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ABSTRACT 23 

Continental mosaics of radar data have now been generated for more than twenty years. 24 

These offer information on precipitation climatology that is simply not available or archived 25 

elsewhere: How often does it rain at any particular location? At what time? And with what 26 

intensity distribution? What are the geographical and temporal patterns of precipitation 27 

occurrence, formation, and decay? What is the climatology of severe weather? Answers to these 28 

questions have value on their own and also invariably trigger more questions about the processes 29 

causing these patterns as well as suggest some answers. They also have considerable pedagogical 30 

value to illustrate in the classroom the impacts on precipitation of different processes such as 31 

sea-land breezes, topography, and seasons. 32 

In this work, U.S. mosaics of radar data from 1996 to 2015 are used to demonstrate the 33 

possibilities offered by such a data set. Three topics are touched: a) climatologies and daily 34 

cycles of precipitation and convection, and what they can teach us about precipitation 35 

mechanisms; b) the spatial and temporal distribution of the appearance and occurrence of 36 

convection, and what it reveals on the importance of surface terrain properties for these events; 37 

and c) the power and challenges of looking for a small signal in even such a large dataset using 38 

the influence of weekly activity cycles and of cities on precipitation as an illustration. 39 

CAPSULE 40 

Where the radar climatology of weather echoes is used to reveal how surface properties 41 

shape precipitation occurrence and to explore the ease or difficulty to unambiguously detect 42 

these effects.43 
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1. Precipitation climatology and radars 44 

Radar has historically transformed the way we study storms thanks to its ability to take 45 

frequent and regular 3-D measurements even through clouds and precipitation. As a result, it is 46 

commonly used both operationally for weather surveillance as well as for research to help 47 

understand the dynamics and microphysical processes of atmospheric phenomena (Atlas et al. 48 

1990; Wakimoto and Srivastava 2003; Fabry 2015). 49 

The first national Doppler radar network in the world was deployed in the United States 50 

in the mid-1990s. More importantly, a framework and process for monitoring and maintaining 51 

radar data quality was implemented and adhered to since. From late 1995 onwards, the 52 

reflectivity data from all these radars have been made into national mosaics by a variety of 53 

actors, including private companies, research institutes, and the National Weather Service itself. 54 

A unique dataset now exists to study radar echoes collected by the same radars over a period of 55 

more than 20 years (and counting) over the contiguous United States. 56 

Though country-wide climatological information on precipitation exists, for example 57 

from the US Climate Normals (Applequist et al. 2012, Arguez et al. 2012), the information 58 

available is not as rich as it could be. As an illustration, we challenge all readers to find the 59 

answer to a simple climatology question: what fraction of the time does it rain or snow at your 60 

location (by opposition to how many days per year)? Historically, the data required to answer 61 

such a basic question have not been available primarily because even though the existing 62 

technology could have been used, the detailed information required to derive a statistic like this 63 

was not archived. Radar data offer information that is simply not available or archived 64 
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elsewhere: how often does it rain at any particular location? At what time? And with what 65 

intensity distribution? What are the geographical and temporal patterns of precipitation 66 

occurrence, formation, and decay? What is the climatology of severe weather? Answers to these 67 

questions invariably trigger more questions about the processes causing these patterns as well as 68 

suggest some answers. These tend to be of a different nature than those arising from individual 69 

case studies because the specificity of atmospheric conditions leading to one storm instead of 70 

another loses its significance. What is left are the persistent features that often or always 71 

influence precipitation occurrence, which, in the end, are the most important to get right both in 72 

the context of process studies and of numerical modeling. Many of those are the result of 73 

variations in terrain type and orography. We have also found several of these results to be 74 

extremely powerful illustrations of the effects of atmospheric phenomena taught in classes such 75 

as sea-land and mountain-valley breezes, lake-effect snow, diurnal cycles and spatial patterns of 76 

convection climatology, among others. 77 

While radar climatologies have been attempted early on in radar meteorology (Riggs and 78 

Truppi 1957) and on and off since (e.g., references in Arnold 2005; Wilson 1977), it is only 79 

thanks to the work of Richard Carbone and colleagues that it has achieved a timid rebirth in the 80 

United States (Carbone et al. 2002; Carbone and Tuttle 2008), followed by a few efforts here and 81 

elsewhere (e.g., Parker and Knievel 2005; Overeem et al. 2009; Mohee and Miller 2010; 82 

Weckwerth et al. 2011; Fairman et al. 2015, 2016; Lock and Houston 2015), the focus being 83 

primarily on precipitation mapping and convection studies, the natural strengths of radar. 84 

Of course radar data processing and interpretation are fraught with complications. Are all 85 

radars properly calibrated? Have the data been properly cleaned of ground echoes, of insects, of 86 
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birds? Is radar coverage sufficient everywhere? Are there range or topography dependent biases? 87 

These questions both complicate the interpretation of a radar echo climatology and can also be 88 

partially answered by it (see the sidebar on Data, Processing, and Quality Issues for some 89 

details). In parallel, radar has unique strengths, in particular for measuring the coverage and 90 

instantaneous intensity of precipitation, more so than for quantifying precipitation accumulation. 91 

Given the strengths and expected limitations of the available dataset, we strove to use the 92 

radar data to provide otherwise unavailable climatological information as opposed to try to 93 

displace existing good quality products such as those derived from dense gauge networks. We 94 

first focused our attention on data quality and echo coverage issues, as they determine what can 95 

and cannot be achieved with radar mosaic maps. Next we studied phenomena and processes as 96 

well as used approaches for which these complications would be minimized, such as convection-97 

related topics that are less sensitive to data coverage issues or contamination by weak echoes, 98 

and diurnal cycles that naturally cancel time-invariant biases. 99 

2. Building a radar climatology 100 

For reasons of simplicity, and because we did not have easy access to the raw radar data 101 

for the whole U.S. over such a long period, we have chosen to build the radar echo climatology 102 

from existing mosaics. But the capabilities of radars collecting the data have changed, and so has 103 

the process of cleaning radar data and making them into a national mosaic. We must hence 104 

contend with radar mosaic maps generated in real-time whose recipe has changed over the years 105 

(Table 1). This changing process with time made us shy away from studying trends over the 20-106 

year period. 107 
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In the end, mosaics from two sources were combined for this climatology. The first 108 

(October 1995 to August 2007) is the Weather Services International (WSI) NowRAD 109 

MASTER15 mosaic with a latitude-dependent spatial resolution of approximately 2 km and a 110 

reflectivity resolution of 5 dBZ until 2001 (Zhang et al. 2015) and 1 dB afterwards. The second 111 

(September 2007 to December 2015) was made by the Warning Decision Support System–112 

Integrated Information (WDSS-II; Lakshmanan et al. 2006, 2007) and has a resolution of spatial 113 

approximately 1 km. Both data sets attempt to characterize the echo strength and coverage in the 114 

lower troposphere, preferably free of non-meteorological echoes. Mosaics were analyzed at 15 115 

min resolution, to “limit” the analysis to just under 700,000 radar maps. Because of changes in 116 

data and its processing over time, we first need to examine how realistic the derived statistics 117 

look like. 118 

To get a first feel for the overall quality of the radar mosaic data, a 20-year precipitation 119 

accumulation was computed from them and compared with an analysis derived from gauges over 120 

the same period (Fig. 1, see also Fig. SB1). Here, gauge-based accumulations were available 121 

over land areas (Fig. 1b) and simplistically extrapolated over water using a 1/distance weighting. 122 

