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Abstract

Let </J be a rank 2 Drinfeld A-module over the ring A of polynomials over sorne

finite field IF'q. We give a bound on the norm of those primes p of A which are factors

of Pd(j,,) for two distinct polynomials d E A. We then show that the number of

supersingular primes of </J with norm smaller than x is » log log x. We invcstigatc

the endomorphism rings of supersingular Drinfeld A-modules over finite fields. Under

a mild hypothesis, this Jeads ta an upper bound of x 3/4 10g2 x for the number of

supersingular primes of </J, with even degree, and norm smaller than x. Finally, wc

present the problem of the average distribution of supersingular primes of Drinfeld

modules.

Résumé

Soit </J un A-module de Drinfeld de rang 2 sur l'anneau A des polynômes sur un

corps fini IF'q. Nous bornons les premiers p de A qui apparaissent dans la décomposition

en facteurs premiers de Pd(j,,) pour deux polynômes distincts d E A. Nous montrons

alors que le nombre de premiers supersinguliers de </J, de norme inférieure à x, est

» log log x. Nous étudions les anneaux des endomorphismes des modules supersin­

guliers sur des corps finis. Sous une hypothèse additionnelle, on obtient alors une

borne supérieure de x3/4 10g2 x pour le nombre de premiers supersinguJiers de ,p, de

degré pair et de norme inférieure il. x. Finalement, nous présentons le problème de la

distribution en moyenne des premiers supersinguliers d'un module de Drinfeld (p.
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Iniroduction

We investigate in this thesis the distribution of supersingular primes of rank 2 Drinfeld

modules, or el1iptic modules. The theory of Drinfeld modules over funclion fields

shows strong analogies with the theory of el1iptic curves.-- To see this in our particular

context, we first review the problem of the distribution of supersingular primes of

el1iptic curves.

Let E be an elliptic curv". fJv';r Q. The structure of its endomorphiJm ring End( lE)

is wel1 known. It contains tl'e multiplication-by-m maps lm], and then ~ ç End(E).

If End(E) is strietly larger than ~,it hacito be an order 0 in a quadratic imaginary
". \ .

extension 01 Q. The curve E is then said to be a complex multiplication curve, or to

have complex multiplication (by 0).

If E is an elliptic curve defined over a finite field IFp , the ring End(E) is always

larger than ~, since it abo contains the Frobenius automorphism of IFpo The possible

endomorphism rings of el1iptic curves over finite fields were studied by Deuring, who

proved that End(E) is either an order in a quadratic imaginary extension (and the

curve is said to be ordinary), or an order in Il. definite quaternion algebra (and the

curve is said to be supersingular).

If E is an elliptic curve defined over Q, the reduction of E over the finite field ~~

4
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is a" elliptic curve over this field, for ail but finitely man~- p',imes p. We denote this

elliptic curve },y Ep- It is then natural to ask how often supersingularity happens. If

E is a c0mplex multiplication curve, the question was answered by Deuring [3]. Let

7rE(X) = #{p:S; x: Ep is supersingular}.

Then Deuring showed tbat
1 X

7rE(X) ~ ---,
. 2 log x

I.e. supersingularity happens for half of the primes. In general, Deuring also gave

a criterion to detect supersingular primes of a curve E. Let Pd(x) be the monic

polynomial whose roots are exactly the j-invariants of the elliptic ,curves over IQ with

complex multiplication by the order

Theorem (Deuring's Criterion) Let E beanelliptic curve defined over iQ'. Then

p is u supersingular prime of E if and only if there exists a positive integer d sur.h

that

and p does not split in the quadratic extension IQ( .,j'l)/IQ.

Until recently, it was not known if, given an el1iptic curve E/IQ without complex

multiplication, there are infinitely many primes p such that th,;reduetion of E at p is

supersingular. Elkies answered this question [7], and it was shown by Elkies [8] and

Murty [21] that

under the generalised Riemann Hypothesis. Recently, sorne uHconditional estimates

were obtained by Fouvry and Murty [la]. Murty also noted that an upper bound

5
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of 0(x3
/
1

) fdlows irom't.h~ work of Kaneko [191. For dliptic curves ov"r iQ withotlt

complex multiplicat.ion curves, we nave:

ConjectUï'e (Lang-Trotter Conjêeture)

. .fi
7rE(X) ~ CE-

l
-.

ogx .

Recently, Fouvry and R. Muriy [10] showed that the LaGg-Trotter conjecture is tru~'

on average.

Let L be a field over A, i.e. an IFq-algebra morphism '"1 : A -> L, where /; is

an ov"rfield of IFq. Let A = IFq[T] be the ring vf polynomial. in one indeterrninate

over finite fields, and G, be the additive group scheme over L. A rank 2 Drinfcld

A-module q, over a field L is a ring homomorphism

with som" additional properties (see Chapter 1 for more details). Then the multipli­

cation-1'Y-iJ maps q,a form a subring of End(q,) isomorphic 1.0 A. Over L = IFq(T), the

quotient field of A, eit"er End(q,) = A, or End(q,) contains an oider of a quadratic

imaginary field extef'sion of IFq(T). Over L = A/p, End(q,) is either a commutative

ring or an order in a quaternion algebra over IFq(T). In the latter case, wc say that

q, is supersingular. Then, given a rank 2 Drinfeld A-module defined ovel' A, and p a

regular prime, let q,p be the reduetion of q, on L = A/p, and

7rq,(x) = # {p E Spec A : [pl::; x and q,p is supersingular}.

Brown [2] showed that the theory developed by'Deu;ing for dliptic curves over finite

fields transfers 1.0 the case of Drinfeld modules, and then showed that

7rq,( x) » log log log x.

6
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Following the same ideas, but with sharper estimates, we improve this lower bouno.

to Jlog log x (Theorem 3.2). This can be further improved if we know an analog

';0 the result of Gross and Zagier [14J on singular moduli. More precisely, let Pd(x)

be the polynomial whose roots are exaetly the j-invariants of the rank 2 Drinfeld

A-modules with complex multiplication by A[vId]. We show that if p divides Pd, (ù)

and Pd,(j.p), th(:n degp :<::; deg d j d2 (Theorem 2.1). This generalize a result of Dorman

[5], and we use it to get a bound of log log x (Theorem 3.3). Ali those estimates hold

unconditionally, since the Riemann hypothesis is proved in the case of funetion fields.

We then turn to the problem of finding upper bounds to 1r.p(x). In the classical

case of an elliptic curve E, these can be obtained via the l-adic representations

By Serre's Theorem, PE,1l the reduction mod 1of the representation PE,I, is a surjective

map on GL2(IF,) for ail but finitely many l. Upper bounds then follow applying the

èebotarev's Density Theorem and the generalized Riemann Hypothesis to the finite

Galois extensions K,jIQ, where K, is the fixed field of ker fil. In the case of Drinfeld

modules, there are similar representations over the q-adic Tate modules of </> (see for

example [13]), but the analog of Serre's Theorem is not known. This would be an

interesting question for future research.

Another way to approach the problem is to find elements of small norm in End( </».

Then, the supersingular primes of </> with 1</>1 :<::; x will be found as factors of Pd(j.p),

where d is of small norm, and 1r.p(x) can be bounded above. This is the subject

of Chapter 4. We first find 2 families of maximal orders which are candidates for

the endomorphism rings of supersingular Drinfeld A-modules over the finite fields

A/p, when deg p is even. In each of those maximal orders, we find elements of small

norm. It is still to be shown that these 2 families coyer the isomorphism classes of

the endomorphism rings of supersingular Drinfeld modules over A/p. We would then

7
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have

where

7l"~ven(x) = #{p E Spec A: degp is even, Ipl :::; x and <Pp is supersingular}

(Theorem 4.10).

Finally, wc present in Appendix 1 some questions for further research. By Deur­

ing's criterion for Drinfeld modules (Theorem 1.15),

1 x
7l"q,(x) ~ --­

210gq x

when <P has complex multiplication. In general, we compute the average

where <p(a, b) is the Drinfeld A-module given by

1(T) +aF + bF2
, a, b E A, b 'f o.

As in Fouvry and Murty [la], we expect to obtain an average distribution of lftz, i.e.

the Lang-Trotter conjecture would hold on average for Drinfeld modules .

8
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Chapter 1

Function Fields and Drinfeld

Modules

• 1.1 Function Fields

•

We define here function fields, and review sorne of their properties, namely the Rie­

mann Hypothesis, the èebotarev Theorem and the Riemann-Hurwitz Formula. See

[91 for more details.

Throughout this thesis, let lF. be the finite field with q elernents, q = p' with

pi 2.

