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Abstract

This thesis considers waveform shaping and error control coding methods to im-
prove the performance and capacity of an asynchronous DS-CDMA communications
system. The uplink of the IS-95 cellular CDMA standard is an example of such a
svstem. In this work. we develop a criterion to measure the merits of a waveform
shaping filter from the points of view of interference reduction and bandwidth occu-
pancy. This criterion allows us to derive quasi optimal waveforms. It is shown. for
example. that the pulse shaping filter of the [S-95 standard is close to optimal.

We also show, in the first part of this thesis. that pseudo random sequence spread-
ing is an inefficient way of expanding bandwidth. Indeed. we prove that the optimal
sharing of bandwidth spreading between PN sequences and error control coding is
obtained when all the spreading is due to the error control code. The role of PN
sequences for user separation is not diminished. while the system benefits from the
added coding gain.

In order to realize as much as possible of the potential coding gain. good very
low rate codes are needed. The second part of this thesis focuses on the design of
specific low rate error control codes for CDMA systems. We consider a new coding
scheme, based on the combination of trellis codes and first-order Reed-Muller codes.
We develop two families of codes based on this scheme, and study their performance
both analytically and through simulations. We find the performance of our codes to
be superior to that of other families of very low rate codes. such as the orthogonal,
biorthogonal, and superorthogonal convolutional codes, and the error control code

specified in the [S-95 standard.
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Sommaire

Ce mémoire porte sur des méthodes de filtrage de signal et de codage de controle
d’erreur afin d’améliorer la performance de systémes de communications asvnchrones
utilisant I’Acces Multiple 2 Répartition par Code (AMRC) a séquences directes {DS-
CDMA). Le lien des usagers vers les stations de base du standard [S-95 (systéme
cellulaire employant I'AMRC) en est un exemple. Dans un premier temps, nous nous
employons 4 mettre au point un critére quantitatif qui mesure la capacité d'une forme
d’onde a rejeter les interférences. tout en tenant compte de la bande passante qu'elle
occupe. Ce critére nous permet de trouver des formes d’ondes quasi-optimales. Nous
montrons par exemple que la forme d’onde spécifiée dans le standard IS-95 est voisine
des formes d’ondes optimales.

Dans la premieére partie de ce mémoire. nous démontrons aussi que l'extension du
spectre par des séquences pseudo-aléatoires, bien que tres facile d’implémentation.
se révele inefficace du point de vue du codage de canal. En effet. il s’avere que le
partage de I'extension du spectre entre les séquences pseudo-aléatoires et le codage
de canal devient optimal lorsque le codage de canal est entierement responsable de
I'extension du spectre. Le role des séquences pseudo-aléatoires afin de distinguer les
différents usagers n’est pas diminué. tandis que le systéme bénéficie. en plus. du gain
de codage.

Afin de réaliser, méme en partie. les gains de codage potentiels. de bons codes
de controle d’erreurs 4 bas débit sont requis. La deuxiéme partie de ce mémoire
porte sur la conception de codes de controle d’erreurs pour les systémes AMRC asyn-
chrones. Nous proposons un nouveau procédé de codage, basé sur 'association de
codes Reed-Muller du premier ordre avec des codes treillis (trellis codes). Par la
suite, nous construisons deux familles de codes en utilisant ce procédé, et étudions
leur performance grace a des méthodes analvtiques et a des simulations par ordi-
nateur. Il ressort que les codes ainsi construits sont supérieurs a ceux déja connus,
dont les codes convolutionaux orthogonaux, biorthogonaux. et superorthogonaux. de

méme que le code du standard 1S-95.
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Chapter 1

Introduction

The last decade has witnessed a phenomenal expansion in wireless communications
which is now enjoving its fastest growth ever. Cordless and cellular phones. paging
svstems. and wireless data networks are becoming part of our every day lives. This
growth is mainly attributable to analog technologies of the 1970s which are mature
today [1]. By the first couple of decades of the 21st century. there will be an equal
number of wireless and conventional wireline customers {1]. The wireless systems sub-
scribers will expect a wide range of services together with a high reliability from their
service providers. In the difficult environment of radio channels. where bandwidth is
scarce and interference of many kinds severe. only advanced digital techniques com-
bined with intelligent and flexible network management can help meet the growing
demand.

In the first section of this chapter, we introduce the fundamentals of multiple
user wireless communications. and discuss the different multiple access methods. We
then emphasize Code-Division Multiple Access (CDMA) and show the potential ad-
vantages that it provides over other methods. Finally. we define the scope of our

research, and present the structure of the thesis.
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8]

Cell

6 Base station using
set of frequencies no 6

Figure 1.1: Frequency reuse in cellular communications systems. Cells with the same
index use the same set of frequencies.

Base
Station

"

Perfect Partition Ideal Coverage Actual Coverage
Figure 1.2: Ideal and actual cell coverage. adapted from [2].

1.1 Multi-User Mobile Communications

1.1.1 The Cellular Concept

The cellular concept is at the heart of effective wireless communications systems. It
allows high capacities within a limited spectrum. and reduced mobile transmitted
power. In a cellular system. the service area is partitioned into a number of smaller
regions called cells. each of which is served by a single base station. as illustrated in
Figure 1.1. If each cell can accommodate [ simultaneous users. the total capacity is
M times the number of cells. with a density of M users per cell area. Naturally. the
regular hexagonal shape used to depict a cell is only an imaginary visual aid. There
are no physical boundaries to the electro-magnetic waves. which means that cells
actually interfere with each other. a major problem for network planners. As shown

in Figure 1.2, a cell is determined by the area it covers. which, ideally. is a circle. and
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Figure 1.3: Cell splitting to accommodate non-uniform traffic density.

in practice can deviate largely from the ideal. For example. an active user might not
be communicating with the closest base station. due to shadowing. multipath fading.
or maybe just because of the unavailability of channels. Hence the area covered by a
cell is not only loosely defined. but also varies with time.

The problem of inter-cell interference can be solved by allocating different fre-
quency bands to each cell. Naturally. if this is done over the whole service area. the
capacity becomes no better than that of a huge single cell. However. a good ~om-
promise is reached through frequency reuse. which limits the interference between
adjacent cells. All cellular radio networks emplov some degree of frequency reuse.
For example. in Figure 1.1. each cell emplovs a set of frequencies which is distinct
from that of its neighbors. The frequency reuse factor is the number of sets of fre-
quency which partition the allocated spectrum (in Figure 1.1. the frequency reuse
factor is 7). A set of adjacent cells which. together. use the whole available spectrum
with no overlap is called a cluster.

The communication link from the mobile to the base station is called the uplink.
whereas the downlink refers to the inverse direction. In most wireless svstems. the
uplink and downlink employ disjoint sets of frequencies: this is called frequency di-
vision duplexing (FDD). We assume that all wireless systems discussed in this thesis
emplov FDD.

The capacity of a cellular system can be improved in dense traffic areas by reducing
the cell radii. an operation called cell splitting. and which is illustrated in Figure 1.3.
This technique allows the coverage of areas with non-uniform traffic density. and

can also adapt the coverage to long-term variations in traffic density. Cell splitting is
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accompanied by a corresponding reduction in transmitted power to avoid interference.
Side advantages include a reduction in the average transmitted power. increasing
battery life and/or reducing the weight of the mobile units. However. the number
of base stations also increases. When a mobile crosses from one cell to another. it
switches its communication to the corresponding base station. in an operation called a
hand-off. The smaller is the cell size. the larger is the frequency of hand-offs that must
be handled. which implies the need for robust and fast hand-off strategies. Hence.
reducing the cell radii in a given area improves the svstem capacity. but implies
higher costs and complexity. Moreover. if a hand-off cannot be completed. the call is
dropped. an event which should be made as rare as possible. Indeed. the blocked call
rate (when a call cannot be started) and dropped call rate are the main indicators
of the svstem saturation. Users can tolerate small blocked call rates (at peak hours)
but virtually no dropped calls. Since each hand-off is a potential dropped call. there
is a limit on how small cell sizes could be made. even if the cost of a large number of
base stations is acceptable.

Other methods of improving the capacity of a cellular system include dyvnamic
channel allocation. whereby cells can “borrow™ unused frequencies from neighboring
cells. and sectorization where directional antennas divide each cell into non-interfering
sectors. Power control. carefull site selection. and antenna downtilt on sectorized
sites. can help reduce the interference to other cells. For voice services. efficient
speech coding provides a great reduction in the data rate. which in turn. allows more
voice channels per unit bandwidth. We will not examine further these methods. but
the interested reader is referred to [1]. Although these techniques might seem very
powerful in achieving high syvstem capacities. one should not forget the verv severe
environment of wireless systems which makes all these techniques necessary.

Even if the severe radio environment were somehow tamed. the major obstacle to
accommodating a large number of users in a given cell is the restricted bandwidth
available to service providers. Indeed. the radio frequency spectrum is a scarce re-
source. and regulatory agencies only parsimoniously allocate chunks of bandwidth to

service providers, who need to use it as efficiently as possible. Hence the cell capacity
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(and therefore the network capacity) is determined. to a large extent. by the spec-
trum sharing strategy among the users within a single cell. Equally important. are

the coding and modulation which determine the bandwidth of a single user signal.

1.1.2 Multiple Access in Wireless Communications

In this section. we look at the main three methods of providing multiple-access com-
munications between users and their base station: frequency-division multiple access
(FDMA). time-division multiple access (TDMA). and code-division multiple access
(CDMA). Although we discuss these three techniques separately. wireless svstems

may use a combination of two or even all three of them.

Uplink Channels Downlink Channels

Allocated
User Channel

Figure 1.4: Frequency-Division Multiple Access.

Frequencv-division multiple access is the user separating technique emploved in
current analog cellular systems in North America (Advanced Mobile Phone Svstem
or AMPS). During a call. a user is assigned a pair of frequency channels. one for the
uplink and one for the downlink. He {or she) remains the onlyv user of these channels
until the end of the call. or until a hand-off occurs.

Time-division multiple access divides time into time frames and time slots. as
shown in Figure 1.5. Since frequency division duplexing is emploved. during a call.
each user is assigned a time slot on the uplink frequency. and a time slot on the
downlink frequency. Such a svstem requires that users be synchronized. which adds
to the syvstem complexity. On the other hand. a single demodulator followed by
a demultiplexer is required at the base station receiver end. to demodulate all the

users. Most TDMA svstems actually combine TDMA with FDMA. in order to relax
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Figure 1.5: Time-Division Multiple Access.

the synchronization requirements and therefore the system complexity. For example.
the GSM standard (Global System for Mobile. originally Groupe Spécial Mobile)
adopts this technique. with 8 time slots per frequency carrier.

TDMA and FDMA are sometimes referred to as orthogonal multiple access. since
users are orthogonal to each other. either in time or in frequency. Code-division
multiple access. instead. uses “spreading sequences” to distinguish between users.
which therefore employ the same bandwidth at the same time. In asvnchronous
CDMA. the signals of different users are not orthogonal. and therefore interfere with
each other. The same is true for svnchronous CDMA with non-orthogonal spreading
sequences. However. as we will see in the next section. this interference can be

controlled. and even completely removed. at least in theory.

1.2 Code-Division Multiple Access for Wireless Com-
munications

Code-division multiple access employs spread spectrum techniques to generate a
transmitted signal with a much larger bandwidth than the data rate dictates. Al-
though several bandwidth spreading techniques are possible. direct-sequence (DS) is
the main candidate for wireless communications. In DS-CDMA. a pseudo-random
binary sequence (PN sequence) is used to transform the message into a wide-band
signal, as illustrated in Figure 1.6. Each binary symbol of the spreading sequence

is called a chip. The chip rate divided by the data rate vields the spreading factor.
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Figure 1.6: Direct-sequence CDMA in time and frequency.

When the spreading factor, sometimes loosely referred to as the processing gain, is
very large, the power spectral density of the transmitted signal resembles that of

background noise. and is much lower than that of the original narrow-band signal.

1.2.1 Multiple Access And User Separation

In a DS-CDMA system, users spread their signal by using different spreading se-
quences or spreading codes (hence the name CDMA). A single-user receiver can then
be implemented as in Figure 1.7. The received signal is multiplied by a local replica
of the desired PN sequence, which in effect despreads the signal. Note that if the
local replica of the desired PN sequence is delayed by one chip period. then the de-
spreading modulator yields a noise-like signal, whose level is inversely proportional to
the spreading factor. Although this emphasizes the importance of synchronization in
CDMA. it also reveals its resistance to multipath. since versions of the signal which
are delayed by more than a chip period will only contribute to a small fraction of

noise like perturbation. Moreover, replicas of the signal which are delayed by less
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than a chip period will also be partly rejected. Since chip periods are relativelyv short.
DS-CDMA is inherently robust to multipath interference.

If the system is synchronous, then orthogonal sequences may be used to com-
pletely suppress the other-user interference. However. the processing gain then lim-
its the maximum number of users. In asynchronous DS-CDMA, or in synchronous
DS-CDMA with non-orthogonal sequences. the other-user interference is inversely
proportional to the processing gain. The number of users is not hard-limited. but
the system performance degrades with increasing traffic. In a cellular system which
employs DS-CDMA4, it is difficult to synchronize the uplink. whereas the downlink
(point to multi-point) is naturally synchronous. Hence. in the remaining part of this
thesis, we assume that the uplink uses asynchronous DS-CDMA and the downlink

synchronous DS-CDMA.

Data Sequence
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!
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Figure 1.7: DS-CDMA with single-user receiver.

The single-user receiver of Figure 1.7 considers all interference as noise. Natu-

rally, the other-user interference is not random, and contains information. Multi-user
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receivers which jointly demodulate the multi-user signal can significantly outperform
the single-user receiver. Actually. the optimal multi-user receivers can completely
eliminate the effect of multi-user interference [3]. so that the performance for each
user is limited by thermal noise and other channel perturbations. Naturally, it would
be very inefficient to implement multi-user receivers on the downlink, since each mo-
bile unit would have to demodulate the signals of all the users in the cell. Hence
multi-user receivers are intended for the uplink channel. Unfortunately. the complex-
ity of an optimal asynchronous multi-user receiver is huge (exponential in the number
of users), whereas a bank of single-user receivers is only linear in the number of user.
A substantial amount of research has thus been conducted on sub-optimal multi-user
receivers, in an attempt to trade performance for a reduction in complexity (see for
example [4, 5]). However. despite their poor performance. single-user receivers are
simpler. cheaper, and more flexible since they work independently. For example.
one could just add a bank of single user receivers to a base station to increase the

maximum number of supported users.

1.2.2 Advantages of DS-CDMA

By spreading the signal over a large frequency band. DS-CDMA is verv efficient
in combating frequency selective fading, which is a common perturbation in wire-
less communications. Indeed, multipath components may be independently received
which reduces dramatically the effect of multipath fading. The wide-band CDMA ap-
proach offers a form of diversity to combat frequency selective fading. since typically
only a portion of the signal bandwidth is affected. Indeed, typical fade bandwidths
are of the order of 100-200 kHz, which is comparable to the bandwidth of a GSM
channel, but much less than the [S-95 bandwidth (1.25 MHz).

Unlike orthogonal multiple access schemes, DS-CDMA makes a full use of the
allocated bandwidth, since no guard times or guard bands are necessary to separate
the users. Moreover, the ability of CDMA to average co-channel interference over a
wide bandwidth allows for much higher frequency reuse factors, which makes CDMA

a prime candidate for multiple access in cellular communications. Typical cell reuse
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patterns (number of cells per cluster) are 7 for FDMA. 4 for TDMA (GSM standard
for example). and 1.33 for CDMA [6]. Using these figures. it is argued in [6] that the
capacity of a cellular CDMA system would provide 4 times the capacity of TDMA
and 20 times that of AMPS (analog FDMA). These gains however have not been
reached in practice.

The large bandwidth spreading that is required in DS-CDMA allows the use of
powerful very low rate error control codes in asynchronous systems. In turn, such
codes lower the required E}/Np to obtain the desired communications quality. which
allows more users to join in (or a higher level of interference), or reduces the interfer-
ence to other cells. The net effect is an improvement of the overall system capacity.

Another primordial advantage of DS-CDMA is the so-called soft capacity. In or-
thogonal multiple access schemes, it is impossible to add even one more channel if
the system is full, resulting in a blocked or dropped call. Meanwhile, the grade of
service is independent of the number of users as long as the system has not reached
its capacity. Such behavior is sometimes called hard capacity, in contrast with DS-
CDMA where the quality of the communication degrades gracefully as the number of
users increases. Hence, if a system is operating at capacity. then all the users enjoy
the required grade of service, but adding one or a few more users is possible. result-
ing in some small performance degradation. Often. it is preferable from the service
provider’s point of view to allow a small degradation in the quality of the transmis-
sion for a short period of time (until some call is completed), avoiding therefore a
blocked or a dropped call. The soft capacity property which is conveniently exploited
in CDMA results in a traffic capacity improvement.

Voice activity can be well exploited in the voice channels of a DS-CDMA system.
In a typical conversation, each party talks for less than 50% of the time. The ac-
tual figure is between 30% and 45%. Since speech pauses contain no information.
they need not be transmitted (a background noise generator at the mobile receiver
can be provided for listening comfort, or background notse can be coded at a much
lower rate). In orthogonal multiple access, it is virtually impossible to exploit the

voice activity by relinquishing the uplink channel when the user is not talking (and
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the downlink channel when the party is not talking). due to the delay involved in
requesting and obtaining a channel, and to the increased dropped call probability if
a channel cannot be allocated. However, with CDMA, it is possible to reduce the
data rate during speech pauses, thereby increasing the processing gain. The mobile
can then reduce its transmit power for the same received SNR (because of the larger
processing gain) which saves battery life and most of all reduces interference to other
users, thereby improving the system capacity [7].

The fact that the same frequency can be used over and over from cell to cell allows
the mobile to perform soft handoffs. In a soft handoff between two base stations. the
mobile communicates with both until the handoff is complete. This is possible because
the signals coming from the two stations appear to be delayed versions of each other
to the mobile, which are combined by a Rake receiver. Both stations must however
send the same data and control bits. Soft handoffs can greatly reduce the probability
of dropped calls during handoffs, and makes the handoff unnoticeable to the user,

unlike AMPS or current GSM.

1.2.3 The CDMA Challenges and Promises

The main disadvantage of CDMA is its high sensitivity to the near-far effect [8]. The
near-far effect occurs in the uplink. where the received power levels at the base station
may not be equal. For example, if all mobile units had the same fixed transmitter
output power, then the received signal would be dominated by the mobile closest to
the base station. This would have a disastrous effect on the system capacity. The
near-far effect is combatted with the use of tight power control, which combines both
open and closed-loop power control. In open-loop power control, the mobile adjusts
its transmit power based on the received power from the base station. Open-loop
power control is fast, and can track rapid variations in the signal strengths that
may occur with fading. However, it is not accurate since the uplink and downlink
channels are not symmetric. Because of the high sensitivity of CDMA to received
power imbalances at the base station (a 1 dB imbalance can lead to a 30% reduction in

capacity), closed-loop power control is also necessary. In closed loop-power control,
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the base station sends a few control bits at regular interval, telling the mobile to
increase or decrease its power. Although slower than open-loop power control. it is
much more accurate. Therefore, a combination of open and closed-loop power control,
where the latter refines the power level determined by the former. results in a tight
power control scheme which ensures equal received power levels at the base station.

Many of the advantages of CDMA that were outlined in the above sections also
come at some cost. Rake receivers, decoders of powerful low rate codes. voice activity
detectors, power control schemes, all require extra hardware (and mayvbe some soft-
ware) which adds to the system cost/complexity. On the other hand, CDMA does
not require user synchronization. nor does it need equalizers [6], which represents
significant savings in cost and complexity.

The promise of CDMA is an efficient cost-effective cellular system with a capacity
larger than that obtainable with other multiple-access schemes. The challenge is to
deliver on the promise. The [S-95 standard developed by Qualcomm, and the recent
bandwidth allocation for CDMA are first steps in this direction. In Canada. some
cellular service provides, such as Bell Mobility and ClearNet, have chosen CDMA
technology. whereas others such as Microcell are going with GSM (TDMA/FDMA).
For the moment, many GSM systems are already up and running, throughout the
world, whereas CDMA has been used only in some limited areas (LA. Hong Kong,
Korea). Is there room for two multiple-access technologies, or will one take over
the market? Will there be one world standard, or will each global market more
likely go with their own standards? The question is already difficult to answer from a
technological point of view. When we take into account the heavy weight that politics
have in regulatory decisions, it appears clearly that these questions are bevond the

scope of this thesis.

1.3 Thesis Scope and Outline

In this work, we look at wayvs to improve the capacity of the uplink of a DS-CDMA

system, at the physical layer level. As in the proposed IS-95 standard, we assume
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single-user receivers at the base station. We concentrate our efforts at the modu-
lation and coding levels. and investigate methods to improve the reliability of the
transmission, which in turn would provide a capacity increase for the same transmis-
sion quality. Since we are looking at modulation and coding, we consider single cell
svstems, because the effect of other cells is only to raise the interference level.

In the first part of this thesis, we analvze the performance of a DS-CDMA system
without coding. We show that careful waveform shaping specific to the DS-CDMA
environment can dramatically improve the performance over rectangular shaping,
and we construct such effective waveforms for DS-CDMA. We then show. through
random coding arguments. that the system performance can be greatly increased
through powerful low rate codes. and that channel coding should account for all of
the bandwidth spreading as opposed to PN sequence spreading. In Chapter 3. we
look at known very low rate codes, and construct our own code family, based on
the combination of trellis and first-order Reed-Muller codes. By default. we call
these codes Trellis/Reed-Muller codes. Finally, in Chapter 4, we provide a complete
comparison of our codes with the other known very low rate codes. The conclusion of
this comparison is a net performance advantage of our codes. In the conclusion part,
we elaborate on the benefits of using careful pulse shaping and Trellis/Reed-Muller
codes in a DS-CDMA cellular systems. and give directions for further refinements of

our work.



Chapter 2
Chip Shaping and Channel Coding

In this work, we focus our attention on asvnchronous DS-CDMA with BPSK mod-
ulation and single-user detectors. It is shown in [11] that. for a fixed bandwidth
spreading, the best performance is obtained when the error control code is responsi-
ble for the entire bandwidth spreading. The work in [11] however does not consider
the issue of chip waveform shaping. This chapter aims at quantifving the potential
improvements that chip shaping and channel coding can bring to a DS-CDMA sys-
tem. The approach is essentially based on a random coding argument. and does not
put any prior restriction on the chip pulse shape. except that the intersymbol inter-
ference, if any, is neglected. In [12], it is shown that for a strict bandwidth definition
(i.e. when all the signal power is contained in the allocated band). the signal to in-
terference ratio is maximized when the pulse shape is a sinc function. In this work,
we relax the bandwidth definition. and derive a criterion for chip pulse design. which
takes into account the bandwidth of the pulse shapes. We also explore the effects
of chip waveform shaping in conjunction with error control coding not only to gain
an insight into the fundamental capabilities of CDMA, but also to show how chip
shaping with bandwidth limitation can improve the system performance.