What it confirms is that in the eastern two-thirds of the conterminous United States, with the 123 

exception of the Appalachian area, radar-based precipitation Rradar and gauge-based precipitation 124 

Rgauge are comparable enough (equivalent to reflectivity biases of less than 2.5 dB) that 125 

meaningful intensity statistics can be derived there. In mountainous area, a combination of radar 126 

beam blockage and measurements far away from the ground surface limit the usefulness of radar 127 

data climatology. 128 
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3. Occurrence and intensity of precipitation 129 

A first illustration of the kind of information retrievable by years of radar data is a set of 130 

maps of the likelihood of observing surface precipitation with different reflectivities (Fig. 2). 131 

Because such statistics are likely to be wrong if systematic biases caused by beam blockage and 132 

frequent under- or over-estimation aloft affect the data, we masked areas where radar-estimated 133 

precipitation differ too much from gauge-estimated precipitation. We arbitrarily chose to stripe 134 

in gray areas that did not meet the criteria 2 3⁄ 𝑅𝑔𝑎𝑢𝑔𝑒 < 𝑅𝑟𝑎𝑑𝑎𝑟 < 3 2⁄ 𝑅𝑔𝑎𝑢𝑔𝑒, as we believe we 135 

could not trust derived statistics outside of that interval. Precipitation exceeding the reflectivity 136 

of light snow and moderate drizzle (Z ≥ 5 dBZ, corresponding to about 0.1 mm/h, Fig. 2a) is 137 

most frequent in mid-latitude regions to the north, especially near the oceans or the Great Lakes 138 

area. It is observed on average 3 hrs a day immediately east of each Great Lakes and 4 hrs a day 139 

just east of Seattle on the foothills of the Cascades, but 30 mins a day in Los Angeles and 140 

1.25 hrs in Miami. Note that the “bullseyes” patterns around each radar in the Great Lakes area 141 

primarily reflect the difficulty of the mosaics to correctly account for weak snow and drizzle at 142 

far ranges. As we increase the reflectivity threshold, the area of higher occurrence shifts 143 

southward. Significant convective rainfall (≥ 45 dBZ, corresponding to about 20 mm/h) is rarely 144 

observed on the West Coast, detected 3.5 hours per year in Buffalo, but 16 hours per year in 145 

Miami. If we further increase the threshold to 60 dBZ (Fig. 2c), a reflectivity that can only be 146 

associated with hail (Fabry 2015), the peak of occurrence shifts towards the west of the Central 147 

Great Plains where it averages 10 mins per year. Interestingly, the map compares well with that 148 

of severe hail occurrence made by the Storm Prediction Center (SPC) from 48 years of 149 

significant hail reports (available at the time of this writing at 150 

http://www.srh.noaa.gov/images/oun/spotter/sighail.jpg), except that it shifts the hail capital 151 
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away from central Oklahoma and is more aligned with the much shorter hail climatology of 152 

Cintineo et al. (2012). 153 

Precipitation occurrence has a strong annual cycle, and this is well documented in 154 

precipitation climatology maps. The frequency at which convection occurs also follows an 155 

annual cycle, but different areas see a peak in convection at different times of the year (Fig. 3). 156 

For example, we know that convection peaks in late spring in the Central Plains when upper-157 

level support is still important, later elsewhere for which strong upper level support is less 158 

critical to the occurrence of convection. Thanks to images like Fig. 3, the results of all these 159 

processes can be nicely illustrated. 160 

 While no truly surprising results came out of this exercise, this section illustrates the 161 

value of using long-term statistics derived from radar mosaics for meteorological teaching 162 

purposes. We will now shift our attention towards convection occurrence. 163 

4. Convection occurrence and diurnal cycle 164 

Convective rain has a strong diurnal cycle. The diurnal cycle of summer convection in 165 

the continental United States (Fig. 4, electronic supplement) has become the classic result of 166 

radar-based climatology since Carbone et al. (2002, 2008). Figure 4 illustrates how convection 167 

forms at various locations during daytime, in particular over the Rockies, and later on the Great 168 

Plains, and then travels eastward during the night. Particularly striking for basic meteorology 169 

teaching is the effect of sea- and land-breezes on the timing of convection from the Gulf coast of 170 

Texas to the Carolinas, as well as the local hotspots forming immediately east of peaks of the 171 

Rocky Mountains where convection starts first from 18:00 UTC fed by valley breezes. The 172 
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electronic supplement showing an animation of the diurnal cycle of convection in the warm 173 

season is particularly telling, and has a richness that is difficult to describe; if a picture is worth a 174 

thousand words, that particular animation could feed a small textbook. 175 

Among the remarkable results from the diurnal cycle of convection is the rapid morning 176 

decimation of nighttime convection, especially in the Midwestern United States. On average, 177 

during the night, convection is tracking eastward with only a very gradual decay as can be seen 178 

from the limited change in echo patterns between Fig. 4f and Fig. 4a. This is likely associated 179 

with the maintenance of convective instability over long periods thanks to low-level jets (e.g., 180 

Uccellini and Johnson 1979; Kumjian et al. 2006; Coniglio et al. 2007). The local maximum in 181 

convection occurrence moving from the Great Plains however decays very rapidly in the 182 

morning in the Midwest, showing that the added solar energy destroyed the support for nighttime 183 

convection well before support for daytime convection can be re-established. Of particular 184 

interest is that convection occurrence seems to diminish particularly along some specific 185 

corridors such as the Mississippi, lower Missouri, and Ohio river valleys, perhaps because the 186 

descent branches of the solenoid circulations associated with these valleys either suppress the 187 

advecting storms or prevent the replacement of older naturally decaying storms by fresh new 188 

ones. 189 

The various processes affecting the diurnal cycle of convection also shape the time at 190 

which convection is most likely to be observed (Fig. 5a): Morning over the warm waters of the 191 

south, early afternoon just east of major peaks in the Rockies and on the southern coasts, late 192 

afternoon in the east, in the night in the Central Plains and over the Great Lakes, with two weak 193 

maxima being observed in the Midwest. In addition of being of meteorological interest, this 194 
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information could have practical importance, such as for hazard preparedness purposes: for 195 

example, if flash flooding is more likely to occur at night in some areas, additional training may 196 

be needed for the nighttime flood management crews who are the most likely to face a difficult 197 

situation. 198 

Patterns of time of peak convection occurrence such as Fig. 5a arise from the blend of 199 

two somewhat different phenomena: “daytime” convection where surface heating plays a critical 200 

role, and “nighttime” convection where atmospheric destabilization is dominated by processes 201 

occurring aloft. If we want to focus on only one phenomenon, say daytime convection, we found 202 

that looking for temporal maxima during the day gives a misleading picture. For such a purpose, 203 

focusing on the time of fastest intensification of convection occurrence proved to be a better 204 

