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Abstract

This thesis considers \vaveform shaping and crror control coding methods to im

prove the performance and capacity of an asynchronous DS-COJ\IA communications

system. The uplink of the r5-95 cellular CDl\IA standard is an example of such a

system. In this work. we develop a criterion ta measure the merits of a waveform

shaping filter from the points of view of interference reduction and bandwidth occu

pancy. This criterion allows us to derive quasi optimal waveforms. It is shawn. for

example. that the pulse shaping filter of the IS-95 standard is close ta optimal.

vVe also show, in the first part of this thesis~ that pseudo random sequence spread

ing is an inefficient way of expanding bandwidth. Indeed. we prove that the optimal

sharing of bandwidth spreading between P:\ sequences and error control coding is

obtained \vhen aIl the spreading is due to the error control code. The raIe of P:';

sequences for user separation is not diminished. while the system benefits from the

added coding gain.

In order to realize as much as possible of the potential coding gain. good \'ery

low rate codes are needed. The second part of this thesis focnses on the design of

specifie low rate error control codes for CD.\IA systems. \\'c consider a ne\\" coding

scheme, based on the combinat ion of trellis codes and first-order Reed-.\Iuller codes.

\Ve develop two families of codes based on this schenIe, and study their perfornlance

both analytically and through simulations. \Ve find the performance of our codes to

be superior to that of other families of very law rate codes~ snch as the orthogonal,

biorthagonal, and superorthogonal convolntional codes. and the error control code

specified in the r5-95 standard.
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Sommaire

Ce mémoire porte sur des méthodes de filtrage de signal et de codage de contrôle

d'erreur afin d'améliorer la performance de systèmes de communications asynchrones

utilisant l'Accès ~rultiple à Répartition par Code (:\~vIRC) à séquences directes (OS

CD~IA). Le lien des usagers vers les stations de base du standard rS-95 (système

cellulaire employant r .-\NIRC) en est un exemple. Dans un premier temps, nous nous

employons à mettre au point un critère quantitatif qui mesure la capacité d'une forme

d~onde à rejeter les interférences, tout en tenant compte de la bande passante qu'elle

occupe. Ce critère nous permet de trouver des formes d'ondes quasi-optimales. ~ous

montrons par exemple que la forme d'onde spécifiée dans le standard rS-95 est voisine

des fonnes d'ondes optimales.

Dans la première partie de ce mémoire. nous démontrons aussi que l'extension du

spectre par des séquences pseudo-aléatoires, bien que très facile d'implémentation.

se révèle inefficace du point de vue du codage de canal. En effet. il s~avère que le

partage de l'extension du spectre entre les séquences pseudo-aléatoires et le codage

de canal devient optimal lorsque le codage de canal est entièrement responsable de

l'extension du spectre. Le rôle des séquences pseudo-aléatoires afin de distinguer les

différents usagers n'est pas diminué. tandis que le système bénéficie. en plus. du gain

de codage.

Afin de réaliser, même en partie. les gains de codage potentiels. de bons codes

de contrôle d'erreurs à bas débit sont requis. La deuxième partie de ce mémoire

porte sur la conception de codes de contrôle d'erreurs pour les systèmes .-\.\IRC asyn

chrones. Nous proposons un nouveau procédé de codage, basé sur l'association de

codes Reed-NI uller du premier ordre avec des codes treillis (trellis codes). Par la

suite, nous construisons deux familles de codes en utilisant ce procédé, et étudions

leur performance grâce à des méthodes analytiques et à des simulations par ordi

nateur. Il ressort que les codes ainsi construits sont supérieurs à ceux déjà connus,

dont les codes convolutionaux orthogonaux, biorthogonaux. et superorthogonaux. de

même que le code du standard rS-95.
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Chapter 1

Introduction

The last decade has witnessed a phenomenal expansion in wireless communications

which is now enjoying its fastest growth ever. Cordless and cellular phones. pagîng

systems. and wireless data networks are becoming part of our eyery day lives. This

growth is mainly attributable ta analog technologies of the 1970s which are mature

today [IJ. By the first couple of decades of the 21st century. there will be an equal

number of wireless and conventional wireline customers [1]. The wireless systems sub

scribers will expect a \Vide range of services together with a high reliability from their

service providers. In the difficuIt environment of radio channels. where bandwidth is

scarce and interference of many kinds severe. only advanced digital techniques com

bined with intelligent and flexible network management can help meet the growing

demand.

In the first section of this chapter. we introduce the fundamentals of multiple

user wireless communications. and discuss the different multiple access methods. \re

then emphasize Code-Division )'Iultiple .-\.ccess (CD)'-[.-\.) and show the potential ad

vantages that it provides over other methods. Finally. we define the scope of our

research~ and present the structure of the thesis.
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Base smtion using
set of frequencies no 6

2

Figure 1.1: Frequency reuse in cellular communications systems. Cells with the same

index use the same set of frequencies.

Base
Station

Perfect Panition Ideal Coverage Actual Coverage

(

Figure 1.2: Ideal and actual cell co\·erage. adapted from [2J.

1.1 Multi-User Mobile Communications

1.1.1 The Cellular Concept

The cellular concept is at the heart of effecti\'e wireless communications systems. It

allows high capacities within a limited spectrum. and reduced mobile transmitted

power. In a cellular system. the sen-ice area is partitioned inta a number of snlaller

regions called cells. each of which is served by a single base station. as illustrated in

Figure 1.1. If each cell can accommodate JI simultaneous users_ the total capacity is

JI times the number of cells. with a density of .\1 users per cell area. :\-aturally. the

regular hexagonal shape used ta depict a cell is only an imaginary \-isual aide There

are no physical boundaries ta the electro-magnetic wayes. which means that cells

actually interfere with each other. a major problem for network planners. .-\.S shawn

in Figure 1_2~ a ceU is determined by the area it co\-ers. which~ ideally~ is a circIe. and
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Figure 1.3: Cell splitting to aeeommodate non-uniform trafiie density.

in practiee ean de,-iate largely from the ideal. For example. an acti,-e user might not

be communicating with the closest base station. due to shadowing. multipath fading.

or maybe just because of the unavailability of channels. Hence the an~a covered by a

cell is not only loosely defined. but also \-aries with time.

The problem of inter-cell interference can be soh'ed by allocating different fre

quency bands to each cel!. Xaturally. if this is done o\-er the whole service area. the

capacity becomes no better than that of a huge single cel!. Howe'·er. a good ~om

promise is reached through freq7J.ency reuse. which limits the interference between

adjacent cells. AlI cellular radio networks employ sorne degree of frequency reuse.

For example. in Figure 1.1. each cell employs a set of frequencies which is distinct

from that of its neighbors_ The frequency reuse factor is the number of sets of fre

quency \\'hich partition the allocated spectrunl (in Figure L 1. the frequency reuse

factor is ï). A set of adjacent cells which. together. use the whole available spectrum

with no o\-erlap is called a cluster.

The communication link from the mobile to the base station is called the llplink.

whereas the dou:nlink refers to the in,-erse direction. In most wireless systenlS. the

uplink and downlink employ disjoint sets of frequencies: this is called frequency di

Yision duplexing (FDD). \Ye assume that aIl wireless systems discussed in this thesis

employ FDD.

The capacity of a cellular system can be impro,-ed in dense traffle areas by reducing

the cell radii. an operation called cell splitting. and \"hich is illustrated in Figure 1.3.

This technique allows the co,-erage of areas with non-uniform traffie density. and

ean also adapt the coyerage to long-term yariations in trafflc density. Cell splitting is
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{

accompanied by a corresponding reduction in transmitted power to a\"oid interference.

Sicle ad\-antages include a reduction in the a\-erage transmitted power. increasing

batteIJ- life and/or reducing the weight of the mobile units. However. the number

of base stations also increases. \Vhen a mobile crosses from one cell to another. it

switches its communication to the corresponding base station. in an operation called a

hand-off. The smaller is the cell size~ the larger is the frequency of hand-offs that must

be handled~ which implies the need for robust and fast hand-off strategies. Hence.

reducing the celi radii in a given area improves the system capacity. but implies

higher costs and complexity. :\Ioreover. if a hand-off cannot be completed. the cali is

dropped. an e\-ent which should be made as rare as possible. Indeed. the blocked calI

rate (when a calI cannot be started) and dropped calI rate are the main indicators

of the system saturation_ Csers can tolerate small blocked calI rates (at peak hours)

but virtually no dropped caIls. Since each hand-off is a potential dropped cali. there

is a limit on ho\\" small cell sizes could be made. even if the cost of a large number of

base stations is acceptable_

Other methods of improving the capacity of a cellular system include dynamic

channel allocation. whereby cells can "borraw" unused frequencies from neighboring

cells. and sectorization where directional antennas di,"ide each cell into non-interfering

sectors. Power control. carefull site selection. and antenna downtilt on sectorized

sites. can help reduce the interference ta other ceIls. For voire services. efficient

speech coding pro\'ides a great reduction in the data rate. which in turn, allows more

\'oice channels per unit bandwidth. \\'e will not examine further these methods, but

the interested reader is referred ta [1]. :\.lthough these techniques might seem \"ery

powerful in achie\'ing high system capacities. one should not forget the '"ery severe

environment of wireless systems which makes all these techniques necessary.

Even if the severe radio environment \Vere someho,," tamed, the major obstacle ta

accommodating a large number of users in a gi,-en cell is the restricted bandwidth

available to service pro'·iders. Indeed. the radio frequency spectrum is a scarre rc

source. and regulatory agencies only parsimoniously allocate chunks of bandwidth to

sen-ice providers, who need ta use it as efficiently as possible, Hence the cell capacity
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( (and therefore the network capacity) i5 determined. to a large extent. by the spec

trum sharing strateg}' among the users within a single cel!. Equally important. are

the cading and modulation which determine the bandwidth of a single user signal.

1.1.2 Multiple Access in Wireless Communications

In this section. we look at the main three methods of pro\'iding multiple-access com

munications between llsers and their base station: frequency-di\-ision multiple access

(FD:\I.-\.). time-division multiple access (TD:\I.-\). and code-dh-ision multiple access

(CD:\L-\) ..-\lthough we discuss these three techniques separately. wireless systems

may use a combinat ion of twa or e\-en aIl three of them.

Allocaled. 4
User Channel"-...-/

Uplink Channels

,--Guard
Band

DownIink Channels

f

(

Figure 1..1: Frequency-Di \-ision :\1ultiple .-\ccess.

Frequency-division multiple access i5 the user separating technique employed ln

cUITent analog cellular systems in \"orth .-\merica (.-\d\-anced ~Iobile Phone System

or .-\:\IPS). During a caU. a user i5 assigned a pair of frequency channels. one for the

uplink and one for the downlink. He (or she) remain5 the only user of these channels

until the end of the calI. or untiI a hand-off occurs.

Time-di\'ision multiple access di\;des time into time frames and time slots. as

shown in Figure 1.5. Since frequency dh-ision duplexing is employed_ during a calI.

each user is assigned a time slot on the uplink frequency. and a time slot on the

downlink frequency. Such a system requires that users be synchronized. which adds

to the system complexity. On the other hand. a single demodulator followed by

a demultiplexer is required at the base station recei\"er end. ta demodulate aIl the

users. :\Iost TD:\L-\ systems actuaUy combine TD:\L-\ with FD:\L-\. in order to relax
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Figure 1.5: Time-Division 1IuItipie _-\.ccess.

the synchronization requirements and therefore the system complexity. For exampie.

the GS~I standard (Global System for ~Iobile. originally Groupe Spécial ~Iobile)

adopts this technique. with 8 time siots per frequency carrier.

TD~IA and FD~IA are sometimes referred to as orthogonal multiple access. since

users are orthogonal to each other. either in time or in frequency. Code-di,-ision

multiple access. instead. uses ··spreading sequences~~ to distinguish between users.

which therefore employ the same bandwidth at the same time. In asynchronous

CD~L\, the signaIs of different users are not orthogonal. and therefore interfere with

each other. The same is true for synchronous CD~I:\ \Vith non-orthogonal spreading

sequences. Howeyer. as we will see in the next section. this interference can be

controlled. and eyen campletely rema\·ed. at least in theory.

1.2 Code-Division Multiple Access for Wireless Com-

munications

Code-division multiple access emplays spread spectrum techniques ta generate a

transmitted signal with a much larger bandwidth than the data rate dictates. :\.1

though several bandwidth spreading techniques are possible. direct-sequence (DS) is

the main candidate for wireless communications. In DS-CD~IA. a pseudo-random

binary sequence (P); sequence) is used ta transform the message inta a \,"ide-band

signaL as illustrated in Figure 1.6. Each binary symbol of the spreading sequence

is called a chip. The chip rate divided by the data rate yields the spreading factor.
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Figure 1.6: Direct-sequence CO;\I.-\. in time and frequency.

\Vhen the spreading factor~ sometimes loosely referred to as the processing gain~ is

very large~ the power spectral density of the transmitted signal resernbles that of

background noise~ and is much lower than that of the original narrow-band signal.

1.2.1 Multiple Access And User Separation

In a DS-CD~L-\. system~ users spread their signal by using different spreading se

quences or spreading codes (hence the name CD~IA). A single-user receiver can then

be implemented as in Figure 1. 7. The received signal is rnultiplied by a local replica

of the desired PN sequence, which in effect despreads the signal. :'\ote that if the

local replica of the desired PN sequence is delayed by one chip period. then the de

spreading modulator yields a noise-like signal, whose level is inversely proportional to

the spreading factor . .-\.lthough this emphasizes the importance of synchronization in

CDJ\;IA. it also reveals its resistance to multipath. since versions of the signal which

are delayed by more than a chip period will only contribute to a small fraction of

noise like perturbation. Nloreover, replicas of the signal which are delayed by less
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.( than a chip period will aIso be partIy rejected. Since chip periods are relatively short.