1.1.1 Definitions

Definition 1.1 A function field (of 1 variable) over lF. is an extension KllF. such

that

(i) the transcendence degree of K IlF. is 1;

9
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(ii) K is finitely generated over IFq i

(iii) IFq is algebraically closed in K.

Let K be a function field over IFq • A prime divisor of K is an equivalencc class

of places of K which are trivial on IFq • Let P(K) be the set of prime divisors of ](.

For p E P(K), the completion of K at p is denoted by K p • It is a local field, with

valuation ring Op and maximal ideal m p. The finite field Op/mp is called the residue

field at p, and denoted IKp • For any p E P(K), we define the norm Ipl and the degree

degp by

Let "D(K) be the free abelian group generated by the elements of P(K). It is called

the group of divisors of K. Bach divisor of "D(K) can be written as

a = Lap p
p

where pruns over the prime divisors, the a p are integers and ail but finitely many of

them are zero. We say that the div:sor a is positive, or that Il 2': 0, when ap 2': 0 for

every pime divisor p. Finally, for any a E "D(K), we define

lai = IIipl"",
p

which also gives

deg a = L ap deg p.
p

Let A = IFq[T] and F = IFq(T) denote respectively the ring of polynomials and

the field of rational functions in an indeterminate T. Then F is a funetion field over

IFq (with genus 0). The prime divisors of F consist of the prime ideals p = (p) of A,

and 00, the place at infinity, which is also called the prime at 00. For a E A', we

define 1a 1 and deg a by

10
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where n = (a). Then, for f = ~ E F', wc define Ifl and degf by

The completion F", of F at the infinite prime is IF.((T-1 )), the field of formaI

Laurent series in T- 1
• The (unique) extension of 1 1 to F", is also denoted by 1 1.

Let F", be the algebraic closure of Foo , and l!: the completicn of the algebraic closure

F ",. Let f) = l!: - F", be the Drinfeld "upper half-plane".

1.1.2 Riemann Hypothesis

Let K be a function field of 1 variable over IF., and denote its genus by 9K. Define

the (-funetion of the funetion field KIIF. to be the Dirichlet series

(K(S) = II (1-lpl-'t1 = 2:= InJ-' .
PE7'(K) 'ED(K)

112:0

We also define

ZK(t) = 2:= tdega

C1ED(K)
112:0

(1) The Dirichlet series (K( s) converges in the right-half plane Re( s) > 1; (K( s)

is an analytic and non-zero funetion in this region.

(2) (K(S) has a meromorphic continuation to the whole complex plane, with

only poles being simple poles at S = 0 and s = 1. We also denote this analytic

continuation by (K( s).

(3) The function ZK(t) satisfies the functional equation:

(.jqt)1-9K ZK(t) = (.jqt)9K-l ZK et) .

11



• (4) The function (K( t) satisfies the functional equation:

One can also show that

(1.1 )

•

•

with LK(t) = ao +aIt +...+a29Kt29K is a polynomial with rational coefficients, which

can be written as
9K

LK(t) = 11(1 - wit )(l - w;t)
i=l

with

WiW; = q for 1 ::; i ::; 9K

We can then state the Riemann Hypothesis for function fields:

Theorem 1.2 (Riemann Hypothesis)

(a) The zeTOS OJ(K(S) lie on the line Re(s) = ~,.

(b) The zeTOS of ZK(t) lie on Itl = q-I/2 ,.

(c) [wd = IwH = ..jIjfOT i = l, ... ,9K .

1.1.3 Cebotarev's Theorem

We state here an explicit version of the ëebotarev density theorem for function fields.

We specialise to the case of extensions E / F, where F = JFq(T), but one could develop

the theorem for any Galois extension E / K of function fields, as in [9]. Let G he the

Galois group G = Gal(E/F). For p an unramified prime ideal of A, let

(E~F)

12
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•

be the Artin symbol of IJ relative to the extension ElF. We denote by L the algebraic

closure of IFq in E, and let

N=[L:IFq ];

M= [E:LF].

Let C be a conjugacy class in C, and denote

Punr(E/F) = {IJESpec A : IJisunramifiedinE/F}

Pk(E/F) = {IJEPunr(E/F): degIJ=k}

Ck(E/F;C) = {IJ EPk(E/F) : (E~F) = C}

Then, using the Riemann Hypothesis, one can show that

Theorem 1.3 (èebotarev's Density Theorem) ([9, Proposition 5.16J) Let tP be

the Frobenius element of IFq , i. e.

cf; : x --; xq
•

Let a be a positive integer such that

resL 7 = resL tP" for any 7 E C.

Then, for kt a mod N,

and for k == a mod N

where the Q-constant is absolute.

13
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(This is in faet strnnger than what is given in the statement of Proposition 5.16 of

[9], sinee we are in the particular case of Galois extensions over IFq(T).)

Let

Then

1rc(E/Fjx) = L ICk(E/FjC)1
q'" $x

= L ICk(E/F;C)[.
qk<:ll

k=a(N)

1.1.4 Riemann-Hurwitz Formula

Let E be a finite separable extension of a function field K over IFq . We dcfine the

different 'JJElK to be the divisor of 7)(E)

'JJEIK = Lm('1])'+l

where '1] runs over the prime divisors of E/lFq (see [9, p. 24] for a more precise

definition). One can compute that

{

0
m('1]) =

(e('1]lp) -1)

if '1] is unramified

if '+l is tamely ramified.

•

The case of wild ramification is much more subtle, but will not be needed in this

work.

Theorem 1.4 (Riemann Hurwitz Formula) ([9, p. 24}) Let E / K as defined

above. Then

2gE - 2 = [E : K](2gK - 2) +deg'JJEIK'

14



• 1.1.5 Quadratic Reciprocity

Finally, we state here the quadratic reciprocity over funetion fields. The details can

he found in [22].

Let 0 00 and m oo he respeetively the valuation ring and the maximal ideal of the

completion Foo = IFq((T- 1 )) of F = IFq(T) at the infinite place. Any f E F* can he

written uniquely as Ct U Tdeg /, where

Ct E IF;

u E 0;' = {J E 0:' : f := 1 mod m oo } •

We then define

sgn f•
wU) = Ct

wU)(q-l)/2 = { 1
-1

if wU) E (IF;)2

if wU) if- (IF;)2

Theorem 1.5 (Quadratic Reciprocity) Suppose a, b E A* are non-zero coprime

polynomials. Then

(1;) (~) = (a, b)oo,

where (a, b)oo is the quadratic Hilbert symbol at 00.

We explicitly compute (a, b)oo as

•

(

degb) (q-l)/2
( a b) = w (_l)degadeg b_

a _
, 00 bdeg a

for any a, b E F*. If a, b E A*, we can rewrite the last expression as

(a, b)oo = (-1) '? dega degb (sgn a)degb (sgn b)dega .

15
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1.2 Drinfeld Modules

We review here the basic facts about Drinfeld modules, which were first defined in

[6]. The material of this section can also be found in [11], [13] or [15] for example.

1.2.1 Definitions

Let L be a field over lFq with an lFq-algebra morphism

'Y: A -> L.

We will always have that 'Y is an injection, or the reduction map mod p, for p a prime

ideal of A. Let L{F} be the ring generated by Land F under the relations

F c = cqF for any cEL.

If we identify F with the Frobenius automorphism x f-> xq of lFq, L{F} is naturally

a subring of EndL(Ga), where Ga is the additive group scheme of L. Each element of

EndL(Ga ) can be written uniquely as a left polynomial

L ciF, Ci E L.

These polynomials are mu1tiplied by substitution, corresponding to composition of

endomorphisms in the ring EndL(Ga). For u E L{F}, let deg u be the degrec in F

of the left polynomial u.

Definition 1.6 A Drinfeld A-module rP of rank r > 0 over L is a ring homomorphism

rP : A --; L{:F}

Buch that

16
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(i) Va E A, deg q,a = r deg a;

(ii) q,a has constant term I(a).

If the map 1 : A -, L is injective, then q, is said to have generic characteristic; if

not, its characteristic is Ker l'

Let q, be a Drinfeld A-module of rank r over F. Then q, is completely determined

by q,T, the value of q, at T. We then write it as

q,T = I(T) +a,F +... +ar:F, ai E L, 1::; i::; r, ar # O.

We consider here rank 2 Drinfeld A-modules, or elliptic modules. Such a Drinfeld

A-module can be written as

q,T = I(T) +aF +bF2
, a, bEL, b # o.