alternative, though it is a considerably noisier quantity to estimate. By computing the rate of 205 

increase in occurrence of convection over 4-hr windows, we were able to obtain Fig. 5b that 206 

illustrates how daytime convection starts earlier in some areas compared to others. In particular, 207 

over the Great Plains and east of the Appalachians, convection generally starts in late afternoon 208 

instead of in early afternoon in other regions away from strong orography and the influence of 209 

water bodies. There are also many other smaller-scale patterns whose statistical and physical 210 

significance remains uncertain. 211 

What we also found remarkable is that it does not require a large topographic feature to 212 

affect the occurrence of convection. Changes in the timing and frequency of occurrence of 213 

convective events (Fig. 2b) occur associated with lakes and topographic features that are not very 214 

large:  for example, Lake Pontchartrain (southern Louisiana) reduces afternoon thunderstorm 215 

occurrence (Fig. 5a) while the Cumberland Plateau (eastern Tennessee) experiences an earlier 216 
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onset of daytime thunderstorms than neighboring areas (Fig. 5b). Other man-made reservoirs 217 

may also make such changes (Haberlie et al. 2016). One of the largest unexpected signature 218 

found on such mosaic maps was a local minimum in mid-summer afternoon convection 219 

associated with the Mississippi valley where the combination of a) weaker initial static stability 220 

as the surrounding elevated terrain protruded above the nocturnal inversion and b) the 221 

mechanical lifting of impinging flow over the terrain stimulated convection around the valley 222 

and created a local minimum within it (Kirshbaum et al. 2016). Many more possibly significant 223 

local signatures can be seen on this map that are not clearly associated with definite topographic 224 

features and may deserve to be studied. 225 

5. The challenge of finding meaningful signals 226 

The above being said, the search for meaningful signal from long-term radar data is 227 

fraught with challenges. Some are related to the measurement of rainfall from radar mosaics: The 228 

location of radar with respect to the features of interest, data availability, terrain blockage, 229 

ground clutter, and the vertical profile of reflectivity all introduce biases and other artifacts in the 230 

radar data, many of which can be seen on the maps in Figs. 1 and 2. To help control for these 231 

artifacts, the use of complementary data that have different measurement problems such as 232 

lightning maps helps. Other challenges are due to properties of atmospheric patterns themselves. 233 

An intrinsic property of atmospheric and geophysical fields is that they are correlated in 234 

space. For example, if it has been anomalously wet in New York City, it has very likely been the 235 

case in Newark 15 km to the west, and probably also in Philadelphia 130 km to the southwest. 236 

These fields are also correlated in time: if it rains now, there is a much higher chance than 237 

climatology that it will rain an hour from now, or even a day from now. The extent of the 238 
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correlation of precipitation patterns in time can be illustrated using power spectra of radar-239 

derived precipitation such as the one in Fig. 6: As long as power spectra have a non-zero slope, 240 

the patterns observed at one time scale are correlated with those at other scales. The correlations 241 

in space and time are clearly linked: it is generally the same propagating weather systems, or the 242 

same instabilities and forced disturbances, that will alternatively dictate precipitation patterns in 243 

Philadelphia and Newark before they affect New York City. 244 

A consequence of the spatiotemporal correlations in atmospheric fields is that it creates 245 

many convincing-looking patterns by chance that make the detection of meaningful signals more 246 

challenging. Classical statistical approaches rely on two assumptions generally violated in 247 

atmospheric fields, independence and stationarity. Independence between samples at two 248 

locations or over two periods implies that events affecting one location do not affect the other; 249 

with weather systems extending up to continental scales and oscillations such as the El Niño 250 

Southern Oscillation lasting years, this is clearly not the case. Stationarity implies that statistical 251 

properties such as mean and variance do not vary over time, while they clearly vary over the 252 

course of seasons and years. Independence of samples and stationarity of standard deviations are 253 

the bedrock on which are based statistical tests such as the computation of p-values (the 254 

probability that two samples could occur by chance from one process having a unique mean and 255 

variance) as well as analysis approaches such as the resampling of data sets to generate new 256 

possible samples using bootstrapping or permutation methods (Efron and Tibshirani 1992; 257 

Manly 2006). The net result is that if these tests are not run appropriately, it is very easy to 258 

wrongly find that two samples are unlikely to come from one process when in fact they may 259 

(Daniel et al. 2012). 260 
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The search for a significant weekly cycle in precipitation using remote-sensed data (e.g., 261 

Bell et al. 2008; Tuttle and Carbone 2011) provides such an example. If you were to look for the 262 

difference between weekday and weekend precipitation occurrence using the 20-yr period 263 

between 1996 and 2015, you would get a map like Fig. 7a: In the northeast, near the area of peak 264 

deposition of sulfates and nitrates associated with combustion (e.g., Zhang et al. 2012), 265 

precipitation occurrence is 10-15% more frequent on Tuesdays to Fridays than on Saturdays to 266 

Mondays. If we focus on severe convection occurrence (Fig. 7b), or on rainfall accumulations 267 

associated with convection that show similar patterns, there is an overall tendency for greater 268 

occurrence of 50 dBZ echoes in the Gulf Coast on weekdays than on weekends. Having gotten 269 

very excited ourselves by such a finding (Fabry et al. 2013) and its possible link with the weekly 270 

cycle of particulate emissions, we felt the need to investigate it further. 271 

The uncertainty and the spatial variability of patterns of precipitation are difficult to study 272 

quantitatively because of the episodic yet spatiotemporally correlated nature of precipitation as 273 

well as its non-Gaussian statistics. Given such a beast, one of the best and most common 274 

technique to study the significance of a signal uses the bootstrap method: At each location, the 275 

available sample of data, here the 20 years of reflectivity data, is resampled in two or more 276 

categories multiple times to generate a large number of plausible time series. In this example, 277 

plausible datasets of two categories, weekdays (Tuesdays to Fridays) and weekends (Saturdays 278 

to Mondays), are created by randomly resampling available data on those days. These new 279 

plausible datasets of similar length to the original one are then used to evaluate the likelihood 280 

with which the two categories can have similar or different values and be statistically different 281 

with a certain probability. What Fig. 6 reveals is that cycles of seven days are not quite on the 282 

flat section of the power spectra of precipitation, which implies that there is some correlation left 283 
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between successive seven day cycles. In other words, given the weather on a particular Sunday, 284 

the weather on the next Wednesday will be a subset of the weather expected for all Wednesdays, 285 

even given the same climatology. Hence, if for a given Sunday any Wednesday is chosen as part 286 

of a data resampling process, the difference between Wednesdays and Sundays will be 287 

overestimated compared to what it can be in reality. Therefore, when resampling the dataset, it is 288 

essential to do it in blocks that are longer than a week to ensure that a plausible Wednesday 289 

follows the chosen Sunday. For the resampling to have any value though, there must be enough 290 

useful data blocks to get some useful randomization. What our experience and that of others 291 

(Daniel et al. 2012) show is that two-week blocks are a good compromise. In parallel, it is also 292 

essential to sample all months proportionally in order to respect the climatology of annual cycles. 293 