DS-CD~IA is inherently robust to muitipath interference.

If the system is synchronous! then orthogonal sequences may be used ta cam

pletely suppress the other-user interference. HoweveL the processing gain then lim

its the maximum number of users. In asynchronous DS-CD:VI.-\! or in synchronous

OS-CDwIA with non-orthogonal sequences! the other-user interference is inversely

preportional ta the processing gain. The number of users is not hard-limited. but

the system performance degrades with increasing traffic. In a cellular system which

employs DS-CDi\IA, it is difficult te synchronize the uplink. whereas the downlink

(point to multi-paint) is naturally synchrenous. Hence. in the remaining part of this

thesis. we assume that the uplink uses asynchronous DS-CD~IA and the downlink

synchronous DS-CDl\IA.

Estimated Data

Narrowband signal

Despread signal

Filtered signal

Shaped and modulated
signal

Spread data

Desired signal + other users
+ wideband thermal noise

I~

I~

ld~'
l,~

( Cha.nn~ c>

- ----1

1
1
1
1

~ 1 ~--------C>
>1

OH 'Spreading Sequence~
~I •

0::;1
1
1

1 ~--------C>
1
1

Data Sequence

:----- 1 ~--------C>
~ 1 ~
o~ : Spreading Sequenc;~
:nI
CI
~, ~--------C>

E-I
: Modulator
1
1

Figure 1. 7: DS-CD~L-\. with single-user receiver.

( The single-user receiver of Figure 1.7 considers aIl interference as noise. Natu

rally, the other-user interference is not random, and contains information. ~vlulti-user
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receivers which jointly demodulate the multi-user signal can significantly outperform

the single-user receiver. Actually~ the optimal multi-user receivers can completely

eliminate the effect of multi-user interference [3L 50 that the performance for each

user is limited by thermal noise and other channel perturbations. ~aturally~ it would

be very inefficient ta implement multi-user receivers on the downlink~ since each mo

bile unit would have ta demodulate the signaIs of aIl the users in the celi. Hence

multi-user receivers are intended for the uplink channel. Cnfortunately~ the complex

ity of an optimal asynchronous multi-user receiver is huge (exponential in the number

of users), whereas a bank of single-user receivers is only linear in the number of user.

A substantial amount of research has thus been conducted on sub-optimal multi-user

receivers, in an attempt to trade performance for a reduction in complexity (see for

example [4, 5]). However. despite their poor performance. single-user receivers are

simpler. cheaper, and more flexible since they work independently. For example.

one could just add a bank of single user receivers ta a base station ta increase the

ma..ximum number of supported users.

1.2.2 Advantages of DS-CDMA

By spreading the signal over a large frequency band. OS-CO~IA is very efficient

in combating frequency selective fading~ which is a common perturbation in wire

less communications. Indeed~ multipath components may be independently received

which reduces dramatically the effect of multipath fading. The \Vide-band CO~L-\. ap

proach offers a form of diversity to combat frequency selective fading, since typically

only a portion of the signal bandwidth is affected. Indeed, typical fade bandwidths

are of the order of 100-200 kHz, which is comparable to the band\vidth of Cl GS~d

channel, but much less than the rS-95 bandwidth (1.25 ~JIHz).

Unlike orthogonal multiple access schemes~ DS-CD~IA nlakes a full use of the

allocated bandwidth, since no guard times or guard bands are necessary ta separate

the users. :Yloreover, the ability of CDNIA ta average co-channel interference over a

wide bandwidth allows for much higher frequency reuse factors, which makes CD~IA

a prime candidate for multiple access in cellular communications. Typical cell reuse
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patterns (number of cells per cluster) are 7 for FD~L\. -1 for TD)'IA (GS:\I standard

for exampleL and 1.33 for CD~I.-\. [6}. Csing these figures. it is argued in [6] that the

capacity of a cellular CDi\L-\. system would provide 4 times the capacity of TD;\L-\.

and 20 times that of .-\.~IPS (analog FD;\IA). These gains however have not been

reached in practice.

The large bandwidth spreading that is required in DS-CD~IA allows the use of

powerful very low rate error control codes in asynchronous systems. In turn~ such

codes lower the required Eb!J.VO to obtain the desired communications quality. which

allows more users to join in (or a higher level of interference) ~ or reduces the interfer

ence to other cells. The net effect is an improvement of the overalI system capacity.

Another primordial advantage of DS-CD:\I.-\. is the so-called soft capacity. In or

thogonal multiple access schemes~ it is impossible to add even one more channel if

the system is full, resulting in a blocked or dropped calI. ~Ieanwhile, the grade of

service is independent of the number of users as long as the system has not reached

its capacity. Such behavior is sometimes called hard capacity~ in contrast with DS

CDj\L-\. where the quaIity of the communication degrades gracefully as the number of

users increases. Hence, if a system is operating at capacity. then aIl the users enjoy

the required grade of service, but adding one or a few more users is possible. result

ing in sorne small performance degradation. Often. it is preferable from the service

provider's point of view to allow a small degradation in the quality of the transmis

sion for a short period of time (until sorne calI is completed), avoiding therefore a

blocked or a dropped calI. The soft capacity property which is conveniently exploited

in CDjyL-\. results in a traffic capacity improvement.

Voice activity can be weIl exploited in the voice channels of a DS-CD:\L-\. system.

In a typical conversation, each party talks for less than 50% of the time. The ac

tuaI figure is between 30% and 45%. Since speech pauses contain no inforrnation,

they need not be transmitted (a background noise generator at the mobile receiver

can be provided for listening comfort, or background noise can be coded at a much

lower rate). In orthogonal multiple access, it is virtually impossible to exploit the

voice activity by relinquishing the uplink channel \vhen the user is not talking (and
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the downlink channel when the party is not talking). due to the delay involved in

requesting and obtaining a channeC and to the increased dropped calI probability if

a channel cannot be allocated. However1 \Vith CO:\L-\, it is possible to reduce the

data rate during speech pauses~ thereby increasing the processing gain. The mobile

can then reduce its transmit power for the same received SNR (because of the larger

processing gain) which saves battery life and most of aIl reduces interference ta other

users, thereby improving the system capacity [7].

The fact that the same frequency can be used over and over from cell to cel! allows

the mobile ta perform soft handoffs. In a soft handoff between two base stations. the

mobile communicates \Vith bath until the handoff is complete. This is possible because

the signaIs coming from the two stations appear to be delayed versions of each other

ta the mobile, ,vhich are combined by a Rake receiver. Both stations must however

send the same data and control bits. Soft handoffs can greatly reduce the probability

of dropped caBs during handoffs~ and makes the handoff unnoticeable to the user~

unlike .-\~IPS or current GS~I.

1.2.3 The CDMA Challenges and Promises

The main disadvantage of CD~I.-\ is its high sensitivity to the near-far effect [8]. The

near-far effect occurs in the uplink. where the received power le\'els at the base station

may not be equal. For example 1 if aIl mobile units hac! the same fixed transmitter

output power, then the received signal would be dominated by the mobile closest ta

the base station. This would have a disastrous effect on the system capacity. The

near-far effect is combatted with the use of tight power control. which combines both

open and closed-Ioop power control. In open-Ioop power control~ the mobile adjusts

its transmit power based on the received power from the base station. Open-Ioop

power control is fast, and can track rapid variations in the signal strengths that

may occur \Vith fading. However 1 it is not aCCllrate since the uplink and downlink

channels are not symmetric. Because of the high sensitivity of COZ\I.-\ to received

power imbalances at the base station (a 1 dB imbalance can lead to a 30% reduction in

capacity) , closed-Ioop power control is also necessary. In closed loop-power control,
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the base station sends a few control bits at regular interval~ telling the mobile ta

increase or decrease its power. .-\lthough slower than open-Ioop po\ver control. it is

much more accurate. Therefore~ a combination of open and closed-Ioop power control~

where the latter refines the power level determined by the former. results in a tight

power control scherne which ensures equal received power levels at the base station.

i\tlany of the advantages of CD!\IA that were outlined in the above sections also

come at sorne cost. Rake receivers~ decoders of powerfullow rate codes. voice activity

detectors~ power control schernes~ aIl require extra hardware (and maybe sorne soft

ware) which adds to the system cost/complexity. On the other hand~ CD:\IA does

not require user synchronization~ nor does it need equalizers [61, which represents

significant savings in cast and complexity.

The promise of CD~IA is an efficient cost-effective cellular system \vith a capacity

larger than that obtainable with other multiple-access schemes. The challenge is ta

deliver on the promise. The rS-95 standard developed by Qualcornrn~ and the recent

bandwidth allocation for CD~I.-\ are first steps in this direction. In Canada. sorne

cellular service provicies, such as Bell :\Iobility and Clear:\eL have chosen CD~IA

technology. whereas others such as )'Hcrocell are going \Vith GS:\I (TD:\IAjFD:\IA).

For the moment~ many GS:\I systems are already up and running~ throughout the

\vorld~ whereas CD~L-\ has been used only in sorne limited areas (LA. Hong Kong~

Korea). 1s there room for two ffillitiple-access technologies~ or will one take over

the market? \Vill there be one worIel standard, or will each global market rnore

likely go with their own standards'? The question is already difficult to answer from a

technological point of view. \Vhen we take into account the heavy weight that politics

have in regulatory decisions~ it appears clearly that these questions are beyond the

scope of this thesis.

1.3 Thesis Scope and Outline

In this work, we look at ways to improve the capacity of the uplink of a DS-CD~IA

system, at the physical layer level. .-\S in the proposed r5-95 standard~ we assume
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single-user receivers at the base station. \Ve concentrate our efforts at the modu

lation and coding levels. and investigate methods to improve the reliability of the

transmission, which in turn would provide a capacity increase for the same transmis

sion quality. Sinee we are looking at modulation and cading~ we consider single cell

systems~ beeause the effeet of other cells is only to raise the interference level.

In the first part of this thesis, we analyze the performance of a DS-CDi\L-\ system

withaut cading. vVe show that careful waveform shaping specifie ta the DS-CD~L-\

environment can dramatically improve the performance over rectangular shaping~

and we canstruet such effective waveforms for DS-CD~IA. vVe then show~ through

random coding arguments. that the system performance can be greatly increased

through powerful low rate codes~ and that channel coding should account for aIl of

the bandwidth spreading as opposed to p~ sequence spreading. In Chapter 3. we

look at known very low rate eades~ and construct our own code family~ based on

the cambination of treIlis and first-order Reed-;\IuIler codes. By default. we calI

these codes Trellis/Reed-~Iuller codes. Finally. in Chapter -1. we provide a complete

comparison of our codes with the other known very low rate codes. The conclusion of

this comparison is a net performance advantage of our codes. In the conclusion part.

we elaborate on the benefits of using careful pulse shaping and Trellis/Reed-:\Iuller

codes in a DS-CD~L-\ cellular systems. and gi\·e directions for further refinements of

our work.
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Chapter 2

Chip Shaping and Channel Coding

In this work~ we focus our attention on asynchronous OS-C01IA with BPSK mod

ulation and single-user detectors. It is shawn in [11] that. for a fixed bandwidth

spreading~ the best performance is obtained when the error control code is responsi

ble for the entire bandwidth spreading. The work in [11J however does not consider

the issue of chip waveform shaping. This chapter aims at quantifying the potential

improvements that chip shaping and channel coding can bring ta a DS-CO)'f..\ sys

tem. The approach is essentially based on a randonl coding argument. and does nat

put any prior restriction on the chip pulse shape~ except that the intersymboi inter

ference, if any~ is neglected. In [12]~ it is shawn that for a strict bandwidth definition

(i.e. when aIl the signal power is contained in the allocated band). the signal ta in

terference ratio is maximized when the pulse shape is a sinc function. In this work~

we relax the bandwidth definition~ and derive a criterion for chip pulse design. \vhich

takes into account the bandwidth of the pulse shapes. \Ve aiso explore the effects

of chip waveform shaping in conjunction with error control cading not anly to gain

an insight into the fundamental capabilities of CO:\IA. but also ta show how chip

shaping with bandwidth limitation can improve the system performance.

The chapter is structured as follows. A CDp.,IA system modei is presented in Sec

tion 2.1. A comparison criterion for chip pulse shapes is introduced in section 2.2.

Section 2.3 considers the advantage of expanding bandwidth by error control cod

ing over bandwidth expansion via PN sequences only. Furthermore~ random coding

techniques are employed ta analyze the effects of chip shaping when error control is

used with CDj\;IA. Section 2.4 presents a comparison between CONIA and orthogonal
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multiple access (TD~IA!FO~IA) when both schemes use error control cading.

2.1 CDMA System Description and Analysis

15

\Ve describe here the model that we adopt for an asynchronous DS-CO),!:\. system.

\Ve \-iew the system in three parts: the modulation scheme~ the channel. and the

receiver structure.

2.1.1 Modulation

Discrete-time ConrinOltS-time signaIs

Data

PN sequence

Impulse
Generator
Rare Irrc

:C(t)
1 Ta channel

Figure 2.1: ),Iodel of a DS-CO~L-\ modulator.

Figure 2.1 illustrates the model of a OS-CD~L\ modulator for user i. The data is

assumed to be in bipolar form: the data symbol of user i at time index k is denoted

by Xi.k (Xt.k E {-l.I} ). The data symbols are independent for different users. but

not for different time indices of the same user. allowing for channel coding.

The sequence Cz.k (-:x: < k < :x:) models the PX spreading sequence of user j.

The symbols C;.k E {-1. 1} are two-\'alued random \'ariables generated independently

with equal probability. Hence C1.k and c;.m are independent unless i = j and k = m.

