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Abstract

Two sets of connectionist simulations of children's acquisition of
distance (d), time (#), and velocity (v) concepts using a generative algorithm,
cascade-correlation (Fahlman & Lebiere, 1990)), are reported. Pure condition
simulations represent a situation in which memory demands across the concepts are
equal. The limited memory condition explores the effects of differing memory
demands.

It was found that the rules that correlated most highly with network responses
during training were consistent with the developmental course of children’s
concepts (Wilkening, 1981; 1982). Networks integrated the detining dirnensions
of the concepts first by identity rules (e.g., v=d), then additive rules
(e.g., v=d —1t), and finally multiplicative rules (e.g., v=d +1t).

The results are discussed in terms of similarity to children's development, the
effects of memory demands, the contribution of connectionism to cognitive
development, and directions for future research. It is argued that cascade
correlation provides an explicit mechanism of developmental change -- weight

adjustment and hidden unit recruitment.



Résumé

Cette étude présenie deux séries de simulations connexionistes du
développement des concepts de distance (d), de temps (¢), et de la vitesse (v) en
utilisant ’algonthme “cascade-correlation” (Fahlman & Lebiere, 1990) qui construit
de fagon dynamique la topologie du réseau. Les simulations “pure condition”
représentent une situation dans laquelle les demandes mnémoniques sont
équivalentes pour chaque concepts. Les simulations “limited memory condition”
cxplorent I’effet de différences dans les demandes mnémoniques entre les concepts.

Les résultats démontrent que les reégles les plus hautement corrélées avec les
réponses du réseau pendant la phase d’entrainement étaient en concordance avec le
parcours développemental des concepts observé chez les enfants (Wilkening, 1981;
1982). Dans un premier temps, les réseaux intégraient les dimensions définissants
les concepts en adoptant une reégle d’identité (e.g., v=d), par la suite, par une
régle additive (e.g., v =d —1t), et finalement, en adoptant une régle multiplicative
(e.g., v=d=+1).

Les résultats sont considérés en termes de leur similarité au développement de
’enfant, des effets des demandes mnémoniges, des contributions de I’approche
connexioniste au domaine du développement cognitif et d’avenues de recherches
futurs. L’argument est fait que “cascade-correlation” nous fournit avec un
mécanisme explicite du changement développemental; soit I’ajustement de

connexions et le recrutement d’unité au besion.
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CHAPTER ONE - INTRODUCTION

Children's behaviour is often characterized as progressing through a series of
stages of increasingly complex knowledge. Although this notion has had endurin g
appeal, it is only recently that researchers within the field of cognitive development
have possessed a tool that enables them not only to describe the knowledge
representations of possible stages but also how these states might emerge. Within
the last decade, connectionism has provided new insights into developmental
regularities of children's behaviour.

One widely researched area in cognitive development that is frequently
characterized as stage-like is children's performance in compensation tasks.
Compensation tasks involve differences, rates, ratios, proportions, or other
multidimensional interactions among physical dimensions (Kerkman & Wright,
1988). Examples include: (1) the balance scale task (e.g., Inhelder & Piaget,
1958; Siegler, 1976, 1981; Wilkening & Anderson, 1982, 1991; Ferretti,
Butterfield, Cahn, & Kerkman, 1985; McClelland, 1988; Newell, 1990; Shultz &
Schmidt, 1991) in which information about weight and distance from the fulcrum
must be multiplied (i.e., torque) in order to predict which side of the balance scale
will go down; (2) area judgement tasks (e.g., Anderson & Cuneo, 1977;
Wilkening, 1980; Lohaus & Trautner, 1989; Avons & Thomas, 1990) in which
information about the height and width of an object must be integrated to predict
area; (3) volume judgement tasks (e.g., Anderson & Cuneo, 1977; Wilkening,

1980; Halford, Brown & Thompson, 1986) in which information about height and
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diameter are necessary to predict liquid volume in a beaker for example; and
(4) tasks involving the integration of distance, time, and velocity
information (e.g., Piaget, 1946/1969; Levin, 1977, 1979; Siegler & Richards,
1979; Wilkening, 1981).

This thesis is concerned with the last set of compensation tasks. Specifically,
it is an attempt to further our understanding of children's acquisition of the concepts
of distance, time, and velocity by means of computer simulation using a generative
connectionist architecture, cascade-correlation (Fahlman & Lebiere, 1990).

In classical physics, distance (d) is defined as the relationship between
time (¢) and velocity (v), d =txv, time as the relationship between distance and
velocity, £ =d +v, and velocity as the relationship between distance and time,
v=d~+t. Very few studies have looked at the simultaneous acquisition of these
three concepts. Moreover, the findings of two approaches that have had a
significant impact on this topic (Siegler & Richards, 1979; Wilkening, 1981) differ
with respect to the general developmental course and the specific knowledge and
representations they attribute to children over this period. In order to understand
these differences, the theories and measurement techniques behind these approaches

are discussed in some detail in the following review.

1. Literature Review of Distance, Time, and Velocity Acquisition

1.1, Piaget's Approach
The beginning of modern research into children's concepts of distance, time,

and velocity is rather distinguished. Albert Einstein asked Jean Piaget (1946/1969;

1964) about the relationship between time and velocity in children's thinking. Is
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one more primitive than the other? Does one depend on the other? Given that
Newtonian mechanics defines velocity in terms of the fundamental notions of time
and space whereas Relativity theory postulates that time and space are relative to an
absolute velocity (i.e., speed of light), Einstein's interest is evident.

In order to answer Einstein, Piaget undertook a full scale investigation
(Flavell, 1963; Piaget, 1946/1969, 1946/1970, 1964, 1970/1971) and determined
that the acquisition of distance, time, and velocity concepts occurred primarily in
three stages. Intuitive notions emerge at approximately four to five years of age
(Stage I: intuitive or pre-operational), and are reconstructed vi1 an intermediary
stage (Stage II: articulated intuitions or operational), until the adult-like conceprs are
obtained at roughly eight to nine years of age (Stage 111: concrete operational). An
additional fourth stage ‘Stage IV: formal operational) marks the progression from
qualitative to quantitative understanding. Piaget's claims are based on a number of
tasks developed to measure conceptual knowledge he believed to be essential in

understanding the three concepts.

Distance

The child's notion of distance evolves from intuitions based on spatial order,
and in particular the stopping point of a movement, to an understanding that
distance is comprised of the interval between starting and stopping points which can
be subdivided into smaller units that can be used for measurement.

Figure 1 shows the hypothetical path trajectories of two streetcars (beads)
used in one experiment (Piaget, 1946/1970). The examiner moves his/her car from
points 0 to 4 on path B for example, and asks the child to move his/her car the same

distance on path A. A child at Stage I would move his/her car to position 2 thus
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3 4

Path B

Figure 1. Adapted from Piaget (1946/1970, p. 57).
Pathway followed by streetcars A and B starting at
zero. (Intervals marked only for ease of
cxplanation)

only focusing on the stopping points of the two cars. During Stage II, the child
judges the length of the path traversed intuitively moving his/her car to a position
around point 4. At Stage III, the child is able to make direct comparisons of the
paths traversed by measuring them.

At Stage 1V, children can reason abstractly about distance. For example,
when a snail moves along a plank which is moving at the same speed in the
opposite direction, children understand immediately that the snail's position relative

to its starting point does not change.

Time

Piaget's (1946/1969) research into children's notion of time examined their
understanding of the temporal concepts of succession (order of events) and duration
(interval of time). Piaget maintained that time for the young child is not
homogeneous in that its rate varies from one motion to the next, or is relative to
velocity, and that it is confused with the spatial order. The child progresses from

this "localized" time to being able to represent time on uniform scale that can be
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used to compare objects traveling at different velocities. Thus, time according to
Piaget, is the coordination of motions at different velocities.

Piaget's examination of simultaneity (i.e., of events that start and stop at the
same time) is used to illustrate the developmental course of the child's notion of
time. Children are asked which of two mechanical snails traveling at different
speeds stops first or travels for the greater time. At Stage I they choose the snail
that travels the least distance as having stopped first. Thus, the simultancity of the
stopping points is not understood. Moreover, the faster moving snail is judged to
take more time. At stage two, children may grasp either the simultaneity of the
starting and stopping points or the equality of the durations, but not both.
Alternatively, they understand neither, and simply judge duration as inversely
proportional to distance (i.e., more distance = less time). Finally, at Stage III, the
concurrent development of notions of succession and duration lead to the
acquisition of a concrete operational understanding of temporal simultaneity.

Comparing successive durations represents the child's crowning achievement
as he/she progresses from a qualitative to quantitative understanding of time. Piaget
argues that successive durations can only be compared if the units of duration can
be removed from the actual events, thus enabling quantification. Although it is not
clear from Piaget's (1946/1969) writings whether or not this constitutes & new stage
(i.e., Stage IV), it is reasonable to conceive it as such given his conceptualizations
of stage IV with respect to distance and velocity.

Yelocity
The child's intuitive notion of velocity is based on relating the order of events

in time with the order of events in space (Piaget, 1964, 1970). It is not dependent
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on either temporal or spatial intervals (i.., durations or distances) but rather on
overtaking and overreaching. That is, an object which at one point in time
("before") is behind another and then later ("after”) is in front of it, is judged as
having greater velocity. However, if the overtaking of a faster object is not visible
either by making it hidden (e.g., traveling through tunnels), having the objects
travel at angles to one another, or on concentric circular paths, the child at Stage I
will say that the objects traveled at the same velocity.

The importance of overreaching is clearest in the absence of overtaking.
When two cars start and stop simultaneously with one commencing considerably
further behind the other but just failing to overtake it, the child thinks the car that
traveled the lesser distance traveled faster because it's stopping point is further
along the path. Similarly, if the two cars start in succession from the same point of
origin but stop simultaneously having traveled equal distances, the child will think
that they went the same speed since their respective stopping points are the same.

During Stage II, the child generalizes the notion of visible overtaking to
situations in which it is hidden by imagining the continuation of a movement to
establish if a "potential” overtaking is likely. Similarly, the child may reconstruct
the movements form their points of origin. In any event, attention is decentered
from the stopping points to include the starting points and this paves the way for the
concrete operational solutions of Stage III.

As with distance and time, Stage IV represents a shift from qualitative to
quantitative understanding. At this point the child masters the conservation of
uniform speeds, grasps the idea of uniformly accelerated movement, and is able to

construct the proportion of distance to time to predict velocity (i.e., v=d+1)
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when unequal distances and unequal times of movements in succession are

involved.

Conclusion

In answer to Einstein's question concerning which concept is more primitive,
Piaget concluded that whereas none of the concepts are innate by virtue of the fact
that they are constructed through a series of stages, an early intuition of velocity
based on temporal ("before" and "after") and spatial order ("behind™ and "in tiont™)
exists independent of notions of duration and distance. On the other hand, time is
dependent on velocity at all stages. Thus, Piaget concluded that children's carly
notions are more akin to relativistic concepts and it is only through development that
they acquire their Newtonian qualities.

Supporting evidence. Most of the research aimed at replicating and extending
Piaget's claims has been done with respect to children's understanding of the time
concept. Early support for Piaget came from a comparative study of children with
special needs and "normals"” by Lovell and Slater (1960). Looking at the concepts
of simultaneity, equality of synchronous events, and children's ability to order
events, they found considerable support for Piaget's claims, although they did note
that children's notion of time is situation dependent, performing better in some
tasks than others. Cross-cultural studies also tended to replicate Piaget's findings
with the caveat that cultural time lags did exist (e.g., Dempsey, 1971; Bentiey,
1986). A-ditional evidence has come from a variety of areas including research in
music education looking at the effects of tempo on judged duration of the music
(e.g., Bickel, 1984). For a review of studies of children's time concept, the

interested reader should consult Friedman (1978).
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A few studies have looked at the relationship between time and velocity. For
example, Weinreb and Brainerd (1975) found support for between concept
developmental course of time and velocity (i.e., that velocity precedes time)
although they question some of the inter-concept development claims.

A few researchers (e.g., Montangero, 1977, 1979; Crépault, 1980) have
looked at the relationship amongst all three concepts. One interesting series of
studies has been conducted by Crépault (1977, 1979, 1981) looking at the
"relativity" of the concepts. In these studies, children are shown a mechanical
device that pulls a paper ribbon past a mechanical arm that has a pen at the end of it.
As the arm moves up and down, marks are drawn on the paper ribbon. The
frequency of the pen tapping and the ribbon pulling can be manipulated
independently. Subjects are then presented with two ribbons and asked, for
example, if it took more time for the pen to make the first two marks on one tape
than the other. Similarly, they are asked questions about the time it took the ribbon
to go between the first two points on either tape. Crépault has found that common
errors include differentiating the time required by the pen and that of the tape.

Based on his research, Crépault (1978) has formulated an elaborate three-
stage theory of the developmental rsurse of the concepts in which pairwise
combinations of the relations emerge in the following order: At first, more speed
implies less distance and more time implies more distance; then the child learns that
more speed implies more distance; and finally that more tizae implies less distance.

Finally, general support for Piaget's position has come from one of the first
comprehensive studies to look at not only the relationship amongst the three

concepts but also their inter-developmental course (Siegler and Richards, 1979).
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Their methodology, theoretical assumptions, and results are discussed at length in

the following section.

1.2, Siegler's Approach

Siegler's theory of cognitive development is greatly influenced by Piaget's
stage theory of development. Siegler's Sequential Decision Theory postulates that
cognitive development can be characterized as a series of increasingly powerful
rules for solving problems (Siegler, 1981).

Siegler (1981) argues that within Piaget's work on compensation tasks, there
is a modal form to the developmental course that children are thought to follow.
First, children focus on the dominant dimension. Then, there is a transition stage in
which the child focuses on both dimensions but does not know how to integrate
them. Finally, the child correctly integrates th. two dimensions. Siegler proposed
four modal rules to explain this developmental sequence. Each is explained in
Table 1.

At each stage in development, a child's performance is based on binary

decision rules (Siegler, 1976). For example, a child using Rule I determines

Table 1
Modal Rules Used to Explain Development

Modal Rule Description

Ruie I Base judgment on dominant dimension.

Rule II When dominant dimension values are unequal base judgments on
this. If equal, consider subordinate dimension.

Rule Il Consider both dimensions but when one alternative has greater
value on the dominant dimension and the other has greater value on
the subordinate dimension, "muddle through" ti.c., guess!).

Rule IV Apply the appropriate quantitative or qualitative formula for
combining the dimensions.
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whether the values of the dominant dimension are equal among the alternatives. If
they are, the child maintauns that the two alternatives are equal. If the values are not
equal, the child chooses the alternative with the greater dominant dimension value.
Sequenttal Decision Theory has been used successfully to explain
performance 1 tasks such as the balance scale (e.g., Siegler 1981, 1976) and the

inclined-plane (Ferretti et al., 1985).

Rule Assessment

In order to ascertain whether or not children's performance can be
characterized by the rules postulated under Sequential Decision Theory, Siegler
looks at children's correct and incorrect responses to different problem types.

Problem types in choice tasks. Although Siegler (1981) argues that his Rule
Assessment procedure does not require a methodology in which children choose
among alternatives, most if not all of the research pertaining to Sequential Decision
Theory has been done within the choice paradigm. With this in mind, six modal
problem types based on dominant and subordinate values have been used to assess

children's knowledge. These are presented in Table 2.

Table 2
Problem Types in Rule Assessment

Problem Type Values of Dominant and Subordinate Dimensions
Equal Equal dominant and subordinate values.
Dominant  Unequal dominant but equal subordinate values.
Subordinate  Equal dominant but unequal subordinate values.

Conflict- One choice has greater dominant values, and the other has greater
Dominant  subordinate values. Former choice is correct.
Conflict- Same as above except latter choice is correct.

Subordinate

Conflict-Equal Same as above except both choices produce the same outcome.
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The set of problem types is chosen such that it yields a distinctive pattein of
errors and correct answers for children following the modal rules described above.
For example, a child using Rule I (basing judgments solely on the basis of the
dominant dimension) is expected to perform correctly on the Equal, Dominant, and
Conlflict-Dominant problem types but to make errots on the other three problems,

Assumptions underlying the rule assessment techmque. Accordmg to Siegler
(1981) there are only two prerequisites for using the Rule Assessment techmque.
The first being that the researcher must have clear hypotheses about people's
knowledge of two or more distinct strategies such that the different stiategies will
yield different response patterns. The second prerequisite is that the problem types
allow for simple application of the strategies. In other words, the experimenter
must control for such things as memory constraints so that the subjects are able to

use the strategies.

Distance, Time, and Velocity
Siegler and Richards (1979; see also Richards, 1982) argued that there were

several reasons to question Piaget's results including inconsistent findings,
methodological problems in that Piaget did not study the same children nor did he
use comparable tasks across the three concepts, and the vagueness of Stage 1.
Siegler and Richards attempted to clarify Piaget's account of children's
understanding of the logical concepts of distance, time, and velocity by presenting
two toy trains which traveled along parallel tracks and asking the children to judge
which of the two traveled either the greater distance, for the longer time, or at the
faster velocity. The trains could differ along seven physical dimensions: (1) time,

(2) velocity, (3) distance, (4) starting position, (5) stopping position, (6) starting
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time, and (7) stopping time. Using Sequential Decision Theory as a guide, they
hypothesized three rules based on Piaget's work (1946/1969, 1946/1970).
Children using Rule I would judge solely on the basis of stopping points. Those
using Rule II would consider starting positions when the trains stopping positions
were the same. Finally, children using Rule III would solve the prublems
correctly. Based on Siegler's Rule Assessment Approach (1976, 1981, 1982) they
created six problem types to differentiate children's performance.

With respect to the distance concept, 5-year-olds generally used either Rule 1
or Rule II. However, Rule II was modified after analyzing the children's verbal
protocols as it was found that the children based their judgements on stopping time
rather than starting points. Eight and 11-year-olds were found to use Rule I and III
while all adults used Rule IIL

Analysis of children's time concept was less clear. Although 5-year-olds
consistently used either Rule I or Rule II, the majority of 8-year-olds were not
classifiable using the rule assessment procedure. Eleven-year-olds appeared to use
a distance rule in which amount of time traveled was based on distance traveled.
That is, they chose the train that had traveled further as having traveled for the
greater time. Only the adults were found to use Rule II1.

The acquisition of the velocity concept was shown to be similar to that of
distance. Five-year-olds used either Rule I or II, 8-year-olds were either
unclassifiable or used Rule 3, while 11-year-olds and adults consistently used
Rule III.

In summary, 5-year-olds were found to use Rule I across all three tasks. That

is, these children chose the train which had stopped the furthest down the tracks to
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have traveled for the greatest distance, time, or at the greatest speed. At the other
end of the age spectrum, adults were found to use Rule III. Children in between
these two age groups regularly confused speed and distance, distance and time, and
time and speed. Moreover, Siegler and Richards found that children understood
velocity and distance concepts before the time concept. Additional evidence for this
inter-developmental sequence was found by Acredolo and Schmid (1981) even
though they extended the stimulus set to include situations where the trains ran for

equal times, equal distances, equal velocities, or all three.

L3, Critici f Piaget and Siegl

Recent investigators have criticized previous research since it appears to have
tested the child's ability to ignore rather than integrate the distance, ume, and
velocity dimensions.

Brendt and Wood (1974) found that pre-operational children have a primitive
capacity for judging duration when visual cues are not present. In a task similar to
Piaget's, Brendt and Wood presented young children with two toy trains running
along parallel tracks. The tracks could be covered by tunnels or in full view. In
addition, each locomotive had a distinctive whistle which sounded continuously as
the train moved. The researchers found that when the tracks were covered, hence
the only cue being the whistles, young children were able to tell which train had
traveled for the greater duration. However, when the tunnels were removed
revealing a conflict situation where the train that ran for a longer time actually
traveled a shorter distance, the children would revert to a distance-only model,

choosing the train which had traveled the greater distance.
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Levin and her collaborators have conducted a series of studies aimed at
showing that Piaget underestimated young children’s early notions about time.
They have shown that: ) children’s early concepts of time are basically temporal in
that they understand the interdependency of succession and duration when
interfering cues are held to a minimum (Levin, 1977); 2) this understanding is
extremely unstable in that even cues that are not logically related may interfere with
it (Levin, 1979); 3) some cues interfere more than others (Levin & Gilat, 1983); 4)
succession and duration do not develop concurrently (Levin, Israeli, & Darom,
1978) as suggested by Piaget and finally; 5) young children’s poor performance
reflects the perceptual salience of end-points (Levin, Gilat, & Zelnicker, 1980)
rather than a conceptual deficit as assumed by Piaget, and Siegler anc Riciards.
While most of Levin's work has been done in relation tc children’s gualitative
understanding of time, her more recent work has focused vn time quantification
(Levin, Wilkening, & Dembo, 1984; Wilkening, Levin, & Druyan, 1987).

Levin et al.’s research interest has been guided by the assumption that typical
Piagetian tasks and the methodology used to assess performance obscure young
children's knowledge of the relationship between succession and duration. For
example, Levin (Levin & Globerson, 1984) has raised concerns about the ability of
the rule assessment technique to capture children's knowledge given that children
do not consistently apply rules across problems.

On a more conceptual level, Levin argues that distance and velocity serve as
interfering cues in these tasks (for a review see Levin, 1982). Levin (1977)
demonstrated this point by comparing children's duration judgements of two events

in three tasks which differed according to the amount of information available. In
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the still time task, only succession information was given. The children were asked
to judge "sleeping” times of two dolls which either went to sleep and/or woke
simultaneously or at different times. In the rotational time task, succession and
velocity information were presented io children by using two figures that rotated on
individual turntables (obscuring distance information) either at the same or different
speeds. Finally, in the linear time task, succession, velocity, and distance
information were given by using the same type of apparatus as Piaget and Siegler
(i.e., two trains).

In line with Levin's expectations, most preschoolers were able to solve the
s¢ill time problems, first graders were alse able to solve rotational time problems,
and even third graders found linear time problems difficult. Thus, Levin suggested
that not only did the distance and velocity cues interfere with children's
understanding of the relationship between succession and duration, they did so in
an additive manner. That is, the problems with two interfering cues (linear) were
harder than problems with one (rotational) which were in turn harder than problems
in which there were no such cues (still). Although later research suggested that the
type of interfering cue might be a more important factor than the number of
interfering cues (Levin & Gilat, 1983), the major premise that Piagetian tasks were
not adequately reflecting children's knowledge was upheld. Moreover, Friedman
(1990) notes that Levin's research revealed that when interfering cues were absent,
children were able to construct a common time for two events, the sleeping dolls.

