion algebras. All the material of this

section is from [24]. Let K be a global field, either a function field over a finite field

or a number field.

Definition 2.2 A guaternion algebra H/K 1is a K-algebra of basis 1, 1, 3, 17,
H=K+Ki+Kj+ Kij,

where i2 = a, §2 = b, ij = ~ji for some a,b € K*. We denote H = {a,b}.
J )y ¥
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Then, any element k in H/K is quadratic over K with minimal polynomial
z? — tr(h) z + n(h),

where the (reduced) trace tr and the (reduced) norm n of
h=z+y+ z7 + tig

are defined by

tr(h) = 2gz;

n(h) = z* —ay® — b2® + abt.
The trace and the norm enjoy the following properties:
(i) n(Ak) = n(h)n(k);
(ii) tr(ah + bk) = atr(h) + btr(k);
(i) tr(hk) = tz(kh);

when h,k € H, a,b€ K.

Definition 2.3 Let v be a prime divisor of K. Then v is said to ramify in H if
H,=HQRkg K, 15 a field.

Writing H = {a, b}, one can show
v ramifies in H <= (q,b), = -1

where (a, b), is the local quadratic Hilbert symbol. Also, for any H/K, the number
of ramified places is finite. We denote this set by Ram(H).
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Theorem 2.4 (Classification Theorem) |Ram{H)| is even, and for any finite set
S of prime divisors of K with |S| even, there is, up to isomorphism, a unique quater-

nion algebra H/K such that Ram{H)=S.

Example: We are interested in the quaternion algebras H over F' = F,(T') such
that Ram(H) = {p, o}, p a prime ideal of A. These contain, as maximal orders,
the rings End(¢), for ¢ a supersingular Drinfeld A-module in characteristic p {see
Definition 1.14). Let H = F ., denote the unique, up to isomorphism, quaternion

algebra ramifying exactly p and oo. We give here an explicit description of /f as

H=F+Fa+ Fg+ Faf (2.2)

where
o =a, f*=b, aff = —fa.

First note that since
(a’b)m = (_1)5;—1 dcgadcgb(sgn a)dcgb(sgn b)dcga,

neither a or b can be a polynomial of even degree and positive sign, i.e. @ and b have
to be quadratic imaginary in the sense of Lemma 1.11. Let a = up where p is the
unique monic prime of A such that p = (p), and v € I;. If degp is even, we choose
u to be a non-square in F}. Let p’ # p be a monic prime of A, and denote p’ = (p).

By Cebotarev’s Density Theorem, one can choose p' such that
(E) = (=1)t+desp (2.3)
(3) = (—1)\+desr, (2.4)

Let b = vp/, v € Fy. 1f deg p' is even, we choose v to be a non-square in IF,. We

q
compute (see [22], Chapiter III, Theorems 5.4 and 5.5)

(a,b)q = (up,vp')q =1 for all g # p,p’
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and by (2.3) and (2.4)

(2,5)c0 = (up,vP)0a = —1
= (up.vp)y = [22)=1.
(CL: b)p’ - ( D P)p (p’) 1

Finally, (a, b), = (up,vp'); = —1 follows from the product formula

II (a,8), =1.

pEP(F)

(In this case, this is also the quadratic reciprocity). This shows that H can be written
as {2.2), where

a=up and b=vp
with the restrictions given above.

We now specialize H to be a quaternion algebra over F = F,(T'), the quotient

field of A = Ty [T).

2.2.1 Orders in H/F

Definition 2.5 An ideal I of H/F 1s a finitely generated A-submodule of H such
that F®4 1~ H.

Definition 2.6 An element h € H is an integer (over A) if Alh] is a finitely gener-
ated A-module. Equivalently, h € H 1is an integer if its trace tr(h) and its norm n(h)

are in A.

Definition 2.7 Let H/F be a quaternion algebra. The following are equivalent, and
define an order O of H/F.

(1) An ideal O which is also a subring of H.
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(2) A ring of integers O containing A and such that FO = H.
A mazimal order is an order which is not contained in any order different from itself.

Let O be an order in A. Then its reduced discriminant d(Q©) is defined to be
n (((9‘)_1), where O* = {z € H : tr{z @) € O}. For
O = Apr + Apa + Aps -+ Apa,

let
D1, pa, ta, ta) = det (b piz)) -

Then we compute

OV = (D, pa, s, 1)) - (25)
Lemma 2.8
(1) Let O and O' be orders in H. If O C (0, then d(O) C d(0').
(it) O is a mazimal order

= d(O) = H p.
pERam({ H)
p#oo

2.2.2 Quadratic subfields of H/F

Given H/F a quaternion algebra over F' = F,(T"), we are looking for a criterion to

determine when a quadratic extension L/F is embedded in H/F.

Example: Let H = F}, ., the quaternion algebra described in the above example.
Then, it is not difficult to see that every element of H/F is quadratic imaginary over

F,i.e. a quadratic extension L/K embedded in H/K has to be quadratic imaginary.

In general, one can prove:
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Theorem 2.9 [2{, Theorem 8.8] Let L/F be a quadratic field extension and H/F
a guaternion algebra. Then L C H if and only of L, = L @r F, is a field for all
v € Ram(H).

If v is a prime ideal p = (p) of A, then

psplitsin L <= L, is not a field;
p is inert in L <= L,/K, is a non-ramified field extension;

p ramifies in L <= L,/K, is a ramified field extension.

Then for the quadratic extension L = F(\/d) of F, d a fundamental discriminant, we
get
d
LCH < (—) £ 1. (2.6)
p

Let L/F be a quadratic extension, B an A-order in I and O a maximal order in

H. Then
1:B— 0O

is an optimal embedding of B in O when i(L)N O = B.