When these two factors are properly taken care of, it is found that the minimum in weekend 294 

precipitation in the North East is a 2-σ event (p=0.05), hardly unexpected to occur by chance 295 

given the number of mostly independent local maxima and minima one can observe on this map. 296 

But the fact that this signature occurred at a physically plausible location pushed us to continue 297 

looking for clues. Following additional investigations, several other factors reinforced the 298 

likelihood that this pattern is an accidental signature: a) Signatures of similar strengths can be 299 

obtained when looking for meaningless 6-day cycles  (Figs. 7b and 7d), even if the rainfall 300 

patterns are slightly more correlated over six day than over seven day periods; b) the power 301 

spectra of precipitation occurrence and amount show no peak for 7-day cycles (inset of Fig. 6); 302 

and, c) an analysis of gauge data going back further in time shows that the difference observed in 303 

the past 20 years in the North East has been an anomaly even if aerosols were as much or more 304 

prevalent 30 years ago. Noting again well after Thomas Henry Huxley (1822-1895) that “the 305 
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great tragedy of Science [is] the slaying of a beautiful hypothesis by an ugly fact”, we finally 306 

accepted that this particularly enticing signature was probably a fluke. 307 

Trying to learn from that experience, we wondered how strong a locally-forced 308 

precipitation pattern has to be to be detected amidst patterns caused by natural variability. To 309 

answer this question, we must first determine the magnitude of that natural variability, that we 310 

define as the one associated with the random passage of weather events, separate from the one 311 

associated with the spatial or temporal variability of climate. Climate-related variability is 312 

expected to have long time scales (from subseasonal periods to years), and it has left its mark on 313 

the power spectra of Fig. 6 through a strong annual peak (with its second and third harmonics) 314 

together with gradually increasing variability with increasing years. Weather systems have at 315 

most continental scales and affect a given area for a few days at most. They are characterized by 316 

smaller-scale structures embedded within larger ones as illustrated by the sloped power spectra 317 

for periods shorter than a few days. In between the “weather” and the “climate” regime, the 318 

temporal variability of precipitation is dictated by the mostly random uncorrelated sequence of 319 

weather events as illustrated by the constant power spectrum. This peculiar split of frequency 320 

between weather and climate variability can be taken advantage of to estimate the magnitude of 321 

the variability in precipitation associated with weather. 322 

Let us assume that the precipitation sampled at each location over 20 years is on average 323 

a standard deviation σ away from the true climatology that would have been measured with an 324 

infinitely long dataset in an unchanging climate. Let us split the available sample into two 325 

halves, alternatively binning one week of data in one category and the next week of data in the 326 

other, as if we were trying to look for a 14-day cycle. What this process does is to separate 327 
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equally among the two halves the variability in time associated with climate processes and with 328 

changes in data processing over the years, while randomly assigning the spatio-temporal 329 

variability of weather events among the two halves. Since the weather component, responsible 330 

for the average to be a standard deviation σ away from the true climatology in the original 331 

dataset, is now split in two independent half-samples, the average of each of those half samples 332 

will now be on average √2𝜎 away from the true climatology, the variance on the average of 333 

these half-sized datasets being doubled. If we then subtract those two half-sample averages, the 334 

result will have a standard deviation of 2σ spatially because the variance on the result of the 335 

subtraction is doubled again. The resulting field will have numerous maxima and minima than 336 

can be used to estimate the correlation matrix on the “noise” induced by weather on the 337 

climatology while the local average-squared value can be used to estimate (2σ)2 and then 2σ. 338 

This can be repeated for cycle periods slightly greater or smaller than 2 weeks to get additional 339 

semi-independent estimates of 2σ. 340 

We applied this procedure to evaluate the significance of the effect of cities on the 341 

occurrence of severe convection (Lowry 1998; Sheppard 2005). We first looked for all US cities 342 

above 1 million inhabitants that were away from oceans and lakes whose breeze would confuse 343 

the precipitation analysis, and also away from mountains and other obstacles causing beam 344 

blockage and significant clutter. The resulting 13 cities selected are hence mostly concentrated 345 

on the eastern half of the continent and away from the coasts. The summer data (May to August) 346 

for the 13 selected cities (Atlanta, Birmingham, Cincinnati, Columbus, Dallas, Denver, 347 

Indianapolis, Kansas City, Memphis, Minneapolis, Nashville, Oklahoma City, and Pittsburgh) 348 

were then averaged with the city center in the middle. The resulting map, shown in Fig. 8a, 349 

illustrates that over and immediately east of cities, severe convection occurs 10% more 350 
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frequently than in surrounding areas (0.057 % of the time over and east of cities compared to 351 

0.052% of the time around the cities). If we perform the half samples differencing test, we find 352 

that the 2σ uncertainty on this pattern is about 0.0023%, making the strength of the city signal for 353 

each pixel four standard deviations above the expected uncertainty. With precipitation instead of 354 

severe convection, the signature of cities is five standard deviations above the expected 355 

uncertainty due to the random passage of weather events. What this suggests is that the signature 356 

we observe above cities and east of cities is significant in the dataset, but the cause of the 357 

signature could have many origins. To confirm that this signature is due to the effect of cities, we 358 

computed similar mosaics for nighttime (0:00-8:00 solar) and afternoon (12:00-20:00), and 359 

found that the signature was strongest in the afternoon when the air affected by the city can feed 360 

storms, smallest at night when inversions tend to isolate storms from surface influences (Figs. 9b 361 

and 9c). Finally, to ensure that measurement biases are not fooling us, radars tending to gravitate 362 

not far from cities after all, we performed the same mosaics with 23 years of lightning data 363 

(1990-2012, NCDC 2012) and obtained similar results (Figs. 8d-8f). The convection and 364 

precipitation enhancement associated with cities appears to be real. 365 

An interesting observation we can make on Fig. 8a is that even though the 2σ- 366 

uncertainty due to weather is only 0.0023%, spatial patterns of larger amplitudes can be observed 367 

on the mosaic maps. Those patterns are caused by all other confounding effects from varying 368 

radar coverage to variations in precipitation climatology caused by other processes that we tried 369 

to control for by selecting cities and averaging them. The 4σ-signature observed only appeared 370 

because we combined the data from 13 cities and had an effective 250-yr dataset to analyze; with 371 

only 20 years of data even at such high resolution, it would be difficult for the influence of 372 

individual cities to exceed the expected variability caused by the random passage of storms. This 373 
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result partly explains the lack of consistency of findings obtained on the influence of cities on 374 

precipitation. 375 

6. Future 376 

The derivation of precipitation and convection statistics done above is only a small sample of 377 

what is possible to do with many years of radar data over large areas. Recently, a reanalysis of 378 

radar data combined with other data sources (Ortega et al. 2015) has become available and adds 379 

Doppler information, while other efforts seek to better combine the instantaneous estimates of 380 

radar with the stability of gauges (e.g., Nelson et al. 2010). These represent our most complete 381 

information on severe storms and their evolution, and possibilities are limitless for people with 382 

the imagination and drive to mine such a dataset. What will you do with it? 383 

Acknowledgements 384 

Sincere thanks to everyone who participated in the creation of this dataset and its 385 

collection at McGill, including Weather Services International, the Warning Decision Support 386 