Levin was able to demonstrate that the interference with children's
understanding of duration and succession is not due to the fact that distance and

velocity are related to time. In fact, Levin (1979) found that cues that were logically
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unrelated to time (the brightness of a lamp) showed similar types of interference
effects. Levin concluded that children were using a more is more rule whereby any
event that was perceived to be greater on some dimension (intensity or velocity for
example) was judged to have lasted for a greater length of time.

Although Levin's work suggested that results obtained using Piagetian tasks
misrepresented children's understanding of the concept of time, she did find that
when the two events differed in temporal endings as opposed to beginnings,
children found it easier to judge the relative durations. However, rather than
assuming a conceptual deficit (focusing on end-points) as Piaget and Siegler and
Richards did, she postulated that this phenomenon was due to the perceptual
salience of the end-points. This assumption was supported in a study by Levin,
Gilat, and Zelnicker (1980).

Levin's work has led her to suggest that rather than the notions of succession
and duration developing concurrently as maintained by Piaget, children first
understand succession. This knowledge then may mediate an understanding of
duration. Support for this two-stage development comes from the fact that children
as young as five years of age often refer to succession in their rationalizations about
duration (Levin, 1977; Levin, Israeli, & Darom, 1978), while they offer
tautological explanations of succession. Moreover, Levin has argued that only after
they grasp the dependency of duration and succession do they begin to understand
the relationship between distance and velocity with respect to time, an assumption
she claims is supported by the fact that linear time problems are solved much later in

development than still time problems.
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Richie and Bickhard (1988) have questioned Levin's two stage theory by
demonstrating that children can solve time problems when non-temporal cues such
as succession are absent. Using a methodology similar to Levin (1979; Levin et al.
1983) Richie and Bickhard asked children to compare the durations of two lamps,
However, the:s used problem types in which only sensed temporal information
could be used to solve the problems correctly. That is, in these problems there is
no onset/offset succession information that would be helpful in that the bulb that
came on first would also go off first. Moreover, larger disparities between the
durations of the two lights were investigated in addition to the standard durations
used by Levin.

Given that children with a mean age of 4.5 years of age were able o solve the
problems that lacked succession information and given that when large enough
duration disparities were provided, the children could solve the same problem-types
used by Levin, the authors concluded that any theory of children's logical concept
of time that assumes that time necessarily develops from the coordination of non-
temporal perceptually based cues (e.g., succession, distance, and velocity) is not
viable. In other words, children have a perceptual experience of time separate from

one derived inferentially from non-temporal knowledge.

Wilkening (1981) has investigated children's acquisition of distance, time,
and velocity concepts within the framework of Anderson's Information Integration
Theory (1974, 1980).

Inf ion Int tion Tt

Anderson's (1974, 1980, 1991) Information Integration Theory maintains




Distance, Time, and Velocity
18

that knowledge is not represented as a series of rule-governed binary decisions, but
rather, assumes that children's representation of knowledge is characterized by
cognitive algebra. Anderson has argued that most algebraic models fall into two
classes. The first class includes adding, subtracting, and averaging models. The
second includes multiplying and dividing models. The basic idea is that children
integrate physical stimuli using one of these models such as dimension 1 +
dimension 2. The results of the application of an algebraic model are then
expressed in subjective or psychological values.

Three laws. Anderson has posited three laws to explain the sequence from
sensation of some stimuli to the response based on those stimuli. The first step in
the sequence, governed by a Psychophysical Law, involves the processing of
physical stimuli by a valuation function. This function determines the scale value
and weight of the stimuli. The former refers to the location of the stimulus on the
individual's subjective dimension of judgment whereas the latter indicates the
amount of information in the stimulus or the emphasis placed on the stimulas. The
key point is that both depend on the dimension of judgment. In other words, each
task the child performs sets up a valuation function.

Next in the sequence, the individual combines or integrates the stimuli
according to the Psychological Law. In this step, an integration function is applied
to the stimuli. As noted above, this involves the application of some algebraic
model. The Psychological Law determines an implicit response which is then
transformed by a Psychomotor Law into the explicit response of the individual.

Again this last step is intimately tied to the task at hand. The Psychomotor Law
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mediates between the implicit response and the constraints of the measuring

apparatus.

Developmental course. Information Integration Theory has been used to

e~plain a diverse range of developmental phenomena including children's moral
judgments (e.g., Leon, 1980, 1982); probability judgments (e.g., Acredolo,
O'Conner, Banks, & Horobin, 1989; and Homers, 1980); area judgments (e.g.,
Anderson & Cuneo, 1977; Wilkening, 1980); and performance on the balance scale
task (e.g., Wilkeming & Anderson, 1982) to name but a few.

Generalizing across these tasks, the following developmental course is
revealed. At first a child's performance can be characterized by algebraic models
from the first class mentioned (e.g., adding or subtracting). Then the child goes
through a transition stage in which the child's performance cannot entirely be
explained by models from either class. Finally, the child is classified as using a
model from the second class (e.g., multiplying or dividing).

Although performance during the transition phase is most often explained post
hoc, some interesting models have been put forward. For example, Wilkening and
Anderson (1982) explained children’s transition phase on the balance scale task
from adding to multiplying weight and distance information as a combination of the
two. During the transition period, children were found to multiply when lower
levels of weight were involved and to add when higher levels of weight were

involved.

Functional Measurement
Ordinal vs. interval response scales. A major force behind the creation of

Functional Measurement is Anderson's (1974) belief that people's responses arc
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expressed as subjective, psychological values. Anderson argues that for
psychological tasks in general, it cannot be expected that such responses fall on an
interval scale, but rather, fall on an ordinal scale. Moreover, since psvchological
scales are typically interval, any ordinal response cannot fit the model that describes
the process underlying the behaviour. Functional Measurement is meant to provide
a means by which subjects’ responses can be expressed and accurately measured on

an interval scale,

There are two essential aspects to the Functional Measurement method. The
first is the use of factorial designs of stimulus combinations. For example, if one
were testing for children's judgments of distance traveled by three objects of
intrinsically different speeds (for example, very fast, moderately fast, and slow)
given three different times (for example, long, medium, and brief), the
experimenter would use all nine possible stimulus combinations.

It is unnecessary for the experimenter to know a priori what the subjective
values of velocity and time values are in terms of numerical indices. However, it is
essential that the subject’s judgments are numerical responses. This is the second
constraint of functional measurement. If the overt, measured response is on a linear
scale, the data table of the factorial design provides a functional scale of the
subject's responses. That is, the marginal means are a linear scale of the subjective
values of the stimuli.

Parallelism. diverging-f: nd ANOVA istics. Instead of creating
different problem types to assess subject’'s knowledge, Functional Measurement
relies on graphical patterns of responses and Analysis of Variance statistics. Only a

brief sketch of these two methods is provided here.
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To ascertain graphical patterns, a factorial plot of the data is undertaken.
Within the context of the experiment mentioned above, the plot would have
measured distance on the y-axis and either categorical values of time (long,
medium, and brief) or velocity (very fast, fast, or slow) on the x-axis. If time was
used for the x-axis, then three separate lines would be plotted, one for each of the
three levels of velocity. If the factorial plot yields three parallel lines then the
underlying cognitive algebraic model is either an addition or averaging type rodel.
The tes: for multiplicative models is similar except that marginal means (i.e., their
subjective numerical value) of one dimension are plotted on the x-axis. If the lines
taken together form a diverging fan pattern, the underlying process is said to be a
multiplicative model.

While the graphical patterns yields a heuristic type assessment, Analysis of
Variance provides a statistical test of significance of any observed patterns.
Additive type models are indicated by significant inain effects but non-significant

interactions whereas multiplicative models yield a significant interaction effect.

istan im Veloci
Wilkening has done extensive research in this area (Wilkening, 1981, 1982,
Wilkening & Anderson 1982; Levin, Wilkening, & Dembo, 1984; Wilkening,
Levin, & Druyan, 1987; Anderson & Wilkening, 1991). Wilkening's (1981)
quintessential work assessed children's ability to integrate information to infer
distance, time, or velocity. He argued that previous research within the Piagetian
approach (e.g., Siegler and Richards, 1979) had encouraged and assessed

children's ability to ignore rather than integrate the dimensions.
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Wilkening designed three tasks, one to reveal children's understanding of
each concept. In each task the subject was given information about two dimensions
and asked to infer the third. In the distance task, in which velocity and time are to
be integrated, children are shown an apparatus which at one end of a footbridge has
a shed that is said to be occupied by a fearsome dog. At this same end, there are
three animais with inherently different velocities (turtle, guinea pig, and cat). These
animals are said to be "afraid" of the dog and will run along the footbridge when the
dog starts barking and stop when the barking ceases. The children are asked to
predict how far the animals will run given the amount of time the dog barks. Thus,
the children are given information about the velocity dimension (i.e., the inherent
speed of each of the three animals) and the time dimension (i.e., the length of
barking) and asked to infer the distance traveled (i.e., the point along the footbridge
that the animal runs to).

In the time task, children are asked to infer time from distance and velocity
information. In this task, one of the three animals is placed at one of three distances
along the footbridge. The child is then asked to indicate how long it would take the
animal to reach that point by "playing” a continuous recording of the dog barking
for the appropriate time.

In the velocity task, children are asked to infer velocity from distance and time
information. In this task, the dog barks for one of three time intervals and then a
white piece of cardboard is place at one of three distance along the footbridge. The
child uses a response scale of seven animals of differing velocity to indicate which
animal would attain the distance of the piece of cardboard given the length that the

dog barks.
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Wilkening studied the performance of three age groups; 5-ycar-olds, [0-year-
olds, and adults and discovered the following: (1) in the distance task, all age
groups use the correct raultiplication rule (d =t xv), (2) in the time task, 10-year-
olds and adults employ the correct division rule (1= d +v), whereas 5-ycar-olds
use a subtraction rule (t =d —v), and (3) in the velocity task, the two older age
groups use a subtraction rule (v=d-t), and 5-year-olds use a proportional
distance rule (v = d). Wilkening concluded that young children did indced have the
ability to integrate dimensions. Moreover, he found that children understand
distance before time and that even adults do not fully master the velocity concept.

Wilkening discussed the possibility that differing memory demands might he
responsible for the varying levels of integration across the three tasks and
subsequent inter-developmental sequence. In particular, Wilkening noticed that
both children and adults appeared to use an eye movernent strategy in the distance
task. That is, subjects would follow the imaginary movement of the animal when
the barking started and would point to the place where they were looking when the
barking stopped. This strategy was also used by 10-year-olds and adults in the
time task. However, when S-year-olds attempted to use the strategy, they had
difficulty presumably because of the simultaneous demands of focusing attention on
holding the "play” button of the tape recorder and imagining the animals movement.
Finally, with respect to the velocity task, this strategy would involve being able to
imagine all seven animals running at the same time. Even fer adults this was not a
viable strategy.

Wilkening argued that the use of the eye movement strategy did not invalidate

the conclusion that children could in fact integrate dimensions. Instead he claimed
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that in order for children and adults to "know" that the strategy was useful, they
implicitly had to understand the relationships between the dimensions.
Nevertheless, Wilkening admitted that strong conclusions about the acquisition
order of the three dimensions relative to one another were unwarranted given the
different memory demands of the three tasks.

In an attempt to further understand this inter-developmental course, Wilkening
(1982) attempted to equalize memory demands across the three tasks. Wilkening
endeavored to meet this goal by trying to increase the memory demands of the
distance task and to decrease them in the velocity task. In the distance task, the
order of time and velocity information was reversed. That is, the subjects heard the
dog bark before knowing which animal's distance was to be inferred. Thus, an
eye-movement strategy is unlikely since the subjects do not know a priori which
velocity is relevant.

In the velocity task, the memory demands were simplified by visually
presenting the time information. This was done by using a "cartoon bubble" with
the words "bow wow" that moved along the footbridge with a constant speed and
stopped when the barking ceaszd. The length of the bubble itself was different
depending on the time that the dog barked. This correspondence between bubble
length and time of barking was explicitly revealed to subjects.

The manipulations were partially successful. In the distance task, 5-year-olds
were found to use an additive rule (d =r+v), whereas adults used the
multiplicative rule as was discovered in the first experiment. In contrast, the results
of the velocity task were the same as in the first experiment. That is, 5-year-olds

used the yroportional distance rule and adults used the subtraction rule.
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Thus, when the use of the eye-movement strategy is not viable, 5-year-old
children appear to use an additive (or subtraction) rule when integrating velocity and
time, and velocity and distance information. Adults, on the other hand, can
successfully use a multiplicative (or division) rule. Unfortunately Wilkening did
not investigate 10-year-olds' performance as was done in the first study.
Therefore, with respect to distance and time concepts no conclusions can be drawn
about one being mastered before the other since it is just as hikely that these childien
would use either the additive rule or the multiplicative rule.

The discrepancies between children's and adult's performance in the time task
and velocity task, remains unclear. That is, one explanation is that Wilkening's
results are valid in that velocity development lags behind time development.
Alternatively, Wilkening's memory demand manipulation may have been

ineffective.

Metric versus Non-metric Integration
Acredolo, Adams, and Schmid (1984) have argued that although Wilkening's

(1931) results show that children can integrate the appropriate distance, time, and
velocity dimensions metrically (i.e., to predict metric distance, for example), the
results say nothing about whether or not children can integrate dimensions non-
metrically. To examine this, they used an analogous situation to Wilkening's in
which two animals were imagined to have been chased from a farmer's field by his
dog. Given statements such as "they ran the same speed, and x ran for a longer
time", the children had to choose which outcomes were possible: (1) x ran farther,

(2) y ran farther, or (3) they ran the same distance. Moreover, they were presented
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with "open ended" situations. For example, if "x ran faster, and y ran for a longer
time" all three outcomes above are possible.

Acredelo et al. found that children understood the direct relationship between
speed and distance, and between duration and distance before they understood the
indirect relationship between speed and duration. By "direct relationship”, the
authors meant that a perceptually greater value on one dimension correlates with a
perceptually greater value on the other dimension. However, they concluded that
the majority of 11-year-olds did not integrate the dimensions non-metrically in that
they could not recognize logical conflicts between pairs of non-metric relations.

Crépault (1980) has used a similar approach. Children were asked to judge
the compatibility of statements concering two dimensions and to make inferences
about the third dimension. For example, the child was presented with the following
statements and questions: "The red car goes faster than the black car. The two cars
go the same distance. Is this possible? Can we tell from these two statements if the
two cars went for the same length of time or did one travel for a longer time?"* The
results indicated that some statements were easier to judge than others. For
example, the situation above was judged compatible more readily by the subjects
than one in which one car traveled faster but both traveled for the same time.

Wilkening's concerns with non-metric designs. Wilkening (1982) has
discussed four potential problems with studying non-metric relations. In summary,
they are as follows. First, the processing capacity required in such tasks is often
large given that the child needs to remember starting times, ending times, starting

points, and ending points of both events when asked to compare velocities for

* Translated and adpated from Crépault (1980).
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example. Second, the child is assumed to understand linguistic terms such as
"more" or "less". However, Wilkening argues that past research has shown that
terms such as these may have different meanings for children than adults. Third,
findings concerning non-metric relations cannot be generalized to knowledge of
continuous, quantitative relations. Finally, unless one dimension is held constant,
it is logically impossible to infer a third (¢f. the "open ended" questions used by
Acredolo et al.). Since one needs to be held constant, then it is uncertain whether

this dimension was considered or ignored.

LS. Summary
Piaget (1946/1969, 1946/1970) concluded that the concepts of distance, time,

and velocity undergo gradual construction, characterized by four stages, until a
logical understanding of their inter-relationship emerge. While very few
researchers looked at the inter-developmental course of these concepts, Siegler and
Richards (1979) conducted a comprehensive study within Siegler's (1976)
Sequential Decision Framework, and concluded that the concept of distance was
understood before time which was in turn understood before velocity.

Investigators began to question Piagetian methodology. One the one hand,
Levin and her co-workers (Levin, 1982) argued that within the typical Piagetian
task, distance and velocity information interfered with children's judgements about
time. Moreover, she successfully demonstrated that this interference was not due to
the fact that distance and velocity are logically related to time. This led Levin to
look at children's conception of time independent of distance and velocity, focusing

on children's notions of succession and durations. Richie and Bickhard (1988)
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went even further, demonstrating that it was possible to study children's conception
of time independent of their notion of succession.

On the other hand, Wilkening (1981) argued that the Piagetian tasks were
solved more easily by ignoring the interrelation of the dimensions. This led
Wilkening on a different path than Levin and others by refocusing the issue of the
nature of children's understanding on the interrelation of distance, time, and
velocity. Using functional measurement, derived from Auderson's (1974)
Information Integration Theory, he was able to study children's understanding of
the three dimensions when they were required to infer one dimension's value based
on information about the other two. Wilkening concluded that children could
integrate distance, time, and velocity, particularly if the memory demands of the

tasks were at a minimum.

2. Connectionism and Development

Connectionist, or parallel distributed processing (PDP) models employ simple
processing units which send inhibitcry or excitatory signals via weighted
connections to other simple units, forming what is called a "network". In the
models relevant to this discussion, learning occurs by small adjustments of the
connections, or weights, between an input iayer where stimulus information is
encoded and an output layer where the "response” is made. Two broad categories
of networks within this domain exist: static and generative networks. Static
networks (typically back-propagation networks) employ network structures that do
not change from the beginning of learning (training) to the end. Conversely,

generative networks change the structure of the network as they learn by recruiting
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or pruning units in the network. A more detailed discussion is presented in
Chapter 2.

Recently a number of researchers (e.g., Rumelhart & McClelland, 1986
McClelland, 1988; Elman, 1991; Schyns, 1991; Shultz, Schmidt, Buckingham, &
Mareschal, in press) have begun to use these models as a means of understanding
and characterizing cognitive development. In addition to offering fresh insight into
some ld ideas, connectionism is believed to provide new insights into cognitive
development by addressing sume issues that have been either overlooked or

ignored.

a H 0

As Flavell and Wohlwill (1969) have pointed out, any account of cognitive
development must concern itself with both the formal and functional aspects of
development. In other words, the study of cognitive development must seek to
answer two fundamental questions: (1) What knowledge structures develop?, and;
(2) How does developmental transition occur?

Research concerning what structures develop has flourished. However,
relatively little work has been conducted in the area of transition mechanisms
(Sternberg, 1984). Bates and Elman (1992) offer an intriguing supposition
concerniiig why this is so based on the computer metaphor of cognitive
development derived from the symbolic computational approach widely accepted in
the 1970s. In brief, symbolic computational assumptions such as discrete
representations (i.e., symbols), absolute rules to manipulate the symbols,
characterizing learning as programming, and the relative unimportance of possible

implementation constraints (i.e., functionalism), fostered a paradigm which
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considered mechanisms of change as somewhat unimportant. Conversely, Bates
and Elman maintain that the assumptions of connectionism such as distributed
representations, graded rules in the form of weighted connections, learning
characterized as structural change, and consideration of implementation constiaints
offers a new manner in which to study not only what develops but how it develops
(for a similar points of view, see Churchland, 1990; Plunkett & Sinha, 1992) .

Stages in cognitive development. One issue that has been revitalized by the
connectionist approach to cognitive development is the stage versus continuous
learning issue. As in Piaget's theory, children's cognitive development is often
characterized as progressing through a series of stages. The child's knowledge is
considered to be constant across a given stage with leaming having little or no effect
on performance. An alternative to this would be that learning is continuous across
th.. stage and that the only reason stages are seen at all is because the methods
researchers use to evaluate performance are not subtle enough to capture continual
change.

Flavell (1971) summized that Piaget's stage theory had four major
implications and conducted an extensive review of the literature to see if these were
borne out . Essentially, stage theories implied that cognitive development could be
characterized as an abrupt, qualitative restructuring of highly organized knowledge
that occurred concurrently across many domains. Flavell found support for the
notions of progression through qualitatively different knowledge structures that
were organized. However, he concluded that abrupt transition from one stage to
another was not likely and, moreover, that changes across domains were often

independent of each other.
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Shultz (1991) has found good agreement between connectionist findings and
its assumptions about cognitive development and those offered by Flavell. Shultz
maintains that learning in connectionist networks results in qualitative changes in
network performance brought on by both small quantitative changes in weights
amongst units and qualitative network restructuring through changes in topology (in
the case of generative architectures). Thus, rather than characterizing development
as either continuous or discontinuous, connectionism provides an integrated
account of both these aspects of development. Morcover, lack of concurrent
changes across domains is a natural result of the learning environment of these
networks given that they rely heavily on experience. Change in network
performance is most often gradual but when abrupt changes do occur, they are
limited to the domain in which the network is trained. Finally, the inter-connection
of units provides an organized knowledge structure.

Transition mechanisms: Assimilation and accommodation revisited.  Piaget
believed that through emergent structures brought on by the equilibration of the
processes of accommodation and assimilation, transition from one stage to another
resulted. However, despite his efforts, the mechanism that caused the transition
remained vague (Bates & Elman, 1992). Recently a number of authors have
offered the view that connectionism provides a precise account of the transition
mechanism in addition to new interpretations of assimilation and accommodation
(e.g., Bates & Elman, 1992; Plunkett & Sinha, 1992).

Within the static network domain, researchers have argued that gradual and
continuous weight changes result in stage-like performance (Plunkett & Sinha,

1992). Moreover, McClelland (1988) has argued that accommodation occurs when
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the network's weights are updated during learning thus modifying the structure of
knowledge in the netwcrk. Conversely, assimilation occurs when generalization to
a new instance or input does not result in any weight change.

Shultz, Schmidt, Buckingham, and Mareschal, (in press) have suggested that
generative architectures go one step further by suggesting that recruitment of new
units into the network provides a second potential transition mechanism by
increasing the computational complexity of the network. Furthermore, they argue
that accommodation occurs as new units are added instead of simple weight

changes reflecting what the authors termed assimilative learning.

In this section, a review of two cognitive developmental tasks are presented --
children's acquisition of the past-tense of verbs and their performance on the

balance scale.

Past-tense

Children's acquisition of past-tense morphology is often cited as an argument
that children possess explicit, albeit tacit rules. Rumelhart and McClelland (1986)
challenged this assumption by demonstrating that a connectionist network could
also account for children's performance. In particular, the networks exhibited a U-
shaped developmental pattern similar to that characteristically observed in children.
That is, it appears as though children first correctly use regular and irregular past-
tense forms, then seemingly form an explicit rule (adding "ed") which they over-
generalize to irregular verbs, before finally learning only to apply it to regular

verbs.
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Rumelhart and McClelland's model came under severe attack led most
vigorously by Pinker and Prince (1988). The main criticism was the use of varying
degrees of exposure to regular and irregular forms that were not representative of
children's linguistic environment. This issue was addressed in a set of simulations
by Plunkett and Marchman (1989) in which the type and token frequencies of
irregular and regular verbs were manipulated in a manner which reflected biases that
were present in children's linguistic environment. Despite this more reahstic
environment, U-shaped development was again observed in the networks.