2.3 Proof of the Theorem

Let d1,d; € A, be two distinct fundamental discriminants of A. Let p be a regular
prime of ¢ such that

Yo | Pdl(j¢) and D I Pd:(i'#)‘

Then

or= A\
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and

o=y

are optimally embedded in End(¢), which is a maximal order in Fj, . Write R for
this maximal order. Let o; be the image of v/d; in R, 1 = 1,2, and consider the
A-submodule of R

L=A + Aa1 -+ Aaz + Aalag.

Let s = tr(eyaz). Then one computes

D(l,al,az,alaz) = (4d1d2 — 82)2 .

We also have
n{aap) = n{en)n(as) = didy,
and since ayap € F,

A = tr*(agap) —~ 4n(aray) = s* — 4dyd; # 0.

This implies that D(1, a1, a2, 012} # 0, and then L has rank 4 over A. Since L is

also a ring, it is an order in Fj . Then by (2.5) and Lemma 2.8,
p° | D(1, a1, 00,100} = (4d1d2 - 52)2
=  p|ddidy — 52,
Then,
lp] < max (|ddal, |s?]).

Suppose that
|s?| > |dida|.

Then f = tr’(ay ;) —4n(e; ) is a polynomial of even degree with leading cocfficient

in (F; ), which is impossible since f is quadratic imaginary. Then,
[s?] < |did]
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and finally
|p| S |d1d2|)

which we can write as

degp S deg dldg.
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Chapter 3

Lower Bounds

3.1 Introduction

Through all this chapter, let ¢ be a rank 2 Drinfeld A-module over A, defined by

¢r = Y(T)+oF + bF°, abe A, b#0, (3.1)
with j-invariant
e
Jé 3 € F*

Let
7e(z) = F# {p € Spec A:|p| <z, and ¢, is supersingular}.

We give in this chapter lower bounds for m4(z). This is done by extending the idcas
of Elkies [7] and Fouvry and Murty [10], who found lower bounds for the number
of supersingular primes of elliptic curves, to the context of Drinfeld modules. In {2},

Brown used a similar method to get that

ms(z) > logloglog . (3.2)
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Following the same lines, but with sharper estimates, we first improve (3.2) to

() > y/loglog z
(see Theorem 3.2). Using the result of Chapter 2, we can improve the last bound to

wg(2) > loglog =

(see Corollary 3.4).

Our proof applies only to non-exceptional Drinfeld modules ¢. Following [2],

exceptional ¢ are defined by

Definition 3.1 A rank 2 Drinfeld A-module ¢ over F is called ezceptional if the
following conditions hold:

(i) g =1 mod 4;
(it) 74 is @ square in Fo,;

(iii) the prime factors of even positive degree of the numerator of j4 have even

multiplicities.

Applying base change (see [2]), we only have to consider the 3 cases:
(C1) g = 3(4) and 74T is not a square in Fy,;
(C2) g = 1(4) and 74 is not a square in Fe,;

(C3) ¢ = 1{4), js is a square in Fu, and there is a prime element py of A with

even degree, and p, divides the numerator of j4 to an odd power.

We then show the following theorems concerning lower bounds for 74(z).
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Theorem 3.2 Let ¢ a non-ezceptional Drinfeld A-module over F, as given by (3.1).

Then,
m3(z) > \/loglog z.

Theorem 3.3 Let ¢ a non-exceptional Drinfeld A-module over I, as given by (3.1).

Then, there ezists an infinite sequence T4, Tz, ... with x, — oo and a positive constant

K such that

Te(Zm) > K log zpm.

Furthermore, log Ty <€ :1:3,{4 log2 Ty
Theorem 3.3 implies the following corollary:

Corollary 3.4

mo(z) = Q({logz)
and

7e(x) > loglogz.

3.2 A New Supersingular Prime for ¢

Let P = {p1,p2,...,Pn} be aset of distinct monic primes of A, containing all the non-
regular primes of ¢, all the primes dividihg the numerator of j,, and where the only
other primes are supersingular primes of ¢. We are looking for a new supersingular

prime for ¢.
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3.2.1 Computation of Legendre symbols

Let f € F*. Then we can write
f= %, a,be A, ged(e,b) =1, b meonic
in a unique way. Let 7 be a prime element of A. Let N, be the numerator of Pr(f),

I.e

N, = P (f)p"™, (3.3)

Lemma 3.5 [2, lemma 4.1.10] Let S be the finite set of prime ideals of A which
divide the numerator of f to an odd power. Ifdegw is odd and sufficiently large, then
() = (=22 (5 ] (f) -

" pes \P
Proof: The complete proof can be found in [2]. It is necessary to have deg odd to

insure that
P.(z) =z R*(z) mod

for R(z) a polynomial in A[z] satisfying (z, R(z)) = 1. Then one computes
T Nx
(%) = (&)@
[2)
= - Nz )oo
(7!‘) (, Ne)
= (7,)oo(T, N )oo H (E) ,

PES
and for deg 7 odd and big enough, one can show

(7,8)oo(ms Nx)oo = (_w(w))(aesf+5;—‘)9;_1 w(f)g_;_l.

Remark: This criterion will allow the detection of an infinite number of supér—x
singular primes associated to ¢ only if ¢ is a non-exeptional Drinfeld module. See (2,

4.1.14] for more details.
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3.2.2 Choice of the new supersingular prime

Choose § € F; such that

(~B)=2 = —u(jp) T, (3.0

sgn (—8) = —sgn (j).

Let S = {s1,...,5n} be the set of signs

—1 if p; = po in case (C3);
5; =

1 otherwise.