We also denote it by q,(a, b). The j-invariant jq, of q,(a, b) is

. aq+l

Jq, = -b-'

Definition 1.7 A morphism, or isogeny, between il Drinfeld A-modules q, and ..p

over L is an element c E L{F} such that co q,a = ..pa 0 c for ail a E A. If c E l'

and ..pa = co q,a 0 c- l
, then..p and q, are isomorphic. Non-trivial isogenies exist only

between modules of the same rank. For q, a rank il Drinfeld A-module defined over L,

the set of L-isogenies q, ---> q, is denoted by EndL(q,), and is a ring under the usual

operations. We denote by End(q,) the ring End"[(q,).

The fol1owing Theorem then justifies the definition of the quantity jq,:

Theorem 1.8 (Gekeler [Il, Lemma 4.1]) Let L be algebraically closed. Then two

elliptic A-modules q,(a, b), and ..p(a' , b') are isomorphic if and only if jq, = j", .

17
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There is an analytic description of rank 2 Drinfeld modules over 1[, in terms of

A-lattices. In faet, the category of such modules is equivalent to the category 0f

A-lattices of rank 2 in 1[. Renee, by Theorem 1.8, GL2 (A)\S) parametrises the set of

isomorphism classes of rank 2 Drinfeld A-modules over 1[ by the ana!ytic map

j : GL2(A)\Sj ~ 1[

A(l)l1z 1-> j(z).

This j-function is the analog of the Dedekind j-function, and enjoys many of the

same properties, as will be seen in the next sections.

1.2.2 Complex Multiplication

Theorem 1.9 Let r/J be a rank r Drinfeld A-module defined over L. Then

(i) End(r/J) is a projective A-module of rank :::; r2 •

(ii) If r/J is of generic characteristic, then End(r/J) is a commutative A-module

ofrank:::; r.

Let r/J be a rank 2 Drinfeld A-module defined over L. It is clear that A ç End(<p),

and r/J is called singular when End( r/J) of A. In order to describe singular modules, we

need

Definition 1.10 A quadratic imaginary extension KIF is a field extension of di­

mension 2 over F such that 00 does not split in K.

The following Lemma charaeterises those extensions:

18
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Lemma 1.11 Let K = F( va), with a E A'. Then

(i) if deg a is even, and sgn a = 1, 00 splits in KIF;

(ii) if deg a is even and sgn a = -l, then 00 is inert in KIF;

(iii) if deg a is odd, then 00 ramifies in KIF.

Let OK be the integral closure of A in K. An order 0 of K is an A-subalgebra

of OK whose field of fractions is K.

Definition 1.12 Let 0 be an order in a quadratic imaginary extension KIF. A

singular rank 2 Drinfeld A-module <P is said ta have complex multiplication by 0 if

there is an embedding 0 ç End (<p).

Let Po(x) be the monic polynomial whose roots are exactly the j-invariants of ail

the singular rank 2 Drinfeld A-modules defined over '!: with complex multiplication

by O. We consider the special case K = F(Vd) for sorne dE' A, where d is a

fundamental discriminant, or equivalently square-free, and 0 = OK = A[Vd]. Then

denote Po(x) by Pd(X). The roots of Pd(x) are called the singular moduli associated

to d. By the analytic parametrisation, we can write

Pd(x) = II (x - j(O))
O~End("')

= II (x-j(r)),
[Tl

di,c(T)=d

(1.4)

•

where the product is over the equivalences classes [r] of quadratic imaginary elements

of discriminant d over A. Let h(d) be the class number of OK'

Theorem 1.13 Let d E A be a fundamental discriminant, and let Pd ( x) be as in

(1.4). Let r be such that j(r) is a singular moduli associated ta d. Then
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•

(i) j(T) is integral of degree h(d) over A;

(ii) The h(d) Galois conj"gates of j(T) over OK are the vlll,,"s j(T'), whe!'e

,,' runs thraugh the equivalence classes [T'] of imaginary quadratic clements of

discriminant d over A;

(iii) Pd ( x) is a polynomial of degree h(d) over A.

Praof: See [11] and [16].

1.2.3 Supersingular modules and supersingular reduction

Let p = (p) he a prime ideal of A. Then iFp = Alp ~ iF.dO,", Let </> be a. rank 2

Drinfeld A-module of characteristic paver L = iFp , i.e.

7: A -.L

is the reductian map mad p sending a to a mod p. Let T be the Frobenius automar­

phism of iF.

Then T E End( <p), since

T 0 <Pa = <Pa 0 T

for al! a E A, </> being defined over iF•.

Definition 1.14 The Drinfeld module <P described above is supersingular if the fol­

lowing equivalent conditions hold:

(1) <PP is purely inseparable, i.e. <PP = ;Oh for some integer h;

(2) There is no p-torsion points, i.e. Ker(<pp) = 0;
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• (3) End[( rP) is a non-commutative ring;

(4) End[( rP) is a maximal order in the unique quaternion algebra over F which

is ramificd at p and 00, and unramified elsewhere.

The equivalence of those properties is proved in [11, Thm 5.3] and [13, Proposition

4.11. A Drinfeld module which is not supersingular is said to be ordinary.

Let rP = rP(a, b) be a rank 2 Drinfeld A-module of generic charaeteristic over F

defined by

•

rPT = 'Y +aF +bF2
, a, b E A, b # O.

Let p = (p) be a prime ideal of A. For u = L, e;F; E rP( A), let

u mod p= L(e; mod pl?~

The reduetion of rP at p (or at p) is then the A-module rPP defined by

a 1--> rPa mod p.

(1.5)

•

rPP is a rank 2 Drinfeld A-module over the residue field lF'p for aIl p = (p) such that

p f b. These are eaIled the regular primes of rP. For those primes, we say that p (or

p) is a supersingular prime for rP, or that rP has supersingular reduetion at p (or pl, if

rPP is a supersingular A-module. If not, we say that p (or p) is an ordinary prime for

rP, or that rP has ordinary reduetion at p (or pl.

The foIlowing theorem is the statement Qf the criterion of Deuring, which aIlows

the deteetion of supersingular primes of eIliptic curves, in the context of Drinfeld

modules.

Theorem 1.15 (Deuring's Criterion) [2, Lemma 2.9.3] Let rP(a, b) be the rank 2

Drinfeld module as defined by (1.5). Let p = (p) be a regular prime of rP. Then rP has
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•

•

supersingular reduction at p if and only if there exists an order 0 of an irnaginCl1'1J

quadratic field extension K of F such that

(1) PoU.,) == 0 mod p;

(2) p is inert 01' ramified in K .
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Chapter 2

A boünd for the prime divisors of

the resultant

2.1 Introduction

Let <P he the rank 2 Drinfeld A-module defined over F

<PT = -y(T) +ar + b:P, a, b E F, b =1 0,

with j-invariant
a q+1

. F'J,p=-b- E •

We prove in this chapter the fol1owing Theorem:

(2.1)

•

Theorem 2.1 Let dl, d2 E A be two distinct fundamental discriminants, and let p

be a prime element of A such that

Then deg p ~ deg dl d2 •
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• For at least one of d, or d2 of even degree, the result was proved by Dorman (sec

[4] and [5]), as a corollary of the explicit factorization of

II (j(r) - j(r,))(q'-l/WW') ,

•

•

[1'J •{T'I
diu:(T)=dL

di"c(T' )=o'2

where w and w' are the number of roots of unity in the quadratic orders of discriminant

d and d' respectively.

It should be noted that we cannot apply Dorman's result in our work, since in

the next chapter, we are going to apply Theorem 2.1 with d, and d2 odd degree

polynomials in order to get lower bounds on 7r,p( x ).

We prove Theorem 2.1 following the ideas of Kaneko [19] which proves a similar

result for elliptic curves. His proof depends on the arithmetic of quaternion algebras

over IQ!. We can transfer the proof to the case of Drinfeld modules, since the structure

of quaternion algebras is similar over any global field.

2.2 Quaternion algebras

We review here the basic facts about quaternion algebras. Ali the material of this

section is from [24J. Let K be a global field, either a function field over a fini te field

or a number field.

Definition 2.2 A quaternion (!!gebra H/K is a K-algebra of basis l, i, j, ij,

H=K+Ki+Kj+Kij,

where i 2 =~, P = b, ij = -Ji for sorne a, b E K'. We denote JI = {a,b} .
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• Then, any element h in H / K is quadratic over K with minimal polynomial

x2- tr(h) x +n(h),

where the (reduced) trace tr and the (reduced) norm n of

h = x +yi + zj +tij

are defined by

tr(h)

n(h) =

2xj

x 2 _ ay2 _ bz2+abe.

•

•

The trace and the norm enjoy the following properties:

(i) n(hk) = n(h)n(k)j

(ii) tr(ah +bk) = a tr(h) +btr(k);

(iii) tr(hk) = tr(kh);

when h, k E H, a, bE K.