The chapter is structured as follows. A CDMA system model is presented in Sec-
tion 2.1. A comparison criterion for chip pulse shapes is introduced in section 2.2.
Section 2.3 considers the advantage of expanding bandwidth by error control cod-
ing over bandwidth expansion via PN sequences only. Furthermore, random coding
techniques are employved to analyze the effects of chip shaping when error control is

used with CDMA. Section 2.4 presents a comparison between CDMA and orthogonal
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multiple access (TDMA/FDMA) when both schemes use error control coding.

2.1 CDMA System Description and Analysis

We describe here the model that we adopt for an asynchronous DS-CDMA system.
We view the system in three parts: the modulation scheme. the channel. and the

receiver structure.

2.1.1 Modulation

Discrete-time Continous-time signals

X. x (1)

. Impulse i To channel
Generator [—% p(t) — >< -
Rate I/T,

Data

V2cos(mr)

PN sequence

Figure 2.1: \Model of a DS-CDMA modulator.

Figure 2.1 illustrates the model of a DS-CDMA modulator for user i. The data is
assumed to be in bipolar form: the data symbol of user ¢ at time index £ is denoted
by rix (z.x € {—1.1} ). The data symbols are independent for different users. but
not for different time indices of the same user. allowing for channel coding.

The sequence ¢, x (—x < k < ) models the PN spreading sequence of user j.
The symbols ¢, € {—1.1} are two-valued random variables generated independently
with equal probability. Hence c,x and c, , are independent unless : = j and &k = m.

1 i=j and m=k%

Elcik ¢m] = (2.1)
0 Otherwise

In practice. the sequence ¢, (—x < k < x) is a pseudo-random sequence with
statistical properties well approximated by the above model. Every T, seconds. where

T, is the duration of a chip svmbol. the impulse generator outputs an impulse with
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the polarity determined by the state of its input {which can be =1). The chip pulse

p(t) has an arbitrary shape. energy E.. and Fourier transform F,i{ f). Hence.

/fm dt = /in(f)izdf - E. (2.:

o
N
S

\We use the symbol [ to denote the infinite integral [>_. The spreading signal of user
. cik)(t). during the kth data time interval [k{T.. (k — 1){T, . is not necessarily time-
limited to that interval. depending on whether p(t) itself is time-limited to 0. 7.. The

chip rate is therefore 1/7.. Each user j transmits a signal z,(t)v/2cos (). where

x ; .
I,(t) = Z Tk r:']k'(t) (2.3)
k=-x
. (-1
and ¢, () = > ekt plt —nT. — KT, (2.4)
n=90

In the absence of channel coding. the parameter [ is the number of chips per data

svmbol. which is often taken as the definition of the processing gain in a spread-

spectrum svstem. \With channel coding. [ is the number of chips per code symbol.
From the above considerations. and from Figure 2.1 the modulation scheme is a

BPSK modulation of the spread data. followed by some waveform shaping.

2.1.2 The Channel

There are two sources of interference in the channel. as illustrated in Figure 2.2. The
first one is due to thermal noise or other sources of zero-mean additive white Gaussian
noise. The additive zero-mean white Gaussian noise 7(t) has an autocorrelation
function Ein(t) n(+)i = %d(t —~ =}. The second source of interference is due to the
other active users. and we will refer to it as the multiple-access interference (MAI).
\We let M denote the total number of active users in the channel at a given time.
Note that by active users we mean any users whose signals are received with non-
negligible power at the receiver. In particular. in a cellular environment. this may
include some users from neighboring cells. \We assume that the channel does not

introduce any other distortion such as filtering or non-linearities. In other words. this
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Interfering users
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Figure 2.2: Maodel of the multi-user AWGN channel.

means that the channel is considered ideal over the bandwidth occupied by the users.
and does not introduce further intersvmbol interference (ISI). Thus. throughonut this
work. we disregard any intersvmbol interference. assuming that the chip pulse satisfies
the Nvquist criterion for zero ISL

At the channel output. each user signal will suffer a delav. and the corresponding
carrier a phase shift. The assumption of a completely asvnchronous uplink implies
that the delays D, are i.id. uniformly distributed on 0. T, ‘they could he called
advances). and that the phase shifts 4, are i.i.d. uniformly distributed on 0.2= . The
received signai at the channel output is then

k%

yity = Z,/QJ r,it =D,y V2cos:ot—H, — 1t

P

[R]
[ ]

where o, is a dimensionless gain factor which allows for different received power
levels. We further assume that these gain factors are constant over the interval of
ohservation. Without loss of generality. if 1 is the index of the desired user. we can set
a, =1 and D, = 6, = (). The mode] used insofar is verv similar 1o that proposed in
'12. except that the carrier is not quadriphase modulated and that non-equal received
user power levels are allowed.

Due to the multi-user interference. the channel is not memorviess. since a chip
of another user interferes in general with many successive chips of the desired user.

Hence the total interference is not white. strictly speaking. but interleaving can be
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used to destrov the channel memory.

2.1.3 Demodulation: Statistics of the Decision Variable

v(t)
——>®-——>¢ p'(-t)‘__/ T

{2costwn) * PN sequence
B of desired user

V.
.1 “1.k
2 ™
0

M

Figure 2.3: Model of a single-user receiver.

Demodulation is performed by a single-user receiver. as sketched in Figure 2.3.
This is easily recognized as the optimal receiver for a point to point binarv commu-
nications svstem over an AWGN channel. Indeed. such a receiver completelyv ignores
the potential information contained in the interference which it treats as noise. Let
y,.x denote the decision variable (output of the matched filter| of user ;. at time index
k. In order to simplifv the notation. we will assume that the desired user is user /.

and drop the subscript M from corresponding variables. The indices 1...\f — 1 refer

then to the interfering users. In particular. we have y, = yug. c*it) = ¢t
Ii = Isye-asyy = 1.and Dy =6, = 0. The expression for the decision variable is
given bv
. ; :
Ye = Z yitiv2cos ot c® 1t dt i2.6:
{ chips

where the sum is over the [ chips per bit of the 4-th bit interval. and the chip
waveform shape p(#) is included in the expression of ¢ * ¢¢). . The integral ranges from
—xto>x (in practice. it ranges over the duration of a chip pulse). A straightforward

computation vields
M —
Yk = / Y z,(t=D,) cosb, — V2niticost| ¢t dt 2.7

where we used the standard assumption that the carrier frequency is much larger

than the signal bandwidth. thereby neglecting the double frequency term.
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The computation of the mean and variance of the y, given ry is a straightforward
albeit lengthy calculation, which is detailed in section A.1 of Appendix A. We repeat

here the conclusions of the computation.

E[ykil‘k] = lEcIk = E{, Ik (28)
lE,. ..
Var[yelzk] = E; (N, + Ecx,p~ (M) (2.9)
M-1 1 F Hd
where ~(\M) = Z a, and Xp = —fl—”(fo)—!—f (2.10)
= T, E?

Also. Ey = [E, is the energy per bit of the desired user when no channel coding is
used.

The above result corroborates the findings of [12] when we assume a perfect power
controlled environment with no inter-cell interference. and set all the received signal
levels to be equal.

One of the most important outcomes of the above analyvsis is the revelation of
the factor y, in the MAI contribution to the total interference. We refer to \,
as the pulse shape factor. as it depends only on the shape of the chip waveform.
The pulse shape factor is a dimensionless quantity which measures the other-user
interference rejection capabilities of the pulse. since the product y,~(1/) is the other-
user interference perceived by the desired user.

The signal to total interference ratio (STIR) can be written as

Eg[ykirk] _ 2

Var{yelze] %ﬁﬁ + 22~ ()

STIR =

2.2 Pulse Shaping in CDMA

In this section. we analyze the effects of pulse shaping on the syvstem performance.
We restrict ourselves to chip pulses which satisfv the first Nvquist criterion for zero
intersymbol interference. and derive a figure of merit which measures the MAI re-
jection capabilities of pulse shapes. taking into account their bandwidth. It turns
out that several of pulses achieve a figure of merit extremely close to a theoretically

computed bound on the best achievable figure of merit.
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2.2.1 Computation of Some Pulse Shape Factors

In this section, we give the shape factor y, of a number of cuip waveforms. some
of which are sketched in Figure 2.4. Note that the pulse shapes of Figure 2.4 are
all time-limited to one chip interval and that they thereby generate no intersymbol
interference. Moreover. all chip waveforms examined in this section are assumed to

satisfy (2.2), which means that they have energy E..

(@) A Rectangular Half-sine wave

(c)

—— ———
< P S ————
T
Triangular
(b) Full sine wave
-
T

Figure 2.4: A few time-limited pulse shapes.

The pulse shape factor is computed by evaluating (2.10) in the time or frequency
domain, either analytically, or with arbitrarily good accuracy by numerical integra-
tion. Table 2.1 lists the value of y, for the time-limited pulses that we consider. In
the list of Table 2.1, those pulses that are not naturally time-limited are truncated

to the interval [-7./2.7./2].

Pulse Shape Xp Pulse Shape Xp
Rectangular Fig. 2.4a 2/3 smﬁzT‘) 0.31
Triangular Fig. 2.4b 151/280 ~ 0.54 || sin* (’T") 0.28
sin (&) Fig. 2.4c 1/3 +5/2n2 = 0.58 || Gaussian e=®*(=%)" 4= T4 | 0,59
sin (27’3") Fig. 2.4d 0.39 Gaussian e=* (=5 4 = % 0.35

Gaussian e~¢" (= %) ¢ = % 0.25

Table 2.1: The value of x, for some time-limited pulse shapes.

We also consider non time-limited pulse shapes, in particular the family of square
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root raised cosine Nyquist pulses. These pulses are strictly bandlimited and their

autocorrelation function is given by [13. pp. 534-536]

ot/T
R,(t) = \[E.sinc(t/T.) — gt?é:r)z (2.12)

where ¢ is the roll-off factor (0 < 6 < 1) which specifies the “excess bandwidth” of
the pulse (for a sinc function, 4 = 0). It is shown that in Appendix A that the shape
factor of square root raised cosine pulses is y, =1 — d/4.

Hence, as confirmed by Table 2.1, the sharper the pulse. the smaller is the value of
X,- This is an expected behavior, since narrower pulses will overlap less, on average
(given our assumption of i.i.d. uniformly distributed delays). However the narrower
the pulse. the greater is its bandwidth. Indeed, chip pulses of negligible duration but
of finite energy would overlap with a very small probability. vielding a shape factor of
nearly zero. but would have an essentially infinite bandwidth. Hence for a meaningful

comparison of chip pulses. we must compare pulses with the same bandwidth.

2.2.2 Chip Pulse Design Criterion

As discussed above, the pulse shape factor y, has an important effect on the STIR
(2.11) and more generally on the performance of the system. as it multiplies directly
the power of the other-user interference. I[ndeed. when (2.11) is the criterion of
interest, a reduction in the pulse shape factor is translated in a proportional increase
in the syvstem capacity.

The pulse shape factor bears a special relation to the ambiguity function used in

radar theory, and in particular to the time resolution constant [14, 15]

I, = & [ BN (2.13)

In fact, x, is a normalized expression of T, whose physical interpretation is a measure
of the spread of energy of the matched filter output [15, pp. 341]. In radar theory. the
time resolution constant is a useful pulse design criterion in cases where the Doppler
shift is negligible (stationary or slowly moving clutter) [15. ch. 10]. The rationale

for this is that, for good clutter rejection, a time-shifted pulse (with respect to the
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information conveying pulse) should contribute as little as possible to the energy of
the receiver matched filter output. In asynchronous CDMA. time-shifted chip pulses
are due to the other users, and therefore the same rationale applies.

In [13, pp. 341-345], it is recognized that radar pulse design, based on the normal-
ized time-resolution function (x, in our case), depends on bandwidth considerations.

Let Ry, = % be the bit rate of the desired user. Then (2.11) can be written as

-‘)
STIR = - 2.14
B+ RT,5(M) (2.14)

From (2.14), it is seen that 1/RyT, = IT./T, = [/x, gives a natural definition of
the effective processing gain in a CDMA system. Hence the effective processing gain
does not only depend on the spreading factor, but also on the chip shape. Further-
more, since the crosstalk rejection capabilities of CDMA are determined by the time
resolution constant, 1/7, is also the natural definition of bandwidth for CDMA. The
argument is similar to that of [16], in which it is argued that. for a spread spectrum
system with tone jamming in the band center. the noise equivalent bandwidth is the
natural definition of bandwidth. However, the bandwidth definition does not depend
on its pertinence to the particular application but appears as an external design con-
straint imposed by the necessity to limit the interference in neighboring channels,
and is usually determined by regulatory agencies. As we observed earlier. the lower
is T, (or x,), the larger is the pulse bandwidth. Chip shaping should therefore aim at
finding the best compromise between the MAI rejection capability and the bandwidth
efficiency of the chip pulse.

As shown in [17], when comparing pulse shapes, the objective is to minimize the
time-bandwidth product T,B,. We will refer to this product as the figure of merit
or FOM of the pulse. Naturally, the actual value of the FOM of a pulse depends
on the definition of bandwidth, and hence the design of chip waveforms requires the
knowledge (or selection) of the bandwidth definition. From now on, we will restrict
ourselves to the energy containment bandwidth which is defined as the frequency band
around zero containing a fixed fraction u of the energy of the pulse, as illustrated in

Figure 2.5. Although x can be any number in (0, 1], usually, p > 80%.
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Figure 2.5: Energy containment bandwidth: the shaded region contributes pF, to

the total pulse energy E..
From the definition of bandwidth, we have

B, /2 ,
[ RDPd = uE.
—-B,/2

pl=

where E. is the energy of the pulse. Recall that

JIF,(f)Idf
E?

By/2 ~B,/2
= {0 mrd + [

On the other hand, we have

T,

Hlldf + /

B,/2 ) . 2d >0
[ (1me - ) >
Bor2 pE. LE\*
= /B .-IF (f)|4df )Bp [J,Ec-i-Bp ('Ep—) >0

B,/ X 2E2
o [ IO 2

p

Using this in (2.16) yields

& BT, > u?

Hence (2.20) is a lower bound on the best possible time-bandwidth product for pulse

shapes (when the bandwidth definition is a 1% energy containment bandwidth). Since

we neglected the last two integrals in (2.16) which are strictly positive unless p = 1,

(2.20) is a strict lower bound on the FOM of a pulse for 4 < 1. In the case p = 1,

the lower bound can be reached (for example, by a sinc function).
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2.2.3 FOM of some pulse shapes

Pulse Shape | T,,/T. | B,T. | T,B, ||| Pulse Shape T,/Tc | B,T. | T,B,
Rectangular | 0.667 | 4.15 | 2.77 || e %7 4 =25/T. 0.354 | 3.12 | L.11
Triangular | 0539 | 2.00 | 1.08 [f e~ %) a=7.4/T. | 0598 | 1.80 | 107
sin () 0.587 | 1.83 | 107 || sinca(t—%) a=2Z | 0112 | 832 | 093
sin(22) | 0397 | 3.00 | 119 || e F)-faisertt) 0.0876 | 10.58 | 0.926
sin® (%) | 0309 | 5.66 | 1.75 || 1595 Uplink Chip Shape | 1.008 | 0.938 | 0.946

Table 2.2: Comparison between time-limited pulses (95% energy containment band-

width}).

Table 2.2 compares several time-limited pulse shapes using the FOMI criterion, and
an energy containment bandwidth with x = 95%. The second column in each table
gives the pulse shape factor, the third column shows the normalized 95% bandwidth
and the last column gives the product which is the FOM. All pulse shapes of Table
2.2 but the IS-95 uplink pulse are time-limited to one chip interval: those pulses that
are not naturally time-limited are truncated to the interval [~7,/2.7./2]. The reader
is referred to {17] for additional information.

Among all the pulses of Table 2.2. it is the last one (a shaped sinc function)
that achieves the best FOM. For a 95% containment bandwidth, any FOM has to
be greater than u? = 0.9205. Hence we have found pulse shapes that come very
close to that value. Indeed, even if the performance of the CDMA system (or equiv-
alently the capacity) were determined solely by the average STIR perceived by each
active user, and assuming that the thermal noise is negligible compared to the MAI
(interference-limited system), then the improvement in capacity (or reduction in in-
terference) cannot be larger than the ratio 0.926/0.9205 < 1.006 (this is just an upper
bound on the ratio of the two STIR values). Therefore no other pulse shape can
improve the capacity of a system using the shaped sinc function of Table 2.2 by more
than 0.6%. For all practical purposes, we can consider the shaped sinc function to be

an optimal pulse shape.
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Given our criterion and a 95% energy containment definition of bandwidth. the
chip pulse shape used in the [S-95 standard is also optimal for all practical purposes.
Note that although the IS-95 uplink pulse does not satisfv. strictly speaking, the
Nvquist criterion for zero ISI, the amount of ISI introduced is negligible. and we will

ignore it.

1.25 " \

1.2r

99% bandwidth

1.1F

FOM
1.05 !
95% bandwidth _ .

0.95% _ ]

0.9 0.25 05 0.75 1

Percentage of excess bandwidth

Figure 2.6: FOM of square-root raised cosine pulses (95% and 99% energy contain-
ment bandwidth.

We also investigate the FOM of square root raised cosine pulses. As shown in
Appendix A. the energyv containment bandwidth of square root raised cosine pulses
can be found easily by solving numerically a single-variable equation (A.28). Moreover
the pulse shape factor is shown to be x, = 1 —d/4. where 4 is the percentage of excess
bandwidth. Hence one can compute the FOM of square root raised cosine pulses as
a function of the percentage of excess bandwidth. The corresponding plot of the
FOM versus § is shown in Figure 2.6 for both the 95% and 99% energy containment
bandwidths.

Figure 2.6 shows that the more stringent is the bandwidth definition. the closer
does the optimal pulse converge to the sinc function. This is exactly what we expect
since when p = 100% the sinc function meets the bound on the best achievable FOM,

a conclusion reached in [12]. Moreover, we can achieve quasi-optimal pulse shaping
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Figure 2.7: Block diagram of a block-coded DS-CDMA system.

with both time-limited and band-limited pulses.

Table 2.2 and Figure 2.6 show the potential improvement that can be obtained
from careful chip pulse design. For example, for a 95% energy containment bandwidth.
the improvement in FOM from the rectangular pulse shape to the shaped sinc pulses
is of a factor of 3. When the average STIR is the performance measure of interest.
and when the system is interference-limited (the thermal noise is much smaller than
the MAI), this corresponds to a 300% improvement in the system capacity. Granted
that such a prediction could be optimistic since the average STIR is only a crude
measurement of the system performance. the potential improvement is nevertheless

substantial, and reveals the particular importance of chip shaping in asynchronous

DS-CDMA.

2.3 Channel Coding and Bandwidth Spreading

In this section, we show that the performance of the asynchronous DS-CDMA system
under consideration is optimized when all the bandwidth spreading is accomplished
through error control coding.

We consider an (n, k) block-coded asynchronous CDMA system, with [ chips per

code symbol. A model for such a system is shown in Figure 2.7. As discussed in
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()
~l

section 2.1.2, chip interleaving ensures an equivalent memoryless channel. Referring
to Figure 2.7, let Ry, = k/nl and .V = nl. For each sequence of & data symbols. we
transmit nl chips. Hence 1/Rs = nl/k is the bandwidth expansion factor. Note that
this does not preclude scrambling, i.e. the use of non-spreading PN sequences, on top
of the spreading scheme, in order to differentiate between users. an approach used in
[12]. For a given code size 2¥ (k is then fixed). and a fixed total bandwidth expansion
R,. we would like to find the values of the parameters n and [ (the product n{ = .V
being fixed) which optimize the performance of the system.

Since a large part of this section was published in [17]. we will often refer to that
publication to shorten our discussions. For example. a concatenated coding approach
can be used to show that the best solution is n = .V and [ = 1 [17]. We will focus

here on a random coding approach.

2.3.1 Random Coding Viewpoint

A commonly used approximation. based on central limit arguments. is to assume
that the MAI interference is a Gaussian random process (see for example [11. 20.
21, 22]). The Gaussian approximation has been shown to be over-optimistic when
the number of users is small. the bandwidth is large. and the system is interference-
limited {23, 24]. Such a situation corresponds to a low probability of error regime
of operation. In CDMA however. system performance is often measured in terms of
capacity, e.g. the maximum number of users for a given outage probability. Acceptable
outage probabilities (worst case error probabilities). when the svstem is saturated. are
relatively high (of the order of 1073). In such cases. the results of [23. 24| indicate
that the Gaussian approximation yvields results that are reliable. and therefore can be

used.

Consider the system depicted in Figure 2.7, with fixed total spreading rate R, and

fixed N = nl. Given (2.11), the single-user average probability of error. over all (n, k)
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block codes. is upper bounded by (see for example [13. pp. 365-370])

_ 1 —1 "
2t l+exp| v———r 2.2
P.<?2 [2 (l—re.\p(%g%_xﬁ(;‘[))ﬂ (2.21)

For a given code size 2*. and a fixed total bandwidth expansion (R; is fixed). we
would like to find the values of the parameters n and ! (the product n/ = .V being

fixed) which minimize the random coding bound of (2.21). We rewrite (2.21) as

o

< 2-.\'(&(()—R,) (. g

o) —
[§V]
N
N

-~

1 a _ 1 5
where R,(l) = = [1 — log, (1+e ‘)] and a = %3+pr"(-\[) (2.

oy
o
(V]
w
~

From (2.22), the quantity R,(!) is the cut-off rate of the multi-user channel perceived
by the desired user. One can also interpret 1/R,({) as the minimum bandwidth
expansion required to force the random coding bound to zero by increasing .V. Since
.V is fixed in (2.22), the goal is to maximize R,(!) on the interval 1 <[ < .V.

As shown in [17]. the cut-off rate is a monotonously decreasing function of /. and
is thus maximized (and the random coding bound minimized) when [ = 1 and n = V.
This is illustrated in Figure 2.8. where we plot the cut-off rate for different values of
[ for an M-user system with a total spreading factor of 64. ~(1/) = 49.0 and square
pulse shaping. This corresponds to a 50-user system if the average of the received
power levels of the interfering users equals the received power level of the desired
user. A stronger (more restrictive) condition would be that all received power levels
are equal. requiring perfect power control. but the weaker condition suffices.

We can thus improve the system performance by using coding instead of PN
sequences to spread the signal bandwidth. The improvement gets better as the code
size increases, provided that the total spreading rate R, is lower than the cut-off
rate R,(l). as suggested by (2.22). We illustrate that argument in Figure 2.9. where
we plot the probability of error for a PN sequence spread system with the Gaussian

approximation. which is given by
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Figure 2.8: Cut-off rate versus channel E./.V, for various values of [. and ~{ 1) = 49.0

We also show the corresponding random coding bound for syvstems using all the
bandwidth expansion for coding. These plots are shown in function of E;/.N, =
E./(Rs.\N,). The system considered in that example has ~(1/) = 31.0. a rectangular
pulse shape (x, = 2/3). and a bandwidth expansion factor of 64. which implies that
Ey/N, = E./N,+ 18 in dB. The E;/.N, interval considered is such that the channel
cut-off rate is greater than the total spreading rate R,. The performance of the
syvstem improves with increasing the code size. However. with these parameters. we
need & > 6 to have better performance than PN spreading alone. For & = 10. the
bound on the average probability of error over all (150.6) block coded systems is
alreadv well below the probability of error of a PN sequence spread system.
Consider now increasing the value of ~(./). Figure 2.10 shows the exact prob-
ability of error (based on the Gaussian assumption) and the corresponding random
coding bounds for ~(}/) = 63.0. If perfect power control is available. we then have 64
users. Notice that for E,/.V, = 12 dB. the channel cut-off rate equals the spreading
rate R; = 1/64. as all random coding bounds intersect at that point. For & = 50.
the average (1250, 50) code achieves a lower probability of error than PN sequences.

