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Abstract 

Two sets of connectionist simulations of children's acquisition of 

distance (d), time (t), and velocity (v) cOllcepts lIsing a generativc algorithm, 

cascade-correlation (FahIman & L,~biere. 1990). are reported. Pur" ('(l1uilliclll 

simulations represent a situation in whkh t1;1f:mory demands across the concepts are 

equal. The limited memOly condilion e"plores the effc~cts of diff\:ring I11cmory 

demands. 

It was found that the IUles that correlated most highly wilh network rcsponsC's 

during training were consistent with the developmcntal course of chiIdrcn' s 

concepts (Wilkening, 1981; 1982). Networks integrated the dcfining dirncnsiolls 

of the concepts first by idenlity rules (e.g., v = d), tht!,n additivc rules 

(e. g., v = d - t), and finally multiplicative ruIes (e.g., li = d + t ). 

The results are discussed in term!> of similarity to childrcn's dC'lclopmcnt, the 

effects of memory demands, the contribution of connectIonism to cognitive: 

development, and directions for future rescarch. Il is argued that cas<.:adc 

correlation provides an explicit mechanism of developmental change -- wcight 

adjustment and hidden unh recruitment. 
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Résumé 

C<:tte étude présente deux séries de simulations connexionistes du 

déve!~)ppement des concepts de distance (d), de temps (t), et de la vitesse (v) en 

utilisant l'algOrIthme "cascade-correlation" (Fahlman & Lebiere, 1990) qui construit 

de façon dynamique la topologie du réseau. Les simulations "pure condition" 

représentent une situation dans laquelle les demandes mnémoniques sont 

équivalentes pour chaque concepts. Les simulations "limited memory condition" 

explorent l'effet de différences dans les demandes mnémoniques entre les concepts. 

Les résultats démontrent que les règles les plus hautement corrélées avec les 

réponses du réseau pendant la phase d'entraîn~ment étaient en concordance avec le 

parcours développemental des concepts observé chez les enfants (Wilkening, 1981; 

1982). Dans un premier temps, les réseaux intégraient les dimensions définissants 

les concepts en adoptant une règle d'identité (e.g., v = d), par la suite, par une 

règle additive (e.g., v = d - t), et finalement, en adoptant une règle multiplicative 

(e.g., v=d+t). 

Les résultats sont considérés en termes de leur similarité au développement de 

l'enfant, des effets des demandes mnémomqes, des contributions de l'approche 

connexioniste au domaine du développement cognitif et d'avenues de recherches 

futurs. L'argument est fait que "cascade-correlation" nous fournit avec un 

mécanisme explicite du changement développemental; soit l'ajustement de 

connexions et le recmtement d'unité au besion . 
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CHAPTER ONE • INTRODUCTION 

Children's behaviour is often characterized as progressing throllgh a series of 

stages of inereasingly eomplex knowledge. Although this notion has had cndllring 

appeal, it is only reeently that researchers wilhin the field of cognitive dcvclopmcnt 

have possessed a tool that enables them nQt only to describe the knowledge 

representations of possible stages but also how these states might emerge. Within 

the last decade, connectionism has provided new insights into developmcntal 

regularities of children's behaviour. 

One widely researched area in cognitive development that is frequently 

characterized as stage-like is children's performance in compensation tasks . 

Compensation tasks involve differences, rates, ratios, proportions, or other 

multidimensional interactions among physical dimensions (Kerkman & Wright, 

1988). Examples include: (1) the balance seale task (e.g., Inhelder & Piaget, 

1958; Siegler, 1976, 1981; Wilkening & Anderson, 1982, 1991; Perreui, 

Butterfield, Cahn, & Kerkman, 1985; McClelland, 1988; Newell, 1990; Shultz & 

Schmidt, 1991) in which information about weight and distance from the fuIcrum 

must be multiplied (i.e., torque) in order to predict which side of the balance scale 

will go down; (2) area judgement tasks (e.g., Anderson & Cuneo, 1977; 

Wilkening, 1980; Lohaus & Trautner, 1989; Avons & Thomas, 1990) in which 

information about the height and width of an objeet must be integrated to predict 

area; (3) volume judgement tasks (e.g., Anderson & Cuneo, 1977; Wilkening, 

1980; Halford, Brown & Thompson, 1986) in whieh information about height and 
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diameter are necessary to predict liquid volume in a beaker for example; and 

(4) tasks involving the integration of distance, time, and velocity 

information (e.g., Piaget, 1946/1969; Levin, 1977, 1979; Siegler & Richards, 

1979; Wilkening, 1981). 

This thesis is concemed with the 1ast set of compensation tasks. Specifically, 

it is an attempt to further our understanding of children 's acquisition of the concepts 

of distance, time, and velocity by means of computer simulation using a generative 

conncctionist architecture, cascade-correlation (Fahlman & Lebiere, 1990). 

In cIassical physics, distance (d) is defined as the relationship between 

time (1) and velocity (v), d = t x v, time as the relationship between distance and 

velocity, t = d + v, and velocity as the relationship between distance and time, 

v = d + t. Very few studies have looked at the simultaneous acquisition of the se 

three concepts. Moreover, the findings of two approaches that have had a 

significant impact on this topic (Siegler & Richards, 1979; Wilkening, 1981) differ 

with respect to the general developmental course and the specifie knowledge and 

representations they attribute to chHdren over this period. In order to understand 

these differences, the theories and measurement techniques behind these arproaches 

are discussed in sorne detail in the following review. 

1. Literature Review of Distance, Time, and Velocity Acquisition 

1.1. Pjaa:et's Approacb 

The beginning of modern research into children's concepts of distance, time, 

and velocity is rather distinguished. Albert Einstein asked Jean Piaget (1946/1969; 

1964) about the relationship between time and velocity in children's thinking. Is 
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one more primitive than the other? Does one depend on the other? Givcn thm 

Newtonian mechanics defines velocity in terms of the fundamental notions of time 

and space whereas Relativity theory postulates that time and space are rc\ative to an 

absolute velocity (i.e., speed of Iight), Einstein's interest is evident. 

In order to answer Einstein, Piaget undertook a full scalc investigation 

(Flavell, 1963; Piaget, 1946/1969, 1946/1970, 1964, 1970/1971) and detcrmined 

that the acquisition of distance, time, and velocIty concepts occurred pnmarily in 

three stages. Intuitive notions emerge at approximately four to five years of age 

(Stage 1: intuitive or pre-operational), and are reconstructed Vl'I an intermediary 

stage (Stage II: articulated intuitions or operational), until the adult-like conceprs arc 

obtained at roughly eight to nine years of age (Stage III: concrete operational). An 

additional fourth stage ~Stage IV: fonnal operational) marks the progression from 

qualitative to quantitative understanding. Piaget's claims are based on a number of 

tasks developed to measure conceptual knowledge he believed to be essential in 

understanding the three concepts. 

Distance 

The child's notion of distance evolves from intuitions based on spatial order, 

and in particular the stopping point of a movement, to an understanding that 

distance is comprised of the interval between starting and stopping points which can 

he subdivided into sm aller units that can be used for measurement. 

Figure 1 shows the hypothetical path trajectories of two streetclus (beads) 

used in one experiment (Piaget, 1946/1970). The examiner moves hi~/her car from 

points 0 to 4 on path B for example, and asks the child to move his/her car the ~ame 

distance on path A. A child at Stage 1 would move his/her car to position 2 thus 
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Figure 1. AdaplCd from Piaget (I946/1970, p. 57). 
Pathway followed by strcctcars A ami B startmg at 
zero. (Intcrvals marked only for case of 
cxplanation) 

only focusing on the stopping points of the two cars. During Stage II, the child 

judges the length of the path traversed intuitively moving hislher car to a position 

around point 4. Ar. Stage III, the child is able to make direct comparisons of the 

paths traversed by measuring them . 

At Stage IV, children can reason abstractly about distance. For example, 

when a snail moves along a plank which is moving at the same speed in the 

opposite direction, children understand immediately that the snail's position relative 

to its starting point does not change. 

Piaget's (1946/1969) research into children's notion of time examined their 

understanding of the temporal concepts of succession (order of events) and duration 

(interval of time). Piaget maintained that time for the young child is not 

homogeneous in that its rate varies from one motion to the next, or is relative to 

velocity, and that it is confused with the spatialorder. The child progresses from 

this "localized" time to being able to represent time on uniforrn scale that can b~ 
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used to compare objects traveling at different velocities. Thus, time ,K'cording to 

Piaget, is the coordination of motions at different velocities. 

Piaget's examination of simultaneity (Le., of events that start and stop lit the 

same time) is used to illustrate the developmental course of the child's notion of 

time. Children are asked which of two mechanical sn ails traveling at differcnt 

speeds stops first or travels for the greater time. At Stage 1 they choose the snail 

that travels the least distance as having stopped first. Thus, the simllitancity of the 

stopping points is not understood. Moreover, the faster moving snail is jlldged to 

take more time. At stage two, children may grasp either the simllltaneity of the 

starting and stopping points or the equality of the dllrations, but not both. 

Alternatively, they lInderstand neither, and simply jlldge durallon as illversely 

proportion al to distance (Le., more distance = less time). Finally, at Stage Ill, the 

concurrent development of notions of succession and duration lead to the 

acquisition of a concrete operational understanding of temporal simultaneity. 

Comparing successive durations represents the chiId's crowning achievement 

as he/she progresses from a qualitative to quantitative understanding of time. Piaget 

argues that successive durations can only he compared if the units of duration can 

be removed from the actual events, thus enabling quantification. Althollgh it is not 

clear from Piaget's (1946/1969) writings whether or not this constitutes a new stage 

(Le., Stage IV), it is reasonable to conceive it as such given his conceptualizations 

of stage IV with respect to distance and velocity. 

Veloçjty 

The child's intuitive notion of velocity is based on relating the order of evcnts 

in time with the order of events in space (Piaget, 1964, 1970). Il is not dependent 
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on either temporal or spatial intervals (Le., durations or distances) but rather on 

overtaking and overreaching. That is, an object which at one point in time 

("beforetl) is behind another and then later ("after") is in front of it, is judged as 

having greater velocity. However, if the overtaking of a faster object is not visible 

eithcr by making it hidden (e.g., traveling through tunnels), having the objects 

travel at angles to one another, or on concentric circular paths, the child al Stage 1 

will say that the objects traveled at the same velocity. 

The importance of overreaching is clearest in the absence of overtaking. 

When two cars start and stop simultaneously with one commencing considerably 

further behind the other but just failing to overtake it, the child thinks the car that 

traveled the lesser distance traveled faster because it's stopping point is further 

along the path. Similarly, if the two cars start in succession from the same point of 

origin but stop simultaneously having traveled equal distances, the child will think 

that they went the same speed since lheir respective stopping points are the same. 

During Stage II, the child generalizes the notion of visible overtaking to 

situations in which it is hidden by imagining the continuation of a movement to 

establish if a tlpotential" overtaking is likely. Similarly, the child may reconstruct 

the movements fOTm their points of origin. In any event, attention is decentered 

from the stopping points to include the starting points and this paves the way for the 

concrete operation al solutions of Stage III. 

As with distance and time, Stage IV represents a shift from qualitative to 

quantitative understanding. At this point the child masters the conservation of 

uniform speeds, grasps the idea of uniformly accelerated movement, and is able to 

construct the proportion of distance to lime to predict velocity (Le., v = d + t) 
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when unequal distances and unequal times of movements in succession are 

involved. 

Conclusion 

In answer to Einstein's question concerning which concept is more primilive, 

Piaget conc1uded that whereas none of the concepts are innate by virtue of the fact 

that they are constructed through a series of stages, an early intuition of velocÎty 

based on temporal ("bdore" and "after") and spatial order ("behind" and "111 rlOnt") 

exists independent of notions of duration and distance. On the other hand, tÎmc is 

dependent on velocJty at aIl stages. Thus, Piaget concludcd that dllldrcn's carly 

notions are more akin to relativistic concepts and it is only through dcvclopmcnt that 

they acquire their Newtonian qualities. 

fuu2corting eviden~. Most of the research atmed ut replicating and cxtending 

Piaget's daims has been done with respect to children's understanding of the time 

concept. Early support for Piaget came from a comparative study of children with 

special needs and "normals" by Lovell and Slater (1960). Looking at the concepts 

of simultaneity, equality of synchronous events, and children's ability to ortler 

events, they found considerable support for Piaget's claims, although they did note 

that children's notion of time is situation dependent, performing better in some 

tasks th an others. Cross-cultural studies also tended to replicate Piaget's findings 

with the caveat that cultural time lags did exist (e.g., Dempsey, 1971; Bentley, 

1986). A~3itional evidence has come from a variety of areas incJlIding research in 

music education looking at the effects of tempo on jlldged duration of the music 

(e.g., Bickel, 1984). For a review of studies of children's time concept, the 

interested reader should consult Friedman (1978). 
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A few studies have looked at the relationship between time aild velocity. For 

ex ample, Weinreb and Brainerd (1975) found support for between con;;ept 

developmental course of time and velocity (i.e., that velocity precedes time) 

although they question sorne of the inter-concept development daims. 

A few researchers (e.g., Montangero, 1977, 1979; Crépau It, 1980) have 

looked at the relationship amongst all three concepts. One interesting series of 

studies has been conducted by Crépault (1977, 1979, 1981) looking at the 

"relativity" of the concepts. In these studies, children are shown a mechanical 

device that pulls a paper ribbon past a mechanical arm that has a pen at the end of it. 

As the arm moves up and down, marks are drawn on the paper ribbon. The 

frequency of the pen tapping and the ribbon pulling can be manipulated 

independently. Subjects are then presented with two ribbons and asked, for 

ex ample, if it look more time for the pen to make the first two marks on one tape 

than the other. Similarly, they are asked questions about the time it took the ribbon 

to go between the first two points on either tape. Crépault has found that common 

errors include differentiating the time required by the pen and that of the tape. 

Bas~ct on his research, CrépauIt (1978) has formulated an elaborate three-

stage theory of the developmental r~mse of the concepts in which pairwise 

combinations of the relations emerge in the following order: At first, more speed 

implies less distance and more time implies more distance; then the child learns that 

more speed implies more distance; and finally that more tj~lle implies less distance. 

Finally, general support for Piaget's position has come from one of the first 

comprehensive studies to look at not only the relationship amongst the three 

concepts but also their inte-r-developmental course (Siegler and Richards, 1979) . 
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Their methodology, theoretical assumptions, and results ar~ discllssed at lcngth in 

the following section. 

1.2. Sjel:ler's Appro3cb 

Sequential Decision Tbeory 

Siegler's theory of cognitive development is greatly inflllcnccd by Piagc1's 

stage theory of development. Siegler's Sequential Decision Theor)' pos1ulatcs that 

cognitive development can be characterized as a series of increasingly powcrful 

rules for solving problems (Siegler, 1981). 

Siegler (1981) argues that within Piaget's work on compensation tasks, 1hcrc 

is a modal form to the developmental course that children are thought 10 follow. 

First, children focus on the dominant dimension. Then, there is a transition stage in 

which the child focuses on both dimensions but does Ilot know how 10 intcgratc 

them. Finally, the child correctly integrates th.,; two dimensions. Siegler proposcd 

four modal rules to explain this developmental sequence. Each is explained in 

Table 1. 

At each stage in development, a chiJti's performance is bascd on hinary 

decision roles (Siegler, 1976). For eXaEliJle, a child using Rule 1 de1crmines 

Table 1 
Modal Rules Used to Explain Development 
Modal Rule Descnpt_io;".n __________ _ 

Ruie 1 
Rule II 

Rule III 

RuIeN 

Base judgment on dominant dimension. 
When dominant dimension values are unequal hase judgments on 
this. If equal, consider suhordinate dimension. 
Consider both dimensions but when onc alternative ha~ grcater 
value on the dominant dimension and the other has greater valuc on 
the subordinate dimension, "muddle through" (i.c., gucss!). 
Apply the appropriate quantitative or qualitative formula for 
combining the dimensions. 
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whether the values of the dominant dimension are equal among the alternatives. If 

they are, the child maintllins that the two alternatives are equal. If the values are not 

equal, the child chooses the alternative with the greater dominant dimension value. 

Sequentlal Decision Theory has been used successfully to explain 

performance iii tasks su ch as the balance scale (e.g., Siegler 1981, 1976) and the 

mclined-plane (Ferrettl et al., 1985). 

Rille Assessment 

In order to ascertain whether or not children's performance can be 

characterized by the rules postulated under Sequential Decision Theory, Siegler 

looks at children's correct and incorrect responses to different problem types. 

Problem types in choice tasks. Although Siegler (1981) argues that his Rule 

Assessment procedure does not require a methodology in which children choose 

among alternatIves, most if not ail of the research pertaining to Sequential Decision 

Theory has been done within the choice paradigm. With this in mind, six modal 

problem types based on dominant and subordinate values have been used to assess 

children's knowledge. These are presented in Table 2. 

Table 2 
Problem Types in Rule Assessment 

Problem Type Values of Dominant and Subordinate Dimensions 

Eqmù 
Dominant 

Subordinate 
Conflict
Dominant 
Conflict-

Subordinate 

Equal dominant and subordinate values. 
U nequal dominant but equal subordinate values. 
Equal dnminallt cut unequal subordinate values. 
One choice has greater dominant values, and the other has greater 
sllbordinate values. Former choice is correct. 
Same as above exccpt latter choice is correct. 

Conflict-Equal Same as abave except both choices produce the same outcome . 
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The set of problem types is chosen such that it ylclds a distinctive pattel n of 

errors and correct answers for chlldren following the modal mIes describcd ahove. 

For example, a child using Rule 1 (basing judgments solely on thc hasi~ of the 

dominant dimension) is expected to perform correctly on the Equal, Dominant, and 

Conflict-Dominant problem types but to make errols on the other thrœ plOblcms. 

Assllmptions underlyin~ the mIe assessment tcchnlqll~. Accordl11g to Sieglcr 

(1981) there are only two prerequisitcs for using the Rule Assc~~mcnt techllll}uc. 

The first being that the researcher must have clear hypothcscs ahollt pL'oplc's 

knowledge of two or more distinct strategies such thatthc diffclcnt ~lIategies will 

yield different response patterns. The second prereqllisitc is that the prohlcm types 

allow for simple application of the strategies. In other words, thc experimentcr 

must control for such things as memory constraints so that the suhjecls are ahle to 

use the strategies. 

Distance, Time. and Velocity 

Siegler and Richards (1979; see also Richards, 19H2) argucd that thcre were 

several reasons to question Piaget's results inc1uding inconslstent findings, 

methodological problems in that Piaget did not study the same children nor (bd he 

use comparable tasks across the three concepts, and the vagllenc~s of Stage II. 

Siegler and Richards attempted to clarify Piagct\ accollnt of childrcn's 

llnderstanding of the logical concepts of di~tancc, time, and vclocity hy prc~cnting 

two toy trains which traveled along parallel track-. and a~kIng the dllldrcn to jlldgc 

which of the two traveled either the greater distance, for the longer lime, or at the 

faster velocity. The trains cou Id differ along seven phy~ical dimcm.ion'i: (1) lime, 

(2) velocity, (3) distance, (4) starting position, (5) stopping position, (6) ~tarting 
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time, and (7) stopping time. Using Sequential Decision Theory as a guide, the y 

hypothesized three rules based on Piaget's work (1946/1969, 1946/1970). 

Chlldren using Rule 1 would judge solely on the basis of stopping points. Those 

using Rule II would consider starting positions when the trains stopping positions 

were the same. Finally, children using Rule III would solve the prublems 

correctly. Based on Siegler's Rule Assessment Approach (1976, 1981, 1982) they 

created six problem types to differentiate children's perfonnance. 

With respect to the distance concept, 5-year-olds generally used either Rule 1 

or Rule Il. However, Rule II was modified after analyzing the children's verbal 

protocols as it was found that the children based their judgements on stopping time 

rather th an starting points. Eight and ll-year-olds were found to use Rule 1 and ni 
while ail adults used Rule III. 

Analysis of children's time concept was less clear. Although 5-year-olds 

consistently used either Rule 1 or Rule II, the majority of 8-year-olds were not 

classifiable using the rule assessment procedure. Eleven-year-olds appeared to use 

a distance rule in which amount of time traveled was based on distance traveled. 

That is, they chose the train that had traveled further as having traveled for the 

greater lime. Only the aduIts were found to use Rule III. 

The acquisition of the velocity concept was shown to he similar to that of 

distance. Five-year-olds used either Rule 1 or II, 8-year-olds were either 

unclassifiable or used Rule 3, while ll-year-olds and adults consistently used 

Rule III. 

ln summary, 5-year-olds were found to use Rule 1 across aIl three tasks. That 

is, these childrcn chose the train which had stopped the furthest down the tracks to 
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have traveled for the greatest distance, time, or at the greatest speed. At the othcr 

end of the age spectrum, adults were found to use Rule III. Children in belwecn 

these two age groups regularly confused speed and distance, distance and lime, and 

time and speed. Moreover, Siegler and Richards found that children understood 

velocity and distance concepts before the time concept. Additional evidencc for this 

inter-developmental sequence was found by Acredolo and Schmid (1981) even 

though they extended the stimulus set to include situations where the trains mn for 

equal limes, equal distances, equal velocities, or all three. 

J .3. Crjtjcjsms of Pjaa:et and Sjea:1er 

Recent investigators have criticized previous research since it appears to have 

tested the child's ability to ignore rather than integrate the distance, ume, and 

velocity dimensions. 

Brendt and Wood (1974) found that pre-operational children have a primitive 

capacity for judging duration when visual eues are not present. In a task similar to 

Piaget's, Brendt and Wood presented young children with two toy trains running 

along parallel tracks. The tracks could he covered by tunnels or in full Vlew. In 

addition, each locomotive had a distinctive whistle which sounded continuously as 

the train moved. The researchers found that when the tracks were covered, hence 

the only eue being the whistles, young children were able to tell which train h~ld 

traveled for the greater duration. However, when the tunnels were removed 

revealing a conflict situation where the train that ran for a longer time actually 

traveled a shoner distance, the children would revert to a dlstance-only model, 

choosing the train which had traveled the greater distance. 
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Levin and her collaborators have conducted a series of studies aimed at 

showing that Piaget underestimated young children 's early notions about time. 

They have shown that: : ) children 's early concepts of rime are basically temporal in 

that they understand the interdependency of succession and duration when 

interfering cues are held to a minimum (Levin, 1977); 2) this understanding 1S 

extremely unstable in that even cues that are not logically related may interfere with 

it (l~vin, 1979); 3) sorne cues interfere more th an others (Levin & Gilat, 1983); 4) 

succession and duration do not develop concurrently (Levin, Israeli, & Darom, 

1978) as suggested by Piaget and finally; 5) young children' s poor performance 

reflects the perceptual salience of end-points (Levin, Œlat, & ZeJnkkp-r, 1980) 

rather than a conceptual deficit as assumed by Piaget, and Siegler ana Ricbards. 

While most of Levin's work has been do ne in relation te' children 's qUll.litative 

understanding of time, her more recent work has focused en time quantification 

(Levin. Wilkening, & Dembo, 1984; Wilkening, Levin, & Druyan, 1987). 

Levin et al.'s research interest has been guided by the assumprion that typical 

Piagetian tasks and the methodology used to assess performance obscure young 

children's knowledge of the relationship between succession and duration. For 

example, Levin (Levin & Globerson, 1984) has raised concerns about the ability of 

the rule assessment technique to capture children's knowledge given that children 

do not consistently apply mies across problems. 

On a more conceptuallevel, Levin argues that distance and velocity serve as 

interfering cues in these tasks (for a review see Levin, 1982). Levin (1977) 

demonstrated this point by comparing children's duration judgements of two events 

in three tasks which differed according to the amount of information available. In 
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the still rime task, only succession information was given. The children were asked 

to judge "sleeping" times of two dolls which either went to sleep and/or woke 

simultaneously or at different times. In the rotational rime task, succession and 

velocity information were presented to children by using two figures lhat rotatcd on 

individuaI tumtables (obscuring distance information) either at the same or diffcrcnt 

speeds. Finally, in the linear time task, succession, velocity, and distance 

information were given by using the sa me type of apparatus as Piaget and Sj,~gler 

(Le., two trains). 

In Hne with Levin's expectations, most preschoolers were able to solve the 

still time problems, first graders were als~ able to solve rotational lime problems, 

and even third graders found linear time problems difficuIt. Thus, Levin sllggcsted 

that not only did the distance and velocity eues Interfere with children's 

understanding of the relationship between succession and duration, they did so in 

an additive manner. That is, the problems with two interfering eues (linear) wcre 

harder than problems with one (rotation al) which were in tum harder th an problcms 

in which there were no such cues (still). Although later research suggested that the 

type of interfering cue might he a more important factor th an the nllmber of 

interfering cues (Levin & Gilat, 1983), the major premise that Piagetian tasks were 

not adequately reflecting children's knowledge was upheld. Moreover, Friedman 

(1990) notes that Levin's research revealed that when interfcring eues were absent, 

children were able to construct a corn mon time for Iwo evenls, the sleeping dolls. 

Levin was able to demonstrate lhat the interference with children's 

understanding of duration and succession is not due to the fact that distance and 

velocity are related to time. In fact, Levin (1979) found that eues that were logically 
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unrelated to time (the brightness of a lamp) showed similar types of interference 

effects. Levin concluded that children were using a more is more rule whereby any 

event that was perceived to he greater on sorne dimension (intensity or velocity for 

ex ample) was judged to have lasted for a greater length of time. 