- {alE(ct.k c;.ml
i = j and m = k

Otherwise
(2,1 )

(

In practice. the sequence C1.k (- x < k < x) is a pseudo-random sequence with

statistical properties weIl approximated by the aboye model. E\"ery Tc seconds. where

Tc is the duration of a chip symbol. the impulse generator outputs an impulse with
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{ the polarity determined by the state of its input (which can be =1). The chip pulse

p( t) has an arbitra~' shape. energy Ec • and Fourier transform Fpi f). Hence.

(2.2)

\\-e use the symbol J to denote the infinite integral J~x. The spreading signal of user

i. c:kJ(t). during the kth data rime inten'aI [kITc • (k - l)ITr.~' is not necessarily time

limited ta that inten-aI. depending on whether p( t) itself is time-lirnited to ~O. Tr.~' The

chip rate is therefore liTe' Each user j transmits a signal I) (t)../2 cos Î _ot). where

and

x

I)(t) = L I)ok c/:(t)
k=-x

(-l

C~k;(t) = LC).rr--l:IP(t-nTt:-kITcJ
n=û

(2.3)

(

In the absence of channel coding. the parameter 1 is the number of chips per data

symbol. which is often taken as the definition of the processing gain in a spread

spectrum systemo \\ïth channel coding, 1 is the number of chips per code symbol.

From the aboye considerations. and from Figure 2.1 the modulation scheme is a

BPS!\: modulation of the spread data. follo\,'ed by sorne wa\Oeform shaping.

2.1.2 The Channel

There are two sources of interference in the channel. as illustrated in Figure 2.2. The

first one is due to thermal noise or ather sources of zero-mean additi\Oe white Gaussian

noise. The additi\'e zero-mean white Gaussian noise 7]( t) has an autocorrelation

function E[TJ(t) T](')} = =f6(t - 7). The second source of interference is due to the

other acti\"e users. and we will refer to it as the multiple-access interference (~L\I).

\\-e let JI denote the total number of actiye users in the channel at a gi\"en time.

~ote that by acti\"e users we mean any users whose signaIs are recei\'ed with non

negligible power at the recei\"er. In panicular. in a cellular en\"ironment. this may

indude sorne users from neighboring cells. \\-e assume that the channel does not

introduce any other distortion such as filtering or non-linearities. In other words. this
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•
Ta receÎ\'er

Interfering users

--~\
\

-- ~_~_{(_t_'----~..~(8)-------_...
1 10.., caSl W t , f

"'rr It_O,cos{û.)t-8 j J, _.... : j . 1

/ ::!a.: ~:(t"'O:)COslû.)t -8: J

/2;;, ~ lt+~) cosl Cl) t ... 8 3 J

(

Figllr~ 2.2: ~IljdeI of the multi-uS€r A\rC:\" channr:l.

rneans that the channel is considered ideal ()\"er the bandT,',-idth ()(cllpi(~d by thf~ llsers.

and does not introduce further intersyrnbol intr:rference 1ISII. Thus. thr()11g;h r)Tlt thL~

würk. we disregard any intersyrnboI Interference. assllming that the chip puls,,= satLsfie-s

the ;\yquist criterion for zero I5r.

At the channel output. each 115er sÏ.!;-naI will suffer a delay. anti th(~ c{Jrrespondinl?;

(:amer a phase 5hift. The ac;;sllmptirJn ()f a c0mpl~t~ly asynchrrJn(J1L'; llplink irnplif:'5

that the delays DJ are i.i.d. unifrJrmly distribllt~d ')B :0. Tr.: ! they (~r)llld bf~ (~alled

ad·;anCf~S!. and that thr: phase shift5 &) are i j.ri. llnif(Jrmly distriblltr:-d (Jn ·().2~·. Thf~

receiw~d signal at the channel üTltput is thf~n

?pt,·
.'.f

2: va; r;, t - D j ) v'2 CfjS _·t -Ii}! - T}I L

where o.] lS a dimensionlfS5 gaIn fact0[ ',';hieh alI,);,,'s f()[ diff(~rfont F:-cf:in:-d pf)~'r;r:r

leyeis. \\·e fllnher assume that these E;ain factrJ~ ar~ crJnstant ()\"f~r th(~ intf:n·;,.l (.Jf

übsen"ation. \\Ïthout loss ()f genérality. if 1 is the indr~x (jf th~ dr:-sirHi 11.,*L ",';f: caB ~t

QI = 1 and DI = 01 = o. The mod~l lL~ in...'ûfar is n~ry sirnilar tr) that pr()p\j~d in

)2~. except that the carrier is not qlladriphase ffi()dulated and that n()n-f~qllal rfcf~piVf:-d

user power len:is are allüwed.

(
Due tG the multi-tL"€r intf>rference. the channr-:l is n(jt mem(J~·if:Ss. Slnce a chip

of another tL"€r iDterferf:'S in general v,ith many Sllccessin~ chips ()f the desired 1L'S€f.

Hence the total Interference is nût white. strictly speaking. but interlea\"in~ can be



(

Chapter 2_ Chip Shaping and Cbannel Coding

used to destroy the channel memory.

18

2.1.3 Demodulation: Statistics of the Decision Variable

!'îCOSHIH) t
~T,.(8) ·1 ~ r

tp~ sequence
of desired user

Figure 2_3: ~Iodel of a single-user receiyer_

Demodulation is perfonned by a single-user r~cei\-er. a., sketched in Figure 2.3

This is easily recognized as the optimal recei\-er for a point to point binary commu

nications system o\-er an .-\\\·G~ channel. Indeed_ such a recei\-er completely ignores

the potential information contained in the interference which it treats as noise. Let

.71).k denote the decision \d.rÎable (output of the matched filter 1 of user) _at tinH:' index

k. In arder to simplify the notation_ we will assume that the desired user is llser .\/.

and drop the subscript JI from corresponding \-ariables. The indices 1. _.JI - 1 refer

then ta the interfering users. In particular. we haye!Jk == !}.'.f.k- C kit) == c.'~ (t ,_

Ik == I.'.fJ:- Q.'.f == 1. and D.,.! = fJ ...! = o. The expression für the der:isiün \·ariahle is

!!Î\-en byo _

L JyitlV'2cOS_·t c;:; (fi dt
( cfllp ~

i2.6!

(

where the SUffi is o\-er the 1 chips per bit of the k-th bit interyal. and the chip

wa\-eform shape p( t ) is included in the expression of c k r t 1.. The integral ranges from

- xtox (in practice. it ranges o\-er the duration of a chip pulse, ..-\ straightforward

computation ~ields

where we used the standard assumption that the carner frequency is much larger

than the signal bandwidtb. tbereby neglecting the double frequency term.
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( The computation of the mean and variance of the Yk given Xk is a straightforward

albeit lengthy calculation~which is detailed in section A.1 of Appendix A. \Ye repeat

here the conclusions of the computation.

where
J{ -1

"",'(JI) = L Q]

1=1

and

LEe Ik = Eb Ik

l~c(So + Ec\:p',(Jl))

~ f IFp (f)1 4df
\:p -

Te E;

(2.8 )

(2.9)

(2.10)

..-\lso. Eb = LEe is the energy per bit of the desired user when no channel coding is

used.

The above result corroborates the findings of [12] when we assume a perfect power

controlled environment with no inter-cell interference. and set aU the recei\'ed signal

le\'els to be equal.

One of the mos! important outcomes of the abo\'e analysis is the revelation of

the factor \p in the ),IA1 contribution to the total interference. \re refer to \p

as the pulse shape factor. as it depends only on the shape of the chip wa\·eform.

The pulse shape factor is a dimensionless quantity which measures the other-user

interference rejection capabilities of the pulse, since the product \:p-' (JI) is the other

user interference perceived by the desired user.

The signal to total interference ratio (ST1R) can be written as

(2.11)

(

2.2 Pulse Shaping in CDMA

In this section. we analyze the effects of pulse shaping on the system performance.

\Ye restrict ourseh'es to chip pulses which satisfy the first :\yquist criterion for zero

intersymbol interference. and deri\'e a figure of merit which measures the J.1AI re

jection capabilities of pulse shapes~ taking into account their bandwidth. It turns

out that se\'eral of pulses achieve a figure of merit extremely close to a theoretically

computed bound on the best achievable figure of merit.
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{ 2.2.1 Computation of Sorne Pulse Shape Factors

In this section. we give the shape factor XP of a number of élIip waveforms. sorne

of which are sketched in Figure 2.4. Note that the pulse shapes of Figure 2.4 are

aIl time-limited to one chip interval and that they thereby generate no intersymbol

interference. Nloreover. aIl chip waveforms examined in this section are assumed to

satisfy (2.2), which means that they have energy Ec •

<I---='t=-----I:;::>-

Half-sine wave

Triangular
Full sine wave

Figure 2.4: A fe,v time-limited pulse shapes.

The pulse shape factor is computed by evaluating (2.10) in the time or frequency

domain, either analytically: or with arbitrarily good accuracy by numerical integra

tian. Table 2.1 lists the value of XP for the time-limited pulses that we consider. In

the list of Table 2.1~ those pulses that are net naturally time-limited are truncated

to the interval [-Tc /2. Tc/2J.

~ Pulse Shape

Rectangular Fig. 2.4a 2/3 sin3 (2;}) 0.31

Triangular Fig. 2.4b 151/280 ~ 0.54 sin-l (~t.) 0.28

sin (~:) Fig. 2.4c 1/3 + 5/2rr2 ~ 0.58 Gaussian e-a2(t-lf f a - 7.4 0.59- Tc

sin (~t-) Fig. 2.4d . 2( L;.)2 a - 250.39 Gaussmn e-a t- 2 - Tc 0.35
• 2(t L;.)2 a - 50 0.25Gaussmn e-a - 2 - 7~

~ Pulse Shape

{ Table 2.1: The value of XP for sorne time-lirnited pulse shapes.

vVe also consider non time-limited pulse shapes, in particular the family of square
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( root raised cosine Nyquist pulses. These pulses are strictly bandIimited and their

autocorrelation function is given by [13. pp..j3--l-.j36]

r;;- . . cos (1rr5t/T)
Rp(t) = VEc slnc(t/Tc ) cS 2/T21 - -l t

(2.12)

where cS is the roll-off factor (0 ~ r5 :::; 1) which specifies the "excess bandwidth~~ of

the pulse (for a sinc function~ cS = 0). It is shown that in .-\ppendix :\ that the shape

factor of square root raised cosine pulses is XP = 1 - r5/ 4.

Hence~ as confirmed by Table 2.1, the sharper the pulse. the smaller is the value of

Xp. This is an expected behavior, since narrower pulses will overlap less~ on average

(given our assumption of i.i.d. uniformly distributed delays). However the narrower

the pulse. the greater is its bandwidth. Indeed, chip pulses of negligible duration but

of finite energy would overlap with a very small probability. yielding a shape factor of

nearly zero. but would have an essentially infinite bandwidth. Hence for a meaningful

comparison of chip pulses. we must compare pulses with the same bandwidth.

2.2.2 Chip Pulse Design Criterion

As discussed above~ the pulse shape factor XP has an important effect on the STIR

(2.11) and more generally on the performance of the system. as it multiplies directly

the power of the other-user interference. Indeed. when (2.11) is the criterion of

interest, a reduction in the pulse shape factor is translated in a proportional increase

in the system capacity.

The pulse shape factor bears a special relation to the ambiguity function used in

radar theory~ and in particular to the time resolution constant [14~ 15J

(2.13)

(

In fact, Xp is a normalized expression of Tp , whose physical interpretation is a measure

of the spread of energy of the matched fUter output [15~ pp. 341]. In radar theory. the

time resolution constant is a useful pulse design criterion in cases where the Doppler

shift is negligible (stationary or slowly moving dutter) [15. ch. 10]. The rationale

for this is that, for good dutter rejection~ a time-shifted pulse (with respect ta the
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(

(

information conveying pulse) should contribute as little as possible to the energy of

the receiver matched filter output. In asynchronous CD~L\. time-shifted chip pulses

are due to the other users~ and therefore the same rationale applies.

In [15, pp. 341-345], it is recognized that radar pulse design~ based on the normal

ized time-resolution function (Xp in our case), depends on bandwidth considerations.

Let Rb =l~c be the bit rate of the desired user. Then (2.11) can be written as

2
STIR = (2.14)

~ + RbTp,..,.(JI)

From (2.14), it is seen that 11RbTp = lTclTp = ll\p gives a natural definition of

the effective processing gain in a CD~L-\. system. Hence the effective processing gain

does not only depend on the spreading factor, but also on the chip shape. Further

more, since the crosstalk rejection capabilities of CD~IA are determined by the time

resolution constant, 11Tp is also the natural definition of bandwidth for CD~IA. The

argument is similar to that of [16], in which it is argued that. for a spread spectrum

system with tone jamming in the band centeL the noise equivalent bandwidth is the

natural definition of bandwidth. However, the bandwidth definition does not depend

on its pertinence to the particular application but appears as an external design con

straint imposed by the necessity to Iimit the interference in neighboring channels.

and is usually determined by regulatory agencies. .-\S we observed earlieL the lower

is Tp (or Xp), the larger is the pulse bandwidth. Chip shaping should therefore aim at

finding the best compromise between the :\·1AI rejection capability and the bandwidth

efficiency of the chip pulse.