When k& = 100. the value of the random coding bound at high E,/.N, is below 3.107%.
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Figure 2.9: Probability of error and bounds (rectangular pulse) for ~(1/) = 31.0 and
R, = 1/64

This shows that it is possible to accommodate a number of users equal to 1/R; at an
acceptable probability of error. provided R; < R, and the code size is large enough.

In this section we have shown that the svstem performance is optimized when
all the bandwidth expansion is accomplished by an error control code. In practice.
such a strategy is limited by synchronization issues. which is difficult to achieve and
maintain at very low values of E,/Ny (where E; is the energv per coded svmbol).
Hence, in order to simplifv the synchronization. it is sometimes necessary to provide
a “spreading margin” (i.e. have the PN sequence accomplish part of the overall
spreading). This approach is used in the uplink of the [S-95 standard. where the
error control code has a rate of 1/32. and the PN sequence further spreads the signal

by a factor of 4. for an overall spreading factor of 128.

2.3.2 The Chip Pulse Shape

The improvement due to coding can be further increased by chip pulse shaping.
Consider two systems &) and S, using pulse shapes p;(t) and po(t) respectively. with

3 = B,/B, > 1. For equal system bandwidths. S» uses a spreading rate R,, which
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Figure 2.10: Probability of error and bounds (rectangular pulse) for ~(.\f} = 63.0 and
Rs = 1/64

1s lower by a factor of .3 than that of §;. If both svstems spread their bandwidth
through error control coding of the same size. then R,. = k/n and R,, = k' J3n.
showing thart the available dimensions of S, are increased by the factor 3. With equal

distribution of power levels in hoth svstems. the random coding bounds are given by

9-n R :=R,. -

o
(V]
(S]]

P. <

-1
R,: = l-log, {1l —ex - (12.26
: (1= (g=m) !

and E. is the energyv per user per dimension in S-. and

to| -

where

7:)_ < -)_jn/Ro.l_Ra:
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where
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In order to maintain the same E;/.V, in the two schemes. the energy per user per
dimension of 8 must be lower than that of S| by a factor of J. The ratio of the bound
on P.; (2.27) to the bound on P, | (2.23) is equal to 2~ "*(3Re.2=Rs.1) and is an indication
of the relative performance of the two syvstems. It follows that S> will outperform S;
whenever 3R, — R,; > 0. Note that this is equivalent to comparing the difference
of cut-off rates per unit bandwidth. The value of 3R, — R, is significant since the
ratio of the random coding bounds decreases exponentially with this quantity. For
example. if 3R,, — R, = 0.1. then for n = 30 only. we have that the bound on the
probability of error for S (2.25) is 8 times larger than that of S; (2.27}. As a rule of
thumb, we can include as significant any region such that {JR,, — R, ;| > 3/n since
this corresponds to a factor of 8 {almost one order of magnitude) in the bounds of
(2.25) and (2.27).

In [17]. it is shown analytically that given Y,, < x,, and 3 > 1. we have JR,s —
R,1 > 0. This is an expected result since po(¢) has then a lower pulse shape factor
(reducing the other-user interference). and a lower bandwidth (allowing for a lower
coding rate). In some sense. we win from both ends.

We further show in [17] that JR,, is an increasing function of J. while it is
clearly also a decreasing function of \,,. Since R, does not depend on .3 nor on \,,.
it follows that JR,» — R, increases with J and decreases with \,.. Therefore. if
both x,, < \,, and J < L. it is not ensured anymore that S, outperforms &;. since
the reduction in MAI obtained by a lower pulse shape factor is offset by a smaller
number of available dimensions for channel coding.

In [17]. we compare a system with a rectangular pulse shape S, and a system S;
with the truncated sinc pulse shape of Table 2.2 (the one with a normalized bandwidth
of 8.32 and a pulse shape factor of 0.112). and show that R,gn./2.005 — Ry et > 0
for v(M) > 2. i.e. for all practical purposes. One can argue that this result is not
surprising since the rectangular pulse shape has a FON much larger than that of the
truncated sinc pulse. This confirms that the FOM is a reasonable measure of the
quality of a pulse shape.

As a second example, we compare a system Sgs using the IS-95 uplink pulse shape
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Figure 2.11: Contour plot of R, nc/11.28 — R, 595 as a function of E./V, and
log, 7(M)

of Table 2.2 and a system &; using the shaped sinc pulse of Table 2.2 (last entry).
This choice is motivated by the fact that both pulses have similar figure of merits.
but while the shaped sinc pulse has a large bandwidth and a small time resolution
constant, the IS-95 chip pulse has a small bandwidth and a comparatively large
time resolution constant. We hope to gain some insights into the tradeoff between
bandwidth expansion and interference rejection capabilities of a pulse. in the presence
of error control coding, and check whether the FOM criterion is still meaningful.

The comparison is performed again by showing in Figure 2.11 the contour plot of

Ro sinc/11.28 — R, 95 where

~1
R,sinc = 1-log, (1 + exp ( — )) (2.29)
= +0.0876+(M)

Roos = 1—log, (1 + exp ( 5 (2.30)

-1
1_173-57': + 1008"/(.‘[)))

since the ratio of the IS-95 chip pulse bandwidth to that of the shaped sinc pulse is
1/11.28. From the zero contour line in Figure 2.11, Sgs performs uniformly better

than S, whenever log, v(M) <7, or v(M) < 130. On the other hand, for the range of
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values of E./.N, shown. S, outperforms Sg5 provided v(1/) > 130. The zero contour
line is in fact independent of E./.V, on the chosen range, defining a threshold value
of (M) = 130 which delimits the regions where one system outperforms the other.
The IS-95 chip shaped system can outperform significantly the system using the
shaped sinc pulse only for very small values of the MAI, which even in a perfect
power controlled environment corresponds to less than 10 users. This is determined
by examining the region were R, inc/11.28 — R,95 < —0.01. On the other hand, for
most of the region where v(M) > 130. |Rs 5inc/11.28 — R,95| < 0.00002, which means
that the potential advantage of system S; is negligible since we would need extremely
powerful error control coding to exploit that advantage (we would be looking at block
codes of length greater than 200000, and require that they achieve the average-code
performance of (2.21)).

Therefore, the IS-95 chip pulse shape and the windowed sinc pulse shape under
consideration are comparable from the point of view of the resuiting cut-off rates. at
least when the MAI is not too small. This confirms that the FOM of a chip pulse is a
good indication of its performance in an asynchronous DS-CDMA system. even when

error control coding is considered. since both pulse shapes have comparable FOMs.

2.4 CDMA and Orthogonal Multiple Access

The previous sections of this chapter have revealed some critical issues in asyn-
chronous DS-CDMA., and shown that chip shaping and error control coding can
increase the system performance in a very significant way. However. being able to
carefully design a CDMA system in order to optimize the performance does not jus-
tify the use of CDMA as a multiple accessing scheme. Although the debate about
which of CDMA and TDMA is the better multiplexing scheme is not yet closed (and
depends on a large number of parameters), we hope to shed some light onto this

debate by comparing CDMA with TDMA on the basis of their cut-off rates.
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Given M blocks of k data symbols to be transmitted (one block per user). how do we
allocate n channel dimensions to the users? With orthogonal multiple access (OMA),
which encompasses TDMA and FDMA, we allocate n/\ separate dimensions to each
user. Since each user is constrained to its own signal sub-space. this scheme avoids
all cross-talk interference. In asynchronous DS-CDMA, all n dimensions are assigned
to all M users. The price to pay is the presence of cross-talk interference, but we
gain an increase in the number of dimensions per user. A careful mix of chip pulse
shaping and channel coding can both decrease the crosstalk interference and exploit
the available dimensions for coding.

A comparison of CDMA with binary OMA on the basis of the cut-off rate per unit
bandwidth is provided in [17]. It is shown that CDMA with the windowed sinc pulse
of Table 2.2 is equivalent to OMA with a roll-off parameter of about 83% (square-
root raised cosine pulse, and 95% energy containment bandwidth). For a 99% energy
containment bandwidth. the same CDMA system is equivalent to an OMA system
with a roll-off parameter of about 60%. For smaller values of the roll-off parameter.
OMA is superior to CDMA. [t is understood however that this conclusion is for a
single cell analysis. When the much smaller frequency reuse factor of CDMA is taken

into account, its full potential is revealed.

2.5 Conclusion

This chapter considered CDMA systems with single user receivers. We have shown
that coding and chip shaping are integral parts of a CDMA system, and that the time
resolution constant of the chip waveform indicates its crosstalk rejection capabilities.
The chip figure of merit (FOM) has been introduced as a quantitative measure of the
“goodness” of a chip pulse shape, i.e. a normalized measure of the crosstalk rejection
capabilities which takes the bandwidth of the chip waveform into account. We have
also shown that, given the definition of bandwidth, it is possible to find many pulse
shapes with practically optimal FOMs.

The conclusion that bandwidth spreading with error control coding is preferable
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to spreading with PN sequences was reached from a random coding argument. We
emphasize that this does not exclude the use of non-spreading PN sequences for user
differentiation purposes. Only a combination of coding and chip pulse shaping can
increase the performance of binary DS-CDMA to be almost comparable to that of
binary OMA, in a single-cell interference free environment. This work shows that
with appropriate chip shaping, the CDMA performance is equal to that of orthogonal
multiple access with binary signaling and raised cosine shaping of 85% excess band-
width. The bandwidth definition for both is the 95% energy containment bandwidth.
This figure drops to 60% when the 99% energy containment bandwidth is used.

The advantages of CDMA in an interference dominated environment are well
known. This work shows that with error control coding and proper chip shaping,
CDMA performance is comparable to that of binary OMA even in an interference
free environment. Therefore if other natural attributes of CDMA (such as robustness
to interference, asynchronous operation, soft capacity, soft handoffs. etc ---) are of
interest, then not much of its error rate performance with respect to binary OMA
is sacrificed even in the least favorable operation environment for CDMA. Hence. in
cellular systems, the low frequency reuse factor required by cellular CDMA supports

the many claims of superiority of CDMA over OMA [6].




Chapter 3
Construction of Very Low Rate

Codes

We have just shown in the previous chapter that bandwidth expansion through chan-
nel coding improves the performance of a spread spectrum multiple-access {SSVA)
system. The arguments we used showed the existence of good codes that can vield
the promised performance improvement. In this chapter, we look at several families
of very low rate codes and introduce a new such family based on the combination of

block and convolutional codes.

3.1 Known Very Low Rate Codes

Some good very low rate codes can be constructed by combining convolutional and
block codes, such as orthogonal convolutional codes [12. 25. 19]. biorthogonal con-
volutional codes [26], superorthogonal codes [27] and the IS-95 uplink code. In this
section, we present the above mentioned error control codes that will be used for

benchmark comparisons with the new family of codes that will be introduced later.

3.1.1 Notational Conventions
Let u = (u;,---,u,) and v = (vy,-- -, v,) be two vectors of length n
e The component-wise product of u and v is the vector uev = (wjvy,---. usty)

n
e The dot product of u and v is the scalar <u|y> = Z UU;

=1
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t

n

e The norm of a vector is the scalar x| such that [[u]]® = <uju> = S o}
=1

In particular, the Euclidean distance between v and v is the scalar [ju — || such

that
¥ n -
lw—ol? = 3o(ui—v)? = [ul® + |lz)? - 2 <ule>
=1

e The maximum component of a vector u is the scalar

Mazu = 1ax u;, and arg Maz u = {j u; = MaX=j..n ui}
i=1,--n
e The absolute value of a vector u is the vector |u] = (Juy],- . |ual)
A vector u is said to be bipolar if |u| = (1,---,1).

e The Hamming weight of a bipolar vector u is the number of its components
which are equal to —1. and it is denoted by wy (u). If « and ¢ are two bipolar

vectors, then

<ulr> = Zu,-v,— = n— 2wy (usv) (3.1)

e The Hamming distance between two bipolar vectors u and v is dy(u.r) =

wy (uov)

3.1.2 Orthogonal and Biorthogonal Codes

Let the Hadamard matrix H,, be defined by the following recursive relation

Hm—l Hm—l
H, = m=12.-- H, =1 (3.2)

Hm—l —4lm-1
We define the code O,, whose codewords are the rows (or equivalently columns)
of H,. Hence O, is a (2™, m) code. Furthermore, let ¢, = (¢;,---.¢2m) and
¢y = (ca1,- -, C2m) be two distinct codewords of Op,. From (3.2), ¢; and ¢, must
differ in exactly half their components. Therefore

2"\
<cile> = ZCuCzi =0 du(g.q) = 2™ (3.3)

=1




Chapter 3. Construction of Very Low Rate Codes 39

Therefore, the Hamming distance between any two codewords of O,, is equal to 2™~ 1.
[t follows that O, is a (2™.m) orthogonal code of minimum distance 2™~1.
Let r be any real valued vector of length 2™. We define the Hadamard transform

of r as the 2™-component vector
H(r) = 27" r Hn, (3.4)

Since the columns of H,, are the 2™ codewords of O,,. the Hadamard transform
of r consists of the 2™ correlations values 2=™/* <r|¢;>. (i = 1.---.2™) with each
codeword of Op,. Formally, #(r); = 2=™/? <r|¢;>. The maximum likelihood (ML)
decision rule for O,, over an AWGN channel. assuming that each code svmbol is

mapped into a separate signal space dimension. is given by

arg_min_|lr—cll = arg max <rle>= arg max 27" ?<rle>

= arg Maz H(r) (3.5)

Therefore the ML decoding of Oy, is equivalent to taking the Hadamard transform of
the received vector and finding the index ¢ of its largest component.

Consider now the code R(1.m) = O,, UO,,. where O,, is the set of codewords
which are the complements of the codewords of O,,. R(1.m) is a linear biorthogonal

1

(2™, m + 1) code of minimum Hamming distance 2™~". referred to as the first order

Reed-Muller (RM) code [18, chap. 14|. The ML decision rule for this code is
1 if Max [H(r)| = Mazx H(r
v min e-cl = { H(r)| = Maz H(r) .
=1, 2m+ J¢ if Mazx [H(r)l = —Mazx H(r)

where j = arg Max |H(r)|, and j° is such that ¢;c = —c;. The last step takes
advantage of the fact that R(1. m) = O,,UO¢, by computing only half the correlation
values, and using <r|¢;>= — <r| — ¢ >. Maximum likelihood decoding is then
performed in the following way: we first obtain the Hadamard transform H(r) of the
received vector. We then let j be the index of the largest component of |H(r)|. If the
value of this jth component of H(r) is positive, we decide in favor of ¢;, otherwise

we decide in favor of —c;. Note that the bit error probability is minimized, for a
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fixed word error probability, if complement data words are mapped into complement
codewords [28. pp. 212].

Cosets of R(1, m) can also be decoded bv using the Hadamard transform. Indeed,
let A be the coset leader of some R(1,m) coset, i.e. we consider the coset code C =

{Azc; : ¢ € R(1,m)}. The received vector is

r = Az¢q+n (3.7)
where n = (n,,---,nam) is the noise vector and A is in bipolar form. Note that
Qm
<rldec,> = <deg +nldse> = 3 (Akcik + m) Mecjk
k=1
2"[
= > (e + meM)oix = <g + nede,> = <rzdle;> (3.8)

k=1

Thus the maximum-likelihood decision rule is

arg j=1r.r-1-.é_1§§l+l <r|ldec;> = arg j:[IR?‘E}'"+1 <rsc;> (3.9)

Maximum likelihood decoding of a coset of R(1.m) can be done in the same way
(i.e. with the exact same operations) as for R(1.m). provided the received vector
is pre-multiplied by the coset leader. Refer to [18. ch. 13-14] for more on first-order

Reed-Muller codes, and their decoding using the Hadamard transform.

3.1.3 The Fast Hadamard Transform

The first-order Reed-Muller code would not be so widely proposed as a building block
of low rate codes if it were not for the existence of an efficient method to compute
the Hadamard transform. Indeed, the Hadamard transform of a vector v is nothing
more than the correlation values of v with all 2™ Hadamard codewords. This implies
the computation of 2™ values, each of which takes O(2™) additions to compute. since
the length of the vectors involved is 2™. Therefore the computational complexity
of a straightforward implementation of the Hadamard transform (for example that
suggested by (3.4)) is O(22™).

The eflicient method to compute the Hadamard transform is the Fast Hadamard

Transform (FHT) also called Green’s machine (29, pp. 28-35]. The FHT is analogous
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to the Fast Fourier Transform (FFT) method of computing the discrete-time Fourier
Transform of a vector. The only difference between the two transforms is that the
coefficient values of the FHT are +1. This implies that the FHT does not involve any
multiplication, but only additions and subtractions (we ignore the normalizing factor
2-™/2 in (3.4)). We will not reproduce here the derivation of the FHT which can be
obtained from the analogy of the Hadamard transform with the discrete-time Fourier
transform, or from matrix partitioning techniques. The interested reader is referred
to [18, section 14.4] and (30, section 6.3], the latter containing also further references

to other derivations of the FHT.

3.1.4 Orthogonal, Biorthogonal, and Superorthogonal Con-
volutional (OBS) Codes

Orthogonal convolutional codes were introduced in [25], and discussed in [12] in the
context of SSMA. The encoding structure is shown in Figure 3.1. The data is fed
into a K-bit shift register. one bit at a time. The content of the shift register selects
a codeword in the (2K, A) orthogonal code Of. For each data bit fed in the shift

register. a 2K-bit codeword is transmitted. Hence the rate of this code is 1/2%.

K-bit shift register

N\’

Block Encoder ‘ [
(2%, K) block code

Dataf

)R

K _bit codeword S2k-1 [+5)

S2k -t

Figure 3.1: Encoder and trellis representation of a convolutional orthogonal code.

From the encoder structure, it is clear that any two non-equal data sequences
generate at least A consecutive non-equal codewords. The Hamming distance be-

tween any two non-equal codewords is 2%~!. Hence the free distance of the code is
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dree = K2K -1, and its asymptotic coding gain is [32. pp. 243]

1 oK — .
Goxc(orthe) = 5K x K28~ = R/2 (3.10)

The Viterbi algorithm (VA) provides an effective method for maximum likelihood
decoding of orthogonal convolutional codes. The trellis representation of an orthog-
onal convolutional code {Figure 3.1) contains 25! states with 2 branches per node.
There are thus 2% branches for each trellis stage. Each of these branches represents
a 2%_bit codeword belonging to O. From the encoding structure. each of these 2%
codewords are different, since they are uniquely determined by a one-to-one map from
the state transition to the orthogonal code Q. At each stage of the trellis. the 2K
branch metrics are the 2% correlation values <r|c,>. where r is the received vector
and Ox = {c;.-- -, cox }. Hence a single Hadamard transform provides the 2X branch
metrics for each trellis stage. Figure 3.1 illustrates the one-to-one mapping between
the trellis branches and the codewords of Of. References [12. 23], [19. chap. 10]. and
[27, chap. 3] provide a more detailed discussion of orthogonal convolutional codes.

Biorthogonal convolutional codes [26] are a modification of orthogonal convolu-
tional codes. Instead of using a (2%. K') orthogonal code in Figure 3.1. a (28, A + 1)
biorthogonal (first order Reed-Muller) code is used. The encoder of a biorthogonal
convolutional code is shown in the dotted box of Figure 3.2. The coding rate is 1/2K
and the constraint length of the associated convolutional code is A"+ 1. Hence any two
non-equal data sequences generate at least A" + 1 consecutive non-equal codewords.

In biorthogonal convolutional codes. the first order Reed-Muller code is con-
structed as follows: the last A bits of the shift register select a codeword of Q. while
the first bit of the shift register determines the polarity of the transmitted codeword.
This ensures that any two sequences of exactly A + 1 consecutive non-equal code-
words must contain antipodal codewords (namely the first non-equal codewords of the
sequence). Since the minimum Hamming distance of a first order Reed-Muller code is
2K-1 the free distance of the biorthogonal convolutional code is dgee = (A +2)2K-1.
Note that complement data words are not mapped into complement codewords of

the first order Reed-Muller code (28, pp. 212]. Otherwise. the free distance of the
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corresponding biorthogonal convolutional code would only be dgee = (A = 1)25-1.
Maximum likelihood decoding is very similar to that of orthogonal convolutional

codes. As outlined earlier. half the branch metrics are calculated with a Hadamard

transform of the received vector. The remaining metrics are just the opposites of

these. It is shown in [26] that the biorthogonal code provides a significant coding

gain over the orthogonal convolutional code. The asvmptotic coding gain is given by

1 . - .
Gx(biortho) = 5% x (R *‘2)21\—1 = (A -'7-'2)/?. (3.11)

This improvement comes at the cost of an increase in the constraint length of the
convolutional code. from A" to A"+ 1.

Biortfiogonal Convolutional Code

K-bit shift register

Daia

3 Z

Orthogonal Block Encoder | 2“5 K
2% K) block code ! -

Figure 3.2: Encoder of a superorthogonal convolutional code.

Finally. superorthogonal convolutional codes are a variation on the same theme.
Figure 3.2 shows the superorthogonal convolutional encoder. where the relationship to
biorthogonal convolutional codes is emphasized. The coding rate is 1/2* and the con-
straint length of the associated convolutional code is A"+ 2. Hence any two non-equal
data sequences generate at least A” + 2 consecutive non-equal codewords. Moreover.
in such a sequence. the first and last pairs of non-equal codewords must be antipodal
pairs. This ensures that the free distance of the superorthogonal convolutional code

is dfree = (K + 4)2%-1. The asyvmptotic coding gain is given by

1 .
Gux(suportho) = 7 X (A +4)2871 = (A +4)/2 (3.12)
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This improvement over the orthogonal and biorthogonal convolutional codes comes
at the cost of an increase in the constraint length but not in the associated bandwidth
expansion. Note that we have chosen to compare these codes on the basis of equal
rate. Hence the asvmptotic coding gains of (3.10). (3.11). and (3.12) are all for coding
rates of 1/2K.

The maximume-likelihood decoding of superorthogonal convolutional codes in-
volves the use of the VA and is practically identical to that of the biorthogonal
convolutional code. Again. the branch metrics are obtained from the Hadamard

transform of the received vector. and the only difference lies in the trellis structure.

3.1.5 1IS-95 Uplink Code

61 Svmbols ‘I
'T/

Hadamard

L1
L

Encoder

Figure 3.3: Encoder of the IS-95 uplink code.