Let 7 be a prime polynomial of A such that

We then say that 7 is an admissible prime associated to P, S and 8. By Cebotarev's

Density Theorem, there is an infinite number of such primes.

Let N = Ni(js) be the numerator of P:(Jjs), as in (3.3). Then, for degn suffi-

ciently large, we have (Lemma 3.5)

(7) = (atmpssor 30 o i) T (_) |

pes \P

Using (3.4), this is

()t o
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in cases {C1) and (C2), and

() = (~1yis(sgn oy ssesio(-1) (36)

in case (C3).
Lemma 3.6 f € I'* is a square in F, if and only if

(1) deg f s even;
(it) w(f) € (F)*.

We then compute that

()

in cases {C1), (C2) and (C3). Then there is a prime p(r) € A dividing N,, and such

that
()=

By Deuring’s criterion (Theorem 1.15), p() is a supersingular prime for ¢. Also,
p{m) cannot be one of the p;’s. This is clear in cases (C1) and (C2), since then 7 is a
quadratic residue mod p;, 1 <1 < n. In case (C3), one can show that the exceptional
prime pg is a prime of ordinary reduction (see [2]). Then we also have p(7) # »o.
This shows that there exists an infinite number of supersingular primes for ¢. In the

next sections, we give asymptotic estimates for the number of such primes.

Finally, it is clear that
lp(7)] < |Na|. (3.7)
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3.3 Number of admissible primes

Let P = {p1,...,p} be a set of prime elements of A, § = {s,,...,5,} be a set of

signs s; = 1 for 1 <7 <n, and B € F;. Let mp54(z) be the number of primes 7 of
A such that

(1) = is unramified in the Galois extension F (\/ﬂ, e /p,,) /F;
(i1) 7 is an admissible prime associated to P, S, and f;
(ili) |7| < =.

We show in this section the two Propositions:

Proposition 3.7 There is an admissible prime w(P, S, 8) associated to P, S and g
such that

n 2
In(P,S,B) < C 4" (zlog |p¢|) ,

=1

for some sufficiently large constant C, which depends only on q.

Proposition 3.8

( )>> 1 =z
TRSAE 2" log ¢’

when

n 2
z>C4" (Zlog|pg|) ,

=1

for some sufficiently large constant C, where C and the O-constant depend only on

q.

To prove Propositions 3.7 and 3.8, we apply the Cebotarev’s density Theorem to
the Galois extension K,/F, where

K,,_:F(\/a,\/ﬁ_,---,\/}ﬂ_n),
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and a is a non-square of F;. L, the algebraic closure of F, in Ky, is given by
L =T

and

=
I

[L:F,]=2
M = [K.:LF]=[K.:Fe(T)=2".
We also compute

Gal(K,/F) ~ (Z/2Z)*,

Lemma 3.9 There ezists a unique g{P,S,8) € Gal (K./F) such that for a prime

7 € A, unramified in K, the followings are equivalent:

(1) degm is odd, and for 1 <i< n, (pl') =s; and w(m) = G;

(2) (%=LE) = g(P, $,8) and w(m) = B.

Proof: Any g € Gal (K,/F) can be written as g = g. X g1 X ... X go With g, €
Gal F(\/a)/F, and g; € Gal F(,/p;)/F. Let 7 be an unramified prime element of A.
Then

(1) (9-) =1 <= degn is even;

k.

(2) By quadratic reciprocity (Theorem 1.5)

(%) (5) = (1) desres(sgn )8 (sgn i)™,

The Lemma follows from there.

Since Gal(K,,/F) is abelian, the conjugacy class of g(P, 5, 5) is

¢ ={g(P,5,8)},
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and by last Lemma,
'H‘p,s"@(:l’:) = Wc(.Kn/F;:I:). (38)

Using the Cebotarev Density Theorem (Theorem 1.3), we get

me(Ka/Fiz)= Y. |Cu(Kn/F;C),

a* <=
deg k odd

where, for deg k odd,

|Cu( K/ F;C)| = i?f+o( k/2 (1+9_’£1))
MO T 50 1 ko))

Lemma 3.10

9K, € 2" log |pi|

=1

Proof: Consider the Galois extension X /F, where

KL =F(/P1,-y\/Pn)-

K] is a function field over F,, and the extension X, over I} is a constant ficld

extension of K, over F,, which gives gk, = gk:. Applying Riemann-Hurwitz Formula

(Theorem 1.4) to the extension K./F, we get

gxr K 2" + deg DK;/F, (39)

and since K| /F is Galois, we compute

degDxr/r = . (e(Blp) — 1) deg P
PEP(K})
= 3 (ep)—1) f(p)g(p) degp.
pEP(F)

The only primes ideals of Spec A which ramify in K| are the ideals (p;),2=1,...,n.
Then )

degi)g;‘/p < 2r Z log Ip,;!, (310)

=1
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and the Lemma follows from (3.9) and (3.10).

With the previous Lemma, we write

1 qk qk[2 n
i=1

for k odd. First consider

flz) = g +o( Ve (logq:n+ilog|p;|)) (3.12)

log, = log, = =

for any positive real z. When z = ¢*, with k odd, this is {3.11). For
n 2
z>C4" (Z'ﬂ‘g I'pel) :
\i=l
for a sufficiently large absolute constant C, the main term in (3.12) is strictly larger

than a fraction of the error term, which gives

fz)>0

and

1 =z
f=)> E’Tlogqm'

Let ! be the smallest odd integer such that

n 2
g>C4 (Zlog Ipil) :

i=1

Then ,
g <Cqg* 4" (Zlog Ipil) ,

=1

and
|Ci{Kn/F;z)| > 0,
which proves Proposition 3.7.