.-\.S shown in (17), when comparing pulse shapes, the objective is to minimize the

time-bandwidth product TpBp- vVe will refer to this product as the figure of merit

or FON1 of the pulse. Naturally, the actual value of the FO.\I of a pulse depends

on the definition of bandwidth, and hence the design of chip waveforms requires the

knowledge (or selection) of the bandwidth definition. From now on, we \vill restrict

ourselves to the energy containment bandwidth which is defined as the frequency band

around zero containing a fixed fraction f.l of the energy of the pulse~ as illustrated in

Figure 2.5. Although f.l can be any number in (0, 1], usually, J-l 2: 80%.
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Figure 2.5: Energy containment bandwidth: the shaded region eontributes j.tEc to

the total pulse energy Ec •

From the definition of bandwidth, we have

(2.15)

where Ec is the energy of the pulse. Recall that

On the other hand, we have

(2.17)

(2.18)

(2.19)

{jsing this in (2.16) yields

(2.20)

(

Henee (2.20) is a lower bound on the best possible time-bandwidth produet for pulse

shapes (when the band\vidth definition is a p.% energy containment bandwidth). Since

we neglected the last two integrals in (2.16) whieh are strictly positive unless p. = 1 ~

(2.20) is a strict lower bound on the FO~I of a pulse for p. < 1. In the case j.t = 1,

the lower bound can be reached (for example~ by a sine funetion).
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2.2.3 FOM of sorne pulse shapes

24

(

Pulse Shape Tp/Tc BpTe TpBp Pulse Shape Tp/Tc BpTe TpBp

Rectangular 0.667 4.15 2.77 e-a(t-lf)2 a = 25/Tc 0.354 3.12 1.11

Triangular 0.539 2.00 1.08 e-a(t-lf )2 a = 7.4/Te 0.598 1.80 1.07

sin (~:.) 0.587 1.83 1.07 sine a(t - ~) a - JL 0.112 8.32 0.93- Tc

sin (~t) 0.397 3.00 1.19 sine a( t-lf )-kaiser(b) 0.0876 10.58 0.926a=ll ..,)/Tc • b=2.65

sin3 ('l,J}) 0.309 5.66 1.75 1S-95 Uplink Chip Shape 1.008 0.938 0.946

Table 2.2: Comparison bet,veen time-limited pulses (95% energy containment band

width).

Table 2.2 compares severaI time-limited pulse shapes using the FO~I criterion~ and

an energy containment bandwidth with J.l = 95%. The second column in each table

gives the pulse shape factor~ the third column shows the normalized 95% bandwidth

and the last column gives the product which is the FO;\I. AlI pulse shapes of Table

2.2 but the IS-95 uplink pulse are time-limited to one chip interval: those pulses that

are not naturally time-limited are truncated to the interval [-Te /2. Tc /2]. The reader

is referred to [17] for additional information.

Among aIl the pulses of Table 2.2. it is the last one (a shaped sinc function)

that achieves the best FO~I. For a 95% containment bandwidth~ any FO~1 has to

be greater than 112 == 0.9205. Hence we have found pulse shapes that come very

close to that value. Indeed~ even if the performance of the CD~L-\ system (or equiv

alently the capacity) \Vere determined solely by the average STIR perceived by each

active user, and assuming that the thermal noise is negligible compared to the ~·IAI

(interference-limited systemL then the improvement in capacity (or reduction in in

terference) cannot be larger than the ratio 0.926/0.9205 ~ 1.006 (this is just an upper

bound on the ratio of the two STIR values). Therefore no other pulse shape can

improve the capacity of a system using the shaped sinc function of Table 2.2 by more

than 0.6%. For aIl practical purposes~ we can consider the shaped sinc function to be

an optimal pulse shape.
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( Given our criterion and a 95% energy containment definition of bandwidth. the

chip pulse shape used in the rS-95 standard is also optimal for aIl practical purposes.

Note that although the 18-95 uplink pulse does nat satisfy~ strictly speaking~ the

Nyquist criterion for zero r8I, the amount of rSI introduced is negligible. and we will

ignore it.

0.75 1

1

1
1

l
95% bandwidth __1

- - 1

i
1

J

1

i
0.50.90 0.25

1.15

1.25
1

1.2

0.95 1 -- ------

1 ----------

1.1

FOM
1.05

Percentage of excess bandwidth

Figure 2.6: FO~I of square-root raised cosine pulses (95% and 99% energy contain

ment bandwidth.

(

vVe also investigate the fO:\T of square root raised cosine pulses. .-\S sho\vn in

.-\ppendix A. the energy containment bandwidth of square root raised cosine pulses

can be found easily by solving numerically a single-variable equation (.-\.28). ~Ioreover

the pulse shape factor is shown to be XP = 1- 6/4. where 6 is the percentage of excess

bandwidth. Hence one can compute the FO~I of square root raised cosine pulses as

a function of the percentage of excess bandwidth. The corresponding plot of the

FONI versus 6 is shown in Figure 2.6 for both the 95% and 99% energy containment

bandwidths.

Figure 2.6 shows that the more stringent is the bandwidth definition~ the doser

does the optimal pulse converge to the sinc function. This is exactly what we expect

since when J.L = 100% the sine function meets the bound on the best achievable FOi\·C

a conclusion reached in [12]. Nloreover, we can achieve quasi-optimal pulse shaping
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Figure 2.7: Block diagram of a block-coded DS-CD~L-\. system.

\Vith both tirne-limited and band-limited pulses.

Table 2.2 and Figure 2.6 show the potential improvement that can be obtained

from careful chip pulse design. For example~ for a 95% energ}-° containment bandwidth.

the improvement in F01\tI from the rectangular pulse shape to the shaped sine pulses

is of a factor of 3. vVhen the average STIR is the performance measure of interest.

and when the system is interferenee-limited (the thermal noise is much smaller than

the yIAI)~ this corresponds to a 300% improvement in the systern eapacity. Granted

that such a prediction could be optimistic since the average STIR is only a erude

measurement of the system performance. the potential improvement is nevertheless

substantial~ and reveals the partieular importance of chip shaping in asynchronous

DS-CD~\'IA.

2.3 Channel Carling and Bandwidth Spreading

(

In this section~ we show that the performance of the asynchronous DS-CD~dA system

under consideration is optimized when ail the bandwidth spreading is accomplished

through error control coding.

vVe eonsider an (n~ k) block-coded asynchronous CD~IA system~ with l chips per

code symbol. A model for such a system is shown in Figure 2.7. As discussed in
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section 2.1.2~ chip interleaving ensures an equivalent memoryless channel. Referring

to Figure 2. 7~ let R s = k/ni and ;.V =ni. For each sequence of k data symbols. we

transmit ni chips. Hence 1/Rs = ni/k is the bandwidth expansion factor. :\'ote that

this does not preclude scrambling~ Le. the use of non-spreading PN sequences~ on top

of the spreading scheme~ in arder to differentiate between users. an approach used in

[12]. For a given code size 2k (k is then fixed). and a fixed total bandwidth expansion

Rs~ we would like to find the values of the parameters n and l (the product ni = .V

being fi..xed) which optimize the performance of the system.

Since a large part of this section \Vas published in [171 ~ \"e will often refer ta that

publication ta shorten our discussions. For example. a concatenated coding approach

can be used to show that the best solution is n = .V and i = 1 [17]. \Ye will focus

here on a random coding approach.

2.3.1 Random Corling Viewpoint

A commonly used approximation. based on central limit arguments. is to assume

that the :vIAI interference is a Gaussian random process (see for example [Il. 20.

21~ 22]). The Gaussian approximation has been shown to he over-optimistic when

the number of users is smal!. the band\vidth is large~ and the system is interference

limited [23~ 24]. Such a situation corresponds to a low probability of error regime

of operation. In CD:\L-\. however~ system performance is often measured in terms of

capacity, e.g. the maximum number of users for a given outage probability..-\.cceptable

outage probabilities (worst case error probabilities). when the system is saturated. are

relatively high (of the arder of 10-3
). In such cases. the results of [23. 2-1] indicate

that the Gaussian approximation yields results that are reliable. and therefore can be

used.

Consider the system depicted in Figure 2. 7~ \Vith fixed total spreading rate Rs and

fixed lV = ni. Given (2.11), the single-user average probability of error. over aIl (n, k)
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block codes. is upper bounded by (see for example [13. pp. 365-370])

[ ( ( ))]

n

- ')k-l 1 ." -1
Pe < - 2 1 T exp i; + ,\:p"i(JI)

28

(2.21)

For a given code size 2k • and a fixed total bandwidth expansion (R.s is fixed). we

would like to find the values of the parameters n and 1 (the product nl = ..v being

fixed) which minimize the random coding bound of (2.21). \Ye rewrite (2.21) as

(2.22)

(2.23 )

From (2.22L the quantity Ro(l) is the eut-off rate of the multi-user channel percei\'ed

by the desired user. One can also interpret 1/RoU) as the minimum bandwidth

expansion required to force the random coding bound to zero by increasing .Y. Since

.V is fixed in (2.22L the goal is to maximize RoU) on the interval 1 ~ 1~ ..V.

As shawn in [1il the eut-off rate is a monotonously decreasing function of 1. and

is thus ma"<imized (and the random coding bound minimized) when l = 1 and Tl = .V.

This is illustrated in Figure 2.8. where we plot the eut-off rate for different "alues of

1 for an :\[-user system with a total spreading factor of 6..1. -: (JI) = -19.0 and square

pulse shaping. This corresponds ta a .50-user systenl if the average of the recei\'ed

power levels of the interfering users equals the receÏ\'ed power level of the desired

user. A stronger (more restrictive) condition would be that aIl received power le,"els

are equal. requiring perfect power control. but the weaker condition suffices.

\Ve can thus improve the system performance by using coding instead of PX

sequences ta spread the signal bandwidth. The imprO'"enlent gets better as the code

size increases~ provided that the total spreading rate Rs is lower than the eut-off

rate Ro(l). as suggested by (2.22). \Ve illustrate that argument in Figure 2.9~ "'here

we plot the probability of error for a p~ sequence spread system with the Gaussian

approximation. which is given by

(
(2.2-1)
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Figure 2.8: eut-off rate versus channel Ec/.Vo for various values of l. and -. (JI) = -19.0

\'Ve also show the corresponding random coding bound for systems using aIl the

bandwidth expansion for coding. These plots are shown in function of Eb/ .\"0 =

Ec / ( Rs .Vo )' The system considered in that exampIe has ~, (JI) = 31.0. a rectangular

pulse shape (xp = 2/3) ~ and a bandwidth expansion factor of 64. which implies that

Eb / ,Vo = Ec / .Vo + 18 in dB. The Eb/ ,Vo interval considered is such that the channel

eut-off rate is greater than the total spreading rate Rs ' The performance of the

system improves with increasing the code size. However. with these parameters. we

(

need k ~ 6 to have better performance than PX spreading alone. For k = 10. the

bound on the average probability of error o\'er aIl (150.6) block coded systems is

already weIl below the probability of error of a PX sequence spread system.

Consider now increasing the ,'alue of ~.(JI). Figure 2.10 shows the exact prob

ability of error (based on the Gaussian assumption) and the corresponding random

coding bounds for "'r(.:\I) = 63.0. If perfect power control is available~ we then have 64

llsers. Xotice that for Eb/.Vo ~ 12 dB. the channel eut-off rate equals the spreading

rate Rs = 1/64. as aIl random cading bounds intersect at that point. For k = 50.

the average (1250~ 50) code achieves a lower probability of error than P:\, sequences.

\Vhen k = 100. the value of the random coding bound at high Eb/-Vo is belo\\" 3.10--t.
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Figure 2.9: Probability of error and bounds (rectangular pulse) for -"(.\1) = 31.0 and

R s = 1/6-1

This shows that it is possible to accommodate a number of users equaI to 1/ R.~ at an

acceptable probability of error. provided Rs < Ra and the code size is large enough.

In this section we have shown that the system performance is optimized when

aIl the bandwidth expansion is accomplished by an error control code. In practice.

such a strateg0- is limited by synchronization issues. which is difficult to achieve and

maintain at very low \'alues of Es/-Yo (where Es is the energy per coded sYlnbol).

Hence~ in order ta simplify the synchronization. it is sometimes necessary to pro\-ide

a '~spreading margin" (i.e. ha\'e the P~ sequence accomplish part of the o\'erall

spreading), This approach is used in the uplink of the IS-95 standard, where the

error control code has a rate of 1/32. and the P~ sequence further spreads the signal

by a factor of .-L for an overall spreading factor of 128.

2.3.2 The Chip Pulse Shape

<
The improvement due to coding can be further increased by chip pulse shaping.

Consider two systems SI and 82 using pulse shapes Pl(t) and P2(t) respecti\-ely. with

(3 =BI / B 2 > 1. For equal system bandwidths~ S2 uses a spreading rate R S2 which
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is lower by a factor of 3 than that of SI' If both systems spread their bandwidtb

through errar control coding of the same size. then R 5 : = k/n and R 52 = k,'.3n.

showing that the ayailable dimensions of~ are increased by the factor .J. \\-ith equal

distribution of power leyels in bath systems. the random coding bounds are gi\"f~n by

12.2·) J

where

- 1- log] (1 - exp (s, -1_ ))
T; - \0: .! JI)

and Ec is the energy per user per dimension in S:. and

12.26}

~ .)-Jn' R.,::.-R.~
2 -

~ .)-n JR.,::.-R.:
.) - 12.27)

(
where

_1-log2 (1 -exp ( J'" -1 )' )'
_'_'J _ \ -, (JI)'
E~ P2

i2.28}
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( In order to maintain the sarne E b/ .Vo in the two schemes. the energy per user per

dimension of 52 must be lower than that of St br a factor of J. The ratio of the bound

on Pe.2 (2.27) to the bound on Pe•l (2.25) is equal ta 2-n (3Ro.2-Ro.l). and is an indication

of the relative performance of the two systems. It follows that S2 will outperform SI

whene\"er 3Ro.2 - Ro. I > O. Xote that this is equi\"alent to comparing the difference

of eut-off rates per unit bandwidth. The value of JRo.2 - Ra. t is significant since the

ratio of the random coding bounds decreases exponentially \Vith this quantity. For

exarnple. if 3Ro .2 - Ra. t = 0.1. then for n = 30 only. we ha\'e that the bound on the

probability of error for St (2.25) is 8 times larger than that of 52 (2.27). As a rule of

thumb~ we can include as significant any region such that !JRo.2 - Ro.I1 > 3/n since

this corresponds to a factor of 8 (almast one arder of magnitude) in the bounds of

(') ')-) d (.) ')-)._. _ ù an _. _, .