The important point is that the networks never possessed anything close to an
explicit "ed" rule, but learned to discriminate irregular and regular verb endings

based on experience in a manner which was similar to children.

The Balan l

The balance scale task has become a benchmark of sorts for modeling
cognitive development. Siegler (1981, 1976) hypothesized four rules based on the
modal rules discussed above (Table 1) to account for children's performance on the
balance scale. For example, a child using Rule I, focuses solely on the weight
dimension whereas a child using Rule Il considers distance but only when the
weights are equal, etc. Siegler's general findings were that children between the
ages of 3 years to 12 years progress from not using any rule, to rule I, followed by
Rule II, and then Rule III. Some, but not all, older children and adults reach Rule
IV type performance. These results have been replicated by Ferretti et al. (1985).

McClelland (1988) used a back-propagation network to simulate the
developmental stages found by Siegler. On the input side, the network was

presented with weight and distance information for both sides of the balance scale
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respectively. The network was segregated in that the weight information was
processed by one set of hidden units (an intermediary level of units between the
input and output layers) while the distance information was processed by another
set of hidden units. The networks exhibited stage-like performance progressing
from Rule I to III. Occasionally Rule 1V behaviour was achieved, however, this
performance was unstable and the networks would regress to an earlier stage.
Thus, using simple weight updates, the network's performance was seen to change
qualitatively.

McClelland's results were extended by Shultz and Schmidt (1991) using a
generative connectionist architecture by capturing stable Rule I'V behaviour and
demonstrating the product-difference effect (Ferretti & Butterfield, 1986). The
product-difference effect describes the finding that subjects generally perform better
on probiems in which the difference between weight and distance on one side of the

fulcrum is much greater than it is on the other side.

2.3 Summar!

Connectionism has provided not only a new impetus for looking at transition
mechanisms in cognitive development but also a precise formulation of what this
mechanism might be. In particular, gradual weight adjustment and, in some cases,
changes in network topology have led to performance that conforms to behaviours

that have typically teen explained by the acquisition of explicit rules.

3. Rationale
Wilkening (1981, 1982) succeeded in establishing a methodology that

allowed for the examination of Piaget's original interest in the interrelation of
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distance, time and velocity, and addressed issues that were problematic in Piagettan
tasks. By providing children with information about the two defining dimensions
of a given concept and asking them to infer its value, he was able to study how
chiidren integrated these dimensions. Wilkening (1981) found that children as
young as 5 years correctly integrated the dimensions of time and velocity using a
multiplicative rule to infer distance. However, when the use of an eye-movement
strategy was made more difficult, 5-year-olds were found to fall back on an additive
rule. With respect to the time concept, 5-year-olds used a subtraction rule whercas
10-year-olds and adults used the correct rule. Finally, in the velocity task, 5-year-
olds used a centration rule focusing only on distance whereas the other groups used
a subtraction rule.

Connectionism has shown that it allows for a characterization of not only
what develops but how it develops by providing precise transition mechanisms
while at the same time exhibiting stage-like performance similar to that reported in
the developmental literature.

In particular, one generative connectionist architecture, cascade-correlation
(Fahlman & Lebiere, 1990; see chapter two of this thesis), has been found to
provide a good account of compensation tasks such as the balance scale (Shultz &
Schmidt, 1991) and the effects of potency and resistance on the magnitude of a
physical effect (Shultz et al. in press). Furthermore, cascade-correlation has the
potential for capturing both qualitative and quantitative shifts in knowledge
representations.

The present study attempts to further our understanding of children's ability to

integrate the dimensions of distance, time, and velocity by modeling their
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performance with cascade-correlation. In addition to the reasons mentioned above,
it is expected that the increasing non-linear representational power of a system that
recruits hidden units as needed will provide insight into how children progress from
simple centration rules to more complex multiplicative rule-like performance.

Two sets of simulations are reported testing the adequacy of cascade-
correlation to capture the developmental regularities found by Wilkening. In both,
the network is provided with information about two dimension and asked to predict
the third for a given event. By using computer simulations to understand children's
acquisition of distance, time, and velocity, it is possible to control the effects of
differing memory demands across tasks eliminating possible confounds such as an
eye-movement strategy. The first set of simulations represents an ideal situation in
which the memory demands of all three tasks are identical. The second set
examines Wilkening's assumption that the developmental sequence he observed
reflects differing memory demands. If the effects Wilkening observed were in fact
dependent on memory demands, then the second set of simulations should conform
to Wilkening's results more closely. Moreover, while Wilkening failed to look at
the effects of 10-year-olds the simulations will attempt to investigate the entire range

of development.
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CHAPTER TWO - CASCADE-CORRELATION

The following chapter discusses cascade-correlation -- a learning algorithm
that constructs a generative feedforward connectionist network. For more details,
see Fahlinun (1988), Fahlman and Lebiere (1990), Hoehfeld and Fahlman (1991),
Sjegaard (1991), and Yang and Honavar (1991).

Feedforward connectionist architectures employ simple processing units that
send and/or receive either excitatory or inhibitory signals to other simple units n the
network via weighted connections. At minimum, there is an input layer in which
stimulus information is encoded as a pattern of activation across a given number of
input units and an output layer where the response associated with a particular input
pattern is produced. Similarly, this response is determined by the paticrn of
activation on the output units making up the output layer.

Minsky and Papert (1969) argued that networks consisting of only an input
and output layer, so-called perceptrons, cannot learn some types of probiems. For
example, the classic XOR problem in which the task of the network 1s to respond
positively when either one of two inputs is “on” but not when both are either “on”
or “off”, is theoretically impossible for a perceptron to solve. Thus, multi-layered
networks consisting of one or more hidden unit layers between the input and output
layers are often used. Hidden units receive no external input and are used to build
internal representations of the stimuli.

Cascade-correlation belongs to a large class of gradient-descent learning

connectionist environments (for a review see Hertz, Krogh, & Palmer, 1991).
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Learning involves repeated presentations of input patterns and gradual adjustment
of weights or connections between units in the network to reduce the error between
the pattern of activation across output units, or simply the outpui, and the desired or
target output. As Hoehfeld and Fahlman (1991) point out, the error is typically
measured as the sum-squared differences between the current activations of the

output units and their target values,

=52@, =1, @D
Lp

where a,, is the current activation of output unit i for input pattern p, and t, is the

target output value.
A unit's activation is determined by either a linear or non-linear activation

function. The activation of a linear unit is the sum of the weighted inputs to the unit

such that

a,=X=3wx (2.2)
J

where g, is the activation of receiving unit i, X, is the sum of weighted input to unit

i, w,, is the weight of the connection from sending unit j to unit i, and x, is the

activation of unit j. In all simulations reported in this thesis the output unit had a
linear activation function.
As mentioned, Minsky and Papert (1969) showed that purely linear networks,

perceptrons, were limited with respect to what they could learn. Generalizing to
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multi-layered networks, if the hidden unit layer has units with lincar activation
functions then the network becomes very much like a simple petceptron.
Therefore, in modern day networks hidden units typically have a non-lincar
activation function.

In all simulations reported in this thesis hidden units with a stygmoid activation
function having a range from -0.5 to +0.5 were used. Thus, the activation of a

hidden unit is

1

=05 23)

1

where e is the exponential function and x is the sum of the weighted input to

hidden unit i as in Equation 2.2.

1. Cascade Architecture: Dynamic vs. Static

Cascade-correlation is a generative learning algorithm (for a review of
generative learning algorithms see Alpaydin, 1991). That is, unlike typical back-
propagation networks (Rumelhart, Hinton & Williams, 1986), the network
architecture created using cascade-correlation is dynamic in that hidden units are
added to the network as training progresses. Figure 2 tllustrates the nitial or
starting architecture of the network with three input units and one output unit, and
the structure following the addition of one and two hidden units respectively.

As can be seen the network begins as a simple perceptron. The networks

initial configuration is based solely on the manner 1n which the input s encoded.
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Figurc 2. Architecture at beginning (a), after one hidden unit is added (b), and
after a sccond hidden unit is added (c). Solid and dashed hines indicate trainable
and frozcn connections respectively. I, H and O refer to input, hidden, and
output umt respectively. Bias unit shown in black.

If, as in Figure 2, the input is encoded on three units, the resulting network will
have four input units -- the three input units and an obligatory bias that always has
an activation of one. The bias unit acts as a threshold unit. All units from this input
layer have direct connections, or in other words, straight-through connections to the

output layer, in this case a single unit.

Training using the cascade-correlation algorithm consists of a series of two-

phased training cycles until victory or some maximum number of epochs is
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reached. An epoch consists of a single presentation of all training patterns. Victory
is declared when the number of incorrect error bits across all patterns is zero. Each
output unit is considered as an error bit. If the output unit is not within a certain
distance (score-threshold) of the target value it is considered incorrect. For
example, if a sigmoid output unit is used with a range from -0.5 to +0.5, the target
output for a given input pattern is +0.5, and the score-threshold is set to 0.4 (the
default for sigmoid outputs) then any response above +0.1 would count as a correct
error bit. Thus, if there are 20 patterns in the training set and the network has two
output units, then the total possible number of error bits is 40.

During the first phase of the training cycle (i.e., the output training phase) the
algorithm attempts to reduce error (as measured by Equation 1) between the target
outputs and the actual outputs computed by the network. Three parameters directly
control the duration of the phase. The first and second parameters, output patience
and output change threshold, are related to error reduction. The latter refers to the
minimum error reduction that is considered to be significant. Qutput paticnce is the
number of consecutive epochs allowed that do not meet the minimum criterion of
the output change threshold. For example, if the output patience is eight epochs
(the default valae), the algorithm will discontinue the output training phase if eight
consecutive epochs occur in which the error is reduced by less than the output
change threshold at each epoch.

The third parameter related to the length of the output training phase is the
outlimit. This is the maximum number of epochs that the algorithm will continue in
the output training phase even if the output patience criterion is not met. For

example, if the outlimit is set to 50 epochs, output training will progress until 50
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epochs have occurred without the output patience having been reached or victory

declared. Then the algorithm will begin the input training phase.

L2 1 ¢ (raini |

The input training phase is used to recruit (add) hidden units to the network
that are maximally correlated with output error. At the start of this phase, a pool of
candidate hidden units (default value of eight units) are each connected to all input
units (including the bias) and any existing hidden units. All candidate hidden units
are then connected to all output units of the output layer. Input training continues
until one of two input training parameters is reached -- input patience and inlimit.
Input patience is synonymous with it's output training counterpart except that the
minimum criterion of the input change threshold reflects the amount of change in
the correlation rather than the error. Similarly, the inlimit is the maximum number
of epochs in which the correlation between candidate hidden units and the output
error is maximized.

When either the inlimit or input patience is met, the candidate hidden unit is
installed into the network. It's input-side weights are then frozen. In other words,
these weights do not undergo any further training, remaining the same until learning
is completed. In contrast, the weights leading from the hidden unit to the output
layer are not frozen and hence, are adjusted as needed. In Figure 2, this feature of
frozen versus trainable weights is illustrated by dashed and solid lines respectively.
The other hidden units in the pool are then "removed" and the two cycled training
phase begins again with output training.

In sum, Figure 2 illustrates a hypothetical architecture of a network beginning

the first output training phase (a), after completing one input training phase (b), and
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after another output-input training cycle (c).

2. Quickprop Algorithm
In cascade-correlation, the weights are updated or adjusted using the
Quickprop algorithm (Fahlman 1988). Quickprop is a variant of the back-
propagation weight update rule in which the change in the connection strength of a

given weight is given by the equation

JE
AW(,) = —E—a—w—+ AW(,_I) (24)
0]

where ¢ is the learning rate, dE/dw,,, is the error derivative, and Aw,,_,, is the

weight change of the previous epoch. The updated connection strength of the

weight is then obtained by

Wiy = Wi,y +Awy, (2.5)

where w,, is the connection strength of the weight at the previous epoch.

Fahlman and Lebiere (1990) have argued that gradient descent using
Equation 2.4 is relatively slow since only the partial first-order derivative of the
error is computed. They argue that if infinitesimal steps down the error slope are
taken this is adequate. However, using second-order derivatives in which not only
the slope of the error space is considered but also it's curvature, much larger steps
can be used in gradient descent.

Fahlman's Quickprop algorithm makes use of a heuristic type approach to
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using these second-order derivatives. Quickprop uses information about the

previous first-order error derivative, S(,_1 y the current error derivative, S(,), and the

previous change in connection strength of the weight to define a parabola in weight-
space. The object is then to make a weight change that reduces error to the bottom
of this parabola. Specifically, the change in connection strength for weight i is

given by
Aw,, = TN Aw,,_y (2.6)
where § is simply the slope or first-order derivative (dE/dw) used in back-
propagation.
Two special cases arise when Equation 2.6 is not used for computing the

weight change. One is when the previous weight change is zero. In this case, the

change in weight strength is computed by

Aw,, = &5, 2.7

where ¢ is some constant controlling the amount of gradient descent. The second
case occurs when the current slope is the same size or greater than the previous

slope. Here the weight change is limited such that

Aw,, = UAw,,_,, (2.8)

where y is the maximum step size allowed.
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Fahlman (1988) has shown that using this second-order method, Quickprop

out performs standard Back-propagation on several benchmarks.

3. Correlation
The goal of input training, as mentioned above, is to install the hidden unit
whose activation most closely correlates with the output error into the network.
Again the Quickprop algorithm is used according to the criterion stated above
(Equations 2.6, 2.7, and 2.8). However, in this case the object is not to perform
gradient descent to minimize sum-square error but rather to perform gradient ascent

to maximize
c=YD(,-V)E,,-E,) (2.9)
of|p

where C is the sum of the magnitude of the correlation between V , the value or
activation of the hidden unit given input pattern p, and E,, the residual output error

of output unit o, over all output units.

Finally, the partial error derivative of C is calculated as follows;

aClow, =Y 0,(E,,~E)fl,, (2.10)
pP.o

where o, is the sign of the correlation for output o, f, is the derivative is the

hidden unit's activation function with respect to the sum of it's inputs for pattern p,

and 1, , is the input the hidden unit receives from unit i for pattern p. Defining S in

Equations 2.6 and 2.7 as dC/dw, instead of JE/dw, the Quickprop algorithm for
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updating weights is used for gradient ascent in the input or hidden unit training
phase as it is used for gradient descent in the output training phase.

As mentioned above, the candidate hidden unit with the greatest correlation is
then installed into the network, it's input-side weights frozen, and output training

resumes.
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CHAPTER THREE - METHOD

Two sets of simulations were conducted -- one representing the possible
effects of memory constraints, the limitea memory condition, the other without
them, the pure condition. The network architecture employed in both sets was the
same and is discussed first, followed by a description of the training and testing
patterns used, the parameter settings of the algorithm, the procedure for training and
testing the network, and how the output of the network was treated.

The network's task in both sets of simulations is to determine the value of the
missing dimension (distance, time, or velocity) given information about the other
two (time and velocity, distance and velocity, or distance and time) for a single
event. For example, an event might include information about the velocity of an
object and the total time that it traveled. The network’s task is to compute the total

distance traveled.

1. Network Architecture

The initial architecture consists of a fully connected network of input and
output units only. Three groups of input units are used to represent the dimensions
of distance, time, and velocity respectively. The number of units per group is
dependent on the type of encoding used and is discussed below. The input units,
including the obligatory bias unit, are connected to a single output unit with a lincar
activation function (Equation 2.2). A linear output unit was used because it was the
most natural way of producing a quantitative output similar to the responses made

by subjects in Wilkening’s (1981, 1982) experiments. As training progresses, any
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hidden unit incorporated into the network receives connections from all input units
as well as from any existing hidden units and is connected directly to the output
unit. The hidden units have a sigmoid activation function (Equation 2.3).

LL Input encoding

Five types of input encoding commonly fcund in the literature were used to
determine the effect of encoding on performance. These included four distributed
types of encoding; mercury (e.g., Harnad, Hanson, & Lubin, 1991), thermometer
(e.g., Anderson, 1990), gaussian (e.g., Lacouture & Marley, 1991), and integer
(e.g., Shultz & Schmidt, 1991); and one local encoding, nth (e.g., McClelland,
1988).

In distributed representations, more than one unit is used to represent any one
input value. Moreover, the same unit is involved in the representation of more than
one input value. In mercury coding, the first n uniis corresponding to the integer n
have an activation of one and all other units have an activation of zero. The total
number of units used is equal to the maximum input value. In thermometer coding,
the nth, nth + 1, and nth + 2 units have an activation of one and all other units
have an activation of zero. Thus, the total number of units is n + 2. The gaussian
coding used is the same as thermometer coding except that the nth + 1 unit has an
activation of three.

In integer coding, only one unit is used per input group. However, the unit is
involved in the representation of more that one input value. Thus, in this sense it is
also a distributed representation. The unit is assigned the integer value of the

dimension.
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Table 3
Example Input Encoding For a
Input Value of Three
Type Code
Integer 3
Nth 00100
Mercury 11100

Thermometer 0011100
Gaussian 0013100

Finally, in nth coding, for any input value n, the ath unit has an activation of
one and all other units have an activation of zero. Thus, it is a local representation
in that each unit is used exclusively to represent a given input value. As with
mercury coding, the total number of units is equal to the maximum input value
used. An example of each of these encoding types for an input value of three is
‘Tlustrated in Table 3.

Thus, a given network architecture will consist of a total of:

WW=(GxE)y+1 3.1

input unit (IU), where G is the number of input groups, and E is the number of
units 1cquired for the encoding type used, plus 1 for the obligatory bias unit. For
example, using thermometer encoding with the maximum dimensional value of
five, the number of input units would be (3 x7)+1 for a total of 22 units. Each of

these would be connected to the linear output unit.

2. Training and Testing Patterns

Training and testing patterns consist of both input values and a target, or
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output value. Input values are used to encode the event, for example the distance
traveled and the amount of time it took, while the output value is the outcome,
velocity in this case. There were three classes of inference patterns: distance, time,
and velocity. The distance class, for example, were those patterns in which

distance was to be inferred given time and velocity information as input.
2.1 P Conditi

Input values

The input values of the two known dimensions were the integers from 1 to 5
whereas the input value of the dimension to be inferred had a value of zero to
indicate that the magnitude of this dimension was unknown. Thus, for any given
input pattern, one input group would be all zeros (nth, mercury, thermometer, and
gaussian coding) or zero (integer coding) while the other two groups had
dimensional values between one and five. For example, for a given distance
problem, the distance input group had an input value of zero, and the time and
velocity input groups had input values ranging from one to five.

All combinations of the defining dimension values (1 to 5) were used as input
patterns for a total of 25 distance, 25 time, and 25 velocity training patterns where
distance, time, and velocity was to be inferred respectively. An example of each of

the three types of input patterns is illustrated in Table 4 using mercury encoding.

Target values
Training patterns. Target values for the output unit were calculated using the
three Newtonian equations (d =t Xxv, t=d +v, and v=d +1t) respectively. In

addition, distance target values were scaled by dividing by five (the maximum input
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Table 4
An Example of Distance, Time, and Velocity Input
Patterns Using Mercury Encoding

Input Group
Problem Type  Distance Time Velocity
Distance 00000 11100 t1tt11
Time 11100 00000 1111
Velocity 11100 11111 00000

Note. In these examples the two defining dimensions receive values of
3 and 5 respectively and the dimension to be mferred has a valuc of 0.

value) so that the range would be identical to the target values of time and velocity
inference patterns.

Thus, a velocity training pattern representing an object traveling a distance of
five units for one unit of time would have input values of 5, 1, and 0 for the
distance, time, and velocity input groups respectively and an output, or target value
ol 5,as computed by v=d+1=5+1.

Testing patterns. Several sets of testing patterns were created corresponding
to potential rules that might best capture network performance. All rules observed
by Wilkening (1980, 1981) were included in addition to other rules derived from
Information Integration Theory.

The same input values as those in the training set were used. However, the
output value associated with a given input pattern was calculated as follows. For
distance patterns, output values were calculated according to the following three
classes of rules: (1) two identity rules in which the output valuc was determined
either solely by the time dimension, d =t¢, or the velocity dimension, d =v, (2)
three additive type rules, d=t+v, d=t—v, and d=v—t, and (3) three

multiplicative type rules, d =t xv (the correct Newtonian rule), d=t+v, and
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Table 5
gules Used to Calculate Output Values of the Training Set and Testing
ets
Rule Types
Inference
Task Identity Additive Multiplicative
Distance d=t & d=v d=t+v d=tv
Time t=d & t=v t=d+v & t=d-v t=d-+v
Velocity v=d & v=t v=d+t & v=d-t v=d+t

Note. d = distance; t = ime; v = velocity.

Multiplicauve rules were used to calculate target output values of the training set.

d =v+t. Thus, there were a total of eight distance testing sets of 25 patterns each
(i.e., all input patterns) used to diagnose performance on distance inference
patterns. For time inference patterns, the following rules were used: (1) the identity
rules t=d and t=v, (2) the additive type rules, t=d+v, t=d—v, and
t =v-d, and (3) three multiplicative type rules, t - d + v (the correct Newtonian
rule), t=v+d, and t=d xv. Analogous rules were used to calculate the output
values for the velocity testing patterns.

Pilot simulations revealed that for distance problems both identity rules, one
additive rule (d =r+v), and the correct multiplicative rule were useful for
capturing performance and therefore the remaining distance testing sets were
dropped from the testing phase of the simulations to reduce computational
complexity. Similarly, for time and velocity problems respectively, the additive
type rules, t =v—d and v =1t —d as well as four multiplicative rules, t=d X v and

t=v+d, v=dxt and v=t+d were dropped. Table 5 illustrates the final 14

testing sets that were used.
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2.2, Limited M Conditi

This condition was an attempt to address some of the issues put forth by
Wilkening (1981, 1982) with respect to the cross-developmental course of the three
concepts. Wilkening maintained that the reason why subjects performed differently
across tasks was due to memory constraints inherent in his study. For cxnmpk:,
Wilkening argued that one possible reason why children and adults performed
worse on the velocity than the time task was that while both defining dimensions,
distance and velocity, were available at the moment of inference in the time task, the
same was not true in the velocity task. In particular, time information had to be
retrieved from memory and this may have been reflected in the relatively poor

results.