Similarly, for any

n 2
z > ¢ 4" (Zlog |p,-|) , (3.13)

=1
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let I be the unique odd integer such that ¢' < z < ¢*2. Then

i
mpsalz) = Y |Ce(Ka/F;C)|

k=1

2 |C{Ka/F;CH.
By (3.13),

n 2
/204 ($log lp;|) ,
i=1
and then
1¢' _loggl =z
K./F; —= > ,
G/ F;C) > A g* 2rloga

which proves Proposition 3.8.

3.4 Order of p(n)

We prove in this section the following Theorem:

Theorem 3.11 Let ¢, # and p(7) be as in Section 3.2.2. Then
p(7) < exp (Clx['/*log? |]),

where C and the O-constant depend only on ¢ and q.

By (3.7), it sufficus to show that
N, < exp (C |r['/? log? |}).

We prove in this section the more general Theorem:

Theorem 3.12 Let d € A be square-free, and let ¢ be a rank 2 Drinfeld A-module
as given by (8.1). Let Ny be the numerator Num Pyj;). Then

Ny < exp (C[d]'/? log* |d]),
where the C and the O-constant depend only on q and ¢.
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Let jy = 5, f,g € A*. Then
Ny = Num Py(j4) = g"(d)Pd(J'@)-

As in the classical case, the following Lemma allows us to choose the values z for

which j(z) is a singular moduli associated to d.

Lemma 3.13 Each of the singular moduli associated to d can be written as j(z),

where the minimal polynomial of z over A has the form

az® + bz + ¢, with |b| < |a| < |c|, a monic , (a,b,c) = 1.

We then write

h{d)
Pa(js) = I (G — 3(2:))
=1
where
—b,‘ :l: \/b? —_ 40:;6;
2 = (3.14)
2a;
with
|b‘I < |a,,-| < |C,‘| and bf —da;c; = d. (315)

Lemma 3.14 Let j(2) be o singular modulus associated to d. Then
l7(2)] < exp (Cyl2])

where C depends only on g.

Proof: The result follows using the explicit formulas for j(z) developed in {2, Lemma

2.8.2).

In particular, for 1 €1 < n,

| 472
()] < exp (Calai) = exp (0—)

| ]
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since
|—bvVd]

Izl-_ = =
| |2a;] |aj

by (3.15). Choose
C 2 max(Cq, log |jsl).

Then

h(d)

Plis) < H(|j¢|+exp (cldllfz))

=1 ‘a*|

h(d) | dll/z
< oM ]__[ exp (C’ )

i=1 lﬂ,,‘l

Wd)
= 2b@exp C|d|1/22| il

i=1

since |a;| < |d|'/? for 1 < i < n. We then have to bound h(d) and ¥ L.

i=l |ﬂ| :

Lemma 3.15
h{d) < |d|'/*1og |d]

where the O-constant depends only on q.

xd(a) = (g)

for a € A. In general, xg is not a character mod d, since by quadratic reciprocity

(Theorem 1.5)

Proof: Let

a

but in particular cases, as deg d even and sgn d = 1, xg is a character mod d. In any

case,

a = bmod d, and dege = degb mod 2 = xy(a) = xq(b).
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Lemma 3.16 For k > deg|d|,

Y. xala)=

dega=k

Proof: The g* monic polynomials of A of exact degree k are evenly distributed mod

d. Then, using quadratic reciprocity,

2 (g) Y (a)= 1)+ sgn d)f 3 (§)=0.

dega=k amodd a med d

Let
L(s,xa) Zxci ) la]™?,

where the sum is taken over monic polynomials a € A. Then L{s,xq) is the finite

sum

Uox= % (2)a

dega<degd
Artin showed in his thesis [1] that there is a class number formula over function fields.

More precisely,

Theorem 3.17
i) If degd is odd, L(1,xq) = & h(d);
() I deg (1 xa) = 7 W&
i) If deg d s even, and sgn d = —1, L(1, -2l p
(i) If deg g (1 xe) = 2L h(a);
(1i) If degd is even, and sgn d =1, L(1,xq) = -—_— h(d) log |ea|, where

ﬂ

AVA =Fox < 64>

(This precise form of Artin’s result is from [17].)
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Since
d -
e = % (2 <logid
dega<degd a
this completes the proof of Lemma 3.15.

Lemma 3.18
h{d) |

; |as

where the O-constant depends only on q.

Proof: The number of z; with a; = a, where a is some fixed value, i1s smaller then
the number of solutions to z? = d mod a. Also, for any 1 < i < A(d), |a;| < |d|'/? by

(3.15). Then
h(d) 1 2w(a}

LS L

]
1<lal<Id[L 2 |a|
where the sum runs over monic polynomials a € A, and w(a) is the number of monic

prime divisors of a. Now consider the product

lpl(H |P|2—1)

taken over monic primes p € A. It can be rewritten as

() (o) = S

p kol"’

Then

9#(a) 2
=< 1 log? |d
> s I (g <mea

1gfal<id|t/2 lpl<|d|t/2
which gives the Lemma 3.18.

In conclusion,
O
Ny < 2|g["exp | C|af!/? Z o
& exp (C |di*? 1og? |d|)
Remark: This improves the bound given in {2], which is N, < exp (|=]*).
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3.5 Proof of First Theorem

Let p1,...,p, be given, and as in Section 3.2.2, choose m an admissible prime, and
p(7)| Nr a new supersingular prime. By Proposition 3.7, it is possible to choose 7
with

n 2

il < (Sl )

i=1

and by Theorem 3.11
lp(r)| < exp (Cln[*?1og? |x|).