System -- Integrated Information group, and Weather Decision Technologies for their great work 387 

creating and relaying these mosaics, and Urs Germann and Marc Berenguer for helping with the 388 

dataset acquisition at McGill University. This project was undertaken with the financial support 389 

of the Government of Canada provided through the Department of the Environment and Climate 390 

Change as well as through the Natural Science and Engineering Research Council of Canada.  391 

  392 



19 

References 393 

Applequist, S., A. Arguez, I. Durre, M.F. Squires, R.S. Vose, and X. Yin, 2012: 1981–2010 U.S. 394 

hourly normals. Bulletin of the American Meteorological Society, 93, 1637–1640, 395 

doi:10.1175/BAMS-D-11-00173.1. 396 

Arguez, A., I. Durre, S. Applequist, R.S. Vose, M.F. Squires, X. Yin, R.R. Heim, Jr., and T.W. 397 

Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bulletin of the 398 

American Meteorological Society, 93, 1687–1697, doi:10.1175/BAMS-D-11-00197.1. 399 

Arnold, D.L., 2005: Radar, climatic applications. In the Encyclopedia of World Climatology, 400 

Oliver, J.E. (Ed.), Springer, doi:10.1007/1-4020-3266-8_166. 401 

Atlas, D. (Ed.), 1990: Radar in Meteorology. American Meteorological Society, Boston, 806 pp. 402 

Bell, T.L., D. Rosenfeld, K.-M. Kim, J.-M. Yoo, M.-I. Lee, and M. Hahnenberger, 2008: 403 

Midweek increase in U.S. summer rain and storm heights suggests air pollution 404 

invigorates rainstorms. J. Geophys. Res., 113, D02209, doi: 10.1175/1520-405 

0469(2002)059<2033:IOPAWW>2.0.CO;2. 406 

Carbone, R.E., J.D. Tuttle, D. Ahijevych, and S.B. Trier, 2002: Inferences of predictability 407 

associated with warm season precipitation episodes. J. Atmospheric Sci., 59, 2033–2056, 408 

doi:10.1175/1520-0496(2002)059<2033. 409 

Carbone, R.E., and J.D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: the diurnal 410 

cycle. Journal of Climate, 21, 4132–4146, doi:10.1175/2008JCLI2275.1. 411 



20 

Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An 412 

objective high-resolution hail climatology of the contiguous United States. Wea 413 

Forecasting, 27, 1235–1248, doi:10.1175/WAF-D-11-00151.1. 414 

Clayton, H. H., 1894: Six and seven day weather periods. Amer. J. Science, 3rd ser., 47, 223–231. 415 

Coniglio, M. C., H. E. Brooks, S. J. Weiss, and S. F. Corfidi, 2007: Forecasting the maintenance 416 

of quasi-linear mesoscale convective systems. Wea. Forecasting, 22, 556–570, doi: 417 

10.1175/WAF1006.1. 418 

Daniel, J., R. Portmann, S., Solomon, and D. Murphy, 2012: Identifying weekly cycles in 419 

meteorological variables: The importance of an appropriate statistical analysis. J. 420 

Geophys. Res., 117, D13203, doi:10.1029/2012JD017574. 421 

Efron, B., and R. J. Tibshirani, 1992: An Introduction to the Bootstrap. Chapman and Hall/CRC, 422 

480 pp. 423 

Fabry, F., 2015: Radar Meteorology – Principles and Practice. Cambridge University Press, 272 424 

pp. 425 

Fabry, F., Q. Cazenave, and R. Basivi, 2013: Echo climatology, impact of cities, and initial 426 

convection studies: New horizons opened using 17 years of conterminous U.S. radar 427 

mosaics. Proceedings, 36th Conf. on Radar in Meteorology, Breckenridge CO, 16-20 428 

September 2013, paper 10.1, 429 

https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228783/EchoClimat430 

oEtcRad36.pdf. 431 



21 

Fairman, J. G. Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2015: A radar-432 

based rainfall climatology of Great Britain and Ireland. Weather, 70(5), 153–158, 433 

doi:10.1002/wea.2486. 434 

Fairman, J. G. Jr., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2016: 435 

Climatology of banded precipitation over the contiguous United States. Mon. Wea. Rev., 436 

144, 4553–4568, doi:10.1175/MWR-D-16-0015.1. 437 

Haberlie, A. M., W. S. Ashley, A. J. Fultz, and S. M. Eagan, 2016: The effect of reservoirs on 438 

the climatology of warm-season thunderstorms in Southeast Texas, USA. Int. J. 439 

Climatol., 36, 1808–1820. doi:10.1002/joc.4461. 440 

Horton, R.E., 1941: An approach toward a physical interpretation of infiltration-capacity. Soil 441 

Science Society of America Journal, 5(C), 399–417. 442 

Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar-measured amounts 443 

of precipitation. Preprints, 14th Radar Meteorology Conf., Tucson, AZ, Amer. Meteor. 444 

Soc., 237–238. 445 

Kirshbaum, D., F. Fabry, and Q. Cazenave, 2016. The Mississippi Valley convection minimum 446 

on summer afternoons: Observations and simulations. Mon. Wea. Rev., 144, 263–272, 447 

doi:10.1175/MWR-D-15-0238.1. 448 

Kumjian, M., J. Evans, and J. Guyer 2006: The relationship of the Great Plains low level jet to 449 

nocturnal MCS development. 23rd Conf. on Severe Local Storms, AMS, St. Louis, MO. 450 



22 

Lakshmanan V., T. Smith, K. Hondl, G.J Stumpf, and A. Witt, 2006: A real-time, three 451 

dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, 452 

velocity and derived products. Wea. Forecasting, 21, 802–823, doi: 10.1175/WAF942.1. 453 

Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007: An automated technique to 454 

quality control radar reflectivity data. J. Applied Meteorol. Climatol., 46, 288–305, 455 

doi:10.1175/JAM2460.1. 456 

Lock, N.A., and A.L. Houston, 2015: Spatiotemporal distribution of thunderstorm initiation in 457 

the US Great Plains from 2005 to 2007. Int. J. Climatol., 35, 4047–4056, doi: 458 

10.1002/JOC.4261. 459 

Lowry, W.P., 1998: Urban effects on precipitation amount, Prog. Phys. Geogr., 22, 477–520, 460 

doi:10.1177/030913339802200403. 461 

Manly, B. F. J., 2006: Randomization, Bootstrap and Monte Carlo Methods in Biology, Third 462 

Edition. Chapman and Hall/CRC, 480 pp. 463 

Mohee, F.M., and C. Miller, 2010: Climatology of thunderstorms for North Dakota, 2002–06. J. 464 

Applied Meteor. Clim., 49, 1881–1890, doi:10.1175/2010JAMC2400.1. 465 

National Climate Data Center, 2012: Lightning Products and Services – Gridded Summaries. 466 

Accessed July 2013. [Available online at: http://www.ncdc.noaa.gov/data-access/severe-467 

weather/lightning-products-and-services] 468 

Nelson, B.R., D-J. Seo, and D. Kim, 2009: Multisensor precipitation reanalysis. J. Hydrometeor., 469 