In valu

In order to capture the possible memory constraints inherent in Wilkening's
(1981) velocity task, the input values of the training patterns were modified as
follows. It was assumed that the likelihood of correct recall followed a normal
distribution in that values closer to the actual time value would be more likely to be
recalled than distant values. As such, at each epoch the time dimension of a given
velocity problem was altered such that in general there was a 34%, 13%, 2%, and
less than 1% probability that the time input value "recalled” by the network would
be 1, 2, 3, or 4 integers away respectively from the actual value. In the remaining
instances, the actual value was used as input.

An additional constraint was that the modified time input fall within the same
range (1 to 5) used in the training set. This was necessary to avoid any confound

due to differences in network topography when comparing the two conditions (pure
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vs. limited) . Without such a restriction, networks in the limited memory condition
would require more input units than those in the pure condition. For example,
using thermometer input encoding, an additional five time input units would be
needed to reflect the improbable case in which the actual value was five and the
integer "recalled” was nine. Moreover, the lack of input values less than one seems
self-evident.

The likelihood and degree of modification of the actual input value followed
the probabilities outlined above where permitted by the range restriction. If the
selection of an integer either above or below the actual value was possible, a
random choice was made amongst the two equally distant values. For example, if
the actual input value was 3 there was a 34% chance that the network would receive
2 or 4 as input and a 13% chance that it would receive 1 or 5. Otherwise, 3 was
used. If the input value was 5, then the chance of a 4, 3, 2, or 1 being "recalled"

was 34%, 13%, 2%, and 1% respectively.

Target values

The target values for training and testing patterns remained the same
regardless of any modification of the input values. For example, if the velocity
problem presented to the network was an event in which the object traveled 5
distance units in 1 time unit, the target value was 5 regardless of whether or not the
network received an input value of 1 for the time dimension.

It should be clear that only the velocity patterns were modified. Furthermore,
only the time dimension of these patterns were selected according to the criteria

above. Inall other respects the pure and limited memory conditions were identical.
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3. Parameter Settings

Table 6 contains a list of parameter settings used in the simulations and a brief
description of their function. Default settings were used for all parameters except
output-unit type and score-threshold. The default output-unit type is sigmoid.
However, as mentioned, a linear output unit was used. The default score-thieshold
of 0.4 did not adequately differentiate among output targets. Therefore, a more
strict score-threshold of 0.01 was used. All parameters were held constant across
all simulations. ?

4. Procedure

Networks were trained until victory was declared or 1500 epochs were
reached. The networks were presented with all 75 training patterns (25 distance, 25
time, and 25 velocity patterns) at each epoch of training. Testing was conducted
once at the beginning and ending of the output training phase as well as every five
epochs during this interval. Since the output activations don’t change during input
training, testing during this phase is redundant as the results are the same as the last
epoch of the output training phase.

At each testing epoch, the total number of correct patterns and the sum-
squared error were recorded for both the entire training set (75 patterns) and
individually per pattern type (distance, time, or velocity). In addition, the output
activations corresponding to each input pattern were saved for later analysis.
Weights were stored at given epochs so that Hinton diagrams could be drawn to
analyze hidden unit functioning. Finally, the total number of hidden units recruited
by the network as well as the epoch at which they were installed into the network

were recorded.
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Variables and Their Values Used in the Simulations

variable name

value

description

sigmoid-prime-offset
weight-range
weight-multiplier
output-mu

input-mu
output-shrink-factor

input-shrink-factor
output-epsilon

input-epsilon
output-decay

input-decay
output-patience

input-patience

output-change-threshold

input-change-threshold
out-limit

in-limit

unit-type

output-type
ncandidates
score-threshold

0.1
1.0
1.0
2.0

2.0
0.67

0.67
0.35

1.0
0.0001

0.0
8

8

0.01

0.03
100
100

sigmoid
linear
8
0.01

Value added to sigmoid-prime function to avoid
situations where it goes to zcro.

Inutial input and direct input to output weights are
randomly set to "+" or "-" values within this range.

Used to calculate 1niual output weights of candidate
units.

QP parameter that sets maximum possible step size
in gradient descent during OT.

Same as above except used during IT.

QP paramecter used to calculate if proposed step in
gradient descent during OT is too large.

Same as above except used during IT.

QP paramcier controlling amount of gradient descent
or learning rate in OT.

Same as above except used during IT.

QP paramcter added to computed slopes of cach
weight in OT to avoid floating-point overload.

Same as above cxcept used during IT.

Number of epochs allowed for nonsignificant error
reduction in OT after which IT begins.

Same as above with respect to nonsigmificant
changes in maximizing corrclation in IT after which
OT begins.

Error reduction must be g, cater than output-change-
threshold to be consider significant.

Same as above with respect to changes in correlation.
Maximum number of cpoch during OT allowed.
Maximum number of cpochs during IT allowed.
Activation function of hidden unit(s) 1s sigmoidal.
Activation function of output unit(s) 1s lincar
Number of candidate hidden units trained in IT.

Output units must be within score-threshold to be
considered correct,

Note. QP = Quickprop; OT = output training; IT input training.

A total of 30 networks per input encoding were run. Computational

complexity made it impractical to store weights for all networks. Thus, only 10

runs were analyzed by Hinton diagrams.
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5. Treatment of Qutput

5.1, Di . Rul

The focus of interest was the rules that best captured the overall performance
of the network at a given testing epoch. Since accurate computation on the stimulus
input was not demanded of the human subjects in Wilkening’s work, an attempt to
reflect this was made by assessing the correlation of the testing rules and the actual
output of the network. Moreover, by using correlation as the method of
assessment, it was unnecessary to scale output values predicted by the testing rules
so that they fell into the range in which the network was being trained.

For each of the testing sets listed in Table 5, a Pearson product-moment
correlation coefficient was obtained to measure the relatedness of the 25 output
target values and the 25 actual outputs produced by the network. These correlations
were then converted to r* values so that the results could be interpreted in terms of
the variance of the actual outputs accounted for by a given rule. However, the sign
of the correlation was maintained so that it was possible to determine if the r?
associated with a given rule was for a rule which positively or negatively predicted

performance.

5.2, Di . Stases

Since the simulations were designed to capture developmental trends, 1t was
necessary to diagnose consistent network performance (i.e., stages). Several
criteria were used to asses stages. However, before any determination of stage-like
behaviour could be done, the rules that best predicted output values of the distance,

time, and velocity pattern sets respectively were ascertained.
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The best rule per pattern type (distance, time, or velocity) was determined
using the following criteria. First, at a given epoch, a rule was required to account
for at least 50% of the variance (r>=0.50, r = 0.71) of the pattern set to which it
belonged in order to be considered at all. Second, the rule had to be a positive
predictor of the output values. Third, the rule had to be a better predictor than its
competitors by at least 1% regardless of the direction of the correlation. Although
1% may seem insignificant, two facts warrant the use of this value. First, the
degree of relatedness amongst rules is extremely high. For example, the d=1+v
rule accounts for approximately 90% of the variance associated with the correct, or
defining rule of the distance pattern set (d =t xv). Second, visual inspection of
graphs plotting the r* of the rules by epoch indicated that this small difference
between rules was systematically associated with the beginnings of consistent better
performance by the rule with the higher value (i.e., the beginning of a stage).
Finally, if two rules met the first and second criterion above but not the third, it was
considered to be a tie between the two rules and was noted as such. Otherwise, the
epoch being considered was deemed undiagnosible.

In order to determine consistent stage-like performance, the best-rule
classification was required to be the same for at least four consecutive testing
epochs. Thus, if the r* associated with the d =7+ v rule was at least 1% better
than all the other possible distance rules, positively correlated with the actual output
of the network, accounted for at least 50% of the variance, and observed on four
consecutive testing epochs, then the network was classified as being in an additive

stage with respect to performance on distance patterns.



CHAPTER FOUR - RESULTS

Results of the pure condition are discussed first followed by the limited
memory condition. The results of networks using an additional encoding type,
integer-context, are reported. As will be shown, performance across four of the
original five encoding types was qualitatively similar. However, networks that
used integer input encoding differed. It was hypothesized that this difference may
be due to the purely linear nature of integer encoding. In order to verify this,
networks using a sixth type of encoding, integer-context, were also investigated.
This is similar to integer except that three context units, one representing cach type
of inference problem , are used in addition to the normal integer input groups. The
appropriate context unit receives an input value of one while the other two units
receive a value of zero. Thus, the input taken as a whole is less linear than straight
integer encoding.

PURE CONDITION

1. General Learnability
All networks learned successfully to the point where the normative rules
(d=txv, t=d+v, and v=d +t) accounted for the greatest amount of variance
in the output activations of the networks. In fact only one network, in the integer
encoding condition, failed to reach the maximum r2 value (1.00). The mean epoch,
sum-squared error, and percent of error reduction from epoch 5 to the point during
training where each normative rule accounted for all the variance in output

activations are presented in Table 7. Epoch 5 was chosen for comparing percent of
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Table 7
Mean Epoch, Error, and Percent Reduction When R2 of Normative Rules Reached
1.00: Pure Condition

Inference Problem Type
Distance Time Velocity
Encoding Epoch E % Epoch E % Epoch FE %

Integer
M 840.50 0.46 97.88 99690 0.34 99.17 *971.35 0.31 99.26
SD 160.14 0.14 090 15943 0.07 0.18 13736 0.04 0.13

Int-cont
M 920.17 0.40 98.08 814.30 0.33 99.17 808.53 0.31 99.18
SD 106.00 0.09 0.82 160.20 0.13 0.34 150.16 0.05 0.24

Nth

M 510.23 0.34 99.19 430.20 0.30 98.89 44597 0.31 98.85
SD 48.27 0.05 0.15 4276 0.07 0.28 53.03 0.07 0.38

Mercury
M 721.27 0.38 98.81 666.70 0.32 99.14 657.93 0.36 99.03
SD 66.26 0.09 0.37 93.87 0.07 0.25 79.80 0.09 0.29
Therm
M 533.90 0.38 98.98 493.87 0.26 99.07 479.90 0.27 99.14
SD 59.67 0.08 0.17 75.51 0.08 0.42 65.65 0.06 0.31
Gaussian

M 521.73 0.38 99.22 464.13 0.30 98.82 485.43 0.30 99.00
SD 49.42 0.05 0.17 57.56 0.05 0.39 60.24 0.04 0.34

n=30

* 1 network reached a maximum r2 = .98

error reduced because it was the first observation after Epoch 0. Epoch 0 was not
used because error at this point simply reflects the initial random weights of the
network and is thus inconsistent across networks.

A one-way repeated measures ANOVA was performed for each encoding type
to determine if the epoch at which the r2 attained a value of 1.00 was significantly
different for distance, time and velocity inference patterns. The difference was
significant (p < .05) for all encoding types. The following F values were observed:

integer F(2,56) = 13.76; integer-context F(2 58) = 7.39; nth F(2 s58) = 30.28; mercury
(2.56) (2,58) (2,58)
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F(2,58) = 7.68; thermometer F(2 58) = 8.29 and; gaussian F(3 58y =9.73. Thus,
for all encoding types except integer, the normative rules of time and velocity
reached their maximum 2 before the distance rule. The opposite occurred when
integer encoding was used.

It was theoretically possible to achieve a perfect r2 even if the actual outputs
of the network were far from their targets. That is, r2 is an indicator of the amount
of variance accounted for between the actual outputs and target values by a given
rule. It is not dependent on how close in magnitude the outputs are to their targets.
However, as can be seen in Table 7, the sum-squared error at this point was very
small. For example, a sum-squared error of (.30 indicates that, on average, the 25
distance inference patterns were (.15 away from their target values.

The attainment of perfect r2 and the low sum-squared error suggests that as
far as learning is concerned all that remained was simple weight adjustment.
However, training continued until 1500 epochs for all networks without victory
being declared indicating that the algorithm was incapable of reaching a score-

threshold of 0.01.

2. Stage Diagnoses
Overall, stage diagnosis produced a coherent classification of network
performance. The majority of the networks exhibited developmental sequences
similar to those observed by Wilkening (1981, 1982). All networks, collapsed
across input encoding types, exhibited the same distance developmental sequence
(d=t+v followed by d=txv). Ninety-two percent of the networks (excluding
those in the integer encoding condition) followed a similar time developmental

course progressing from a stage defined by t=d—v to a stage defined by
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t =d+v. The difference between the sequence observed by Wilkening and the one
characteristic of network performance was that the networks first progressed
through an identity stage defined by the rule t=d. Similarly, 93% of the networks
(excluding integer encoding) followed a progression from an identity (v=d) to an
additive (v=d —t) and then a multiplicative (v=d+¢) stage. Again, this is
similar to Wilkening's results with the exception that the networks attained the final
multiplicative stage.
2.1, Distance

As stated, performance on the distance inference problems was captured by
the same developmental sequences as the one observed by Wilkening (1982). That
is, networks first demonstrated the additive rule, d =t +v, followed by the correct
multiplicative rule d = ¢ xv. For networks with nth, mercury, thermometer, and
gaussian encoding, the additive stage began after the recruitment of one hidden unit
and lasted 200 epochs on average. The multiplicative stage began at approximately
300 epochs following the recruitment of a second and third hidden unit on average.

For networks using integer and integer-context encoding, the additive stage
began very early on in training and thus, was not preceded by the recruitment of a
hidden unit. It was longer than in other encodings, lasting for approximately 300
epochs. As a result, the multiplicative stage began at approximately the same time
for integer and integer-context encodings as the other encodings. At this point, 3
or 4 hidden units had been recruited on average. The mean number of hidden units
recruited prior to stage onset, the epoch at which the stage began, and the length of

the stage are reported in Table 8 for each encoding type.




Table 8

Distance, Time, and Velocity

Distance Developmental Sequence by Encoding
Type: Pure Condition

d=t+v d=t*v

Encoding hid onset length hid onset
Integer

M 0.00 4.17 30197 3.53 341.43

SD 0.00 1.90 103.05 1.07 117.68
Int-cont

M 0.07 15.60 327.17 4.00 446.93

SD 0.25 19.64 104.68 1.02 108.31
Nth

M 1.00 7093 164.77 3.07 248.97

SD 0.00 3.81 7840 1.02 83.48
Mercury

M 1.00 82.23 217.03  3.27 331.37

SD 0.00 9.22 8720 094 101.66
Therm

M 1.00 66.80 163.63 3.20 262.67

SD 0.00 391 5567 0.76 70.59
Gaussian

M 1.00 65.87 16520 3.30 258.07

SD 0.00 5.40 6451 092 71.78

n = 30 for all encoding types
Note. d = distance; t = time; v = velocity; hid = number of
hidden units; onsct = epoch at which stagte begins; length =
length of stage in epochs.

Performance Attributable to Stage

63

During the additive stage, the amount of variance in the output values of the

distance inference patterns accounted for by the additive rule (d =1+ v) greatly

exceeded the minimum set by the best rule criterion (r2 2> ().50). The mean

maximum rZ of the additive rule attained during the additive stage 1s shown in

Figure 3 for each encoding type. As can be seen, even for mercury encoding, in

which the mean maximum 72 attained was the lowest of the six encodings, 89% of

the variance was accounted for. Moreover, for all integer and integer-context
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Maximum R-square:
Distance Additive Stage

[ N

Mercury

Encoding

Figure 3. Maximum r2 of d=t+v rule attained during additive
stage of distance developmental sequence.

networks the r2 of the additive rule reached 1.00. As reported in Table 7, during
the multiplicative stage the defining rule d =t X v reached an r2 of 1.00.
Thus, within the stages of the distance developmental sequence, a large

percentage of the variance in the output values was accounted for.

Error Reduction

Each stage was associated with successive error reduction. The mean percent
of error reduction from epoch S to the epoch prior to the onset of the additive and
multiplicative stages is shown in Figure 4a for all encodings except integer and
integer-context. For these two encodings the additive stages typically began at
Epoch 5 and are therefore not included in the figure.

Prior to the onset of the additive stage, the error associated with the distance
inference patterns was reduced by between roughly 40-60%. Thus, although this
period was not associated with a particular stage there was a sizable amount of error

reduction. Learning continued over the additive stage. Approximately 85-90% of
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Figure 4. Mean percent of error reduction in distance inference patterns (a) from epoch 5 10
additive and muluplicative stage onset and (b) over additive stage. Error bars arc standard
deviations from the mean.

the error that existed just prior to the onset of the stage was reduced by the end of
the stage. The mean percent of error reduction over the additive stage relative to the
epoch prior to stage onset is shown in Figure 4b for all encoding types.

Finally, the percentage of total error reduced from epoch 5 to the cpoch prior
to the onset of the multiplicative siage was approximately 90%. Taken together, the
amount of error reduced over the additive stage and the total error reduction prior to
the onset of the multiplicative stage suggests that while the additive rule may not be

the normative rule, it is a good approximation.

Stabilit | Transiti

Overall the distance developmental sequence was extremely stable.

Regressions were observed in only two networks, one with integer and one with
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integer-context encoding, and were not permanent. Both of these networks
regressed to a tie between the additive and multiplicative rule. A tie consisted of a
period of four or more testing epochs where the difference between the r2 values of
two rules, in this case the additive and multiplicative rules, was less than or equal to

0.99.

For the majority of networks, transition from the additive stage occurred in
few epochs (M = 11.62, SD = 17.56). Typically this transition involved
fluctuations between the additive and multiplicative rules. However, for 30% of the
networks there was a period characterized by a tie between the additive and
multiplicative rules before the onset of the multiplicative stage. On average this
lasted for approximately 74.67 epochs (SD = 40.90). Note that ties often occurred
Jjust prior to the beginning of the input training phase. Thus the length of a tie is
influenced by the fact that network responses do not change during the input
training phase.

Thus, for the majority of networks there was a rapid transition between
stages. Although some networks went through a tie before the onset of the
multiphcative stage, the methodology used to diagnose stages was able to
characterize this period as well.

Summary of Distance Developmental Sequence

For the majority of encoding types, the distance developmental sequence
began with the additive stage following a period in which the error was reduced but
not captured by identity (d =t or d =v), additive, or multiplicative rules. For
integer and integer-context networks the additive stage began almost immediately

after training. During the additive stage, a large proportion of the variance in the
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outputs of the distance inference patterns was accounted for across encoding types.
Finally, learning continued over the additive stage until the eventual onset of the
multiplicative stage after either a brief transition period or a tie between the additive
and multiplicative stages.

2.2, Time

With the exception of integer encoding, 92% of the networks exhibited a
developmental sequence characterized by a progression from an identity stage
(t=d) that started after about 5 to 10 epochs of training and lasted for
approximately 55 epochs, to an additive stage (t = d —v) that lasted for an average
of 80 epochs before attaining the correct multiplicative stage t=d+v after
approximately 160 epochs of training. The mean number of hidden units recruited
prior to stage onset, the epoch at which the stage began, and the Iength of the stage
are reported 1n Tavle 9 for each encoding type.

The remaining 8% of the networks (10 using integer-context and 2 using
gaussian encoding) proceeded directly from the identity stage to the multiplicative
stage. For the 10 integer-context networks, the identity stage started at 12.00
(8D =6.75) epochs and lasted for 65.00 epochs (SD =6.95) on average. None
of the networks had recruited any hidden units at this tirne. The mean epoch of
onset of the multiplicative stage was 96.00 (SD = 10.39). This occurred after all
networks had recruited 1 hidden unit. For the two networks 1n the gaussian
encoding condition, the identity stage began at 0 and 10 epochs and lasted unul
epcch 57 and 61 respectively. The multiplicative stage began at 82 and 66 epochs

respectively . The networks' had not recruited any hidden units prior to the onset
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Table 9
Time Developmental Sequence by Encoding Type. Pure Condition

t=d t=d-v t=d+v
Encoding n  hid onset length hid onset length hid onset

Int-cont 20

M 0.00 15.00 64.35 1.00 84.85 98.35 2.25 199.55

SD 0.00 6.49 8.52 0.00 1002 5503 0.55 51.31

Nth 30

M 0.00 6.67 55.60 1.00 67.77 7790 2.00 150.60

SD 000 240 540 0.00 495 7.87  0.00 8.26
Mercury 30

M 0.00 10.17 67.40 1.00 85.07 9523 2.03 189.83

SD 0.00 3.82 1058 0.00 9.57 1023 0.18 19.46
Therm 30

M 0.00 5.50 56.30 1.00 66.80 80.87 2.00 152.50

SD 0.00 240 47 0.00 3.82 853 000 1099
Gaussian 28

M 000 6.79 54.75 1.00 66.89 81.25 2.07 153.04

SD 0.00 4.13 6.33 0.00 6.30 2242 0.26 22.78

Note. d = distance; t = ime; v = velocity, hid = number of hidden unuts, onsct = epoch at which
stage begins, length = Iength of stage in epochs

of the additive stage. One hidden unit was recruited prior to the onset of the
multiplicative stage.

For all networks using integer encoding the first diagnosable stage was
characterized by the additive rule t=d +v. The mean onset of the stage was at
4.50 epochs (SD = 2.01) and it lasted for 61.43 epochs (SD =13.10) on average.
None of the networks had recruited any hidden units before the onset of the stage.
For 28 networks the next diagnosable stage was defined by the normative rule
t=d+v. The mean onset of the stage was at 75.21 epochs (SD = 13.42). All
networks had recruited 1 hidden unit by the beginning of the stage. For the other
two networks, the multiphcauve stage was preceded by an additive stage defined by

1=d-v. Onaverage, this additive stage began at 71.50 epochs (SD = 21.92),
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Figure 5. Maximum r2 of t=d and t=d-v rules attaincd during wdentity and
additive stages of time developmental sequence respectively.

was preceded by the recruitment of one hidden unit, and lasted for 81.5 epochs
(SD =3.54). The stage characterized by the normative rule began on average at

160.50 epochs (SD =21.92) following the recruitment of & second hidden

Performance Attributable to 4

For networks progressing through an identity stage (all encoding types except
integer), a maximum of over 90% of variance in the output values of the ume
inference patterns was accounted for by the identity rule (¢=d). In fact, all
integer-context networks reached the maximum r2 (1.00). The mean maximum r2
of the additive rule (t=d —v) during the additive stage was shghtly less but stll
accounted for more than 80% of the variance on average. Thus, as with the
distance developmental sequence, a large percentage of the varnance in the output
values was accounted for. The mean maximum r2 values attained during both

identity and additive stages are shown n Figure 5.
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For integer networks there was no identity stage. During the additive stage
(t =d+ v) the mean maximum r2 value of the additive rule attained was 1.00
(SD =.01).

Finally, during the multiplicative stage the defining rule ¢ = d + v reached an

r2 of 1.00 for all encoding types (see Table 7.).