Definition 2.3 Let v be a prime divisor of K. Then v is said to ramiJy in H if

Hu = H 0K Ku is a field.

Writing H = {a,b}, one can show

v ramifies in H <==} (a, b)u = -1

where (a, b)u is the local quadratic Hilbert symbol. Also, for any H/ K, the number

of ramified places is fini te. We denote this set by Ram( H) .
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• Theorem 2.4 (Classification Theorem) IRam(H)1 is even, and for any finite set

8 of prime divisors of K with 181 even, there is, up to isomorphism, a unique quater-

nion algebra H / K sueh that Ram(H) = 8.

Example: We are interested in the quaternion algebras H over F = lFq(T) such

that Ram(H) = {p, oo}, p a prime ideal of A. These contain, as maximal orders,

the rings End(<p), for <P a supersingular Drinfeld A-module in charaeteristic p (see

Definition 1.14). Let H = Fp,oo denote the unique, up to isomorphism, quaternion

algebra ramifying exactly p and 00. We give here an explicit description of II as

•

II = F +Fa + F(3 + Fa(3

where

a 2 = a, (32 = b, a(3 = -(3a.

First note that sinee

(a, b)oo = (-1)'? degadegb(sgn a)degb(,gn b)dega,

(2.2)

(2,4 )

(2.3)

•

neither a or b can be a polynomial of even degree and positive sign, i.e. a and b have

to be quadratic imaginary in the sense of Lemma 1.11. Let a = up where p is the

unique monic prime of A such that p = (p), and u E 11';. If deg p is cvcn, wc choose

u to be a non-square in 11';. Let p' # p be a monic prime of A, and denote p' = (p').

By Cebotarev's Density Theorem, one can choose p' such that

(u) = (_I)'+degp
p'

(p) = (_I)l+degp .
p'

Let b = Vp', vEil';. If degp' is even, wc choose v to be a non-square in 11';. We

compute (see [22J, Chapiter III, Theorems 5.4 and 5.5)

(a, b)q = (up, Vp')q = 1 for ail q # p, p'
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•

and by (2.3) and (2.4)

(a,b)co=(up,vp')oo = -1

(a,b)p' = (up,vp')p, (~n = 1.

Finally, (a, b)p = (up, vp')p = -1 follows from the product formula

II (a,b)p=1.
PE7'(F)

(In this case, this is also the quadratic reciprocity). Thig shows that H can be written

as (2.2), where

a = up and b = vp'

with the restrictions given above.

We now specialize H to b,e a quaternion algebra over F = lFq (T), the quotient

field of A = lFq [T].

2.2.1 OrdersinH/F

Definition 2.5 An ideal 1 of H / F is a finitely generated A-submodule of H such

that F 0A 1 ~ H.

Definition 2.6 An element h E H is an integer (over A) if A[h] is a finitely gener­

ated A-module. Equivalently, hE H is an integer if its trace tr(h) and its norm n(h)

are in A.

Definition 2.7 Let H / F be a quaternion algebra. The following are equivalent, and

define an order 0 of H / F.

(1) An ideal 0 which is also a subrin~ of H.
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• (2) A ring of integers 0 containing A and such that FO = H.

A maximal order is an order which is not contained in any order different fm1n itsclf.

Let 0 be an order in H. Then its reduced discriminant d(O) is defined to be

n ((O-r'), where 0- = {x EH: tr(xO) E O}. For

let

Then we compute

• Lemma 2.8

(i) Let 0 and 0' be orders in H. If 0 ç 0', then d(O) ç d(:J').

(ii) 0 is a maximal order

<=-. d(O) = II p.
pERam{H)

p#oo

2.2.2 Quadratic suhfields of HI F

(2.5)

•

Given HIF a quaternion algebra over F = IFq(T), we are looking for a criterion to

determine when a quadratic extension LIF is embedded in HI F.

Example: Let H = Fp,,,,, , the quaternion algebra described in the above example.

Then, it is not difficult to see that every clement of HI Fis quadratic imaginary over

F, i.e. a quadratic extension LIK embedded in HI K has to be quadratic imaginary.

In general, one can prove:
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•

Theorem 2.9 [24, Theorem 3.B} Let LIF be a quadratic field extension and HI F

a quaternion algebra. Then L C H if and only if Lv = L 0 F Fv is a field for ail

v E Rarn{H).

If v is a prime ideal p = (p) of A, then

P splits in L <==> L p is not a field;

p is inert in L <==> LplK p is a non-ramified field extension;

p ramifies in L <==> LplK p is a ramified field extension.

Then for the quadratic extension L = F("fd) of F, da fundamental discriminant, we

get

(2.6)

Let LIF he a quadratic extension, B an A-order in Land 0 a maximal order in

H. Then

i:B"->(J

is an optimal emhedding of B in 0 when i(L) n 0 = B.

2.3 Proof of the Theorem

Let dl, d2 E A, he two distinct fundamental discriminants of A. Let p he a regular

prime of if such that

Then
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•

and

are optimally embedded in End(.p), which is a ma.'(imal arder in Fp,=. Wrile R [or

this maximal arder. Let Cii be the image of va: in R, i = 1,2, and consider lhe

A-submodule of R

L = A + ACil + Aa2 + Aala2.

Let s = tr(ala2)' Then one computes

D(l,al,a2,ala2) = (4dld2 _ S2)2.

We also have

and since al a2 ri- F,

This implies that D(l, al, a2, ala2) of D, and then L has rank 4 over A. Silice L is

also a ring, it is an arder in F p,=. Then by (2.5) and Lemma 2.8,

p2 [ D(1, al, a2, ala2) = (4dld2 - S2r
==} p [4d l d2 _ ~2.

Then,

Suppose that

Then f = tr2(ala2) - 4n(ala2) is a polynomial of even degree wilh leading coefficienl

in (~)2, which is impossible since f is quadratic imaginary. Then,



•

•

•

and finally

which we can write as
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Chapter 3

Lower Bounds

3.1 Introduction

Through ail this chapter, let <P be a rank 2 Drinfeld A-module over A, defined by

<PT = 1'(T) +Q,F +bF2, a, b E A, b i= 0,

with j-invariant
aq+1

j", = -b- E F'.

Let

7l'",(x) = # {p E Spec A: !pl :::: x, and <PP is supersingular}.

(3.1 )

We give in this chapter lower bounds for 7l'",(x). This is donc by extending the ideas

of Elkies [7] and Fouvry and Murty [10], who found lower bounds for the number

of supersingular primes of elliptic curves, to the context of Drinfcld modules. In [2],

Brown used a similar method to get that

•
7l'",( x) » log log log x.
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•

•

Following the same lines, but with sharper estimates, we first improve (3.2) to

7l",;( 0:) » Jlog log 0:

(see Theorem 3.2). Using the result of Chapter 2, we can improve the last bound to

7l",;( 0:) » log log 0:

(see Corollary 3.4).

Our proof applies only to non-exceptional Drinfeld modules q,. Following [2),

exceptional q, are defined by

Definition 3.1 A rank 2 Drinfeld A-module q, over F is called eo:ceptional if the

following conditions hoId:

(i) q == 1 mod 4;

(ii) j,; is a square in Foo ;

(iii) the prime factors of even positive degree of the numerator of j.p have even

multiplicities.

Applying base change (see [2]), we only have to consider the 3 cases:

(Cl) q == 3(4) and j.pT is not a square in Foo ;

(C2) q == 1(4) and j,; is not a square in Foo ;

(C3) q == 1(4), j.p is a square in Foo , and there is a prime element Po of A with

even degree, and Po divides the numerator of j,; to an odd power.

We then show the following theorems concerning lower bounds for 71"';(0:).
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Theorem 3.2 Let q, a non-exceptional Drinfeld A-module over F, as given by (3.1).

Then,

7f.p( x) ~ Jlog log x.

Theorem 3.3 Let q, a non-exceptional Drinfeld A-module over F, os given by (3.1).

Then, there exists an infinite sequence Xl, X2, .•• with x= -, 00 and a positive constClnt

K such that

Furthermore, log X=+l «: x;,(4log2 x=.

Theorem 3.3 implies the fol1owing corollary:

Corollary 3.4

7f.p(X) = rl(logx)

and

7f.p(X) ~ loglogx.

3.2 A New Supersingular Prime for (p

Let P = {PI,P2"" ,Pn} be a set of distinct monie primes of A, containing ail the non­

regular primes of q" ail the primes dividing the numerator of j.p, and where the only

other primes are supersingular primes of <p. We are looking [or a new supersingular

prime for q, .
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• 3.2.1 Computation of Legendre symbols

Let f E F·. Then we can write

a
f="I;' a,bEA, gcd(a,b) = 1, bmonic

in a unique way. Let 7r he a prime element of A. Let N" he th" numerator of P,,(J),

i.e.