AIthough Levin's work suggested that results obtained using Piagetian tasks 

misrepresented children's understanding of the concept of time, she did find that 

wh en the two events differed in temporal endings as opposed to beginnings, 

children found it easier to judge the relative durations. However, rather than 

assuming a conceptual deficit (focusing on end-points) as Piaget and Siegler and 

Richards did, she postulated that this phenomenon was due to the perceptual 

salience of the end-points. This assumption was supported in a study by Levin, 

Gilat, and Zelnicker (1980) . 

Levin's work has led her to suggest that rather than the notions of mccession 

and duration developing concurrently as maintained by Piaget, children first 

understand succession. This knowledge then may mediate an understanding of 

duration. Support for this two-stage development cornes from the fact that children 

as young as five years of age often refer to succession in their rationalizarions about 

duration (Levin, 1977; Levin, Israeli, & Darom, 1978), while they offer 

tautological explanations of succession. Moreover, Levin has argued that only after 

they grasp the dependency of duration and succession do they begin to understand 

the relationship between distance and velocity with respect to time, an assumption 

she claims is supported by the fact that linear rime problems are solved much later in 

development than still rime problems . 
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Richie and Bickhard (1988) have questioned Levin's two stage thcory by 

demonstrating that children can solve time problems when non-temporal eues such 

as succession are absent. Using a methodology similar to Levin (1979; Levin et HI. 

1983) Richie and Bickhard asked children to compare the durations of Iwo lamps. 

However, the; used problem types in which only sensed temporal information 

could be used to solve the problems cûrrectly. That is, in these problems there is 

no onset/offset succession information that wou Id be helpful in that the bulb that 

came on first would also go off first. Moreover, larger disparities between the 

durations of the two lights were investigated in addition to the standard durations 

used by Levin. 

Given that children with a mean age of 4.5 years of age were able 10 solve the 

problems that lacked succession information and given that whcn large enough 

duration disparities were provided, the children could solve the same problern-types 

used by Levin, the authors concIuded that any theory of children's logical concept 

of time that assumes that time necessarily develops from the coordination of nOI1-

temporal perceptually based eues (e.g., succession, distance, and velocity) is nol 

viable. In other words, children have a perceptuaJ experience of time separalc from 

one derived inferelltially from non-temporal knowledge. 

1.4. Wilkenina:'s Approach 

Wilkening (1981) has investigated children's acquisition of distance, lime, 

and velocity concepts within the framework of Anderson's Information Inte/:ralÎon 

Theory (1974, 1980). 

Information Intea:ratjon Tbeory 

Anderson's (1974, 1980, 1991) Information Integration Thcory maintains 
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that knowledge is not represented as a series of rule-governed binary decisions, but 

rather, assumes that children's representation of knowledge is characterized by 

cognitive algehra. Anderson has argued that most algebraic models fall into two 

classes. The first cIass includes adding, suhtraeting, and averaging models. The 

second includes multiplying and dividing models. The basic idea is that children 

integrate physical stimuli using one of these models such as dimension 1 + 

dimension 2. The resuIts of the application of an algebraic model are then 

expressed in subjective or psychological values. 

Three laws. Anderson has posited three laws to explain the sequence from 

sensation of sorne stimuli to the response based on those stimuli. The first step in 

the sequence, governed by a Psychophysical Law, involves the processing of 

physical stimuli by a valuationfunction. This function detennines the scale value 

and weight of the stimuli. The former refers to the location of the stimulus on the 

individual's subjective dimension of judgment whereas the latter indicates the 

amount of information in the stimulus (li" (he emphasis placed on the stimul'Js. The 

key point is that both depend on the dimension of judgment. In other words, each 

task the child perfonns set!> up a valuation function. 

Next in the sequence, the individual combines or integrates the stimuli 

according to the Psychological Law. In this step, an integrationfunetion is applied 

to the stimuli. As noted above, this involves the application of sorne algebraic 

model. The Psychological Law detennines an implicit response which is then 

transfomled by a Psychomotor Law into the explicit response of the individual. 

Again this last step is intimately tied to the task at hand. The Psychomotor Law 
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mediates between the implicit response and the constraints of the measuring 

apparatus. 

Developmental course. Infonnation Integration Theory has heen llsed to 

e"plain a diverse range of developmental phenomena including children's moral 

judgments (e.g., Leon, 1980, 1982); probability judgments (c.g., Acredolo, 

Q'Conner, Banks, & Horobin, 1989; and Homers, 1980); area judgments (e.g., 

Anderson & Cuneo, 1977; Wilkening, 1980); and performance on the balance scale 

task (e.g., Wilkemng & Anderson, 1982) to name but a few. 

Generalizing across these tasks, the following developmental course is 

revealed. At first a child's performance can be eharacterized by algebraic models 

from the first class mentioned (e.g., adding or subtracting). Then the child goes 

through a transition stage in which the child's performance cannot entirely he 

explained by models from either class. Finally, the child is c1assificd as llsing a 

model from the second c1ass (e.g., multiplying or dividing). 

Although performance during the transition phase is most often explained post 

hoc, sorne interesting rnodels have been put forward. For example, Wilkening and 

Anderson (1982) explained ehildren's transition phase on the balance scale task 

from adding to multiplying weight and distance information as a combination of the 

two. During the transition period, children were found to multiply when lower 

levels of weight were involved and to add when higher levels of weight were 

involved. 

Fonctiona' Measurement 

Ordinal vs. interval response seales. A major force behind the creation of 

Funetional Measurernent is Anderson's (1974) belief that people's responses are 
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expressed as subjective, psychological values. Anderson argues that for 

psychological tasks in general, it cannot be expected that such responses fall on an 

interval scale, but rather, fall on an ordinal scale. Moreover, since psychological 

scales are typically interval, any ordinal response cannot fit the model that de scribes 

the process underlying the behaviour. Functional Measurement is meant to provide 

a means by which subjects' responses can be expressed and accurately measured on 

an interval scale. 

There are two essential aspects to the Functional Measurement method. The 

first is the use of factorial designs of stimulus combinations. For example, if one 

were testing for children's judgments of distance traveled by three objects of 

intrinsically different speeds (for example, very fast, moderately fast, and slow) 

given three different times (for example, long, medium, and bri ef) , the 

experimenter would use ail nine possible stimulus combinations. 

Il is unnecessary for the experimenter to know a priori what the subjective 

values of velocity and time values are in terms of numerical indices. However, it is 

essentiai that the subject's judgments are numerical responses. This is the second 

constraint of functional measurement. If the overt, measured response is on a linear 

scale, the data table of the factorial design provides a functional scale of the 

subject's responses. That is, the marginal means are a linear scale of the subjective 

values of the stimuli. 

ParallelisUl\. diver~in~-fans, and ANOYA statistics. Instead of creating 

different problem types to assess subject's knowledge, Functional Measurement 

relies on graphical patterns of responses and Analysis of Variance statistics. Onlya 

brief sketch of these two methods is provided here . 
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To ascertain graphical patterns, a factorial plot of the data is undcrtaken. 

Within the context of the experiment mentioned above, the plot would have 

measured distance on the y-axis and either categorical values of rime (long, 

medium, and brieO or velocity (very fast, fast, or slow) on the x-axis. If lime was 

used for the x-axis, then three separate lines would be plotted, one for each of the 

three levels of velocity. If the factorial plot yields three parallel lincs then the 

underlying cognitive algebraic model is either an addition or averaging type rnodcl. 

The teSt for multiplicative mod~}I; is similar except that marginal means (i.e., thcir 

subjective nllmerical value) of one dimension are plotted on the x-axis. If the Hnes 

taken together iorm a diverging fan pattern, the underlying process is sa id to he a 

multiplicative rnodel. 

While the graphical patterns yields a heuristic type assessment, Analysis of 

Variance provides a statistical test of significance of any observed patterns. 

Additive type models are indicated by significant main effects but non-significant 

interactions whereas multiplicative models yield a significant interaction effect. 

Distance. Time. and Velocity 

Wilkening has done extensive research in this area (Wilkening, 1981, 1982; 

Wilkening & Anderson 1982; Levin, Wilkening, & Dembo, 1984; Wilkening, 

Levin, & Druyan, 1987; Anderson & Wilkening, 1991). Wilkening's (1981) 

quintessential work assessed children's ability to integrate information to infcr 

distance, time, or velocity. He argued that previous research within the Piagetian 

approach (e.g., Siegler and Richards, 1979) had encouraged and assesscd 

children's ability to ignore rather than integrate the dimensions . 
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Wilkening designed three tasks, one to reveal children's understanding of 

each concept. In each task the subject was given infonnation about two dimensions 

and asked to infer the third. In the distance task, in which velocity and time are to 

be integrated, children are shown an apparatus which at one end of a footbridge has 

a shed that is said to be occupied by a fearsome dog. At this same end, there are 

three animaIs with inherently different velocities (turtle, guinea pig, and cat). These 

animais are said to be "afraid" of the dog and will run along the footbridge when the 

dog starts barking and stop when the barking ceases. The children are asked to 

predict how far the animaIs will run given the amount of rime the dog barks. Thus, 

the children are given information about the velocity dimension (Le., the inherent 

speed of each of the three anim .. ls) and the time dimension (Le., the length of 

barking) and asked to infer the distance traveled (Le., the point along the footbridge 

that the animal runs to). 

ln the rime task, children are asked to infer time from distance and velocity 

information. In this task, one of the three animais is placed at one of three distances 

along the foot bridge. The child is then asked to indicate how long it would take the 

animal to reach that point by "playing" a continuous recording of the dog barking 

for the appropriate rime. 

In the velocity task, children are asked to infer velocity from distance and rime 

information. In this task, the dog barks for one of three lime intervals and then a 

white piece of cardboard is place at one of three distance along the footbridge. The 

child uses ~t response scale of seven animais of differing velocity to indicate which 

animal would ,main the distance of the piece of cardboard given the lengt~ that the 

dog barks . 
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Wilkening studied the perfonnance of three age groups; 5-ycar-olds, lO-ycar

oIds, and adults and discovered the following: (1) in the distanc(' task, ail age 

groups use the correct multiplication rule (li = t x v), (2) in the time task. lO-ycar

olds and adults employ the correct division mIe (t = li + v), whcrcas 5-year-lllds 

use a subtraction rule (t = d - v), and (3) in the velocity task, the two older age 

groups use a subtraction rule (v = d - t), and 5-year-olds use a proportional 

distance rule (v = d). Wilkening concluded that young children did indccd have the 

ability to integrate dimensions. Moreover, he found that childrcn lInderstand 

distance before time and that even adults do not fully master the veloctty concept. 

Wilkening discussed the possibility that differing memory dcmands might he 

responsible for the varying levels of integration across the three tusks and 

subsequent inter-developmental sequence. In particular, Wilkening noticcd that 

both children and adults appeared to use an eye movement strategy in the distance 

task. Thal is, subjects would follow the imaginary movement of the animal when 

the barking started and would point to the place where they were looking when the 

barking stopped. This strategy was also used by lO-year-olds and adliits in the 

time task. However, when 5-year-olds attempted to use the strategy, they had 

difficulty presumably because of the simultaneous demands of focusing at tcntion on 

holding the "play" button of the tape recorder and imagining the animaIs movemcnl. 

Finally, with respect to the velocity task, this strategy would involve heing aole to 

imagine all seven animaIs running at the same time. Even fer adults this was not a 

viable strategy. 

Wilkening argued that the use of the eye movement strategy did not invalidate 

the conclusion that children could in fact integrate dimensions. Instead he c1aimed 
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that in order for children and adults to "know" that the strategy was useful, they 

implicitly had to understand the relationships between the dimensions. 

Ncverthcless, Wilkening admitted that strong conclusions about the acquisition 

order of the three dimensions relative to one another were unwarranted given the 

different memory demands of the three tasks. 

In an attempt to funher understand this inter-developmental course, Wilkening 

(1982) attempted to equalize memory demands across the three tasks. Wilkening 

endeavorcd to meet this goal by trying to increase the memory demands of the 

distance task and to decrease them in the velocity task. In the distance task, the 

order of time and velocity information was reversed. That is, the subjects heard the 

dog bark before knowing which animal's distance was to be inferred. Thus, an 

eye-movement strategy is unlikely since the subjects do not know a priori which 

velocity is relevant. 

In the velocity task, the memory demands were simplified by visually 

presenting the time information. This was done by using a "cartoon bubble" with 

the words "bow wow" that moved along the footbridge with a constant speed and 

stopped when the barking ceas~d. The length of the bubble itself was different 

depending on the time that the dog barked. This correspondence between bubble 

length and time of barking was explicitly revealed tf' subjects. 

The manipulations were partially successful. In the distance task, 5-year-olds 

were found to use an additive rule (d = t + v), whereas adults used the 

multiplicative rule as was discovered in the tirst experiment. In contrast, the results 

of the velocity task were the same as in the first experiment. That is, 5-year-olds 

used the ~)roportionaI distance fUIe and aduIts used the subtraction rule . 
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Thus, when the use of the eye-movement stmtegy is not vIable, 5-ycar-old 

children appear to use an additive (or subtraction) rule when lIltegrating vc\(x'ity and 

time, and velocity and distance information. Adults, on the othcr hand, l'an 

successfully use a multiplicative (or division) rule. Unfortunately Wlikcning dlll 

not investigate lO-year-oIds' perfornHlI1Ce as was donc in the fm,t stmly. 

Therefore, with respect to distance and time concepts no conclusions l'an hc drawn 

about one being mastered before the other since it is just as hkely thm the~c dllldlcn 

wou Id use either the additive rule or the multiplicative rule. 

The discrepancies between children's and adlllt's performance in the rime task 

and velocity task, remains unclear. That is, one explanation is that Wilkening's 

results are valid in that velocity development lags behind time devclopment. 

Alternatively, Wilkening's memory demand manipulatton may have hccn 

ineffective. 

Metric versus NQn-melric Inteeration 

AcredoIo, Adams, and Schmid (1984) have argued that althollgh Wilkening's 

(1981) results show that children can integrate the appropriate distance, lime, and 

velocity dimensions metrically (i.e., to predict metnc di~tal1ce, for example), the 

results say nothing about whether or not children l'an integrate dimen~ions non-

metrically. To examine this, the y used an analogous ~ituatlon to Wilkcning's 111 

which two animaIs were imagined to have been chased from a farmer's field hy hi" 

dog. Given statements such as "they ran the same specd, and x ran for a longer 

time", the children had to choose which outcomcs were po~"ihlc: (1) x ran farthcr, 

(2) Y ran farther, or (3) they ran the same distance. Morcover, they were presentcd 
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with "open ended" situations. For example, if "x ran faster, and y ran for a longer 

time" aIl three oulcomes above are possible. 

Acredelo el al. found that children understood the direct relationship between 

speed and distance, and between duration and distance before they understood the 

indirect relationship between speed and duration. By "direct relationship", the 

authors meant that a perceptually greater value on one dimension correlates with a 

perceptually greater value on the other dimension. However, they concluded that 

the majority of l1-year-olds did not integrate the dimensions non-metrically in that 

they could not recognize logical conflicts between pairs of non-metric relations. 

Crépault (1980) has used a similar approach. Children were asked to judge 

the compatibility of statements conceming two dimensions and to make inferences 

about the third dimension. For example, the child was presented with the following 

statements and questions: "The red car goes faster than the black car. The two cars 

go the same distance. Is this possibl-.;? Can we tell from these two statements if the 

two cars went for lhe same length of time or did one travel for a longer time?"· The 

resuIts indicated that sorne statements were easier to judge th an others. For 

example, the situation above was judged compatible more readily by the subjects 

than one in which one car traveled faster but both traveled for the same lime. 

Wilkenin~'s concerns with non-metric desi~ns. Wilkening (1982) has 

discllssed four potential probIems with studying non-metric relations. In summary, 

they are as follows. First, the processing capacity required in such tasks is often 

large given that the child needs to remember starting times, ending times, starting 

points, and ending points of both events when asked to compare velocities for 

• Translalcd and adpatcd from Crépault (1980) . 
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example. Second, the child is assumed to understand linguistic temts such as 

"more" or "Iess". However, Wilkening argues that past research has shown that 

terms such as these may have different meanings for children than adults. Third, 

findings concerning non-metric relations cannot be generalized to knowledgc of 

continuous, quantitative relations. Finally, unless one dimension is held constant, 

it is logically impossible to infer a third (cf. the "open ended" questions used by 

Acredolo et al.). Since one needs to be held constant, then it is uncertain whethcr 

this dimension was considered or ignored. 

J,S. Summary 

Piaget (1946/1969, 1946/1970) conc1uded that the concepts of distance, time, 

and velocity undergo graduaI construction, characterized by four stages, until li 

logical understanding of their inter-relationship emerge. While very few 

researchers looked at the inter-developmental course of these concepts, Siegler and 

Richards (1979) conducted a comprehensive study within Siegler's (1976) 

Sequential Decision Framework, and conc1uded thatthe concept of distance was 

understood before time which was in tum understood before velocity. 

Investigators began to question Piagetian methodology. One the one hand, 

Levin and her co-workers (Levin, 1982) argued that within the typical Piagetian 

task, distance and velocity information interfered with children's judgements about 

time. Moreover, she successfully demonstrated that this interfercnce was not duc to 

the fact that distance and velocity are logically related to time. This led Levin to 

look at children's conception of time independent of distance and velocity, focu~jng 

on children's notions of succession and durations. Richie and Blckhard (J (88) 
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went even further, demonstrating that il was possible to study children's conception 

of time independent of their notion of succession. 

On the other hand, Wilkening (1981) argued that the Piagetian tasks were 

solved more easily by ignoring the interrelation of the dimensions. This led 

Wilkening on a different path than Levin and others by reCocusing the issue of the 

nature of children's understanding on the interrelation of distance, time, and 

velocity. Using functional measurement, derived from AIJderson's (1974) 

Information Integration Theory, he was able to study children's understanding of 

the three dimensions when they were required to infer one di'1lension's value based 

on information about the other two. Wilkening conc1uded that children could 

integrate distance, time, and velocity, particularly if the memory demands of the 

tasks were at a minimum . 

2. Connectionism and Development 

Connectionist, or paraUel distributed processing (PDP) models employ simple 

processing units which send inhibitory or excitatory signaIs via weighted 

connections to other simple units, forming what is called a "network". In the 

models relevant to this discussion, learning occurs by small adjustments of the 

connections, or weights, between an input layer where stimulus information is 

encoded and an output layer where the "response" is made. Two broad categories 

of networks within this domain exist: statie and generative networks. Static 

networks (typically back-propagation networks) employ network structures that do 

Ilot change from the beginning of learning (training) to the end. Conversely, 

generative networks change the structure of the network as L'1ey leam by recruiting 
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or pruning units in the network. A more detailed discussion is presented in 

Chapter 2. 

Recently a number of researchers (e.g., Rumelhart & McCleIland, 1986; 

McClelland, 1988; Elman, 1991; Schyns, 1991; ShuItz, Schmidt, Buckingham, & 

Mareschal, in press) have begun to use these models as a means of understanding 

and characterizing cognitive development. In addition to offering fresh insight into 

sorne 'Jld ideas, connectionism is believed to provide new insights into cognitive 

development by addressing sume issues that have been either overlookcd or 

ignored. 

2.1. What Deye'ops imd How Does jt Develoll" 

As Flavell and Wohlwill (1969) have pointed out, any account of cognitive 

development must concern itself whh bath the formai and functional aspects of 

development. In other words, the study of cognitive dcvelopment must scek to 

answer two fundamental questions: (1) What knowledge structures develop'!, and; 

(2) How does developmental transition occur? 

Research concerning what structures develop has f1ouri~hed. J lowevcr, 

relatively little work has been conducted in the area of transition mechanisms 

(Sternberg, 1984). Bates and Elman (1992) offer an intriguing supposition 

concerning why this is so based on the computer metaphor of cognitive 

development derived from the symbolic computation al approach widely accepter{ in 

the 1970s. In brief, symbolic computational assumptions such as discrc::tc 

representations (Le., symbols), absolute rules to manipulate the symbols, 

characterizing learning as programming, and the relative unimportance of possible 

implementation constraints (i.e., functionalism), fostered a paradigm which 
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considered mechanisms of change as somewhat unimportant. Conversely, Bates 

and Elman maintain that the assumptions of connectionism such as distributed 

representations, graded rules in the form of weighted connections, learning 

characterized as structural change, and consideration of implementation constiaints 

offcrs a new manner in which to study not only what develops but how it develops 

(for a similar points of view, see Churchland, 1990; Plunkett & Sinha, 1992) . 

Sta~es in co~nitiye develQpmeot. One issue that has been revitalized by the 

connectionist approach to cognitive development is the stage versus continuous 

learning issue. As in Piaget's theory, children's cognitive development is often 

characterized as progressing through a series of stages. The child's knowledge is 

considered to he constant across a given stage with Ieaming having little or no effect 

on performance. An alternative to this would he that Iearning is continuous across 

th\. stage and that the only reason stages are seen at all is because the methods 

researchers use to evaluate performance are not subtle enough to capture continuaI 

change. 

Flavell (1971) summized that Piaget's stage theory had four major 

implications and conducted an extensive review of the literature to see if these were 

borne out. Essentially, stage theories implied that cognitive development could he 

characterized as an abrupt, qualitative restructuring of highly organized knowledge 

that occurred concurrently across man y domains. Flavell found support for the 

notions of progression through qualitatively different knowledge structures that 

were organi~~d. However, he concIuded that abrupt transition from one stage to 

another was not likely and, moreover, that changes across domains were often 

independent of each other . 
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Shultz (1991) has found good agreement between connectionist findings and 

its assumptions about cognitive development and tho~e offered by Flavel\. Shllltz 

maintains that learning in connectionist networks reslIlts in qualitative d,anges in 

network perfonnance brought on by both small quantitative changes in weights 

amongst units and qualitative network restructuring through changes in topology (in 

the case of generative architectures). Thus, rather than characterizing devcloprnent 

as either continuous or discontinuous, connectionism provides an intcgrated 

account of both these aspects of development. Morcover, lack of concurrent 

changes across domains is a natural resuIt of the learning environment of thcsc 

networks given that they rely heavily on experience. Change in nctwork 

perfonnance is most often graduai but when abrupt changes do occur, they are 

limited to the domain in which the network is trained. Finally, the intcr-conncction 

of units provides an organized knowledge structure. 

Transition mechanisms: Assimilation and accommodation revisitcd. Piaget 

believed that through emergent structures brought on by the equi/ihratüm of the 

processes of accommodation and assimilation, transition from one stage to another 

resulted. However, despite his efforts, the mechanism that caused the transition 

remained vague (Bates & Elman, 1992). Recently a number of authors have 

offered the view that connectionism provides a precise account of the transition 

mechanism in addition to new interpretations of assimilation and accommodation 

(e.g., Bates & Elman, 1992; Plunkell & Sinha, 1992). 

Within the static network domain, researchers have argued that graduaI and 

continuous weight changes result in stage-like performance (Plunkett & Sinha, 

1992). Moreover, McClelland (1988) has argued that accommodation occurs when 
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the network's weights are updated during learning thus modifying the structure of 

knowledge in the netwcrk. Conversely, assimilation occurs when generalization to 

a new instance or input does not result in any weight change. 

Shultz, Schmidt, Buckingham, and Mareschal, (in press) have suggested that 

generalive architectures go one step further by suggesting thal recruÏtment of new 

units into the network provides a second potential transition mechanism by 

increasing the computation al complexity of the network. Furthermore, they argue 

that accommodation occurs as new units are added instead of simple weight 

changes reflecting what the authors tenned assimilative learning. 

2.2. Connectjonist Simulations of COl:njtiye Deyelopment 

In this section, a review of two cognitive developmental tasks are presented -

children's acquisition of the past-tense of verbs and their performance on the 

balance scale. 

rast-teose 

Children's acquisition of pasl-tense morphology is often cited as an argument 

that children possess explicit, albeil tacit rules. Rumelhart and McClelland (1986) 

challenged this assumption by demonstrating that a connectionist network could 

also account for children's perfonnance. In particular, the networks exhibited a U-

shaped developmental pattern similar to lhal characteristically observed in children. 

Thal is, il appears as though children first correctly use regular and irregular past-

lense fomls, lhen ll.!emingly fonn an explicit rule (adding "edit) which they over

generalize 10 irregular verbs, before finally learning only to apply it to regular 

verbs . 
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Rumelhart and McClelland's model came under severe attack led most 

vlgorously by Pinker and Prince (1988). The main criticism was the use of varying 

degrees of exposure to regular and irregular forms that were not reprcscntativc of 

children's linguistic environment. This issue was addressed in li set of simulations 

by Plunkett and Marchman (1989) in which the type and token frequcncies of 

irregular and regular verbs were manipulated in a manner which rellected biascs that 

were present in ehildren's linguistic environment. Despite thts more reahstic 

environ ment, U-shaped development was again observed in the networks. 

The important point is that the networks never possessed anything close to an 

explicit "ed" rule, but learned to diseriminate irregular and regul.lr verb endings 

based on experienee in a manner which was similar to children. 