In [17] ~ it is shawn analyticaIly that gi"en XP1 :::; \Pl and .3 ~ 1. we ha,oe .3Ro.'2 

Ro. I > O. This is an expected result since P2(t) ha" then a lower pulse shape factor

(reducing the other-user interferenee). and a Iower bandwidth (allowing for a lower

coding rate). In sorne sense. we win from both ends.

\'·e further show in [17J that .3Ro.2 is an increasing function of J. while it is

c1early also a decreasing function of \P2' Since Ra . l does not depend on .3 nor on \P1'

it fo11o,,"s that 3Ra.2 - Ro. l increases with 3 and decreases with \p~' Therefore. if

both XP2 < \Pl and .3 < 1. it is nat ensured anymore that 52 autperforms St. since

the reduction in ~IAI obtained br a lower pulse shape factor is offset by a smaller

number of a"ailable dimensions far channel cading,

In [17L we compare a system with a rectangular pulse shape Sr and a system S5

with the truncated sinc pulse shape of Table 2.2 (the ane with a normalized bandwidth

of 8.32 and a pulse shape factor of 0.112). and show that Ro.sinc/2.005 - Ra.rect > a
for ...,,(JI) > 2. Le. for aIl practical purposes. One can argue that this result is not

surprising sinee the reetangular pulse shape has a FO~r much larger than that of the

truncated sine pulse. This eonfirms that the FO~I is a reasonable measure of the

quality of a pulse shape.

.-\.S a second example~ we compare a system S95 using the IS-95 uplink pulse shape
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of Table 2.2 and a system 55 using the shaped sinc pulse of Table 2.2 (last entry).

This choice is motivated by the fact that both pulses have similar figure of merits.

but while the shaped sinc pulse has a large bandwidth and a small time resolution

constant~ the r5-95 chip pulse has a small bandwidth and a comparatively large

time resolution constant. \Ve hope ta gain sorne insights into the tradeoff between

bandwidth expansion and interference rejection capabilities of a pulse. in the presence

of error control cading, and check whether the FO~[ criterion is still meaningful.

The comparison is performed again by showing in Figure 2.11 the contour plot of

Ro,sine/11.28 - Ro,95 where

Ro,sine = 1 - log2 (1 + exp (-."..,v~__-_l ))
if; + O.0876~(( JI)

(2.29)

Ro,95 = 1 - log2 (1 + exp(~ -1 " ( U)) )
11.28Ec + 1.008 y •

(2.30)

(
since the ratio of the r5-95 chip pulse bandwidth ta that of the shaped sine pulse is

1/11.28. From the zero contour line in Figure 2.11, 5 95 performs uniformly better

than 5 s whenever log2 "((AI) :s 7, or ,(AI) < 130. On the other hand~ for the range of
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(

(

values of Ec/~Vo shown. Ss outperforms 5 95 provided -((JI) ~ 130. The zero contour

line is in fact independent of Ec(.Vo on the chosen range~ defining a threshold value

of ....((AI) ~ 130 which delimits the regions where one system outperforms the other.

The r5-95 chip shaped system can outperform significantly the system using the

shaped sinc pulse only for very smaIl values of the .\IAI~ which even in a perfect

power controlled environment corresponds ta less than 10 users. This is determined

by examining the regÏon \Vere Ro.sinc/11.28 - RO •95 < -0.01. On the other hand, for

most of the regÏon where ,(JI) ~ 130. /Ro.sinc/11.28 - R o.go"> 1 < 0.00002, which means

that the potential advantage of system 5 s is negligible since we would need extremely

powerful error control coding to exploit that advantage (we would be looking at block

codes of length greater than 200000, and require that they achieve the a\'erage-code

performance of (2.21)).

Therefore~ the r5-95 chip pulse shape and the windowed sinc pulse shape under

consideration are comparable from the point of view of the resulting eut-off rates, at

least when the :\1AI is not too smal!. This confirms that the FO?\I of a chip pulse is a

good indication of its performance in an asynchronous DS-CD~L-\. system. even when

error control coding is considered. since bath pulse shapes have comparable FO~Is.

2.4 CDMA and Orthogonal Multiple Access

The previous sections of this chapter have revealed sorne critical issues in asyn

chronous DS-CD;\IA. and shawn that chip shaping and error control coding can

increase the system performance in a very significant way. However. being able to

carefully design a CD!\'IA system in order ta optimize the performance does not jus

tify the use of CDivIA as a multiple accessing scherne. Although the debate about

which of CDMA and TD~L-\. is the better multiplexing scheme is not yet closed (and

depends on a large number of parameters) ~ we hope to shed sorne light onto this

debate by comparing CD:NIA with TD~L\ on the basis of their eut-off rates.
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(

(

Given 1\l blocks of k data symbols to be transmitted (one block per user). ho\\" do we

allocate n channel dimensions to the users? \Vith orthogonal multiple access (O:\1A).

which encompasses TDw1A and FDNL-\~ we allocate njJI separate dimensions to each

user. Since each user is constrained to its own signal sub-space. this scheme avoids

aIl cross-talk interference. In asynchronous DS-CDwIA.~ aH n dimensions are assigned

to aU Al users. The price to pay is the presence of cross-talk interference: but we

gain an increase in the number of dimensions per user. A careful mix of chip pulse

shaping and channel coding can both decrease the crosstalk interferencc and exploit

the available dimensions for coding.

A comparison of CDw1A with binary O~IA on the basis of the eut-off rate per unit

bandwidth is provided in [17J. ft is shown that CD~L-\ \Vith the windowed sine pulse

of Table 2.2 is equivalent to O:\,IA \Vith a roll-off parameter of about 85% (square

root raised cosine pulse, and 95% energy containment bandwidth). For a 99% energy

containment bandwidth: the same CDNL-\ system is equivalent to an O~1A system

with a roll-off parameter of about 60%. For smaller values of the roll-off parameter.

O~1A is superior to CDj\,1A. It is understood however that this conclusion is for a

single cell analysis. vVhen the much smaUer frequency reuse factor of CD:\1.-\ is taken

into account~ its full potential is revealed.

2.5 Conclusion

This chapter considered CD~/L-\ systems with single user receivers. vVe have shawn

that coding and chip shaping are integral parts of a CD~IA system~ and that the time

resolution constant of the chip waveform indicates its crosstalk rejection capabilities.

The chip figure of merit (FO~T) has been introduced as a quantitative measure of the

"goodness~' of a chip pulse shape, i.e. a nonnalized measure of the crosstalk rejection

capabilities which takes the bandwidth of the chip waveform into account. \Ve have

also shown that, given the definition of bandwidth: it is possible to find many pulse

shapes with practically optimal FO ~Is.

The conclusion that bandwidth spreading \Vith error control coding is preferable
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.(

(

to spreading with PN sequences was reached from a random coding argument. vVe

emphasize that this does not exclude the use of non-spreading P:\ sequences for user

differentiation purposes. Gnly a combination of coding and chip pulse shaping can

increase the performance of binary DS-CD~L\. to be almost comparable to that of

binary ONfA, in a single-cell interference free environment. This work shows that

with appropriate chip shaping~ the CD).:I:\. performance is equal to that of orthogonal

multiple access \Vith binary signaling and raised cosine shaping of 85% excess band

width. The bandwidth definition for both is the 95% energy containment bandwidth.

This figure drops ta 60% when the 99% energy containment bandwidth is used.

The advantages of CDNIA in an interference dominated environment are weil

known. This work sho\vs that with error control coding and proper chip shaping~

CDNIA performance is comparable to that of binary O~IA even in an interference

free environment. Therefore if other natural attributes of CD;\IA (such as rohustness

to interference~ asynchronous operation~ soft capacit.Y~ soft handoffs~ etc ... ) are of

interest, then not much of its error rate performance \Vith respect to binary O~IA

is sacrificed even in the least favorable operation environment for CD~IA. Hence. in

cellular systems, the low frequency reuse factor required by cellular CD~dA supports

the many daims of superiority of CD~L\ over O~IA [6].
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Chapter 3

Construction of Very Law Rate

Codes

vVe have just shown in the previous chapter that bandwidth expansion through chan

nel coding improves the performance of a spread spectrum multiple-access (SS~L-\)

system. The arguments we used showed the existence of good codes that can yield

the promised performance improvement. In this chapter, \\Te look at several families

of very low rate codes and introduce a new such family based on the combination of

black and convolutional codes.

3.1 Known Very Low Rate Codes

Sorne good very low rate codes can be constructed by combining convolutional and

block codes, such as orthogonal convolutional codes [12. 25. 19]. biorthogonal con

volutional codes (26L superorthogonal codes [27J and the rS-9.5 uplink code. In this

section, we present the above mentioned error control codes that will be used for

benchmark comparisons with the new family of codes that will be introduced later.

3.1.1 Notational Conventions

Let y. = (Ul~'" 1 Un) and Q = (Vi,"', vn ) he two vectors of length n

• The component-wise product of 1f and .!l is the vector 110Jl = (UIVl,···. Unl.'n)

n

• The dot product of 11 and 11.. is the scalar <1f!Q> = 2: 'UiVi

i=l
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( n

• The norm of a vectar is the scalar I/yll such that I/lf/J 2 = <Q!ll> = L uf
1=1

In particular! the Euclidean distance between 11:. and Q is the scalar Il:!! - QII such

that
n

ily - QII 2
- 2:CU i - vd 2 = I/yl/2 + 111:1/2 - 2 <1f!:Q>

i=l

• The maximum component of a vector lf is the scalar

Max.!! = t~~:' Ut, and arg Max.!! = {jlUj = ma.'Ct=I.···.n Ui}

• The absolute value of a vector y is the vector IQI = (juIl!'" .jUn 1)

A vector 1f is said ta be bipolar if Illi = (1! ' .. ~ 1).

• The Hamming weight of a bipolar vectar !:!:. is the number of its components

which are equal ta -1. and it is denoted by WH CuJ. If 1f and Q are two bipolar

vectors, then

(3.1 )

• The Hamming distance between two bipolar vectors 11 and 12. is dH (:!l! Q.)

WH (yw~d

3.1.2 Orthogonal and Biorthogonal Codes

Let the Hadamard matrix Hm be defined by the following recursÏ\'e relation

[

Hm-l Hm- l ]

H m - 1 -Hm - I

m = 1. 2.··· 1 (3.2)

vVe define the code Om whose cadewards are the rows (or eql1ivalently columns)

of Hm' Hence Om is a (2m ! m) code, Furthermore! let QI = (Cll!···. C12m) and

Q2 = (C21!"', C22 m ) be two distinct codewords of Om. From (3.2), QI and Q2 must

differ in exactly half their components. Therefore

(
2m

<QIIQ2> = L CliC2i = 0 d H (QI' 02) - 2m
-

1

i=l

(3.3)
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( Therefore, the Hamming distance between any two codewords of Om is eqllal to 2m - l .

ft follows that Om is a (2 m . m,) orthogonal code of minimunl distance 2m - 1•

Let r. be any real valued vector of Iength 2m
. \Ve define the Hadamard transform

of r. as the 2m -component vector

(3.-1)

Since the columns of Hm are the 2m codewords of Om, the Hadamard transform

of [. consists of the 2m correlations values 2-m / 2 <d~i>' (i = 1. .... 2m ) with each

codeword of Omo Formally, ll(rJi = 2-m
/
2 <r1~i>' The maximum likelihood (~'IL)

decision rule for Om over an .-\.\rVG~ channel. assuming that each code symbol is

mapped inta a separate signal space dimension. is given by

arg min Ilr: - ~i Il
i=1,.··.2 m

arg Max 1-1. (1:) (3.5)

Therefore the ;\IL decoding of Om is equivalent to taking the Hadamard transform of

the received vector and finding the index i of its largest conlponent.

Consider now the code R(L m) = Om U Om, where Om is the set of codewords

\vhich are the complements of the codewords of Om. R( 1. m) is a linear biorthogonal

(2 m . m + 1) code of minimum Hamming distance 2m
-

1• referred to as the first order

Reed-~Iuller (R~I) code [18, chap. 14]. The :\1L decision rule for this code is

. {j if Max 11l(.c) 1 = JV{ax 1-l(rJ
arg. mIn. IIz: - ~II =

l=l.···.2
m

.,.1 je if jV{ax 11l(z:) 1= -.i\lfax 1-l(rJ
(3.6)

(

where j =arg Max Itl (1:) l, and je is such that ~j': = -Cj. The last step takes

advantage of the fact that R( Lm) = Om U O~n by computing only half the correlation

values, and using < z:I~i >= - < ri - ~i >. :\Iaximum likelihood decoding is then

performed in the following \Vay: we first obtain the Hadamard transform tl(rJ of the

received vector. \Ve then let j be the index of the largest component of Itl([) 1. If the

value of this jth component of 1-1.(1:) is positive~ we decide in favor of ~j' othenvise

we decide in favor of -[;.]. ~ote that the bit error probability is minimized~ for a
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( fi.'Ced word error probability~ if complement data wards are mapped inta complement

cadewords [28~ pp. 212J.