The error control code used in the [S-95 uplink consists of the combination of a
rate 1/3. constraint length 9 convolutional code and a (64. 6) Hadamard code. An
encoder for such a code is shown in Figure 3.3. The serial/parallel block converts two
successive input vectors of length 3 into a vector of length 6. which is then mapped
into a Hadamard codeword. Hence every two data bits get mapped into a 64-svmbol
codeword. The coding rate of the IS-95 uplink code is therefore 1/32. Note that we
ignore here the issues of interleaving and PN sequence spreading that are part of the

actual IS-95 standard, since we are interested in the pure coding aspect.
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The convolutional code used in the IS-95 uplink code is the maximal free distance
code of rate 1/3 and constraint length 9. and has dg. = 18. The free distance
of the overall IS-95 uplink code is more complicated to find. since it may not be
due to the input sequence that generates the minimum-weight output sequence of the
convolutional code. We thus resort to heavier machinery. and use the Viterbi decoding
algorithm of the IS-95 uplink code to determine the path or paths of minimum weight
[33]. This reveals that the free Hamming distance of the IS-95 uplink code is 160,

and its asvmptotic coding gain is
Goc(IS—QS) = 5=~ 7dB (3.13)

The IS-95 uplink code. the superorthogonal convolutional code of rate 1/64. the
biorthogonal convolutional code of rate 1/256. and the orthogonal convolutional code
of rate 1/1024 have the same asvmptotic coding gain. Hence. based on asvmptotic

coding gains. the [S-95 uplink code is superior to OBS codes.

3.2 Trellis/Reed-Muller Coding

In this section. we present the general idea that led to the construction of Trellis/Reed
Muller codes (patent pending). Part of this work was published in [34]. As outlined
earlier, these codes are based on the combination of a trellis code with a first-order
Reed-Muller code. We explore some methods to estimate analytically the performance
of Trellis/Reed-Muller codes, thereby revealing some important code construction
rules and constraints. Finally, we explain how the Viterbi algorithm is combined with
the fast Hadamard transform to obtain a maximum-likelihood decoding algorithm for

Trellis/Reed-Muller codes.

3.2.1 Structure of Trellis/Reed-Muller Codes

In the proposed coding scheme of Figure 3.4, a block code is used jointly with a
b-bit input trellis code of constraint length K. The role of the trellis code is to select

cosets of the block code. The selected coset code is then used to encode the m + 1
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remaining data bits into an n bit codeword. The overall code rate is ——m',f“

. and is
independent of the constraint length of the trellis code. We shall focus on the case
where the block code is a (2™, m + 1) first-order Reed Muller (RM) code. Hence all
transmitted codewords belong to some coset of a first-order Reed-Muller code. and

m-+b+1

the overall code rate is =

b
| Trellis Code [——a{0S€t Selector
[-1 Mapping
Y
m+1 0
7= »| Block Code |
Codeword

Figure 3.4: Trellis/Reed-Muller coding scheme.

Trellis/Reed-Muller (TRM) codes are a special case of trellis codes. As illustrated
in Figure 3.5. the trellis of a TR)M code is derived from the trellis of its coset-selecting
code by replacing each branch with a set of 2™~! parallel branches. Each of these
branches represents a codeword in a RM coset. We shall refer to the trellis of the
coset-selecting trellis code as the primary trellis of the TRM code. as opposed to the

full TRM trellis.

SO SO
St SI
S2 S2
S3 S3
Primary Treilis Full TRM Trellis

Figure 3.5: Trellis representation of TRM coding.

The Viterbi algorithm can be used directly for maximum likelihood decoding of

TRM codes. To each state transition in the trellis. there corresponds a given coset
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leader. The metrics of each group of 2™*! parallel branches can be obtained by a
Hadamard transform of the received vector, after pre-muitiplication by the appropri-
ate coset leader.

Let the received vector be r = ¢;2A + n, where ¢, is a RM codeword. A\ a coset
leader, and n the noise vector. The samples of the noise vector n = (n;,---.n,m) are
i.i.d. Gaussian random variables with mean zero and variance o®. The received vector
r=(ry,---.ram), given ¢; and A, is a Gaussian random vector with 2™ independent
components ri. Each r; is then a Gaussian random variable of mean c;\r and
variance 2.

For each primary trellis branch, a Hadamard transform of rz)’ is computed; )’
is the coset leader associated with that particular primary trellis branch. This com-
putation provides sufficient information to discard all but one of the 2™*! parallel
branches of the full TRM trellis. The metric of the remaining branch in the full trel-

lis is the largest component (in absolute value) of the Hadamard transform of rs)’.

The Hadamard transform of re)’ can be written as
H(rzd) = 27™%(rz)M)H,, = 2= (3.14)

where the matrix H], is obtained from H, by multiplying each column of H,, by
M. Hence H(rsld') is obtained by a linear transformation of r. Since r is a Gaussian
random vector, the Hadamard transform of r=)’ is also a Gaussian random vector
with the following properties (see section B.1 of Appendix B for the details of the

computation)

! (0’...’O'i2m/2707”'70) /\=/\, -
E[H(r=d")] = (3.13)
272(g;zAe ) Hm AN

, 2-mg? k=
Cov [H(r=A)y = (3.16)
0 Otherwise
Therefore the vector red’ is a Gaussian random vector with independent compo-

nents of variance 2~™0? and mean given by (3.13). When A # ), the considered
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path is incorrect: the corresponding metric is given by the maximum (in absolute
value) component of a Gaussian random vector (with independent components of
equal variance) and mean given by (3.13). In order to minimize this metric (which
is equivalent to maximizing the distance of an incorrect path to the correct path) we
need to minimize the maximum value of the mean vector (3.15) given by
272 max [(ceded ) Hn| = 277 max [ <czdedle> |
= 2~m/2 max | <Az [czee> |
= 27™? max | <daX|g> |

(=1,-.2m

= Maz [H(As)')] (3.17)

where ¢, = ¢;s¢; is also a RM codeword (because the first-order Reed-Mluller code is

linear). From Parseval’s equality, if F = (F},---, Fam) is the Hadamard transform of
a vector f = (fy.---. fam) then
2"‘ 2" 9 ‘)
YF = Y fi = AP (3.18)
u=l1l u=l

Sm

Moreover, if f is a bipolar vector (f, = +1), then ) _ F2?=2™_ This implies that
IH(AeX)|| = 2™. Therefore (3.17) is minimized wherrzalll components of H(A=A') are
equal to £1. When m is even, this property defines a bent function. Therefore. in
order to minimize (3.17), the vector Ac)’ has to be a bent function.

When m is even. there exists a set of vectors with the property of being furthest
away from all codewords in R(1,m). Such vectors are called bent functions [18. pp.
426-428]. A bent function has Hamming distance 2™~! £ 2™/2=! to any codeword in
R(1,m). Also if v is not a bent function, it has distance less than 2™~ —2™/2-! from
some codeword of R(1,m). Equivalently, the Hadamard transform of a bent function

consists only of +1. Moreover, if « is a bent function and ¢ a RM codeword, uzc is
also a bent function. In summary, if Ae)’ is bent, then we can write (3.15) as
,---,0,%£2™2.0,---,0) A= X

E[H(rs))] = ' (3.19)
(£1,41,---,+1, £1) A £ N
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It is therefore desirable to construct a set .\ of vectors such that the product of
any two distinct vectors is a bent function. This is always possible if we choose a
small number of such vectors (say 2}. However. we would like to construct \ to be
as large as possible. If we allow one of the coset leaders to be the zero vector, it
follows that all non-zero coset leaders which minimize (3.17) must be bent functions
themselves. This is only a necessary condition. The construction of a complete set of
bent functions A = {);} with the property that the product A;eA;, i # j, is again a
bent function (not necessarily in the set .\), is closely related to the construction of
the Kerdock code [18. 35]. This construction method, which yields 2™~! coset leader
candidates, is described also in [36]. In the case of odd values of m, or when many
coset leaders are needed, sets of vectors which vield small although non-optimal values
of (3.17) could be considered. This issue is briefly mentioned in [36]. In this work,
we consider only the case where m is even and the set of coset leaders constructed as
in [36]. There are then 2™~! coset leader candidates.

The union of the first order Reed-Muller code and its 2™~! cosets described in the
above paragraph form a Kerdock code of order m. K(m) [18. 35, 36]. The Kerdock
code is a nonlinear binary block code with 22 codewords of length 2™ [18. pp. 156].
Its minimum Hamming distance is 2™~! — 2™/2-1 One can view TRM coding as a
partition of the Kerdock code into its Reed-Muller sub-codes (R)M cosets). and the
transmission of codewords from one sub-code at a time. The improved performance
comes from the fact that the minimum distance of a first order Reed-Muller code is
larger than that of the Kerdock code. This approach is conceptually similar to trellis-
coded modulation (TCM), applied to block codes instead of signal constellations. In
a spread-spectrum system where bandwidth expansion is possible. the rich structure
of some low rate block codes such as the Kerdock code makes that approach very

promising.

3.2.2 General Considerations in Trellis Code Construction

The previous section dealt with the coset partitioning issue, without specifving how

to design the coset-selecting code. We now address the important issues in the con-
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struction of good coset selecting codes.

Each branch of the primary trellis of a TRM code is mapped into a corresponding
coset leader. Let 3; and 3, be any two branches in the primary trellis of a TRM code.
mapped into coset leaders A, and )\, respectively. We define the modified distance

between J; and 3, as

0 if A = A, .
d(Br. B2) = (3.20)
1 ifA # A

Similarly, let m; = (3;,. 3i,.---) and &; = (3;,, 3;,.- - -) be two paths in the trellis. The

modified distance between path 7; and path 7; is
0
d(mi ;) = O dm(3ip. 35,) (3.21)
k=1

The modified free distance of the code is the minimum modified distance between
any two distinct paths in its primary trellis. Thus.
dm¢ = min dn(7, 7)) (3.22)

(.-r‘.:r})
:r‘;t:rJ

The minimum Hamming distance of a first-order Reed-Muller code is 2™~!. The
minimum Hamming distance between two non-parallel branches in the TRM full
trellis is 2™~! — 2™/2-! Hence the minimum Hamming distance between two paths
7 and m; in the full trellis is dp(7;, @;)(2™"' — 27/271). It follows that the free

(Hamming) distance of a TRM code is

dfree = min (Qm-l-,dmf X (Qm_l - 2m/2—-1))

= 2™ U min (1, dge(1 — 27™2)) (3.23)

Since m > 2, then diee = 2™ ! whenever di¢ > 2. The free distance of the TRM code
is thus determined by the minimum Hamming distance of the RM code. Therefore,
for high signal to noise ratios, the performance of a TRM code is limited by the

Reed-Muller code. Also, the asymptotic coding gain of a TRM code is

m+b+1
2

m+b+1
X

Goo(TRM) = —m 2m-t = (3.24)
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which is very promising when compared to the asyvmptotic coding gains of the OBS
codes of similar rate. Moreover. we can increase the asyvmptotic coding gain of a TRM
code while reducing the corresponding bandwidth expansion by increasing the value
of b. In orthogonal and biorthogonal convolutional codes. the asymptotic coding gain
can only be increased at the expense of a greater bandwidth expansion.

Since the performance of TRM codes is limited by the Reed-Muller code. there
is little to be gained from using very powerful trellis codes (i.e. with large dyr). A
good coset-selecting trellis code can have d;,y = 2. and as few states as possible.
for a given number of inputs. Since the number of trellis states (and therefore the
decoder complexity) increases exponentially with the product Kb, a small value of A’
allows for larger values of b if Kb is to be kept constant. This in turn increases the
asymptotic coding gain.

The following general rules can be used to construct good coset-selecting trellis

codes with & inputs. We shall say that a coset-selecting trellis code is good if

1. All coset leaders should occur with the same frequency. This rule is similar to

that of TCM {37, 38] and [39, pp. 78]

[SV)

No parallel branches. This implies that on the trellis diagram. each state has
exactly 2 branches going out to 2° distinct next states. Otherwise. we would

have a trellis with a modified free distance of 1.

3. All the branches emanating from or merging into the same state must be mapped
to distinct coset leaders. This rule. together with rule 2. ensures that the

modified free distance of the trellis code is at least 2.

4. Non-catastrophicity. The code must not allow for the existence of two infinite
paths with a finite number of different coset leaders. but generated from two

input bit sequences with an infinite Hamming distance between them.

An important consequence of rule 2 is that the number of delay elements needed
to implement a good coset-selecting trellis code is at least b. since there must be 2°

distinct states.
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3.2.3 Performance Analysis in AWGN

If the trellis code is modified-distance invariant, then one can assume. without loss
of generality, that the correct path in the primary trellis is 7y, the zero path (i.e. the
path generated by an input sequence of all zeroes to the trellis encoder).
Proposition: Any convolutional code is modified-distance invariant.

Proof: Let @ = (u,,u,,---) and # = (v;.,.---) be two paths in the trellis of a

convolutional code. The modified distance between path 7 and path 7’ is

> > ) 1 ifu#Fu )1 e +u #0
do(m.7') = 3 dml(ue.ve) = Y _ =3
k=1 k=t { 0 if up = v, k=1 | 0 ifu+uv,.=0
o'e)
= S dun(tte + 04,0) = (7 + 7 70) (3.25)
k=1

a

For the purpose of this section, we shall assume that the coset-selecting code is
linear. In other words. it can be constructed from a convolutional code followed by
a mapping from the codewords of the convolutional code to the set of coset leaders.
One may question. at this point. the impact of such a restriction on the structure of
the coset-selecting code. However. we shall see later on that the coset selecting codes
of interest fall in that category.

Assuming a convolutional coset-selecting code, the TRM code is distance invariant.
The bit error probability can be upper bounded by using an approach similar to that
of [19, pp. 253-356). Consider the primary trellis of the code, and let P(i) denote
the probability that path =; (diverging from the zero path at some fixed node j) is
selected. If we denote the bit error probability of the Reed-Mulier code by p,,,. then

the average bit error probability of the TRM code is bounded by

m+1 < p < m+1
m+b+1p’“" b “m+b+1p”"’

1 & N .
P(0) + m;E[nb(z)]P(z) (3.26)

where E[n,(i)] is the average number of bit errors on path ;. Let [; be the number
of non-equal branches between path 7; and path 7y, d; the modified distance between

path m; and path 7, and 5; the Hamming weight of the input sequence generating
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7;. We then have
E[nb(l)] = 31' + (m + l)pn.\z(li - dt) + (m + ]-)dipbem. (327)

Indeed, when path 7; is selected (¢ # 0), we first make an error in the 3; non-zero bits
in the input sequence generating 7;. On each branch where the coset leader is correct,
the bit error probability is that of a RM code. and hence the average number of errors
is (m + 1)p,,,. Finally, on branches where the coset leader differs from that of the
correct path, the bit error probability is denoted by ppen:, and the average number of
errors is (m + 1)Pvent-

The upper bound of (3.26) follows from a union-bounding argument [19. pp. 253-
356]. The lower bound can be derived by assuming a very powerful trellis code such
that Py — 1, and therefore the correct path is alwayvs selected. This is clearly an
optimistic situation. The & bits of the trellis code are always error free. whereas the
only errors that can occur, with probability p,,,. are in the m + 1 bits of the RM

codewords. Thus, in this optimistic scenario. the overall average probability of error

m+1
m-*-b+lpR M

is
The exact expression for p,,, is given in [28. pp. 210-212]. The computation of the

exact expression for pyen, follows the same reasoning. but it turns out that its actual

value does not vary much with the signal to noise ratio. and is around 0.67. It can

be upper bounded by 1, without affecting significantly the upper bound of (3.26).
From (3.26) and (3.27), we have

m-+1

B, < —pR.uP(O)

— g{ m -+ 1) (Doent — Pray )i P)

m + b +1
+ L(m + 1)p,., P(i) + BiP(i)}

m+1 + m+1
m+ b+ 1D R m+b+1

m+1 1 >
— l; 3;P(i) (3.2
+ Z P(i +b+1§_3P(z) (3.28)

(oens = Pa) i 4.P(i)

m+b+1"w

where we upper bounded P(0) (the probability of selecting the correct path) by 1.
We define here the modified augmented generating function T(D, L, I), which is

obtained from the classical definition given in [19] by replacing the Hamming distance
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between branches by the modified distance. Recall that the modified distance between
any two branches in the trellis is either zero (if the coset leaders are the same) or one
(if the coset leaders are different). Hence in the labeling of the state diagram of the
code, from which the augmented generating function is derived, the variable D can
only have exponents 0 or 1. Note that the free distance is often the figure of merit
used in trellis code search and trellis code design. In our case, only the modified free
distance matters. Hence a good code. in terms of its Hamming free distance. is not
necessarily a good coset selecting code for TRM coding.

The modified augmented generating function vields the modified distance distri-
bution of the primary trellis. Let g(j.d,!) be the number of paths generated by an
input sequence of weight j, at a modified distance d from the zero path. and with
a diverging length of [ branches. Let also ¢(d,!) be the number of paths of diverg-
ing length { and at modified distance d from the zero path. Finally. let a(d) be the
number of paths at modified distance d from the zero path. If dy is the modified free

distance of the primary trellis code. then we have.

> 9(.d.1) (3.29)
ad) = > > g(idl) = ic(d.l) (3.30)
1=li=dy l=dy

If we define P(d.l) as the probability that a path of length ! and modified weight d

is chosen, given that the zero path was transmitted, we can rewrite (3.28) as

m+1 m+1
Py € ——jPax t oy Poen — Pry l%: d}; de(d,)P(d.l)  (3.31)
mf C=dmf
(m+l)pnu 00 [ 1 0 { G o
— le(d,l) P(d.! _— j.d. 1) P(d.l
+m+b+11§d§ c(d. 1) (‘)+m+b+1l_z _ZZ]Q(J..) (d.1)
=ldmf A=0mf =dpt d=dms =1

and defining

jo o3
h(d.l) = Z (j.d.1) (3.32)
we end up with
m+ 1 m+1 © J )
Py S Py T gy Poen ~Pry) 2. D deo(d)P(dl)  (3.33)

{=dms d=dm¢
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m+ 1
+ o Pr Z Z (d.l) [P(d.]) +b+1 Z Zh(dl

{=dp,f d=dy¢ l=dy1 d=dm¢

In section B.2 of Appendix B, we show that P(d.!) is upper bounded by

d l-dl-d—j - — — —
P(d.l) = ZZ S AG . k.d.)Q (\/2(zw1+(d i) wa + k2 Nl+(z d—j—k)?2 )E’s)

where the energy per channel symbol Ej is related to the energyv per data bit Ej and

the energy per codeword E, by

b+1 1
E. = 220 = —E, (3.34)
and
( i=0.---.d
d omd —d f-t{—J 2m+1_2l—d—j—-k i=0.--.1—d
Alijk.dd) = ¢ ()2 (5 (7)1« ) 7= (3.35)

k=0.---l—d—j

L 0 Otherwise
is the number of paths of length /. modified weight d and Hamming weight (1w, +
(d = )ws + k2™ + (I —d - j — k)2™.

We also derive in the same section of Appendix B a simpler albeit looser upper

bound on the bit error probability, given by

m+1 m+1 druw E, dT(D.L.1I)
Pb < 7 1Pry + f( ! -1 ) { (Pbem —pﬂ_\r) [D_(——

aD ] D=e—w1Es/No

m+b+1 m+b+1 N, 1
=l L=2m"
or(D,L.1I) 1 [oT(D.L.I)
SO L) T | AL T S
I=1.L=2m =L m+

where f(z) = Q(v/2z)e*. The bound of (3.36) is in closed form, and expressed in
function of the transfer function of the code (and its derivatives). It has the familiar
form of the upper bounds on the error probabilities of linear convolutional codes (e.g.

[19]). Such upper bounds are useful at high signal to noise ratio only .

3.2.4 Unequal Error Protection

TRM codes have an inherent feature which consists in unequal error protection. In-

deed, the b input bits to the coset-selecting code are better protected since the prob-
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ability of path error is less than that of branch (Reed-Muller code) error. This is
equivalent to the observation that the performance of the TRM code is limited by
that of the Reed-Muller code. In general. unequal error protection is not necessarily
a benefit. In this case however, the average bit error probability is almost equal to
the bit error probability of the m + 1 bits fed to the the Reed-Muller encoder. which
we refer to as p,,. Indeed, let p, be the bit error probability of any of the b bits fed

to the coset-selecting, code: the average bit error probability is then

_ m+1 + b (337)
p = m+b+1pm m—i—b+1pb 22

Given the allowable values of b, we have that 1/2 < -ZtL < 1. Hence even if

m+6-+1

P» K Pm, We obtain

]
=Pm < P < Pnm (3.38)

Hence the average bit error probability is never less than half the bit error probability
of the least protected bits. Thus, for all practical purposes. we consider the average
bit error probability as a good measure of both the overall code performance and the
error probability of its least protected bits.

On the other hand. at relatively high signal to noise ratio. it turns out that
Dy < pm. In applications such as speech coding, some data bits are more important

than others. The use of TRM codes is naturally indicated to such situations.

3.2.5 Decoding of TRM Codes

As mentioned earlier, Trellis/Reed Muller can be viewed as trellis codes (refer to
Figure 3.5). The Viterbi algorithm can then be used for maximum likelihood decoding
of TRM codes. To each state transition in the primary TRM trellis, there corresponds
a given coset leader. The metrics of each group of 2™*! parallel branches can be
obtained by a Hadamard transform of the received vector. after pre-multiplication by
the appropriate coset leader.

Once the metrics of a group of 2™*! parallel branches is computed. only the branch

with the largest metric is kept, in accordance with the add-compare-select procedure
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Figure 3.6: Branch metric computer for maximume-likelihood decoding of TRM codes.

of the Viterbi algorithm. Indeed. since all the branches in question emanate from the
same branch. the -add™ operation can be skipped. and selecting the branch with the
highest metric corresponds to the compare-select operation.

In principle. the metrics of each branch can be calculated by a metric computer as
illustrated in Figure 3.6. The first block in Figure 3.6 -adds™ the branch coser leader
to the received vector. and is the onlv element that varies from one branch computer 1o
the other. The ~absolute maximum selector” block finds cut which component of its
input vector has the largest absolute value. and cutputs that component ‘signed: value
together with the corresponding index. This allows the Viterbi algorithm 1o selecrt
exactly one codeword on the trellis branch together with irs associated likelihood
metric.

In general. there mav he more than one state rransition for each associated coset
leader. In other words. different state transitions mav have the same associated coset
leaders. Obviously. the corresponding branches need onlv one branch mertric com-
puter. Furthermare. the high parallelism between different branch metric computers
can be exploited to reduce the decoding complexity by using common intermediate

results between Fast Hadamard Transforms. On the other hand. if the transmission

L4

rate is not too large. a single branch metric computer is sufficient: the same Fast
Hadamard Transform and Absolute Manimum Selector blocks are used repetitively

with varving coset leaders in the coset leader block.
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3.3 Short Constraint Length TRM Codes (TRM1)

As shown in section 3.2.2. the free Hamming distance of the TRM code should be
made equal to the minimum Hamming distance of the first-order Reed-Muller code.
In this section. we consider the simplest good coset-selecting convolutional codes with

one delay element per input bit.

3.3.1 Code Construction

Figure 3.7: Primary trellis structure for » input bits and one delay per input bit.