Then

oslp(e)| < 2 (Stogtn) (n-+10g (Stexin) )

=1 =1

Without lost of generality, we suppose that |p;| < |p.] for 1 < 7 < n. Then, writing

Pnt1 for p(m), we have

log |pn+1] < 2" n (log |pa|) (n + logn + loglog |pa|)* .

and by induction on n, we get that

log |pa| < exp (n?),

from which Theorem 3.2 follows.

3.6 Proof of Second Theorem

We now show Theorem 3.3, which improves the previous Theorem. The proof works
as follows. Given p,...,pn, we choose admissible primes 7 associated to pi,...,Pn,
as in Section 3.2.2. For each of these admissible 7, we get a new supersingular prime
p(7). By construction, any of the p(r) is different from the primes p1,...,pn. If we

can also insure that they are all distinct, we can use Proposition 3.8, which counts the
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number of admissible 7, to count the supersingular primes p(r) associated to those
admissible primes. Theorem 2.1 gives the criterion which insures that the primes

p(n) are distinct.

To prove Theorem 3.3, it suffices to show thal for z large enough with
() < Klogz,

there exists z' > = with my(z') > Klogz', and logz’ < «'*log®z. Here K is any

positive value such that

1

— (3.16)

K < .
og?2

|

Then, choose z with

n=mg(z) < Klogz,

and let p,...,p, be the n supersingular primes of ¢ with |[p| < z. By Proposition
3.8, for = big enough such that

vz > Cé4™ntlog® /u, (3.17)

the number of admissible primes 7 associated with {p1,...,p.}, and such that |r| <

VT, is
1
27 log \/z

We do have to insure that it is possible to choose both = and n in this way, and such

that (3.17) holds. But since n < K logz, we have

2
4"n?log® \/z < %—-mxbﬁ log* z,
and then for z big enough and any K such that (3.16) holds
vz > C4*n?log? /x.
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As seen in Section 3.2.2, for each of those admissible #, we obtain a prime of super-
singular reduction p(m), which is not one of the p;. Furthermore, as seen in Section
3.4,

()] < exp (C |7]*/? log? |

for each of the p(), which gives
[o(7)| < exp (C’ /4 10g2 m)

by choice of the 7’s. Suppose that p(m) = p(ms) = p for some m; # ;. Then,
by Theorem 2.1, we conclude that |p| < =z, i.e. p is among pi,...,pn, which is
impossible. Then, each of the admissible 7 in the range under consideration gives a

different supersingular prime p(7). Let 2’ = max |p(w)|. Then
log z' <« z'/%log® z.

Also, since n < K log z,

N
— > .
me(@) > 2n log /T log \/z

Then for z large enough, and for any X such that (3.16) holds, we get
wp(z') > Klogz'

This completes the proof of the Theorem.

Corollary 3.4 follows applying Theorem 3.3 to find z,, € ¢ < Ty4;. Then

To(z) 2 Klogzm > (loglogmsy) > (loglog z).
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Chapter 4

Upper Bounds

4.1 Introduction

Let ¢ be a rank 2 supersingular A-module defined over A, i.e.

¢ = y(T) 4+ aF + bF?, a,be A, b#£0. (4.1)
For all regular primes p = (p) of ¢, let $, be the reduction of ¢ in characteristic p.
We now look at upper bounds of

n4(z) = #{p € Spec A: |p| £ z and ¢, is supersingular}.

The following argument was pointed out by R. Murty for the case of elliptic curves.
To each supersingular prime p = (p), let d(p} be a positive constzat such that there

exists a monic prime p € A with
Pl Pa(54)

and |d| < d(p). For any squére free d € A, the number of prime factors of Py(j,) is
bounded by

log Na(js) < |d|'/* log? |df
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by the results of Section 3.4. Then
ro(e) < X [d/71og? |d), (42)
ldi<D

where

D = maxd(p).

fpl<z

Let p be a supersingular prime, and let ¢, be its reduction of ¢ mod p, Then End{¢,)

is an order in Fy .. By Deuring’s lifting lemma for Drinfeld modules, if
A[Vd) C End(¢y),
then
p| Pa(ls)-

We then address in this chapter the task of finding quadratic orders A[v/d] in End(¢,),
where |d} is small enough to give a non-trivial bound in (4.2). By the choice of ¢, ¢,
is defined over F,. This gives certain restrictions on the endomorphism ring End(é;),
and there are %h(, /up) isomorphism classes of such rings, where u is a non-square in I,
(see next section). We first look for explicit representatives O for those isomorphism

classes, and for each such O, we look for elements A € O satisfying
W —d=0

with |d| small.- The work of this chapter is strongly influenced by papers of Ibukiyama

[18] and Kaneko [19], who solve equivalent problems in the case of elliptic curves.
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4.2 Number of supersingular modules over finite

fields

Let p = (p) be a prime ideal of A, p a monic prime polynomial. Let ¢ be a rank 2

Drinfeld A-module in characteristic p, i.e.

¢r = v(T) + aF + bF?,

with
a,bel,,

and let X(p) be the set of isomorphism classes of such modules. Let D be the unique

(up to isomorphism) quaternion algebra over F' = F,(T') with
Ram(D) = {p,c0}.

Fix any maximal order (0 in D. Then the number of left ideal classes of 0 do not
depend on the choice of the maximal order O, and is the class number of D, denoted
k(D). Two maximal orders @ and O’ are isomorphic when there is an A-algebra
isomorphism 7 : @ — . The type number {{D) of D is the number of types,
or isomorphism classes, of maximal orders in D. Since any maximal order appears,
up to isomorphism, as the order associated to one of the left ideal classes of O, we

always have t(D) < (D).