11, 666–682, doi:10.1175/2010JHM1210.1. 470 



23 

Ortega, K. L., T. M. Smith, S. E. Stevens, S. S. Williams, D. M. Kingfield, and R. A. Lagerquist, 471 

2015: The multi-year reanalysis of remotely sensed storms (MYRORSS): Data 472 

processing and severe weather projects. Presentation at the 37th Conf. on Radar 473 

Meteorology, Norman OK, 14-18 September 2015, 474 

https://ams.confex.com/ams/37RADAR/webprogram/Handout/Paper275486/205_ortega_475 

et_al_myrorss.pdf.  476 

Overeem, A., I. Holleman, and A. Buishand, 2009: Derivation of a 10-year radar-based 477 

climatology of rainfall. J. Applied Meteor. Clim., 48, 1448–1463, doi: 478 

10.1175/2009JAMC1954.1. 479 

Parker, M. D., and J. C. Knievel, 2005: Do meteorologists suppress thunderstorms?: Radar-480 

derived statistics and the behavior of moist convection. Bull. Amer. Meteor. Soc., 86, 481 

341–358, doi:10.1175/BAMS-86-3-341. 482 

Parker, M. D., and D. A. Ahijevych, 2007: Convective episodes in the East-Central United 483 

States. Mon. Wea. Rev., 135, 3707–3727, doi:10.1175/2007MWR2098.1. 484 

PRISM, 2016: Annual- and monthly-averaged precipitation dataset AN81m at 4 km resolution 485 

over the conterminous United States. Subset used: 1996–2015, 486 

http://www.prism.oregonstate.edu/recent/, accessed 30 May 2016. 487 

Riggs, L.P, and L.E. Truppi, 1957: A survey of radar climatology. Proceedings of the Sixth 488 

Weather Radar Conference, Cambridge, MA, March 26-28 1957, 227-232. 489 



24 

Sanchez-Lorenzo, A., P. Laux, H.-J. Hendricks-Franssen, J. Calbo, S. Vogl, A. K. Georgoulias, 490 

and J. Quaas, 2012: Assessing large-scale weekly cycles in meteorological variables: A 491 

review. Atmos. Chem. Phys. Discuss., 12, 1451–1491, doi:10.5194/acpd-12-1451-2012. 492 

Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and 493 

recommendations for the future. Earth Interact., 9, 1–12, doi:10.1175/EI156.1. 494 

Tuttle, J. D., and R. E. Carbone, 2011: Inferences of weekly cycles in summertime rainfall. J. 495 

Geophys. Res., 116, D20213, doi:10.1029/2011JD015819. 496 

Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet 497 

streaks and implications for the development of severe convective storms. Mon. Wea. 498 

Rev., 107, 682-703, doi:10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2. 499 

Wakimoto, R.M., and R. Srivastava (Eds.), 2003: Radar and Atmospheric Science – A Collection 500 

of Essays in Honor of David Atlas. American Meteorological Society, Boston, 270 pp. 501 

Weckwerth, T.M., J.W. Wilson, M. Hagen, T.J. Emerson, J.O. Pinto, D.L. Rife, and L. Grebe, 502 

2011: Radar climatology of the COPS region. Quart. J. Royal Meteor. Soc., 137, 31–41, 503 

doi:10.1002/QJ.747. 504 

Wilson, J.W., 1977: Effect of Lake Ontario on precipitation. Monthly Weather Review, 105, 207–505 

214, doi:10.1175/1520-0493(1977)105<0207. 506 

Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger, C. C. Carouge, A. van 507 

Donkelaar, Y. X. Wang, and D. Chen, 2012: Nitrogen deposition to the United States: 508 



25 

Distribution, sources, and processes. Atmos. Chem. Phys. 12, 4539–4554, doi: 509 

10.5194/acp-12-4539-2012. 510 

Zhang, Y., D. Kitzmiller, D. Seo, D. Kim, and R. Cifelli, 2015: Creation of multisensor 511 

precipitation products from WSI NOWrad reflectivity data. J. Hydrol. Eng., E4015001, 512 

doi: 10.1061/(ASCE)HE.1943-5584.0001216. 513 

  514 



26 

Sidebar (Appendix) 515 

Data, Processing, and Quality Issues 516 

Radar measures the echo strength, or the equivalent radar reflectivity factor (often simply 517 

called “reflectivity”) from all the targets large enough to be detected. The actual reflectivity of a 518 

target depends on its nature (rain, snow, insects, birds…) and its vertical structure (affected by 519 

precipitation growth, the presence of melting particles, etc.). Our ability to measure that 520 

reflectivity is affected by, among others, radar sensitivity, calibration, and scanning strategy, 521 

blockage by obstacles, and how chirurgically ground clutter can be removed without affecting 522 

the echo strength from other targets. As a result, raw reflectivity radar images and statistics 523 

derived from them can be “dirty”. Even if we never expected rainfall accumulations derived 524 

from gauges and from radar mosaics alone to match perfectly, a comparison between these two 525 

(Fig. SB1) can help reveal which problems likely affect more the final statistics. The effect of 526 

blockage by topography and uneven radar coverage stand out as expected, and so do a few pixels 527 

of persistent clutter; a couple of abnormally “hot” (read “overestimating”) radars can be spotted, 528 

such as in northwestern Texas; and if one knows the location of individual radars (see Fig. 1a), 529 

one may start to notice some systematic range-dependent behavior that are more visible in Fig. 530 

SB2. 531 

The cleaning of reflectivity maps at the radar data processor site and in the process of 532 

making radar mosaics has been an evolving endeavor: For example, at the time of this writing, 533 

most radars are transitioning to the 17th major revision to the radar data processing system since 534 

the beginning of the WSR-88D program. The massive size of the current radar dataset (we 535 

evaluated that it would take two years non-stop just to download the data on our university 536 
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network) makes the reprocessing and regeneration of mosaics possible only by large 537 

organizations. For radar climatology work, we must hence largely rely on mosaic maps that were 538 

generated in real-time with the approaches used at the time. Finally, mosaic products are often 539 

put together with a given goal in mind, e.g., obtaining reflectivity at a given height or at the 540 

surface (like the one made by WSI, top of Fig. SB2) versus obtaining reflectivity at the lowest 541 

possible level (like the one made by WDSSII, bottom of Fig. SB2), and that goal also affects the 542 

climatology obtained as the average estimated rainfall differs by 11% between the two. In our 543 

case, availability of mosaics dictated the use of two different datasets over two different periods 544 

(see Table 1). The only “reprocessing” of the nearly 700,000 mosaics maps used in this study 545 

was the suppression of maps badly affected by blunders (e.g., incorrect remapping, or incorrect 546 

reflectivities): an automatic algorithm first flagged times of suspiciously rapid changes in echo 547 

statistics; then we manually looked at those time periods to determine what caused these 548 

anomalies, and removed clearly damaged mosaic maps. 549 

The net result is that any climatological analysis of radar data from ready-made mosaics 550 

will be imperfect and we should accept those imperfections. These will determine what useful 551 

results can be obtained as well as how to interpret them. Hence, except for the computation of 552 

frequency of occurrence of different echo intensities (Fig. 2), we focused our analysis on 553 

processes less likely to be affected by data quality issues, primarily relative changes in annual 554 

and daily cycles for which many biases get canceled out, and focusing on convection not affected 555 

by weak non-weather echoes. Also, data in areas where the long-term accumulation of 556 

precipitation differs significantly from that observed with gauges are extremely doubtful and 557 

have been masked in most figures. 558 

559 
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Table 560 

TABLE 1: Mosaic radar maps used in this study (0.0181°of latitude = 2 km). 