The Balance Seale 

The balance scale task has become a benchmark of sorts for modeli ng 

cognitive development. Siegler (1981, 1976) hypothesized four rules based on the 

modal rules discussed above (Table 1) to aceount for children's performance on the 

balance seale. For example, a child using Rule I, focuses solely on the wcight 

dimension whereas a child using Rule II considers distance but only when the 

weights are equal, etc. Siegler's general findings were that childrcn hctwecn the 

ages of 3 years to 12 years progress from not using any rule, to rule l, followed hy 

Rule II, and then Rule III. Sorne, but not all, older childrcn and adlllt~ rcach Rule 

IV type performance. These results have becn replicated by Fcrreui et al. (1985). 

McClelland (1988) used a back-propagation nctwork to simulatc the 

developmental stages found by Siegler. On the input side, the network was 

presented with weight and distance information for both sides of the balance scale 
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respectively. The network was segregated in that the weight information was 

processcd by one set of hidden units (an intermediary level of units between the 

input and output layers) while the distance information was processed by another 

set of hidden units. The networks exhi~ited stage-Hke performance progressing 

from Rule J to III. Occasionally Rule IV behaviour was achieved, however, this 

performance was unstable and the networks would regress to an earlier stage. 

Thus, using simple weight updates, the network's performance was seen to change 

qualitatively. 

McClelland's resuIts were extended by ShuItz and Schmidt (1991) using a 

generative connectionist architecture by capturing stable Rule IV behaviour and 

demonstrating the product-difference effect (Ferretti & Butterfield, 1986). The 

product-difference effeet describes the finding that subjects generally perfonn better 

on probiems in which the difference between weight and distance on one sicle of the 

fllicrum is mllch greater than it is on the other side. 

2.3. Summary 

Connectionism has provided not only a new impetus for looking at transition 

mechanisms in cognitive development but also a precise formulation of what this 

mechanism might be. In particular, graduai weight adjustment and, in sorne cases, 

changes in network topology have led to performance that confonns to behaviours 

thm have typically Leen explained by the acquisition of explicit mies. 

3. Rationale 

Wilkening (1981, 1982) succeeded in establishing a methodology that 

allowed for the examination of Piaget's original interest in the interrelation of 
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distance, time and velocity, and addressed issues that were problematic in Piagetian 

tasks. By providing children with information about the two defining dimensions 

of a given concept and asking them to infer its value, he was able to study how 

chi~dren integrated these dimensions. Wilkening (1981) found that children as 

young as 5 years correctly integrated the dimensions of time and velodty USillg a 

multiplicative rule to infer distance. However, when the use of an eye-movemcnt 

strategy was made more difficult, 5-year-olds were found to fall back on an additive 

ruie. With respect to the time concept, 5-year-olcts used a subtraction rule whcrcas 

lO-year-olds and adults used the correct rule. Finally, in the velocity task, 5-year-

oids used a centration rule focusing only on distance whereas lhe other groups lIsed 

a subtraction ruie. 

Connectionism has shown that it allows for a characterization of not only 

what develops but how it develops by providing precise transition mechanisms 

white at the same time exhibiting stage-like performance similar to that reponed in 

the developmentalliterature. 

In particular, one generative connectionist architecture, cascade-correlation 

(Fahlman & Lebiere, 1990; see chapter two of this thesis), has been found to 

provide a good account of compensation tasks such as the balance scale (Shultz & 

Schmidt, 1991) and the effects of potency and resistance on the magnitude of a 

physicai effect (Shultz et al. in press). Furthermore, cascade-correlation has the 

potentiai for capturing both qualitative and quantitative shifts in knowledge 

representations. 

The present study attempts to further our understanding of children's ability to 

integrate the dimensions of distance, lime, and velocity by modeling their 
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perfonnance with cascade-correlation. In addition to the reasons mentioned above, 

it is expected that the increasing non ·linear representational power of a system that 

recruits hidden units as needed will provide insight into how children progress from 

simple centration rules to more complex multiplicative rule-like perfonnance. 

Two sets of simulations are reported testing the adequacy of cascade

correlation to capture the developmental regularities found by Wilkening. In both, 

the network is provided with infonnation about two dimension and asked to predict 

the third for a given event. By using computer simulations to understand children's 

acquisition of distance, time, and velocity, il is possible to control the effects of 

differing memory demands across tasks eliminating possible confounds such as an 

eye-movement strategy. The tirst set of simulations represents an ide~l situation in 

which the memory demands of a11 three tasks are identical. The second set 

examines Wilkening's assumption that the developmental sequence he observed 

reflects differing memory demands. If the effects Wilkening observed were in fact 

dependent on memory demands, then the second set of simulati("ns should confonn 

to Wilkening's results more closely. Moreover, while Wilkening failed to look at 

the effects of 10-year-olds the simulations will attempt to investigate the entire range 

of development. 
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CHAPTER TWO - CASCADE-CORRELATION 

The following chapter discusses cascade-correlation -- a lcarning algorithm 

that constructs a generative feedforward connectionist network. Por mOle th:tails. 

see Fahlm,.n (1988), Fahlman and Lebiere (1990), Hoehfeld and Pahlman (1991). 

Sj~gaard (1991), and Yang and Honavar (1991). 

Feedforward connectionist architectures employ simple proccs~lI1g units that 

send and/or receive either excitatory or inhibitory signais to other simple 11l1its 111 the 

network via weighted connections. At minimum, there is an input layer III wlm:h 

stimulus information is encoded as a pattern of activation across a glvcn nUlllhcr of 

input units and an output layer where the response associatcd with a particular input 

pattern is produced. Similarly, this response is determined by the pallcrn of 

activation on the output units making up the output layer. 

Minsky and Papert (1969) argued that networks consisting of only an input 

and output layer, so-called perceptrons, cannot learn sorne types of probiems. For 

example, the classic XOR problem in which the task of the nelwork IS to respond 

positively when either one of two inputs is "on" but not when both are eithcr "on" 

or "off', is theoretically impossible for a perceptron to solve. Thus, multi-Iaycred 

networks consisting of one or more hidden unit layers between the input and output 

layers are often used. Hidden units receive no external Input and are uscd to huild 

internaI representations of the stimuli. 

Cascade-correlation belongs to a large c1ass of gradient-dc~ccnt Icarning 

cQnnectionist environments (for a review see Hertz, Krogh, & Palmer, 19(1) . 
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Learning involvcs repeated presentations of input patterns and graduaI adjustment 

of wcights or connection~ between units in the network to reduce the error between 

the pattern of activation across output units, or sim ply the outp!.iL, and the desired or 

target output. As HoehfeJd and Fahlman (1991) point out, the error is typically 

measured as the sum-squared differences between the current actIvations of the 

output units and their target values, 

(2.1) 

whcre a,p is the current activation of output unit i for input pattern p, and t,p is the 

t'\rgct output value. 

A unit's activation is determined by either a linear or non-linear activation 

function. The activation of a linear unit is the sum of the weighted inputs to the unit 

sllch that 

a, =X, = LW",x, , (2.2) 

where a, is the activation of receiving unit i, X, is the sum of weighted input to unit 

i, w." is the weight of the connection from sending unit j to unit i, and x, is the 

activation of unit j. In ail simulations reported in this thesis the output unit had a 

linear activation fllnction. 

As mentioned, Minsky and Papert (1969) showed that purely linear networks, 

perCeplrOIlS, were limited with respect to what they cou Id learn. Generalizing to 
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multi-Iayered networks, if the hidden unit layer has units with !incar activation 

funetions then the network becomes very much like a simple pClccptl'on. 

Therefore, in modern day networks hidden units typlcally have a non-lincal' 

activation funetion. 

In all simulations reported in this thesis hldden units wlth a slgmoid activation 

function having a range from -0.5 to +0.5 were used. Thus, the activation of a 

hidden unit is 

1 
a, = -x -0.5 

1+e ' 
(2.3) 

where e is the exponential function and x, is the sllm of the weighted input tn 

hidden unit i as in Equation 2.2. 

1. Cascade Architecture: Dynamic vs. Static 

Cascade-correlation is a generative learning algorithm (for a l'CVICW of 

generative learning algorithms see Alpaydin, 1991). Thal is, lInlike lypical hack

propagation networks (Rumelhart, Hinton & Williams, 19R6), the netwOIk 

architecture ereated using cascade-correlatlon is dynamic in that hlddcn unit!'> arc 

added to the network as training progresses. Figure 2 JIILI!'>tratc!'> the Il1Iual or 

starting architecture of the network with three input Ul1Jts and one output unit, and 

the structure following the addition of one and IWO hidden unit!'> re!'>pccltvcly. 

As can be seen the network begins as a simple perccptron. The nctworh 

initial configuration is based solely on the manner In which the input 1<.; cncodcd. 
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Figure 2. Arclutecture at bcgmning (a), after one hidden unit is added (b), and 
after a second hidden unit is added (c). Solid and dru.hed hnes mdlcate trainablc 
and fro'-en connections respectively. l, H and 0 rcfer to mput, hiddcn, and 
output umt rcspcctively. BiaS unit shown ID black. 

If, as in Figure 2, the input is encoded on three units, the resulting network will 

have four input units -- the three input units and an obligatory bias that always has 

an activation of one. The bias unit acts as a thresholri unit. AIl units from this input 

layer have direct connections, or in other words, straight-through connections to the 

output layer, in this case a single unit. 

1.1. Output tra;n;ne phase 

Training using the cascade-correlation algorithm consists of a series of two

phased training cycles until victory or sorne maximum number of epochs is 
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reached. An epoch consists of a single presentation of ail training patterns. Victol)' 

is declared when the number of incorrect error bits across ail patterns is ?cm. Each 

output unit is considered as an error bit. If the output unit is not within a certain 

distance (score-threshuld) of the target value it is considered incorrect. For 

exarnple, if a sigmoid output unit is used with a range from -0.5 to +0.5, the target 

output for a given input pattern is +0.5, and the score-threshold is set to 0.4 (the 

default for sigmoid outputs) then any response above +0.1 would count as a correct 

error bit. Thus, if there are 20 patterns in the training set and the network has two 

output units, then the total possible number of error bits is 40. 

During the first phase of the training cycle (Le., the output training phase) the 

algorithm attempts to reduce error (as measured by Equation 1) bctween the target 

outputs and the actual outputs computed by the network. Three parameters dircctly 

control the duration of the phase. The first and second parameterll, output patience 

and output change threshold, are related to error reduction. The latter refers to the 

minimum error reduction that is considered to be significant. Output patience is the 

nurnber of consecutive epochs allowed that do not meet the minimum criterion of 

the output change threshold. For example, if the output patience is eight epochs 

(the default vaIlle), the algorithrn will discontinue the output training phase if eight 

consecutive epochs occur in which the error is reduced by Jess than the output 

change threshold at each epoch. 

The third parameter related to the length of the output training phase is the 

outlimit. This is the maximum numberof epochs that the algorithm will continue in 

the output training phase even if the output patience cri terion is not met. For 

example. if the outlimit is set to 50 epochs, output training will progress until 50 
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epochs have occurred without the output patience having been reached or victory 

declared. Then the algorithm will begin the input training phase. 

1.2. Input trajnjoe phase 

The input traming phase is used to recruit (add) hidden units to the network 

that are maximally correlated with output error. At the start of this phase, a pool of 

candidate hidden units (default value of eight units) are each connected to ail input 

units (including the bias) and any existing hidden units. Ail candidate hidden units 

are then connected to ail output units of the output layer. Input training continues 

until one of two input training parameters is reached -- input patience and inUmit. 

Input patience is synonymous with it's output training counterpart except that the 

minimum criterion of the input change threshold reflects the amount of change in 

the correlation rather than the error. Similarly, the inlimit is the maximum number 

of epochs in which the correlation between candidate hidden units and the output 

error is maximized. 

When either the inlimit or input patience is met, the candidate hidden unit is 

installed into the network. It's input-side weights are th en frozen. In other words, 

these weights do not undergo any further training, remaining the same untillearning 

is completed. In contrast, the weights leading from the hidden unit to the output 

layer are not frozen and hence, are adjusted as needed. In Figure 2, this feature of 

frozen versus trainable weights is illustrated by dashed and solid lines respectively. 

The other hidden units in the pool are then "removed" and the two cycled training 

phase begins again with output training. 

In sum, Figure 2 illustrates a hypothetical architecture of a network beginning 

the tirst output training phase (a), after completing one input training phase (b), and 
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2. Quickprop Aigorithm 

In cascade-correlation, the weights are updated or adjustcd lIsing the 

Quickprop algorithm (Fahlman 1988). Quickprop is a variant of the hack

propagation weight update mIe in which the change in the conncction strcngth of a 

given weight is given by the equation 

(2.4) 

where e is the learning rate, iJE/dw(l) is the error derivative, and ~w(r-t) is the 

weight change of the previous epoch. The updated connection strength of the 

weight is then obtained by 

(2.5) 

where W(I) is the connection strength of the weight at the previous epoch. 

Fahlman and Lebiere (1990) have argued that gradient descen t using 

Equation 2.4 is relatively slow since only the partial first-ordcr derivative of the 

error is computed. They argue that if infinitesimal steps down the error slope arc 

taken this is adequate. However, using second-order derivatives in which not only 

the slope of the error space is considered but also it's curvature. much larger stcps 

can he used in gradient descent. 

Fahlman's Quickprop algorithm makes use of a heuristic type approach to 
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using these second-order derivatives. Quickprop uses information about the 

previous first-order error derivative, S(/_I)' the current error derivative, S(/)' and the 

previous change in connection strength of the weight to define a parabola in weight-

space. The object is then to make a weight change that reduces error to the bottom 

of this parabola. Specifically, the change in connection strength for weight i is 

given by 

(2.6) 

where S is simply the slope or first-order derivative (aE/iJw) used in back-

propagation. 

Two special cases arise when Equation 2.6 is not used for computing the 

weight change. One is when the previous weight change is zero. Jn this case, the 

change in weight strength is computed by 

(2.7) 

where e is sorne constant controlling the amount of gradient descente The second 

case occurs when the CUITent slope is the same size or greater th an the previous 

slope. Here the weight change is limited such that 

(2.8) 

where J1 is the maximum step size allowed . 
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Fahlman (1988) has shown that using this second-order method. Quickprop 

out performs standard Back-propagation on several benchmarks. 

3. Correlation 

The goal of input training, as mentioned above, is to install the hiddcn unit 

whose activation most closely correlates with the output error into the nctwork. 

Again the Quickprop algorithm is used according to the criterion stated above 

(Equations 2.6, 2.7, and 2.8). However, in this case the object is not to perform 

gradient descent to minimize sum-square error but rather to perform gradient ascent 

tomaximize 

C = L L(Vp - V)(Ep.o - Eo) (2.9) 
o p 

where C is the sum of the magnitude of the correlation between V p' the value or 

activation of the hidden unit given input pattern p ,and Eo, the residual output crror 

of output unit 0, over aIl output units. 

Finally, the partial error derivative of C is calculated as follows; 

aCjùw, = LO'o(Ep.o - EJf;/"p (2.10) 
p,o 

where U o is the sign of the correlation for output (J, f; is the dcrivativc is the 

hidden unit's activation function with respect to the sum of it's inpub for pattern p, 

and 1 is the input the hidden unit receives from unit i for pattern p. Defining S in ',p 

Equations 2.6 and 2.7 as ac/ùw, instead of aE/iJw, the Quickprop algorithm for 
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updating weights is used for gradient ascent in the input or hidden unit training 

phase as it is used for gradient des cent in the output training phase. 

As mentioned above, the candidate hidden unit with the greatest correlation is 

then installed into the network, it's input-side weights frozen, and output training 

resumes . 
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CHAPTER THREE - METHOD 

Two sets of simulations were conducted -- one representing the possible 

effects of memory constraints, the limiteu men/ory condition, the other without 

them, the pure condition. The network architecture employed in hoth sets was the 

same and is discussed first, followed by a description of the training and testing 

patterns used, the parameter seuings of the algorithm, the procedure for training and 

testing the network, and how the output of the network was treated. 

The network's task in both sets of simulations is to determine the val ue of the 

missing dimension (distance, rime, or velocity) given information about the other 

two (time and velocity, distance and velocity, or distance and time) for a single 

event. For example, an event might include information about the velocity of an 

object and the total time that it traveled. The network's task is to compute the total 

distance traveled. 

1. Network Architecture 

The initial architecture consists of a fully connected network of input and 

output units only. Three groups of input units are used to represent the dimensions 

of distance, time, and velocity respectively. The number of units pcr group is 

dependent on the type of encoding used and is discussed below. The input units, 

inc1uding the obligatory bias unit, are connected to a single output unit with a \incar 

activation function (Equation 2.2). A linear output unit was used because il was the 

most naturai way of producing a quantitative output similar to the responses made 

by subjects in Wilkening's (1981, 1982) experiments. As training progresses, any 
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hidden unit incorporated into the network receives connections from aIl input units 

as weIl as from any existing hidden units and is connected directly to the output 

unit. The hidden units have a sigmoid activation function (Equation 2.3). 

leI. Input encQdj01: 

Five types of input encoding commonly found in the literature were used to 

determine the effeet of encoding on performance. These inc1uded four distributed 

types of encoding; mercury (e.g., Hamad, Hanson, & Lubin, 1991), thermometer 

(e.g., Anderson, 1990), gaussian (e.g., Lacouture & Marley, 1991), and integer 

(e.g., ShuItz & Schmidt, 1991); and one local encoding, nth (e.g., McClelIand, 

1988). 

ln distributed representations, more than one unit is used to represent any one 

input value. Moreover, the same unit is involved in the representation of more than 

one input value. In mercury coding, the first n unÎLs corresponding to the integer n 

have an activation of one and alI other units have an activation of zero. The total 

number of units used is equal to the maximum input value. In thermometer coding, 

the nth, tlth + 1, and nth + 2 units have an activation of one and alI other units 

have an activation of zero. Thus, the total number of units is n + 2. The gaussian 

coding used is the same as thermometer coding except that the nth + 1 unit has an 

activ41tion of three. 

ln integer coding, only one unit is used per input group. However, the unit is 

involved in the representation of more that one input value. Thus, in this sense it is 

also a distributed representation. The unit is assigned thp. integer value of the 

dimension . 
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Table 3 
Example Input Encoding For a 
Input Value ofThree 

TyPe 

Integer 
Nth 

Mercury 
Thermometer 

Gaussian 

Code 

3 
00100 
11100 

0011100 
0013100 

Finally, in nth coding, for any input value n, the nth unit has an activation of 

one and aH other units have an activation of zero. Thus, it is a local rcprcscntation 

in that each unit is used exclusively to represent a given input valuc. As with 

mercury coding, the total number of units is equal to the maximum input value 

used. An ex ample of each of these encoding types for an input value of thrcc is 

lilistrated in Table 3 . 

Thus, a given network architecture will consist of a total of: 

IU=(GxE)+1 (3.1 ) 

input unit (lU), where G is the number of input groups, and E is the number of 

unit~ lcquired for the encoding type used, plus 1 for the obligatory bias unit. For 

example, using thermometer encoding with the maximum dimensional valuc of 

five, the number of input units would be (3 x 7) + 1 for a total of 22 units. Each of 

these would he connected to the linear output unit. 

2. Training and Testing Patterns 

Training and testing patterns consist of both input values and a target, or 
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output value. Input values are used to encode the event, for example the distance 

traveled and the amount of time il took, while the output value is the outcome, 

velocity in this case. There were three classes of inference patterns: distance, rime, 

and velocity. The distance class, for example, were those patterns in which 

distance was to be inferred given time and velocity information as input. 

2.1. Pure Condition 

Input values 

The input values of the two known dimensions were the integers from 1 to 5 

whereas the input value of the dimension to he inferred had a value of zero to 

indicate that the magnitude of this dimension was unknown. Thus, for any given 

input pattern, one input group wou Id he ail zeros (nth, mercury, thennometer, and 

gaussian coding) or zero (integer coding) while the other two groups had 

dimensional values between one and five. For example, for a given distallce 

problcm, the distance input group had an input value of zero, and the time and 

velocity input groups had input values ranging from one to five. 

Ali combinations of the defining dimension values (1 to 5) were used as input 

patterns for a total of 25 distance, 25 time, and 25 velocity training patterns where 

distance, time, and velocity was to he inferred respectively. An ex ample of each of 

the three types of input patterns is illustrated in Table 4 using mercury encoding. 

Tar.:et yalues 

Trainin~ patterns. Target values for the output unit were calculated using the 

three Newtonian equations (d = t X v, t = d + v, and v = d + t) respectively. In 

addition, distance target values were scaled by dividing by five (the maximum input 
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An Example of Distance, rime, and \Ie/oeit)' II/l'lit 
Patterns Using Mercury Encoding 

Problem Type 

Distance 
Time 

Velocity 

Distance 

00000 
11100 
11100 

Input Group 
lime 

1 1 1 00 
00000 
1 1 1 1 1 

Velocity 

1 1 1 1 1 
1 1 1 1 1 
00000 

Nole. In these examples the two defining (hrnellMOns reccive values of 
3 and 5 respcctively and the dimension to bc IIlfcrrcd has a value oro. 

value) so that the range would he identical to the target values of time and vclocity 

inference patterns. 

Thus, a velocity training pattern representing an object traveling li distance of 

five units for one unit of time would have input values of 5, 1, and 0 for the 

distance, time, and velocity input groups respectively and an output, or target value 

ot' 5, as computed by v = d + t = 5 + 1 . 

Testine patterns. Several sets of testing patterns were created corresponding 

to potential rules that might best capture network performance. Ail rules observcd 

by Wilkening (1980, 1981) were incIuded in addition to olher rules derivcd from 

Information Integration Theory. 

The same input values as those in the training set wcrc used. Ilowevcr, the 

output value associated with a given input pattern was calculated as follows. For 

distance patterns, output values were calculated according to the followlng threc 

classes of rules: (1) two identity rules in which the output value was dctcrmincd 

either solely by the time dimension, d = t, or the velocity dimension, fi = v, (2) 

three additive type ruIes, d = t + v, d = t - v, and d = v - t, and (3) thrce 

multiplicative type rules, d = t x v (the correct Newtonian rule), d = t + v, and 
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Ru/es Used to Ca/cu/ate Output Values of the Training Set and Testing 
Sets 

Rule Types 
Inference 

Task Identity Additive Multiplicative 

Distance d=t & d=v d=t+v d=t*v 
Time t=d & t=v t=d+v & t=d-v t=d+v 

VelocÎty v=d & v=t v=d+t & v=d-t v=d+t 

Nole. d = dl~tance; t = lime; v = veloclly. 
Multiplicative rules were used to calculate target output values of the training sel. 

d = v + t. Thus, there were a total of eight distance testing sets of 25 patterns each 

(i.e., ail input patterns) used to diagnose performance on distance inference 

patterns. For time inference patterns, the following rules were used: (1) the identity 

rules t = d and t = v, (2) the additive type rules, t = d + v, t = d - v, and 

t = v - d, and (3) three multiplicative type ruIes, t - d + v (the correct Newtonian 

rule), t = v + d, and t = d x v. Analogou!l rules were used to calculate the output 

values for the velocity testing patterns. 

Pilot simulations revealed that for distance problems both identity rules, one 

additive rule (d = t + v), and the correct mu1tiplicativ~ ru le were useful for 

capturing performance and therefore the remaining distance testing sets were 

dropped from the testing phase of the simulations to reduce computational 

complexity. Similarly, for time and velocity problems respectively, the additive 

type rules, t = v - d and v = t - d as weIl as four multiplicative rules, t = d x v and 

t = v + d, v = li x t and v = t + li were dropped. Table 5 illustrates the final 14 

testing sets that were used . 
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2.2. Lirnited Mernory Condition 

This condition was an attempt to address some of the issues put forlh hy 

Wilkening (1981, 1982) with respect to the cro~s-devclopmental course of thc three 

concepts. Wilkening maintained that the reason why subjects perfonned ditTerently 

across tasks was due to memory constraints inherent in his study. For l'xample, 

Wilkening argued that one possible reason why c1uldren and adults pcrformcd 

worse on the velocity than the time task was that whlle both defining dil11cn~ions, 

distance and velocity, were available at the moment of inference lI11he time ta~k. Ihe 

same was not true in the velocity task. In particular, lime infomlation had to he 

retrieved from memory and this may have been reflected in the relatively rom 

results. 

Input values 

In order to capture the possible memory constraints inherent in Wilkcning's 

(1981) velocity task, the input values of the training patterns were modified as 

follows. It was assumed that the likelihood of correct recall followed a normal 

distribution in that values doser to the aetual time value would be more Iikely 10 he 

recalled than distant values. As such, at eaeh cpoch the time dimenSion of a givcn 

veloeity problem was altered sueh that in general there was a 34%, 13(}'rJ, 2(}'rJ, and 

less than 1 % probability that the time input value "recalled" by the nctwork would 

he 1,2,3, or 4 integers away respectively from the actual value. In the rernaining 

instances, the aetual value was used as input. 

An additional constraint was that the modified time input faU within thc ~ame 

range (l to 5) used in the training set. This was necessary to avoid any confound 

due to differenees in network topography when comparing the IWO conditions (pure 
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vs. Iimited). Without such a restriction, networks in the limited memory condition 

would require more input units than those in the pure condition. For example, 

using thermometer input encoding, an addition al five time input units would be 

needed to refleet the improbable case in which the actual value was five and the 

integer "reealled" was nine. Moreover, the lack of input values less th an one seems 

self-evident. 