(3.3)

•

•

Lemma 3.5 [2, lemma 4.1.10} Let S be the finite set of prime ideals of A which

divide the numerator of f to an odd power. If deg 7r is odd and sufficiently large, then

(~) = (_w(7r)/deg J+"i'-)"i'-w(J)"i'- II (~).
N" pES P

Proof: The complete proof can he found in [2]. It is necessary to have deg 7r odd to

insure that

P,,(x) == X R2(x) mod 7r

for R(x) a polynomial in A[x] satisfying (x, R(x)) = 1. Then one computes

(;J = (~") (7r,N,,)~

= (;) (7r,N,,)~

= (7r,a)~(7r,N,,)~ II (~),
pES P

and for deg 7r odd and hig enough, one can show

Remark, This criterion will allow the detection of an infinite numher of super- .

singular primes associated to rf; only if rf; is a non-exeptional Drinfeld module. See [2,

4.1.14] for more details.
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3.2.2 Choice of the new supersingular prime

Choose (3 E r. such that

I.e.

sgn (-(3) = - sgn (j~).

Let S = {Sl"'" sn} be the set of signs

Si = {-1 if Pi = Po in case (C3);

1 otherwise.

Let 71' be a prime polynomial of A such that

(ii) deg( 71') is odd;

(iii) (:;) = Si, 1 ~ i ~ n.

(3A)

We then say that 71' is an admissible prime associated to P, Sand (3. By éebotarev's

Density Theorem, there is an infinite number of such primes.

Let N" = N,,(j~) be the numerator of P,,(j~), as in (3.3). Then, for deg 71' sufli­

ciently large, we have (Lemma 3.5)

Using (3.4), this is
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• in cases (Cl) and (C2), and

(3.6)

•

in case (C3).

Lemma 3.6 f E F' is a square in Foo if and only if

(i) deg f is even;

(ii) wU) E (IF;)2.

We then compute that

in cases (Cl), (C2) and (C3). Then there is a prime p(7r) E A dividing N.. , and such

that

(p~J =-1.

By Deuring's criterion (Theorem 1.15), p(7r) is a supersingular prime for <p. AIso,

p(7r) cannot be one of the p;'s. This is clear in cases (Cl) and (C2), sinee then 7r is a

quadratic residue mod Pi, 1 ::::; i ::::; n. In case (C3), one can show that the exceptional

prime po is a prime of ordinary reduetion (see l2]). Then we also have p(-rr) # Po.

This shows that there exists an infinite number of supersingular primes for <p. In the

next sections, we give asymptotic estimates for the number of such primes.

Finally, it is clear that

(3.7)
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3.3 Number of admissible primes

Let P = {Pl, ... ,Pn} be a set of prime elements of A, S = {St, ... ,sn} be a set of

signs Si = ±l for 1 .::::: i ::; n, and (3 Er;. Let 7fP,s,~(x) be the number of primes 7f of

A such that

(i) 7f is unramified in the Galois extension F (y'Pï, ... ,vp;;-) /F;

(ii) 7f is an admissible prime associated to P, S, and (3;

We show in this section the two Propositions:

Proposition 3.7 There is an admissible prime 7f(P, S, (3) associated to P, Sand (3

such that

17f(P,S,(3)I::; G4n (~IOgIPdr,
for some sufficiently large constant G, which depends only on q.

Proposition 3.8
1 x

7fP.s,~(x)>> 2n -I-'ogx

when

x ~ G4n (~IOglpdr,
for some sufficiently large constant G, where G and the O-constant depend only on

q.

To prove Propositions 3.7 and 3.8, we apply the ëebotarev's density Thcorcm to

the Galois extension K n / F, wherc

K n = F (..;a,..jPï, ... ,~),
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•

and a is a non-square of ~. L, the algebraic closure of IF. in K n , is given by

and

N [L:IF.]=2

M = [Kn : LF] = [Kn : IF., (T)] = 2n
.

We also compute

Lemma 3.9 There exists a unique y(P, S,(3) EGal (Kn / F) such that for a prime

or E A, unramified in Kn , the followings are equivalent:

(1) degor is odd, and for 1:5 i:5 n, (;::) = Si and w(or) = (3;

(2) (K:.IF) =g(P,S,{3) andw(or)={3.

P,'oof: Any y EGal (Kn/ F) can be written as 9 = Ya X YI X ..• X Yn with Ya E

Gal F(y'a)/F, and Yi EGal F(V'fii)/F. Let or be an unramified prime element of A.

Then

(1) (;) = 1 {=> degor is evenj

(2) By quadratic reciprocity (Theorem 1.5)

(~) (;J = (_l)~degpideg"(sgn or)degpi(sgn Pi)deg".

The Lemma follows from there.

Since Gal(Kn / F) is abelian, the conjugacy dass of y(P, S, (3) is

C = {y(P,S,{3)} ,
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•

and by last Lemma,

1fp,S,{J(X) = 1fc(Kn/Fi x).

Using the èebotarev Density Theorem (Theorem 1.3), we get

where, for deg k odd,

Lemma 3.10
n

9Kn «: 2n L log [pd
i=l

Proof: Consider the Galois extension K~/F, where

K~ = F (yp" ... , v!Pn') .

(3.8)

K~ is a function field over IF., and the extension K n over ~ is a constant field

extension of K~ over IF., which gives 9Kn = 9K~. Applying Riemann-Hurwitz Formula

(Theorem 1.4) to the extension K~/F, we get

(3.9)

and since K~/F is Galois, we compute

deg:DK~/F L (e(\)3lp) - 1) deg\)3
'lJE'P(K~)

= L (e(p)-l) f(P)9(P) degp.
PE'P(F)

The only primes ideals of Spec A which ramify in K~ are the ideals (Pi), i = 1, ... ,n.

Then

•
n

deg:DK~/F «: 2n L log [pil,
i=l
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• and the Lemma follows from (3.9) and (3.10).

With the previous Lemma, we write

for k odd. First consider

(3.11)

•

f(x) = 21n-1x +0 (1
ft

(Iogqx +f,log Ipil)) (3.12)
ogq x ogq X .=1

for any positive real x. When x = q\ with k odd, this is (3.11). For

for a sufliciently large absolute constant C, the main term in (3.12) is strictly larger

than a fraction of the error term, which gives

f(x) > 0

and
1 x

f(x)~ ---.
2n logq x

Let 1be the smallest odd integer such that

Then

and

which proves Proposition 3.7.

•
Similarly, for any
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• let 1 be the unique odd integer sueh that l :<::: x < l+2. Then

1

7rp,s,~(x) = I: ICk(Kn/FjC)1
k~l

> ICI(Kn/F;C)I·

By (3.13),

•

•

and then
1 ql log q 1 x

ICI(Kn/FjC)I» -2 -1 ~ -2-2 -1-,
n q n og X

whieh proyes Proposition 3.8.

3.4 Order of p(7r)

We proye in this section the following Theorem:

Theorem 3.11 Let q" 7r and p(7r) be as in Section 3.2.2. Then

where C and the O-constant depend only on q, and q.

By (3.7), it suffie,,, to show that

We proye in this section the more general Theorem:

Theorem 3.12 Let d E A be square-free, and let q, be a rank 2 Drinfeld A-module

as given by (3.1). Let Nd be the numerator Num PdU",). Then

where the C and the O-constant depend only on q and q, .
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• Let Ù = ;, f,g E A'. Then

As in the classical case, the fol1owing Lemma al10ws us to choose the values z for

which j(z) is a singular moduli associated to d.

Lemma 3.13 Each of the singular moduli associated to d can be written as j(z),

where the minimal polynomial of z over A has the form

ax2 +bx +c, with Ibl < lai::; Ici, a monic , (a, b, c) = 1.

We then write

•
h(d)

Pd(j",) = II (j", - j(Zi))
i=l

where
-b· ± Jb? - 4a'c', , 1 1

Zi =
2ai

with

Lemma 3.14 Let j(z) be a singular modulus associated to d. Then

Ij(z)1 «: exp (Cqlzl)

where Cq depends only on q.

(3.14)

(3.15)

•

Proof: The result fol1ows using the explicit formulas for j(z) developed in [2, Lemma

2.8.2].

In particular, for 1 ::; i ::; n,
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Slnce
1- bi ± )dl Id1 1

/
2

IZil= =-
12ail la.1

by (3.15). Choose

C 2 max (Cq , log 1jq,1).