Period Source Resolution Processing Stated goal 

10/1995-12/2001 Weather Services 

International 

(WSI) 

5 dB(Z); 0.0181° lat. 

* 0.0191° lon.; 

15 min 

Zhang et al. 

(2015) 

Estimate surface 

reflectivity 

02/2002-08/2007 Weather Services 

International 

(WSI) 

1 dB(Z); 0.0181° lat. 

* 0.0191° lon.; 

15 min 

 Estimate surface 

reflectivity 

09/2007-03/2011 NSSL / WDSSII  <.5 dB(Z); 0.01° lat. 

* 0.01° lon.; 5 min 

Lakshmanan et 

al. (2006, 2007) 

US low altitude 

Mosaic the 

lowest-available 

reflectivity 

04/2011-12/2015 NSSL / WDSSII via 

Weather Decision 

Technologies 

.33 dB(Z); 0.009° 

lat. * 0.0116° lon.; 

5 min 

Lakshmanan et 

al. (2006, 2007) 

US low altitude 

Mosaic the 

lowest-available 

reflectivity 

  561 
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Figure captions 562 

Fig. 1. a) WSR-88D radar coverage over the conterminous United States (original image 563 

courtesy of NOAA); b) Computed annual precipitation from radar mosaics between 1996 and 564 

2015 using the Joss and Waldvogel (1970) reflectivity (Z) to rainfall rate (R) relationship 565 

Z = 300R1.5, limiting the peak rainfall to 100 mm hr−1; c) Gauge-derived annual precipitation 566 

over the same period as derived from the data of the PRISM Climate Group of the Oregon State 567 

University (PRISM 2016). 568 

 569 

Fig. 2: Frequency of observation of echoes of a) at least 5 dBZ, b) at least 45 dBZ, and c) at least 570 

60 dBZ. Areas stripped in gray did not meet the criteria 2 3⁄ 𝑅𝑔𝑎𝑢𝑔𝑒 < 𝑅𝑟𝑎𝑑𝑎𝑟 < 3 2⁄ 𝑅𝑔𝑎𝑢𝑔𝑒. 571 

Artifact-wise, the fingerprints of individual radars are more obvious at low reflectivity than at 572 

high reflectivity. Meteorology-wise, precipitation is more frequent in the mid-latitudes (West 573 

Coast & north east). Convective rain occurrence is highest on the Gulf Coast and southern 574 

Atlantic Coast where sea breezes often play a major role in convection initiation, and lowest on 575 

the West Coast bathed by cold ocean water. Hail echoes are most frequent in the Great Plains. 576 

Note how the three images show very different patterns. For reference, a frequency of 4% 577 

corresponds to 1 hr day−1, 0.1% is 9 hrs yr−1, and 0.001% is 5 min yr−1. 578 

 579 

Fig. 3: Contrast between the frequency of echoes exceeding 45 dBZ in a) late spring (May and 580 

June) and b) middle of the summer (July and August). Changes in patterns of convection 581 

between the two seasons reflect the changes in the larger-scale processes driving them. 582 
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 583 

Fig. 4: Diurnal cycle of the frequency of occurrence of echoes exceeding 40 dBZ between the 584 

months of April and September starting from the late night on the upper left (2:00-5:45 CST in 585 

the middle of the continent) and ending on the middle of the night on the lower right. 586 

 587 

Fig. 5: Solar time of a) the preferred occurrence of echoes exceeding 40 dBZ in the warm season, 588 

and of b) the fastest daytime growth in the occurrence of such echoes. In both plots, a two-589 

dimensional color scale is used to characterize the timing of events: The hue or frequency of the 590 

color used shows the average time or the time of the fastest occurrence increase (e.g., reds 591 

indicating peak of occurrence or fastest increase in the afternoon); the saturation and brightness 592 

of the color illustrates whether the diurnal cycle of convection or the rate of convection increase 593 

is strong and unimodal (saturated bright colors) or weak or multimodal (unsaturated dark colors). 594 

Black pixels indicate areas too contaminated by clutter or without enough data to make a proper 595 

peak time determination. 596 

 597 

Fig. 6: Power spectra of 20-yr long time series of radar-derived precipitation rate (blue curve) 598 

and fractional area of precipitation occurrence (≥ 5 dBZ, red curve). Each curve is an average of 599 

spectra for 554 small areas 0.25° longitude by 0.25° latitude wide (approximately 24-by-28 km 600 

in size) centered on every 1° in longitude and latitude in the eastern two-thirds of the 601 

conterminous United States where radar coverage is expected to be good (2 3⁄ 𝑅𝑔𝑎𝑢𝑔𝑒 <602 

𝑅𝑟𝑎𝑑𝑎𝑟 < 3 2⁄ 𝑅𝑔𝑎𝑢𝑔𝑒). For time scales under a week, sloping spectra characteristic of 603 
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precipitation structures embedded within smaller/shorter precipitation structures can be observed. 604 

Superposed on these, the signature of diurnal and annual cycles and some of their harmonics 605 

(half and third of a day and a year) can be detected. In inset, a zoom of the curves around the 606 

one-week period has been added. 607 

 608 

Fig. 7: Patterns of relative difference in the occurrence of echoes exceeding 5 dBZ (left column) 609 

and 50 dBZ (right column) observed when separating the 20-year dataset in two groups A and B 610 

using two different strategies. a) and b) Difference in echo occurrence between week-ends 611 

(Saturdays to Mondays, group A) and week-days (Tuesdays to Fridays, group B). In the north-612 

east, precipitation is notably less frequent on week-ends while in southern Texas, week-ends tend 613 

to be wetter. c) and d) Difference between Days 1-3 of an arbitrary 6-day cycle starting 1 January 614 

1996 (group A) and Days 4-6 of the same cycle (group B). Early in the six-day cycle, 615 

precipitation occurrence is noticeably lower in the Midwest and higher in Louisiana, and 616 

conversely late in that cycle. This obviously accidental pattern is stronger and more statistically 617 

significant than any weekday-weekend patterns. 618 

 619 

Fig. 8: Occurrence of echoes stronger than 50 dBZ (top row) and of lightning (bottom row) 620 

around major cities between May and August for the whole day (left column), the late night 621 

(middle column) and the afternoon (right column). The lightning and radar data around 13 cities 622 

with over 1 million inhabitants away from both major topographic features (oceans, Great Lakes, 623 

significant orography) and areas of poor radar data quality (due to clutter and beam blockage) 624 