Rule 2 of section 3.2.2 states that. on the trellis diagram. each state has exactly 2°
branches going out to the 2° distinct next states. Since we have exactly 2° states
available. this rule fixes the primary trellis structure. illustrated in Figure 3.7. which
is referred to as a fullv connected trellis.

A simple mapping from the primary trellis branches to the coset leaders. which
satisfies the rules of section 3.2.2. is a bijective map (one-to-one and onto). where

2 2b

each of the primary trellis branches is mapped to a unique coset leader. It follows

that the set of coset leaders must have at least 2?° elements. Actually. since there
are 2™~! possible coset leaders. with the constraint that m is even. the set of coset

261

leaders must contain 2 elements. In other words. for a RM code of length 2™. the

number of possible coset leaders is 2™~!. which implies that the maximal value of b
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is bmax = m/2 — 1. From now on we will concentrate only on the case b = by,. and

refer to the resulting codes as TRM1 codes.

-]

1-1 Coset Mappiné

0.00.0 —> 4,

- : Coset Leader

110.0 —> A,

m+b+1 '
bits : (1111 —>- L.'..:h
——[D ] ~

Jn
ﬁ'?(.;.%!-odulator
el First-Order
< > Reed-Muller g
Encoder

Figure 3.8: TRM1 codes with a constraint length of 2.

A possible implementaticn of a TRMI1 code is shown in Figure 3.8. Note that
the coset selecting code consists of a convolutional code followed by a mapping. The
TRM1 code of Figure 3.8 requires exactly 2?® coset leaders: even for b = b,,. only
half the available coset leaders are emploved.

The convolutional code of Figure 3.8 has a modified free distance of 2. Hence the

free distance of the TR)M1 code is
diee = min(2™~1.2(2™m"1 =227y = min(2mL 2™ - 2™/2) = Ml (3.39)

which shows that its asvmptotic coding gain is

m+b+1

G(TrMI) = — (3.40)

<

3.3.2 Performance Analysis

We shall now analvze the performance of the TRM1 code of Figure 3.8. Without
loss of generality, we can assume that the correct path is the “zero™ path (i.e. all the

input bits to the trellis code are zero). since the coset-selecting code of TRM1 codes
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is linear. and hence modified distance invariant. We shall first base our performance
evaluation on the closed form upper bound of (3.36). and then on the tighter bound

of (3.33-3.35).

Closed-Form Upper Bound

The state equations of the convolutional coset-selecting code of a TRM1 code are
easily derived from the trellis diagram of Figure 3.7. A trellis branch linking two
states S; and S; (¢ and j not both zero) has a modified weight weight of 1. and is
generated by an input of Hamming weight w(j). where w(j) is the Hamming weight

of the binary representation of j. Therefore. the state equations are

26
§& = DLV Y ¢ j=1.---.20-1 (3.41)
1=0
261
& = DLY & (3.42)
=1

Summing over J in (3.41),

21 26— 261 b /p 261
So - B Te=or(S (1)) (e o)
Jj=l1 j=t =0 k=1 =1

26
= DL[(1+ D) - 1] (50 + > 5)) (3.43)
)=t

Thus,
2! DL |(1+1)' -1
Z §& = 7o [ b __]
= 1-DL[(1+ 1) —1]

&o (3.44)

Using this in (3.42)

DL [(1+ 1) - 1]

I—DL{(1+1)~1]
The upper bound of (3.36) is useful provided that the signal to noise ratio is large

T(D.L.I) =

(3.45)

enough so that the infinite sums of (B.11-B.15) converge. An equivalent condition is
that the variable D (evaluated at D = e *1£+/Ye) in the transfer function is smaller

than the smallest pole of T(D, L, I)|;=1.r=2m+!. Then the condition is

1
2m+l(26 — 1)
& wE/N, > In(2™(2" - 1)) (3.46)

D <
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Using (3.34). and the fact that 2% — 1 < 2%, convergence is ensured if
om—1 _ 9gm/2~1

2171.

Ey/N, > In2 (3.47)

For large m, this condition is equivalent to Ey/N, > 1.42 dB. For the smallest value of
m that we consider (m = 6), the condition is £,/N, > 2 dB. Naturally, this condition

ensures that the upper bound of (3.36) is finite. but does not guarantee its tightness.

Truncated Summation Method

We now consider using (3.33-3.35) directly to upper bound the bit error probability
of TRM1 codes, in the search for tighter evaluations of performance. In this method.
the @ functions are not replaced by exponentials. which results in a tighter upper
bound on the overall bit error probability. The improvement is most substantial at
low signal to noise ratios, where the exponential upper bound on the Q function is
rather loose. In section B.3 of Appendix B, we derive the following upper bound on

the bit error probability of TRM1 codes:

m+ 1 m+1 &2 d
P < —_— ——————Dhbe d?b—ld_[ -'l .-d-d P:'~ —1t) wa
by = m+b+1pn.\{+m+b+1pbmd=§d:{ ( ) Z;:O (Z, ) wy+(d—t} wa
p20-1 >

d
Yo (d =12 = 1)y A d d) Py gu-i) uf3-48)

+m+b+1d=dm[ =

For computation purposes, we actually approximate the upper bound by taking a
sufficiently large number of terms in the infinite sums of (3.33-3.35).

We shall denote the right-hand side of (3.48) bv P;.

The lower bound m—’j}gﬁpm, and upper bounds of (3.48) and {3.36) (transfer func-
tion bound) are plotted in Figure 3.9 for TRM1 codes with m = 6. 10. 12 and 14. It is
clear that the truncated path-enumerating bound is tighter than the transfer function
upper bound, particularly for the smaller values of m. The upper and lower bounds
get increasingly tight as the bit error probability decreases. For bit error probabilities
around 1073, all the computed bounds are indistinguishable, which allows a precise
estimation of the required Ey/Ny to achieve bit error rates of 107> or less. Reliable

estimates are also available for bit error rates of 10+ especially for the lower values

of m.
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T

Lower bound v
N Closed form upper bound
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Figure 3.9: Bit error probability bounds for TRM1 codes.

Table 3.1 summarizes the conclusions that can be drawn from Figure 3.9. by
displaying the required E;/.V; to achieve bit error probabilities of 10~*. 10~°, and
107%. Whenever the difference between the upper and lower bound of Figure 3.9
is less than 0.1 dB, we consider the average of the upper and lower bound as a
reliable estimate, thus ensuring that the maximal error is never greater than 0.05 dB.
Otherwise, we list the corresponding E, /N, range (lower and upper bound). Bit error
probabilities of 1072 and larger are not considered because the bounds are not tight
enough in this region.

At low values of E, /N, and relatively high bit error probabilities, the upper bound
becomes too loose to characterize reliably the performance of the code. Fortunately
enough, simulations are particularly practical at moderate to high probability of er-
rors. Thus in the region where the upper and lower bounds are not tight enough,
simulations can take over to provide reliable predictions of the bit error probabilities.

Simulation results are presented in section 4.2
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TRM Code: m 6 8 10 12 14
Bandwidth Expansion (b = bmax) | 7.11 | 21.33 | 68.27 | 227.6 780.2
£) ap, =107 3.675 | 2.9 | 2.37 | 1.9-2.08 | 1.55-1.86
o dB
| @P =107 4.525 | 3.675 | 3.075 | 2.62 2.27
£l @p, =105 522 | 4.34 | 3.7 3.2 2.82
°oldB
Asymptotic Coding Gain dB 6.53 | 7.78 | 8.75 9.54 10.2

Table 3.1: Coding gain of short constraint length TRM codes at different bit error

probabilities, in dB.
3.4 TRM2 Codes

In this section, we construct another class of good coset-selecting codes. Unlike TRM1
codes, these codes achieve the maximal possible number of inputs (maximum coding
rate, for a given R(1,m) block code), while satisfving the code construction rules of

section 3.2.2 with dyn = 2. We will refer to these codes as TRM2 codes.

3.4.1 Code Construction

Consider first a general coset-selecting trellis code with b inputs. Any node in the
corresponding primary treilis diagram has 2° branches departing from it. According
to rule 3 for the construction of good coset-selecting codes. these 2° branches must
select distinct coset leaders, Ay, -+, Agp_;.

Suppose there are 2° coset leaders available. Ay, --.A»_,. Then, for each trellis
node, there is exactly one outgoing branch with coset leader Ay, one with A,. and so
on. Consider the path 7y consisting of starting in some state Sp and always selecting
the next state such that the sequence of coset leaders selected is (Ag, Ag, - - ). There
also exists a path m,. starting at some state S;, such that the sequence of coset
leaders selected is also (Ag, 2. ). From rule 3, the paths m and 7, never merge.

which implies that the code is catastrophic.

Hence a coset-selecting code with b input bits must use a set of coset leaders of
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more than 2¢ elements. Since the number of coset leaders is an odd power of 2. a
coset-selecting code must have at least 2°*! available coset leaders if b is even. and 2°+2
if b is odd. Putting it the other way around. if the RM code has length 2™ (m even),
the maximal number of inputs to the coset-selecting trellis code is bpax = m — 2.
This statement holds for an arbitrary good coset-selecting trellis code (i.e. for any
coset-selecting trellis code satisfving the construction rules of section 3.2.2). Note

that the value of bnay is significantly larger than that of the TRMI1 codes considered

earlier.
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Figure 3.10: Encoder structure of TRN2 codes.

Figure 3.10 shows a feedback free implementation of a TRM2 code. It consists
of a convolutional code with b + 1 delay elements, and b + 1 output bits which are
the indices of the corresponding coset leaders. The state of the convolutional encoder
is given by the vector v = (v, vy, --,), and its b input bits are given by the
vector @ = (a;,---,a). Note that in Figure 3.10, ¢ € {0,1}°. v € {0,1}**!, and
F ={f} € {0,1}**'. On the other hand, the coset leaders and the output of the R)M

encoder belong to {1, —1}?". The input-output relation of the convolutional encoder
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is given by

fla,v) = (w.a1+va, - ai +Vigy, - @y + 1.y + 1) (3.49)

I

where addition is understood to be modulo 2. We shall now proceed to show that the
coset-selecting code of Figure 3.10 code satisfies all the construction rules of section

3.2.2.

1. Rule 1 is verified trivially because of the one-to-one mapping from the output

of the convolutional encoder to the set of coset leaders.

(V)

Rule 2 is verified since each input bit is fed into a memory element which affects

the state of the encoder.

3. Suppose the encoder is in a certain state v, and consider two distinct input

vectors g and a’. From (3.49). we have
fla,v) + fld.v) = (0.ay+a}.---.a;+a}, - . a1 +a,_,.a5 +ay) (3.50)
Hence,
fla,y) = fld.v) = a=d (3-51)
Thus any two distinct branches emanating from the same node are mapped into

distinct coset leaders.

Consider now the case of branches merging into the same node. Note that this
requires that the corresponding input words be identical (it should be clear from
Figure 3.10 that two distinct input words must yield distinct “next states™).

Suppose we have two distinct states v and v/, and some input vector a. Then

fla,v) + fla, V) = (w+wvy,vy+uv,-v+ v, v+, v + 1) (3.52)

Hence,

fle.v) = flay) = VvV =1v (3.53)

Thus any two distinct branches merging into the same state are mapped into

distinct coset leaders.




Chapter 3. Construction of Very Low Rate Codes 66

4. A convolutional code is non-catastrophic provided the state diagram contains no
loop of zero weight other than the self-loop around the zero state [33. pp. 308].
Equivalently. the coset-selecting code of Figure 3.10 is non-catastrophic pro-
vided that there exists no infinite-length sequence of inputs (a!®. gV, - --), with
a non-zero Hamming weight. which generates an output sequence (f' @ f W ..

of zero Hamming weight.

Let us try to construct an arbitrary long sequence of input vectors. (a@. a(V, - - ).
which generates consistently zero output vectors. Suppose we start off in some
state v. We must have vy = v, = 0; otherwise. a non-zero output vector would
be generated after at most 1 delay. Similarly, we must have a{ = 0 for all i.
If a(li) = 0. then v, must also always be zero. which implies that o' = 0 for all
i. By repeating the same reasoning, we end up with the following condition: in
order to have a continuous stream of zero output vectors. the initial state must
be zero, and all the input vectors must be zero. Hence the coset-selecting code

of Figure 3.10 is non-catastrophic.

Note that the modified free distance has not increased from TRM1 to TRM2 codes.
The role of the additional delay element is to provide more states. relaxing the condi-
tion that distinct states transitions bear distinct coset leaders. thereby allowing larger

values of b for the same m.

3.4.2 Evaluation of the Transfer Function

In order to apply the performance analysis tools that were used for TRMI1 codes, we
need to derive the modified generalized transfer function T(D. L, I), or at least a suf-
ficient number of coefficients in the long-division expansion of T(D. L.I). We denote

by S; the state specified by the state vector v such that the base-2 representation of
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tis (vovy - - - 1p)2. Let Sfj) = Sjgs-14,- We define the following vectors of states

Upg = (51 526-‘—1)T = (S{O) Sés-)-l_[)r

Uy = (Sp- Spat = (s S ST
.3¢

U, = (Sp Sppaa-i_)T = (S s¥ s, 1)7(

Us = (Swpp1 - Spri_)T = (S5 S Sl )7

We shall denote by U; the set of states to which the elements of L', belong. Hence the
sets {So}.Uo, U;. U, U; induce a partition of the set of states. We shall refer to the

U;s as superstates. This allows to draw the vectorized state diagram of Figure 3.11.

Figure 3.11: Vectorized state diagram for the coset selecting code of a TRM2 code.

In Figure 3.11. the superstates are shown with double circles. WWhen more than one
branch links two superstates, this is indicated by a thick arrowed line. The transfer
function between two superstates is represented by a matrix.

The state equations in matrix form are then

Up = A9 So + Too Uy + T Lo (3-33)
Uy = 4,5 + Tyl + Ta U, (3.36)
Uy = Twal, + T3 U, (3.57)
Us = TialU, + T Uy (3.58)

So = (Ba2|U,) + (Bo|LUo) (3-39)
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The vectors 4y and B, and the matrices Ty, To9. and Ty, are given explicitly in
Appendix B.1.

The solution of the state equations is not trivial. and is practical only for small
values of b, typically b < 5. For larger values of b, it is difficult to compute the transfer
function. However, it is still possible to obtain iteratively the path enumerating
function g(j,d,!), which gives the number of paths of length [/ and modified weight
d which are generated by an input sequence of Hamming weight j. The improved
upper bound on the performance of TRM1 codes used this approach. not because of
the unavailability of the transfer function, but because of the greater accuracy that
was obtained. The unavailability of the transfer function deprives us only of a looser
upper bound. which would have the sole advantage of being in closed form.

The state equations (3.553-3.39) can be written as

r=Azx +BS, (3.60)

where z7 = (S5, UT.UT,UT,U)7. and the matrices A and B are in accordance with
(3.55-3.59). As shown in [40. Section 6.4]. the formal solution r = (I — A)~!S, leads

to the conventional transfer function, while the equivalent matrix series solution
r = 1+A+A2+A432+--9)5 (3.61)

provides an algorithm for the computation of the transfer function. Knowledge of the
relation between (1 + A +---A") and (1 + A+ --- A""!) vields an iterative method
to compute the transfer function.

The iterative computation of the path enumerating function is better understood
by looking at the trellis diagram of TRM?2 coset-selecting codes. illustrated in Figure
3.12. Let T{™ denote the vector of transfer functions between S and U (") and let

T.™) denote the transfer function between 550) and S{". We then have

70 = T + 178 (3.62)
T8 = T + T (3.63)
7 = 1 T+ T T (3.64)
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Stage n+1

Figure 3.12: Trellis diagram of a TRM2 coset-selecting trellis code.

IfJnH) = TzoI(zn)‘*'TooIfln) (3.63)
T = (B, | T8 + (B, | TV (3.66)

which is the iterative relation to compute the transfer function. T'(D. L. I) = lim T,

For finite n, 7™ is a polynomial in D. I. and L. where the exponent of L is always
n (by inspection from the trellis). Moreover. the coefficient of each term in D4[/L"
is the number of trellis paths with a modified weight d. length n and generated by an

input sequence of weight j. Mathematically

b n
TI(D.L.Iy = 35 g(j.d.n)D L™ (3.67)
1=0d=2
n bn
= T"(D.L.1) = S5 g(j.d.n) DL" (3.68)
d=2 j=0

c(d.n)

T " (D.L.T)
oI

and

n bn
=3 (Zmu,d.n)) DIL*  (3.69)
=1 d=2 .

Jj=0

-

h(d.n)
Hence, in principle, one could obtain A(d,n} and c(d,n) for an arbitrary range of

values of n = 2--- V. In practice, a relatively small .V provides a sufficient accuracy



Chapter 3. Construction of Very Low Rate Codes 70

in computing the upper bound on the bit error probability. This is because for large
values of n. good codes have c(d. n) = hi{d. n) = 0 for d < n. which means that longer
diverging paths have a larger modified distance and hence a smaller probability of
being chosen. If the signal to noise ratio is not too small. the probability of choosing
erroneous long paths in the trellis is negligible when compared with the probability
of making an error on shorter paths. despite the fact that the number of paths of
a given length n increases rapidly with n. The computation of T, (D. L.I). of its

derivative. and of c(d. n) and h(d.n) for all n < N is easilv done on a computer.

3.4.3 Performance Evaluation

In this section. we evaluate the performance of TRM2 codes as a function of signal to
noise ratio. We first argue that the closed form upper bounds are not tight enough
for the signal to noise ratio range of interest. \We then proceed to use the truncated

path enumeration bound to estimate the bit error probabilitv of TRM2 codes.

Closed Form Upper Bound

The closed form upper bound of (3.36) is meaningful provided the infinite sums of
(B.12-B.16) converge. which happens at sufficiently large signal-to-noise ratio. This

—uw:E, N

is insured if the variable D. evaluated at D = ¢ > is smaller than the smallest

root of the denominator of T(D.L.I) ,_ -«.£, ~o. Since T(D.L.Ij is a ratio of

I=:.L=2m~"

polvnomials in D.L.[. its poles are also the poles of its partial derivatives with respect
to D. L. or I. For example. with 6 = 2 and m = 6. numerical evaluation shows that
the smallest pole of T(D. L. I)i;=; ;=128 = 4.731 107". This meansforab=2.m =6
TRM2 code. the upper bound of (3.36) is useful for E,/.N, > 5.7dB. which is well
outside the range of interest. As m increases. the minimum required E,/.\, to ensure
the convergence of (3.36) increases too. This is a consequence of the large number of
parallel branches in the full TRM treilis. It also enforces the observation that closed
form upper bounds based on the transfer function of the coset selecting code does not

lead to a useful measure of the performance of TRM codes.
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Truncated Path Enumeration Approximation

This method was used in the evaluation of an upper bound on the bit error probability
of TRMI1 codes. By evaluating (3.33-3.33) for a sufficiently large of terms in the
infinite sums. an approximate upper bound which is tighter than the transfer function
bound is obtained. Therefore. the truncated path-enumeration approximation is the
only indicator we use in the performance evaluation of TRM2 codes. and we will
somewhat loosely refer to it as an upper bound. Figure 3.13 shows the upper and
lower bounds for all TRM2 codes with m = 6.8.10. 12. The tightness of the bounds
increases with signal to noise ratio (as expected since thev are asvmptotically tight).
but decreases with the number of input bits to the coset-selecting code. since larger
values of b implies a large number of paths. The looseness of (3.48) at low SNR is
due to the large number of paths in the full TRM rtrellis. since we are in fact using

a union bound over all paths of the full TRM trellis. Tables 3.2-3.4 summarize the

| TRM Code: (m.b) | (6.4) | (6.3)[(6.2) | (8.6) . (85 | (84) (83 (82)
| Bandwidth Expansion | 58 | 64 | 711 ° 171 | 183 :© 197 @ 213 233 -
&l aep=10"" 127205 | 32 | 3675 | 1822 212235 25265 2375 | 33
| %zda &P, =107 | 36 | 415 452 12627 207 33 367 407
| Bl em=10° | 43 14350527 | 33 363 . 396 433 47

ACG (dB) D55 1500 45 0 13 70 65 60 : 53

Table 3.2: Required E,/N, for TRM2 codes at different bit error probabilities. and
asymptotic coding gain. (m = 6. 8)

conclusions that can be drawn from Figure 3.13. by displayving the required E,/\j
to achieve bit error probabilities of 107*. 107>. and 10~%. WWhenever the difference
between the upper and lower bound of Figure 3.13 is less than 0.1 dB. we consider
the average of these two values as a reliable estimate. thus ensuring that the maximal
error is never greater than 0.05 dB. Otherwise. we list the corresponding E},/.\y range
(lower and upper bound). Bit error probabilities of 10~? and larger are not considered

because the bounds are not tight enough in this region.
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Figure 3.13: Upper and lower bounds on TRM2 codes.
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TRM Code: m = 10,b : 8 7 6 5 4 3 2
Bandwidth Expansion 53.9 36.9 60.2 64 683|731 788
|, @R =107 1.2-1.84 | 1.46-1.93 | 1.74-2.06 | 2.02-2.22 | 2.38 | 2.67 | 3.0
| @R =10"° 1.97-2.14 | 2.28 2.52 2.78 | 3.08|3.39 | 3.74
%, @R =10"° 2.61-263 | 238 3.12 3.4 3.7 | 40 [ 435
ACG (dB) 9.5 9.0 8.5 8.0 75 | 70 | 65

Table 3.3: Required Ej/Ny for TRM2 codes at different bit error probabilities. and
asymptotic coding gain. (m = 10}

m =12,b: 10 9 8 7 6 5 4 3 2
BW Expansion 178.1 186.2 1935 204.8 215.6 227.6 | 240.9 | 256 | 273.1
‘%f,- iR @p, =10"1 || 0.75-1.6 | 0.96-1.7 | 1.2-1.8 | 1.4-1.86 { 1.65-1.97 | 1.9-2.1 | 2.23 | 2.49 | 2.77
% un @p, =107 || 1.5-1.8 1.7-1.9 | 1.9-2.06 2.18 2.39 2.63 289 | 3.16 | 3.46
%‘;— R Qp, =10"° 2.11 2.3 2.5 2.73 2.96 3.21 347 | 3.74 | 4.04
ACG (dB) 11.5 11.0 10.5 10.0 9.5 9.0 85 8.0 7.5

Table 3.4: Required E,/Ny for TRM?2 codes at different bit error probabilities. and
asymptotic coding gain. (m = 12)
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The required E,/Ny estimates for most of the codes of Figure 3.13 are accurate
at bit error probabilities of 10 ~° or lower. For some codes. the estimates are accurate
at even higher bit error probabilities. However, for probabilities of error of the order
of 10~3 or higher, we need to resort to simulations to estimate with precision the

corresponding Ej/Ng.

3.5 Conclusions

In this chapter, we have introduced Trellis/Reed-Muller codes, a new class of very
low rate codes which is based on the combination of trellis codes and first-order Reed-
Muller codes. We derived a set of rules on the construction of the trellis code. These
rules lead to the development of two main families of Trellis/Reed-Muller codes: the
TRM]1 codes which use very simple trellis codes. and the TRM2 codes which use
a more complex trellis code in exchange for a higher achievable coding rate. and a
better performance.