The likelihood and degree of modification of the actual input value followed 

the probabilities outlined above where permitted by the range restriction. If the 

selection of an integer either above or below the actual value was possible, a 

random choice was made amongst the two equally distant values. For ex ample, if 

the actual input value was 3 there was a 34% chance that the network would receive 

2 or 4 as input and a 13% chance that il would receive 1 or 5. Otherwise, 3 was 

used. If the input value was 5, then the chance of a 4, 3, 2, or 1 being "recalled" 

was 34%, 13%, 2%, and 1 % respectively. 

Taree( values 

The target values for training and testing patterns remained the same 

regardless of any modification of the input values. For example, if the velocity 

problem presented to the network was an event in which the object traveled 5 

distance lInits in 1 time unit, the target value was 5 regardless of whether or not the 

network received an input value of 1 for the time dimension. 

ft should be c1ear that only the velocity patterns were modified. Flirthermore, 

only the time dimension of these patterns were seleeted according to the criteria 

above. In all other respects the pure and limited memory conditions were identical. 
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Table 6 contains a list of parameter settings used in the simulations and a brief 

description of their function. Default settings were used for ail parameters except 

output-unit type and score-threshold. The default output-unit type is sigmoid. 

However, as mentioned, a linear output unit was used. The default score-thleshold 

of 0.4 did not adequately differentiate among output targets. Therefore. Il more 

strict score-threshold of 0.01 was used. Ail parameters were held constant across 

aU simulations. 

4. Procedure 

Networks were trained until victory was declared or 1500 epochs wcre 

reached. The networks were presented with aIl 75 training patterns (25 distance, 25 

time, and 25 velocity patterns) at each epoch of training. Testing was conducted 

once at the beginning and ending of the output training phase as well as every five 

epochs during this interval. Since the output activations don 't change during input 

training, testing during this phase is redundant as the results are the same a~ the last 

epoch of the output training phase. 

At each testing epoch, the total number of correct patterns and the sum-

squared error were recorded for both the entire training set (75 patterns) and 

individually per pattern type (distance, ume, or velocity). In addition, the output 

activations corresponding 10 each input pattern were saved for later analy~i~. 

Weights were stored at given epochs so that Hinton diagrams cou Id bc drawn to 

analyze hidden unit functioning. Finally, the total number of hidden umts recruited 

by the network as weil as the epoch at which they were installed into the network 

were recorded. 
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Variables and Their Values Used in the Simulations 
variable name 

sigmoid-prime-offset 

weight-range 

weight-multiplier 

output-mu 

input-mu 
output-shrink-factor 

input-shrink-factor 
output -epsilon 

input-epsilon 
output-decay 

input-decay 
output-patience 

input-patience 

output-change-threshold 

input-change-threshold 

out-limit 
in-limit 

unit-type 
output-type 

value 

0.1 

1.0 

1.0 

2.0 

2.0 
0.67 

0.67 
0.35 

1.0 
0.0001 

0.0 
8 

8 

0.01 

0.03 
100 
100 

sigmoid 
linear 

description 

Value added to sigmoid-primefunclion 10 avoid 
situations where il gocs 10 zero. 
Imtial input and direct input to output weights are 
randomly sctto "+" or "_" values within this range. 
Used 10 calculate millal output weights of candidate 
units. 
QP pararneter that sets maxImum possible step size 
in grament descent dunng OT. 
Same as above except used during IT. 
QP pararneter used to calculate if proposed step in 
gradient descent during OT is 100 large. 
Same as above except used du ring IT. 
QP pararneter controlling arnount of gradIent descent 
or lcarning rate in OT. 
Same as above except used during IT. 
QP pararneter added to computed slopes of each 
weight in OT to avoidfloaling-poml overload. 
Same as above except used dunng IT. 
Numbcr of epochs allowed for nonsigmficant error 
rcduction In OT after whlch IT bcgins. 
Same as above wlth respect to nonsigmficant 
changes in maximizing correlation In IT after which 
OTbcgins. 
Error reduction must bc g.\:atcr than output-change
threshold to he conslder significanl. 
Same as above wlth respect to changes in correlation. 

Maximum number of epoch dunng OT allowed. 
Maximum number of epochs during IT allowed. 
Activation functlOn of hldden untt(s) IS sigmoidal. 
Activation function of output unit(s) IS linear 

ncandidates 8 Number of candidate hldden units trained in IT. 
score-threshold 0.01 Output umts must he withm score-threshold to he 

consldercd correct. 
NOie. QP = QUlckprop; OT = output trainIng; IT inputtrainmg. 

A total of 30 networks per input encoding were run. Computation al 

complexity made it impractical to store weights for aIl networks. Thus,only 10 

nms were analyzed by Hinton diagrams . 
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S. Treatment of Output 

Sel. Djaa:nQsjpa: Rules 

The focus of interest was the rules that best captured the overall performanœ 

of the network at a given testing epoch. Since accurate computation on thc stimulus 

input was not demanded of the human subjects in Wilkening's work, an altcmpt to 

reflect this was made by assessing the correlation of the testing rules and th~ actual 

output of the network. Moreover, by using correlation as the method of 

assessment, it was unnecessary to sc ale output values predicted by the tcsting rules 

so that they fell into the range in which the network was heing traincd. 

For each of the testing sets listed in Table 5, a Pearson product-mol11cnt 

correlation coefficient was obtained to measure the relatedness of the 25 output 

target values and the 25 actual outputs produced by the network. These correlations 

were then converted to ,2 values so that the results could he mterpreted in tenns of 

the variance of the actual outputs accounted for by a given rule. However, the sign 

of the correlation was maintained so that it was pOSSible to determine if the ,2 
associated with a given rule was for a rule which positively or negativcly predictcd 

performance. 

5.2. Djaa:posjua: Stages 

Since the simulations were designed to capture developmental trend~, lt was 

necessary to diagnose consistent network performance (i.e., stages). Several 

criteria were used to asses stages. However, before any determination of ~tage-like 

behaviour could be done, the rules that best predicted output values of the distance, 

time, and velocity pattern sets respectively were a~certained. 
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The best rule per pattern type (distance, time, or velocity) was detennined 

using the following criteria. First, at a given epoch, a role was required to account 

for at least 50% of the variance (,2 = 0.50, , "" 0.71) of the pattern set to which it 

belonged in order to be considered at ail. Second, the rule had to be a positive 

predictor of the output values. Third, the rule had to be a better predictor than its 

competitors by at least 1 % regardless of the direction of the correlation. Although 

1 % may seem insignificant, two facts warrant the use of this value. First, the 

degree of relatedness amongst rules is extremely high. For example, the d = t + v 

rule accounts for approximately 90% of the variance associated with the correct, or 

defining rule of the distance pattern set (d = t x v). Second, visual inspection of 

graphs plotting the ,2 of the rules by epoch indicated that this small difference 

between rules was systematically associated with the beginnings of consistent better 

performance by the rule with the higher value (i.e., the beginning of a stage). 

Finally, iftwo rules met the first and second criterion above but not the third, it was 

considered to be a tie between the two rules and was noted as such. Otherwise, the 

epoch being considered was deemed undiagnosible. 

In order to determine consistent stage-like performance, the best-rule 

classification was required to be the same for at least four consecutive testing 

epochs. Thus, if the ,2 associated with the d = t + v rule was at least 1 % better 

than ail the other possible distance rules, positively correlated with the actual output 

of the network, accounted for at least 50% of the variance, and observed on four 

consecutive testing epochs, then the network was classified as being in an additive 

stage with respect to performance on distance patterns . 
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CHAPTER FOUR • RESUL TS 

Results of the pure condition are discussed first followed by the limited 

memory condition. The results of networks using an additional encoding type, 

integer-context, are reported. As will be shown, performance across four of the 

original five encoding types was qualitatively similar. However, networks that 

used integer input encoding differed. It was hypothesized that this di ffercnce may 

he due to the purely linear nature of integer encoding. In order to verify this, 

networks using a sixth type of encoding, integer-context, were also invcstigatcd. 

This is similar to integer except that three context units, one representing cach type 

of inference problem , are used in addition to the normal integer input groups. The 

appropriate context unit receives an input value of one white the other two unils 

receive a value of zero. Thus, the input taken as a whole is less linear than straight 

integer encoding. 

PURE CONDITION 

1. General Learnability 

AlI networks learned successfully to the point where the normative rules 

(d = t x v, t = d + v, and v = d + t) accounted for the greatest amoun t of variance 

in the output activations of the networks. In fact only one network, in the integcr 

encoding condition, failed to reach the maximum ,2 value (I.(X». The mcan epoch, 

sum-squared error, and percent of error reduction from epoch 5 to the point during 

training where each normative rule accounted for ail the variance in output 

activations are presented in Table 7. Epoch 5 was chosen for comparing percent of 
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Mean Epoch, Error, and Percent Reduction When R2 of Normative Rules Reached 
llJO: Pure Condition 

Inference Problem Type 
Distance Time Velod~ 

Encodin~ Epoch E % E~h E % EEoch E % 

Integer 
M 840.50 0.46 97.88 996.90 0.34 99.17 *971.35 0.31 99.26 
SD 160.14 0.14 0.90 159.43 0.07 0.18 137.36 0.04 0.13 

Int-cont 
M 920.17 0.40 98.08 814.30 0.33 99.17 808.53 0.31 99.18 
SD 106.00 0.09 0.82 160.20 0.13 0.34 150.16 0.05 0.24 
Nth 
M 510.23 0.34 99.19 430.20 0.30 98.89 445.97 0.31 98.85 
SD 48.27 0.05 0.15 42.76 0.07 0.28 53.03 0.07 0.38 

Men: ury 
M 721.27 0.38 98.81 666.70 0.32 99.14 657.93 0.36 99.03 
SD 66.26 0.09 0.37 93.87 0.07 0.25 79.80 0.09 0.29 

Therm 
M 533.90 0.38 98.98 493.87 0.26 99.07 479.90 0.27 99.14 
SD 59.67 0.08 0.17 75.51 0.08 0.42 65.65 0.06 0.31 

Gaussian 
M 521.73 0.38 99.22 464.13 0.30 98.82 485.43 0.30 99.00 
SD 49.42 0.05 0.17 57.56 0.05 0.39 60.24 0.04 0.34 

n = 30 
• 1 nClwork rcachcd a maximum r2 = .98 

error reduced because it was the first observation after Epoch O. Epoch 0 was not 

used because error at this point simply reflects the initial random weights of the 

network and is thus inconsistent across networks. 

A one-way repeated measures ANOV A was performed for each encoding type 

to determine if the epoch at which the ,2 attained a value of 1.00 was significantly 

different for distance, time and velocity inference patterns. The difference was 

significant (p < .05) for all encoding types. The following F values were observed: 

inleger F(2.56) = 13.76; integer-context F(2.58) = 7.39; nth F(2,58) = 30.28; mercury 
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F(2,58) = 7.68; thermometer F(2,58) = 8.29 and; gaussian F(2.58) = 9.73. Thus, 

for aIl encoding types except integer, the normative rules of time and vclocity 

reached their maximum ,2 before the distance mie. The opposite occurred when 

integer encoding was used. 

It was theoretically possible to achieve a perfect ,2 even if the actual outputs 

of the network were far from their targets. That is, ,2 is an indicator of the amOllnl 

of variance accounted for between the aetual outputs and target values by a given 

role. It is not dependent on how close in magnitude the outputs are to their targets. 

However, as can be seen in Table 7, the sum-squared error at this point was very 

small. For example, a sum-squared error of O. 30 indieates that, on average, the 25 

distance inference patterns were 0.15 away from their target values. 

'flle attainment of perfect ,2 and the low sum-squared error slIggests that as 

far as learning is concerned aIl that remained was simple weight adjustment. 

However, training continued until 1500 epochs for aIl networks without vietory 

being declared indicating that the algorithm was incapable of reaching a score-

threshold of 0.01. 

2. Stage Diagnoses 

OveraIl, stage diagnosis produced a coherent classification of network 

performance. The majority of the networks exhibited developmental sequences 

similar to those observed by Wilkening (1981, 1982). Ali networks, collapsed 

across input encoding types, exhibited the same distance devclopmcntal sequence 

(d = t + v followed by d = t x v). Ninety-two percent of the networks (excluding 

those in the integer encoding condition) followed a similar time devclopmcntal 

course progressing from a stage defined by t = d - v to a stage defincd by 
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1 = d + v. The difference between the sequence observed by Wilkening and the one 

characteristic of network performance was that the networks first progressed 

through an identity stage defined by the rule 1 = d. Similarly, 93% of the networks 

(exc1uding integer encoding) followed a progression from an identity (v = d) to an 

additive (v = d - t) and then a multiplicative (v = d + t) stage. Again, this is 

similar to Wilkening's resuIts with the exception that the networks attained the final 

multiplicative stage. 

2.1. Distance 

As stated, performance on the distance inference problems was captured by 

the same developmental sequences as the one observed by Wilkening (1982). That 

is, networks first demonstrated the additive ruIe, d = t + v, followed by the correct 

multiplicative rule d = t x v. For networks with nth, mercury, thermometer, and 

gaussian encoding, the additive stage began after the recruitment of one hidden unit 

and Iasted 200 epochs on average. The multiplicative stage began at approximately 

30n epochs following the recruitment of a second and third hidden unit on average. 

For networks using integer and integer-context encoding, the additive stage 

began very early on in training and thus, was not preceded by the recruitment of a 

hidden unit. ft was lon~er th an in other encodings, lasting for approximately 300 

epochs. As a result, the multiplicative stage began at approximately the same time 

for integer and integer-context encodings as the other encodings. At this point, 3 

or 4 hidden units had been recruited on average. The mean number of hidden units 

recruited prior to stage onset, the epoch at which the stage began, and the length of 

the stage are reported in Table 8 for each encoding type . 
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Table 8 
Distance Deve/opmenta/ Sequence by Encmlillg 
T~f!.e: Pure Condition 

d=t+v d=l*v 
Encoding hid onset lensth hid onset 

Integer 
M 0.00 4.17 301.97 3.53 341.43 
SD 0.00 1.90 103.05 1.07 117.68 

Int-cont 
M 0.07 15.60 327.17 4.00 446.93 
SD 0.25 19.64 104.68 1.02 108.31 
Nth 
M 1.00 70.93 164.77 3.07 248.97 
SD 0.00 3.81 78.40 1.02 83.48 

Mercury 
M 1.00 82.23 217.03 3.27 331.37 
SD 0.00 9.22 87.20 0.94 101.66 

Thenn 
M 1.00 66.80 163.63 3.20 262.67 
SD 0.00 3.91 55.67 0.76 70.59 

Gaussian 
M 1.00 65.87 165.20 3.30 258.07 
SD 0.00 5.40 64.51 0.92 71.78 

n = 30 for ail encoding lypes 
Note. d = distance; t = lime; v = velocity; hld = numbcr of 
hidden units; onset = epoch at which stage bcgins; length = 
lenglh of stage in epochs. 

Performance Attrjbutable to Staa:e 

During the additive stage, the amount of variance in the output values of the 

distance inference patterns accounted for by the additive rule (d = t + v) grcatly 

exceeded the minimum set by the best rule criterion (,2 ~ 0.50). The mean 

maximum ,2 of the additive rule attained during the additive stage IS shown in 

Figure 3 fOf each encoding type. As can be seen, even for mercury encoding, in 

which the mean maximum r2 attained was the lowest of the six encodings, 89% of 

the variance was accounted fOf. Moreover, for ail integer and integer-context 
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Figure 3. MaxImum r2 of d=l+v rule auaincd during addilive 
stage of distance developmental sequence. 

networks the r2 of the additive rule reached 1.00. As reported in Table 7, during 

the multiplicative stage the defining role d = t X v reached an r2 of 1.00. 

Thus, within the stages of the distance developmental sequence, a large 

percentage of the variance in the output values was accounted for. 

Error Reduction 

Each stage was associated with successive error reduction. The mean percent 

of error reduction from epoch 5 to the epoch prior to the onset of the additive and 

multiplicative stages is shown in Figure 4a for a11 encodings except integer and 

integer-context. For these two encodings the additive stages typically began at 

Epoch 5 and are therefore not included in the figure. 

Prior to the onset of the additive stage, the error associated with the distance 

inference patterns was reduced by between roughly 40-60%. Thus, although this 

period was not associated with a particular stage there was a sizable amount of error 

reduction. Leaming continued over the additive stage. Approximately 85-90% of 
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Figure 4. Mean percent of error reduction in distance mference patterns (a) from cpoch 5 10 
additive and multiplicative stage on set and (b) over additive stage. Error bars arc standard 
deviations from the rncan . 

the error that existed just prior to the onset of the stage was reduced by the end of 

the stage. The mean percent of elTor reduction over the additive stage rdative to the 

epoch prior to stage onset is shown in Figure 4b for ail encoding types. 

Finally, the percentage of total elTor reduced from epoch 5 to the cpoch prior 

to the onset of the multiplicative stage was approximately 90%. Taken togcther, the 

amount of elTor reduced over the additive stage and the total elTor reduction prior to 

the onset of the multiplicative stage suggests that while the additive rule may not be 

the normative mIe, it is a good approximation. 

Stability and Transitions 

Overall the distance developmental sequence was extremely stable. 

Regressions were observed in only two networks, one with integer and one with 
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integer-context encoding, and were not permanent. Both of these networks 

regressed to a tie between the additive and multiplicative rule. A tie consisted of a 

period of four or more testing epochs where the difference between the ,2 values of 

two rules, in this case the additive and multiplicative rules, was less than or equal to 

0.99. 

For the majority of networks, transition from the additive stage occurred in 

few epochs (M = 11.62, SD = 17.56). Typically this transition involved 

fluctuations between the additive and multiplicative rules. However, for 30% of the 

networks there was a period characterized by a tie between the additive and 

multiplicative rules before the onset of the multiplicative stage. On average this 

lasted for approximately 74.67 epochs (SD = 40.90). Note that ties often occurred 

just prior to the beginning of the input training phase. Thus the length of a tie is 

influenccd by the fact that network responses do not change during the input 

training phase. 

Thus, for the majority of networks there was a rapid transition between 

stages. AIthough sorne networks went through a tie before the onset of the 

multiplicative stage, the methodology used to diagnose stages was able to 

characterize this period as weIl. 

Summary of Distance Deyelopmental Sequence 

For the majority of encoding types, the distance developmental sequence 

bcgan with the additive stage following a period in which the error was reduced but 

not captured by identity (d = t or d = v), additive, or multiplicative rules. For 

integer and integer-context networks the additive stage began almost immediately 

after training. During the additive stage, Cl large proportion of the variance in the 
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outputs of the distance inference patterns was accounted for acros!\ encoding types. 

Finally, learning continued over the additive stage until the eventual onset of the 

multiplicative stage after either a brief transition perilxi or a tic betwccn the additive 

and multiplicative stages. 

2.2. lime 

With the exception of integer encoding, 92% of the networks cxhihitcd a 

developmental sequence characterized by a progression from an idclltlty stage 

(t = d) that started after about 5 to 10 epochs of training and lastcd for 

approximately 55 epochs, to an additive stage (t = d - v) that lasted for an average 

of 80 epochs before altaimng the correct multiplicative stage t = li + v after 

approximately 160 epochs of training. The me an number of hidden UllltS Iccruited 

prior to stage onset, the epoch at which the stage bcgan, and the Iength of the stage 

are reported 111 Taule 9 for each encoding type. 

The remaining 8% of the networks (10 using integer-context and 2 lIsing 

gaussian encoding) proceeded directly from the identity stage to the multiplicative 

stage. For the 10 integer-context networks, the identity stage started at 12.00 

(SD = 6.75) epochs and lasted for 65.00 epochs (SD = 6.95) on average. None 

of the networks had recruited any hidden units at this tirne. The mean epoch or 

onset of the multiplicative stage was 96.00 (SD = ] 0.39). ThIS occurred after ail 

networks had recruited 1 hidden unit. For the two networks ln the gall..,!\ian 

encoding condition, the identity stage began at 0 and ]() cpochs and la~ted lIntll 

ep('~h 57 and 61 respectively. The multiplicative stage began at X2 and 66 epoch!\ 

respectively. The networks' had not recruited any hidden units pnor 10 the on~et 
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Table 9 
rime Develof!.mental Seg.uence b~ Encodin8, T~e: Pure Condition 

t=<l t=d-v t=d+v 

Encodins n hid onset lensth hid onset lenœh hid onset 

Int-cont 20 
M 0.00 15.00 64.35 1.00 84.85 98.35 2.25 199.55 
SD 0.00 6.49 8.52 0.00 10.02 55.03 0.55 51.31 
Nth 30 
M 0.00 6.67 55.60 1.00 67.77 77.90 2.00 150.60 
SD 0.00 2.40 5.40 0.00 4.95 7.87 0.00 8.26 

Mercury 30 
M 0.00 10.17 67.40 1.00 85.07 95.23 2.03 189.83 
SD n.oo 3.82 10.58 0.00 9.57 10.23 0.18 19.46 

Theml 30 
M n.oo 5.50 56.30 1.00 66.80 80.87 2.00 152.50 
SD 0.00 2.40 4.71 0.00 3.82 8.53 000 10.99 

Gaussian 28 
M n.oo 6.79 54.75 1.00 66.89 81.25 2.07 153.04 
SD n.oo 4.13 6.33 0.00 6.30 22.42 0.26 22.78 

Note. d == dIstance; t = lIme; v == vcloclty. hid = numbcr of hlddcn untts. on~et = epoch at WhlCh 
stage bcgms. Icngth == Icngth of stage ln epochs 

of the additive stage. One hidden unit was recruited prior ta the onset of the 

Illultiplicative stage. 

For ail networks using integer encoding the first diagnosable stage was 

charactcrized by the additive rule t = d + v. The rnean onset of the stage was at 

4.50 epochs (SD == 2.01) and it lasted for 61.43 epochs (SD = 13.10) on average. 

None of the networks had recmited any hidden units before the onset of the stage. 

For 28 networks the next dtagnosable stage was defined by the normative rule 

l = ci + v. The mean onset of the stage was at 75.21 epoch~ (SD = 13.42). Ail 

nctworks had recruited 1 hidden unit by the begInl1lng of the stage. For the other 

Iwo network.s. the l11uluphcallve stage was preceded bv ,ill additive stage defined by 

l == li - v. On average, tlm additive stage began at 71.50 epochs (SD = 21.92), 
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Figure 5. MaxImum r2 of t=d and l=d-v rules auamed durmg Hlentity and 
addItive stages of ume devc10pmental sequence re~pccl1Vcly. 

was preceded by the recruitment of one hidden unit, and lasted for R 1.5 cpochs 

(SD = 3.54). The stage characterized by the normative rule began on average at 

160.50 epochs (SD = 21.92) following the recruitment of ü second hidden 

Performance Attributable to Sta&:e 

For networks progressing through an identity stage (ail encoding types cxccpt 

integer), a maximum of over 90% of variance in the output valuc.., of the ttllle 

inference patterns was accounted for by the identIty rulc (t = dl. In fart, ail 

integer-context networks reached the maxImum r2 (1.00). The mcan maximulll ,2 

of the additive rule (t = d - v) during the additIve ~tage wa.., ~hghtJy le..,,, hut ..,tlii 

accounted for more than 80% of the variance on average. l'hu'i, a~ wllh the 

distance developmental sequence, a large percentage of the vanancc In the output 

values was accounted for. The mean maximum ,2 value~ aWllned dunng hoth 

identity and additive Mages are shown III Figure 5. 
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Por integcr networks there was no identity stage. During the additive stage 

(t = d + v) the mean maximum ,2 value of the additive rul,e attained was 1.00 

(SD = .01). 

r!!'!~!lj, during the multiplicative stage the defining rule t = d + v reached an 

r2 of 1.00 for aIl encoding types (see Table 7.). 

Error Reduction 

Bach stage was associated with successive error reduction. The mean percent 

of error reduction over the identity stage and additive stage relative to the epoch 

prior to stage onset is shown in Figure 6a. As can be seen, approximately 35-55% 

of the error that existed prior to the onset of the identity stage was reduced over the 

stage. Slightly more error was reduced over the additive stage (50-65%). Thus, 

learning was continuolls across the stages as in the distance developmental 

sequence. 

The mean percent of error reduction from epoch 5 to the epoch prior to the 

onset of the multiplicative stage is shown in Figure 6b. On average, the amount of 

error reduced prior to the onset of the time multiplicative stage was slightly less than 

prior to the dIstance multIplIcative stage. This suggests that the additive time rule 

was not as good an approximation of the time inference patterns as the analogous 

case was for distance patterns. 

Stability and Transitions 

Overall the time devclopmental sequence was again very stable. Regressions 

Wl'fC ob~crvcd in only 4 integer networks and 9 integer-context networks, and were 

nevel permanent. The regressions were to either the additive stage or to a tie 
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Figure 6. Mean percent of error rcductIon III lime mference pattern,> (a) ovcr IdCllllly ami addltlvl' 
stages and (b) from epoch 5 to multlplicativ(' stage onset. Error hars arc ~II\Ildard dCVlallOIlS trolll 
the mean. 

between the additive stage and the multiplicative stage. 

Transition from the identity stage to the additive stage took 5.80 epoch~ on 

average (SD = 2.72). For almost aIl of the networks, the transition fmm Ihe 

additive rule to the multiplicative rule was rapid taking 5.H9 epochs on average (S/J 

= 3.63). However, for 4 networks, there was a period between the additive alld 

multiplicative stages characterized by a tie between the additive and multipllcatrve 

rules. On average this lasted for approximately 53.00 epochs (SD = 15 (0). 