The following Theorems are analogous to the work of Deuring {3] on the endo-

morphism rings of supersingular elliptic curves in characteristic p.

Theorem 4.1 ({18, Theorem 4.3]) Let ¢ be o supersingular Drinfeld module in char-
acteristic p. Then the left ideal classes of End(¢) correspond bijectively to the elements

of Z(p).
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Theorem 4.2 (13, Proposition 4.6]) The isomorphism classes of mazimal orders in
D correspond bijectively to the orbits of L(p) under the action of the Galois group
G = Ga(F,/F,).

Then, |Z(p)| = A(D) by Theorem 4.1. One computes (see for example [13])

gi-1 -
WD) = qz_1 when degp is even
L3 +1 when degp is odd,
and
4 .
(D) = 2 (ngi + %h(\/"TP)) when deg p is even
1(%22 4+ 1+ } (W) + h(y/P)))  when degp is odd.

Any supersingular Drinfeld module in characteristic p can be defined over L, a
degree 2 extension of F,. The orbits of £(p) under the action of Gal(F,/F,) are then
the orbits of () under the action of

Gal(L/F,) = {1,7}

where

T.Z qu, d = degp. (4.3)

For ¢ € Z(p), let [¢] denote the orbit of §. When the supersingular module ¢ is
defined over Fy, 7 € End(¢) since

TOgg=¢g0T
for all a € A. Then
4] = {¢}
in this case. When ¢ is not defined over F,,
4] ={4,¢"}

53



where ¢ % ¢” and @7 is not defined over F,. The number of classes of supersingular

modules over F, can then be computed as 2t(D) — k(D), and is

{ 2h(/up) when degp is even (4.4)
. .
2

(h(\/u_p) + h(\/ﬁ)) when degp is odd.

Let ¢ be such a supersingular module. Then, in the maximal order End{¢), 7 satisfies

a polynomial equation

P —ep=0

for sorme ¢ € IF;. We then look for maximal orders of D which contain |/up.

4.3 Maximal orders in even degree characteristic

;From now on, let p be an even degree prime ideal in A, and write p = (p) with p

monic of even degree.

Let u,v € F;, with u a non-square in F;, and L be the set of monic primes !

() ¥
(?) = -1. (4.6)

(Note that there is an infinite number of such I by the Cebotarev Density Theorem.)

satisfying

|
I
—

Then D can be explicitly written as

Dy(ly=F + Fa+ FByu + Fafu

where

o =up, fy=vl, afu=—Pua.
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(This is the construction of Section 2.2 for the special case degp even.) Of course,

we have D,(l) ~ D,(I') for any [,I' € L. For any [ € L, there exists r such that
% = up mod ! (4.7)

by (4.5) and (4.6). Consider the A-submodules of D

(T + a)ﬁvl)

(4.8)

Ou(l,r) = A+Aﬁu1+Aa+A( z

Lemma 4.3 For anyl € L, v € T,

q?

and r satisfying ({.7), the A-modules O,(l,r)

are mazimal orders of D.
Proof: One easily checks that

(1) 1, e, Bu, afu € Ou(l,7);
(ii) Oy(l,7) is a ring;

("1) D(la a, ﬁvl; (Tﬁvl + aﬁul)/l) = —16u2u2p2.

Then, by (i) and (ii), O,(l,7) is an order of D. By (iii), the reduced discriminant
d(Ou({,7)) is p, and Oy(l,r) is a2 maximal order.

We note that a = ,/up € O,(l,r) for each [ € L. Since
Ou(l,7) = Ol 7')

whenever r and 7' satisfy (4.7), we write O,({) for O\(l,7). Similarly,

Lemma 4.4 Ifv' = wv for some w € I}, then
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Progf: The F-linear map
%1 Ou(l) — O(I)

induced by

P(a) = «a
P(But) = whu
YlaBu) = Pla)p(Bun)
is an isomorphism between Oy(l) and O,(1).

We then consider the 2 families of maximal orders containing /up:

(1) Ou(1), for I € L and v a square in F;

q

(ii) Oy(l), for I € L and v’ a non-square in F;.

Let O be a maximal order in D. An element z € O is a unit of O when z™! exists
and belongs to 0. The group of units of O is denoted by (3*, and the groups of units
of norm 1 by . One easily sees that

€O <>n(z) e,

Lemma 4.5 When degp is even, any mazimal order O of D has
o = F

o' = {+1}

Proof: Let z € ©. Then n(z),tr(z) € 4, and z € A[V4d], d = tr(z)’ — 4n(z). Then
the quadratic extension F(v/d) is embedded in D. Since degp is even, d ¢ [y (see
(2.6) of Section 2.2.2), and degd > 1. Write z = a + bV/d, with a,b € A. We have

n(z) = a® ~ db?,
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and since d is quadratic imaginary, deg a® # deg db? or sgn a? # sgn db?, which gives

n(m)Eﬁﬁb:OandaEF&

and
n(z)=1<=b=0and a = £1.

Let I, € L, ! # I'. By (4.5) and (4.6}, ! and !’ split in A[,/zp], and we write

() = &2
" = &£¢F

in Al /).
Theorem 4.6 Fiz any v € F;, and let Oy(l) and O,(I) be two mazimal orders as

given in (4.8). Then, the following are equivalent:

(1) Ou(l) = Ou(} ;
(11) z* — upy? = ', for some z,y € A;

(1ii) £ £ is a principal ideal, for some £ above I, and some £' above I'.

Proof: Taking norms, the equivalence between (ii) and (ii1) is clear. We show the

equivalence between (i) and (ii).