32 

were combined to make this figure. On average, an enhancement of afternoon convection and 625 

especially lightning occurrence can be observed immediately over and east of these cities. 626 

 627 

Fig. SB1: Ratio of the radar-derived precipitation accumulation between 1996 and 2015 shown 628 

in Fig. 1b and of the gauge-derived precipitation accumulation over the same period shown in 629 

Fig. 1c. 630 

 631 

Fig. SB2: Radar-derived mean annual precipitation derived from two different mosaics and for 632 

two different periods: a) Precipitation derived from WSI mosaics (1996-2006); b) Precipitation 633 

derived from WDSSII mosaics (2008-2015). Key differences to notice are not as much the 634 

overall difference in derived precipitation, as those do change with time, as how the patterns of 635 

precipitation accumulation around individual radars changed between the two mosaics, 636 

concentric patterns being more visible in b) than in a) in the eastern half of the United States. 637 

 638 
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 639 

Fig. 1. a) WSR-88D radar coverage over the conterminous United States (original image 640 

courtesy of NOAA); b) Computed annual precipitation from radar mosaics between 1996 and 641 

2015 using the Joss and Waldvogel (1970) reflectivity (Z) to rainfall rate (R) relationship 642 

Z = 300R1.5, limiting the peak rainfall to 100 mm hr−1; c) Gauge-derived annual precipitation 643 

over the same period as derived from the data of the PRISM Climate Group of the Oregon State 644 

University (PRISM 2016). 645 
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Fig. 2: Frequency of observation of echoes of 

a) at least 5 dBZ, b) at least 45 dBZ, and c) at 

least 60 dBZ. Areas stripped in gray did not 

meet the criteria 2 3⁄ 𝑅𝑔𝑎𝑢𝑔𝑒 < 𝑅𝑟𝑎𝑑𝑎𝑟 <

3 2⁄ 𝑅𝑔𝑎𝑢𝑔𝑒. Artifact-wise, the fingerprints of 

individual radars are more obvious at low 

reflectivity than at high reflectivity. 

Meteorology-wise, precipitation is more 

frequent in the mid-latitudes (West Coast & 

north east). Convective rain occurrence is 

highest on the Gulf Coast and southern 

Atlantic Coast where sea breezes often play a 

major role in convection initiation, and lowest 

on the West Coast bathed by cold ocean water. 

Hail echoes are most frequent in the Great 

Plains. Note how the three images show very 

different patterns. For reference, a frequency of 

4% corresponds to 1 hr day−1, 0.1% is 

9 hrs yr−1, and 0.001% is 5 min yr−1. 
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 646 

Fig. 3: Contrast between the frequency of echoes exceeding 45 dBZ in a) late spring (May and 647 

June) and b) middle of the summer (July and August). Changes in patterns of convection 648 

between the two seasons reflect the changes in the larger-scale processes driving them. 649 
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 650 

Fig. 4: Diurnal cycle of the frequency of occurrence of echoes exceeding 40 dBZ between the 651 

months of April and September starting from the late night on the upper left (2:00-5:45 CST in 652 

the middle of the continent) and ending on the middle of the night on the lower right. 653 
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 654 
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Fig. 5: Solar time of a) the preferred occurrence of echoes exceeding 40 dBZ in the warm season, 655 

and of b) the fastest daytime growth in the occurrence of such echoes. In both plots, a two-656 

dimensional color scale is used to characterize the timing of events: The hue or frequency of the 657 

color used shows the average time or the time of the fastest occurrence increase (e.g., reds 658 

indicating peak of occurrence or fastest increase in the afternoon); the saturation and brightness 659 

of the color illustrates whether the diurnal cycle of convection or the rate of convection increase 660 

is strong and unimodal (saturated bright colors) or weak or multimodal (unsaturated dark colors). 661 

Black pixels indicate areas too contaminated by clutter or without enough data to make a proper 662 

peak time determination. 663 

  664 
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 665 

Fig. 6: Power spectra of 20-yr long time series of radar-derived precipitation rate (blue curve) 666 

and fractional area of precipitation occurrence (≥ 5 dBZ, red curve). Each curve is an average of 667 

spectra for 554 small areas 0.25° longitude by 0.25° latitude wide (approximately 24-by-28 km 668 

in size) centered on every 1° in longitude and latitude in the eastern two-thirds of the 669 

conterminous United States where radar coverage is expected to be good (2 3⁄ 𝑅𝑔𝑎𝑢𝑔𝑒 <670 

𝑅𝑟𝑎𝑑𝑎𝑟 < 3 2⁄ 𝑅𝑔𝑎𝑢𝑔𝑒). For time scales under a week, sloping spectra characteristic of 671 

precipitation structures embedded within smaller/shorter precipitation structures can be observed. 672 

Superposed on these, the signature of diurnal and annual cycles and some of their harmonics 673 

(half and third of a day and a year) can be detected. In inset, a zoom of the curves around the 674 

one-week period has been added. 675 
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 676 

Fig. 7: Patterns of relative difference in the occurrence of echoes exceeding 5 dBZ (left column) 677 

and 50 dBZ (right column) observed when separating the 20-year dataset in two groups A and B 678 

using two different strategies. a) and b) Difference in echo occurrence between week-ends 679 

(Saturdays to Mondays, group A) and week-days (Tuesdays to Fridays, group B). In the north-680 

east, precipitation is notably less frequent on week-ends while in southern Texas, week-ends tend 681 

to be wetter. c) and d) Difference between Days 1-3 of an arbitrary 6-day cycle starting 1 January 682 

1996 (group A) and Days 4-6 of the same cycle (group B). Early in the six-day cycle, 683 

precipitation occurrence is noticeably lower in the Midwest and higher in Louisiana, and 684 

conversely late in that cycle. This obviously accidental pattern is stronger and more statistically 685 

significant than any weekday-weekend patterns. 686 
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 687 

Fig. 8: Occurrence of echoes stronger than 50 dBZ (top row) and of lightning (bottom row) 688 

around major cities between May and August for the whole day (left column), the late night 689 

(middle column) and the afternoon (right column). The lightning and radar data around 13 cities 690 

with over 1 million inhabitants away from both major topographic features (oceans, Great Lakes, 691 

significant orography) and areas of poor radar data quality (due to clutter and beam blockage) 692 

were combined to make this figure. On average, an enhancement of afternoon convection and 693 

especially lightning occurrence can be observed immediately over and east of these cities. 694 

  695 
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 696 

Fig. SB1: Ratio of the radar-derived precipitation accumulation between 1996 and 2015 shown 697 

in Fig. 1b and of the gauge-derived precipitation accumulation over the same period shown in 698 

Fig. 1c. 699 

  700 
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 701 

Fig. SB2: Radar-derived mean annual precipitation derived from two different mosaics and for 702 

two different periods: a) Precipitation derived from WSI mosaics (1996-2006); b) Precipitation 703 

derived from WDSSII mosaics (2008-2015). Key differences to notice are not as much the 704 

overall difference in derived precipitation, as those do change with time, as how the patterns of 705 

precipitation accumulation around individual radars changed between the two mosaics, 706 

concentric patterns being more visible in b) than in a) in the eastern half of the United States. 707 

 708 