Summary of Tjme Deyelopmental Seyuence 

For aIl encoding types except integer, the lime developmental ~cqucnce bcgan 

with an identity stage followed by an additive stage and then the multlplacatlve 

stage. During the identlty and additive ~tagcs, a large propOI lion of thl: vanance 111 
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the outputs of the time inference patterns was accounted for by the defining Tules. 

The transition between aIl stages was typically rapid. Finally, Iearning was 

continuous aCTOSS aIl stages as indicated by analysis of error reduction. 

For the majority of integer networks the first diagnosable stage was an 

additive stage defined by the rule t = d + v that began soon after training and was 

followed by the nonnative multiplicative stage. 

2.3. VelQcjty 

Ninety-three percent of the networks (excluding integer) exhibited a 

dcvelopmcntal sequence characterized by a progression from an identity stage that 

started after approximately 5 to 10 epochs of training and lasted 55 to 60 epochs on 

avel ~ge, to an additive stage that lasted for about 70 to 80 epochs, to the correct 

multiplicative !.tage after approximately 160 epochs of training. The identity, 

additive, and multiplicative stages were characterized by the rules v = d, v = d - t, 

and v = d + t respectively. The mean number of hidden units recruited prior to 

stage onset, the epoch at which the stage began, and the Iength of the stage are 

reported in Table 1 () for each encoding type. 

The remaining 7% of the networks (10 using integer-context and 1 using 

gaussian encodmg) proceeded directly from the identity stagl" to the multiplicative 

stage. For the integer-context networks, the identity stage started at 8.33 

(SD == 5.59) epochs and lastcd for 64.78 (SD -= 7.45) epochs on average. None 

of the nctworks had recru;ted any hidden units at this time. The mean epoch of 

onsct of the multiplicatlve stage was 96.44 (SD == 9.29). AlI networks had 

recruitcd 1 hidden unit at this point. For the network in the gaussian encoding 

condition, the identity stage began at 10 epochs and Iasted 51 epochs. The 
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Table 10 
Velociœ, Develof!.mental Seq,uence b,Y Encodins. T,\'l!.e: Pure Condition 

v=d v=d-t v=d+t 
Encoding n hid onset length hid onset len~th hid onsct 

Int-cont 20 
M 0.00 14.00 67.25 1.00 86.75 130.85 2.53 234.90 
SD 0.00 7.36 5.75 0.00 9.65 59.45 0.49 59.R4 
Nth 30 
M 0.00 6.67 55.43 1.00 67.77 77.93 2.00 150.27 
SD 0.00 2.40 4.53 0.00 4.48 7.04 0.00 8.52 

Mercury 30 
M 0.00 8.67 67.90 1.00 82.73 97.67 2,()3 1 {J0.50 
SD 0.00 4.14 9.45 0.00 8.21 8.02 O.IR 20.78 

Thenn 30 
M 0.00 5.83 56.63 1.00 68.13 80.37 2.00 156.30 
SD 0.00 1.90 4.82 0.00 4.18 9.55 0.00 1544 

Gaussian 29 
M 0.00 6.38 54.83 1.00 66.72 75.97 2.10 155.79 
SD 0.00 2.64 4.77 0.00 5.99 8.82 0.31 20.47 

Note. d = distance; t = lime; v = vcloclty; hld = numbcr of hlddcn un Ils; OIl<iCI = cpoch al wlllch 
stage begins; Icngth = lcngth of stage In epochs. 

multiplicative stage began at 66 epochs after 1 hidden lIIut had been rccruited. 

For aIl 30 integer networks the first diagnosable stage was characteri.1cd hy an 

additive stage defined by the rule v = d + t followed by a mulllpltcative stage 

defined by the normative rule v = d + t. The mcan onsct of the additive ~tagc was 

at 4.50 epochs (SD = 2.(1) and it lasted for 61.47 cpoch~ (S/) = 13.23) on 

average. None of the networks had recruited any hiddcn units hcfore the on,>ct of 

the additive stage. The mean onset of the nornHltlve ~tage wa~ at 75.39 ep()ch~ (.<,'/) 

= 13,71). Ai. networks had rccruited 1 hiddcn unit by the bcglJlning of thl'> ~tagc. 

Performance Attrjbutable to Sta&:e 

The mean maximum,2 values attained during both identity and additive ~tagc~ 
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Figure 7. Maximum r2 of v=d and v=d-t rules attained during ldentity and 
additive stages of velociLy devcloprnentaI sequence respcctively. 

are shown in Figure 7 for ail encodings except integer. As in the time 

devclopmental sequence, a maximum of over 90% of variance in the output values 

was accounted for by the identity mIe. Again, aIl integer-context networks reached 

the maximum ,2 (1.00). The mean maximum ,2 of the additive rule accounted for 

more than 80% of the variance on average. 

For integer networks there was no identity stage. During the additive stage 

(v = li + t) the mean maximum ,2 value of the additive mIe attained was 1.00 

(SD = .(1). 

As reportcd in Table 7, for ail networks except one using mercury encoding, 

the dcfining rule v = li + t of the multiplicative stage reached an ,2 of 1.00. 

Error Rcdus,'tjon 

The mcan percent of error reduction over the identity stage and additive stage 

relative to the epoch prior to either stage onse! are shown in Figure 8a for each 

encoding type. As can be seen, error reduction over the two stages was very 
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FIgure 8. Mean percent of error reduction m vcloclly mference paltrflls (a) ovcr Idellllly und 
additive stages and (b) from epoch 5 to multiplicative slilge on.,cl. Error burs ure "1<lllIlanl 
deviations from the rncan . 

similar to that observed in the time developmental sequence. Approximatcly 3()-

50% of the error that existed prior to the onset of the identity stage was rcduccd 

over the stage. Slightly more error was reduced ovcr the additivc ~tage (55-70%). 

The me an percent of error reduction from epoch five to thc cpoch pl/Or ln the 

onset of the multiplicative stage is shown in Figure Sb. Agail1 thl<'; is very !o.imi lar to 

the time developmental sequence. Thus, like the addIlivf' timc rule, the add1l1ve 

velocity rule was not as good an approximation of the velocity infcrcncc patterns as 

was the case for distance patterns. 

Stabjljty and Transitions 

Overall the velocity developmental sequence was very !o.tahlc. Rcgrc!o.~i()ns 

were observed in only 4 integer and 7 integer-context nelworks, and wcrc nCVf.!r 
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permanent. The regressions were to either the additive stage or a tie between the 

additive stage and the multiplicative stage. 

As with the time developmental sequence, transitions between stages of the 

vclocity developmental sequence were rapid. The transition from the identity stage 

to the additive stage look 5.72 (SD = 2.45) epochs on average. For the vast 

majority of networks, the transition from the additive stage to the multiplicative 

Mage took 6.02 epochs on average (SD = 3.10). However, for 6 networks, there 

was a period characterized by a tie between the additive and multiplicative rules 

before the attainment of the multiplicative stage. On average this lasted for 

approximately 60.67 epochs (SD = 12.61). 

Symmary of Velocity Developmental Sequence 

The velocity developmental sequence was v!!ry similar to the one observed for 

time infcrence patterns. That is, for aIl encoding types except integer, a progression 

through idcntity, additive, and then multiplicative stages was observed. A large 

proportion of the variance ln the outputs of the velocity inference patterns was 

accountcd for during the identity and additive stages. The transition between aIl 

stages was rapid. Finally, learning was continuous across ail stages as indicated by 

analysis of error reductlOl1. 

For the majority of integer networks the first diagnosable stage was an 

additive stage dcfincd by the rule v = d + t lhat began soon after training. This was 

followcd hy the onset of the nom1ative multiplicative stage. 

3. Inter-developmental Course 

A stage by cpoch plot of the three developmental sequences of a typical 
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network is illustrated in Figure 9 for each encoding type. Thcse networks wer~ 

chosen as illustrative examples considering the mean onset and length of the stages. 

when hidden unit recruitment occurred, and the progression from one stage to 

another within each inference problem type. Statistical analyses were <:lllldllcted to 

test the significance of any observed differences in mean stage onsets betwccn the 

three concepts for eacil encoding type. Although qualitative similarities of the 

developmental course across the different types of input encoding wcrc of IIltcrcst, 

quantitative similarities (e.g., the number of epochs pnor to the onset of Ihe 

distance additive stage using mercury versus gaussian cncodlllg) were ilOt. 

Therefore, aIl tests conducted in this section were onc-way rcpeated mensures 

ANDV As using an alpha level of .05 . 

3.1. Nth. Mercury. Thermometer. and GaussÎim E. codinJ: 

As can be seen in Figure 9 (c,d,e,f), the most common intcr-dcvc\opmental 

course for networks using nth, mercury, thermomcter, and gall~~ian encodlng 

involved a progression from the identity stages of time and vclority (t = li and 

v = d), followed by the onset of the additive stage for ail thrcc concepts (cl = t + v, 

t = d - v, v = d - t), followed by the onset of the Illultipltcatlve ~tage .. of lime and 

velocity (t = d + v and v = d + t) and finally, the multiplicative stage lor dbtancc 

(d=txv). 

The means for a1l comparisons except for networks u~lIlg gall~~tan cncoding 

are those presented in Table 8, 10, and Il. Two gaussian networh '':-.klppcd'' Ihe 

additive time stage. Therefore comparisons are hased on 2X network .. rather than 

30 as with the other encoding types . 
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There were no significant differences between the onset of time and vdority 

identity stages for nth (F (l ,29) = 0.00); mercury (F (1,29) = 2.5R); thcrmometcr 

(F(1,29) = 0.39) and; gaussian encodmg (F(I,27) = 0.33, F(l,"!.7) = 0.(6). For 

gaussian, the mean stage onset was at 6.79 (SD = 4.13) and 6.4, (SD = 2.(7) 

epochs for rime and velocity respectively. 

Significant differences in onset of distance, time and velocity additive stages 

were observed for nth (F(2,58) = 15.19); mercury (F(2,5H) : 5.22) and; thcnnomctl'r 

encoding (F(2,58) = 5.(9). However, this IS Iikely due to restrÎctcd variancc. For 

gaussian encoding the mean onset of the additive stages werc 66.00 (S/) = 5.5--0, 

66.89 (SD = 6.30), and 66.89 (SD = 6.(3) for distance, tlllle and vcloclly 

respectively. The differences were nonsigmficant (F(2,54) : 2.17). 

The differences in onset of distance, time and velocity multiplicative stages 

were significant for ail encodings: nth (F(2,58) = 37.95); mercury (F(2,5X) = 50.24), 

thermometer (F(2,58) = 68.40) and; gaussian encoding (P(2,54) = 62.6X). For 

gaussian encoding the mean onset of the multiplicative stage~ were 2()0.46 

(SD=71.10), 153.04 (SD=22.68), and 153.93 (S/): IX.16) for di~tancc, 

time and velocity respectively. 

In order to ascertain how represelllative the mean data wcrc of JnclIvidllal 

network performance the frequency of networks showing this Inlcr-devcl0pl11ental 

pattern was caJculated. For this purposc, a ~tagc wa~ con~H.lcrcd to have ~tartcd 

significantly later than another if the dlfference was a minimum of 20 epOdl\. The 

majority of networks in each encoding type did in fact follow the mcan progre"'~lon 

(nth, n = 19; mcrcury, n = 20; thermometer, n = 24 and; gall~"'lan, n = 21). The 

majority of the remaimng networks differcd only in that the muluplicallve ,>tagec.; of 
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aIl three concepts began at the sa me time: nth n = Il; mercury, n = 5; thermometer, 

n = 4 and; gaussian, n = 5. 

3.2. Intea:er-Context Encodjnl: 

T\. 'major inter-developmental courses were observed in the performance of 

networks using mteger-context encoding. The first is depicted in Figure 9b. This 

accounted for the performance of 57% of the networks and was similar to the one 

just dcscribed with the exception that the distance additive stage began at 

approximately the sume time as the identity stages of time and velocity. 

On average, the identity stages of time and velocity began at 15.59 

(SD = 6.59) and 14.4] (SD = 7.48) epochs respectively. The differences in 

onsets were nonsignificant (F(l,16) = 0.41). The distance addItive stage began at 

12.35 (SD = 19.29) epochs whereas the time and velocity additive stages began 

later, following the identity stages, at virtually the same poim, 86.41 (SD = 10.08) 

epochs. The diCfcrences between the three additive stage onsets were significant 

(F (2,32) = 195.19). The meun onset of the distance, time, and velocity 

multiplicative stages were 417.41 (SD = 100.02), 208.53 (SD = 48.95), and 

229.47 (SD = 5R.14) respectively. The differences were significant 

(F(:2,32):::: 47.11). 

Individual and statistical analysis agreed in ten11S of identity and additive stage 

onsets. For aIl but one nctwork, the distance multiplicative stage began after the 

ll1ultipltcatIve stages of time and velocity. 

The second typical inter-developmental course, characteristic of the 

performance of 23% of the networks, was similar except that the networks 

plOcecdcd directly from the Identity stage to the multiplicative stage of time and 
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velocity. On average, the identity stages of time and veloclly began al 1 1,4) 

(SD = 6.90) and 10.71 (SD = 6.0S) epochs respectivcly. The differcncc \Vas 

nonsignificant (F (1,6) = 0.04). The mean epoch of onset \Vcre :; 1 Cl.OO 

(SD = 121.95), 92.71 (SD = 7.95), and 99.86 (SD = Il.77) for the distance, 

time, and multiplicative stages respectively. The dlffercllCCS \Vere ~Ignirlcant 

(F (2.58) = 136.16). 

Again, individual analysis and statistical analysls were vcry consistent. That 

is, for six of the seven networks, the identity stage onscts were the same. For one 

network, the velocity stage started slightly earlicr. For ail networb thc dl~tance 

multiplicative stage began later than the time and velocity muItlpltcative stages For 

five of the networks the time and velocity multiplIcative ~tagcs bcgan at the saille 

time. For two networks the tlme stage began slightly eadier. 

In networks not following either inter-dcvelopmcntal cour<;es, the tllne 01 

velocity multiplicative stage began beforc the other hccausc of a progre ... sion 

through one additive stage but not the other. 

3.3. Intc&:er Encodinl: 

For 93% of the integer networks the intcr-developmcntal progres~ion (l1d nol 

begin with an identity stage but instead began wIth additive :--tages hcrore eventually 

attaining the time and velocIty multiplicative ~tagc~ and linally the di~tance 

multiplicative stage (Figure 3a.). Moreovcr, the addil1ve ~lage of lIme and ve/ocIty 

were defined by the rules t = d + v and v = d + t rC'ipcclivcly ralher than 1 = li - v 

and v = d - t. The mean epoch of on ... et of the additive ~tages were 4./1 Cc.,'J) -= 

1.95), 4.46 (SD = 2.08), and 4.46 (SD = 2.(8) for dhtance, lime and vcJoclly 

respecllvely. The differenccs were nonsignificant (/<'(2,54) = 0.79). The mean omet 
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of the distance, time, and velocity multiplicative stages were 354.00 

(SD = 111.42), 75.21 (SD = 13.42), and 75.39 (S D = 13.71) epochs 

respectively. The differences were significant (F(2,54) = 175.54). 

lndividual network analysis revealed that this progression was secn in aIl 2R 

networks. The two exceptions to this inter-developmental course attained the 

multiplicative rule of velocity, then distance and time together. 

3.4. Summary: Inter-developmental Course 

Statistical and individual analysis of network perfonnance revealcd that fOi the 

majority of networks uSÎng nth, mercury, thermometer, and gaussian encoding, the 

inter-developmental course was as follows. First, time and velocity idenllly stages 

began at the same time carly in training. Next, aIl three addiuve stages hegall. 

Although the differences in on sets were statistically significant, individual analysis 

revealed that for all intents and purposes the three stages bcgan al the same time. 

Finally, the onset of the multiplicative stages of time and velocity hegan al 

approximately the same time. Moreover both began before the distance 

multiplicative stage. 

This same sequence was observed in the majority of integer-context nei works 

whereas no integer networks performed in this rnanner. lt is Iikely that the 

differences in inter-develof-'mental courses across encodings rcflccts the linear 

nature of the encodings themselves. Unlike other encoding types, with intcger and 

integer-context encoding the magnitude of input values arc in some sense given to 

the networks without prior training. For example, an input value of 5 will ~llllse 

more activation than an input of 1. Thus, a time inference pattern with di!>tance and 

velocity input values of 2 and 3 respectively will produce a sm aller output value (or 
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larger depending on the sign of the weights) than one with distance and velocity 

values of 5 and 5 respectively. Moreover, the differenee between time or velocity 

inference patterns will refleet the linear nature of the inputs. This, in tum makes 

additive rules such as t = d + v and v = d + t possible. Conversely, with the other 

clleoding types, for example nth, there is no a priori information coneerning the 

magnitude of the input values since a value of 1 is assigned to the appropriate input 

unit regardless of the magnitude of the input value being encoded. 

For the most linear encoding, integer, the early onset of additive stages 

dcfined by t = d + v and v = d + t seems to inhibit the onset of additive stages 

defined by t = d - v and v = d - t. This was partly overcome by the use of eontext 

units (integer-context encoding). 

4. Hidden Unit Recruitment and Stage Onset 

As can be seen in Figure 9, transition from identity to additive and additive to 

multiplicative stages typically occurred quickly after the recruitment of a hidnen 

unit. The mean epochs from hiddcn unit recruitment to additive and multiplicative 

stage onset are reported in Table Il. In general, stage transition oceurred within 5 

to 10 epochs of hidden unit installation. This wouId seem to indieate that hidden 

unit recruitment was very instrumental in stage transition. 

4.1. Bjnton Analysis 

Hinton diagrams were drawn to understand the nature of the relationship of 

hidden unit recruitment to stage transition. A description of how Hinton diagrams 

are read is presented here. Examples of Hinton diagrams are presented in Figures 

10 and Il. 



• 

• 

• 

Distance, Time, and Vclocity 
84 

Table Il 
Epochs From Hidden Unit Recruitment tn Stage Ollset: 
Pure Condition 

Additive Stase MultiElicativc Stase 
Encoding d=t+v t::d-v v=d-t d=t*v t=d+v v=d+l 

Integer 
n 2 30 30 10 
M 10.00 15.30 8.33 9.17 
SD 7.07 13.22 2.84 3.50 

Int-cont 
n 2 20 19 30 30 30 
M 5.00 7.50 7.63 16.80 15.00 12.67 
SD 0.00 2.57 2.57 26.07 12.93 11.80 
Nth 
n 30 30 30 30 30 30 
M 9.50 6.33 6.33 10.00 5.17 4.83 
SD 1.53 3.20 2.92 7.88 3.08 3.59 

Mercury 
n 30 30 30 30 30 30 
M 5.67 8.50 6.17 9.50 8.83 9.17 
SD 1.73 4.58 3.40 12.06 5.36 2.65 

Thenn 
n 30 30 30 30 30 30 
M 5.17 5.17 6.50 6.87 5.00 6.33 
SD 0.91 0.91 2.68 9.58 3.47 4.72 

Gaussian 
n 30 28 29 30 30 30 
M 5.20 6.11 6.07 9.47 5.67 5.83 
SD 0.93 2.56 2.45 11.23 6.26 3.96 

Note. d = distance; l = lIme; v = vcloclly. 

ln Rinton diagrams, the magnitude and sign of weights from sf'nding units 

(input and hidden) to receiving units (hidden and output) are indicated by the size 

and colour (white for positive and black for negative) of squares drawn in a row for 

each receiving unit. 

The numbers above the squares indicate the sending unit. For intcgcr and 

intcger-context encoding, the squares numbered 1, 2, and 3, represent the wcights 
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(a) Net 21 - Integer-Context 

o 2 345 6 7 

outpUl 

hidden 

(b) Nel2' - Nlh 

o 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 

output 

hidden 

(c) Net 30 - Mercury 

o 2 3 4 5 6 7 8 9 1011 121314 1516 
output 

o 2:3 456189101112131415 
hidden 

(d) Net 22 - Thermometer 

o 2:3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

output 
o 2:3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

hidden 

(e) Net 21 - Gaussian 

output 
o 2:3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

hidden 

Figure JO. Hinton diagrams showing relative size (square size) and direction (whltc = positive: 
bl<lck = negative) of weights from mput layer to flrst hidden unit and output unit for (a) mteger
context, (b) mh, (c) mercury (d) Ihennometcr, and (e) gaussian encoding . 
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from the distance, time, and velocity irtput units respectively. With integer-context 

encoding, the additional squares numoered 4,5, and 6 represent the dislance, time, 

and velocity context units. For nth and mercury encoding, squares 1-5, 6-H), and 

11-15 represent the weights from the distance, time, and veloClty input groups 

respectively. Finally, for thermometer and gaussian encoding, squares 1-7, R-14, 

and 15-21 represent the weights from the distance, time, and velocity IIlput groups. 

For all encoding types, the square numbered 0 is for the bias unit whereas the last 

square in the output row is for weight from the hidden unit. When more than one 

hidden unit is depicted, the weights from any previous hidden units arc depicted 

:tfter the last of the input group. For example, in Figure Il a, the square numbcred 

4 of the second hidden unit row represents the weight from the first hidden unit to 

the second . 

Transition to Additive Stat:es 

Hinton diagrams proved useful in understanding how the dIstance, time, 

and velocity additive stages of networks using nth, mercury, thermometer, and 

gaus~ian encoding emerged either at the time that the first hidden unit was recruited 

or shortly thereafter. For networks using integer-context encoding, the first hiddcn 

unit was associated with the additive stages of time and velocity. The additive ~tage 

of distance began prior to hidden unit recruitment. For the majority of networks 

(78% across the 5 encoding types) a clear pattern of weights connccting the fir~t 

hidden unit to the input layer was observed. A Hinton diagram of a typical nctwork 

that exhibited this pattern is presented in Figure 10 for each éncoding type. 

As can be seen, the first hidden unit disunguishes distance II1put units from 

rime and velocity units. That is, the weights from time and velocity input Ul1Its have 
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the opposite sign from the weights from the distance input units. When the hidden 

unit is activatcd by the presentation of a distance inference pattern, information from 

the time and velocIty input groups will augment each other since the direction of 

their weights are the same. Conversely, since the distance weights have opposite 

signs from the time and velocity weights, when the hidden unit is activated by the 

presentation of a time or velocity inîerence pattern, input from one input group will 

counter the effects of input from the other and vice versa. Thus, the additive rule 

ct = t + v stems from the summ;"g effects of input from time aud velocity input 

groups caused by same-sign weigh ... to the hidden unit. Alternatively, the additive 

rules t = d - v and v = d - t stem from summing opposite-sign weights of time 

and velocity input groups and distance input groups. 

Transition tu Multiplicative Staees 

Unfortunately a clear pattern did not emerge with respect to transition to the 

multiplicative stages of time and velocity. However, for integer and integer-context 

encoding type, a consistent pattern was observed for the transition to the distance 

multiplicative stage. In 19 of the 20 networks across the two encoding types, 

perfomlance characterized by the. normative distance rule only emerged after a 

hidden unit was recruited which received opposite-sign weights for time and 

velocity input groups. 

Hinton diagrams of two networks using integer and integer-context encoding 

are presented in Figure Il. As can he seen in Figures lIa and lIb, the second 

hidden unit has opposite-sign weights (squares 2 and 3). The multiplicative stage 

was subsequently observed. For the networks depicted in Figures Ile and l1d, the 

multiplicative stage was observed after the installation of the third and f0U11h hidden 



• 

• 

• 

Ca) Net 23 - Integc 

o 1 2 3 4 5 
output 

hidden 2 
o 1 2 3 

hidden 1 ( _1 
(c) Net 22 - Integer 

023 4 5 6 
output 

02:3 4 5 

hidden 3 
023 4 

hidden 2 
02:3 

hidden 1 
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(b) Net 23 - Integer-Context 

012345678 
output 

hidden 2 

hidden 1 

(d) Net 21 - Intcger-Context 

8 9 10 
output 

8 9 
hidden 4 

hiciden 3 

hidden 2 

hidden 1 

Figure Il. Hinton diagrams showing rclative sile (square SII:C) and (hrcctlOn (whltc = P()~ilIVC: 
black = negative) of welghlS from input layer 10 hlddcn U0I1<; and output unit for (a, c) IOtegcr 
and (b, d) mteger-conlcxt encodmg. 

units respectively. Again it was at this point that the opposIte-sign weights for time 

and velocity input groups were first used by a hidden unit. AIthollgh not as 

intuitive as the explanation provided above with respect to the transition to additive 

stages, it appears that as long as the weights from the Ume and vclocity II1pUt 

groups continue to have the same-sign weights, only additIve rules for di~tance 

inference patterns are possible. Only when hidden lInits that treat the lime and 

velocity input as different, with respect to weight sign, i~ the multiplicative rule 

observed . 
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LIMITED MEMORY CONDITION 

The limited memory condition was designed to investigate Wilkening's 

(1981) hypothesis that children's retarded performance on the velocity task relative 

to the time ta~k reflected the increased memory demands of the velocity task. In the 

following ~imlliations the probability of presenting the network the correct time 

information of a given velocity inference pattern was manipulated to simulate the 

possible difficulties children may have had in remembering the time information. 