First suppose that there is an isomorphism

b1 O, — O,(1).
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Since O = {£1}, = are the only elements of O,(} of norm —up, and ¥(e) = +a.
Let

W) = ot a cos o E0004)

bl + d d
= a+ca+( .: T)ﬁﬂl'i'faﬁul-

Since tr(¢¥(Bur)) = 0 and P(a)p(Bur) = —¥(B.r)¥(e), we must have 2 = ¢ = 0.
Then

bl + dr)? d?
—vl' = n(¥(Bu)) = —(—-{Ezr—)vl + -ﬁuvpl

==l = (bl+dr)? —upd?,
which proves (ii).
Conversly, suppose that there is ¢,y € A such that
z? —upy? = 1II'.
Since r? = up mod I, we get
(z —ry)(z+ry) =0 mod I,

and z = ry mod [, changing ¥ By —y if necessary. Set

d = vy,
Ty
b = o
such that
(bl + dr)? — upd® = Ul'. o (4.9)

Let ¢ : D — D be the F-linear map given by

B(1) = 1
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P(e) = ea
"lb(ﬁvl') = bﬁu! +d
Plefu) = Pla)p(Bur)

(T' + a)ﬁvl
{

where € can be 41. Then % is an F-algebra automorphism of D, and we claim that

¥ induces an isomorphism between O,({') and O,(!). We just have to show that
P (O0,(1) C O,(D). (4.10)

Let wy = 1, wp = By, w3 = a and wy = (7B + afy)/! be the basis of O,(I). Then

one computes

(1) =
Pla) = eq;
Tp(ﬁul') = bUJQ + d&)a;;
r! ot + e 1 1
¢ ( ﬁ i ; ﬁ ! ) — ‘W (bl(’f" _ ET') + dE('LLP — 1-2)) o + F (T"d-l— ebl + Gd'r)w4-
Then, for (4.10) to be verified, we have to insure that
1 p 2
fﬁ(bl(r —er)+ de(up —r )) € A (4.11)
1
—(r'd+ebl+edr) € A (4.12)

ll
By the choice of b and d,
(bl + dr)? — upd® = 10/,

which gives
(bl +dr)? —r"*d* = 0 mod I'
< bl+dr=r'dmod !l or bl+dr=—r'd mod I'.

Choose € such that

bl+dr + er'd =0 mod ['. (4.13)
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Then (4.12) holds. For (4.11), the numerator is divisible by ! since r? = up mod [. 1t

is also divisible by ¥ since

bl(r' — er) + de(up — r*)

bi(r' — er) + de(r' — er)(r' + er)

i

(r' — er)(bl + dr + edr') = 0 mod !'

by (4.13). This completes the proof of Theorem 4.6.

4.4 Number of orders O,(!)

We fix any v € F, and we consider the family of maximal orders O,(1). As in the

(s (3) ()=

{l € Spec A : degl is odd and I splits in A[,/up|}.

previous section, let

L

Il

Let C be the class group of A[,/up]. Then by Theorem 4.6, the map

m:L — {aa"l}, g€l
Lo— m(l) = {[2], (7]}

is such that
m(l) = m{l') <= O, (1) ~ O,(I').

Then the number of isomorphism classes of the maximal orders O,(!) is |Im(m)|. We

define I/ to be the set

= {£ € Spec A[\/up] : deg £ is odd}. -
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Let £ € Spec A[,/ip], and (I} = £N A. Then

£ e L' <= I splits in A[,/up| and deg! is odd,

Lel«<lcl.

Lemma 4.7 Let § = {[L]: £ € L'}. Then

5= 22,

Proof: Let H be the Hilbert class field of F(\/7F), as defined in [23]. Then, the

Artin’s map

Lr—os= (M)

induces an isomorphism between C and G = Gal (H/F(,/up)). Since oo is inert
from F to F(,/@p), the field of constants in H is Fp2 [23, Theorem 1.3]. Fix ¢ € G.

Let 7 be the Frobenius autornorphism
zr— 2%
and let a(o) = 0 or 1 be such that
resy, 0 = Tesy, 790),

Fix some positive integer k. Then, by Cebotarev Density Theorem (Theorem 1.3),
there is some £ € Spec A[,/up] with oz = o and deg £ = k if and only if

k =a(c) mod 2.

Then

o =g for some £ € L' &> a(o) =1,
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and the result follows counting the elements ¢ € G such that a(c) = 1.

We then use this result to count |[Im(m)]. Let I € L, and write (I) = £ £ in Spec

Al\/up}. Then
Lelelel,

and
[g] = (9L
Let
5 = {[S] ;L€ L and [ = 1}.
Then
Im(m}| = Card {{[S],[S]"l},.‘le L’}
|S] + 151
2
where
h(\/u
51 Mol

by last Lemma.

4.5 Elements of small norm in O,(!)
Let Oy(!) be the maximal orders of D described by (4.8).

Theorem 4.8 There ezisis b € O,(1) such that h satisfies the polynomial cqualion

where d € A is a square-free polynomial of posilive degree such that

9 2
|df < T lp[*/2.
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Proof: Let h € O(1), i.e.