Error Reduction

Each stage was associated with successive error reduction. The mean percent
of error reduction over the identity stage and additive stage relative to the epoch
prior to stage onset is shown in Figure 6a. As can be seen, approximately 35-55%
of the error that existed prior to the onset of the identity stage was reduced over the
stage. Slightly more error was reduced over the additive stage (50-65%). Thus,
learning was continuous across the stages as in the distance developmental
sequence.

The mean percent of error reduction from epoch 5 to the epoch prior to the
onsct of the multiplicative stage is shown in Figure 6b. On average, the amount of
error reduced prior to the onset of the time multiplicative stage was slightly less than
prior to the distance multiplicative stage. This suggests that the additive time rule
wis not as good an approximation of the time inference patterns as the analogous

case was for distance patterns.

Overall the time developmental sequence was again very stable. Regressions
were observed in only 4 integer networks and 9 integer-context networks, and were

never permanent. The regressions were to either the additive stage or to a tie
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Figure 6, Mean percent of error reducuon in time inference patterns (a) over identity and additive
stages and (b) from cpoch 5 to multiplicative stage onset. Esror bars are standard deviations from
the mean.

between the additive stage and the multiplicative stage.

Transition from the identity stage to the additive stage took 5.80 epochs on
average (SD = 2.72). For almost all of the networks, the transition from the
additive rule to the multiplicative rule was rapid taking 5.89 epochs on average (SD
= 3.63). However, for 4 networks, there was a period between the additive and
multiplicative stages characterized by a tie between the additive and multiphicauve

rules. On average this lasted for approximately 53.00 epochs (SD = 15 60).

S Ti S a1
For all encoding types except integer, the time developmental sequence began
with an identity stage followed by an additive stage and then the muluplicative

stage. During the identity and additive stages, a large proportion of the variance in
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the outputs of the time inference patterns was accounted for by the defining rules.
The transition between all stages was typically rapid. Finally, learning was
continuous across all stages as indicated by analysis of error reduction.

For the majority of integer networks the first diagnosable stage was an
additive stage defined by the rule t=d + v that began soon after training and was
followed by the normative multiplicative stage.

2.3, Velocity

Ninety-three percent of the networks (excluding integer) exhibited a
developmental sequence characterized by a progression from an identity stage that
started after approximately 5 to 10 epochs of training and lasted 55 to 60 epochs on
aveiage, to an additive stage that lasted for about 70 to 80 epochs, to the correct
multiplicative stage after approximately 160 epochs of training. The identity,
additive, and multiplicative stages were characterized by therules v=d, v=d—t,
and v=d -+t respectively. The mean number of hidden units recruited prior to
stage onset, the epoch at which the stage began, and the length of the stage are
reported in Table 10 for each encoding type.

The remaining 7% of the networks (10 using integer-context and 1 using
gaussian encoding) proceeded directly from the identity stag~ to the multiplicative
stage. For the integer-context networks, the identity stage started at 8.33
(SD =5.59) epochs and lasted for 64.78 (SD = 7.45) epochs on average. None
of the networks had recruited any hidden units at this time. The mean epoch of
onset of the multiplicative stage was 96.44 (SD = 9.29). All networks had
recruited | hidden unit at this point. For the network in the gaussian encoding

condition, the identity stage began at 10 epochs and lasted 51 epochs. The
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Table 10
Velocity Developmental Sequence by Encoding Tvpe: Pure Condition
v=d v=d-t v=d-+

Encoding n hid onset length hid onset length hid  onset
Int-cont 20

M 0.00 14.00 67.25 1.00 86.75 130.85 2.53 234.90

SD 0.00 736 575 0.00 9.65 59.45 049 5984

Nth 30

M 0.00 6.67 5543 1.00 67.77 17793 2.00 150.27

SD 0.00 240 453 0.00 448 7.04 0.00 852
Mercury 30

M 0.00 8.67 67.90 1.00 82.73 97.67 2.03 190.50

SD 0.00 4.14 945 0.00 821 8.02 0.18 20.78
Therm 30

M 0.00 5.83 56.63 1.00 68.13 80.37 2.00 156.30

SD 0.00 190 482 000 4.18 955 0.00 1544
Gaussian 29

M 0.00 638 54.83 1.00 66.72 7597 2.10 15579

SD 0.00 264 477 000 599 882 031 2047

Note. d = distancc; t = ime; v = velocity; hid = number of hidden units; onsct = epoch at which

stage begins; length = length of stage 1n cpochs.

multiplicative stage began at 66 epochs after 1 hidden unit had been recruited.

For all 30 integer networks the first diagnosable stage was characterized by an

additive stage defined by the rule v=d+t followed by a muluplicative stage

defined by the normative rule v=d +¢. The mean onsct of the additive stage was

at 4.50 epochs (§D = 2.01) and it lasted for 61.47 cpochs (SD = 13.23) on

average. None of the networks had recruited any hidden units before the onset of

the additive stage. The mean onset of the normative stage was at 75.39 epochs (SD

=13.71). Al networks had recruited 1 hidden unit by the begimning of this stage.

S

The mean maximum r2 values attained during both identity and additive stages
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Figure 7. Maximum r2 of v=d and v=d-t rules attained during 1dentity and

additive slages of velocity developmental sequence respectively.
are shown in Figure 7 for all encodings except integer. As in the time
developmental sequence, a maximum of over 90% of variance in the output values
was accounted for by the identity rule. Again, all integer-context networks reached
the maximum r2 (1.00). The mean maximum r2 of the additive rule accounted for
more than 80% of the variance on average.

For integer networks there was no identity stage. During the additive stage
(v=d+1) the mean maximum r2 value of the additive rule attained was 1.00
(SD = .01).

As reported in Table 7, for all networks except one using mercury encoding,

the defining rule v =d + ¢ of the multiplicative stage reached an r2 of 1.00.

The mean percent of error reduction over the identity stage and additive stage

rclative to the epoch prior to either stage onset are shown in Figure 8a for each

cncoding type. As can be seen, error reduction over the two stages was very
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Figure 8. Mcan percent of crror reduction 1n velocity inference patterns (a) over wentity and
additive stages and (b) from epoch 5 1o muluplicative stage onsct. Error bars are standard
deviations from the mean.

similar to that observed in the time developmental sequence. Approximately 30-
50% of the error that existed prior to the onset of the identity stage was reduced
over the stage. Slightly more error was reduced over the additive stage (55-70%).
The mean percent of error reduction from epoch five to the epoch prior to the
onset of the multiplicative stage is shown in Figure 8b. Again this is very similar to
the time developmental sequence. Thus, like the additive time rule, the additive
velocity rule was not as good an approximation of the velocity inference patterns as

was the case for distance patterns.

Stabili | Transiti

Overall the velocity developmental sequence was very stable. Regressions

were observed in only 4 integer and 7 integer-context networks, and were never




Distance, Time, and Velocity
76

permanent. The regressions were to either the additive stage or a tie between the
additive stage and the multiplicative stage.

As with the time developmental sequence, transitions between stages of the
velocity developmental sequence were rapid. The transition from the identity stage
to the additive stage took 5.72 (SD = 2.45) epochs on average. For the vast
majority of networks, the transition from the additive stage to the multiplicative
stage took 6.02 epochs on average (SD = 3.10). However, for 6 networks, there
was a period characterized by a tie between the additive and multiplicative rules
before the attainment of the multiplicative stage. On average this lasted for

approximately 60.67 epochs (SD =12.61).

Summary of Velocity Developmental Sequence

The velocity developmental sequence was very similar to the one observed for
time inference patterns. That is, for all encoding types except integer, a progression
through identity, additive, and then multiplicative stages was observed. A large
proportion of the variance in the outputs of the velocity inference patterns was
accounted for during the identity and additive stages. The transition between ail
stages was rapid. Finally, learning was continuous across all stages as indicated by
analysis of error reduction.

FFor the majority of integer networks the first diagnosable stage was an
additive stage defined by the rule v =d + ¢ that began soon after training. This was

followed by the onset of the normative multiplicative stage.

3. Inter-developmental Course

A stage by epoch plot of the three developmental sequences of a typical
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network is illustrated in Figure 9 for each encoding type. These networks were
chosen as illustrative examples considering the mean onset and length of the stages,
when hidden unit recruitment occurred, and the progression from onc stage to
another within each inference problem type. Statistical analyses were conducted to
test the significance of any observed differences in mean stage onsets between the
three concepts for eacin encoding type. Although qualitative similarities of the
developmental course across the different types of input encoding were of mterest,
quantitative similarities (e.g., the number of epochs prior to the onset of the
distance additive stage using mercury versus gaussian encoding) were not.
Therefore, all tests conducted in this section were one-way repeated measures

ANOV As using an alpha level of .05.

1. Nth, Mer ssign K1 coding

As can be seen in Figure 9 (c.d,e,f), the most common inter-developmental
course for networks using nth, mercury, thermometer, and gaussian encoding
involved a progression from the identity stages of time and velocity (¢ =d and
v=d), followed by the onset of the additive stage for all three concepts (d =t +v,
t=d-v, v=d—1t), followed by the onsct of the multiplicative stages of tume and
velocity (¢ =d+v and v=d +t) and finally, the multiplicauve stage for distance
(d=1xv).

The means for all comparisons except for networks using gaussian encoding
are those presented in Table 8, 10, and 11. Two gaussian networks "skipped” the
additive time stage. Therefore comparisons are based on 28 networks rather than

30 as with the other encoding types.
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Figure 9 Purc Condition. Identity, additive, and muluplicative stages by epoch obscrved during
traming for (a) mteger, (b) integer-context, (¢) nth, (d) mercury, (¢) thermometer and, (f) gaussian
encodmg. Epoch of hadden unit recruitment indicated by "H",
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There were no significant differences between the onset of time and velocity
identity stages for nth (F (1,29) = 0.00); mercury (F (1,29) = 2.58); thermometer
(F@1,29) = 0.39) and; gaussian encoding (F(1 27y = 0.33, Fa 27y = 0.06). For
gaussian, the mean stage onset was at 6.79 (SD = 4.13) and 6.43 (SD =2.67)
epochs for time and velocity respectively.

Significant differences in onset of distance, time and velocity additive stages
were observed for nth (F(2,58) = 15.19); mercury (F,58) = 5.22) and; thermometer
encoding (F2,58) = 5.69). However, this 1s likely due to restricted variance. For
gaussian encoding the mean onset of the additive stages were 66.00 (S = 5.54),
66.89 (SD =6.30), and 66.89 (SD =6.03) for distance, ume and velocity
respectively. The differences were nonsignificant (F2,54)=2.17).

The differences in onset of distance, time and velocity multiplicative stages
were significant for all encodings: nth (F2,58) = 37.95); mercury (FFp 58y = 50.24),
thermometer (F(2,58) = 68.40) and; gaussian encoding (F(2,54) = 62.68). For
gaussian encoding the mean onset of the multiplicative stages were 260.46
(SD =71.10), 153.04 (SD =22.68), and 153.93 (SD = 18.16) for distance,
time and velocity respectively.

In order to ascertain how representative the mean data were of individual
network performance the frequency of networks showing this inter-developmental
pattern was calculated. For this purpose, a stage was considered to have started
significantly later than another if the difference was a minimum of 20 epochs, The
majority of networks in each encoding type did in fact follow the mean progression
(nth, n = 19; mercury, n = 20; thermometer, n = 24 and; gaussian, n = 21). The

majority of the remaining networks differed only in that the multplicative stages of
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all three concepts began at the same time: nth n = 11; mercury, n = 5; thermometer,

n = 4 and; gaussian, n = 5.

3.2. Integer-Context Encoding

Tv major inter-developmental courses were observed in the performance of
networks using integer-context encoding. The first is depicted in Figure 9b. This
accounted for the performance of 57% of the networks and was similar to the one
just described with the exception that the distance additive stage began at
approximately the same time as the identity stages of time and velocity.

On average, the identity stages of time and velocity began at 15.59
(SD =6.59) and 14.41 (SD = 7.48) epochs respectively. The differences in
onsets were nonsignificant (F(1,16) = 0.41). The distance additive stage began at
12.35 (SD = 19.29) epochs whereas the time and velocity additive stages began
later, following the identity stages, at virtually the same poin:, 86.41 (SD = 10.08)
epochs. The differences between the three additive stage onsets were significant
(F(2,32)=195.19). The mean onset of the distance, time, and velocity
multiplicative stages were 417.41 (SD = 100.02), 208.53 (SD = 48.95), and
229.47 (SD =58.14) respectively. The differences were significant
(F(2,30)=47.11).

Individual and statistical analysis agreed in terms of identity and additive stage
onsets. For all but one network, the distance multiplicative stage began after the
multiplicative stages ot time and velocity.

The second typical inter-developmental course, characteristic of the
performance of 23% of the networks, was similar except that the networks

proceeded directly from the 1dentity stage to the multiplicative stage of time and
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velocity. On average, the identity stages of time and velocity began at 11.43
(SD =6.90) and 10.71 (SD = 6.08) epochs respectively. The difference was
nonsignificant (F(1,6) =0.04). The mean epoch of onset were 516.00
(8D =121.95), 92.71 (8D =7.95), and 99.86 (SD = 11.77) for the distance,
time, and multiplicative stages respectively. The differences were significant
(F(2.58) = 136.16).

Again, individual analysis and statistical analysis were very consistent. “That
is, for six of the seven networks, the identity stage onsets were the same. For one
network, the velocity stage started slightly earlier. For all networks the distance
multiplicative stage began later than the time and velocity multiphicative stages  For
five of the networks the time and velocity multiplicative stages began at the same
time. For two networks the time stage began slightly ealicr.

In networks not following either inter-developmental courses, the tme ot
velocity multiplicative stage began before the other because of a progression

through one additive stage but not the other.

3.3. Integer Encoding

For 93% of the integer networks the inter-developmental progression did not
begin with an identity stage but instead began with addiuve stages before eventually
attaining the time and velocity muluplicative stages and finally the distance
multiplicative stage (Figure 3a.). Moreover, the additive stage of ume and velocity
were defined by therules t=d + v and v =d +1 respectively rather than (=d —v
and v=d~t. The mean epoch of onset of the additive stages were 4.11 (SD =
1.95), 4.46 (SD = 2.08), and 4.46 (SD = 2.08) for distance, tme and velocity

respectively. The differences were nonsignificant (/72 54y = ().79). The mean onsct
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of the distance, time, and velocity multiplicative stages were 354.00
(SD =111.42), 75.21 (§D =13.42), and 75.39 (§D =13.71) epochs
respectively. The differences were significant (F(2,54) = 175.54).

Individual network analysis revealed that this progression was seen in all 28
networks. The two exceptions to this inter-developmental course attained the

multiplicative rule of velocity, then distance and time together.

Statistical and individual analysis of network performance revealed that for the
majority of networks using nth, mercury, thermometer, and gaussian encoding, the
inter-developmental course was as follows. First, time and velocity identity stages
began at the same time early in training. Next, all three addiuve stages began.
Although the differences in onsets were statistically significant, individual analysis
revealed that for all intents and purposes the three stages began at the same time.
Finally, the onset of the multiplicative stages of time and velocity began at
approximately the same time. Moreover both began before the distance
multiplicative stage.

This same sequence was observed in the majority of integer-context neiworks
whereas no integer networks performed in this manner. It is likely that the
differences in inter-developmental courses across encodings reflects the linear
nature of the encodings themselves. Unlike other encoding types, with intcger and
integer-context encoding the magnitude of input values are in some sense given to
the networks without prior training. For example, an input value of 5 will cause
more activation than an input of 1. Thus, a time inference pattern with distance and

velocity input values of 2 and 3 respectively will produce a smaller output value (or
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larger depending on the sign of the weights) than one with distance and velocity
values of 5 and S respectively. Moreover, the difference between time or velocity
inference patterns will reflect the linear nature of the inputs. This, in turn makes
additive rules such as t =d +v and v=d +1t possible. Conversely, with the other
encoding types, for example nth, there is no a priori information concerning the
magnitude of the input values since a value of 1 is assigned to the appropriate input
unit regardless of the magnitude of the input value being encoded.

For the most linear encoding, integer, the early onset of additive stages
defined by t=d+v and v=d +1t seems to inhibit the onset of additive stages
defined by t =d —v and v=d—t. This was partly overcome by the use of context

units (integer-context encoding).

4. Hidden Unit Recruitment and Stage Onset
As can be seen in Figure 9, transition from identity to additive ancd additive to
multiplicative stages typically occurred quickly after the recruitment of a hidden
unit. The mean epochs from hidden unit recruitment to additive and multiplicative
stage onset are reported in Table 11. In general, stage transition occurred within 5
to 10 epochs of hidden unit installation. This would seem to indicate that hidden

unit recruitment was very instrumental in stage transition.

(1. Hi \nalysi

Hinton diagrams were drawn to understand the nature of the relationship of
hidden unit recruitment to stage transition. A description of how Hinton diagrams
are read is presented here. Examples of Hinton diagrams are presented in Figures

10and 11.
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Table 11
Epochs From Hidden Unit Recruitment to Stage Onset:
Pure Condition

Additive Stage Multiplicative Stage

Encoding d=t+v t=d-v v=d-t d=tkv t=d+v v=d+t
Integer

n 2 30 30 30

M 10.00 1530 8.33 9.17

SD 1.07 13.22 284 3.50
Int-cont

n 2 20 19 30 30 30

M 5.00 7.50 7.63 16.80 15.00 12.67
SD 0.00 2.57 257 2607 1293 11.80

Nth
n 30 30 30 30 30 30

M 9.50 633 633 1000 5.17 4.83
SD 1.53 3.20 292 7.88 3.08 3.59

Mercury
n 30 30 30 30 30 30

M 5.67 850 6.17 9.50 883 9.17
SD 1.73 458 340 1206 536 2.65

Thermm

n 30 30 30 30 30 30
M 5.17 5.17 6.50 6.87 5.00 6.33
SD 091 09: 268 9.58 347 472

Gaussian

n 30 28 29 30 30 30
M 5.20 6.11 6.07 947 5.67 5.83
SD 0.93 256 245 11.23 6.26 3.96

Note. d = distance; t = ime; v = velocity.

In Hinton diagrams, the magnitude and sign of weights from sending units
(input and hidden) to receiving units (hidden and output) are indicated by the size
and colour (white for positive and black for negative) of squares drawn in a row for
each receiving unit.

The numbers above the squares indicate the sending unit. For integer and

inicger-context encoding, the squares numbered 1, 2, and 3, represent the weights
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(a) Net 21 - Integer-Context
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Figure 10. Hinton diagrams showing relative size (square size) and direction (white = positive:
black = negative) of weights from input iaycr to first hidden unit and output unit for (a) integer-
context, (b) nth, (¢) mercury (d) thermometcer, and (c) gaussian encoding,.
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from the distance, time, and velocity input units respectively. With integer-context
encoding, the additional squares numoered 4, 5, and 6 represent the distance, time,
and velocity context units. For nth and mercury encoding, squares 1-5, 6-10, and
11-15 represent the weights from the distance, time, and velocity input groups
respectively. Finally, for thermometer and gaussian encoding, squares 1-7, 8-14,
and 15-21 represent the weights from the distance, time, and velocity input groups.
For all encoding types, the square numbered 0 is for the bias unit whereas the last
square in the output row is for weight from the hidden unit. When more than one
hidden unit is depicted, the weights from any previous hidden units are depicted
after the last of the input group. For example, in Figure 11a, the square numbered
4 of the second hidden unit row represents the weight from the first hidden unit to

the second.

Transition Additive St
Hinton diagrams proved useful in understanding how the distance, time,
and velocity additive stages of networks using nth, mercury, thermometer, and
gaussian encoding emerged either at the time that the first hidden unit was recruited
or shortly thereafter. For networks using integer-context encoding, the first hidden
unit was associated with the additive stages of time and velocity. The additive stage
of distance began prior to hidden unit recruitment. For the majority of nctworks
(78% across the 5 encoding types) a clear patiern of weights connecting the first
hidden unit to the input layer was observed. A Hinton diagram of a typical network
that exhibited this pattern is presented in Figure 10 for each encoding type.
As can be seen, the first hidden unit distinguishes distance mnput units from

time and velocity units. That is, the weights from time and velocity input units have
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the opposite sign from the weights from the distance input units. When the hidden
unit is activated by the presentation of a distance inference pattern, information from
the time and velocity input groups will augment each other since the direction of
their weights are the same. Conversely, since the distance weights have opposite
signs from the time and velocity weights, when the hidden unit is activated by the
presentation of a time or velocity inference pattern, input from one input group will
counter the effects of input from the other and vice versa. Thus, the additive rule
d=t+v stems from the summing effects of input from time and velocity input
groups caused by same-sign weigh. ., to the hidden unit. Alternatively, the additive
rules t=d-v and v=d -t stem from summing opposite-sign weights of time

and velocity input groups and distance input groups.

Transition to Multiplicative Stages

Unfortunately a clear pattern did not emerge with respect to transition to the
multiplicative stages of rime and velocity. However, for integer and integer-context
encoding type, a consistent pattern was observed for the transition to the distance
multiplicative stage. In 19 of the 20 networks across the two encoding types,
performance characterized by thc normative distance rule only emerged after a
hidden unit was recruited which received opposite-sign weights for time and
velocity input groups.

Hinton diagrams of two networks using integer and integer-context encoding
are presented in Figure 11. As can be seen in Figures 11a and 11b, the second
hidden unit has opposite-sign weights (squares 2 and 3). The multiplicative stage
was subsequently observed. For the networks depicted in Figures 11¢ and !1d, \he

multiplicative stage was observed after the installation of the third and fourth hidden
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(a) Net 23 - Intege. (b) Net 23 - Integer-Context
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Figure 11. Hinton diagrams showing relative size (square size) and direction (white = positive:
black = negative) of weights from input layer to hidden unmits and output umit for (a, ¢) integer
and (b, d) intcger-context encoding,

units respectively. Again it was at this point that the opposite-sign wei ghts for time
and velocity input groups were first used by a hidden unit. Although not as
intuitive as the explanation provided above with respect to the transition to additive
stages, it appears that as long as the weigits from the time and velocity mput
groups continue to have the same-sign weights, only additive rules for distance
inference patterns are possible. Only when hidden units that treat the time and
velocity input as different, with respect to weight sign, is the multiplicative rule

observed.
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LIMITED MEMORY CONDITION
The limited memory condition was designed to investigate Wilkening's
(1981) hypothesis that children's retarded performance on the velocity task relative
to the time task reflected the increased memory demands of the velocity task. In the
following simulations the probability of presenting the network the correct time
information of a given velocity inference pattern was manipulated to simulate the

possible difficulties children may have had in remembering the time information.