We have also explored in this chapter analytical methods of estimating the bit er-
ror probability of TRM codes as a function of the bit energy to noise power spectral
density ratio (E,/Np). We used these methods in the estimation of the bit error prob-
ability of both the TRM1 and TRM2 codes. In the next chapter. we will thoroughly
compare the TRM codes with the other known very low rate codes mentioned in the

early sections of the current chapter.



Chapter 4
Comparison of Very Low Rate

Codes

This chapter presents a thorough comparison of TRM codes with the other very
low rate codes examined in this thesis. The comparisons are made on the basis of
performance (required signal to noise ratio to achieve a given bit error probability).

coding rate, and decoding complexity.

4.1 Analytical Methods

In this section, we look at some analvtical methods of assessing the performance of all
the very low rate codes considered in this thesis. For most codes. no exact expression
of the bit error probability is known. However. one can derive tight bounds which
can accurately approximate the bit error probability of the codes. especially at high
signal to noise ratio.

The construction of the orthogonal and superorthogonal convolutional codes are
attributed to Viterbi [12, 27], whereas that of the biorthogonal convolutional codes
is attributed to Rikkinen [26]. A performance analysis of the orthogonal and super-
orthogonal convolutional codes is given in [19] and [27] respectively. The author relies
on the classical upper bounding technique which uses the generating function of the
code and the approximation of the complementary error function by an exponential.
The resulting bound is known to be asymptotically tight.

The derivation of the generating function of orthogonal, and superorthogonal con-
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volutional codes can be found in [27]. We assume that all the codes have a rate 1/2%.

and adapt the results of [27] to obtain

IWE(1 - W)
Tortno (W, I _ - 1.1
ortno (W' 1) 1—(1+ )W + [WK (1)
TWE(1 = I
TSuportho (IV [) = ( ) (42)

1-(L+ D)W = TWK 4+ 2]IWWA+L

where W = D?*™'. Recall that the exponent of D in each term of the series expansion

of the generating function gives the Hamming weight of the corresponding path. In

Initial
State

Biorthogonal Convolutional Code: a=2, W=? Rate = 12"

Orthogonal Convolutional Code: a=1, W=D~ Rate = 112 K

lK-l

Figure 4.1: State diagram of an orthogonal and biorthogonal convolutional code.

order to obtain the generating function of the biorthogonal convolutional code. we
use the great similarity between orthogonal and biorthogonal convolutional codes.
Consider the state diagram of a biorthogonal convolutional code of rate 1/2%, depicted
in Figure 4.1. As emphasized in Figure 4.1. this diagram is also the state diagram
of an orthogonal convolutional code of rate 1/25+!. The only difference lies in the

labeling of the first branch, and in the expression of 11" in terms of D. Therefore,

Toommo(W, 1) = WTSEED W, 1) (4.3)
TWHE2(1 - W)

= . 4.4
1 - (1+ W + VK (44)

where W = D?"7'.

The closed form upper bound on the bit error probabilities of a convolutional code
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is given by [19. chap. 4]

2dgree E dgecBs JT (D, [ -
P < Q _“\9[_95_ e % _(a_l A (4.5)
<0 I I=I.D=e—wf).
For the rate 1/2% codes under analysis. % = ngv—u, and we evaluate the transfer
. . - _E ‘ _
function at W = D2"™' = e" ™. Moreover, the product 4k§=f— is equal to ’2‘—% for

orthogonal convolutional codes, K+DE g biorthogonal convolutional codes, and

2 JV()

(K,—;';Oﬁﬁ for superorthogonal convolutional codes. Thus (4.5) becomes

o< ( Z_éﬁ\zi) eﬁxﬁﬁ aT(aI; : 1=1,ur'=c'T§h6 (+6)

We can now use the generating functions to obtain
Py giorhe < @ ( (ig—\fjﬁ) e (I[t_!;;:(i_;tpii)z - (1.8)
Fosaporno < Q ( (K—;:)_E—b) e% (1- 23"::(;1\_4-”21):1\*1)2 ;r:e'i%a(_l.g)

At moderate to high signal to noise ratio. i.e. whenever 11" < I, the denominators
of all three bounds are the same. In this situation. a superorthogonal convolutional
code of rate 1/2% has the same performance as a biorthogonal convolutional code of
rate 1/25+2 and of an orthogonal convolutional code of rate 1/2K+* Naturally. this
observation fails at low signal to noise ratio. but it is much stronger than a comparison
based on asymptotic coding gain. Actually. the series expansion of all three bounds
vield the same first A coefficients. which shows the great similarity in the distance
profiles.

As mentioned in [26], the number of non-zero data bits on a diverging path at a

Hamming distance dgee + n2%~! from the zero path is given by
'Sdfr:e"'nzh‘_l = 2"‘ + (n - 1)2(n_2) n = 17 MR I\’ - ]. (4.10)

and Gy = 1. Although (4.10) is given for orthogonal and biorthogonal convolutional

codes, it also holds for superorthogonal convolutional codes. This can be checked,
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for example, by performing a long division of the right hand sides of {1.7}). (1.8). and
(4.9). These coefficients are extremely helpful in computing a much tighter upper
bound on the bit error probability. Indeed. given the coefficients .3,, the union bound

on the bit error probability of a convolutional code is given by

oc 'Es
P < S 3.Q (,/”V ) (4.11)
N=dgee +'0

The closed form upper bound is obtained by upper bounding the Q(-) function by an

exponential, such that (4.11) is recognized as the series expansion of the derivative
of the generating function, evaluated at D = e~ £+N;. However, as seen earlier with
TRM codes. a tighter approximate bound is obtained by simply truncating the sum in
(4.11) to a sufficiently large number of terms. If the 3,’s are known. the computation
is straightforward. In our case, the K first non-zero values of 3, are given by (4.10).

Finally, a simple lower bound on the bit error probability is given by the proba-
bilitv that the minimum distance path is decoded. Since for the codes under analysis.
the minimum distance path is unique, and is generated by a single bit. we have

B, > Q( ZM) (4.12)
No '

Figure 4.2 systematically displays the above-mentioned bounds for OBS codes of
rates 1/8 to 1/2048. These curves show that it is difficult to get a reliable estimate
on the bit error probability for low signal to noise ratio. The tightness of the bounds
increases with signal to noise ratio and with the coding rate. Hence for low coding
rates, these bounds are tight only at very low bit error probabilities. However. it is
seen from Figure 4.2 that we can reliably estimate the bit error probability of some
codes starting at a given signal to noise ratio threshold.

It is shown in [26] that the path-enumerating bound is very tight for orthogonal
and biorthogonal convolutional codes of rate greater or equal to 1/128 and bit error
probabilities less or equal to 10~3. However, no such guarantees are given for lower
coding rates, higher bit error probabilities, or for the superorthogonal convolutional
codes. In order to assess when and which of the bounds of Figure 4.2 can be used to

reliably estimate the code performance, we need to resort to simulations.
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Orthogonal Biorthogonal Superorthogonal
Convolutional Convolutional Convolutional
Codes Codes Codes

Bit error probability

Bit error probability

Bit error probability

— — - Closed-form upper bound

- - - Truncated path enumeration (upper bound)
——— Lower bound

Figure 4.2: Bounds on the bit error probability of orthogonal, biorthogonal. and

superorthogonal convolutional (OBS) codes of rate 1/2%.




Chapter 4. Comparison of Very Low Rate Codes 80

Another conclusion that can be drawn from Figure 4.2 is that the closed-form
upper bound can be much looser than the path-enumerating bound of (4.11). For
example. the two bounds differ by almost 1 dB at 10~? for the superorthogonal
convolutional code of rate 1/256. For this reason. we will only use the upper bound
based on (4.11) in all future references to upper bounds on the bit error probability
of orthogonal. biorthogonal. and superorthogonal convolutional codes.

The last code under consideration that was not vet mentioned in this section is
the IS-95 uplink code. The natural method of evaluating analyvtically its performance
is to use a transfer function method (or better. a path-enumerating method), which
is modified to take into account the inner Hadamard code. Basically. we consider
the whole code as a 2-bit input. 64-symbol output convolutional code of constraint
length 9. However, due to the cumbersome expressions that result from trying to
evaluate the transfer function of a constraint length 9 convolutional code. we will
limit ourselves to simulations to assess the performance of the IS-95 uplink code.
Since there is only one such code (as opposed to a family of codes). we can afford the
extra computational effort to reliably estimate the code performance even at relativelv

low bit error probabilities.

4.2 Simulations Results over the AWGN Channel

All the veryv low rate codes under consideration were simulated on an AWGN channel.
The simulator was written in C. and its output format is compatible with Matlab. In
this section. we display the simulation results as the bit error probability of a given

code versus the corresponding E,/:Vp.

4.2.1 Procedure

We estimate the bit error probability at a given E3/.Vg by running the simulator for
a certain number of input bits, and taking the ratio of the number of bit errors over
the number of transmitted bits. By repeating the experience with different seeds

to the random number generator, we can obtain several estimates of the same bit
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error probability. In all the curves presented in this section. the data points are
obtained by averaging ten simulation points. This allows us to compute the standard
deviation of the estimate. thereby determining a confidence interval. Note that the
number of transmitted bits may vary from one data point to another. since lower bit
error rates require longer data streams for an accurate estimate. However. the ten
stmulation points that are used to obtain one data point must be obtained from the
same number of transmitted data bits: otherwise. the derived statistics. namely the
standard deviation. are meaningless.

The curves of bit error probability estimates are plotted with Matlab on a loga-
rithmic scale. The data points are clearly identified. together with the corresponding

standard deviation. The curves are obtained from a cubic spline data interpolation.

4.2.2 1IS-95 Uplink Code

In the IS-95 standard. the error control code used in the uplink consists of a rate 1/3.
constraint length 9. convolutional code. followed by a Hadamard (64. 6) encoder. In
other words. each two output syvmbols of the convolutional encoder are encoded into
a 64-bit orthogonal codeword by the Hadamard encoder. The resulting codeword is
further spread four-fold by a PN sequence. Hence this can be viewed as a rate 1/3
code. followed by a rate 6/64 code. followed by a rate 1/4 repetition code (the latter
providing no coding gain). As shown earlier. such a code has an asymptotic coding
gain of 6 dB.

The rate 1/3 constraint length 9 convolutional code used in the IS-95 standard
has generating polvnomials (557. 633. 711) in octal notation. Its free distance is 18
[33] which vields an asvmptotic coding gain of approximately 7.8 dB. Although the
convolutional code is almost 1 dB better than the IS-95 code at very large signal to
noise ratio, Figure 1.3 shows that for probability of errors of interest. the IS-95 code
offers the best performance. Actually. the two curves meet for E,/ Ny =~ 1.2 dB for a

bit error probability of about 3 107.
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4.2.3 OBS Codes
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Figure 1.3: (a) Bit error probability of the [S-95 uplink code and its rate 1/3. con-
straint length 9. convolutional code. (b) Bit error probability of orthogonal convolu-
tional codes of rate 1/28. A =3---10.12

Figures 4.3. and 4.4 show the simulation results for all the OBS codes of interest. The
coding rates under examination range from 1/4 to 1/4096. It can be verified that the
bit error probability of different codes of the same rate are for all practical purposes
shifted versions of each other. This observation confirms the earlier prediction based
on the generating functions. There is not much more about these curves that needs
to be further emphasized. However. these are the performance curves that will be

used later for a comparison between different coding methods.
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Figure 4.4: Bit error probabilityv of biorthogonal and superorthogonal convolutional

codes of rate 1/2% . for various values of A. over the AWGN channel.

4.2.4 TRM Codes

The estimated bit error probability of TRMI1 codes. obtained from simulations. are
shown in Figure 4.5 (a). for m = 6.8.10 and 12. This corresponds to coding rates
of 9/64. 12/256. 15/1024. and 18/4096 respectively. Equivalently. these TRM1 codes
spread the bandwidth by factors of abourt 7.1. 21.3. 68.3. and 227.6 respectively.

Figure 4.5 (b) shows the estimated bit error probability for TRM2 codes with
m = 6 and m = 8. The corresponding coding rates are 9/64. 10/64. 11/64. 11/256.
12/256. 13/256. 14/256. and 15/256. It is seen that the larger m and b are. the better
is the performance. Unlike other families of low rate codes. it is not necessaryv to
decrease the coding rate to improve the performance. since the rate is an increasing
function of 4.

The estimated bit error probability for TRM?2 codes with m = 10 and m =12 is




Chapter 4. Comparison of Very Low Rate Codes 84

(a) TRM1 Codes {b) TRM2 Codes
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Figure 1.53: (a) Bit error probability of TRMI1 codes with m = 6.8.10.12. (b) Bit
error probability of TRM2 codes with m =6 and 8.

shown in Figure 4.6. For m = 10. the coding rates are 13/1024. 12/1024. .. 19/1024.
For m = 12. the coding rates considered are 15/4096. 16/4096. up to 22/1096. We
can verifv again the performance improvement with increasing m or b.

We also use the simulation results to verify that the average bit error rate estimate
is dominated by the bit error rate of the m + 1 bits fed to the first-order Reed-
Muller encoder, and that the b input bits to the coset-selecting trellis code are better
protected than the remaining m+1. This is a confirmation of the discussion of section
3.2.4. In Appendix C, we give the bit error rates for both “tvpes” of input bits. and
the corresponding average bit error rate data that is used in some curves of Figures

4.5 and 4.6.
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(a) TRM2 Codes. m=10 (b) TRM2 Codes. m=12
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Figure 4.6: Bit error probability of TRM2 codes with m = 10 and 12. over the AWGN
channel.

4.3 Performance Comparison of Different Coding
Scheme

In this section. we collect the fruits of our labor. We use the performance analyses
and simulation results to compare the different coding schemes. This is not a simple
task. Indeed. a fair comparison must compare codes of the same rate and comparable
complexity. However, because of their different structures, it is not always possible to
have codes of different families with exactlyv the same rate. Moreover. the definition
of complexity opens up a new discussion, and usually leads to more questions than it
provides answers.

We will ignore the issue of complexity for the purpose of this section. and will strive
to compare in a fair manner the different codes based on the bit error probability.

In Figure 4.7, we compare all the codes under study on the basis of the required
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E, /Ny to achieve a bit error probability of 1073. Each code is represented by a point:
the abscissa is the required E}/.Vy, and the ordinate is the code rate. For the same
rate, it is the code with the smallest required E}/Ny value that is the best., whereas
for the same required E,/N, value, it is the code with the largest rate that is best.
Hence the better codes are those in the top left corner of the diagram, since theyv

combine relatively large coding rates with good performance.

Bit error probability = 10”
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Figure 4.7: Comparison based on coding rate and required E,/NVy to achieve a bit
error probability of 1073,

In Figure 4.7, the performance hierarchy of OBS codes is very clear, since the rates
of these codes match exactly. Hence, as far as rate and performance is concerned.
the superorthogonal convolutional code constantly and significantly outperforms the
orthogonal and biorthogonal convolutional codes. We also notice that the IS-95 uplink
code is only slightly better than the superorthogonal convolutional code of the same
rate.

The performance of TRM1 codes on the other hand is comparable to that of the

superorthogonal convolutional codes except at very low rate (less than 1/512) and
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Figure 4.8: Comparison based on coding rate and required E;/.Vy to achieve a bit
error probability of 107,

at relatively large rate (greater than 1/10), where the superorthogonal convolutional
codes are slightly better.

The important observation that follows from Figure 4.7 is the superior perfor-
mance of TRM2 codes. Indeed, for all rates of interest, there exists a TRM2 code
which outperforms all other codes under study. In Figure 4.7. for everv point repre-
senting a code of rate less than 1/3. there exists a TRM2 code which is both left and
above of that point. In other words, for any non-TRM2 code, there exists a TRM2
code of higher rate and better performance (where performance is here measured by
the required E,/N, to achieve a bit error probability of 1073)

In Figures 4.8 and 4.9, we repeat the comparison of Figure 4.7 for bit error proba-
bilities of 10~* and 1073. A careful examination of these comparisons shows that the
general pattern of Figure 4.7 is repeated in Figures 4.8 and 4.9. Hence the relative
performances of the codes under study are consistant over the range of error rates of

interest. This consolidates the superiority of TRM2 codes in terms of providing the
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Figure 4.9: Comparison based on coding rate and required E,/.Ny to achieve a bit
error probability of 1073.

best coding gains for a given coding rate. amongst all the low rate codes considered.

4.4 Effects of Coding on System Capacity

In this section, we try to quantify the increases in capacity that the different coding
schemes can provide to an asynchronous DS-CDMA system. The STIR for an uncoded
such system has been computed in section 2.1 and given by (2.11). With perfect power
control conditions, we have

2

B -1)

STIRuncoded =

(4.13)

Suppose now that we are using coding on top of PN sequence spreading. Let R,
denote the coding rate, E the energy per coded symbol, and let [ be the PN sequence

spreading factor (on top of the coding, such that the total spreading factor is [/ R,).
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The equivalent bit energy to interference ratio is

_Eﬁ N STIR yncoded _ 2 — 2 (4.14)
I R. R+ B2(ar—1) — P +Blar-1

where B, is the effective bandwidth expansion factor given by B,T.[/R. = B,T,
which takes into account the normalized bandwidth of the chip pulse shape. As
argued in section 2.2.2, the best pulse shapes minimize the time-bandwidth product
T,B,. Indeed, (4.14) shows that for a given effective bandwidth expansion factor. the
lower T,B, is the higher is the effective bit energy to interference ratio. We restrict
ourselves, for the remaining part of this section, to the IS-95 chip pulse shape, which
was shown to be close to optimal for a 95% energy containment bandwidth definition.
Let p be the desired bit error probability which ensures a satisfactory grade of service
to the user. We evaluate the impact of coding on the system capacity in the following
way. For a given code, we find out the required E,// necessary to obtain a bit error
probability of p, based on the curves of section 1.2. We then solve for M in (4.14) to

obtain

’

M o= 1+ Bf;p (E,,_/I - Eb;.\fo) (4.15)

From (4.13), the relationship between M/ — 1 and B, is linear. Since B, = B,T.l/R..
it follows that PN sequence spreading provides a linear increase in system capacity.
In the following, we disregard the TR)MI1 codes and the orthogonal and biorthogonal
convolutional codes, because the TRM2 codes and the superorthogonal convolutional

codes (respectively) provide a better performance for similar or larger coding rates.
We will now compare the IS-95 uplink code, the superorthogonal convolutional
codes, and the TRM2 codes, based on the number of users per unit bandwidth that
a system can support with these different coding schemes. The number of users per

unit bandwidth is a function of
e The desired grade of service (for example, a bit error rate of 107*)
e The amount of thermal noise, i.e. the ratio £,/ Vg

e The FOM of the chip shape. We consider here the [S-95 chip shape with a 95%

energy containment bandwidth.
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e The coding scheme

e The bandwidth expansion factor B,, or the ratio [/T, since we restrict ourselves

to the IS-95 chip shape with a 95% energy containment bandwidth

Once the above-listed information is known. one can solve for W/ in (4.13).
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Figure 4.10: Number of users per unit bandwidth for the best TRM2 and super-
orthogonal convolutional codes. and the IS-95 code, as a function of /R, and with
Py = 1073,
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Since we constrain ourselves to the IS-95 pulse shape. the bandwidth of the system
is proportional to {/R.. Hence we slightly abuse the language and refer to \//({/R.)
as the capacity per unit bandwidth or the system efficiency. In the Figures that follow.
we show the capacity per unit bandwidth versus {/ R, for the IS-95 code. and the best
superorthogonal convolutional and TRM2 codes. For each family of codes, we only
show a code if it yields a greater efficiency than all codes of the same family with a
lower {/R.. Note that since M is almost proportional to [, the number of users per
unit bandwidth is independent of [. Therefore the bandwidth expansion through PN
sequence does not increase the system efficiency. emphasizing that spreading through
PN sequences is an inefficient spectrum spreading method (in the abscissa of our
plots, {/R,. is actually equal to 1/R,).

Figure 4.10 shows the capacity per unit bandwidth versus [/R. for a bit error
probability of 103 grade of service, and three values of E,/:NVy. A 5 dB value for
Ey /Ny represents a relatively noisy environment. whereas a 20 dB value reflects an
interference-limited system. The codes shown which vield the largest number of
users per unit bandwidth are the rate 1/32. 1/64. 1/128, and 1/256 superorthogonal
convolutional codes, and the (M = 8.5 =6). (m = 10,b = 8). and (m = 12.b = 9)
TRM?2 codes. Note that the (m = 12.6 = 10) TRM2 code would yield an even greater
capacity per unit bandwidth. but we have not simulated its performance.

It is seen that the best TRM2 codes provide consistently a greater number of users
per unit bandwidth than the best superorthogonal convolutional codes and the IS-95
code. Also. the superorthogonal convolutional codes are seen to be superior to the
[S-95 coding scheme.

Figure 4.11 shows again the capacity per unit bandwidth for a bit error proba-
bilities of 10~ criterion, and confirms the superiority of TRM2 codes over the other
coding schemes considered. Also, the advantage of superorthogonal convolutional
codes over the IS-95 code is less pronounced. As a matter of fact. for {/R. < 64. the
capacity per unit bandwidth induced by the IS-95 code is slightly greater than that
of the corresponding rate 1/32 superorthogonal convolutional code.

In Figure 4.12, the system efficiency is given for a bit error probabilities of 102
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Figure 4.11: Capacity per unit bandwidth for the best TRM2 and superorthogonal
convolutional codes. and the IS-95 code. as a function of //R,, and with p, = 10~*.

criterion. Unlike the case with less stringent grades of service criteria. the [S-95 code
is seen to provide a greater capacity per unit bandwidth than the superorthogonal
convolutional codes. The TRM2 codes are still superior to the IS-95 code. albeit less
markedly. Indeed, for [/Rc < 1024/19 = 53.9. the IS-95 code and the best TRM2
code (m = 8,b = 6) provide the same number of users per unit bandwidth. However.

the TRM2 code requires almost half the bandwidth expansion necessary to the 1S-95
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code to achieve the same efficiency. For [/R. > 53.9. the TRM?2 codes provide a net

improvement over the IS-95 code.

In summary. TRM2 codes provide consistently a superior capacity per unit band-

width over the whole range of bit error probabilities of interest. The improvement over

other low rate codes is substantial. ranges from 15 to 40%. Although our definition

of capacity employs simplifving assumptions. similar improvements can be expected
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when svstem capacity is measured with more practical grades of service criteria (such

as blocked and dropped call rates). and more realistic assumptions.

4.5 Complexity Issues

We now address the crucial issue of decoding complexity which was put aside earlier.
Indeed. decoding complexity is a prime concern for any implementation of error con-
trol coding. We will start by assessing the decoding complexity of the OBS codes. and
the IS-95 uplink code. \We will then derive the decoding complexity of TRM codes.
In doing so. we will show that the combination of several FHTs sharing intermediate

results provides some complexity reduction without sacrificing the performance.