Cosets of R(I,m) can also be decoded by using the Hadamard transform. Indeed,

let A be the coset leader of sorne R( l ,m) coset, i.e. wc consider the caset code C =
{~0Qi : Qi E R(l, m)}. The received vectar is

(3.7)

where 11 = (nI, .. " n2m ) is the noise vector and ~ is in bipolar form. );ote that

2m

<dAI3Qj> = <A0ri + 11IA0Qj> = L (.'\kCik + nk)/\kCjk
k=l

2m

L(cik + nkÀk)c]k = <Qi + !!0Ak]> ::= <D~Akj> (3.8)
k=I

Thus the maximum-likelihood decision rule is

arg max <dA0Qj> = arg rna.x <L:8.àlrj>
j=1.···.2m + 1 j=I,···.2m + 1

(3.9)

(

:\;Iaximum likelihood decoding of a coset of R( 1. m) can be done in the same way

(i.e. with the exact same operations) as for R(l. m), provided the received vector

is pre-multiplied by the coset leader. Refer ta [18, ch. 13-1-1J for more on first-order

Reed-ivluller codes, and their decoding using the Hadamard transform.

3.1.3 The Fast Hadamard Transforrn

The first-order Reed-~{uller code ,vould not be so widely proposed as a building black

of low rate codes if it were not for the existence of an efficient method to compute

the Hadamard transform. Indeed, the Hadamard transform of il "ector Q is nathing

more than the correlation values of Y.. \Vith aIl 2m Hadamard codewords. This implies

the computation of 2m values, each of which takes O(2m
) additions ta compute. since

the length of the vectors involved is 2m . Therefore the computational complexity

of a straightforward implementation of the Hadamard transform (for example that

suggested by (3.4)) is O(22m
).

The efficient method to compute the Hadamard transform is the Fast Hadamard

Transform (FHT) also called Green's machine [29, pp. 28-35J. The FHT is analogous
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( to the Fast Fourier Transform (FFT) method of computing the discrete-time Fourier

Transform of a vector. The only difference between the two transforms is that the

coefficient values of the FHT are ±l. This implies that the FHT does not involve any

multiplication, but only additions and subtractions (we ignore the normalizing factor

2-m
/
2 in (3.-1)). \Ve will not reproduce here the derivation of the FHT which can be

obtained from the analogy of the Hadamard transform with the discrete-time Fourier

transform, or from matrix partitioning techniques. The interested reader is referred

to [18, section 14A] and (30~ section 6.3] l the latter containing also further references

ta other derivations of the FHT.

3.1.4 Orthogonal, Biorthogonal, and Superorthogonal Con

volutional (OBS) Codes

Orthogonal convolutional codes were introduced in (25L and discussed in [12] in the

context of SS~IA. The encoding structure is shown in Figure 3.1. The data is fed

into a K-bit shift register. one bit at a time. The content of the shift register selects

a codeword in the (2 K , [{) orthogonal code 01\. For each data bit fed in the shift

register. a 21\-bit codeword is transmitted. Hence the rate of this code is 1/21\.

K-bit shift register

~K_'

(

Figure 3.1: Encoder and trellis representation of a convolutional orthogonal code.

From the encoder structure. it is clear that any twa nan-equal data sequences

generate at least K consecutive non-equal codewords. The Hamming distance be

tween any two non-equaI codewords is 2K - 1. Hence the free distance of the code is
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dftee = K2 K -1. and its asymptotic coding gain is [32. pp. 243J

G - 1 r.r.)K-l _ r.Pj?
x(ortho} - 2K X 1\ - - fi -

42

(3.10)

(

The Viterbi algorithm (v·A) provides an effective method for maximum likelihood

decoding of orthogonal convolutional codes. The trellis representation of an orthog

onal convolutional code (Figure 3.1) contains 21\ -1 states with 2 branches per node.

There are thus 2K branches for each trellis stage. Each of these branches represents

a 2K -bit codeword belonging ta OK' From the encoding structure. each of these 21\

codewords are differenL since they are uniquely determined by a one-to-one map from

the state transition to the orthogonal code OK. At each stage of the trellis. the 21\

branch metrics are the 2K correlation values <r:I~l >. where r. is the received vector

and OK = {Cl ~ ... ~ C2K }. Hence a single Hadamard transform provides the 2K branch

metrics for each trellis stage. Figure 3.1 illustrates the one-to-one mapping between

the trellis branches and the codewords of 01\. References [12. 25L [19. chap. 10]. and

[27~ chap. 5] provide a more detailed discussion of orthogonal convolutionai codes.

Biorthogonai convolutional codes [26] are a modification of orthogonal convolu

tionai codes. Instead of using a (2 K . [() orthogonal code in Figure 3.1. a (2 K , 1\" + 1)

biorthogonal (first order Reed-~Iuller) code is used. The encoder of a biorthogonal

convolutional code is shown in the dotted box of Figure 3.2. The coding rate is 1/21\

and the constraint length of the associated convolutional code is I( + 1. Hence any two

non-equai data sequences generate at least [\" + 1 consecutive non-equai code'\vords.

In biorthogonal convoIutionai codes. the first order Reed-;\Iuller code is con

structed as follows: the last [( bits of the shift register select a codeword of 0 K. while

the first bit of the shift register determines the polarity of the transmitted codeword.

This ensures that any two sequences of exactly I( + 1 consecutive non-equai code

words must contain antipodal codewords (namely the first non-equai codewords of the

sequence). Since the minimum Hamming distance of a tirst order Reed-~Iullercode is

2K - l ~ the free distance of the biorthogonaI convolutional code is dfree = (K + 2)2 K - l
.

Note that complement data words are not mapped into complement codewords of

the first order Reed-~'!uller code (28~ pp. 212]. Otherwise~ the free distance of the
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( corresponding biorthogonaI conyolutionaI code would only be dfree = (l\ -+- 1)21\ -1.

:\Ia"dmum likelihood decading is very similar to that of orthogonal con\'olutional

codes. As outlined earlier. half the branch metrics are calculated with a Hadamard

transform of the receiyed \·ector. The remaining metrics are just the opposites of

these. It is shawn in (26) that the biorthogonaI code pro\-ides a significant coding

gain o"er the orthogonal canyolutionaI code. The asymptatic coding gain is gin~n by

G x (biortho)
= _1 x (r.- ...:... .)).)/\-1 = (r.- ~ '))j')2/\ fi. - - fi . - - (3.11)

This impro\'ement cornes at the cost of an increase in the constraint length of the

con\'olutional code. from }( ta A: + 1.

'1JiortlWgorwfConvotUtiorw{Cou
r--------------------------------1,

K-bit shift register 1,

~ '1 -0:

j j j i K

OnhogonaJ SIock Encoder ~

:_ ~ '~~"_~)_b~~: :~d~ :--f-~

Figure 3.2: Encoder of a superorthogonal con\"olutional code.

Finally. superorthogonal conyolutional codes are a yariation on the same therne.

Figure 3.2 shows the superorthogonal conyolutionaI encoder. where the relationship to

biorthogonal conyolutianal codes is ernphasized. The coding rate is 1/2K and the con

straint length of the associated con\'olutional code is K + 2. Hence any two non-equaI

data sequences generate at least I{ + 2 consecuti\'e non-equal codewords. :\Ioreoyer.

in such a sequence. the first and last pairs of non-equal codewords must be antipodaI

pairs. This ensures that the free distance of the superorthogonal conyolutional code

is dfree = (K + -l)2K - 1. The asymptotic coding gain is given by

<
Gx(suponbo) - 2~ x (h" + -I)2K

-
l = (h" + -1)/2 (3.12 )
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(

(

This improvement O\'er the orthogonal and biorthogonal convolutional codes cornes

at the cost of an increase in the constraint length but not in the associated bandwidth

expansion. ::\ote that we have chosen to compare these codes on the basis of equal

rate. Hence the asymptotic coding gains of (3.10). (3.11). and (3.12) are aIl for coding

rates of 1/2/\.

The maximum-likelihood decoding of superorthogonal convolutional codes in

volves the use of the \PA and is practically identical to that of the biorthogonal

convolutional code. Again. the branch metrics are obtained from the Hadamard

transform of the received \·ector. and the only difference lies in the treHis structure.

3.1.5 18-95 Uplink Code

Figure 3.3: Encoder of the r5-9.) uplink code.

The error control code used in the r5-95 uplink consists of the combination of a

rate 1/3. constraint length 9 convolutional code and a (64. 6) Hadamard code. An

encoder for such a code is shown in Figure 3.3. The serial/parallel block con\'erts tvoo

successive input vectors of length 3 into a vector of length 6. which is then mapped

into a Hadamard codeword. Hence e\'ery t\Vo data bits get mapped into a 64-symbol

codeword. The coding rate of the 15-95 uplink code is therefore 1/32. ::\ote that we

ignore here the issues of interlea\"ing and PX sequence spreading that are part of the

actual 15-95 standard~ since we are interested in the pure coding aspect.
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( The convolutional code used in the IS-95 llplink code is the maximal free distance

code of rate 1/3 and constraint length 9. and has dfree = 18. The free distance

of the overall 18-95 uplink code is more complicated to find. since it may not be

due to the input sequence that generates the minimum-weight output sequence of the

convolutional code. vVe thus resort to heavier machineI!·. and use the \;ïterbi decoding

aIgorithm of the rS-95 uplink code to determine the path or paths of minimum weight

[33}. This reveals that the free Hamming distance of the IS-95 uplink code is 160~

and its asymptotic coding gain is

Gx (IS-95} = 5 ~ ï dB (3.13)

(

The IS-95 uplink code~ the superorthogonal con\'olutional code of rate 1/64. the

biorthogonal convolutional code of rate 1/256. and the orthogonal convolutional code

of rate 1/1024 have the same asymptotic coding gain. Hence. based on asymptotic

coding gains~ the IS-95 uplink code is superior to OBS codes.

3.2 Trellis/Reed-Muller Coding

ln this section. we present the general idea that led to the construction of Trellis/Reed

)"Iuller codes (patent pending). Part of this work was published in [3-1]. :\.s outlined

earlier! these codes are based on the combinat ion of a trellis code with a first-order

Reed-~Iullercode. \Ve explore sorne methods to estimate analytically the performance

of Trellis/Reed-i\Iuller codes! thereby revealing sorne important code construction

rules and constraints. Finally~ we explain how the \ïterbi algorithm is combined \Vith

the fast Hadamard transforrn ta obtain a rnaxirnurn-likelihood decoding algorithm for

Trellis/Reed- ~vIuller codes.

3 .. 2.1 Structure of Trellis/Reed-Muller Codes

ln the proposed coding scherne of Figure 3.4! a block code is used jointly with a

b-bit input trellis code of constraint length K. The role of the trellis code is to select

cosets of the black code. The selected coset code is then used to encode the m + 1
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( remaining data bits inta an n bit codeward. The o"erall code rate is m-b~ l . and is
n

independent of the canstraint length of the trellis code. \\"e shall focus on the case

where the black code is a (2m~ m + 1) first-order Reed :\Iuller (R~I) ~ode. Hence aIl

transmitted cadewords belong ta sorne caset of a first-order Reed-:\Iuller cade. and

the averall cade rate is m;~+ 1 .

b Cosel Seleelor1 _
Trellis Code -1 - 1-1 Mapping

~
m+l n
1 - Block Code /

1
1 Codcword

Figure 3.-!: Trellis/Reed-~Iuller coding scheme.

Trellis/Reed-:\Iuller (TR:\I) cades are a special case of trellis codes. .-\s illustrated

in Figure 3.5. the trellis of a TR:\I code is derived from the trellis of its coset-selecting

code by replacing each branch with a set of 2m~1 paraIIel branches. Each of t hese

branches represents a cadeword in a R:\I caset. \\"e shaH refer ta the trellis of the

coset-selecting trellis code as the primat:-· trellis of the TR:\[ code~ as opposed to the

full TR:\I trellis.

Primary Trellis

< :>

53

Full TRM Trellis

(

Figure 3.5: Trellis representation of TR~I cading.

The Viterbi algorithm can be used directly for maximum likelihood decoding of

TR:\I codes. To each state transition in the trellis. there corresponds a gi"en coset
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( leader. The metrics of each group of 2m + 1 parallel branches cao be obtained by a

Hadamard transform of the received vectoL after pre-multiplication by the appropri

ate coset leader.

Let the received vector be r. = ~ie~ + !l, where ~i is a R:\-[ codeword. A a coset

leader, and 11 the noise vector. The samples of the noise vector Il = (ni, .... n2m) are

i.i.d. Gaussian random variables with mean zero and variance a 2 • The received vector

r. = (rI,' .. , T2 m ), given ~i and ~, is a Gaussian random vector with 2m independent

components rk. Each Tk is then a Gaussian random variable of mean Cik"\k and

variance 0'2.

For each primary trellis branch, a Hadamard transform of C~~' is computed~ ~'

is the coset leader associated with that particular primary trellis branch. This com

putation provides sufficient information to discard aU but one of the 2m+ i parallel

branches of the full TRNI trellis. The metric of the remaining branch in the full trel

lis is the largest component (in absolute value) of the Hadamard transform of !..3A'.

The Hadamard transform of r0A' can be written as

(3.14)

where the matrix H:n is obtained from Hm by nlultiplying each colunln of Hm by

N. Hence 1-l(r.~~') is obtained by a linear transformation of [. Since [. is a Gaussian

random vector, the Hadamard transform of r..3~' is also a Gaussian random vector

\Vith the following properties (see section B.1 of :\.ppendix B for the details of the

computation)

E [1i(r0~')]
{

(0'·'·,0, ±2m /
2

, 0, ... , 0) À = )..'
2-m/2(Ç.i0A0~f)Hm À =1= ,,\,

(3.15)

{

2-ma2 k = l
COY [1-l (r~~') Jkl =

o Otherwise
(3.16)

( Therefore the vector r@~' is a Gaussian random vector with independent compo

nents of variance 2-m a 2 and mean given by (3.15). \Vhen ~ =1= 2:::.', the considered
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{ path is incorrect: the corresponding metric is given by the maximum (in absolute

value) component of a Gaussian random vectar (with independent conlponents of

equal variance) and mean given by (3.15). In order ta minimize this metric (which

is equivalent to ma..ximizing the distance of an incorrect path to the correct path) we

need to minimize the ma..ximum value of the mean vector (3.15) given by

2-m
/
2 ma..x 1 <~i~~0A'10c> 1

k=1,···.2 111

/', 12-m - ma..x 1 <~:;;à I~i~~~k> 1
k=1.···.2111

- 2-m
/

2 ma..x 1 <~~A' /Q> 1
[=1,....2 111

= Max r1l(Ae-)~')1 (3.17)

where ~ = ~i~~ is also a R~I codeword (because the first-order Reed-;\IuIler code is

linear). From Parseval's equality, if F = (FI" . " F2m) is the Hadamard transform of

a vector L= (fI, ... , f2 m ) then

2111 'lm

LF~ - Lf~
u=l u=l

(3.18)

2 m

.\IIoreover, if f is a bipolar vector (fu = ± 1), then 2.: F; = 2m
. This implies that

u=l

"1l(à0~')" = 2m . Therefore (3.17) is minimized when aIl components of 1l(àc~~') are

equal to ± 1. vVhen m is even, this property defines a bent function. Therefare. in

order to minimize (3.17), the vectar ~021' has to be a bent function.