1. General Learnability

As in the pure condition, all networks trained for the maximum number of
epochs (1500) without declaring victory. The mean sum-squared error and the
percent of error reduced from epoch 5 to the end of training for each inference
problem type are reported in Table 12.

The error at the end of training was greater for velocity patterns than either
time or distance inference patterns. A one-way repeated measures ANOV A for each
encoding type revealed that the differences were significant (p < .05): integer
F(2,58) = 93.96; integer-context F(2 58y = 117.11; nth F(g 58) = 265.09; mercury
F(2,58) = 127.07; thermometer F(2 58) = 104.47 and; gaussian F(3 58) = 214.56.

Across all encodings approximately 97%, 98%, and 87% of the error that
existed at epoch 5 was reduced by the end of training for distance, time, and
velocity inference patterns respectively. The differences were significant (p <.05):
integer F(2,58) = 45.76; integer-context F(2 s8)=62.74; nth F(3 58y = 136.77;
mercury F(358) = 112.01; thermometer F (3 s58) =42.47 and; gaussian

F58) = 171.00.



Table 12

Mean Error and Percent Reduction in Error at End of

Training: Limited Memory Condition

Distance, Time, and Velocity

Inference Problem Type

Distance Time Velocity
Encoding FE % E % E %
Integer
M 1.67 92.65 1.71 95.68 5.13 88.05
SD 092 384 082 199 1.68 4.17
Int-cont
M 1.33 93.59 1.44 96.55 6.03 85.16
SD 0.47 344 1.05 284 257 6.88
Nth
M 0.41 98.86 0.34 98.81 5.01 85.20
SD 0.18 059 0.14 0.56 1.58 6.42
Mercury
M 0.89 96.99 0.62 98.20 4.56 88.08
SD 0.38 143 025 077 1.77 4.59
Therm
M 0.50 98.56 0.48 98.41 4.93 86.43
SD 0.11 045 0.14 072 140 5.84
Gaussian
M 0.81 97.89 0.64 9792 4.84 86.89
SD 0.32 093 032 1.06 1.62 498
n=730

90

Thus, at this macro level of analysis, the limited memory manipulation

affected network performance in the desired direction causing tiie velocity inference

patterns to be more difficult to learn.

2. Stage Diagnoses

The majority of networks progressed through qualitatively similar or identical

developmental sequences as those observed in the pure condition. Ninety-scven

percent of networks, collapsed across all encoding types, exhibited the same

distance developmental sequence (d =t +v followed by d =txv). Ninety-three
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percent of the networks (excluding integer encoding) followed the same time
developmental course progressing from the identity stage (¢ = d) to the additive
stage (1=d —v) and the multiplicative stage (t =d +v). Similarly, 83% of the
networks (excluding integer encoding) followed the same progression from an
identity (v =d) to an additive stage (v=d—t). However, unlike in the puie
condition, several of these networks (23%) did not progress beyond the additive
stage. The remaining networks went on to the multiplicative stage (v=d + ).

For the sake of brevity, the amount of variance in actual outputs accounted for
by a given rule during a stage is not discussed in the following sections since the
results of this an:lysis proved similar to that in the pure condition. That is, the
maximum amount of variance in network responses accounted for by thc defining
rules of the stages greatly exceeded the minimum set by the best rule critzrion (re >
0.50). Likewise, the error reduction prior to and across stages was similar to that
observed in the pure condition in that a large proportion of error was reduced. The
interested reader may consult Appendices A and B respectively for a sumrmary of

the limited memory findings.

2.1. Distance
For networks using all encodings except integer, the additive stage began after
the recruitment of one hidden unit and it lasted 300-400 epochs on av-rage. The
Multiplicative stage began at approximately 500 to 600 epochs following the
recruitment of a fourth hidden unit on average. The mean number of hidden units
recruited prior to stage onset, the epoch at which the stage began, and the length of

the stage for the distance developmental sequence are reported in Table 13. For the
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Table 13
Distance Developmental Sequence by Encoding Type.
Limited Memory Condition

d=t+v d=t+v

Encoding n  hid onset length hid onsct
Integer 30

M 0.00 4.83 483.97 383 611.27

SD 0.00 091 221.08 1.86 275.38
Int-cont 30

M 1.00 146.67 43640 4.20 66850

SD 0.00 579 225.07 1.67 243.18
Nth 28

M 1.00 15586 317.46  3.50 545.39

SD 0.00 5.10 15970 137 197.80
Mercury 29

M 1.00 146.83 44524 400 631.17

SD 0.00 9.06 163.08 131 186.80
Therm 27

M 1.00 143.89 297.63 297 457.87

SD 0.00 1546 158.52 135 200.20
Gaussian 30

M 1.00 14423 42420 4.27 645.17

SD 0.00 990 22736 1.64 241.79

Note. d = distance; t = ume; v = velocity; hid = number of hidden
units; onset = cpoch at which stage begins; length = length of stage
i epochs.

five networks that do not appear in Table 13, the multiplicative stage was the first
diagnosable stage.

One difference between the pure and limited memory conditions is that
nerworks using integer-context encoding required the recruitment of a hidden unit
before the onset of the additive stage in the limited memory condition whereas in the
pure condition no hidde:: unit was necessary. Moreover, an identity stage was
observed for all 30 integer-context networks defined by d = ¢ before the additive

stage.
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For networks using integer encoding, the additi-/e stage began almost as soon

as training began as was the case in the pure condition. After approximately 600

epochs, the multiplicative stage emerged.

stabili nd |

The distance developmental sequence was stable although not as stable as in
the pure condition. For 80% of the networks across all encoding types the additive
best-rule classification was constart. That is, at each testing epoch within the stage,
the rule that accounted for the most variance in network responses was the additive
rule. For the remaining networks, 11.00% (SD = 13.60%) of the epochs within
the additive stage were classified as either multiplicative or were not diagnosable.
Regressions after the attainment of the multiplicative stage were rare and never

. permanent. Only 9% percent of the networks regressed and it was always to a tie
between the additive and multiplicative rules.

Unlike in the pure condition, the majority of the networks (60%) across
encoding types went through a period characterized by a tie between the additive
and mulnplicative rules before the attainment of the multiplicative stage. On average
this lasted for approximately 86.97 epochs (SD = 76.61). For the remaining 40%
of the networks, the transition from the additive to multiplicative stage took 17.85

epochs (SD = 16.92).

As in the pure condition, for networks using nth, mercury, thermometer, or

gaussian encoding, the distance developmental sequence entered an additive stage

following an initial period not captured by either identity, additive, or multiplicative
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rules. However, unlike the pure condition, this initial period was associated with
an identity stage defined by the rule d =1 for integer-context networks. For integer
networks the additive stage began almost immediately after traming. For all
networks across encoding types, the multiplicative stage emerged following cither a
fairly short transition or a period characterized by a tie between additive ard
multiplicative rules.

In general, the major difference between the pure and limited memory
conditions is in terms of later starting and longer lasting stages. This difference
likely results from two related factors. First, the overall sum-squared error s less
stable than in the pure condition due to the random nature of recall in the velociry
inference patterns. As such, the output-patience (the maximum number of
successive epochs that result in nonsignificant changes in the sum-squared crror) 1s
less likely to be achieved and thus output training is more likely to go until the
outlimit is reached (100 epochs). Second, the weights from the time input group
are less precise since they are used to propagate information for time input in both
the distance inference patterns and in the velocity inference patterns.  This
imprecision of the time input weights may have obscured the relationship of time
and velocity information in terms of distance inferences making it more difficult for
the network to find an appropriate set of weights.

For some networks the transition from the additive to multiplicative stage was
quick as in the pure condition. However, for the majority of nctworks there was a
tie before the attainment of the multiplicative stage. Again this is likely attributable

to the imprecision of weights due to the limited memory manipulation.
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In general, the limited memory manipulation increased the variability across
networks of a given encoding as indicated by the large standard deviations found in
Table 13. However, this variability was limited to the length of the additive stage
and subsequent onset of the multiplicative stage and did not affect the

developmental sequence qualitatively.

2.2, Time

For the majority of networks the time developmental sequence was
qualitatively similar to that observed in the pure condition. Ninety-three percent of
the networks (excluding integer networks) progressed from the identity stage
(1 =d) that started after five to ten epochs of training and lasted for approximately
130 epochs, to the additive stage (¢t =d —v) that lasted 150 epochs on average
before attaining the correct multiplicative stage t = d + v after approximately 340
epochs of training. As in the pure condition, the additive stage emerged after the
first hidden unit was installed. Moreover, the onset of the multiplicative stage
typically followed the installation of a second hidden unit. Occasionally three
hidden units had been recruited before onset. The mean number of hidden units
recruited prior to stage onset, the epoch at which the stage began, and the length of
the stage are reported in Table 14.

The remaining 10 networks (9 using integer-context and 1 using thermometer
encoding) proceeded directly from the identity stage to the multiplicative stage. For
the 9 integer-context networks, the identity stage started at 15.00 (SD = 5.00) and
lasted for 125.67 epochs (SD = 5.55) on average. None of the neiworks had
recruited any hidden units at this time. The mean epoch of onset of the

multiplicative stage was 180.11 (S§D =22.23). This occurred after all networks had
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Table 14
Time Developmental Sequence by Encoding Type: Limited Memory Condition
t=d t=d-v t=d+v

Encoding n  hid onset length  hid onset length hid onset
Int-cont 21

M 0.00 1595 125.24 1.00 146.31 168.33 2.19 34995

SD 0.00 4.64 11.03 0.00 9.59 104.17 0.68 102.05

Nth 30

M 0.00 7.50 147.23 1.00 163.57 156.13 2.13 330.93

SD 0.00 2.54 1501 0.00 1526 46.19 035 5094
Mercury 30

M 0.00 8.67 134.83 1.00 152.17 151.77 2.10 333.10

SD 0.00 3.70 7.09 0.00 9.06 19.09 1.63 46.16
Therm 29

M 0.00 5.86 138.83 1.00 151.07 166.31 2.35 347.76

SD 0.00 2.70 16.05 0.00 16.37 49.51 0.55 71.59
Gaussian 30

M 0.00 5.83 135.53 1.00 146.87 17390 227 339.30

SD 0.00 190 9.73 000 9.74 6074 045 72.20

Note. d = distance; t = ime; v = velocity; hid = number of hidden units; onset = cpoch at
which stage begins; length = length of stage 1 epochs.

recruited 1 hidden unit. For the network in the thermometer encoding condition,
the identity stage began at 5 epochs and lasted for 138 epochs. The multiplicative
stage began at 158 epochs after 1 hidden unit had been recruited.

As in the pure condition, the first diagnosable stage for all networks using
integer encoding was characterized by the additive rule t=d +v. This occurred
before a hidden unit had been recruited. The mean onset of the stage was at 4.88
epochs (SD = 1.60) and it lasted 135.50 epochs (SD = 6.48) on average. Twenty-
seven of the networks then progressed directly to the multiplicative stage
(t=d+v). The mean onset of the stage was at 172.00 epochs (SD = 49.05). The
networks had recruited 1.15 hidden units on average (SD = 0.36) by the beginning

of the stage. The remaining three networks progressed from the additive stage
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defined by t=d+v to one defined by t=d —v before the multiplicative stage
onset. On average, the additive stage (t1=d—v) began at 251.00 epochs
(SD =101.30), was preceded by the recruitment of one or two hidden units, and
lasted for 138.33 epochs (SD = 26.54). For one network the additive stage was
preceded by the identity stage (¢=d). It lasted for 140 epochs. For all three
networks, the multiplicative stage began on average at 394.66 epochs (SD = 98.72)

following the recruitment of a second hidden or third hidden unit.

Stabili | Transiti

Overall the time developmental sequence was again very stable. The identity
best-rule classification was constant across encoding types with the exception of
one network in which 2% of the epochs were undiagnosible. With respect to the
additive stage, for 90% of all networks the additive best-rule classification was
constant. For the remaining networks, 18.93% (SD = 13.61%) of the epochs
within the additive stage were not classified as additive. These epochs were
typically classified as multiplicative. Occasionally, they were classified as
regressions to identity rules or undiagnosible. Only 7% percent of the networks
regressed after the attainment of the multiplicative stage. The regressions were to
the additive stage and/or to a period characterized by a tie between the additive and
multiplicative rules. The regressions were never permanent.

The transition from the identity stage to the additive stage took 7.07
(SD = 5.22) epochs on average across encoding types. For the majority of the
networks, the transition from the additive stage to the multiplicative stage took

10.52 epochs (SD = 10.38) on average. For the remaining networks (14%), there
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was a tie preceding the multiplicative stages between the additive and multiplicative

rules. This lasted for approximately 62.15 epochs (SD = 49.39).

Summary of Time Developmental Sequence

The time developmental sequence observed in the limited memory condition
for a given encoding type was the same as the one seen in the pure condition. For
all encoding types except integer, it began with the identity stage followed by the
additive stage and then the multiplicative stage. For the majority of integer
networks the first diagnosable stage was the additive stage (f =d +v) that began
soon after training and was followed by the multiplicative stage.

In general, the major difference between the pure and limited memory
conditions is in terms of later starting stages that last longer on average. Again it
seems reasonable to assume that this is due to the termination of the output training
phase because of the outlimit being reached rather than the output patience. Also,
there was a slight increase in the variability between networks of the same

encoding.

2.3, Velocity

The most common velocity developmental sequence was the same as the one
demonstrated in the pure condition. That is, 63% of the networks (cxcluding
integer) progressed from the identity stage (v = d) that started after approximately
10 to 15 epochs of training and lasted 100 to 200 epochs on average, to an additive
stage (v=d—t) that lasted for about 300 to 400 epochs, to the correct
multiplicative stage (v = d +t) after approximately 600 epochs of training. The

mean number of hidden units recruited prior to stage onset, the epoch at which the
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Table 15
Velocity Developmental Sequence 1 by Encoding Type: Limited Memory
Condition
v=d v=d-t v=d-+t
Encoding n hid onset length hid onset length  hid onset
Int-cont 21
M 0.00 23.81 120.24 1.00 149.10 367.00 3.43 561.10
SD 0.00 17.17 15.10 0.00 5.18 260.10 1.72 279.69
Nth 18
M 0.00 11.67 191.17 1.28 211.28 434.17 4.78 73394
SD 0.00 4.85 60.41 0.46 65.43 330.06 2.67 402.54
Mercury 12
M 0.00 12.08 138.17 1.00 167.75 276.50 3.25 535.08
SD 0.00 6.20 1620 0.00 28.76 201.96 1.49 246.71
Therm 23
M 0.00 9.35 179.2¢ 1.32 202.78 425.74 4.39 ©76.57
SD 0.00 5.90 86.61 0.57 83.93 278.29 1.92 29430
Gaussian 21
M 0.00 10.48 133.62 1.14 185.81 446.86 4.33 679.48
SD 0.00 7.89 46.11 0.36 57.62 323.34 2.03 295.37
' Note. d = distance; t = ume; v = velocity; hid = number of hidden units; onset = epoch at
which stage begins; length = length of stage in epochs.
stage began, and tiie length of the stage are reported in Table 15. As can be seen,
the additive stage emerged typically after one hidden unit had been recruited.

However, some networks required two hidden units before the onset of the additive
stage. The most striking difference between the pure and limited memory
conditions is the number of hidden units installed before the onset of the
multiplicative stage. On average, 4 hidden units had been installed whereas only 2
had been installed in the pure condition.

Twenty percent of the networks (excluding integer) behaved as Wilkening's
subjects (1981, 1982) progressing from the identity stage to the additive stage but

not to the multiplicative stage. The mean number of hidden units recruited prior to



Table 16

Velocity Developy»z2ntal Sequence 2 by Encoding Type:

Limited Memory Condition

Distance, Time, and Velocity

) v=d v=d-t

Encoding n hid onset length hid onset
Int-cont 6

M 0.00 16.67 131.50 1.00 155.67

SD 0.00 7.53 1250 G.00 11.64
Nth 11

M 0.00 8.18 218.00 1.55 246.46

SD 0.00 3.37 96.72 0.69 98.69
Mercury 8

M 0.00 13.13 135.63 1.00 155.00

SD 0.00 7.04 1442 0.00 12.08
Therm 2

M 0.00 12.50 195.00 2.00 238.00

SD 0.00 10.61 169.71 0.00 117.38
Gaussian 2

M 0.00 7.50 181.50 1.50 233.50

SD 0.00 3.54 136.47 0.71 120.92

Note. d = distance; t = time; v = velocity; hid = number of hidden
units; onsct = cpoch at which stage begins; length = Iength of stage

in epochs.

100

stage onset, the epoch at which the stage began, and the length of the stage are

reported in Table 16.

Taken together, more than 80% of the networks across encoding types

(excluding integer) followed a progression from the identity stage to the additive

stage. The majority of these networks then progressed to the multiplicative stage.

However, several networks did not progress beyond the additive stage. Finally,

with respect to the networks that did not demonstrate either of these two sequences

(17% of all networks excluding integer), the majority progressed from the identity

stage to the multiplicative stage.
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As in the pure condition, the first diagnosable stage for all networks using
integer encoding was characterized by the additive rule v=d+t. On average it
began at 4.50 epochs (SD = 2.01) before any hidden units had been recruited and
lasted for 135.83 epochs (SD = 6.31). Twenty-one of the networks then
progressed directly to the multiplicative stage {v = d +t) after having recruited 1.05
hidden units on average (SD = (0.22). The mean onset of the stage was at 167.95
epochs (SD = 30.66). The nine networks progressed from the additive stage
defined by v=d+t to one defined by v=d -t followed by the correct
multiplicative rule. On average, the additive stage (v=d —¢) began at 153.67
epochs (SD = 13.86), was preceded by the recruitment of one hidden unit, and
lasted for 187.33 epochs (SD = 64.38). The multiplicative stage for all nine
networks began at 366.22 epochs (SD = 72.23) following the recruitment of two

or three hidden units.

Stability and Transitions

For the majority of networks (84%) the identity best-rule classification was
constant across all encoding types. For the remaining networks 13.27%
(SD = 8.80%) of the epochs were either undiagnosible or classified as additive.
For 45% of the networks the additive best-rule classification was constant across all
encoding types. For the remaining networks, 13.68% (SD = 12.69%) of the
epochs within the additive stage were undiagnosible.

Regressions after the attainment of the multiplicative stage were more frequent
than in either the distance or time developmental sequences. For all encodings
excluding integer, 51% of the networks progressing from the identity and additive

stage to the multiplicative stage did not regress. Twenty-four percent regressed to a
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tie between additive and multiplicative rules or to the additive stage but then
recovered. Fourteen percent of the networks regressed permanently -- the majority
to the additive stage, the others to a tie between the additive and multiplicative rules.
The remaining networks regressed to oscillations between the additive and
multiplicative stages.

For 76% of networks progressing from the identity stage to the additive stage
but no further, stage diagnosis was stable. Of the remaining networks, a tic
between the additive and multiplicative rules followed the additive stage. However,
for the majority of the networks this period was temporary and followed by a return
to the additive stage.

Thirty percent of networks using integer encoding regressed permanently to
the additive stage v=d —t. Thirteen percent regressed permanently to a tie
between the additive and multiplicative stage. Seventeen percent regressed to a tie
between additive and multiplicative rules and/or the additive stage but then
recovered. Finally, 40% of the networks did not regress.

In general, transitions between stages took longer between velocity stages
than time stages. Across all encoding types, the transition from the identity stage to
the additive stage took 16.73 epochs on average (SD =25.79). For the majority
of the networks the transition from the additive stage to the multiplicative stage took
10.52 epochs on average (SD = 10.38). However, for 44% of the networks there
was a period characterized by a tie between the additive and multiplicative rules
before the attainment of the multiplicative stage. On average this lasted for 43.78

epochs (SD = 25.07).




Distance, Time, and Velocity
103

Summary of Velocity Developmental Sequence

Although the limited memory manipulation increased the variability both in
terms of when stages emerged across networks using the same encoding and in
terms of less stable stages within individual networks, a similar developmental
sequence to the one observed in the pure condition was demonstrated by the
majority of networks. However, this similarity held only up to a point. That is,
across all encoding types except integer encoding, the majority of networks
progressed from the identity stage that began early on in training to the additive
stage. However, the limited memory manipulation affected the attainment and
stability of the multiplicative stage. Not only did a large number of networks (23%)
not progress beyond the additive stage, many networks (24%) that did so regressed
back to the additive stage or to oscillations between the additive and multiplicative
stages for some time before recovering and 17% regressed permanently.
Moreover, a greater number of hidden units were installed prior to the onset of the
multiplicative stage.

The majority of integer networks followed the same developmental sequence
as in the pure condition following a progression from an additive stage (v=d+1¢)
to the multiplicative stage. However, for 30% of the networks, there was an
intermediate stage between these two defined by the rule v=d —t. No networks in

the pure condition progressed through this intermediate stage.
3. Inter-developmental Course

A stage by epoch plot of one network from each encoding type is shown in

Figure 12. The increased variability in terms of the individual developmental
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Figure 12. Limited memory condition, Identity, additive, and multiphicative stages by epoch
observed during training for (a) integer, (b) integer-context, (¢) nth, (d) mercury, (¢) thermometer
and, (f) gaussian encoding. Epoch of hidden unit recruttment indicated by "H".
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sequences, in particular the distance and velocity sequences, made it difficult to find
typical networks in terms of all variables including identity, additive, and
multiplicative stage onsets and lengths as well as types of transitions (slow versus
quick). Thus, the displayed networks were chosen as representative examples in
terms of qualitative similarities to other networks within the same encoding type.
As in the pure condition, all tests for significant differences in stage onsets
conducted in this section are one-way repeated measures ANOV As using an alpha

level of .05.

3.L._Nth, Mercury, Thermometer, Gaussian, and Integer-Context
Encoding

As can be seen in Figure 12 (b, c, d, e, f), the most common inter-
developmental course for networks across encodings (excluding integer) is similar
to that found in the pure condition in that the identity stages of time and velocity
emerged first followed by the onset of additive stages of distance, time, and
velocity. The limited memory condition differs in that the time multiplicative stage
emerged first, followed next by either the distance or velocity multiplicative stage,
depending on the encoding. In contrast, in the pure condition, the time and velocity
multiplicative stages typically occurred together before the onset of the distance
multiplicative stage.