Then

Pd(j~) ~ g(Jj~I+exp(cl~~li~2))
h(d) (ldI1 /2

)
~ 2h(d) II exp C--

i=l lait

= 2h(d) exp (C ldI1/2r _1_) ,
.=1 lail

since lail ::; Id1 1
/

2 for 1 ::; i ::; n. We then have to bound h(d) and E:'~~) 1;,1'

Lemma 3.15

where the O-constant depends only on q.

Proo/: Let

•

for a E A. In general, Xd is not a character mod d, since by quadratic reciprocity

(Theorem 1.5)

but in particular cases, as deg d even and sgn d = 1, Xd is a charader mod d. In any

case,

a == b mod d, and deg a == deg b mod 2 ==} Xd(a) = Xd(b) .

44



•

•

•

Lemma 3.16 For k :::: deg Idl,

L Xd(a) = O.
dega=k

Proof: The qk monie polynomials of A of exact degree k are evenly distributed mod

d. Then, using quadratie reeiproeity,

L (~) = qk-dogd L (~) = (_l),?kdOgd(sgn dl L (~) = O.
dega;:;k a mod d a mod d

Let

a

where the sum is taken over monie polynomials a E A. Then L(s, Xd) is the finite

sum

Artin showed in his thesis [1] that there is a class number formula over funetion fields.

More preeisely,

Theorem 3.17

(i) If deg d is odd, L(l, Xd) = ~ h(d);
Vldl

(ii) If deg d is even, and sgn d = -l, L(l, Xd) = qi.;h h(dl;
v2ld1

(iii) Ifdegd is even, and sgn d = l, L(l,Xd) = ~h(d) log IEdl, where

A[Vd]' = IF; x < Ed >.

(This precise form of Artin's result is from [17).)
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Since

L(1, Xd) = L (~) lal- ' « log Idl,
dega<degd

this completes the proof of Lemma 3.15.

Lemma 3.18
h(d) 1E~ « log21dl

where the O-constant depends only on q.

Proo!: The number of Zi with ai = a, where a is sorne fixed value, is smaller then

the number of solutions to x 2 == d mod a. Also, for any 1 S; i S; h(dl, lail S; Id1 1
/
2 by

(3.15). Then
h(d) 1 2w(a)

L-S; L -,
i=1 lait 1:::lal~ldl'/' lai

where the sum runs over monie polynomials a E A, and w(a) is the number of monie

prime divisors of a. Now consider the produet

taken over monie primes p E A. It can be rewritten as

Then
2w

(a) (2 )L - S; II 1+ «log2ldl,
1:::lal:::idl'/' lai Ipl:::ldl ' /' Ipl - 1

which gives the Lemma 3.18.

In conclusion,

Nd « 2h(d)lgl h(d) exp (Cldl'/2~ _1_)
i=1 lai 1

« exp (C'ldl'/2Iog2Idl).

Remark: This improves the bound given in [2], which is N~ «exp (111"1 4
) •
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3.5 Proof of First Theorem

Let Pl, ... ,Pn be given, and as in Section 3.2.2, choose 7r an admissible prime, and

p(7r) 1N" a new supersingular prime. By Proposition 3.7, it is possible to choose 7r

with

and by Theorem 3.11

Then

log Ip(7r)1 ~ 2
n (~IOg Ipd) (n + log (~log Ipd)r

Without lost of generality, we suppose that Ipil ::; IPnl for 1 ::; i ::; n. Then, writing

Pn+l for p(7r), we have

log IPn+11 ~ 2nn (log IPn 1) (n + log n + log log IPn 1)2 .

and by induction on n, we get that

from which Theorem 3.2 follows.

3.6 Proof of Second Theorem

We now show Theorem 3.3, which improves the previous Theorem. The proof works

as follows. Given Pl, ... ,Pn, we choose admissible primes 7r associated to Pl, ... ,Pn,

as in Section 3.2.2. For each of these admissible 7r, we get a new supersingular prime

p(7r). By construction, any of the p(7r) is different from the primes Pl, ... ,Pn. If we

can also insure that they are ail distinct, we can use Proposition 3.8, which counts the
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• number of admissible 71", to count the supersingular primes p( 71") associated to those

admissible primes. Theorem 2.1 gives the criterion which insures that the primes

p(71") are distinct.

To prove Theorem 3.3, it suffices to show that for x large enough with

7I"q,(x) < Klogx,

there exists x' > x with 7I"q,(x') 2: Klogx', and logx'« x1 / 410g2 x. Here K is any

positive value such that

K <
1 1
4" log 2'

(3.16)

•
Then, choose x with

n = 7I"q,(x) < Klogx,

and let Pl, ... ,Pn be the n supersingular primes of q, with Ip[ S x. By Proposition

3.8, for x big enough such that

(3.17)

•

the number of admissible primes 71" associated with {Pl, ... ,Pn}, and such that [71" [ S

,jX, is
1,jX

~ -;---'----;=
2n 10g,jX'

We do have to insure that it is possible to choose both x and n in this way, and such

that (3.17) holds. But since n < K log x, we have

K2
4n n 2 10g2 ,jX < "4xK1og410g4 x,

and then for x big enough and any K such that (3.16) holds
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As seen in Section 3.2.2, for each of those admissible 7r, we obtain a prime of super­

singular reduction p(7r), which is not one of the Pi. Furthermore, as seen in Section

3.4,

for each of the p(7r), which gives

by choiee of the 7r's. Suppose that p(7rd = P(7r2) = p for sorne 7r, # 7r2' Then,

by Theorem 2.1, we conclude that Ipl ~ x, i.e. p is among Pl,'" ,Pn, which is

impossible. Then, each of the admissible 7r in the range under consideration gives a

different supersingular prime p(7r). Let Xl = max Ip(7r)I. Then

log x' « X' /4 Iog2x.

Also, sinee n < K log x,

1 1 ft x~-Klog2

7rq,(x ) ~ -2 1 ..fi > 1 ..fi'n og X og X

Then for x large enough, and for any K such that (3.16) holds, we get

7rq,(x' ) > Klogx l
•

This completes the proof of the Theorem.

Corollary 3.4 follows applying Theorem 3.3 to find X m ~ x ~ X m +!. Then

7rq,(x) ~ Klogxm ~ (log log Xm+l) ~ (log log x).
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Chapter 4

Upper Bounds

4.1 Introduction

Let <P be a rank 2 supersingular A-module defined over A, i.e.

<PT = ,(T) +aF +bF2, a, b E A, b -1 o. (4.1 )

•

For ail regular primes p = (p) of <P, let <PP be the reduetion of <P in eharaetcristie p.

We now look at upper bounds of

7l',,(x) = #{p E Spee A : Ipl ~ x and <PP is supersingular}.

The following argument was pointed out by R. Murty for the case of elliptie eurvcs.

To eaeh supersingular prime p = (p), let d(p) be a positive eonsV"it sueh that thcrc

exists a monie prime p E A with

and Idl ~ d(p). For any square free d E A, the number of prime factors of Pd(j,,) is

bounded by

log NJ(j,,) ~ Id11
/
2 log21dl
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• by the results of Section 3.4. Then

7I"~(X) ~ L: IdI 1
/

2 Iog2 Idl,
Idl~D

where

(4.2)

•

•

D = maxd(p).
Ipl~x

Let p be a supersingular prime, and let q,p be its reduction of q, mod p, Then End(q,p)

is an order in Fp,oo' By Deuring's lifting lemma for Drinfeld modules, if

A[Vd] ç End(q,p),

then

We then address in this chapter the task of finding quadratic orders A[Vd] in End(q,p),

where Idl is small enough to give a non-trivial bound in (4.2). By the choice of q" q,p

is dufined over IFp. This gives certain restrictions on the endomorphism ring End( q,p),

and there are !h(y'uP) isomorphism classes of such rings, where u is a non-square in IF;

(see next section). We first look for explicit representatives 0 for those isomorphism

classes, and for each such 0, we look for elements h E 0 satisfying

h2
- d = 0

with Idl small. The work of this chapter is strongly influenced by papers of Ibukiyama

[18] and Kaneko [19], who solve equivalent problems in the case of elliptic curves.
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4.2 Number of supersingular modules over finite

fields

Let p = (p) be a prime ideal of A, p a monie prime polynomial. Let cP be a rank 2

Drinfeld A-module in eharaeteristie p, i.e.

cPT = I(T) +aF +b:P,

with

a, b E IF"

and let E(p) be the set of isomorphism classes of sueh modules. Let D be the unique

(up to isomorphism) quaternion algebra over F = lFq(T) with

Ram(D) = {p,oc} .