4.5.1 OBS Codes

We remind the reader that the maximum-likelihood decoding algorithms of each of the
OBS codes are almost identical. They all involve a V'A. with the metrics computation
heing performed by a FHT. and the standard add-compare-select operation. The

decoding complexity is thus determined by

1. The FHT. which. for codeword of lengths 2% requires A"2% additions and sub-

tractions.

N

The number of metrics adjustments {the “add” part of ~add-compare-select”
operation). Since there are two outgoing branches per state. the number of
metric adjustments per decoding stage is twice the number of states. Each

metric adjustment requires a single addition or subtraction.

3. The number of “compare” operations. which. for each decoding stage and for
each state. equals the number of incoming branches minus one. This is the
number of comparisons required to determine the surviving path. We assume

that a comparison is of the same complexity as an addition.
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4. The number of ~select” operations. which delete the non-surviving paths. Their
complexity should not exceed that of an addition for each deleted path. at least
from an algorithmic point of view. Hence we will assume that the cost of the

“select” is the same as that of the “compare” operation.

The maximum-likelihood decoding of an orthogonal conveolutional code of rate

1/2% requires a VA with 25" states. Each stage of the \'A requires one 25-FHT for

I

the computation of the metrics. 2% additions. 28 ~* comparisons and selections. The
decoding complexity of orthogonal convolutional codes of rate 1 ‘2% per information

bit is then
\oma, = RA2F 2K _ 92« 2R-1 = 28K _ 9, additions /bit i1.16:

The maximum-likelihood decoding of a biorthogonal convolutional code of rate
1/2% requires a VA with 2/ states. Each staze of the \'A requires one 28-FHT for
the compuration of the metrics. 28~ additions and subtractions. 2% comparisons
and selections. The decoding complexity of biorthogonal convolutional codes of rate

1./2% per information bit is then
\Biomzs = A28 =287 2,28 = 2R K 4 additions bit 417

Finallv. the maximum-likelihood decoding of a superorthogonal convolutional code
of rate 1,2% requires a VA with 2%~ states. Each stage of the VA requires one 24
FHT for the computation of the metrics. 282 additions and subtractions. 28 ~° com-
parisons and selections. The decoding complexity of superorthogonal convolutional

codes of rate 1,/2% per information bit is then

R2F _9R=2_ 9 9K = 2K 1 _ <. additions. bit = 4.18;

\Su;wr’.l:o -

The decoding complexity of the superorthogonal convolutional code is slightly
greater than that of the biorthogonal convolutional code. which is in turn slightly
greater than that of the orthogonal convolutional code. However the difference
is rather small while the performances varv considerablyv. We emphasize. based

on (4.16)-(4.18) that the increase in constraint length from the orthogonal to the




Chapter 4. Comparison of Very Low Rate Codes 96

biorthogonal and then the superorthogonal convolutional code (all of the same rate)
does not induce a corresponding doubling in decoding complexity. For example.
for the rate 1/256 codes (K=8). we have yorhe = 2560. XBiorthe = 3072. and

XSuportho = 4096.

4.5.2 IS-95 uplink code

The IS-95 uplink code has 256 states. Each decoding stage uses one received Reed-
Muller codeword. which encodes two data bits. The cost of performing a FHT of
length 64 is 6 x 64 = 384 additions and subtractions. Moreover. each state has
four outgoing branches. which means that the computation of the cumulative metric
requires 4 x 256 = 1024 additions. Finally. the “compare-select™ operation involves
four incoming branches per state. In order to find the maximum of four numbers.
three comparisons are necessary. The select operation chooses one surviving path out
of four. for each state. Hence the complexity associated with the “compare-select”
operation is 3 x 256 x 2 = 1536. Putting it all together. the decoding complexity per

information bit of the [S-95 uplink code is

384 + 1024 + 15!
\IS—95 = 5 236 _ 1472 additions/bit (4.19)

4.5.3 TRM Codes: Straightforward Metrics Computation

We now turn to the estimation of the maximum-likelihood decoding complexity of
Trellis/Reed-Muller Codes. Consider a TRM code with a é-input coset-selecting trellis
code. and Reed-Muller code of length 2™. \We denote the number of states of the
trellis by ¢. and the number of additions required to compute all branch metrics for
each decoding stage by M. We need 2™ comparisons per state in order to select the
correct primary branch metric. Since each stage has 2° incoming and outgoing primary
branches, we also require ¢2° additions to update the cumulative path metrics. and 2 x
02° additions for the “compare-select™ operation. per decoding stage. The decoding

complexity per bit is then

M + 30(2° +2™)
m+b+1

XTRM additions/bit (1.20)
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For TRM]1 codes. the number of states is ¢, = 2°. whereas for TRM2 codes. it is

gy =201,

In a straightforward implementation of the metrics computer. the decoder per-
forms a number of FHTs. one for each coset leader that is used. The FHT complexity
is of m2™ additions. For TRM1 codes. 2% coset leaders are emploved. whereas TR\ 2

codes use 2'*! coset leaders. Hence we can write

22 x m2™ + 35(2° + 2™) 22

= = —— +3)2™ + 3 1.2
XTRMI m+b+1 m+b-:—1((mT ) ) (4.21)
201 x m2™ + 30(2° +2™) 2%t
= = +3)2™70 + 3) (4.22
\TRM2 m+b+1 m+b+1((m ) 3) (422

From the above expressions. it follows that the decoding complexity is heavily domi-
nated by the computation of the branch metrics through the series of FHTs. This is
particularly true for TRM1 codes and TRM codes with relatively small values of b.
However. even when b = bnpa, for TRM2 codes. the decoding complexity 2—":_%3:’}’3-’
is dominated by the metrics computation since 4m > 15.

Another important observation is that. for TRM1 and TRM2 codes with the same

m and b, we have

3)2™ + +3)Im
XTRMI  _ (m+ 3)2 b 3 (m+3)2m+3 _a_ 9 (£23)
XTRM2 (m + 3)2m-b0+1 16 (m+3)2m-1 +6 (m+3)2m-1 +6

This shows that TRM?2 codes are less complex than TRM1 codes of the same pa-
rameters. The inherent reason for this is that. although the TRM2 code has more
states. it emplovs much fewer distinct coset leaders than the TRM1 code of the same

parameters.

4.5.4 TRM Codes: Reduced Complexity Metrics Computa-
tion

Since the decoding complexity of TR\ codes is dominated by the branch metrics
computation. it is very important to compute these metrics in the most efficient way-.
In this section, we will show that different FHTs can share intermediate results and

thereby decrease the complexity of the metrics computation.
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Input Output  Permutation

a >< a+b >< a-b

b >¢ a-b a+b
2-pt FHT FHT(a.-b)

Figure 4.13: FHT of (a. —b) obtained from the FHT of (a, b).

Every stage of the FHT is composed of several two-point FHTs, or butterfly
structures. Suppose that we have computed the two-point FHT of u = (a.b). Then.
as shown in Figure 4.13, the FHT of (a. —b), is obtained by a simple permutation of the
FHT of u. Naturally, FHT(—a,b) = —FHT(a. -b) and FHT(—a.—-6) = —FHT(a.b).
This shows that the FHT of (%a. £b) is obtained from the FHT of (a.b) without any
further computation, since the permutation can be hardwired and the possible minus
signs incorporated in subsequent stages of the larger FHT. Therefore. in the branch
metrics computation of TRM decodes. all simultaneous FHTs can share the same

first stage.

u[0]=x{0] - - XI[0]
u[l]=x[4]e
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- —e X][7]

Figure 4.14: 8-point Fast Hadamard Transform.

Moreover, some intermediate results which are at deeper stages may be shared
among FHTs. The number of such occurrences depends on the different coset lead-

ers. In order to determine exactly how many intermediate results can be shared or,
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equivalently, how many 2-pt FHTs are required to compute all branch metrics. we
first rearrange the usual structure of the FHT to that of Figure 4.14.

Take a vector u and a coset leader )\ of length 2™, which is already sorted for
the FHT implementation of Figure 4.14. Suppose the FHT computation of u is
available (i.e. the final result and all intermediate values). We wish to determine the
number of unnecessary (redundant) intermediate results that would be computed in
the FHT evaluation of usA. A butterfly structure is redundant if the corresponding
butterfly in the computation of the FHT of u computes the same two functions up
to sign and permutation. We have shown that all first-stage butterflv structures are
redundant, since all simultaneous FHTs can share the same first stage. Moreover.
as we established above, for two 2-point FHTs to compute the same functions up to
sign and permutation, they must have the same inputs up to sign and permutation.
Indeed, the two outputs of a depth k£ butterfly structure in the computation of a FHT

are of the form

2%—1_1 +offset 2% toffset —1

6= % aut S (424
i=offset i=2k—-1 L offset
2k~1_140ffset 2k Loffset —1

G = oo au—- Y auw (4.25)
i=offset i=2k—1_offset

where the ¢;’s are the £1 coefficients. and “offset” is a power of two which specifies
which butterfly structure of depth £ is referred to. The corresponding butterfly

structure in the computation of the FHT of ug) vields

2%=1_1+offset 2k toffset —1
'
CO = Z C; )\,‘ u; + Z C; /\,’ U; (426)
i=offset i=2%-1 1+ offset
2k~ _1 4 offset 2% 4 offset —1
; -
Cl = Z C; /\,' u; — z C; /\1’ u; (42/)
i=offset i=2k~1 4 offset

For these two butterfly structures to yield the same results up to sign and permutation

for any u, we require

Aoffset = /\oﬂ'set+l = - = /\oﬂ‘set+2k-l-1

and ’\offset+2“" = ’\oﬂ'set+2"“+1 = = Aoﬂ'set+2“—1 (428)
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The above conditions show one possible way to reduce the complexity of the branch
metrics computation, by avoiding redundant computations. The number of such
redundant operations is estimated by looking at the set of coset leaders. and counting
the number of times where (4.28) is verified. We can design an algorithm for this

purpose, which works as follows
e Create a list of examined coset leaders which contains only the first one
e for each coset leader A’ not in the list do

— for each coset leader A" in the list, compute A = A's)".
— check whether (4.28) is satisfied for some “offset” values. and some &

— update accordingly the complexity counter

Such an analysis shows that about 30% reduction in complexity is possible, compared
to the straightforward method. However, it is not optimal in general. Indeed. it is
shown through an empirical method in [41] that a 10% reduction in complexity is
possible for the case m = 4. We conjecture therefore that some additional reduction

may be achievable.

x0 >< x0 +x1 \/= x0+x1 +x2+x3
s xl = X0 - x! x0-x1 +x2-x3
g‘ X2 x2+x3

e xO0+x] -x2-x3
2- A
3 x2-x3

= = x0-x] +x2-x3

x0+xl +x2-x3

x0-x! +x2+x3

/ \ x0-xl-x2-x3

— X0 +x1 -x2+x3

Figure 4.15: Computation of all binary functions of four variables.

The key to a further reduction in complexity is the computation of intermediate

results which may not be necessary to any particular FHT stage, but is useful to many
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later stages. To illustrate this concept. consider the structure of Figure 4.13. Such
a structure, which involves 6 butterfly operators. computes all possible functions of

four variables of the form
3
f(x{)v'rlfI?rI:i) = Io + Zci-ri (429)
i=l

with ¢; = x1. Therefore, such a structure can provide intermediate results to all
4-point FHTSs involved in the metrics computation. The structure can also be gen-
eralized for an arbitrary number of inputs 2¥. Let (x be the number of butterfly
structures required to compute all possible functions of the form

2k

flzo, - zox_y) = g+ Z CiL; (4.30)

i=1

with ¢; = £1. We will refer to such a form as binary function. Then (., can be
obtained from the following observation: we first need all possible binary functions
of (g, -, Zax_;) and (k.- -+, Toe+1_;), and then all possible combinations of these.
The number of such combinations is given by the number of possible binary functions
of (Zg. - -, Tors1_y), which is 22°7'~!. Since each butterfly structure yields two such

combinations, we have

Cear = 2 + 28712 (4.31)
and ¢, = 1. This is a fast growing function of &, but for & <= 4. the values of (; are
reasonable. Indeed, {; =6, {3 = 76. and {; = 16536.

We now combine the two methods to try to minimize the complexity of the branch
metrics computation. Each branch metric computation starts with the structure of
Figure 4.15 of order k. It is then followed by the last m — k stages of the F'HT for each
coset leader. Moreover, FHTs with different coset leaders share when possible their
intermediate results of depth greater than k: this is determined by the first method,
where the condition of (4.28) is tested for lengths greater than 2¢. Table 4.1 shows the
resulting complexity reduction coefficients (number of required operations/number of
operations with a straightforward implementation). These reductions in complexity

are not dramatic. However, even the smallest reductions (highest coefficients) are still
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TRM1 Codes TRM2 Codes
m, b h\m 6 8 10 12
m=6, b=2 | 62.6 % 2 73.7% | 80.2 % | 84.2 % | 86.6 %
m=8, b=3 | 64.3 % 3 62.6% | 712.0% | 77.7T % | 81.3 %
m=10, b=4 | 68.2 % 4 156.3% [670% | 73.7% | 779%
m=12, b=5 | 69.4 % d 64.3 % | 7T1.3 & | 76.0 %
m=14, b=6 | 69.3 % 6 62.6 % | 69.7% | 4.5 %
7 682 % | 73.1 %
8 66.2 % | 71.7 %
9 69.4 %
10 66.8 %

Table 4.1: Complexity reduction coefficients achievable for various TRM1 and TRM2

codes

significant. For the case m = 6, b =4 TRM?2 code, the decoding complexity is reduced
almost by half. Whenever the number of coset leaders required by a code was less
than the maximum possible (b < bmay), we just picked the first ones. It is very likely
that an additional complexity reduction is possible by carefully selecting the coset
leaders in order for the corresponding FHTs to share as much intermediate results as
possible.

Table 4.1 shows that it is possible to obtain at least the complexity reduction coef-
ficients shown. Furthermore, since the complexity reduction coefficients of the TRM2
codes with the maximum number of coset leaders approach 50%, we conjecture that
it is unlikely to obtain reductions in complexity significantly better than this figure.
For small values of m, it is possible to exhaustively examine all combining possibili-
ties to minimize the number of required computations. In [41], it is argued that 304
additions is the minimum number of operations (additions) needed to compute all 8
FHTs, for m = 4. This is a reduction coefficient of 59.4 % over the 512 additions

required by a straightforward implementation of the 8 FHTs.




Chapter 4. Comparison of Very Low Rate Codes 103

- +
Y S~ S . 18
10 ¢
t———-—m — 1716
+ * x
%% & 1/32
2 I -+
3 —coa T 1/64
-2 h
L 10 ¢ .. 1
o 1/128
O e e et
s ——t T x 17256
—Ba 1/512
-3 x
10 B 171024
- ——pa— — 172048
6
10° 10° 10
Operations per bit
o Orthogonal Convolutional @ [S-95 Uplink
e Biorthogonal Convolutional x Short Const. Length TRM
@ Superorthogonal Convolutional + Optimal TRM

Figure 4.16: Code comparison based on the decoding complexity per bit.

Figure 4.16 shows the complexity per bit and the coding rate for all the codes that
were studied so far. [t is seen that TRM2 codes require more computations than other
codes of comparable rate. These results must be used with caution since the criterion
used does not take into account many practical considerations. Indeed. measuring
complexity in a fair manner is very difficult. [n particular, the ML decoding of TRM
codes contains a high degree of parallelism, which can bring down dramatically the
implementation complexity. Nevertheless, it is safe to say that TRM codes are more

complex than the other codes of similar coding rate under study

4.6 Conclusions

In this section, we have assessed the performance of TRM codes in the presence of

AWGN (and multi-user interference modeled as such). It was found that TRM2 codes
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in particular provide a better coding gain than other low rate codes of similar rate.
The analysis of the effect of different codes on the number of users that a system can
support has shown the superiority of TRM2 codes.

The capacity improvement carried by TRM2 codes comes at the cost of a larger
decoding complexity. Despite the fact that our measure of complexity is somewhat
simplistic, it is clear that TRM2 codes are substantially more complex to decode
than the other low rate codes of similar rate (and poorer performance). For these
reasons, the investigation of sub-optimal decoding techniques might be useful. In
particular, all sub-optimum trellis search techniques. which have been widelv studied
in the context of convolutional codes, can be used for TRM?2 codes. The complexity
of the FHTs can be reduced by using semi-soft decoding, whereby the received vector
is hard-quantized. The FHT implementation is then simpler, and the components
of the FHT output vector are integers over [—2™ — 1,2™ — 1]. The metrics to the
trellis search algorithm are then naturally quantized to m + 1 bits and can be further
quantized if needed by simple truncation of the least significant bit(s). Naturally.
the benefits of such an approach depend on the performance degradation versus the

reduction in complexity that can be achieved.



Chapter 5

Conclusions and Recommendations

In this thesis we have addressed the problems of chip shaping and channel coding in
asynchronous DS-CDMA systems. We have derived a criterion for chip shapes which
quantifies their interference rejection capabilities while taking their bandwidth into
account. We also gave some quasi-optimal pulse shapes for a 95% energy containment
bandwidth. The important role that error control coding plays in CDMA was pointed
out and quantified. It was revealed that careful chip shaping combined with pow-
erful error control coding could allow CDMA to compete with other multiple access
schemes, even in a single cell with AWGN and no other type of interference. which
strongly favors orthogonal multiple access schemes.

We have then focused our efforts towards the design of low rate error control codes
which would outperform the other known low rate codes that had been proposed for
CDMA. The TRM codes presented in this thesis are the result of that effort. We
discussed in the detail the construction of TRM codes, both from conceptual and
practical points of view, thereby revealing the tradeoffs and constraints particular to
this class of codes. We also provided analytical tools which allow the estimation of the
bit error probability of TRM codes. In Chapter 4. we used these tools in conjunction
with computer simulations to show the improvement obtained with TRM codes over
the other low rate error control codes that we consider. It was shown that the impact
of such codes vield substantial increases in system capacity, of the order of 20 to 40%.

We also looked at the decoding complexity, where it was found that TRM codes
are in general more complex than the other codes. Some reduced-complexity decoding

methods were then suggested, which might deserve to be further investigated.
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The analyvses presented in this work were limited to the AWGN channel and
approximations of the other-user interference by Gaussian noise. It is expected that
the coding gains exhibited on more realistic channel models are actually greater than
those obtained on the AWGN channel. It would be interesting to quantifv those
“realistic” coding gains. in the presence of multi-user interference not approximated
by Gaussian noise. multi-path fading. imperfect power control. varving number of
users. other-cell interference. etc...

Our work could also be generalized. for example by replacing the first-order Reed-
Muller code by another code rich in structure. which could lead to another family of
interesting codes. Another avenue that could be explored consists in the use of coset
leaders which are not necessarily bent functions. Indeed. the number of coset leaders
candidates in the TRM code constructions presented earlier is limited to 2™~!. For
example. instead of partitioning the Kerdock code into its first-order Reed-Muller
cosets. one can also partition the second-order Reed-Muller code. R(2.mj. into its
2m(m-1)/2 frst-order Reed-Muller cosets. Along any incorrect state transition. the
minimum Hamming distance is at least 2™~2. Although this is less than the 2™~! —
271 achievable with bent functions as coset leaders. this alternative construction

has the following advantages

e A large number of coset leader candidates allowing for coset-selecting codes of

higher rate

e Odd values of rn are also permitted. which provides a greater flexibility in the

overall coding rates

On the other hand. because of the shorter minimum Hamming distance on different
branches. it is predictable that the alternative codes might require coset-selecting
codes with a greater constraint length to achieve the same free distance as the TR\
codes presented earlier. This in turn would increase the complexity of the Viterbi
algorithm. However. the linearity of the second-order Reed-Muller code might allow
more efficient branch metric computations. which is the bottleneck in the decoding

complexity of TRM1 and TRM2 codes.
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In summary. starting with a new approach to the combination of trellis and block
codes. we have constructed low rate codes which are superior in performance to all
other low rate codes known to us. Needless to say. there are many possible extensions
to the work reported in this thesis. in terms of finer analysis. alternative decoding
schemes. and variations or generalizations on the proposed TRM codes. [t is my wish
that the ideas presented in this thesis open up new directions in error control coding.
and help in further improvements and refinements in the search for good low rate

codes.




Appendix A

A.1 Computation of the Statistics of the Decision

Variable y;

A.1.1 Mean of the Decision Variable

The mean of the decision variable is meaningful only when the transmitted infor-
mation is known. \lore precisely. we are interested in computing the mean of y;

conditioned on ry.

o 3
Eycre. = E /(er(t~Dj) cosf, - v@n(t)cos..;t) ck (t) dt zk%
J=i |

-

r=—x

= E /(Z\/_— Z -r]rC !tvD 1c ‘ti(‘ch)dt Ik} (._\__1)

-

where we used the fact that n(¢j is independent of all the other random quantities
in the expression of E 'y r . and that E'n(t) = 0. Interchanging integration (and

summation) with expectation.

Eye ri /Z Vo, Z EJ:J,C (t-D, jck {t)cos @, Ii dt (A.2)

r=—x

—/Z Ve, Z Er, .z Ec (t=D,jc* (t) Ecosd, dt

r=-x
where we used the mutual independence of the dara. the spreading sequences. and

the random phases. On the other hand. the random variable 6, (; # M) is uniformly
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distributed on [0. 27]. if j # M. whereas 8y, = 0. Hence.

, 1 j=M
Efcos8;] = (A.3)
0 j £ M

Therefore. recalling that ay, = 1. we end up with
x<
Elyklze] = / > ElzelziEl (¢) F)(1)] dt (A4)
r=—noc
Let us examine the quantity

(-1 -1
E'[c(")(t] c(k)(t)] = FE Z crfm=rt p(t — mT, ~ riT,) Z crfnkt p(t —nT,. — kIT,)
=0

n=0
(-1 -1
= 5 Y Elestmert e3rn-iilp(t — mTe — riT.)p(t — nT. — kIT.) (A.5)

m=0n=0
Note that the indices m + rl = n + &l if and only if m = n and r = k. Using (2.1).
the above expression is non-zero only for r = k£ and we have
) -1
E [(&“(t)) ] = 3 Pt —mT. — KT,) (A.6)
m=0

Moreover. since E{zi|zi] = zk. (A.4) reduces to

Elykize] = zk/E[(cm(t))z] dt = zi 'Z_:[ /pz(t—mTc—lec)dt (A7)

m=0-<
E.
The conditional mean of the decision variable is then
Elyklzk] = [E.z (A.8)

A.1.2 Variance of the decision variable

We start by computing the second moment of y|ry.

Elyilzk] = E

M
{/ (Z:,(HDJ-) cosf; + \/§n(t)c05wt) cki(t) dt (A.9)

j=1
Al

x/(z Tt + D) cos b, + ﬁq(r]coswr) c(k)(r) dr } zk]

m=1
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( Using the independence of the noise from all the other random quantities in E{y}|z]

and the fact that the noise has a zero mean. we obtain

Elyi|zi] = / 2E[r,(t)n(r)]13[c<“(t)c“‘)(r)]xk] cos wt cosw dt dr (A.10)
Ny
MOM
+/]E' I:Z Z z,(t + D)) (r + D) cos b, cosBmc(k)(t)c“"(T) ;ck} dtdr
j=lm=l i

Replacing E[n(t)n(7)] by ‘—\.;hc)'(t — 7). and using the independence between the data

and the spreading sequences. the thermal noise contribution A, becomes
hY 2
N, = 1—-9/25’ [(c{k’(t)cosgwt) ]dt
2
2

- —2—:/E[(c (t)) (ﬁﬁ-—Q-\ E (c (t)) cos?wfdt = 1B~ (A1)

lEc 0 for w > 1/T.