Another difference is that the majority of integer-context networks followed
this sequence with the exception that they demonstrated an early distance identity
stage. In the pure condition, the majority of the integer-context networks diverged
from this sequence only in that the distance additive stage began early in training

before the recruitment of a hidden unit. In the limited memory condition, the
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Table 17
Identity Stage Onsei: Limited Memory Condition
t=d v=d
Encoding n M SD M SD F df

Int-cont 20 15.50 5.36 20.50 11091 2.44 1,19

Nth 27 741 255 10.00 434 830" 1,26
Mercury 20 875 4.25 1250 639  6.73* LI19
Therm 22 591 197 9.55 596 7.11* 1,22
Gaussian 25 5.60 1.66 9.80 7.43 7.38* 1,24

* = sigmificant at .05 level
Note. d=distance; t =time; v = velocity.

distance additive stage began after the recruitment of a hidden unit as in the other
encodings.

The mean epoch of onset of identity, additive and multiplicative stages for
networks following this developmental sequence and the results of a one-way
repeated measures ANOVA for each encoding type are reported in Tables 17, 18,
and 19 respectively. Note that the smaller n in Table 19 reflects the fact that some
networks did not progress beyond the velocity additive stage. In addition,
networks not included in this analysis typically progressed from the time and/or
velocity identity stages directly to the respective multiplicative stages. A lack of a
consistent inter-developmental course made it difficult to draw any conclusions
from these networks.

Unlike in the pure condition, where differences between the onset of time and
velocity identity stages were not significant, the differences in the limited memory
condition were significant for all encodings except integer-context. However, the
mean difference between onsets was extremely small (less than 5 epochs). Since

testing epochs were conducted only after every five epochs, the importance of
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Tavle 18
Additive Stage Onset: Limnited Aemory Condition

d=t+v t=d-v v=d-t
Encoding n M SD M SD M SD F df
Int-cont 20 14590 6.03 14740 9.19 151.20 7.81 7.68 2,38
Nth 27 156.06 5.14 160.63 8.30 218.26 79.06 16.41 2,52
Mercury 20 14690 8.66 149.65 8.40 16640 29.15 9.24 238
Therm 22 143.27 17.02 148.05 17.28 193.05 82.16 8.29 2,42
Gaussian 25 145.04 10.54 147.80 10.12 189.84 59.62 14.49 2,48

all I tests were significant at 05 level
Note. d = distance, t = ime; v = velocity.

statistically significant differences is questionable. Moreover, individual network
analysis according to the criterion outlined previously indicated that the time identity
stage began before the velocity identity stage in very few networks (2 integer-
context, 1 thermometer, and 1 gaussian network). Thus, for all intents and
purposes, the identity stages of both concepts can be considered to have started at
the same time.

Across the five encoding types, the distance and time additive stages began,
on average, within 5 epochs of each other and the velocity additive stage began
between 20 and 60 epochs later. The only exception was for integer-context
networks where all three additive stages began within 5 epochs of each other. The
differences in onset of distance, time and velocity additive stages were significant
for all encoding types. Individual analysis revealed that for the majority of
networks the onset of the distance and time stages occurred at the same time.
Moreover, for most networks, the velocity additive stage began within 20 epochs of
the other two. Thus, the significant differences observed were due to a few
networks in which the velocity additive stage began somewhat later than either the

distance or time additive stages. In these networks, the onset of the velocity
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Table 19
Multiplicative Stage Onset: Limited Memory Condition
d=t*v t=d+v v=d~t
Encoding n M SD M SD M SD F df
Int-cont 16 677.25 254.61 323.94 95.42 512.88 165.20 22.03 2,30
Nth 17 550.94 185.04 320.41 31.91 693.06 37443 931 2,32
Mercury 12 615.33 123.62 340.42 49.18 539.42 243.42 12.13 2,22
Therm 20 479.40 176.30 351.90 72.74 683.50 303.95 1239 2,38
Gaussian 23 683.10 234.23 339.74 68.82 658.74 28991 1674 2,44

all F tests were sigmificant at .05 level
Note. d = distance; t = ume, v = velocity.

additive stage was delayed by either a longer lasting identity stage or a slow
transition between the two stages as demonstrated by the network shown in
Figure 12d.

Across encoding types, the time multiplicative stage emerged first. Individual
network analysis supported this finding. Including networks in which the
multiplicative stage of velocity did not emerge (as in Figure 12¢.), more than 80%
of networks using integer-context, nth, mercury, and gausstan showed this. For
55% of the thermometer networks, the time muluplicative stage also emerged belore
either the distance or velocity stage. For the remaining thermometer networks the
distance multiplicative stage typically began within 20 cpochs of the ume
multiplicative stage. The velocity stage emerged later.

With respect to the onset of the multiplicative stages of distance and velocity
there is some variability across encodings 1n terms of the mean data. Individual
network analysis revealed that this variability was also reflected within encoding
types. That is, even in networks where the mean data suggested that the distance
multiplicative stage emerged after the velocity stage, a number of networks

demonstrated the opposite pattern.
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3.2, Integer Encoding

The majority (70%) of integer networks demonstrated the same developmental
sequence as those in the pure condition. That is, the inter-developmental course
began with the emergence of all three additive stages (d =t+v, t=d+v, and
v=d +t) before eventually attaining the time and velocity multiplicative stages at
approximately the same time, and finally the distance multiplicative stage
(Figure 12a.). The mean epoch of onset of the additive stages were 4.76
(SD =1.09), 5.00 (SD = 1.58), and 5.00 (§SD = 1.58) for distance, time and
velocity respectively. The differences were nonsignificant (F(2,40) = 0.32).
Individual network analysis revealed that for all networks the onsets of the three
stages were the same. The mean onset of the distance, time, and velocity
multiplicative stages were 560.19 (SD =234.74), 152.24 (SD = 8.24), and
167.95 (SD = 30.66) epochs respectively. The differences were significant
(F2,40) = 62.00). Individual analysis revealed that for all networks the distance
multiplicative stage began after the time and velocity stages. Moreover, for 76% of
these networks, the time and velocity multiplicative stages began at the same time.
For the remaining networks, the multiplicative stage of velocity began following
that of time.

The majority of the remaining networks (30% of all networks) differed in that
rather than progressing from the additive stage defined by v=d +r to the

multiplicative stage, they first progressed to a second additive stage defined by

v=d-—t.

3.3, Summary: Inter-developmental Course

For all encodings except integer, the identity stages of time and velocity began
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early in training at approximately the same time. During this period, the potential
distance rules typically did not attain sufficient 2 values to meet the best-rule
criteria consistently. Consequently no distance stages were diagnosed. One
exception was with networks using integer-context encoding where a distance
identity stage defined by the rule d = ¢ was observed. After the identity stages, the
three additive stages emerged. For some networks the velocity stage emerged later
either because of a longer identity stage or a slower transition period. However, it
was more typical for the three stages to emerge at roughly the same time. Thus, up
to this point the inter-developmental sequence observed in the pure and limited
memory conditions are qualitatively similar with the exceptions noted above (later
stage onsets and longer stages in general, and the occurrence of a distance identity
stage and subsequent delay in the onset of the distance additive stage of integer-
context networks in particular).

Inter-developmental sequences differ between conditions with respect to the
onsets of the multiplicative stages. In the pure condition, the time and velocity
stages emerged at approximately the same time. Later on, the distance
multiplicative stage began. In the limited memory condition, the time multiplicative
stage also emerged first. However, for the majority of networks the velocity
multiplicative stage began later, either before or after the distance multiplicative
stage. Moreover, for some networks, the velocity multiplicative stage was not
attained at all.

Thus, the limited memory manipulation did not affect the time and velocity
identity stages except in terms of the length of the stages which were typically the

same for both concepts. Moreover, in general, it did not affect the onset of the
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additive stages. However, it did delay or prevent the onset of the velocity
multiplicative stage. The delay in onset resulted from either a longer additive stage
(Figure 12b), a slower transition, or a combination of both (Figure 12¢).

With respect to the inter-developmental course of networks using integer
encoding, the limited memory manipulation does not appear to have substantially
influenced the progression of stages. That is, the majority of networks progressed
from early additive stages defined by the rules d =t+v, t=d+v, and v=d+t
respectively to the multiplicative stages of time and velocity first and then distance.
However, for a sizable minority of networks, after the velocity additive stage, a
different additive stage emerged defined by the rules v= d —t before the onset of
the multiplicative stage. Moreover, as was discussed previously, the velocity
multiplicative stage was often unstable resulting in regressions to the additive stage
(v=d-1).

Thus, the limited memory manipulation offset the differences between the
more linear encodings and the other encodings to the extent that it delayed the onset
of the distance additive stage in networks using integer-context encoding and
increased the likelihood of the emergence of the velocity additive stage defined by

v=d-—t.

4. Hidden Unit Recruitment and Stage Onset
In general, additive and multiplicative stage onsets did not occur as quickly
after the recruitment of a hidden unit as in the pure condition. The mean epochs
from hidden unit recruitment to additive and multiplicative stage onset are reported
in Table 20. The onsets of multiplicative stages of distance and velocity were

affected the most, Typically they occurred 20 to 50 epochs after the installation of
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Table 20
Epochs From Hidden Unit Recruitment to Stage Onset:
Limited Memory Condition

Additive Stage Multiplicative Stage

Encoding d=t+v t=d-v v=d-t d=t¥v t=d+v v=d+t
Integer

n 3 9 30 30 30

M 15.00 13.89 40.47 10.17 18.50

SD 13.23 12.44 34.09 6.09 17.08
Int-cont

n 30 21 27 30 30 24

M 6.33 7.14 10.04 38.00 29.83 41.88
SD 3.46 2.54 6.51 36.33 29.67 38.39

Nth

n 28 30 29 30 30 18
M 9.64 17.17 20.69 24.67 1233 35.00
SD 3.31 14.30 10.33  23.63 9.98 33.69

Mercury
n 29 30 22 30 30 22
M 5.86 11.33 25.00 29.50 23.83 48.73
SD 4.02 8.90 25.54 33.64 2585 3445
Thermm
n 27 29 25 30 30 28
M 5.37 11.90 12.20 21.43 1550 26.79
SD 2.37 5.58 7.92 2477 30.12 30.10
Gaussian

n 30 30 25 30 30 27
M 6.03 8.67 27.80 28.77 14.17 47.96
SD 2.48 2.92 23.50 32.78 22.09 39.67

Note. d =distance; t = ume; v = velocity.

the hidden unit whereas in the pure condition they occurred between 5 and 15
epochs later. Thus, more weight adjustment during the output training phase was
required before the onset of the distance and velocity multiplicative stages than in
the pure condition. Again it seems likely that this is due to the imprecision of
weights from the time input bank due to the random nature of time inputs in velocity

inference patterns.
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1. Hinton_Analysi

Transition to Additive St

The same general pattern of connectivity between the first hidden unit and the
input layer that was seen in the pure condition was again found in the 82% of
networks in the limited memory condition. That is, the weights from the distance
input units had the opposite sign to those from the time and velocity input units.
Thus, the first hidden unit clearly distinguished distance from time or velocity
inference patterns.

It should be noted that the pattern was not always perfect. For example,
occasionally one or more of the distance input units would have the same sign
weight as weights from the time and velocity input units or vice versa. However,
this variability was limited such that if the majority of weights from distance input
units were of one sign, then the majority of weights from time and velocity units
respectively were of the opposite sign.

For all of the networks demonstrating this pattern of connectivity, the distance
and time additive stages emerged after some weight adjustment during the output
training phase. This was also true with respect to the onset of the velocity additive
stage for the majority of networks. However, for 24% of the networks the velocity
additive stage did not emerge following the installation of the unit. Instead, these
networks remained at the identity stage until the second hidden unit had been
recruited. Thus, the random nature of the velocity inference patterns affected the
ability of the algorithm to adjust the weights in such a manner that would enable the

emergence of the velocity additive stage.
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The results of the limited memory condition serve to qualify the importance of
weight adjustment during the output training phase in the attainment of the additive
stages. That is, in the pure condition, it appeared to have a minor role since the
distance, time, and velocity additive stages emerged soon after the install'tion of the
first hidden unit. However, the fact that some networks in the limited memory
condition were unable to attain the velocity additive stage given a qualitatively
similar pattern of connectivity demonstrates the importance of weight adjustment

during the output training phase.

As in the pure condition, a clear pattern did not emerge with respect to
transition to the multiplicative stages of time and velocity. With respect to the
transition from the additive to the multiplicative distance stage in intcger and integer-
context networks, the same pattern of connectivity between the hidden unit and the
time and velocity input units was observed. That is, the multiphicative stage
emerged only after a hidden unit was recruited which received opposite-sign
weights for time and velocity input groups. All 20 networks across the two
encodings recruited such a hidden unit. For 13 of the 20 networks tne transition
followed soon after the installation of the hidden unit as in the pure condition.
However, for the remaining networks, one or more additional hidden units were
installed before the multiplicative stage emerged.

Thus, the majority of networks demonstrated the same direct relationship
between the installation of the opposite-sign hidden unit found in the pure
condition. For the remaining networks the relationship was less direct. That is,

even though the emergence of the multiplicative stage followed the recruitment of
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one or more additional hidden units, it nevertheless emerged only after such a unit
had been installed at some point. It would seem that the limited memory
manipulation prevented the algorithm from making the necessary weight
adjustments during the output training phase that resulted in the onset of the

distance multiplicative stage.
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CHAPTER FIVE - DISCUSSION

1. Stages in Development
In general, network performance across training could be characterized by a
coherent progression through a series of increasingly complex stages during which
a large amount of the variance in the networks' responses to distance, time, and
velocity inference patterns was accounted for. Moreover, both the rules that
defined stages and .ne order in which the stages emerged were, for the most part,

consistent with those observed in children and adults (Wilkening, 1981; 1982).

1.1, Distance

The first stage in the distance developmental sequence was typically defined
by the additive rule d =t+v. The networks then progressed to performance
characterized by the normative multiplicative rule d =¢xv. With respect to
Wilkening's results, this developmental sequence is identical to the one found in the
follow-up study (Wilkening, 1982) in which memory demands of the distance task
were increased in order to prevent young children from using an eye-movement
strategy. Thus, the simulation results agree with Wilkening's findings to the extent
that when such eye-movement strategies are not available, early performance of
both children and networks is characterized by the integration of time and velocity

information in an additive manner.

12 Ti | Velocit

The time and velocity developmental sequences demonstrated by the networks
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were also comparable with those observed by Wilkening. Early performance was
characterized by identity rules (¢ = d and v = d) in which the networks behaved as
if responses to time and velocity inference patterns were based solely on distance
information. Although 5-year-olds in Wilkening's studies were not classified as
using the time identity rule, they were found to use the velocity identity rule.
However, Wilkening seems to have been more concerned with proving that this
was the exception rather than the norm. That is, Wilkening (1981) concluded that
the velocity identity stage resulted from the heavy memory demands inherent in the
velocity task. Given his theoretical assumption concerning information integration,
his relnctance to legitimize identity stages seems self evident. However, identity
stages of both time and velocity have also been observed by other researchers (e.g.,
Piaget, 1946/1969, 1946/1970; Siegler and Richards, 1979).

The additive stages of time and velocity followed the identity stages. Again
the networks exhibited performance that was characterized by the same rules as
observed by Wilkening. That is, for time inference patterns, the networks'
responses across the entire problem set were best captured by the rule t=d—-v.
Responses to velocity inference patterns were captured by the additive rule
v=d-t.

Finally, adult subjects in both Wilkening's (1981) original study and the
follow-up study (Wilkening, 1982) where he attempted to decrease the memory
demands of the velocity task were found to use the normative multiplication rule for
time but not for velocity. However, the simulations revealed multiplicative rules for
both time and velocity inferences. This would seem to suggest that Wilkening's

assumption of differing memory demands may be correct but his manipulation to
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control these differences was not. That is, in the simulations capacity demands
were the same for either concept. As a result, the networks achieved multiplicative
stages in both time and velocity inferences.

In sum, with respect to the distance, time, and velocity developmental
sequences considered individually, the networks progressed through the same
stages observed by Wilkening with the exception of an early time identity stage and

the attainment of a velocity multiplicative stage.

The simulations suggest that when all else is held constant the developmental
course is more consistent across concepts than Wilkening's results indicated. That
is, identity stages emerge early for both time and velocity concepts followed by the
additive stages of all three concepts and then the onset of time and velocity
multiplicative stages prior to the eventual attainment of the distance multiplicative
stage. It is proposed that the architectural constraints of cascade-correlation are

responsible for this consistency across stages.

Identity Stages

The simulation results suggest that rather than being considered as exceptions,
identity stages may be viewed as naturally arising from a generative architecture.
Specifically, identity stages emerge due to a combination of the limited processing
ability of the initial perceptron-like architecture and the fact that the network is
performing all three inference tasks.

It is proposed that, given the limited computational power of the initial

network topology, the network is not able to encode both the inverse relationship
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between time (velocity) and distance when making velocity (time) inferences and
the direct relationship between time and velocity when making distance inferences.
That is, when making velocity inferences, time information diminishes the influence
of distance information by virtue of being the denominator in the normative rule.
Alternatively, when making distance inferences, time information augments velocity
information by virtue of the multiplicative relationship. The analogous situation
exists for velocity information when making time and distance inferences.

Given the limitations of the initial topology, the algorithm is unable to find a
set of weights to accommodate both roles of the time and velocity input. That is,
since only one set of weights exis - for the time input and one for the velocity input,
the network cannot encode the dual nature of the inputs. Therefore, the relationship
of time (velocity) information to the output error of distance and velocity (time)
inferences is obscured. In contrast, the relationship of distance information to the
output error is more salient since the role of distance is the same in either time or
velocity inference problems. As a result, when the algorithm attempts to reduce the
error across all three problem types, weight adjustment may be primarily influenced
by the relationship of distance input to the error. Therefore, when presented with a
time (velocity) inference pattern, distance information will be more of an influence
than velocity (time) information. In contrast, when presented with a distance
inference pattern, neither time nor velocity information will have a greater influence
nor will the weights have encoded the direct relationship between time and velocity
information. Thus, identity stages emerge for time and velocity inference

problems. However, neither identity, additive, nor multiplicative rules are able to
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capture the role of time and velocity with respect to distance inference problems
during this period.

Note that additive rules of distance, time, and velocity would be possible, and
indeed probable, if the network was performing only one of the tasks. That is,
since all a perceptron can do is sum its inputs, performance characterized by
additive rules would be expected. This is why it is proposed that it is a combination
of the initial network topology and the performance of three tasks within one
network that gave rise to the identity stages.

A similar argument could be put forward with respect to children. Early on,
the child is confused about the differing effects of time and velocity and focuses
his/her attention on distance information when making velocity or time inferences
respectively. With respect to distance inferences, the child is at a loss as to how to
solve the problem and may possibly choose time or velocity depending on their
salience. Perceptual salience has been proposed as a possible explanation of
children's poor performance on time problems (Levin, Gilat, & Zelnicker, 1980).

Thus, it is possible that salience plays a role in distance inferences as well.

\dditive St

Additive stages of each concept typically emerged after the installation of the
first hidden unit. This hidden unit clearly differentiated distance from time and
velocity information by assigning one sign to the weights from the distance inputs
and the opposite sign to weights from time and velocity inputs. As a result, when
the network was presented with a distance inference problem, the time and velocity
information augmented each other. In contrast, when either a time or velocity

inference pattern was presented, the distance information countered the information
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of the other dimension. Thus, the first hidden unit is able to encode the dual nature

of time and velocity, at least in a simplistic manner, and as a result the additive

stages emerge.

Multiplicative S

The additive stages of all three concepts eventually were replaced by
multiplicative stages. Typically, the time and velocity stage emerged first followed
by the distance multiplicative stage. One reason why the distance additive stage
may have lasted longer than either the time or velocity additive stages was that a
larger proportion of error was reduced during the distance additive stage than in
either of the other two. This in turn delayed the onset of the distance multiplicative
stage. Thus, the distance additive rule would seem to be a very good
approximation of distance irference patterns. It may be that for people, use of an

additive rule persists as a heuristic type approach that is generally good enough.

Summary

The developmental course demonstrated by the networks was consistent
across concepts in terms of what types of rules ewrerged. This was in large part due
to the architectural constraints of cascade-correlation. That is, time and velocity
identity stages emerged early in training prior to the recruitment of a hidden unit.
Once the hidden unit had been installed, the network was able to differentiate
among the dimensional information in such a manner that additive performance was
possible by augmenting or countering the information of the defining dimensions.
Finally, time and velocity inference patterns were mastered, in the sense that the

respective normative rules accounted for the greatest amount of variance in the
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networks' responses, before the distance inference patterns. This was likely due to
the fact that, in terms of error reduction, the distance additive rule was sufficient to

reduce a large proportion of the error.

L4. Memory Demands
Wilkening (1981) had three findings that he explained by differing memory

demands: (1) the use a velocity identity rule by 5-year-olds, (2) the inability of
adults to use the normative velocity rule, and (3) 5-year-olds apparently precocious
use of the normative distance rule. According to Wilkening, the velocity task was
more difficult than the time task since time information had to be recalled after the
distance information was presented. In other words, the time nformation wasn't
immediately available in the velocity task and had to be retrieved from memory.
Thus, the 5-year-olds regressed to using an identity rule and adults to a subtraction
rule. With respect to the young children's use of the distance multiplicative rule, he
argued that the task was sufficiently easy so that children could employ an eye-
movement strategy which revealed an implicit understanding of the correct
integration of time and velocity information to infer distance.

The pure condition simulation represents the ideal situation that Wilkening
(1982) was striving for in the follow-up study. That is, the memory demands of
the tasks were the same in that for any given inference pattern the defining
dimension information was available at the moment the inference was to be made.
Moreover, the use of an eye-movement strategy was equally impossible across the
three tasks.

A direct test of Wilkening's hypothesis of differing memory demands was

undertaken in the limited memory condition. There, the time information for
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velocity inference patterns was degraded by varying the probability that the correct
time information would be presented to the network.

Although network performance was much more variable both across
networks and within networks, the most general finding was that the normative
velocity stage defined by the rule v=d +¢ was delayed and in some cases
prevented. This would seem to support Wilkening's original contention that the
reason the velocity multiplicative stage was not attained by his subjects was due to
the extra memory demands of the task. Moreover, even for networks that
eventually attained the multiplicative stage, it could be argued that they did so only
after an inordinate amount of training not representative of the amount of learning
that people would normally have.

In the ideal situation, the velocity identity stage would have lasted longer than
the time identity stage. Thus, at the same time that the networks would have been
classified as using an additive rule for time inference patterns they would be still
solving velocity problems by primarily focusing on distance information as subjects
in Wilkening's experiments did. Although some networks did in fact demonstrate
this developmental pattern, it was more typical for the additive stages of both time
and velocity to emerge at the same time. This would seem to argue that early
identity stages result from a lack of computational power regardless of memory
demands.