Fix any maximal order 0 in D. Then the number of left ideal classes of (') do not

depend on the ehoice of the maximal order ('), and is the class number of D, denoted

h(D). Two maximal orders (') and 0' are isomorphie when there is an A-algebra

isomorphism"lf; : (') --> 0'. The type number t(D) of D is the number of types,

or isomorphism classes, of maximal orders in D. Sinee any maximal order appears,

up to isomorphism, as the order assoeiated to one of the left ideal classes of 0, we

always have t(D) :<:; h(D).

The fol1owing Theorems are analogous to the work of Deuring [3] on the endo­

morphism rings of supersingular elliptie eurves in eharaeteristie p.

Theorem 4.1 ((13, Theorem 4.3]) Let cP be a supersingular Drinfeld module in char­

acteristic p. Then the left ideal classes of End( cP) correspond bijectively to the elements

ofE(p) .
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• Theorem 4.2 ([13, Proposition 4.6]) The isomorphism classes of maximal orders in

D correspond bijectively to the orbits of L:(p) under the action of the Galois group

G = Gal(Fp/fp).

Then, 1L:(p)1 = h(D) by Theorem 4.1. One computes (see for example [13])

and

{

!l".=!
h(D) = q'-1

qd_q +1
q2_1

when deg p is even

when degp is odd,

{

1 (!l".=! + 1 h( ru;:n))t(D)= 2 q'-1 2 Y-P

~ (~+ 1 + ~ (h(.jïïP) +h(y'p)))

when degp is even

when degp is odd.

•
Any supersingular Drinfeld module in characteristic p can be defined over L, a

degree 2 extension of f p • The orbits of L:(p) under the action of Gal(JI'p/fp ) are then

the orbits of L:(p) under the action of

Gal(L/fp ) = {l,T}

where
d

T : x >----> x q
, d = degp. (4.3)

•

For </> E L:(p), let [</>l denote the orbit of </>' When the supersingular module </> is

defined over f p , T E End( </» since

Ta </>a = </>a a T

for aU a E A. Then

[</>j = {</>}

in this case. When </> is nat defined over f p ,
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• where rp ':/; rpT and rpT is not defined over lFp • The number of classes of supersingular

modules over lFp ean then be eomputed as 2t(D) - h(D), and is

{
~h(JUP)

Hh(JUP)+ h(JP))

when deg p is even

when deg p is odd.
(4.4)

•

Let rp be sueh a supersingular module. Then, in the maximal order End( rp), 7 satisfics

a polynomial equation

7
2

- cp = 0

for sorne c E II<~. We then look for maximal orders of D whieh eontain JUP.

4.3 Maximal orders in even degree characteristic

i,From now on, let p be an even degree prime ideal in A, and write p = (p) with p

monie of even degree.

Let u, v E ~, with u a non-square in ~, and L be the set of monie primes 1

satisfying

(T) = -1;

(y) = -1.

(4.5)

(4.6)

•

(Note that there is an infinite number of sudl 1by the éebotarev Density Theorem.)

Then Dean be explieitly written as

where
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• (This is the construction of Section 2.2 for the special case deg p even.) Of course,

we have Du(l) ~ Du(l') for any l, l' E L. For any 1 E L, there exists r such that

r 2 == up mod 1

by (4.5) and (4.6). Consider the A-submodules of D

(
(r +a)f3ul)Ou(l,r) = A+ Af3uz+Aa+ A 1 .

(4.7)

(4.8)

•

•

Lemma 4.3 For any 1E L, vEr., and r satisfying (4.7), the A-modules Ou(I,r)

are maximal orders of D.

Proof: One easily checks that

(i) 1, a, f3ul, af3ul E Ou(l,r);

(ii) Ou(l, r) is a ring;

Then, by (i) and (ii), O.(I,r) is an order of D. By (iii), the reduced discriminant

d(O.(I,r)) is p, and O.(I,r) is a maximal order.

We note that a = J'iiP E Ou(l, r) for each 1E L. Since

whenever rand r' satisfy (4.7), we write 0.( 1) for 0.(1, r). Similarly,

Lemma 4.4 If v' = W2 V for sorne w Er., then
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•

Proof: The F-linear map

induced by

'if; (a) = a

'if;(flv'l) = Wflvl

'if; (aflv'l) 'if;(a)'if;(flv'l)

is an isomorphism between Ov,(/) and Ov(/).

We then consider the 2 families of maximal orders containing yIuii:

(i) Ov( 1), for 1ELand v a square in r. j

(ii) Ov,(/), for 1ELand v' a non-square in~ .

Let 0 be a maximal order in D. An e1ement x E 0 is a unit of 0 when x- I exists

and belongs to O. The group of units of 0 is denoted by O', and the groups of units

of norm 1 by 0 1 . One easily sees that

x E O·~ n(x) E IF;.

Lemma 4.5 When degp is even, any maximal arder 0 of D has

O· = lB:q

0 1 = {±l}

Proof: Let x E O. Then n(x), tr(x) E A, and x E A[Vd], d = tr(x)2 - 4n(x). Then

the quadratic extension F(Vd) is embedded in D. Since degp is even, d rJ- r. (see

(2.6) of Section 2.2.2), and deg d ~ 1. Write x = a +bVd, with a, b E A. Wc have

n(x) = a2
- db2,
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•

and since d is quadratic imaginary, dega2 i' degdb2 or sgn a2 i' sgn db2
, which gives

n( x) E IF; = b = a and a E IF;

and

n(x) = 1 = b = aand a = ±l.

Let l,l' EL, 1 i' l'. By (4.5) and (4.6), 1 and l' split in A[y'UP], and we write

(1) = .c 13

(l') = .c' .c'

in A[y'UP}.

Theorem 4.6 Fix any v E IF;, and let 0.(1) and 0.(1') be two maximal orders as

given in (4.8). Then, the following are equivalent:

(ii) 0:
2 - Upy2 = ll', for some x, y E A;

(iii) .c .c' is a principal ideal, for some .c above l, and some .c' above l'.

Proof: Taking norms, the equivalence between (ii) and (iii) is clear. We show the

equivalence between (i) and (ii).

First suppose that there is an i50morphism
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Since 0' = {± l}, ±a are the only elements of Ou(l) of norm -up, and 1/J( a) = ±a.
Let

1/J(f3ul') a+ bf3ul + ca +d ((r +~ )f3ul )

(
bl +dT) d

= a +ca + 1 f3ul +7af3ul'

Since tr(1/J(f3vl')) = 0 and 1/J(a)1/J(f3vl') = -1/J(f3vl,)1/J(a), we must have a = c = O.

Then

-vi' = n(1/J(f3vl')) = (bl ~2dT)' vi + ~: uvpl

~ Il' (bl + dT)' - upd2,

whieh proves (ii).

Conversly, suppose that there is x, y E A such that

Since T
2 == up mod l, we get

(x - ry)(x + ry) == 0 mod l,

and x == TY mod l, changing y by -y if necessary. Set

d = y,

such that

b
x -ry

1

•
(bl +dr)2 - upd2 = Il'.

Let 1/J : D -> D be the F-linear map given by

1/J(1) = 1
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• ..p(o.) = €o.

..p((3vl' ) = b(3 +i r + 0'. )(3vl
vi 1

..p(o.(3vl') = ..p(0'. )..p((3vl')

where € can be ±1. Then..p is an F-algebra automorphism of D, and we daim that

..p induces an isomorphism between Ov(l') and Ov( 1). We just have to show that

(4.10)

•

Let w, = 1, W2 = (3vl, W3 = 0'. and w. = (r(3vl + o.(3vl)/1 be the basis of Ov(l). Then

one computes

..p(1) = li

..p(o.) = mj

..p((3vl') = bW2 + dw. j

.1. (r'(3vl' +1' o.(3vI') __ 1 ( ) 1
'1' Il' bl(r' - Er) +d€(up - r2) W2 + li (r'd + €bl + €dr) w•.

•

Then, for (4.10) to be verified, we have to insure that

l~' (bl(r' - Er) +d€(up - r2)) E Aj

~(r'd+€bl+€dr) E A.

By the choice of b and d,

(bl + dr)2 - upd2 = ll',

which gives

(bl +dr)2 - r,2d2 == 0 mod l'

~ bl +dr == r'd mod l'or bl +dr == -r'd mod l'.

Choose € such that

bl +dr +€r'd == 0 mod l'.
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• Then (4.12) holds. For (4.11), the numerator is divisible by 1since r 2 == up mod 1. Il

is also divisible by l' since

=

bl(r' - Er) +dE(Up - r2
)

bl(r' - Er) +dE(r' - Er)(r' + Er)

(r' - er)(bl +dr + Edr') == 0 mod l'

•

•

by (4.13). This completes the proof of Theorem 4.6.