1. General Learnability 

As in the pure condition, aU networks trained for the maximum number of 

epochs (1500) without declaring victory. The mean sum-squared error and the 

percent of error reduced from epoch 5 to the end of training for each inference 

problem type are reported in Table 12 . 

The error at the end of training was greater for velocity patterns than either 

time or distance inference patterns. A one-way repeated measures ANOV A for each 

encoding type revealed that the differences were significant (p < .05): integer 

F(2,58) = 93.96; integer-context F(2,58) = 117.11; nth F(2,58) = 265.09; mercury 

F(2,58) = 127.07; thermometer F(2,58) = 104.47 and; gaussian F(2,58) = 214.56. 

Across ail encodings approximately 97%, 98%, and 87% of the error that 

existed at epoch 5 was reduced by the end of training for distance, time, and 

velocity inference patterns respectively. The differences were sigmficant (p < .05): 

integer F(2,58) = 45.76; integer-context FC2,58) = 6:.74; nth F(2,58) = 136.77; 

mercury F(2,S8) = 112.01; thermometer F(2,58) = 42.47 and; gaussian 

F(2,58) = 171.00 . 
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Table 12 
Mean Error and Percent ReductIOn in Error al End of 
Training: Limited Memory Condition 

Inference Problem Type 
Distance Time Velocity 

Encodin~ E % E % E % 

Integer 
M 1.67 92.65 1.71 95.68 5.13 88.05 
SD 0.92 3.84 082 1.99 1.68 4.17 

lnt-cont 
M 1.33 93.59 1.44 96.55 6.03 85.16 

SD 0.47 3.44 1.05 2.84 2.57 6.88 
Nth 
M 0.41 98.86 0.34 98.81 5.01 85.20 

SD 0.18 0.59 0.14 0.56 1.58 6.42 
Mercury 

M 0.89 96.99 0.62 98.20 4.56 88.08 
SD 0.38 1.43 0.25 0.77 1.77 4.59 

Thenn 
M 0.50 98.56 0.48 98.41 4.93 86.43 
SD 0.11 0.45 0.14 0.72 1.40 5.84 

Gaussian 
M 0.81 97.89 0.64 97.92 4.84 86.89 

SD 0.32 0.93 0.32 1.06 1.62 4.98 
n = 30 

Thus, at this macro level of analysis, the Iimlted memory manipulation 

affected network perfonnance in the desired direction causing 1!le velocity infcrcncc 

patterns to he more difficult to Iearn. 

2. Stage Diagnoses 

The majority of networks progressed through qualitatively similar or idcntical 

developmental sequences as those observed in the pure condition. Ninety-scven 

percent of networks, collapsed across ail encoding types, exhihited the saille 

distance developmental sequence (d = t + v followed by d = t X v). :--.1incty-three 
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percent of the networks (excJuding integer ellcoding) followed the same time 

dcvelopmcntal course progressing from tl-)e identity stage (t = d) to the additive 

stage (t = d - v) and the mt.ltiplicative stage Ct = d + v). Similarly, 83% of the 

networks (excluding integer encoding) followed the sarne progresslOn from an 

identity(v=d) to an additive stage (v=d-t). However, unlike in the pme 

condition, several of !hese networks (23%) did not progress beyond the additive 

st.tge. The remaining networks went on to the multiplicative stage (v = d + t). 

For the sake of brevity, the amount of variance in actual outputs accounted Îor 

by a given rule during a stage is not discussed in the followmg sections since the 

resuIts of this an~ lysis proved similar to that in the pure condition. That is, the 

maximum amount of variance in network responses accounted for by tr;: defining 

rules of the stages greatly exceeded the minimum set by the best ruZe criterion (r2 ~ 

0.50). Likewise, the error reduction prior to and across stages was similar 10 that 

observed in the pure condItion in that a large proportion of error was reduced. The 

interested reader may consult Appendices A and B respectively for a surnrnary of 

the limited memory tïndings. 

2.]. Distance 

For networks using ail encodings except integer, the additive stage began after 

the recruitment of one hidden unit and it l:isted 300-400 epochs on avrrage. The 

Multiplicative s~age began at approxlmately 500 to 600 epochs following the 

recruitment of a fourth hidden unit on average. The mean number of hidden units 

recruited prior to stage onset, the epoch at v/hich the stage began, and the length of 

the stage for the distance developmental sequence are reported in Table J 3. For the 
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Table 13 
Distana Developmental Sequence by Encodlllg Type. 
Lfmited Memory Condition 

d=t+v d=ti<V 

Encoding n hid onset lensth hid onset 

Integer 30 
M 0.00 4.83 483.97 3.83 611.27 
SD 0.00 0.91 221.08 1.g6 275.38 

Int-cont 30 
M 1.00 146.67 436.40 4.20 66850 
SD 0.00 5.79 225.07 1.67 243.18 
Nth 28 
M 1.00 155.86 317.46 3.50 545.39 
SD 0.00 5.10 159.70 1.37 197.80 

Mercury 29 
M 1.00 146.83 445.24 4.00 631.17 
SD 0.00 9.06 163.08 1.31 186.80 

Thenn 27 
M 1.00 143.89 297.63 2.97 457.87 
SD 0.00 15.46 158.52 1.35 200.20 

Gaussian 30 
M 1.00 144.23 424.20 4.27 645.17 
SD 0.00 9.90 227.36 1.64 241.79 

Note. ct = dIstance; t = tlme; v = vcloclty; hld = numbcr of hlddcn 
umts; onset = epoch at whlch stage begms; length = length of SUlgC 
JO epochs. 

five networks that do not appear in Table 13, the multiplicative stage was the first 

diagn0'\able stage. 

One difference between the pure and limited memory conditions is that 

nerworks using integer-context encoding required the recruitmcnt of a hlddcn unit 

before the onset of the additive stage in the limited memory conditIon wherea ... 111 th(~ 

pure condition no hidde~! unit was necessary. Moreover, an idcntity ... tage wa~ 

observed for aIl 30 integer-context networks defined hy d = t before the additive 

stage. 
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For networks using integer encoding, the aùditi'le stage began almost as soon 

as training began as was the case in the pure condition. After approximately 600 

epoch~, the multIplicative stage emerged. 

Stability and Transitions 

The (h~tance developmental sequence was stable although not as stable as in 

the pure condJtion. For 80% of the networks across aIl encoding types the additive 

best-rulc clasSIfication was constart. That is, at each testing epoch within the stage, 

the rule that accounted for the most variance in network responses was the additive 

rule. For the remainmg networks, 11.00% (SD = l3.60%) of the epochs within 

the addillve stage were classified as either multiplicative or were not diagnosable. 

Regressions after the attainment of the multiplicative stage were rare and ne ver 

permanent. Only 9% percent of the networks regressed and it was always to a tie 

bctween the additIve and multiplicative rules. 

Unlike in the pure condition, the majority of the networks (60%) across 

encoding types went through a period characterized by a tie between the additive 

and multIplicatIve mIes before the attainment of the multiplicative stage. On average 

this lasted for approximately 86.97 epochs (SD = 76.61). For the remaining 40% 

of the networks, the transition from the additive to multiplicative stage took 17.85 

epochs (SD = 16.92). 

Summary of Distance Deyelopmental Sequence 

As in the pure condition, for networks using nth, mercury, thermometer, or 

gaussian encodmg, the distance developmental sequence entered an additive stage 

following an initial period not captured by either identity, additive, or multiplicative 
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rules. However, unlike the pure condition, this initial period was as~ociatcd wllh 

an identity stage defined by the mie d = t for integer-context networks. Por integcr 

networks the additive stage began almost immedIately aftcr trallling. For all 

networks across encodll1g types, the multiplicative stage emerged following cithcr a 

fairly short tranSItion or a period charar.terized by a lie betwcell additive a:'d 

mu ltiplicative rules. 

In general, the major difference between the pllle and limited mcmory 

conditions is in terms of later starting and longer lasllng stages. Tlus d Iffcrcnce 

likely results from two related factors. First, the overall sum-squared error IS Ic~s 

stable than in the pure condition due to the random nature of recall in the vl'/Otl(V 

inference patterns. As such, the output-patIence (the maximum numbcl of 

successive epochs that result in nonsignificant changes in the ~um-sqllared crror) IS 

Iess likely to be achieved and thus output trai lllllg is more likcl y to go 1I1ltil thc 

outlimit is reached (100 epochs). Second, the wcight~ from the timc input group 

are less precise since they are lIsed to propagate information for lime input 111 ooth 

the distance inference patterns and in the velocIty infercnce pattcrn~. ThiS 

imprecision of the time input weights may have obscurcd the relat\()n~hip of tllllC 

and velocity information in terms of distance inferences making it more difficuIt for 

the network to find an appropriate set of weights. 

For sorne networks the tran~ition from the addItIve to multiplicative .. tage was 

quick as in the pure conditIon. However, for the majority of nctworks therc wa'i a 

tie before the attaJl1ment of the multiplicauve stage. Agam thls b li kely aurioutable 

to the imprecision of weights due to the limiteJ mcmory mampulation . 
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In general, the limited memory manipulation increased the variability across 

networks of a given encoding as indicated by the large standard deviations found in 

Table 13. 1I0wever, this variability was limited to the length of the additive stage 

and subsequent onset of the multiplicative stage and did not affect the 

developmental sequence qualitatively. 

2.2. Time 

For the majority of networks the time developmental sequence was 

qualitatively similar to that observed in the pure condition. Ninety-three percent of 

the networks (excluding integer networks) progressed from the identity stage 

(1 = d) that started after five to ten epochs of training and lasted for approximately 

130 epochs, to the additive stage (t = d - v) that lasted 150 epochs on average 

before attaining the correct multiplicative stage t = d + v after approximately 340 

epochs of training. As in the pure condition, the additive stage emerged after the 

first hiddell unit was installed. Moreover, the onset of the multiplicative stage 

typically followed the installation of a second hidden unit. Occasionally three 

hidden units had been recruited before onset. The mean number of hidden units 

recruited prior to stage onset, the epoch at which the stage began, and the length of 

the stage are reported in Table 14. 

The remaining 10 networks (9 using integer-context and 1 using thermometer 

encoding) proceeded directly from the identity stage to the multiplicative stage. For 

the 9 integer-context networks, the identity stage started at 15.00 (SD = 5.(0) and 

lasted for 125.67 epochs (SD = 5.55) on average. None of the net'.\'orks had 

recruited any hidden units at this time. The mean epoch of onset of the 

multiplicative stage was 180.11 (SD = 22.23). This occurred after aIl networks had 
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Table 14 
Time Devel0l!.mental Seq,uence b~ Encodins. T~l!.e: Limited Memo,,}' Condition 

t=<1 t=d-v t=d+v 
Encoding n hid onset length hid onset lensth hid onset 
Int-cont 21 

M 0.00 15.95 125.24 1.00 146.31 168.33 2.19 349.95 
SD 0.00 4.64 11.03 0.00 9.59 104.17 0.68 102.05 
Nth 30 
M 0.00 7.50 147.23 1.00 163.57 156.13 2.13 330.93 
SD 0.00 2.54 15.01 0.00 15.26 46.19 0.35 50.94 

Mercmy 30 
M 0.00 8.67 134.83 1.00 152.17 151.77 2.1 () 333.10 
SD 0.00 3.70 7.09 0.00 9.06 19.09 1.63 46.16 

Thenn 29 
M 0.00 5.86 138.83 1.00 151.07 166.31 2.35 347.76 
SD 0.00 2.70 16.05 0.00 16.37 49.51 0.55 71.59 

Gaussian 30 
M 0.00 5.83 135.53 1.00 146.87 173.90 2.27 339.30 
SD 0.00 1.90 9.73 0.00 9.74 60.74 0.45 72.20 

Note. d = distance; t = lIme; v = velocily; hld = numbcr of hldden umts; onsel = epoch al 
which stage bcgins; lenglh = length of stage ID epochs. 

recruited 1 hidden unit. For the network in the thermometer encoding condition, 

the identity stage began at 5 epochs and lasted for 138 epochs. The multiplicative 

stage began at 158 epochs after 1 hidden unit had been recruited. 

As in the pure condition, the first diagnosable stage for ail networks using 

integer encoding was characterized by the additive rule t = d + v. This occurred 

before a hidden unit had been recruited. The me an onset of the stage was at 4.88 

epochs (SD = 1.60) and it lasted 135.50 epochs (SD = 6.48) on average. Twenty-

seven of the networks then progressed directly to the multiplicative stage 

(t = d + v). The mean onset of the stage was at 172.00 epochs (SD = 49.(5). The 

networks had recruited 1.15 hidden units on average (SD = 0.36) by the beginning 

of the stage. The remaining three networks progressed from the additive stage 
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defined by t = d + v to one defined by t = d - v before the multiplicative stage 

onset. On average, the additive stage (t = d - v) began at 251.00 epochs 

(SD = 101.30), was preceded by the recruitment of one or two hidden units, and 

lasted for 138.33 epochs (SD = 26.54). For one network the additive stage was 

preceded by the identity stage (t = d). It lasted for 140 epochs. For ail three 

networks, the multiplicative stage began on average at 394.66 epochs (SD = 98.72) 

following the recruitment of a second hidden or third hidden unit. 

Stahjljty and Transitions 

Overall the time developmcntal sequence was again very stable. The identity 

best-rule classification was constant across encoding types with the exception of 

one network in which 2% of the epochs were undiagnosible. With respect to the 

additive stage, for 90% of ail networks the additive best-rule classification was 

constant. For the remaining networks, 18.93% (SD = 13.61%) of the epochs 

within the additive stage were not classified as additive. These epochs were 

typically classified as multiplicative. Occasionally, they were classified as 

regressions to identity rules or undiagnosible. Only 7% percent of the networks 

regressed after the attainment of the multiplicative stage. The regressions were to 

the additive stage and/or to a period characterized by a tie between the additive and 

multiplicative rules. The regressions were never pennanent. 

The transition from the identity stage to the additive stage took 7.07 

(SD = 5.22) epochs on average across encoding types. For the majority of the 

networks, the transition from the additive stage to the multiplicative stage look 

10.52 epochs (SD = 10.38) on average. For the remaining network!i (14%), there 



• 

• 

• 

Distance, Time, '\I1d Velocity 
98 

was a tie preceding the multiplicative stages between the additive and multiplicative 

rules. This lasted for approximately 62.15 epochs (SD = 49.39). 

Summary of Time Deyelopmental Sequence 

The time developmental sequence observed in the limited memory condition 

for a given encoding type was the same as the one seen in the pure condition. For 

aIl encoding types except integer, it began with the identity stage followed by the 

additive stage and then the multiplicative stage. For the majority of integer 

networks the first diagnosable stage was the additive stage (t = d + v) that began 

soon after training and was followed by the multiplicative stage. 

In general, the major difference between the pure and limited mcmory 

conditions is in terms of later starting stages that last longer on average. Again it 

seems reasonable to assume that this is due to the termination of the output training 

phase because of the outlimit being reached rather than the output patience. Also, 

there was a slight increase in the variability between networks of the sarne 

encoding. 

2.3. Velocity 

The most common velocity developmental sequence was the same as the one 

demonstrated in the pure condition. That is, 63% of the networks (exclllding 

integer) progressed from the identity stage (v = d) that started aftcr approximatcly 

10 to 15 epochs of training and lasted 100 to 200 epochs on average, to an additive 

stage (v = d - t) that lasted for about 300 to 400 epochs, to the correct 

multiplicative stage (v = d + t) after approximately 600 epochs of training. The 

mean number of hidden units recruited prior to stage onset, the epoch at which the 
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Table 15 
Ve/oCÎty Developmental Sequence J by Encoding Type: Limited Memory 
Condition 

v=d v=d-t v=d+t 
Encoding n hid onset length hid onset length hid onset 

lnt-cont 21 
M 0.00 23.81 120.24 1.00 149.10 367.00 3.43 561.10 
SD 0.00 17.17 ) 5.10 0.00 5.18 260.10 1.72 279.69 
Nth 18 
M 0.00 11.67 191.17 1.28 211.28 434.17 4.78 733.94 

SD 0.00 4.85 60.41 0.46 65.43 330.06 2.67 402.54 
Mercury 12 

M 0.00 12.08 138.17 1.00 167.75 276.50 3.25 535.08 
SD 0.00 6.20 16.20 0.00 28.76 201.96 1.49 246.71 

Thenn 23 
M 0.00 9.35 179.2(' 1.32 202.78 425.74 4.39 676.57 

SD 0.00 5.90 86.61 0.57 83.93 278.29 1.92 294.30 
Gaussian 21 

M 0.00 10.48 133.62 1.14 185.81 446.86 4.33 679.48 
SD 0.00 7.89 46.11 0.36 57.62 323.34 2.03 295.37 

Note. d = dIstance; t = lime; v = velocity; hld = numbcr of hldden umts; onset = cpoch at 
which stage bcgins; length = length of stage in cpochs. 

stage began, and ~:Je length of the stage are reported in Table 15. As can be seen, 

the additive stage emerged typically after one hidden unit had been recruited. 

However, some networks required two hidden units before the onset of the additive 

stage. The most striking difference between the pure and limited memory 

conditions is the number of hidden units installed before the onset of the 

multiplicative stage. On average, 4 hidden units had been installed whereas only 2 

had been installed in the pure condition. 

Twenty percent of the networks (excluding integer) behaved as Wilkening's 

subjects (1981, 1982) progressing from the identity stage to the additive stage but 

Ilot to the multiplicative stage. The mean number of hidden units recruited prior to 
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Table 16 
Velocity Developlr''1ntal Sequence 2 by Encoding Type: 
Limited MemorJ!. Condition 

v=d v=d-t 
Encoding n hid onset lensth hid onset 
Int-cont 6 

M 0.00 16.67 131.50 1.00 155.67 
SD 0.00 7.53 12.50 0.00 11.64 
Nth 11 
M 0.00 8.18 218.00 1.55 246.46 
SD 0.00 3.37 96.72 0.69 98.69 

Mercury 8 
M 0.00 13.13 135.63 1.00 155.00 
SD 0.00 7.04 14.42 0.00 12.08 

Thelm 2 
M 0.00 12.50 195.00 2.00 238.00 
SD 0.00 10.61 169.71 0.00 117.38 

Gaussian 2 
M 0.00 7.50 181.50 1.50 233.50 
SD 0.00 3.54 136.47 0.71 120.92 

Note. d = distance: 1 = lime: v = vclocILy: hld = number 01 h.dden 
units: onseL = epoch al which stage bcgms: length = Icnglh 01 sUlge 
in cpochs. 

stage onset, the epoch at which the stage began, and the length of the stage are 

reported in Table 16. 

Taken together, more than 80% of the networks across encoding types 

(excluding integer) foIIowed a progression from the identity stage to the additive 

stage. The majority of these networks then progressed to the multiplicative stage. 

However, several networks did not progress beyond the additive stage. Finally, 

with respect to the networks that did not demonstrate either of these two sequences 

(17% of aIl networks excluding integer), the majority progressed from the idcntity 

stage to the multiplicative stage . 
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As in the pure condition, the first diagnosable stage for all networks using 

integer encoding was characterized by the additive rule v = d + t. On average it 

began at 4.50 epochs (SD = 2.01) before any hidden units had been recruited and 

lasted for 135.83 epochs (SD = 6.31). Twenty-one of the networks then 

progreslIed directly to the multiplicative stage (v = d + t) after having recruited 1.05 

hidden units on average (SD = 0.22). The mean onset of the stage was at 167.95 

cpochs (SD = 30.66). The nine networks progressed from the additive stage 

dcfined by v = d + t to one defined by v = d - t followed by the eorrect 

multiplicative ruie. On average, the additive stage (v=d-t) began at 153.67 

epochs (SD = 13.86), was preceded by the recruitment of one hidden unit, and 

lasted for 187.33 epochs (SD = 64.38). The multiplicative stage for aIl nine 

networks began at 366.22 epochs (SV = 72.23) foIlowing the recruitment of two 

or three hidden units. 

Stability and Transitions 

For the majority of networks (84%) the identity best-rule classification was 

constant across all encoding types. For the remaining networks 13.27% 

(SD = 8.S0%) of the epochs were either undiagnosible or classified as additive. 

For 45% of the networks the additive best-rule classification was constant across aIl 

encoding types. For the remaining networks, 13.68% (SD = 12.69%) of the 

epochs within the additive stage were undiagnosible. 

Regressions after the attainment of the multiplicative stage were more frequent 

than in either the distance or time developmental sequences. For all encodings 

excluding integer, 51 % of the networks progressing from the identity and additive 

stage to the multiplicative stage did not regress. Twenty-four percent regressed to a 
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tie between additive and multiplicative mIes or to the additive stage but then 

recovered. Fourteen percent of the networks regressed pennanently -- the l1lajonty 

to the additive stage, the others to a tie between the additive and multiplicative rules. 

The remaining networks regressed to oscillations hctween the additive and 

multiplicative stages. 

For 76% of networks progressing from the identity stage to the additive stage 

but no further, stage diagnosis was stable. Of the remaining networks. a tic 

between the additive and multiplicative mIes followed the additive stage. Ilowevcr, 

for the majority of the networks this period was temporary and followed hy il rcturn 

to the additive stage. 

Thirty percent of networks using integer encoding regressed pemlancntly to 

the additive stage v = d - t. Thirteen percent regressed pemmnently to a tic 

between the additive and multiplicative stage. Seventeen percent regresscd to a tic 

between additive and multiplicative rules and/or the additive stage but then 

recovercd. Finally, 40% of the networks did not regress. 

In general, transitions between stages took longer between velocity stages 

than time stages. Across aIl encoding types, the transition from the idcntity stage to 

the additive stage took 16.73 epochs on average (SD = 25.79). For the majority 

of the networks the transition from the additive stage to the multiplicative stage took 

10.52 epochs on average (SD = 10.38). However, for 44% of the networks there 

was a period characterized by a tie betwecn the additive and multiplicative mIes 

before the attainment of the multiplicative stage. On average this lasted for 43.78 

epochs (SD = 25.07). 



• 

• 

• 

Distance, Time, and Velocity 
103 

Summary of yelocjty Deyelopmental SeQuence 

Although the limited memory manipulation increased the variability both in 

terms of when stages emerged across networks using the same encoding and in 

terms of less stable stages within individual networks, a similar developmental 

sequence to the one observed in the pure condition was demonstrated by the 

majority of networks. However, this similarity held only up to a point. That is, 

across aIl encoding types except integer encoding, the majority of networks 

progressed from the identi ty stage that began early on in training to the additive 

stage. However, the limited memory manipulation affccted the attainment and 

stability of the multiplicative stage. Not only did a large number of networks (23%) 

not progress beyond the additive stage, many networks (24%) that did so regressed 

back to the additive stage or to oscillations between the additive and multiplicative 

stages for sorne lime before recovering and 17% regressed permanently. 

Moreover, a greater number of hidden units were in~talled prior to the onset of the 

multiplicative stage. 

The majority of integer networks followed the same developmental sequence 

as in the pure condition following a progression from an additive stage (v = d + t) 

to the multiplicative stage. However, for 30% of the networks, there was an 

intermediate stage between the se two defined by the rule v = d - t. No networks in 

the pure condition progressed through this intermediate stage. 

3. Inter·developmental Course 

A stage by epoch plot of one network from each encoding type is shown in 

Figure 12. The increased variability in terms of the individual developmental 
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Figure 12. Lirnited rnernory condition. IdentIty, additive, and multiplicative stages by epoch 
observed during training for (a) integer, (b) mteger-contcxt, (c) nL'l, (d) mercury, (c) thcrmometer 
and, (f) gaussian encoding. Epoch of hidden Untt rccrultrnenl mdlcatcd by "H" . 
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sequences, in particular the distance and velocity sequences, made it difficult to find 

typical networks in terms of aIl variables including identity, additive, and 

multiplicative stage onsets and lengths as weIl as types of transitions (slow versus 

qUlck). Thu~, the displayed networks were chosen as representative examples in 

terms of qualitative simiJarities to other networks within the same encoding type. 

As in the pure condition, aIl tests for significant differences in stage onsets 

conducted in this section are one-way repeated measures ANOV As using an alpha 

level of .05. 

3,]' Nth. Mercury. Tb~rmometer, Gaussian. and Intel:er.Context 

Encodj0l: 

As can be seen in Figure 12 (b, c, d, e, f), the most common inter-

developmental course for networks across encodings (excluding integer) is similar 

to that found in the pure condition in tnat the identity stages of time and velocity 

emerged first followed by the onset of additive stages of distance, time, and 

velocity. The limited memory condition differs in that the time multiplicative stage 

emerged first, followed next by either the distance or velocity multiplicative stage, 

depending on the encoding. In contrast, in the pure condition, the time and velocity 

multiplicative stages typically occurred together before ~he onset of the distance 

multiplicative stage. 

Another difference is that the majority of integer-context networks followed 

this sequence with the exception that they demonstrated an early distance identity 

stage. In the pure condition, the majority of the integer-context networks diverged 

from this sequence only in that the distance additive stage began early in training 

before the recruitment of a hidden unit. In the limited memory condition, the 
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Identity Stas.e Onset: Limited Memnry Cmzditimz 
t=d v=d 

Encodin~ n M SD M SD F df 

Int-cont 20 15.50 5.36 20.50 11.91 2.44 1,19 
Nth 27 7.41 2.55 10.00 4.34 8.30* 1,26 

Mercury 20 8.75 4.25 12.50 6.39 6.73* 1,19 
Thenn 22 5.91 l.97 9.55 5.96 7.11 * 1,22 

Gaussian 25 5.60 l.66 9.80 7.43 7.38* 1,24 
* = sigmflcant aL .05 lcycl 
Note. d = distance; l:;: lime; y = vcloclly. 

distance additive stage began after the recruitment of a hidden unit as in the other 

encodings. 