In the limited memory condition, the time multiplicative stage emerged before
either the velocity or distance multiplicative stages. No strong conclusions can be
drawn about the emergence of distance versus velocity since this varied across

networks. Nor can any strong conclusions be drawn from the fact that the distance
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stage emerged later than the time stage. That is, although Wilkening found that
adults employed the correct normative rules in both the distance and time task, he
did not include 10-year-olds in the follow-up study. Thus, although he found that
10-year-olds used the normative time rule in the first experiment, it is possible that
the same aged children may use the distance additive rule when the eye-movement
strategy is not available. The simulation results of both the pure and limited
memory conditions suggest that the use of the correct distance rule emerges later

than use of the correct time rule.

LS. The Issue of Encoeding

A secondary issue in this study was the effects of different encoding methods
on network performance. It was discovered that the psychological realism of the
developmental course of the three concepts was dependent on the choice of input
encoding.

Initially five encodings were compared -- integer, nth, mercury, thermometer,
and gaussian. For the most part, performance using the different encodings was
qualitatively similar. However, when the inference patterns were encoded as
integers, substantial differences were observed. That is, for integer networks the
distance additive stage began very early in training prior to the installation of a
hidden unit. At the same time, performance on the time and velocity inference
patterns was characterized by the additive rules t=d+v and v=d+1t,
respectively. Moreover, the normative multiplicative stages of all three concepts
emerged following these additive rules. Although the distance developmental
sequence is the same as the one observed by Wilkening (1982), the time and

velocity developmental sequences diverged greatly. That is, neither time nor
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velocity identity stages were observed nor were th= additive stages defined by the
rules t=d—v and v=d—t. It appears that the error reduction that occurred
during the period characterized by the aberrant additive rules (t=d+v and
v=d +1t) was sufficient to allow for the cricrgence of the normative multiplicative

rules.

Constructi [ the Di .

Why did the performance of networks using integer encoding differ? It
appears that for the encodings other than integer the dimension itself has to be
constructed by the network. That is, there is no intrinsic information in these
encodings that would indicate that a time value of 5, for example, is greater than a
time value of 2. This must be learned by the network. Alternatively, with integer
encoding, a dimensional value of 5 has a greater influence (positive or negative
depending on the weights) on the outcome than a value 4, 3, etc.., regardless of the
initial weights in the network. Therefore, integer encoding can be considered more
inherently linear than the other encodings.

To test this hypothesis, the integer encoding was modified by adding three
context units. This was assumed to decrease the linearity of the input pattern across
the dimensions to the extent that the respective context unit of a given inference
pattern always had a value of one. Thus, the pattern as a whole was less linear.

The results of this additional encoding, integer-context, supported the linearity
hypothesis in so far as time and velocity identity stages were the first diagnosable
stages and were followed by the typical additive rules (¢=d-v and v=d-1)
observed with other encodings. The only difference was that the additive stage of

distance emerged before the recruitment of the first hidden unit as was the case with
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integer encoding. However, in the limited memory condition, the distance additive
stage was delayed, emerging only after the installation of the first hidden unit.
Since the weights from the time input were imprecise due to the limited memory
manipulation, any advantage of the linear input was obscured. In sum, when the
linearity of the integer encoding was diminished by using a context unit, the

performance of the networks was more in line with that of the other encoding types.

2. Connectionism and Development

As Flavell and Wohlwill (1969) surmised, tihe two fundamental issues in
development are: (1) What knowledge structures develop?, and (2) How does
developrental transition occur? With respect to distance, time, and velocity
developmrent, the structures that develop are increasingly complex representations
that enable performance characterized by identity, additive, and multiplicative
integration of defining dimensions. The connectionist simulations presented here
suggest that the underlying representations arise from inter-connected, simple
processing units. Moreover, the simulations suggest that developmental transition
results from both weight adjustment and the recruitment of hidden units. In terms
of human cognitive development, transition is likely due to incremental learning and

increases in non-linear representational abilities.

2.1. Structure

Siegler (1981) hias conceptualized children's cognitive development as a
progression through increasingly complex binary decisions. Through the use of his

rule assessment methodology he has found support for his theory in a number of
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cognitive domains including the development of distance, time, and velocity
concepts (Siegler & Richards, 1979). While the simulations in this study support
their findings of an early emphasis on distance information to solve time and
velocity problems, the underlying representation responsible for this type of
performance and subsequent stages in development 1s radically different.

Networks naturally integrate dimensions in that unit activations are based on
summing all the inputs to the unit. Nevertheless, these networks initially performed
as if focusing only on one dimension. It has been suggestc] that identity stages
emerge as a result of an inability to encode the dual nature of time and velocity
information when making inferences about distance and time or velocity
respectively. Thus, it is proposed that children do not ignrre the other dimension
(time or velocity) but rather that they lack the ability to resolve their dual roles
because of limited processing ability. That is, children consider both defining
dimensions but place more emphasis on distance when making time or velocity
inferences because distance information is more consistently related to the target
performance.

Additive integration of dimensions emerged as a result of recruiting a hidden
unit that differentiated distance from time and velocity information based on a
pattern of connectivity in which the weights from time and velocity inputs had the
opposite sign to weights from the distance inputs. Moreover, there was some
evidence that the distance multiplicative stage emerged following a hidden unit that
further differentiated time and velocity information.

Thus, networks were capable of achieving knowledge states that have

typically been assumed to be represented by explicit symbolic rules (i.e., identity,



Distance, Time, and Velocity
128

additive, and multiplicative algebraic rules) by means of weighted connections
among simple processing units whose only function is to send and/or receive
excitatory and inhibitory signals.

It should be stressed that although network performance is characterized by
explicit rules, this in no way implies that the networks have represented the rules
explicitly. That is, the distributed representation among the units in the network
enable the networks to perform “as if”” following explicit rules. This may also be
the case for subjects in Wilkening's experiments. For example, it seems unrlikely
that the 5-year-olds in Wilkening's (1981) experiment knew that distance inferences
are based on multiplying time and velocity information. Wilkening himself has
discussed the "as if" nature of the integration. That is, children perform "as if" they
were multiplying the dimensions. The present connectionist models show in detail

how such “as if” performance is possible.

Continuous _Learning Across the Stage

Although network performance was stage-like in that long periods of training
resulted in the same classification of responses, learning did occur within stages.
The large reduction of error within stages suggests that learning continued even
though the overall responses did not undergo qualitative change. Moreover, the
amount of variance accounted for by a given rule defining a stage was not constant
across the stage. Together, these results suggest that learning is continuous during
a stage.

The conception of a stage as a dynamic rather than a static period seems
problematic for rule-based approaches. For example, if a child has an explicit rule

for solving time problems that involves focusing on distance information alone
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(i.e., Siegler and Richard's rule I), it is unclear how improvement beyond the
correct application of the rule within a stage might occur. In contrast, the error
reduction across the time identity stage demonstrated by the networks suggests that
weight adjustment can improve the accuracy of time inferences even though the

responses remain characterized by the time identity rule.

22. T iti

The progression from identity to additive and then multiplicative stages
represents qualitative restructuring of a knowledge representation. Researchers
working within the framework of information integration theory (Anderson, 1974)
have had difficulty formulating a precise mechanism that would account for these
qualitative changes. In contrast, the use of cascade-correlation provides an explicit
mechanism of transition. That is, it was demonstrated that qualitative changes in
knowledge were brought on by both quantitative changes in the form of weight

adjustments and underlying qualitative changes due to hidden unit recruitment.

i i itmen igh justmen Mechanism

Some researchers have argued that weight adjustment alone is capable of stage
transition (Plunkett & Sinha, 1992; McClelland, 1988). However, the simulations
presented here suggest that weight adjustment and hidden unit recruitment are
responsible for developmental changes.

The evidence for hidden unit recruitment as a mechanism of stage transition is
strong. In general, transition from the identity stages to additive stages of time and
velocity followed the recruitment of the first hidden unit. The first hidden unit also

brought about a transition from the initial period not captured by any distance rules
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to the additive stage of distance. Similarly, transition to the time and velocity
multiplicative stages followed the recruitment of the second unit. Finally, transition
from the distance additive stage to the multiplicative stage typically followed the
recruitment of either the third or fourth hidden unit. Moreover, new stages emerged
soon after the installation of hidden units, often requiring just five to ten epochs of
weight adjustment.

In these simulations there is strong evidence that simple weight adjustment
alone was not sufficient to cause transition from one stage to another. For example,
it has been argued that the transition to additive time and velocity stages required the
recruitment of a hidden unit. That is, given the initial perceptron-like architecture of
the networks, weight adjustment alone would not have brought about transition to
additive stages.

The argument is not that weight adjustment was unimportant but rather that
transition is brought about by a combination of both weight adjustment and hidden
unit recruitment. An interesting example of the interaction of weight adjustment and
hidden unit recruitment was found in those networks where there was a period
characterized by a tie following the additive stages, prior to the onset of the
multiplicative stages. It appears that weight adjustment was sufficient to bring
about a change in network responses from performance characterized by additive
rules to performance characterized by both additive and multiplicative rules but that
a new hidden unit was necessary to complicte the transition to performance
characterized soleiy by the multiplicative rule.

Given that the emergence of stages appears to be intimately related to the

constraints of a generative architecture, it seems unlikely that simulations using a
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static architecture such as back-propagation wouid demonstrate the same
psychologically realistic developmental course. In particuiar, the early emergence
of identity stages may be difficult to capture in back-propagation networks. That is,
if the initial network topology includes a hidden unit layer, then the ability to encode
the dual nature of time and velocity would exist. Naturally, this is speculative
since, at present, no attempt to simulate the acquisition of distance, time, and

velocity concepts within a back-propagation architecture has been undertaken.

2.3. Summary

The developmental course demonstrated by the networks is consistent with
the conclusions of Flavell (1971) concerning stages of cognitive development. That
is, the networks progressed through qualitatively different, highly organized
knowledge structures, by means of relatively gradual transitions. Knowledge
representations in the form of inter-connected simple processing units emerged as
learning progressed by means of gradual weight adjustment and hidden unit

recruitment. These representations were characterized by increasingly complex

algebraic rules.

3. Possible Criticisms and Limitations

d.1. Single Network for Three Tasks
It was suggested that identity stages resulted from the use of a single network
to perform all three tas<s. Some might argue that the use of a single network is
unwarranted. That is, why not use one network for each task? The simple answer
is that by using one network the algorithm is forced to reduce error that is

attributable to all three inference types. Moreover, any hidden units installed into
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the network may represent knowledge of all three inferences. Since the question is
really about the inter-relationships among the three concepts, using one network is

the simplest means of representing knowledge about these inter-relationships.

3.2, Correlation

Strict connectionists might object to the use r2 values of different rules as a
means of testing performance rather than the more typical measure of sum-squared
error.  However, unlike other connectionist simulations such as children's
performance on the balance scale (e.g., McClelland, 1988; Shultz & Schmidt,
1991) it was not possible to create problem sets such as those used in rule
assessment (Siegler, 1981). Problem sets that would reflect one rule versus
another are precluded when a binary decision is not demanded of the networks.

Moreover, the measurement of the correlation between responses generated
by a given algebraic rule and those actually made by the network in response to the
different inference patterns is qualitatively similar to how subjects' performance
was assessed in Wilkening's experiments. That is, subjects were not required to
provide accurate responses. What was assessed was the overall relationship of
subjects' responses relative to one another. Therefore, determining the correlation

of different potential rules seems appropriate.

Overall, the vast majority of epochs across training were diagnosable.
However, one limitation was the inability to classify the period prior to the onset of
the distance additive stage even though it was associated with significant error

reduction. However, as discussed above, it may be that since neither time nor
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velocity information is any better at predicting outcomes, any preference that

children show for one or the other might reflect extraneous task factors such as the

salience of the dimension on a given task.

3.4, Limited M Manipulati

One limitation of the limited memory manipulation was that it affected distance
inference patterns as well as the intended velocity inferences. That is, since the
weights from the time input bank are used to propagate information of both velocity
and distance inference patterns, they also unavoidably affect performance on
distance inference patterns. The qualitative progression of stages within the
distance developmental sequence remained unchanged. However, the limited
memory manipulation makes conclusions about the development difficult since the
length of the stages was affected.

Also with respect to the limited memory manipulation, the amount of error in
recall was arbitrary. Any strong conclusions would have to wait until other levels

of error were used.

n jzati hoice Task
Another possible criticism is that the results of these simulations may not
generalize to binary choice tasks. Even more seriously, it might be argued that the
use of a linear output predisposes the algorithm to find additive and multiplicative
rules. However, preliminary work suggests that these criticisms are not warranted.
That is, work is underway that extends the findings of the present study to
situations in which a decision about which of two objects has traveled the greater

distance, for the longer time, or at a faster velocity given information about the two
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defining dimensions of both objects. This is analogous to the present study but
requires a binary decision. The responses are encoded on two outputs with
sigmoid activation functions. The same identity, additive, nd multiplicative stages
have been observed. Therefore, the emergence of additive and multiplicative stages

observed in the present simulations is not due simply to the use of a linear output.

3.6, Network Analyses

Although Hinton analyses proved useful in understanding the emergence of
distance, time, and velocity additive stages, they had limited use in revealing how
transition to multiplicative stages occurred. This is because as more hidden units
are installed into the network, the role of any one unit becomes less obvious since
the representations become increasingly distributed and non-lincar. Each new
hidden unit is installed on a separate layer and receives input from all previous
hidden units and the input layer. As such, Hinton diagrams are probably more
useful in non-generative learning architectures such as back-propagation with a
limited number of units and layers.

A promising new approach is being undertaken by Shultz and Elman (1993).
They have extended a technique developed by Sanger (1989) called "contribution
analysis" to analyze knowledge representations in generative algorithms.
Essentially, the technique involves determining the contribution or influence of a
given unit in determining the network's response. Contribution analysis differs
significantly from Hinton analysis in that activations of sending units are considered
in addition to size and sign of weights. That is, the contribution of any one unit is a
function of both the unit's activation given a particular training pattern and the sign

and size of the weigit connecting it to a given output unit. Principle components
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analysis is then performed on a contributions by input pattern matrix. The
advantage is that many contributions may be reduced to a few interpretable

components. Future work will apply contribution analysis to the present network

models.

3.7. Realism

A general limitation of the simulations is a lack of realism and a high degree of
simplification compared to both the child and his/her environment. That is, the
resources that a child brings to the task are far more complex than those represented
in the simulations. Moreover, these resources are applied to both a far ranging type
and number of tasks. Nevertheless, the model shows that an architecture
employing brain-style computation can capture the known qualitative aspects of the
development of distance, time, and velocity concepts based on input from the

environment,

4. Predictions and Future Research

The simulations suggest that when all else is held constant, identity, additive,
and multiplicative stages across concepts emerge 1t similar times reflecting the
processing capacities of the child (network). Thus, the primary direction of any
future research on this issue is to determine under what conditions this is true.

The simulation results, together with Wilkening's studies, make several
predictions. First, the results suggest that if 5-year-olds can integrate distance and
velocity and time and velocity information in an additive manner to infer time and
distance respectively, they should also be able to integrate distance and time

information additively to make velocity inferences. That is, Wilkening's hypothesis
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about the velocity task being more difficult than the time task in terms of memory
demands is likely, but his manipulation to equalize the demands of the two tasks
was ineffective. Thus, if memory demands were reduced in all three tasks, the
sirnulations predict that all three types of inferences would be solved additively by
5-year-olds.

Second, but related, the simulations suggest that children vounger than five
years of age solve time and velocity inference problems by focusing on distance
information and solve distance inference problems based on either time or velocity
information depending on which is more salient. Thus, the simulations suggest the
velocity developmental sequence observed by Wilkening is qualitatively accurate
but that differences in onsets of stages relative to time and distance were due to
different task demands. That is, Wilkening's observation that 5-year-olds use an
identity rule to make velocity inferences 1s likely related to the extrancous task
demands, not to the children's understanding of the relationship of time and
distance. However, the simulations predict that children younger than five years ot
age make velocity inferences by focusing on distance information because of
processing limitations. Therefore, future research should include younger children
and manipulate the salience of velocity and time information in the distance task.

Third, the simulations suggest that the distance multiplicative stage emerges
after both time and velocity multiplicative stages. Since Wilkening did not study
10-year-olds' performance when an eye-movement strategy was not possible, 1t
would be necessary to re-examine 10-year-olds under this condition. The

simulation results predict that if the memory demands of the three tasks were
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similar, 10-year-olds would use the additive rule for distance inferences and the
normative multiplicative rules for both time and velocity inferences.

Finally, as suggested, if the task demands of the velocity task were reduced it
is predicted that 10-year-olds would make velocity inferences by integrating the
dimensions with the correct multiplicative rule. Therefore, the inability of
Wilkening's subjects to correctly integrate time and distance information is likely
due to extra memory demands.

Several issues in terms of future connectionist simulations are also relevant.
First, differing levels of probability of correct recall could be examined. It may be
that by decreasing the likelihood of correct recall of time information in the velocity
task would lengthen the identity stage of velocity and thus delay the onset of the
additive stage. Moreover, to make the limited memory manipulation more realistic,
the probability of correct recall might increase as training progresses.

Second, with respect to analyzing network performance, an interesting
approach would be to use functional measurement. However, this is somewhat
problematic since functional measurement relies on analysis of variance of group
data. In terms of network data, it is difficult to know how individual epochs of
different networks relate to one another. Moreover, although epochs certainly can
be related qualitatively to age in that more epochs imply greater age, it is not clear
how epochs and age relate precisely.

Third, as mentioned, the use of contribution analysis may provide more
insight into the underlying representations embodied in the network’s connections.
Although Hinton analyses were useful in understanding networks with smaller

topologies (i.e., after one or two hidden units) the representations after additional
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hidden units were installed in larger networks were obscured by the shcer number
of units and consequent distributed representations.

Fourth, it was argued that stage transition by means of weight adjustment and
hidden unit recruitment, or incremental learning and increases in non-linear
representational power in humans, are responsible for early identity stages and
subsequent transitions to more advanced stages. Given that static networks do not
allow for structural increases in representational power, such networks would not
be expected to capture the stage progressions observed in both the current
simulations and humans. Identity rules have been observed in simulations using
back-propagation networks. For example, McClelland (1988) captured the "weight
only" rule in his simulations of the balance scale. However, it is believed that in the
current simulations identity stages emerge from the inability of the initial
perceptron-like architecture to find a set of weights that would accommodate the
three inference tasks. Naturally this hypothesis needs to be empirically tested by
attempting to simulate the acquisition of distance, time, and velocity concepts using
a back-propagation network.

Finally, as mentioned, work is underway that attempts to simulate children's
responses in a binary choice task. Although there are parallels with both Piaget's
(1946/1969, 1946/1970) and Siegler and Richards' (1979) work, among others,
these simulations employ Wilkening's (1981) methodology of presenting
information about two defining dimensions and requiring inferences about the third
dimension. This should offer insight into the importance of assessing knowledge
with either choice or non-choice tasks in addition to the generalizability of the

present simulations.




Distance, Time, and Velocity
139

5. Conclusion

It has been argued that the stage progressions observed in network
performance have resulted from the constraints inherent in a generacive algorithm.
That is, identity stages arise from a lack of computational power and subsequent
inability to encode both the inverse and direct relationship of time (velocity) to
distance and velocity (time), respectively. Installation of the first hidden unit
enables the networks to form a simplistic representation of this relationship in that
additive rules are used to integrate the dimensions. Finally, after further changes to
the network topology by hidden unit recruitment, performance that is characterized
by the normative rules of distance, time, and velocity emerge.

The main theoretical implications are that children use a domain general
algorithm or learning rule that allows for increased complexity in knowledge
representations as the child’s capacity for problem solving increases. Moreover, ii
is the domain specific constraint of making inferences on the three problem types
that determines the type and progression of knowledge representations. Early
identity rules result from an inability to conceptualize the dual role of time and
velocity rather than from the child ignoring distance information. Increases in the
child’s capacity enable simplistic additive representations and then more complex
multiplicative representations.

The child is considered as an active participant in his/her environment in that
he/she is continually learning from experience. However, learning itself may not
always be sufficient for qualitative changes in the knowledge representations.

Often such changes require increases in processing capacity.
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The success of the present simulations in capturing the development of
distance, time, and velocity integration rules is encouraging because it suggests that
other findings of researchers working within the framework of information
integration (Anderson, 1974) may also be captured by connectionist simulations,
In general, developmental transitions from simpler addiuve rules to more complex
multiplicative integration rules have been observed in children’s performance on a
number of compensation tasks in addition to distance, time, and velocity
integration. The advantage of connectionist simulations is that they provide both
precise knowledge representations of integration rules and a precise mechanism of
how development proceeds from simpler to more complex integration rules.

Cascade-correlation has already proven useful in understanding a number of
cognitive developmental phenomenon including children's performance on the
balance scale task (Shultz & Schmidt, 1991; Shultz, Mareschal, & Schmidt, in
press), the acquisition of personal pronouns (Shultz, Buckingham & Oshima-
Takane (in press), and children's seriation ability (Mareschal & Shultz, 1993). The
present research extends the applicability of cascade-correlation to the acquisition of
distance, time, and velocity concepts. A number of insights and predictions have
come from this work, validating cascade-correlation as a promising tool of

investigation into cognitive development by means of connectionist simulations.
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Figure A 1. Maximum r2 of d=t+v rule attamncd during additive stage of
distance developmental sequence.
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Figure A 2. Maximum r2 of t=d and t=d-v rules attaincd during 1denuty and additive
stages of time developmental sequence respectively.
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Figure A 3. Maximum r2 of v=d and v=d-1 rules attaincd during identity and additive
stages of velocity developmental sequence respectively.
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Figure B 1. Mean percent of crror reducuon in distance inference patterns (&) from epoch S to
additive and multiplicative stage onsct and (b) over additive stage. Error bars arc standard
deviations from the mean.
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stages and (b) from cpoch 5 to muluplicative stage onsct. Error bars are standard deviations from

. thc mcan.




Appendix B - Error Reduction

B3
(@) (b)
Error Reduction Error Reduction
Over Stage At Stage Onset
100 - 100
5 - 5 o0
'8 8 90 -
oo ] -
3 S 80 g
P % 70
= —
g g b FRR)
kK B 60 o N b
& : o 5()_. A&@u R
Identity Additive Multiplicative
Stage Stage

Thermometer Integer-context

B Nth

F4 Mercury [] Gaussian K] Integer

Figure B 3. Mcan percent of error reduction in velocity inference patterns (a) over wdentity and
additive stages and (b) from cpoch 5 to muluplicauive stage onset. Error bars are standard
. deviations from the mean.