Returning now to the full expression of the second moment of yijri. and replacing
the z;(t)’s by their expansion in function of the data and the spreading sequences.
we get

R N, RYSENY x '
Elyklzi] = 1Ec70 + /ZZ\/C!]Om Z {E[rj,pxm,,mk]E[cosGJcosGmJ}

1=lm=1 p.r=—x

E[cP(t + D)) (7 + D) ¥1(t) ¥ (7)) } dtdr  (A12)

Given that

l m=j=M
E[cos 8 cosb,] = % m=j#M (A.13)

0 m#j

We have,

\, 1 M-1 x (
2 Vo r 3 ¢
Elyflze] =1E.5 + 5[/ Zl a, ;x Elz,,z, . |z] f[cy"(uo,)cj ’(7: D;) c*' () c‘“(.—)l dt dr
= pr= A, (t.r)
( + // Z Elzpz.lze] E[cP(t) &7 () c¥(2) ¥ (7)] dtdr (A.14)

pr=—oc
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The first term is the AWGN contribution. the second term is the OUI contribution
and the third term corresponds to the contribution of the desired user. We have

-1 (-1
Aj(t,7) = E Y cimpt pt —nTe = plTe + D}) Y ¢miet p(T — mTe — T, + D)

n=0 m={)
-1 (-1
X Y carusktp(t — uTe = KIT.) Y caroskt p(T — 0T — lec)] (A.15)
u=0 v=0
I~1
= Z (+++) X E[cjn+piCim+riCAL u-+kiCM.v+kl] (A.16)
n.mu.v=0

and with the understanding that j # M.

n=1m, ()
1 d

u =
r=p

Elcjn+piCimeriCrrutkiCatvkt] = ElCinipCjmeptl ElerrurkiCorvrkl] = ’
0 Otherwise

In the OUI contribution of (A.14), we can drop all the terms in double sum when
p # r. Hence. we can write

-1 (-1
E [Z p(t = nT,. — plT. + D;) p(t — nT. — plT. + Dj) Z p(t — uTl,. - kIT )p(r — uT. — kiT,)
=0

u=0

Aj (t: T)

-1

T.
S |t (n e T €) plr + (o BT+ )ple = (+ KTL)olr = (u+ KTe)dE
(1]

c

1]

n,u=0

since D; is uniformly distributed on [0,7,]. We notice that A4;(t. ) does not depend
on j anvmore (as long as 7 # M ). On the other hand, it depends on p. Let us then
define B,(t,7) = A;(t.7) as given above. As p describes Z . and n goes from 0 to
[ — 1, n+ pl also describes Z. Thus.

< x -1 1 T
//p;m By(t, 7)dtdr = // r];oc ugo f:</o p(t = qTe + &) p(1 + qT. + E)p(t — (u + k)T ) p(T = (u + k)T, )dtdr

1 (-1
= = p(t+&) p(r+8p(t — (u+ kDT )p(7 — (u + k)T, )dédtdr (A.17)
/P>

We perform a first change of variables t =t — (u + k)T, and y = 7 — (u + k[)T..
o0 1 (-1
/f S Byltr)ddr = = /// S oo + (u+ KDT- + €) ply + (u + kDT, + €)p(z)ply)dédzdy
p=-oc c u=0
We continue with z = (u + kl)T, + € which vields

I S Bt riasdr = =/ S ple + 2) ply + 2Jo(@)ply)dzdady

p=-00 u=0

l .
= FC/R;(z)dz (A.18)
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where the last line is obtained by recognizing R,(z) = [p(x + z) p(z) dr as the
autocorrelation function of p(z). Since the Fourier transform of R,(z) is nothing but

the power spectral density |F,(f)[%. of p(t), we have by Parseval’s equality

{ l
= [ Beaz = = [IFGe (A.19)

We can now go back to (A.14), and write the second moment of the decision
variable as

. N, 1 M-1 i
Bidlzd = B+ 5 Y o J1H(f)df + desired user contribution(A.20)
=1

We can avoid the explicit calculation of the desired user contribution by noting that
if j =0 for j = 1.---, M — 1, then the communications system is the familiar
BPSK system over an AWGN channel. In particular. the variance of the decision
variable in the absence of noise (.Vy = 0) and OUI should be zero. Thus the other
user contribution must be the square of the conditional mean of the decision variable,

given explicitly by (/E.)?. We end up with the following relations

E[yklxk] = ZEC;L‘k = Eb I} (A.Ql)
lEc
Var(yclzi] = 3 (No + Ecxpv(M)) (A.22)
where
-1 4
— _ L JIF(N)'df
Y(M) = ngaj and x, = ?—"77,—— (A.23)

and E, = [E. is the energy per bit of the desired user when no channel coding is

used.
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A.2 Shape Factor of Square Root Raised Cosine
Pulses

As given in {13, pp. 534-536], the square-root raised cosine pulse Fourier transform
F,(f) such that

E.Tc 0<|f] <(1-46)/2T,
IF,(f)P = EL [1+cos§= (Iff - lz’_rf)] LB <lfl< B (A.24)
0 11> 52

Using the even parity of |F,(f)|?, the pulse shape factor is then

2 oo 1 =68  ET? [+ 1-6\\?
X Ech{ECT° 2 4 /( F-m) o

2Te

T
S

_ LT 37rT Tc[f_l—é}'lz;j+£Sin2ﬂ'Tc(f_1—5) i
B TR |2 s 2T, j1zs 4 g 2T. /|,
2Te T

J g
= —_— —_— _— — -— - A. 5)
R 4 x 7 1 (A.25)

We also use this opportunity to compute the bandwidth of the square root raised
cosine pulse. We will consider only the energy containment bandwidth, i.e. the energy
band around 0 which contains a given fraction n of the total energy of the pulse. In

other words. the bandwidth ¥ is such that

W
[ EDEd = nE (A.26)

The left hand side of the above equation is

/_L:;,JFp(f)l? = (1-6)E +E.T. /i [1+cos’%(f—%)]df

(1 — 8)E. + E.T. (W—l_‘5+ism ( 1_5)

]

3% )
1=s
2T

2T. 7T,
E.T, dE, sin 7T, 1-4
5 3 (W~ 5T ) (A.27)
Thus (A.26) becomes
S TW + écos (E (TCW - l)) = 7 (A.28)
T ) 2

The latter can be easily solved numerically for given values of § and 7
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B.1 Statistics of H(re)\)

E[H(r=2))] = E[H(c2d=d +nzX)] = 27™2(ceAs) ) Hm + 272 E [(ned') Hm)
= 2—m/2(913A31\.I)Hm
0,---.0,£2™2.0.---.0) A= XN
= (B.1)
272 (c;2A2A ) Hi AE N
Cov[H(rzd)] = E[H(raX)H(r=X)| - E [H(zsX)]T E [H(zs))]
= 27™E [HL(n2X)T(nz)) Hpn
<ciinzA'>
= 27MF : (<cilnzd'> - <eomnzA'>)|  (B.2)
<cym |2 A>
Hence,

‘h’m 'lm
Cov [H(rad')],, = 2 ™E[<clnzd><glnzA'>] = 2‘"‘E[Z Crulu N, Zczvnv/\:,]
u=1 v=1

- I\ - 2 12
= 2™ Z Zc,mcl,,/\u/\v Enyn,] = 27 "¢ chucm A
u=1 v=1 \—:'--, u=l| gl

0'6141.- L

= 27 Mg? <¢le>

2-mg? k=
— (B.3)
0 Otherwise
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B.2 Upper bound on P(d,!)

In this section. we find an upper bound on P(d.!) which will allow an easy evaluation
of (3.33). Let ¢ be a codeword of some Reed-Muller coset code, represented by one
branch in the TRM full trellis. All Reed-Muller coset codes (represented by the groups
of 2™+! parallel branches in the TRM full trellis) which do not contain ¢, contain 2™
codewords at a Hamming distance w;, = 2™~! — 2™/2=! from ¢, and 2™ codewords at
a Hamming distance w, = 2™~ + 2™/2~1 from c.

Consider now a path in the primary trellis with a modified distance d to the zero
path, and which diverges from the zero path for [ > d branches. This path. when
mapped to the full TRM trellis (refer to Figure 3.5), generates 20"+1! paths. We
wish to find out the Hamming weight distribution of these 2(m*!! paths.

Each of the d primary branches with a non-zero modified weight generates. in the
full TRM trellis, 2™ branches with a Hamming weight of w, and 2™ branches with
a Hamming weight of w,. For a given distribution of w, and w, in the d primary
branches, there are then (2™)¢ different paths. The number of distinct distributions
with 7 occurrences of w; and d — ¢ occurrences of w, is just (‘f) Thus. among the
20m+1d paths generated by the d primary branches in question. there are ('f) 2md
paths of weight i w, + (d — {)w.,, (with ¢ =0.---.d).

The [ —d remaining primary branches (with a zero modified distance to the correct
path), generate (2™*!)!~4 paths. Each primary branch is associated to 2™*! full trellis
branches, one of Hamming weight 0, one of Hamming weight 2*! and 2™+! — 2 of
Hamming weight 2™ (this corresponds to the weight distribution of the Reed-Muller
code). Of the (2™*+1)¢= full trellis paths, there are then (l;d) ("‘é"’) (m+1l _2)t-d-y-k
of Hamming weight £2™*! + (I —~d — j — k)2™. This is obtained by noticing that there
are (‘;d) ways of choosing j branches of Hamming weight 0 in a path of length [ — d.
Once these are chosen, there are ("’z_“j ) ways of choosing & branches of Hamming

weight 2™*!. The remaining [ — j — k£ branches must have Hamming weights of 2™.
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Putting it all together. we have

'4

t=0.---.d

md (1-d m+ —d=j=k ] = -
AGirdD = (9)2me (59) (787) @t —gfmdmamk L o —d 5.4

k=0.--d—d—j

L 0 Otherwise

where A(i, j, k.d,[) is the number of paths of length {. modified weight d and Ham-

ming weight iw, + (d — i)ws + k2™ + (I — d — j — k)2™. The probability of selecting
an incorrect primary trellis path can be upper bounded by using a union bound on
P(d.!). Let P(d,!) denote that upper bound.

~-dIl-d—j . s P o -
P(d,l) ZZZ Al jk.d.0)Q (\[?(xml+(d z)u,_+L2Nl+(l d-j—k)?2 )E,)

=0 j=0 k=0
where the energy per channel symbol Ej is related to the energy per data bit E, and
the energy per codeword Ey4 by
m+b+1

ES = —2m——Eb = E;;Ed (BS)
We then use (3.33) to obtain
P m+ 1 PRk S )Zx: ZI:dc(dI)P(d[)
R L m+ b+ 1 Peent T Pru ~ = ) )
=, mf
L mtl Z Zc(d ) 1P(d.1) Z Zh(dl ) (B.6)
m+ b+ 1R +b+1
I=dwmt d=dm¢ I=dmpe d=d gy

In practice, the infinite sums in (B.6) are truncated to a finite number of terms.

[t is possible to obtain a simpler albeit looser upper bound on the bit error proba-
bility. The idea is to consider that all branches have either a Hamming weight of zero
(if they belong to a primary branch of zero modified weight) or a Hamming weight

of w, (if they belong to a primary branch with a modified weight of 1). Then P(d.{)

becomes
9
Py, = A(d,l—d,O,d,l)Q( ~(d_wN1)£s_)
; 2(dun ) E;
—  o(m+1}t 2(adwy ) b
- Q( No ) (B.7)

and we have

(B.8)

No

. RN AN L
Py, < 2("1‘[)’@( _fu_ll_i)e Yo e Vo
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where we used the relation (see for example [19. pp. 247])

QWz+y) < Q(Wr)e ™2 r>0.y>0 (B.9)

Defining f(z) = Q(v2z)e*, we have

df‘les

Pdwl S 2(m+l)lf ( ¥
o

) w1 Es/No (B.10)

The sums of (3.28) or of (3.33) can now be expressed in terms of the modified

transfer function T°(D, L, I).

1. Indeed

20 dfles x 2 (mat .
Zdtpl S f( Z Z d2 ' C(d.l)e un 3/‘0 (B-ll)
[=dfd=d!

dyw Es aT(D. L.I)
- f ( ) {D aD }D:z_wlss/-\'ﬂ

I=1.L=2m+1

(B.12)

2. Similarly,

x d E, ¢ | '
2 LP6) < f(f_zu\)fl‘_> > 3 12almebieg et Ea/Ne (BL13)
=1 o I=dy d=dy
f dyw Es\ [, 9T(D.L.1)

N, ar D=c—w1Es/No

I=1.L=2m+1

(B.14)

3. And finally. in the same way,

oc d S
ZﬁiP(i) < f( f‘le ) Z Z ZJQ (j.d. l 2(m+1)l —dwi Es/No (B.I-S)
i=1 =d; d=d; j=1
B d,les) oT(D, L. 1)
- f No oI D=c~w1Es/No

I[=1,L=2m+1

(B.16)

Naturally, (B.12-B.16) are valid provided the infinite sums converge. Putting it all
together yields

m+1 m+1 drun E oTr(D.L. T
Pb < __—pn.\1+ f( thed s){(pbent'pn.w) [D_(———l

m+b+1 m+b+1 N, aD ]D==*“'IES/-V°

[=1L=2m+1

aT(D, L, ) 1 [BT(D. L.
* Py [LT] b E T T ol ] ¥ (B.17)
f=1,L=2m+! I=1,L=2m+!
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B.3 Upper Bound for TRM1 Codes

With TRM1 codes, the trellis structure and the coset leader mapping ensure that
there can be no path with a diverging length greater than its modified weight. Indeed
the only trellis branches of zero modified weight link a zero state to another zero

state. Hence,

qdn = @ 4=t (B.18)
v 0 Otherwise

and h(d.l) =0 for d # [. Noting that d; = 2, (B.6) reduces to

m+1 = \ < ;
by < m [pn.\r + Pbent Z da(d} Z -‘1(1-d- d)Piwl-.'-(d—t) wa

d=2 1=0
LS a3
+—_— h(d.d) A(i.d.d) P, +(d—i) wa (B.19)
m+b+1 = = ! P

The number of paths at modified distance d from the correct path is

0 d=1
a(d) = (B.20)
(26 —1)4-! 2<d
Indeed. for each of the first d — 1 branches, there are 2° — 1 possible state transitions
since the path cannot return to the zero state. The last state transition on the other
hand. must return to the zero state.
The expressions for ¢(d. () and a(d) are also easily derived from the transfer func-

tion of (3.45), which can be rewritten as

T(D.L.1) = DLI%'::DL(Z”—I) = DL(DL(2® - 1)+ D?L?(2* - 1) + -..)
x
= Y D42t~ 1)*! (B.21)
d=2

verifying (B.20) and (B.18).
Let us now derive an expression for h(d,d). First. without using the transfer
function, we notice that the number of data sequences of length 4 and non-zero weight

jis

o

) 1<j<b

¢

¢(4) (B.22)

Otherwise
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Any path which has a modified distance of 2 from the zero path is generated by
only one non-zero data block of b bits. Hence g().2.2) = {(J). A path with modified

distance 3 is generated by two consecutive non-zero data blocks of b bits. Thus.

J

S (52 2sisn

g9(j.3.3) = k= (B.23)
Otherwise

o

In general.

J
gk.d)((j — k) d<j<bd
9G.d+1.d+1) = ?;: J J (B.24)

0 Otherwise
Thus g(j.d + 1.d + 1) is obtained from the convolution of g(J.d.d) with {(j). One

can view px(z) = %—L as the probability mass function (p.m.f.) of a discrete random
d—1

variable .X. Then —%‘-J—d){l— is the p.m.f. of }" = Z X, where \; are i.i.d. random
=1

variables with p.m.f. px(z). Hence,

x bd d-1
h(d.d) = Y jeli.d.d) = Y_jg(j.d.d) = (2 -1)*'E[Y] = (2"—1)"*‘E[Z XJ}
1=1 j=d j=1
be—I
= (2b l)d l( [ ] )d Id‘)b —
= (22— 1)%%(d - 1)b2°"! (B.25)

A direct long division from (3.45) can also be performed to derive the expression of
h(d.d). Indeed.

M(D!L? [) - b2b—1 D2L2
al =1 1-DL(2 — 1))
iDL ( 9 1 )
- 26— Oz 1 —azr ) —pp a=m_1
b—lD2L2 ) -
= —b22b—1—(a + 20 r + 30.31.“' + - +1ia't” 1 + -- ')I:DLAaz‘lb—l
= p2b-! Z 1)(2° - 1)**(DL)¢ (B.26)

verifving (B.23). Substituting in (B.19),

m+1 m+1

d
- d—1 ;
mAbt 1P R T o p g 1o Z d(2 = 1) D AG.d-d) Py, a-i s

d~ mf z:O

By

b2b— 1 o

d
S (d = 1) - D)2 A(.d. d) Py, (4i) u (B27)
m+b+1d=dmf i=0 “ “
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B.4 Matrices in the State Equations of TRM2 Codes

We give here the explicit form of the matrices and vectors in (3.55-3.59)). in terms
of the dummy variables D. L. and /. We denote by S, the state specified bv the
state vector v such that the hase-2 representation of 7 is (v, - - -1y )3. We define the
function ¢, (¢) which associates to each decimal integer : the last n bits of its hase-2

representation. in vector form. Formally.,

gn(z) = log.0.. . Gp_:}
n—1 )
e imod2" = Y 5,277 (B.2§
=0
Naturally. if 1 < 277-. then 54 = 0 and so on. For example. 5,/3) = {0.06.1.1,. and
7,(18) = (0.0.1.0). From this definition. we have that z;,_,:zj is the state vector
corresponding to S,. Let k£ and { be such that g,_. (k) = vand 5,/l) = a. Then
flavy = (vgy_ .l 12 1~y _dkiay—u: *B.29;
If we start off in state S;. anv non-zero input vector ¢ = ia:.---.d,). generates

a branch with a modified weight of 1. Moreover. this branch goes from S. 1o state

Sn.such that g, _.(n) = a. The Hamming weight of the input sequence generating a
branch from S, 1o S, is then given by ~/n) = wyig,_-iny). From this. we have

A, = DLI-*. p=1.---.2°77 — 1 'B.30,

= A, = DLI.DLI.DLI*DLI.---T ‘B.31,

Similarly. in going from S; w0 S,°

‘A, = DLIF' . 1=0..--.271 — ] (B.32)
= A, = DLI.DLI>DLI*’DLI*.DLI.---T iB.33;
= DLI.ATT (B.34)

Consider now going from some state S, of L or [, to 5. The input vector is the
[~} > '

all-zero vector. The output depends on the specific state S,. but its modified weight
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is 1 regardless of the particular 5;. Hence

By = [DL.DL.---.DL|" (B.33)
gb:i[
and
B, = [DL.DL.---.DL]" = [DL.Bg" (B.36)
21:1

Consider now a transition from S € U, to 5;") € l,. Wehave 0 < i < 2071,
0<j< 2! and (u.v) € {(0.0). (0.1). (1.2).(1.3). (2. 1). (2.0). (3.2). (3.3)}. Let »
be the state vector corresponding to Sf"). and a be the input generating the transition
from S™ to SJ(»"). Then v = g, (i+u2"~!) and @ = g,(j +v2°""). For this transition.

the Hamming weight of the input vector is

1.3

1+w(j) v

wy(a) = wy(g(+027h) = _ (B.37)
<(J) r = 0.2
The corresponding trellis code output vector is zero if
j+ 028t = 230 + w261 and i+ u20~! < 207! if [ is even

fla.y) =0
F+v207l = 2+ 428" +1 and 207! <i+u2l < 2% iflisodd

j+v2el = 2 and u = 0 ifliseven

j+v2s-t =27 +20 41 and u =1 iflisodd

g
Ve

Note that if v > 2, then j + v2°~! > 2% whereas 2/ < 2% Also. if v < 2. then
J+v2-! < 28 whereas 2i +2°+1 > 2% + 1. Hence. for a transition from S to S}”.

the output of the trellis code is zero if
jHe2-l = 2 u=0 v<?2 j
vl = 20 +2°41 u=1 ¢r>2 jodd
Given (B.37) and (B.38). one can now construct all the matrices T,,.

LI*0  j =2

(Tool;: =
DLI*U) QOtherwise

0<i<2l0<j<27! (BA40)

(B.38)
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o LI<9=0 j 26l =95

Torf;e = et 0<i<27l0< <2t (B4l)
DLI®TY Otherwise
LI =2+ 1

(T2l = { o) ’ 0<i<20<j<2! (B42)
DLI+9 QOtherwise

Lr<0)=1 + 20l =27 + 1
(T3], = { - J v 0<i<2°10<j <21 (B.43)
DLt QOtherwise

and for u > 1.

, DLIZ0) ¢+ =0.2
[TquJz = {Tuvb = (844)
DLI<7~! ¢ =1.3

or. more precisely.

[Ta),, = DLIV 0<i<27l 0<j<2! (B.43)
(Ta1],, = DLW 0<:i<2l 0< <2t (B.46)
[Tw), = DLV 0<i<?2l 0<j< 2! (B.47)
(Tas), = DLV 0<i<27h 0<j<2"t (B48)



Appendix C

In this appendix we give the simulation results used in our plots. The lowest bit error

rate estimates are not very reliable. because of the larger standard deviation

TRMI1 Code. b =2.m =6
Ey/Ng (dB) 0.0 1.15 2.3 3.45 4.6
Pb.crellis 311072471073 3010~ |1.0107° | 1.6 10~"
Pm+1 601072 | 151072 ]23107% ;2110 )8.110°"
Paverage 5410721131072 {1.810°% | 1.7107* | 6.4 1075
Table C.1: Bit error rates of TRMI1 code with b =2.m =6
TRM2 Code. b=4.m =6
Ey/Ny (dB) 0.0 1.33 2.67 1.0
Pb.trellis 771072 [ 401073 | 471077 | 5.2 1078
Pm-1 6.71072 | 591073 | 22107 | 5.4 1079
Daverage 711072 | 5.2 107% | 1.6 10~ | 3.4 1075

Table C.2: Bit error rates of TRM?2 code withb=4.m =6

TRM2 Code, b =8, m = 12 TRM2 Code, b =9.m = 12

Ey/Ny (dB) 0.0 0.9 1.8 0.0 0.7 1.4
Db rellis 221072 {50107*|3.110°¢ | 1.910°29.310°%| 1.0 1077
Dl 1.71072172107% [ 24107° || 141072 | 1.1 1073 | 4.0 10~7
Paverage 1.91072 [ 6.4107% | 1.6 1075 || 1.6 1072 | 1.0 103 | 2.8 10~?

Table C.3: Bit error rates of TRM2 code with m = 12, b =8 and 9.
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