\Vhen m is even. there exists a set of vectors \vith the property of being furthest

away from aH codewords in R(l, m). Such vectors are called bent functions [18. pp.

426-428). A bent function has Hamming distance 2m - 1 ± 2m / 2
-

1 ta any codeword in

R( 1, m). Also if 12. is not a bent function, it has distance less than 2m
-

1
- 2m

/
2

-
1 from

sorne codeword of R(l,m). Equivalently, the Hadamard transform of a bent function

consists only of ± 1. Nloreover, if g is a bent function and f a R:\tI codeword, .Y.~~ is

also a bent function. In summary, if 211321' is bent, then we can write (3.15) as

(
[

1 ) { (0,,··,0, ±2m
/
2

, 0, ... ,0) À = ,,\'
E 1-l (r.~21 ) =

(±l, ±1,"', ±l, ±l) ,,\ i= )/
(3.19)
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(

(

It is therefore desirable to construct a set .\ of vectors such that the product of

any two distinct vectors is a bent function. This is always possible if we choose a

small number of such vectors (say 2). However. we would like to construct .\ to be

as large as possible. If we allow one of the coset leaders to be the zero vector~ it

follows that aIl non-zero coset leaders which minimize (3.li) must be bent functions

themselves. This is only a necessary condition. The construction of a complete set of

bent functions ~\ = {Lli} \vith the property that the product d.i0Aj~i =1= j~ is again a

bent functioo (not necessarily in the set '\)1 is closely related ta the construction of

the Kerdock code [18. 35]. This construction method~ which yields 2m
-

1 coset leader

candidates~ is described also in [36). In the case of odd values of m~ or when many

coset leaders are needed~ sets of vectors \vhich yield smaIl although non-optimal values

of (3.17) could be considered. This issue is briefly mentioned in [36]. In this work~

we consider ooly the case \vhere m is even and the set of coset leaders constructed as

in [36]. There are then 2m - 1 coset leader candidates.

The union of the first order Reed-;\Iuller code and its 2m
-

1 cosets described in the

above paragraph form a Kerdock code of order m. !C(rn) [18. 35~ 36]. The Kerdock

code is a nonlinear binary black code \Vith 22m codewords of length 2m [18. pp. -156].

Its minimum Hamming distance is 2m
-

1 - 2m
/
2- 1. One can view TR.\I coding as a

partition of the Kerdock code into its Reed-~Iuller sub-codes (R.\I cosets). and the

transmission of codewords from one sub-code at a time. The improved performance

cornes from the fact that the minimum distance of a first order Reed-.\Iuller code is

larger than that of the Kerdock code. This approach is conceptually similar to trellis

coded modulation (TC1-I), applied to black codes instead of signal constellations. In

a spread-spectrum system where bandwidth expansion is possible~ the rich structure

of sorne low rate block codes such as the Kerdock code makes that approach very

promising.

3.2.2 General Considerations in Trellis Code Construction

The previous section dealt with the coset partitioning issue~ without specifying how

to design the coset-selecting code. \Ve now address the important issues in the con-
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{ struction of good coset selecting codes.

Each branch of the primary trellis of a TR.\I code is mapped inta a carresponding

coset leader. Let 81 and 132 be any two branches in the primary trellis of a TR~I code.

mapped into coset leaders ~l and ~2 respectively. vVe define the modified distance

between {JI and /32 as

(3.20)

Similarly, let 'Tri = (jJi1' ,8i2 , ••. ) and 1Ij = (,3j1 , 312 , •.. ) be two paths in the trellis. The

modified distance between path ÎÏi and path 'Trj is

00

dm ('ifi, 7ïj) = L dm (3 ik , 3j ,J
k=l

(3.21)

The modified free distance of the code is the minimum modified distance between

any two distinct paths in its primary trellis. Thus.

dmf = min dm('iri, iij)
(~t·~) )

~t ;é~J

(3.22)

The minimum Hamming distance of a first-order Reed-:\Iuller code is 2m
- l . The

minimum Hamming distance between two non-parallel branches in the TR:\I full

trellis is 2m - l - 2m / 2
-

l
• Hence the minimum Hamming distance between two paths

'Tri and 'Trj in the full trellis is dm (7ïi, ÎÏj) (2 m - r - 2m / 2 - 1 ). It fo11ows that the free

(Hamming) distance of a TR~I code is

dfree - min (2 m
-

l
, dmf x (2 m - l - 2m / 2- l ))

Since m ;::: 2, then dfree = 2m - 1 whenever dmf ;::: 2. The free distance of the TR),'I code

is thus determined by the minimum Hamming distance of the R~I code. Therefore,

for high signal to noise ratios, the performance of a TR~I code is limited by the

Reed-~Iullercode. Also, the asymptotic coding gain of a TRi\I code is
(

m+b+l m+b+l
Goo(TRM) = x 2

m
-

1 =
2m 2

(3.23)

(3.24)
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(

(

which is very promising when compared to the asymptotic coding gains of the OBS

codes of sirnilar rate. ~Ioreover. we can increase the asymptotic coding gain of a TR~I

code while reducing the corresponding bandwidth expansion by increasing the value

of b. In orthogonal and biorthogonal convolutional codes. the asymptotic coding gain

can only be increased at the expense of a greater bandwidth expansion.

Since the performance of TR;\[ codes is limited by the Reed-:\Iuller code. there

is little to be gained from using very powerful trellis codes (i.e. \Vith large dmf ). _-\

good coset-selecting trellis code can have dmf = 2~ and as few states as possible.

for a given number of inputs. Since the number of trellis states (and therefore the

decoder complexity) increases exponentially \Vith the product Kb. a small value of K

allows for larger values of b if K b is ta be kept constant. This in turn increases the

asymptotic coding gain.

The folIowing general rules can he used to construct good coset-selecting trelIis

codes with b inputs. \Ve shalI say that a coset-selecting trellis code is good if

1. AlI coset leaders should occur with the same frequency. This rule is similar to

that of TC~[ [37, 38J and [39, pp. 78]

2. :.la parallel branches. This implies that on the trellis diagram. each state has

exactly 2b branches going out ta 2b distinct next states. Otherwise. we would

have a trelIis \Vith a modified free distance of 1.

3. AlI the branches emanating fram or merging inta the saIne state must be mapped

ta distinct coset leaders. This rule. together with rule 2. ensures that the

modified free distance of the trellis code is at least 2.

4. Non-catastrophicity. The code must not allo,v for the existence of two infini te

paths with a finite number of different coset leaders. but generated from two

input bit sequences with an infinite Hamming distance between therIl.

An important consequence of rule 2 is that the number of delay elements needed

to implement a good coset-selecting trellis code is at least b. since there must be 2b

distinct states.



(

Chapter 3. Construction of very Law Rate Codes

3.2.3 Performance Analysis in AWGN
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If the trellis code is modified-distance invarianL then one can assume. without loss

of generality~ that the correct path in the primary trellis is no! the zero path (Le. the

path generated by an input sequence of aIl zeroes ta the trellis encoder).

Proposition: Any convolutional code is modified-distance invariant.

Proof: Let if = Cgl df21 ... ) and 'Tr' = CQI <Q2' ••• ) be two paths in the trellis of a

convolutional code. The modified distance between path ri and path Tl' is

00

- L dm (ilie + Qk! Q) - dm (-ii + if', no)
k=l

00 { 1 if Yk + Qk =1- il
= {; 0 if J!k + .!1k = Q

(3.25)

o

(

For the purpose of this section~ we shall assume that the coset-selecting code is

linear. In other words! it can be constructed from a convolutional code followed by

a mapping from the codewords of the convolutional code to the set of coset leaders.

One may question~ at this point. the impact of such a restriction on the structure of

the coset-selecting code. However. we shaH see later on that the coset selecting codes

of interest faIl in that category.

Assuming a convolutional coset-selecting code~ the TR~I code is distance invariant.

The bit error probability can be upper bounded by using an approach similar ta that

of [19, pp. 253-356]. Consider the primary trellis of the code, and let pei) denote

the probability that path 'iii (diverging from the zero path at sorne fixed node j) is

selected. If we denote the bit error probability of the Reed-~[ullercode by PR.\f' then

the average bit error probability of the TR~\'I code is bounded by

where E[nb(i)] is the average number of bit errors on path 'Tri' Let li be the number

of non-equai branches between path ni and path Tio, di the modified distance between

path 1ri and path 1ro, and /3i the Hamming weight of the input sequence generating
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7ii. vVe then have
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(3.2ï)

(

Indeed, when path ni is selected (i =/; DL we tirst make an error in the !Ji non-zero bits

in the input sequence generating ni. On each branch where the coset leader is correct~

the bit error probability is that of a R~I code~ and hence the average number of errors

is (m + l)pR."(' Finally, on branches where the coset leader differs from that of the

correct path, the bit error probability is denoted by Pbent 1 and the average number of

errors is (m + 1)Pbent.

The upper bound of (3.26) follows from a union-bounding argument [19~ pp. 253

356]. The lower bound can be derived by assuming a very powerful trellis code such

that Po -+ 1 ~ and therefore the correct path is ahvays selected. This is clearly an

optimistic situation. The b bits of the trellis code are always error free. whereas the

only errors that can occur~ with probability PR .\!. are in the m + 1 bits of the R~I

codewords. Thus, in this optimistic scenario. the overall average probability of error

. m+l
1S m+b+ 1PRo\( •

The exact expression for PRo\[ is given in [28. pp. 210-212]. The computation of the

exact expression for Pbent follows the same reasoning. but it turns out that its actual

value does not vary much \Vith the signal to noise ratio. and is around 0.67. It can

be upper bounded by 1, without affecting significantly the upper bound of (3.26).

From (3.26) and (3.27), we have

Pb < m:;: IPRMP(Ol + m /b + 1 ~{(m + l)(Pbent - PR.\lldiP(i)

+ li(m + I)PRo\[P(i) + 8iP(i)}

m+1 m+l x 0

< m + b + 1PR.\! + m + b + 1 (Pbent - PR .\()~ diP(l)

m+l x 0 1 00 .

+ b 1PR .\[ L liP(Z) + b 1 L .8i P(z} (3.28)
m + + i=l m + + i=l

where we upper bounded P(O) (the probability of selecting the correct path) by 1.

vVe define here the modified augmented generating function T(D, L, I)~ which is

obtained from the classical definition given in [19] by replacing the Hamming distance
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( between branches by the modified distance. Recall that the modified distance between

any two branches in the treHis is either zero (if the caset leaders are the same) or one

(if the coset leaders are different). Hence in the labeling of the state diagram of the

code, from which the augmented generating function is derived, the variable D can

only have exponents 0 or 1. Note that the Cree distance is often the figure of merit

used in trellis code search and trellis code design. In our case, only the modified free

distance matters. Hence a gaod code, in terms of its Hamming Cree distance. is not

necessarily a good coset selecting code for TR~I coding.

The modified augmented generating function yields the modified distance distri

bution of the primary trellis. Let g(j. d, l) be the nurnber of paths generated by an

input sequence of weight j, at a modified distance d from the zero path, and with

a diverging length of l branches. Let also c(d, l) be the number of paths of diverg

ing length land at modified distance d from the zero path. Finally. let a(d) be the

number of paths at modified distance d from the zero path. If df is the modified free

distance of the primary trellis code, then we have.

x

c(d, l) = L g(j, d.l)
j=L

(:3.29)

oc x

a(d) = L L g(j, d.l) -
J=L l=df

x

L c(d.l)
l=df

(3.30)

If we define P(d, l) as the probability that a path of length land modified weight d

is chosen, given that the zero path was transnûtted, we can rewrite (3.28) as

m+l m+l x 1
Pb ~ b 1PR.\[ + b 1 (Pbent - PR.\[) L L d c(d, l)P(d.l) (3.31)

m + + m + + l-d d-d
- mf - mf

( 1) 00 l 1 00 lx

+ ::b:Rr L L lc(d,l)P(d,l) + m+b+1 L L ~jg(j~d,l)P(d.l)
l=dmf d=dmf l=dmf d=dmf J=l

and defining

we end up with

R m+l m+l 00 1
b ~ m + b + 1PR .\[ + m + b + 1 (Pbent - PR.\I) 2: L d c(d, I)P(d, l) (3.33)

l=dmf d=dmf

<

x

h(d, l) - L jg(j~ d, l)
j=L

(3.32)
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+1 xli :'le l
+ m b PR\f ~ ~ c(rl.l) lP(d.l) + b ~ ~ h(d.l)P(d.l)m+ +1 . L.- L., m+ +1 L- L-

l=dmf d=dmf l=dmf d=dmf

55

In section 8.2 of Appendix B~ we show that P(d.l) is upper bounded by

F(d, l) = ~~}~j A(i,j, k,d,llQ ( 2(iwt + (d - il W2 + k2:: + (1- d - j - k)2
m

)Es )

where the energy per channel symbol Es is related to the energy per data bit Eb and

the energy per codeword Ed by

and

1 E
2m d

(3.34)

o
l

i = 0. 000 . d

j = O.ooo.l - d
. (3.35)

k = O.··· .l- d - j

Otherwise

(

is the number of paths of length l. modified weight d and Hamming weight iU'L +

(d - i) W2 + k2 m + L + (l - d - j - k) 2m .

vVe also derive in the same section of :\ppendix B a sinlpler albeit looser upper

bound on the bit error probability. given by

m + 1 m + 1 (dflELEs) { [ âT(D. L. I)]
Pb :$ m + b + 1PRU + m + b + 1f .Vo (Pbent - PR.\l) D aD DI";:I~:~:':''.:.~O

+ PRo\! [L aT(~'rL, 1)] __ ~lE, + l 1 [aT(~~L, 1)] __ !L'~E .. } (3.36)
D_r. .0 m + D_r. .0

I=1.L=2rn + 1 l=l.L=2m + 1

where f(x) == Q( J2X)e x . The bound of (3.36) is in closed form. and expressed in

function of the transfer function of the code (and its derivatives)0 It has the familiar

form of the upper bounds on the error probabilities of linear convolutional codes (e.g.