4.4 Number of orders Ov(l)

We fix any VEr., and we consider the family of maximal orders CJu ( 1). As in the

previous section, let

L = {I E Spec A : (T) = (7) = -1}
= {I E Spec A : deg 1 is odd and 1 splits in A[y'uP]}.

Let C be the class group of A[.;upJ. Then by Theorem 4.6, the map

m : L ----> {a, a-1
}, aE C

~ m(l) = {[-Cl, rEl}

is such that

m(l) = m(I/)~ Ou(1) ~ Ou(1').

Then the number of isomorphism classes of the maximal orders Ou(1) is IIm(m)[. We

define L' to be the set

L' = {-C E Spec A[yUP] : deg -C is odd} .
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Let ~ E Spec A[JüP], and (1) = ~ n A. Then

~ E L' <=> 1splits in A[JüP] and deg 1is odd,

I.e.

~ E L' <=> 1E L.

Lemma 4.7 Let 5 = {[~] : ~ EL'}. Then

151- h(JüP)- 2 .

Proof: Le+' H be the Hilbert class field of F(JüP), as defined in [23]. Then, the

Artin's rnap

~.-.. <T" = (HIF~JüP))

induces an isornorphisrn between C and G = Gal (HI F( y'UP)). Since 00 is inert

frorn F to F(JüP), the field of constants in H is lF',' [23, Theorern 1.3]. Fix <T E G.

Let T be the Frobenius autornorphisrn

and let a( <T) = 0 or 1 be such that

res[, <T = res[ , Ta(u).
q q

Fix sorne positive integer k. Then, by ëebotarev Density Theorern (Theorern 1.3),

there is sorne ~ E Spec A[JüP] with <T" = <T and deg ~ = k if and only if

k =a(<T) rnod 2.

Then

<T = <T" for sorne.c EL' <=> a(<T) = l,
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and the result follows counting the e1ements Cf E G such that u(Cf) =0 1.

We then use this result to count IIm(m)l. Let 1E L, and write (1) = ,et in Spec

A[JüP]. Then

~ E L' <=> tEL',

and

Let

B, =0 {[~] : ~ EL' and [~]2 =0 1}.

Then

IIm(m)1 =0 Card {{[~), [~rl}, ~ E L'}
IBI + IB,I

2

where

IBI =0 h(JüP)
2

by last Lemma.

4.5 Elements of small norm in Ov(l)

Let CJ"(/) be the maximal orders of D described by (4.8).

Theorem 4.8 There exists h E CJ"(/) such that h satisfies the polynomial cquation

h2
- d =0 0,

where d E A is a square-free polynomial of positive degrec such that
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• Proof: Let h E O(1), i.e.

h
r(3vl + a(3vl

Z + x(3vl +wa + y 1

(xl+yr) y
z +wa + 1 (3vl + Za/3vl

with x, y, z, w E A. We have the equations

tr(h) =

n(h) =

2Zj

, , (xl+yr)' y'
Z - W up - l' vi + [2uvpl.

(4.14)

(4.15)

which is a quadratic form with coefficients in A of discriminant 6 = -uv'p. Corn­

pleting the square, we write any such quadratic form ax' +2bxy +cy' as•

i,From (4.14), we get z = O. We also set w = 0, and (4.15) becomes

(
Up - r')Q(x,y)=(-vl)x'+2(-vr)xy+v 1 y' (4.16)

(4.17)

•

where 6 = ac - b' is the discriminant. Using that result, we get that thequadrali~

form Q(x,y) of (4.J6) is a if and only if

Comparing the leading coefficients on both sides, last equality is satisfied only when

both sides are 0, i.e. for (x, y) = (0, 0). We now show that for any quadratic form

Q(x,y) = ax' + 2bxy + cy', a,b,c E A

of discriminant 6 = ac - b' such that

Q(x,y) i' a for all (x,y) i' (0,0) E A',
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•

there is (x,y) f (0,0) E A2 such that

IQ(x,y)1 ~~.

Indeed, write b = aJ +9, with J,9 E A, deg 9 < deg a. Then using (x, y) = (-J, 1)

in (4.17), we get-

1 (9)2 6.1 lai 11.\1IQ(- J, 1)1 = a - + - ~ - -1- -.
a a q2 lai

Consider

J = inf IQ(x,y)l.
(z,Y)EA2

(x,y)"(O,O)

Without lost of generality, tiansforming Q(x,y) in an equivalent quadratic form, we

can suppose that J = lai, ob\ained at (x,y) = (l,a). Then, we have that

1 l
iai 16.1 11 < q 16.1 1/ 2

a ~ "1 + laT <=? a - (q2 _ 1)1/2 .

4.6 A~partial Result
",")

. In Section 4.3, we lOund 2 families of maximal orders of D containing.,jUP. By

analogy with the rational case, i.e. maximal orders in !Qv,co, we make the following

hypothesis:

Hypothesis 4.9 Lr.. <p be a Tank 2 DrinJeld A-module d"fined ouer IFp . 'J'hen lhere

is 50"''' 1E L such that

Let

7r;"'n(x) = #{p E Spec A: degp is even, Ipl ~ x and <Pp is supcrsingular}.

Then, fol1owing Section 4.1, we gct
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Theorem 4.10 Assuming Hypothesis 4.9,

where the O-constant depends only on q.

Praof: By Theorem 4.8, with Cq = q/(q' - 1),

7r;vm(x) ~ I: Idl'/'log' x ~q x3/41og' x.
IdI5C,';;;
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Appendix A

Average Distribution of

Supersingular Primes

Let q,(a, b) rlenote the Drinfeld A-module given by

q,T = ,(T) + a:F + b:F2
, a, b E A, b i' 0,

and for each regular P E Spec A, let

q,(a,b)p

be the reduction of q,(a, b) over the finite field IFp • As usual, we denote

7I"~(a,b)("') = #{p E Spec A: Ipi ~ '" and q,(a,b)p is supersingular}.

(A.I)

•

We want to evaluate the distribution of the supersingular primes averaging over

ail the Drinfeld A-modules given by (A.I). We then consider the SUffi

L: 7I"~(a,b)("'),
lal:SKa
Ibl~Kb
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• whieh we v:rite as

L #{r/J(a,b): lai::; Ra, Ibi::; Kb, and r/J(a,b)p is supersingular}.
1'( Jptu;A

IPI~·

Fix P E Spee A, p = (p), with p a monie polynomial of degree d. Wefirst eount

the nllmber of supersingular modules if; over lFp • Let u be a non-square in IF;, and

I:t TJ(p) be the number of isomorphism class,,; of supersingular modules defined over

lFp • We showed in Chapter 4 that .,

H(p) = { ~h(y'uP)
~ (h( y'uP) + h(Vii))

when d = degp is evenj

when d = degp is odd.
(.4.2)

•

•

Lemma A.l ([11, Lemma4.1J) Let r/J(a, b) and..p(a', b') be rank 2 Drinfeld A-modules

over L. Write

<PT = r(T) +aF +bF2

,pT '(T) +a'F+ b'P.

Then, r/J ~L ..p if and'only if there exists cEL' such that

Let r/J( a p, bp) be a supersingular Drinfeld A-module defined over lFp , i.e. if;(ap, bp)

is defined by

By last lemma, any Orinfe!d 4-module over lFp in the isomorphism class of if; ean be

written as

with cE JF;. 'Then, the number of sueh modules is
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• (i) the number of (q _l)'h powers in JF; ~ F;d if j~(ap.bp) # 0, or equivalently if

ap # 0;

(ii) the number of (q2 - l)'h powers in JF; ~ F;d if j~(ap.bp) = 0, or equivalently

ap = O.

(A.3)
q" - 1 .'

q-l

As cP(ap, bp) is supersingular, the latter case is only possible when d = degp is odd

([11, Satz 5.9]). We then compute that the number of modules over ]]<'p in the class

of cP(ap, bp) is

Then, by (A.2) and (A.3), the number of supersillgular modules over IFp is

•
qd - 1 H(p).
q-l

Lemma A.2 Let Ka and K b be large enough to have qd = Ipl ~ min (Ka> K b). Then

for any a, f3 E IFp ,

where

ra = log. Ka - llog. KaJ

rb = log. li, - llog. KbJ.

With last lemma,

L 71'~(.,b)( x) =
lal::;Ka
Ibl~K•

'" K.Kb 2 { • }L..J ----u- q -T.-T. # supersmgular modules over IFp

Ipl~% q
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• where the O-constant depends on q. If we have, as in [10],

(A.4)

•

•
--,"-

it would imply that the Lang-Trotter conjecture is true in average for Drinfeld mod­

ules. We are presently working on the evaluation of (A.4). Very similar estimates

hold averaging the class numbers of number fields and function fields (see [17]).
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