24 By +wa + y et Bt

{
{
z+wa+ (@l +yr) _;_ yr)ﬁuz + %aﬁua

h

with z,y, z,w € A. We have the equations

tr(h) = 2z (4.14)

] 2 2
n(h) = 2% —wlup— -(-m—:-:-z—gﬂvl + 3:—2

uwpl. (4.15)
;From (4.14), we get 2 = 0. We also set w = 0, and (4.15) becomes
2

Q(z,y) = (—vh)a? + 2(—vr)zy +v (up —l— . ) y° (4.16)

which is a quadratic form with coefficients in A of discriminant A = ~uv?p. Com-

pleting the square, we write any such quadratic form az? + 2bzy + cy® as
b \* A
a (w + —y) + =y (4.17)
a a

where A = ac — b° is the discriminant. Using that result, we get that the quadrauic

form Q(z,y) of (4.16) is 0 if and only if
. - 2
vl (.c + %y) = uv?'yz. \

Comparing the leading coefficients on both sides, last equality is satisfied only when

both sides are 0, i.e. for (z,¥) = (0,0). We now show that for any quadratic form
Q(z,y) = az® + 2bzy + cy?, a,b,c€ A
of discriminant A = ac — b such that

Q(z,y) # 0 forall (z,y) #(0,0) € A%,
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there is (z,y) # (0,0) € A? such that

1Q(=z,3)] < 1A

Indeed, write b = af + g, with f,g € A, degg < dega. Then using (x,y) = (=, 1)
in (4.17), we get -

_faN L AL el 1A
lQ(=f, 1) = a(a) +E' < q—2+ H-
Consider
I= il Q)
{zy)ea?
(m,y);‘:(0,0)

Without lost of generality, tiansforming Q(z,y) in an equivalent quadratic form, we
can suppose that I = |al, obtained at (z,y} = (1,0). Then, we have that

ol | |4l

IaISq—2+-—<=*la|S

jal

q

172
A

4.6 A :partial Result

- In Section 4.3, we round 2 families of maximal orders of D containing ,/up. By
analogy with the rational case, i.e. maximal orders in Q, ., we make the following 7

hypothesis:

Hypothesis 4.9 Le¢. ¢ be a rank 2 Drinfeld A-module daﬁ?lmd over ;. Then there
s some | € L such that

7 .ﬂE‘ud (¢) ~ O, (1) or End (¢) >~ Ou(l).

Let

even

7y "(z) = #{p € Spec A : degp is even, |p| < z and ¢, is supersingular}.

Then, following Section 4.1, we get
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Theorem 4.10 Assuming Hypothesis 4.9,
,ﬂ_;uen(w) & .'B3/4 logzm,

where the O-constant depends only on q.

* Proof: By Theorem 4.8, with C, = g/{g* — 1),

ey Y. |d|*? log? = <, 2*/*log? .
|d|€Cev/E
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Appendix A

Average Distribution of

Supersingular Primes

Let ¢(a, b) denote the Drinfeld A-module given by
dr =~(T)+aF +bF? a,be A, b#0, l(/l.l)
and for each regular p € Spec A, let
$(a,b)p

" be the reduction of #(a, b) over the finite field F,. As usual, we denole

To(as)(2) = #{p € Spec A: |p| < = and ¢(a, b), is supersingular}.

We want to evaluate the distribution of the supersingular primes averaging over

all the Drinfeld A-modules given by (A.1). We then consider the sum

Z 11'¢(,,.5)(:n),

fa|€Ka
[b{<K
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which we write as

> #{4(a,b): |a| < Ka, |b] < Ki, and ¢{a,d), is supersingular}.
p(I3ptcA
b€z

Fix p € Spec A, p = (p), with p a monic polynomial of degree d. We first count
the number of supersingular modules ¢ over F,. Let u be a non-square in [y, and

L:t H(p) be the number of isomorphism classes of supersingular modules defined over

F,. We showed in Chapter 4 that

k( /up) when d = degp is even;

Hp)=1 | (4.2)
1 (h(/@P) + h{(y/p)) when d = degp is odd.

Lemma A.1 ({11, Lemma 4{.1]) Let §(a,b) and p(a’, b') be rank 2 Drinfeld A-modules
over L. Write.

¢pr = ’)’(T) + aF + bF?
o br = IT)+dF+HF
Then, ¢~ ¢ if and “c'mly if there ezists c € L* such that

— !—
o = la and b =771,

Let ¢(ay, by) be a supersingular Drinfeld A-module defined over Fy, i.e. ¢(ay, by)
1s defined by

¢r = Y(T) + apF + b,F2, a,bcF,, bs£0.

By last lemma, any Drinfeld A-module over F; in the isomorphism class of ¢ can be
written as

B ap, ¢ 7 hy),
with ¢ € §."Then, the number of such modules is
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{i) the number of (g — 1)** powers in ¥} ~ Fa i Jg(a,p,) # 0, or equivalently if
ap # 0;

(ii) the number of (g® — 1)* powers in F}, ~ Fa if Jg(aby) = 0, or equivalently

ap = 0.

As ¢cap, by) is supersingular, the latter case is only possible when d = degp is odd
((11, Satz 5.9]). We then compute that the number of modules over F, in the class
of ¢(ap, bp) is o
¢ -1

g-1

(43)

Then, by (A.2) and (A.3), the number of supersi 1gula,r modules over [ is

Lemma A.2 Let K, and K} be large enough to have ¢¢ = |p| < min(K,, K). Then
for any a,B € T,

2—ra—Tp

K. Ky
P

#{(3,D) 10l < K, 16 < Kby a = alp), b= B(p)} =

where

ra = log, Ko — |log, K,|

ry = log, K., — |log, K,}.

With last lemma,

K. K .
Y wean(E) = ) TE g* " #{supersingular modules over F, }
le|<&a |nl<=
Bl <K
"_"'-QZ_HBKK s 20 o (kk, 3 f
= LA
‘ - lpl<e i Ipl <z pl
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where the O-constant depends on g. If we have, as in [10],

y i) g e (A4)

e 1P logz’

it would imply that the Lang-Trotter conjectﬁre is true in average for Drinfeld mod-
ules. We are presently working on the evaluation of (A.4). Very similar estimates

hold averaging the class numnbers of number fields and function fields (see [17]).
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