The mean epoch of onset of identity, additive and multiplicative stages for 

networks following this developmental sequence and the rcsults of a one-way 

repeated measures ANOV A for each encoding type are reported in Tables 17, 18, 

and 19 respectively. Note that the smaller n in Table 19 reneet~ the faet that somc 

networks did not progress beyond the velocity additive stage. In addition, 

networks not included in this analysis typically progressed from the time and/or 

velocity identity stages directly to the respective multiplieativ(' stages. A laek of a 

consistent inter-developmental course made it difficult to draw any eonclu:,lons 

from these networks. 

Unlike in the pure condition, where differences between the omet of time and 

velocity identity stages were not significant, the differences in the limited J11l"mory 

condition were significant for aIl encodings except IIlteger-context. llowever, the 

mean difference between onsets was extremely small (Jess than 5 cpochs). SIIlCC 

testing epochs were conducted only after every five epochs, the importance of 
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T:tùle 18 
Additive Stage Onset: Limited ft.femory Condition 

d=t+v t=d-v 
Encoding n M SD M SD 

Int-cont 20 145.90 6.03 147.40 9.19 
Nth 27 156.0G 5.14 160.63 8.30 

Mercury 20 146.90 8.66 149.65 8.40 
Thenn 22 143.27 17.02 148.05 17.28 

Gaussmn 25 145.04 10.54 147.80 10.12 
ail F tcsL<; wcrc ~Ignlf Icanl at 05 Icvcl 
Note. d = dlsLancc, l = tnne; v = VclOCllY. 
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v=d-t 
M SD 

151.20 7.81 
218.26 79.06 
166.40 29.15 
193.05 82.16 
189.84 59.62 

F df 

7.68 2,38 
16.41 2,52 
9.24 2,38 
8.29 2,42 

14.49 2,48 

statistically ~ignificant differences is questionable. Moreover, individu al network 

analY'iis according to the criterion outlined previously indicated that the time identity 

stage began before the velocity identity stage in very few networks (2 integer-

context, 1 thermometer, and 1 gaussian network). Thus, for all intents and 

purposes, the idcntity stages of both concepts can be considered to have started at 

the same time. 

Across the five encoding types, the distance and time additive stages began, 

on average, within 5 epochs of each other and the velodty additive stage began 

between 20 and 60 epochs later. The only exception was for integer-context 

networks where aU three additive stages began within 5 epochs of each other. The 

differences in onset of distance, time and velocity additive stages were significant 

for ail encoding types. Individual analysis reveaied that for the majority of 

networks the onset of the distance and time stages occurred at the same time. 

Moreover, for most networks, the velocity additive stage began within 20 epochs of 

the other two. Thus, the significant differences observed were due to a few 

networks in which the velocIty additive stage began somewhat Iater than either the 

distance or time additive stages. In these networks, the onset of the velocity 
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Table 19 
Multiplicative Stage Onset: Lunited Memory Condition 

d=t*v t=d+v v=d-t 
Encoding n M SD M SD M SD F df 

Int-cont 16 677.25 254.61 323.94 95.42 512.XX 165.20 22.0~ 2,30 
Nth 17 550.94 185.04 320.41 3l.91 693.06 374.43 9 31 2,32 

12.13 ') ..,,) -, .... -Mercury 12 615.33 123.62 340.42 49.1x 539.42 243.42 
Thenn 20 479.40 176.30 351.90 72.74 683.50 303.95 12 y) 2,JX 

Gaussian 23 683.10 234.23 339.74 68.82 658.74 289.91 1674 2,..t4 

ail F tests wcre slgnIfkanl al .05 lcvel 
Nole. ct = dIstance; 1= lIme, v = vclOClly. 

additive stage was delayed by either a longer lasting identity stage or a slow 

transition between the two stages as demonstrated by the netwOl k shown in 

Figure 12d. 

Across encoding types, the time multiplicative stage emergcd fîrst. Individua! 

network analysis supported this finding. Including networks in which the 

multiplicative stage of velocity did not emerge (as in Figure 12c.), more than X{)f~) 

of networks using integer-context, nth, mercury, and gausslal1 showed thl'>. For 

55% of the thermometer networks, the Ume multIplicative stage al~o cmerged bdore 

either the distance or velocity stage. For the remaining thcrmometer networks the 

distance multiplicative stage typically began within 20 epochs of the tlllle 

multiplicative stage. The velocity stage emerged later. 

With respect to the onset of the multiplicative stages of dl.,>tance and veloclty 

there is S0me variability across encodings 111 tenns of the mean data. IndlvHlua! 

network analysis revealed that thlS variabi!ity was also reflected within encoding 

types. That is, even in l1etworks where the mean data suggested that the dl~tance 

multiplicative stage emerged after the velocity ~tage, a number of networks 

demonstrated the opposite pattern. 
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3.2. Intel:er EncodjnK 

The majority (70%) ofinteger networks demonstrated the same developmental 

sequence as those in the pure condition. That is, the inter-developmental course 

began with the emergence of aIl three additive stages (d = t + v, t = d + v, and 

v = d + t) before eventually attaining the time and velocity multiplicative stages at 

approximately the same time, and finally the distance multiplicative stage 

(Figure 12a.). The mean epoch of onset of the additive stages were 4.76 

(SO = 1.09), 5.00 (SD = 1.58), and 5.00 (SO = 1.58) for distance, time and 

velocity respectively. The differences were nonsignificant (F(2,40) = 0.32). 

Individual network analysis revealed that for ail networks the on sets of the three 

stages were the same. The mean onset of the distance, time, and velocity 

multiplicative stages were 560.19 (SD = 234.74), 152.24 (SO = 8.24), and 

167.95 (SD = 30.66) epochs respectively. The differences were significant 

(F(2,40) = 62.00). Individual analysis revealed that for aIl networks the distance 

multiplicative stage began after the time and velocity stages. Moreover, for 76% of 

these networks, the rime and velocity multiplicative stages began at the same time. 

For the remaining networks, the multiplicative stage of velocity began following 

that of time. 

The majority of the remaining networks (30% of ail networks) differed in that 

rather than progressing from the additive stage defined by v = d + t to the 

multiplicative stage, they first progressed to a second additive stage defined by 

v=d-t. 

3.3. Summary: Inter-deyelopmental Course 

For all encodings except integer, the idenrity stages of time and velocity began 
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early in training at approximately the same time. During this period, the potential 

distance rules typically did not attain sufficient ,2 values to meet the best-rule 

criteria consistently. Consequently no distance stages were diagnosed. One 

exception was with networks using integer-context encoding where a distance 

identity stage defined by the rule d = t was observed. After the identity stages, the 

three additive stages emerged. For sorne networks the velocity stage emerged later 

either because of a longer identity stage or a slower transition period. I-Iowever. it 

was more typical for the three stages to emerge at roughly the same time. Thus, up 

to this point the inter-developmental sequence observed in the pure and limited 

memory conditions are qualitatively similar with the exceptions noted above (la ter 

stage onsets and longer stages in general, and the occurrence of a distance identity 

stage and subsequent delay in the onset of the distance additive stage of integer-

context networks in particular). 

Inter-developmental sequences differ between conditions with respect to the 

on sets of the multiplicative stages. In the pure condition, the tirne and velocity 

stages emerged at approximately the same time. Later on, the distance 

multiplicative stage began. In the Iimited memory condition, the time multiplicative 

stage also emerged first. However, for the majority of nctworks the velocity 

multiplicative stage began later, either before or after the distance multiplicative 

stage. Moreover, for sorne networks, the velocity multiplicative stage was not 

attained at ail. 

Thus, the limited memory manipulation did not affect the time and velocity 

identity stages except in terms of the length of the stages which were typically the 

same for both concepts. Moreover, in general, il did not affect the onset of the 
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additive stages. However, it did delay or prevent the onset of the velocity 

multiplicative stage. The delay in onset resulted from either a longer additive stage 

(Figure 12b), a slower transition, or a combination of both (Figure 12e). 

With respect to the inter-developmental course of networks using integer 

encoding, the limited memory manipulation does not appear to have substantially 

influenced the progression of stages. That is, the majority of networks progressed 

from early additive stages defined by the rules d = t + v, t = d + v, and v = d + t 

respectivcly to the multiplicative stages of rime and velocity first and then distance. 

However, for a sizable minority of networks, after the velocity additive stage, a 

different additive stage emerged defined by the rules v = d - t before the onset of 

the multiplicative stage. Moreover, as was discussed previously, the velocity 

multiplicative stage was often unstable resulting in regressions to the additive ~tagp., 

(v=d-t). 

Thus, the limited memory manipulation offset the differences betwee n the 

more linear encodings and the other encodings to the extent that it delayed the onset 

of the distance additive stage in networks using integer-context encoding and 

increased the likelihood of the emergence of the velocity additive stage defined by 

v=d-t. 

4. Hidden Unit Recruitment and Stage Onset 

In general, additive and multiplicative stage on sets did not occur as quickly 

after the recruitment of a hidden unit as in the pure condition. The mean epochs 

from hidden unit recruitment to additive and multiplicative stage onset are reported 

in Table 20. The onsets of multiplicative stages of distance and velocity were 

affected the most. Typically they occurred 20 to 50 epochs after the installation of 
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Table 20 
Epochs From Hidden Unit Recruitment 10 Stage Onset: 
Limited Memory Condition 

Additive Stase MultiElicative Stase 
Encoding d=t+v t=d-v v=d-t d=t*v t=d+v v=d+t 

Integer 
n 3 9 30 30 30 
M 15.00 13.89 40.47 10.17 18.50 
SD 13.23 12.44 34.09 6.09 17.08 

Int-cont 
n 30 21 27 30 30 24 
M 6.33 7.14 10.04 38.00 29.83 41.88 
SD 3.46 2.54 6.51 36.33 29.67 38.39 
Nth 

n 28 30 29 30 30 18 
M 9.64 17.17 20.69 24.67 12.33 35.00 
SD 3.31 14.30 10.33 23.63 9.98 33.69 

Mercury 
n 29 30 22 30 30 22 
M 5.86 11.33 25.00 29.50 23.83 48.73 
SD 4.02 8.90 25.54 33.64 25.85 34.45 

Thenn 
n 27 29 25 30 30 28 
M 5.37 11.90 12.20 21.43 15.50 26.79 
SD 2.37 5.58 7.92 24.77 30.12 30.10 

Gaussian 
n 30 30 25 30 30 27 
M 6.03 8.67 27.80 28.77 14.17 47.96 
SD 2.48 2.92 23.50 32.78 22.09 39.67 

Note. d = distance; t = ume; v = velocÎty. 

the hidden unit whereas in the pure condition they occurred between 5 and 15 

epochs later. Thus, more weight adjustment during the output training phase was 

required before the onset of the distance and velocity multiplicative stages than in 

the pure condition. Again it seems Iikely that this is due to the imprecision of 

weights from the time input bank due to the random nature of time inputs in vclocity 

inference patterns . 
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The same general pattern of connectivity between the first hidden unit and the 

input layer that was seen in the pure condition was again found in the 82% of 

networks in the limited memory condition. That is, the weights from the distance 

input units had the opposite sign to those from the time and velocity input units. 

Thus, the fit st hidden unit clearly distinguished distance from time or velocity 

inference patterns. 

It should be noted that the pattern was not always perfect. For example, 

occasionally one or more of the distance input units would have the same sign 

weight as weights from the time and velocity input units or vice versa. However, 

this variability was limited such that if the majority of weights from distance input 

units were of one sign, then the majority of weights from time and velocity units 

respectively were of the opposite sign. 

For ail of the networks demonstrating this pattern of connectivity, the distance 

and time additive stages emerged after sorne weight adjustment during the output 

training phase. This was also true with respect to the onset of the velocity additive 

stage for the majority of networks. However, for 24% of the networks the velocity 

additive stage did not emerge following the installation of the unit. Instead, these 

networks remained at the identity stage until the second hidden unit had been 

recruited. Thus, the random nature of the velocity inference patterns affected the 

ability of the algorithm to adjust the weights in such a manner that would enable the 

emergence of the velocity additive stage . 
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The results of the lirnited memory condition serve to quai if y the importanœ of 

weight adjustment during the output training phase in the attainment of the additive 

stages. That is, in the pure condition, it appeared to have a minor role sinec the 

distance, time, and velocity additive stages emerged soon after the instalhtion of the 

first hidden unit. However, the fact that sorne networks in the limitcd mCl110ry 

condition were unable to attain the velocity additive stage given a qualitatively 

similar pattern of connectivity demonstrates the importance of weight adjustment 

during the output 11 aining phase. 

Transition to Multiplicatiye Staees 

As in the pure condition, a clear pattern did not emerge with respect to 

transition to the multiplicative stages of time and velocity. With respect Lo the 

transition from the additive to the multiplicative distance stage in integer and intcgcr-

context networks, the same pattern of connectivity between the hidden unit and the 

time and velocity input units was observed. That is, the multiplIcative stage 

emerged only after a hidden unit was recruited which received opposite-sign 

weights for time and velocity input groups. AlI 20 networks across the two 

encodings recruited such a hidden unit. For 13 of the 20 networks tne transition 

followed soon after the installation of the hidden unit as in the pure condition. 

However, for the remaining networks, one or more additional hidden units werc 

installed before the multiplicative stage emerged. 

Thus, the majority of networks demonstrated the same direct relationShip 

between the installation of the opposite-sig n hidden unit found in the purp. 

condition. For the remaining networks the relationship was less direct. That is, 

even though the emergence of the multiplicative stage followed the recruitment of 
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one or more additional hidden units, it nevertheless emerged only after such a unit 

had been installed at sorne point. It would seem that the hmited memory 

manipulation prevented the algorithm from making the necessary weight 

adjustments during the output training phase that resuIted in the onset of the 

distance multiplicative stage . 
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CHAPTER FIVE - DISCUSSION 

1. Stages in Development 

In general, network performance across training could he characlerized by a 

coherent progression through a series of increasingly complex stages during which 

a large amount of the variance in the networks' responses to distance, lime, and 

velocitj inference patterns was .lccounted for. Moreover, bolh the rules thal 

defined stages and ,Ile order in which the stages emerged were, for the most part, 

consistent with those observed in children and aduIts (Wilkening, 1981; 1982). 

1.1. Distance 

The first stage in the distance developmental sequence was typically defined 

by the additive rule d = t + v. The networks then progressed to performance 

characterized by the normative multiplicative rule d = t X v. With respect to 

Wilkening's results, this developmental sequence is identical to the one found in the 

follow-up study (Wilkening, 1982) in which memory demands of the distance task 

were increased in order to prevent young children from using an eye-movement 

stl'ategy. Thus, the simulation results agree with Wilkening's findings to the extent 

that wh en such eye-movement strategies are not available, early performance of 

both children and networks is characterized by the integration of time and velocity 

infonnation in an additive manner. 

1.2. Time and Yelocity 

The time and velocity developrnental sequences demonstrated by the networks 
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were also comparable with those observed by Wilkening. Early performance was 

characterized by identity rules (t = d and v = d) in which the networks behaved as 

if responses to time and velocity inference patterns were based solely on distance 

information. Although 5-year-olds in Wilkening's studies were not classified as 

using the time identity ruIe, they were found to use the velocity identity rule. 

However, Wilkening seems to have been more concemed with proving that this 

was the exception rather than the norm. That is, Wilkening (1981) concluded that 

t~;; ','elocity identity stage resulted from the heavy memory demands inherent in the 

velocity task. Given his theoretical assumption conceming infonnation integration, 

his reh!~tance to legitimize identity stages seems self evident. However, identity 

stages of both time and velocity have also been observed by other researchers (e.g., 

Piaget, 1946/1969, 1946/1970; Siegler and Richards, 1979) . 

The additive stages of time and velocity followed the identity stages. Again 

the networks exhibited performance that was characterized by the same rules as 

observed by Wilkening. That is, for time inference patterns, the networks' 

responses across the entire problem set were best captured by the rule t = d - v. 

Responses to velocity inference patterns were captured by the additive rule 

v=d-t. 

Finally, adult subjects in both Wilkening's (1981) original study and the 

follow-up study (Wilkening, 1982) where he attempted to decrease the memory 

demands of the veloctty task were found to use the normative multiplication rule for 

time but not for velocity. However, the simulations revealed multiplicative roles for 

both time and velocity inferences. This would seem to suggest tha~ Wilkening's 

assumption of differing memory demands may be correct but his manipulation to 
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control these differences was not. That is, in the simulations capacity demands 

were the same for either concept. As a result, the networks achieved multiplicative 

stages in both rime and velocity inferences. 

In sum, with respect to the distance, time, and velocity developmental 

sequences considered individually, the networks progressed through the same 

stages observed by \Vilkening with the exception of an early time identity stage and 

the attainment of a velocity multiplicative stage. 

1.3. Deyelopment of Concepts and Architectural Constraints 

The simulations suggest that when aU else is held constant the developmentul 

course is more consistent across concepts than Wilkening's results indicatcd. That 

is, identity stages emerge early for both time and velocity concepts followed by the 

additive stages of all three concepts and then the onset of time and velocity 

multiplicative stages prior to the eventual attainment of the distance multiplicative 

stage. It is proposed that the architectural constraints of cascade-correlation are 

responsible for this consistency across stages. 

Identity Staees 

The simulation results suggest that rather than being considered as exceptions, 

identity stages may he • .. ~ewed as naturally arising from a generative architecture. 

Specifically, identity stages emerge due to a combination of the limited processing 

ability of the initial perceptron-like architecture and the fact that the network is 

performing all three inference tasks. 

It is proposed that, given the limited computational power of the initial 

network topology, the network is not able to encode both the inverse relationship 
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between lime (velocity) and distance when making velocity (time) inferences and 

the direct relationship between time and velocity when making distance inferences. 

That is, when making velocity inferences, time information diminishes the influence 

of distance information by virtue of being the denominator in the normative rule. 

Altematively, when making distance inferences, time information augments velocity 

information by virtue of the multiplicative relationship. The analogous situation 

exists for velocity information when making time and distance inferences. 

Given the limitations of the initial topology, the algorithm is un able to find a 

set of weights to accommodate both roles of the time and velocity input. That is, 

since only one set of weights exi5 . for the time input and one for the velocity input, 

the network cannot encode the dual nature of the inputs. Therefore, the relationship 

of time (velocity) information to the output error of distance and velocity (time) 

inferences is obscured. In contrast, the relationship of distance information to the 

output error is more salient since the role of distance is the same in either lime or 

velocity inference problems. As a result, when the algorithm attempts to reduce the 

error across aIl lhree problem types, weight adjustment may be primarily influenced 

by the relationship of distance input to the error. Therefore, when presented with a 

time (velocity) inference pattern, distance information will be more of an influence 

than velocity (lime) information. In contrast, when presented with a distance 

inference pattern, neither time nor velocity information will have a greater influence 

nor will the weights have encoded the direct relationship between time and velocity 

information. Thus, identity stages emerge for time and velocity inference 

problems. However, neither identity, additive, nor multiplicative rules are able to 
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capture the role of time and velocity with respect to distance inference problems 

during this period. 

Note that additive rules of distance, time, and vclocity would be possible. and 

indeed probable, if the network was performing only one of the tasks. That is, 

since aIl a perceptron can do js sum its inputs, performance charactcrized by 

additive mies would he expected. This is why it is proposed that il is a combination 

of the initial network topology and the perfonnance of three tasks within one 

network that gave rise to the identity stages. 

A similar argument could be put forward with respect to children. Earlyon, 

the child is confused about the differing effects of time and velocity and focllses 

hislher attention on distance information when making velocity or time infcrenccs 

respectively. With respect to distance inferences, the child iS,at li loss as to how to 

solve the problem and may possibly choose time or velocity depending on their 

salien ce. Perceptual salience has been proposed as a possible explanation of 

children's poor perfonnance on time problems (Levin, Gilat, & Zelnicker, 1980). 

Thus, it is possible that salience plays a role in distance inferences as weIl. 

Additiye Staa:es 

Additive stages of each concept typically emergeJ after the installation of the 

first hidden unit. This hidden unit c1early differentiated distance from time and 

velocity infonnation by assigning one sign to the weights from the distance Inputs 

and the opposite sign to weights from time and veloCÎty inputs. As a result, when 

the network was presented with a distance inference problem, lhe lime and velocity 

infonnation augmented each other. In contrast, when either a time or velocity 

inference pattern was presented, the distance information countered the infonnation 



• 

• 

• 

Distance, Time, and Velocity 
121 

of the other dimension. Thus, the first hidden unit is able to encode the dual nature 

of time and velocity, at least in a simplistic manner, and as a result the additive 

stages emerge. 

Multiplicative Sta~es 

The additive stages of aIl three concepts eventually were replaced by 

multiplicative stages. Typically, the time and velocity stage emerged first followed 

by the distance multiplicative stage. One reason why the distance additive stage 

may have lasted longer than either the time or velocity additive stages was that a 

larger proportion of error was reduced during the distance additive stage than in 

ei ther of the other two. This in turn delayed the onset of the distance multiplicative 

stage. Thus, the distance additive rule would seem to be a very good 

approximation of distance ir.ference patterns. It may be that for people, use of an 

additive rule persists as a heuristic type approach that is generally good enough. 

Summary 

The developmental course demonstrated by the networks was consistent 

across concepts in terms of what types of rules eIT erged. This was in large part due 

to the architectural constraints of cascade-correlation. That is, timt. and velocity 

identity stages emerged early In training prior to the recruitment of a hidden unit. 

Once the hidden unit had been installed, the network was able to differentiate 

among ùle dimensional information in such a manner that additive performance was 

possible by augmenting or countering the information of the defining dimensions. 

Finally, time and velocity inference patterns were mastered, in the sense that the 

respective nomlative ruIe-...; accounted for the greatest amount of variance in the 
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networks' responses, before the distance inference patterns. This was likcly duc to 

the fact that, in tenns of error reduction, the distance additive mie was suffl<.'Îent to 

reduce a large proportion of the error. 

J .4. Memory Demands 

Wilkening (1981) had three findings that he explaincd by differing Illemory 

demands: (1) the use a velocity identity rule by 5-year-olds, (2) the inabliity of 

adults to use the nonnative velocity rule, and (3) 5-year-olds apparcntly prccocioliS 

use of the normative distance rule. AccordIng to Wilkening, the vclOCIty task wa~ 

more difficult than the time task since time Information had to be rccalIcd after the 

distance information was presented. In other words, the time IIlformation wasn't 

immediately available in the velocity task and had to be retneved from Il1cmory . 

Thus, the 5-year-olds regressed to using an identity rule and aduIts to a sllbtraction 

rule. With respect to the young children's use of the distance multiplicatIve rule, he 

argued that the task was sufficiently easy so that children could employ an eye-

movement strategy which revealed an implicit understanding of the correct 

integration of rime and velocity information to infer distance. 

The pure condition simulation represents the ideal ~lluation that Wilkcning 

(1982) was striving for in the folIow-up study. That is, the memory dcmands of 

the tasks were the same in that for any given inference pattern the defllling 

dimension information was available at the moment the inference was to he made. 

Moreover, the use of an eye-movement strategy was equally impos~lhlc acros~ the 

three tasks. 

A direct test of Wilkening's hypothesis of differing memory demands W,1S 

undertaken in the limited memory condition. There, the Ume Information for 
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velocity inference patterns was degraded by varying the probability that the correct 

time information would be presented to the network. 

Although network performance was much more variable both across 

networks and within networks, the most general finding was that the normative 

velocity stage defined by the rule v = d + t was delayed and in sorne cases 

prevented. This would seem to support Wilkening's original contention that the 

reason the velocity multiplicative stage was not attained by his subjects was due to 

the extra memory demands of the task. Moreover, even for networks that 

eventually attained the multiplicative stage, it could be argued that they did so only 

after an inordinate amount of training not representative of the amount of learning 

that people would normally have. 

In the ide al situation, the velocity identity stage would have lasted longer than 

the time identity stage. Thus, at the same time that the networks would have been 

classified as using an additive rule for lime inference patterns they would be still 

solving velocity problems by primarily focusing on distance information as subjects 

in Wilkening's experiments did. Although sorne networks did in fact dernonstrate 

this developmental pattern, il was more typical for the additive stages of both time 

and velocity to emerge at the same time. This would seem to argue that early 

identity stages result from a lack of computational power regardless of memory 

demands. 

In the Iimited memory condition, the time multiplicative stage emerged before 

either the velocity or distance multiplicative stages. No strong conclusions can be 

drawn about the emergence of distance versus velocity since this varied across 

networks. Nor can any strong conclusions he drawn from the fact that th~ distance 
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stage emerged Iater than the time stage. That is, although Wilkening found that 

adults employed the correct normative rules in both the distance and lime task, he 

did not include lO-year-olds in the follow-up study. Thus, although he found thm 

lO-year-olds used the nonnative time rule in the first experiment, it is possible that 

the same aged children may use the distance additive rule when the eye-movemcnt 

strategy is not available. The simulation results of both the pure and limited 

memory conditions suggest that the use of the correct distance rule emerges later 

than use of the correct time mIe. 

J.5. The Issue of Encodjna: 

A secondary issue in this study was the effects of different encoding methods 

on network performance. It was discovered that the psychologiea) realism of the 

developmental course of the three concepts was dependent on the choice of input 

encoding. 

Initially five encodings were compared -- integer, nth, mercury, lhermomcler, 

and gaussian. For the most part, performance using the different encodings was 

qualitatively similar. However, when the inference patterns were encodcd as 

integers, substantial differences were observed. That is, for integer networks the 

distance additive stage began very early in training prior to the installation of a 

hidden unit. At the same time, performance on the time and velocity inference 

patterns was characterized by the additive rules t = d + v and v = d + l, 

respectively. Moreover, the nonnative multiplicative stages of aIl three concepts 

emerged following the se additive mies. Although the distance developmental 

sequence is the same as the one observed by Wilkening (1982), the time and 

velocity developmentai sequences diverged greatly. Thal is, neither lime nor 
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velocity identity stages were observed nor were th:! additive stages defined by the 

rules t = d - v and v = d - t. It appears that the error reduction that occurred 

during the period characterized by the aberrant additive rules (t = d + v and 

v = d + t) was sufficient to allow for the '::fiJagence of the nonnative multiplicative 

rules. 

Copstruction of the Dimepsion 

Why did the performance of networks using integer encoding differ? It 

appears that for the en~odings other than integer the dimension itself has to be 

constructed by the network. That is, there is no intrinsic information in th~se 

encodings that would indicate that a time value of 5, for example, is greater than a 

time value of 2. This must be learned by the network. Alternatively, with integer 

encoding, a dimensional value of 5 has a greater influence (positive or negative 

depending on the weights) on the outcome th an a value 4, 3, etc .. , regardless of the 

initial weights in the network. Therefore, integer enc<Xling can be considered more 

inherently linear th an the other encodings. 

To test this hypothesis, the integer encoding was modified by adding three 

context units. This was assumed to decrease the linearity of the input pattern across 

the dimensions to the extent that the respectjve context unit of a given inference 

pattern always had a value of one. Thus, the pattern as a whole was less linear. 

The results of this additional encoding, integer-context, SUppOIted the linearity 

hypothesis in so far as time and velocity identity stages were the first diagnosable 

stagl~s and were followed by the typical a::lditive rules (t = d - v and v = d - t) 

observed with other encodings. The only difference was that the additive stage of 

distance emerged before the recruitment of the frrst hidden unit as was the case with 
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integer encoding. However, in the limited memory condition, the distance additive 

stage was delayed, emerging only after the installation of the first hiddcn unit. 

Since the weights from the time input were imprecise du:.: to the limited mcmory 

manipulation, any advantage of the linear input was obscured. In Slhll, whcn the 

linearity of the integer encoding was diminished by using a context unit, the 

perfonnance of the networks was more in Hne with that of the other encoding types. 

2. Connectionism and Development 

As Flavell and Wohlwill (1969) surmised, the two fundamental issues in 

development are: (1) What knowledge structures develop?, and (2) How does 

developrnental transition occur? With respect to distance, time, and velocity 

developrr·ent, the structures that develop are increasingly complex reprcscntations 

that enable performance characterized by identity, additive, and multiplicative 

integration of defining dimensions. The connectionist simulations prescntcd hcre 

suggest that the underlying representations ari"e from inter-connected, simple 

processing units. Moreover, the simulations suggest that developmcntal transition 

results from both weight adjustment and the recruitment of hidden units. In terms 

of human cognitive development, transiùon is likely due to incremental learning and 

increases in non-linear representational abilities. 

2.1. Structuu 

Oreanjzed Knowledee in the Form of Weiehted Connections 

Siegler (1981) lIas conceptualized children's cognitive development as a 

progression through increasingly complex binary decisions. Through the use of his 

rule assessment methodology he has found support for his theory in a number of 
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cognitive domains inc1uding the development of distance, time, and velocity 

concepts (Siegler & Richards, 1979). While the simulations in this study support 

thcir findings of an early emphasis on distance information to solve time and 

velocity problems, the underlying representation responsible for this type of 

performance and subsequent stages in development 1S radically different. 

Networks naturally integrate dimensions in that unit activations are based on 

summing aIl the inputs to the unit. Nevertheless, these networks initially performed 

as if focusing only on one dimension. It has been sllggestè 1 that identity stages 

emerge as a result of an inability to encode the dual nature of time and velocity 

information when making inferences about distance and lime or velocity 

respectively. Thus, it is proposed that children do not ignne the <?ther dimension 

(time or velocity) but rather that they lack the ability to resolve their dual roles 

because of limited plocessing ability. That is, children consider both defining 

dimensions but place more emphasis on distance when making time or velocity 

inferences because distance information is more consistently related to the target 

performance. 

Additive integration of dimensions emerged as a resuIt of recruiring a hidden 

unit that differentiated distance from time and velocity information based on a 

pattern of connectivity in which the weights from lime and velocity inputs had the 

opposite sign to weights from the distance inputs. Moreover, there was sorne 

evidence that the distance multiplicative stage emerged following a hidden unit that 

further differentiated rime and velocity information. 

Thus, networks were capable of achieving knowledge states that have 

typically been assumt>d to be represented by explicit symbolic roles (i.e., identity, 
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additive, and multiplicative algebraic rules) by means of weighted connections 

among simple processing units whose only function is to send and/or receive 

excitatory and inhibitory signaIs. 

It should be stressed that althollgh network perfomlance is charactcrized hy 

explicit ruIes, this in no way implies that the networks have rcpresented the mies 

explicitly. That is, the distributed representation among the units in the network 

enable the networks to perform "as if' following explicit rules. This may also be 

the case for subjects in Wilkening's experiments. For ex ample, it secms lll'likely 

that the 5-year-olds in Wilkening's (1981) experiment knew that distance infcrcnccs 

are based on multiplying time and velocity information. Wilkening himsclf has 

discussed the lias if' nature of the integration. That is, children perfoml "as if" they 

were multiplying the dimensions. The present connectionist models show in detail 

how such "as if' performance is possible. 

Continuous Learnine Across the Staee 

Although network performance was stage-like in that long periods of training 

resulted in the same classification of responses, leaming did occur within stages. 

The large reduction of error within stages suggests that learning continued even 

though the overall responses did not undergo qualitative change. Moreover, the 

amount of variance accounted for by a given rule defining a stage was not constant 

across the stage. Together, these results suggest that learning is eontinuous during 

a stage. 

The conception of a stage as a dynamic rather than a statie period seems 

problematic for rule-based approaches. For example, if a child has an explicit rule 

for solving time problems that involves focusing on distance infomlation alone 
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(i.e., Siegler and Richard's rule 1), it is unclear how improvement beyond the 

correct dpplication of the rule within a stage might occur. In contrast, the error 

reduction across the time identity stage demonstrated by the networks suggests that 

weight adjustment can improve the accuracy of time inferences even though the 

responses remain characterized by the time identity rule. 

2.2. Transition 

The progression from identity to additive and then multiplicative stages 

represents qualitative restructuring of a knowledge representation. Researchers 

working within the framework of information integration theory (Anderson, 1974) 

have had difficulty formulating a precise mechanism that wouid account for these 

qualitative changes. In contrast, the use of cascade-correlation provides an explicit 

mechanism of transition. That is, it was demonstrated that qualitative changes in 

knowiedge were brought on by both quantitative changes in the form of weight 

adjustments and underlying qualitative changes due to hidden unit recruitment. 

Hjdden Unit Recruitment and Weieht Ad justment as Mechanism 

Sorne researchers have argued that weight adjustment alone is capable of stage 

transition (Plunkett & Sinha, 1992; McClelland, 1988). However, the simulations 

presented here suggest that weight adjustment and hidden unit recruitment are 

responsible for developmental changes. 

The evidence for hidden unit recruitment as a mechanism of stage transition is 

strong. In generaI, transition From the identity stages to additive stages of time and 

velocity followed the recruitment of the first hidden unit. The first hidden unit aiso 

brought about a transition from the initial period not captured by any distance rules 
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to the additive stage of distance. Similarly, transition to the timc and vclocity 

multiplicative stages followed the recruitment of the second unit. Finally, transition 

from the distance additive stage to the multiplicative stage typically followed the 

recruitment of either the third or fourth hidden unit. Moreover, new stages cmerged 

soon after the installation of hidden units, often requiring just five to ten epochs of 

weight adjustment. 

In these simulations there is strong evidence that simple weight adjustrnent 

alone was not sufficient to cause transition from one stage to another. For example, 

it has been argued that the transition to additive time and velocity stages required the 

recruitment of a hidden unit. That is, given the initial perceptron-like architecture of 

the networks, weight adjustment alone would not have brought about transition to 

additive stages. 

The argument is not that weight adjustment was un:mportant hut rather that 

transition is brought about by a combination of both weight adjustment and hidden 

unit recruitment. An interesting example of the interaction of weight adjustment and 

hidden unit recruitment was f')und in those networks where there was a pcriod 

characterized by a tie following the additive stages, prior to the onset of the 

multiplicative stages. Il appears that weight adjustment was sufficient to hring 

about a change in network responses from performance characterized byadditive 

rules to performance characterized by both additive and multiplicative rules but that 

a new hidden unit was necessary to comph.:te the transition to performance 

characterized solely by the multiplicative rule. 

Given that the emergence of stages appears to be intimately related to the 

constraints of a generative architecture, it seems unlikely that simulations using a 
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static architecture such as back-propagation would demonstrate the same 

psychologically realistic developmental course. In particular, the early emergence 

of identity stages may he difficult to capture in back-propagation networks. That is, 

if the initial network topology includes a hidden unit layer, then the ability to encode 

the dual nature of time and velocity would exist. Naturally, this is speculative 

since, at present, no attempt to simulate the acquisition of distance, time, and 

velocity concepts within a back-propagation architecture has been undertaken. 

2.3. Summaa 

The developmental course demonstrated by the networks is consistent with 

the conclusions of Flavell (1971) conceming stages of cognitive development. That 

is, the networks progressed through qualitatively different, highly organized 

knowledge structures, by means of relatively graduaI transitions. Knowledge 

representations in the form of inter-connected simple processing units emerged as 

learning progressed by means of graduaI weight adjustment and hidden unit 

recruitment. These representations were characterized by increasingly complex 

aIgebraic rules. 

3. Possible Criticisms and Limitations 

3.1. Sin~le NetWQrk for Three Tasks 

It was suggested that identity !>tages resulted from the use of a single network 

to perform aIl three tl~AS. Sorne might argue that the use of a single network is 

unwarranted. That is, why not use one network for each task? The simple answer 

is that by using one network the algorithm is forced to reduce error that is 

attributable to aIl three inference types. Moreover, any hidden units instaIled into 
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the network may represent knowledge of aIl three inferences. Since the question is 

really about the inter-relationships among the three concepts, using one network is 

the simple st means of representing knowledge about the se inter-relationships. 

J.].. Correlation 

Strict connectionists might object to the use ,2 values of different rules as a 

means of testing performance rather than the more typical measure of sum-squared 

error. However, unlike other connectionist simulations such as children's 

performance on the balance scale (e.g., McClelland, 1988; Shultz & Schmidt, 

1991) it was not possible to create problem sets such as those used in rule 

assessment (Siegler, 1981). Problem sets that wou Id refleet one rule versus 

another are precluded when a binary decision is not demanded of the networks . 

Moreover, the measurement of the correlation between responses generatcd 

by a given algebraic mIe anri those actually made by the network in response to the 

different inference patterns is qualitatively similar to how subjects' performance 

was assessed in Wilkening's experiments. That is, subjects were not required to 

provide accurate responses. What was assessed was the overall relationship of 

subjects' responses relative to one another. Therefore, determining the correlation 

of different potential mIes seems appropria te. 

3.3. Dial:nosinl: Performance 

Overall, the vast majority of epoehs across training were diagnosable. 

However, one limitation was the inability to classify the period prior to the onset of 

the distance additive stage even though it was associated with signifieant error 

reduction. However, as dlscussed above, it may be that since neither time nor 
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velocity infonnation is any better at predicting outeomes, any preference that 

children show for one or the other might refleet extraneous task factors such as the 

salience of the dimension on a given task. 

3,4. Lirnjted Mernory Manipulatjon 

One limitation of the limited memory manipulation was that it affected distance 

inference patterns as weIl as the intended velocity inferences. That is, sinee the 

weights from the time input bank are used to propagate information of both velocity 

and distance inference patterns, they also unavoidably affect performance on 

distance inference patterns. The qualitative progression of stages within the 

distance developmental sequence remained unchanged. However, the limited 

memory manipulation makes conclusions about the development difficult since the 

length of the stages was affected. 

Also with respect to the limited memory manipulation, the amount of error in 

recall was arbitrary. Any strong conclusions would have to wait until otiler levels 

of error were used. 

3.5. Generaljzation to Choice Tasks 

Another possible criticism is that the results of these simulations may not 

generalize to binary choice tasks. Even more seriously, it might be argued that the 

lise of a linear output predisposes the algorithm to find additive and multiplicative 

rules. However, preliminary work suggests that these criticisms are not warranted. 

That is, work is underway that extends the findings of the present study to 

situations in which a decision about which of two objects has traveled the greater 

distance, for the longer time, or at a faster velocity given information about the two 
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defining dimensions of both objects. This is analogons to the present study but 

requires a binary decision. The responses are encoded on two outputs with 

sigmoid activation functions. The same identity, additive, ;'nd multiplicative stages 

have been observed. Therefore, the emergence of additive and multiplicative stages 

observed in the present simulations is not due simply to the use of li linear output. 

3.6. Netwi!rk Analyses 

Although Hinton analyses proved usefuJ in understanding the emergence of 

distance, time, and velocity additive stages, they had limited use ill revealing how 

transition to multiplicative stages occurred. This is because as more hiddcn units 

are installed into the network, the role of any one unit becomcs Jess ObVIOUS sincc 

the representations become increasingly distributed and non-Iincar. Each ncw 

hidden unit is installed on a separate layer and receives input from ail prcvious 

hidden units and the input layer. As such, Hinton diagrams are probably more 

useful in non-generative Jearning architectures such as back-propagation with a 

limited number of units and layers. 

A promising new approach is being undertaken by Shultz and Elman (1993). 

They have extended a technique developed by Sanger (1989) called "contribution 

analysis" to analyze knowledge representations in generative algorithm~. 

Essentially, the technique involves determining the contributIon or influence of a 

given unit in determining the network's response. Contribution analysis dtffcrs 

significantly from Hinton analysis in that activations of sending units are considered 

in addition to size and sign of weights. That is, the contribution of any one unit is a 

function of both the unit's activation given a particular training pattern and the sign 

and size of the weigilt connecting it to a given output unit. Principle components 
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analysis is then performed on a contributions by input pattern matrix. The 

advantage is that many contributions may be reduced to a few interpretable 

components. Future work will apply contribution analysis to the present network 

models. 

3.7. Realiml 

A general limitation of the simulations is a lack of realism and a high degree of 

simplification compared to both the child and his/her environment. That is, the 

resources that a child brings to the task are far more complex than those represented 

in the simulations. Moreover, these resources are applied to both a far ranging type 

and number of tasks. Nevertheless, the model shows that an architecture 

employing brain-style computation can capture the known qualitative aspects of the 

development of distance, time, and velocity concepts based on input from the 

environment. 

4. Predictions and Future Research 

The simulations suggest that when aIl else is held constant, identity, additive, 

and multiplicative stages across concepts emerge '1t similar times reflecting the 

processing capacities of the child (network). Thus, the primary direction of any 

future research on this issue is to determine under what conditions this is true. 

The simulation results, together with Wilkening's studies, make several 

predictions. First, the results suggest that if 5-year-olds can integrate distance and 

velocity and time llnd velocity infonnation in an additive manner to infer rime and 

distance respectlvely, they should also be able to integrate distance and time 

infonnation additively to make velocity inferences. That is, Wilkening's hypothesis 
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about the velocity task being more difficult than the time task in tenlls of mel110ry 

demands is likely, but his manipulation to equahze the dcmands of the two tasks 

was ineffective, Thus, if memory demands were reduccd in ail three tasks. the 

simulations predict that aIl three types of inferences would hc solvcd additJwly hy 

5-year-olds. 

Second, but related, the simulations suggest that childrcn yOlillger than l'Ive 

years of age solve time and velocity inference problems by focll~ing on distance 

information and solve distance inference problems based on cither I11lle or vdol'lty 

information depending on which is more salient. Thus, the slIlllllatlOns ~ugge!'.t the 

velocity developmental sequence observed by Wilkening is t)lIahtativcly aCl'urate 

but that differences in onsets of stages relative 10 lime and distance were due ln 

different task demands. That is, Wilkening's observation that 5-year-olds use an 

identity rule to make velocity inferences IS likely rclatcd to the cxtrancou!'. ta'\k 

demands, not to the children's understanding of the relationship of lime and 

distance. However, the simulations predict that childœn younger than live years ot 

age make velocity inferences by focusing on distance Information hecallse of 

processing limitations. Therefore, future research should incIude youngcr children 

and manipulate the salience of velocity and time information in the dl!'.tancc ta~k. 

Third, the simulations suggest that the distance multiplicative !'.tagc elllergc<.; 

after both time and velocity multiplicative stages. Since WJlkening clid not !'.tudy 

lO-year-olds' performance when an eye-movement strategy wa~ not pO"~lhlc, 11 

would be necessary to re-examine lO-year-olds undcr thls condllion. The 

simulation results predict that if the memory demands of the thrcc ta~b were 
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similar, J O-year-olds would use the additive rule for distance inferences and the 

normative multiplicative rules for both rime and velocity inferences. 

Finally, as suggested, if the task demands of the velocity task were reduced il 

is predicted that JO-year-olds wou Id make velocity inferences by integrating the 

dimensions with the correct multiplicative rule. Therefore, the inability of 

Wilkening's subjects to correctly integrate time and distance information is likely 

due to extra memory demands. 

Several issues in terms of future connectionist simulations are also relevant. 

First, differing levels of probability of correct recall could he examined. It may be 

that by decrensing the likelihood of correct recall of time infonnation in the velocity 

task would lengthen the identity stage of velocity and thus delay the onset of the 

additive stage. Moreover, to make the limited memory manipulation more realistic, 

the probability of correct recall might increase as training progresses. 

Second, with respect to analyzing network performance, an interesting 

approach would he to u~e functional measurement. However, this is somewhat 

problematic since functional measurement relies on analysis of variance of group 

data. In terms of network data, it is difficult to know how individual epochs of 

different networks relate to one another. Moreover, although epochs certainly can 

he related qualitatively to age in that more epochs imply greater age, it is not c1ear 

how epochs and age relate precisely. 

Third, as mentioned, the use of contribution analysis may provide more 

insight into the underlying representations embodied in the network's connections. 

Although Hinton analyses were useful in understanding networks with smaller 

topologies (i.e., after one or two hidden units) the representations after addition al 
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hidden units were installed in larger networks were obscured by the shcer number 

of units and consequent distributed representations. 

Founh, it was argued that stage transition by means of weight adjustment mlli 

hidden unit recruitment. or incremental learning and increases in non-linear 

representational power in humans, are responsible for early identity stages and 

subsequent transitions to more advanced stages. Given that statie networks do not 

allow for structural increases in representational power, such networks would not 

be expected to capture the stage progressions observed in both the currcnt 

simulations and humans. Identity rules have been observed in simulations using 

back-propagation networks. For example, McClelland (1988) captured the "weight 

only" mIe in his simulations of the balance scale. However, it is believed that in the 

current simulations identity stages emerge from the inability of the initial 

perceptron-like architecture to find a set of weights that wou Id accommodate the 

three inference tasks. Naturally this hypothesis needs to be empirically tested by 

attempting to simulate the acquisition of distance, time, and velocity concepts using 

a back-propagation network. 

Finally, as mentioned, work is underway that attempts to simulate children's 

responses in a binary choice task. Although there are parallels with both Piaget's 

(1946/1969, 1946/1970) and Siegler and Richards' (1979) work, among others, 

these simulations employ Wilkening's (1981) methodology of presenting 

information about two defining dimensions and requiring inferences about the third 

dimension. This should offer insight into the importance of assessing knowledge 

with either choice or non-choice tasks in addition to the generalizability of the 

present simulations. 
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ft has been argued that the stage progressions observed in network 

perfonnanee have resuIted from the constraints inherent in a generadve algorithm. 

That is, identity stages arise from a laek of computational power and subsequent 

inability to encode both the inverse and direct relationship of time (velocity) to 

distance and velocity (time), respeetively. Installation of the first hidden unit 

enables the networks to form a simplistie representation of this relationship in that 

additive rules are used to integrate the dimensions. Finally, after funher changes to 

the network topology by hidden unit recruitment, performance that is characterized 

by the normative rules of distance, time, and velocity emerge. 

The main theoretical implications are that children use a domain general 

algorithm or learning rule that allows for increased cornplexity in knowledge 

representations as the child's eapacity for problern solving increases. Moreover, it 

is the domain specifie constraint of making inferences on the three problem types 

that determines the type and progression of knowledge representations. Early 

identity rules result from an inability to conceptualize the dual role of lime and 

velocity rather than from the child ignoring distance information. Increases in the 

child's capacity en able simplistic additive representations and th en more complex 

multiplicative representations. 

The chiid is considered as an active participant in hislher environment in that 

he/she is continually learning from experience. However, learning itself may not 

aiways be sufficient for qualitative changes in the knowledge representations. 

Often such changes require increases in processing capacity . 
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The success of the present simulations in captllring the development of 

distance, time, and velocity integration mIes is encouraging because it suggests thm 

other findings of researchers working within the framework of information 

integration (Anderson, 1974) may also be captured by connectionist simulations. 

In general, developmental transitions from simpler additIve rules to more complcx 

multiplicative integration mIes have been observed in children's performance on li 

number of compensation tasks in addition to distance, time, and velocity 

inlegration. The advantage of conneclionist simulations is lhat they provide both 

precise knowledge representations of integration mIes and a precise mechanism of 

how development proceeds from simpler to more complex integration rules. 

Cascade-correlation has already proven lIseful in lInderstanding a number of 

cognitive developmental phenomenon including children's performance on the 

balance sc ale task (Shultz & Schmidt, 1991; Shultz, Mareschal, & Schmidt, in 

press), the acquisition of personal pronouns (Shultz, Buckingham & Oshima

Takane (in press), and children's seriation ability (Mareschal & Shultz, 1993). The 

present research extends the applicability of cascade-correlation to the acquisition of 

distance, time, and velocity concepts. A number of insights and predictions have 

come from this work, validating cascade-correlation as a promising tool of 

investigation into cognitive development by means of connectionist simulations. 
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Appendix A • Performance Attributable to Stage: Limited Mcmory 

Condition 

Maximum R-square: 
Distance Additive Stage 

1.00 • Nth 

0 Mercury 
~ 0.90 Il Thennometer 
::s 
~ D Gaussian 
~ 0.80 ['J Integer-context 

0.70 ~ Integer 

Encoding 

Figure A 1. Maximum r 2 of d=l+v rule attatned dunng additive stage of 
dIStance devclopmental sequence. 

Maximum R-Square: 
Time Identity and Additive Stages 

1.00 

• Nth 

~ Mercury 

~ ThcmlOmcter 
~ 0.90 
::s 
11 
~ 0.80 D Gaussian 

~ Intcgcr-context 

0.70 
Identity Additive 

Stage 

Figure A 2. Maximum r2 of t=d and l=d-v rules allatncd during Idcnllly ami addllive 
stages of time devclopmental sequence rcspcctlVely. 
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Appendix A - Perfonnance Attributable to Stage 
A2 

Maximum R-Square: 
Velocity Identity and Additive Stages 

• Nth 

t2l Mercury 

Il Thennometer 

D Gaussian 

Il Integer-context 

Identity Additive 
Stage 

Figure A 3. Maximum r2 of v=d and v=d-t rules attained during identity and additive 
sl<lges of velocity developrncntaI sequence respcctively. 
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Appelldix B - Error Reduction 
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Appendix B - Error Reduction: Lirnited Memory Condition 

Error Reduction 
At Stage Onset 

Additive 
Stage 

• Nth 

~ Mercury 

Multiplicative 

Il Thennometer 

o Gaussian 

(b) 

HX) 
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.... 70 
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Error Reduction 
Over Additive Stage 

AdditIve 
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fi Integcr-context 

~ Illtegcr 

Figure B 1. Mean percent of error reducllOn in dIstance mference pallenls (a) from epoch 5 10 
additive and muILiplicative stage onscl and (b) over addItive stage. Error burs ure sl~\ndard 
deviations from the mcan. 
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(a) (b) 

Error Reduction Error Reduction 
Over Stage At Stage Onset 
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Figure B 2. Mean percent of error rcducLion In Lime mference patterns (a) over idenLity and addItive 
slliges and (b) from epoch 5 to muhlplicauve stage onscl. Error bars are standard deviations from 
the mcan . 



• 

• 

• 

Appendix B - Error Reduction 
B3 

(a) (b) 

Error Reduction Error Reduction 
Over Stage At Stage ûnset 
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Figure B 3. Mean percent of error reductlOn in veloclty mference patterns (a) ovcr Idclltlty and 
additive stages and (b) from epoch 5 lO multIplicatIve stage onscl. Error bars arc standard 
deviations [rom the mcan . 