[19]) 0 Such upper bounds are useful at high signal to noise ratio only 0

3.2.4 Unequal Error Protection

TRNI codes have an inherent feature \\'hich consists in unequal error protection. 1n

deed, the b input bits ta the coset-selecting code are better protected since the prob-



Chapter 3. Construction of Very Low Rate Codes 56

{ ability of path error is less than that of branch (Reed-~Iuller code) error. This is

equivalent to the observation that the performance of the TR~I code is linlited by

that of the Reed-~vfuller code. In general. unequal error protection is not necessarily

a benefit. In this case however, the average bit error probability is almost equaI to

the bit error probability of the m + 1 bits fed to the the Reed-~Jullerencoder. which

we refer to as Pm' Indeed~ let Pb be the bit error probability of any of the b bits fed

to the coset-selecting, code: the average bit error probability is then

m+ 1 b
Ji = m + b + 1Pm + m + b + 1Pb (3.37)

Gh-en the allowable values of b we have that 11') < ~ < 1. Hence even if
~ - m+b+l

Pb «: Pm, we obtain

1
2"Pm < li < Pm (3.38)

(

Hence the average bit error probability is never Iess than haIf the bit error probability

of the least protected bits_ Thus~ for aIl practical purposes, we consider the average

bit error probability as a good measure of both the o\-eraU code performance and the

error probability of its least protected bits.

On the other hand~ at relatively high signal to noise ratio. it turns out that

Pb «Pm' In applications such as speech coding, sorne data bits are nlore important

than others. The use of TR~f codes is naturally indicated ta such situations.

3.2.5 Decoding of TRM Codes

As mentioned earlier. TreUis/Reed :\Iuller can be vie\\'ed as trellis codes (refer to

Figure 3.5). The Viterbi algorithm can then be used for ma..ximum likelihood decoding

of TR~f codes_ To each state transition in the primary TR;\I trellis. there corresponds

a given coset leader. The met ries of each group of 2m + l parallel branches can be

obtained by a Hadamard transform of the received vector. after pre-multiplication by

the appropriate coset leader.

Once the metrics of a group of 2m + l parallel branches is computed. only the branch

with the largest metric is kept, in accordance with the add-compare-select procedure
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1 Absolure• ..
'. 1 Fast Viteml

'J . :: i . ~fa'timum
~

-1

;, 1'; !
Selectori~l

~ -, Hadamard : Algonthm ..
;, :-1 Data
~ !~I

~fa't•J -, : Transfonn i
..

Decoder~ .P,::=:: .' • Index •L

Figure 3.6: Branch metric computer for ma.ximum-likelihood decoding üf TR~I codes.

of the \ïterbi algorithm. Indeed. since aIl the branch6 in question emanate from the

same branch. the -add- operation can be skipped. and seI~ting the branch with the

highest metrÎc corresponds tü the compare-select c""Jperatiün.

In principle. the metrics of each branch can be r:alcnlateri hy a metric cr)mputer ~

illustrated in Figure 3.6. The first block in Fi!Sure 3.6 -adds- the branr:h (ü5Pt leader

tü the recei\-oo \"f:ctÎJr. and is the only Element that \·aries fr'Jm one branch cljmptlt~r to

the other. The -absülute maximum selef:tor- bIrjck finris r.lllt which crjmpÜnent rJf its

input \-ector has the !anséSt ab50lute \·alue. and ülltpllts that c()mponent' silSTIHi: ";aInE

together with the corresponding index. This allüws the \-iterbi algrJrithm to select

exactly one codeword ün th~ trellis bran(:h tO~Hher ~;ith its a.~~,)(jat~d Iü:~lih(j(Jri

metric.

In general. there may b,::; mor~ than (Jn,:: 5tate uansiti'.Jn frJr each aSSl'Jciatf':-fi ((Jset

leader. In other wIJrr1:;;;. different statr: uall..5itions may ha\'~ thr:- sam~ a~,5'Jr:iau·d r:(J~t

leaders. Ob\iously. the corrf?Sp'Jnding branch~ n~ rJnly 'Jne branr__h metrie ((Jm

puter. Furthermore. the high parallelism betw~n diff~rent branch metrie r:rJmplltf:fS

can he exploited to r€duce the riecoding crJmplexity by llsing crJmm()n Întermediatf:

results between Fast Hadamard Transforms. On the 'Jther hand. if the traIlSmis:-5irjn

rate is nÎJt too large. a single branch metric computer is sufficient: thE' same Fa.~t

Hadamard Trf]n.~ff)rm and Ab.~ol7jtf; .\[~--imPjm Sdr;ctor blocks are IL~ repetiti\Oely

with \·ar:in~ coS€t leaders in the co.~~t !f;lldr;r block.

(
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( 3.3 Short Constraint Length TRM Codes (TRMl)

(

.-\s shown in section 3.2.2. the free Hamming distance of the TR~I code should be

made equal to the minimum Hamming distance of the first-order Reed-~Iuller code.

In this section. we consider the simplest good coset-selecring convolutional codes with

one delay element per input bit.

3.3.1 Code Construction

Figure 3. ï: Primary trellis structure for b input bits and one delay per input bit.

Rule 2 of section 3.2.2 states that. on the trellis diagram. each stare has exactly 'lb

branches going out to the 2b distinct next states. Since we ha"e exactly 2b states

available. this rule fixes the prima~' trellis structure. illustrated in Figure 3.ï. which

is referred to as a fully connected trellis.

.-\ simple mapping from the prima~' trellis branches ta the coset leaders. which

satisfies the mIes of section .3.2.2. is a bijective map (one-to-one and onto). where

each of the 22b primaIT trellis branches is mapped to a unique coset leader. It follows

that the set of coset leaders must have at least 22b Elements. .-\ctually. since there

are 2m
-

1 possible coset leaders. with the constraint that m is even. the set of coset

leaders must contain 22b
-

1 elements. In other words. for a R~[ code of length 2m • the

number of possible coset leaders is 2m - 1• which implies that the maximal value of b
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( is bmax = m/2 - 1. From now on we will concentrate only on the case b = bmax • and

refer ta the resulting codes as TR.\11 codes.

b
m+b+1

bits

m+[

1-1 Coset Mapping

0_00_0 ~ ~II

0_01_1 ~ 2l.12 h
.,m

2b
Caset Leader

1_10_0 ~ tsbl
1..11_1 ~ ~h""

First-Order
Reed-Muller

Encoder

Figure 3.8: TR.\11 codes ,vith a constraint length of 2,

.-\ possible implementation of a TR.\fl code is sho\vn in Figure 3.8. :\ote that

the coset selecting code consists of a con\'olutional code followed by a mapping. The

TR.\11 code of Figure 3.8 requires exactly 22b coset leaders: e\'en for b = bmax • onl\'

half the available coset leaders are employed.

The con\'oIutional code of Figure 3.8 has a modified free distance of 2. Hence the

free distance of the TR.\I1 code is

\\'hich shows that its asymptotic coding gain is

2m
-

1 (3.39)

G:x:(TR~Il) =

3.3.2 Performance Analysis

nt + b + l

2
(3.-10)

(
\Ve shaH now analyze the performance of the TR.\.Il code of Figure 3.8. \\ïthout

loss of generality~ we can assume that the correct path is the ;;zero~' path (i.e. aU the

input bits to the treHis code are zero). since the coset-selecting code of TR.\Il codes



Chapter 3. Construction of very Low Rate Codes 60

( is lineaL and hence modified distance invariant. vVe shaH first base our performance

evaluation on the closed form upper bound of (3.36). and then on the tighter bound

of (3.33-3.35).

Closed-Form Upper Bound

The state equations of the convolutionaI coset-selecting code of a TR~Il code are

easily derived from the trellis diagram of Figure 3. ï. A trellis branch linking two

states Si and Sj (i and j not both zero) has a modified weight weight of 1. and is

generated by an input of Hamming weight w(j). where ~(j) is the Hamming weight

of the binary representation of j. Therefore. the state equations are

é,j
2b -l

DLr~(j) I: é,i
i=O

j = 1." ·~2b - 1 (3.41)

2b -l

E,b = DL L é,i
i=l

Summing over j in (3.41)l

(3.42)

(3.43)

Thus~

DL [(1+ 1)b - 1]
- 1-DL((1+I)b-I]E,o (3.44)

(3.46)

(

Csing this in (3.42)

D2 L2 ((1 + I)b - 1]
T(D. L l 1) = [ b] (3.45)

1 - DL (1 + 1) - 1

The upper bound of (3.36) is useful provided that the signal to noise ratio is large

enough so that the infinite sums of (B.11-B.15) converge. An equivalent condition is

that the variable D (evaluated at D = e-W1 E~/No) in the transfer function is smaller

than the smallest pole of T(D~ L~ I)I/:::l,L:::2m +1. Then the condition is

D 1
< 2m + 1(2b - 1)

{::} w 1E s /1Vo > ln (2m +1(2b -1))
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(3.-!7)

(

(

Using (3.34)~ and the fact that 2b
- 1 < 2b

• convergence is ensured if

2m - 1 _2mj2 - 1

2m Ebj;.Vo > ln 2

For large m, this condition is equivalent to Eb/J.Vo > 1.42 dB. For the smallest value of

m that we consider (m = 6L the condition is Eb/J.Vo > 2 dB. NaturallYl this condition

ensures that the upper bound of (3.36) is finite l but does not guarantee its tightness.

Truncated Summation Method

We now consider using (3.33-3.35) directly to upper bound the bit error probability

of TRNII codes, in the search for tighter evaluations of performance. In this method.

the Q functions are not replaced by exponentials. which results in a tighter upper

bound on the overall bit error probability. The inlprovement is nlost substantial at

low signal to noise ratios l where the exponential upper bound on the Q function is

rather loose. In section 8.3 of Appendix Bl we derive the following upper bound on

the bit error probability of TR~I1 codes:

m+l m+l ~ b d-l~ .
b 1PR.\f + b 1Pbent L- d(2 - 1) L A(Zl dl d)PilL'l+(d-i) lU:!

m + + m + + d=dmf z=o
b2b-1 Xl d

+ b L (d - 1)(2b
- 1)d-2 L. A(i. dl d)Piwl4.(d-i) w'3.-!8)

m+ + 1 d=dm( z=o

For computation purposes l we actually approximate the upper bound by taking a

sufficiently large number of terms in the infinite SUffiS of (3.33-3.35).

vVe shaH denote the right-hand side of (3.48) by Pb.
The lower bound m:;~lPR.\f and upper bounds of (3A8) and (3.36) (transfer func

tion bound) are plotted in Figure 3.9 for TR~n codes with m = 6. 10 l 12 and 14. It is

clear that the truncated path-enumerating bound is tighter than the transfer function

upper bound, particularly for the smaller values of m. The upper and lower bounds

get increasingly tight as the bit error probability decreases. For bit error probabilities

around 10-5
! aIl the computed bounds are indistinguishable, which allows a precise

estimation of the required Eb!lVo to achieve bit error rates of 10-5 or less. Reliable

estimates are also available for bit error rates of 10-4 especially for the lower values

ofm.
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Figure 3.9: Bit error probability bounds for TR:\I1 codes.

Table 3.1 summarizes the conclusions that can be drawn from Figure 3.9. by

displaying the required Eb/:.VO to achieve bit error probabilities of 10-4 • 10-.'5. and

10-6
. \Vhenever the difference between the upper and lower bound of Figure 3.9

is less than 0.1 dB~ we consider the average of the upper and lower bound as a

reliable estimate~ thus ensuring that the max:imal error is never greater than 0.05 dB.

Otherwise~ we list the corresponding Eb!-vO range (lower and upper bound). Bit error

probabilities of 10-3 and larger are not considered because the bounds are not tight

enough in this region.

At low values of Eb/iVo and relatively high bit error probabilities~ the upper bound

becomes too loose to characterize reliably the performance of the code. Fortunately

enough, simulations are particularly practical at moderate to high probability of er

rors. Thus in the region where the upper and lower bounds are not tight enough,

simulations can take over to provide reliable predictions of the bit error probabilities.

Simulation results are presented in section 4.2
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TRM Code: m 6 8 10 12 14

Bandwidth Expansion (b = bmax ) 7.11 21.33 68.27 227.6 780.2

§.I, r.œPb = 10-4 3.675 2.9 2.37 1.9-2.08 1.55-1.86
No InR -

!ft 1 (~Pb = 10-5 4.525 3.675 3.075 2.62 2.27
JolnR

§.I, @R = 10-6 5.22 4.34 3.7 3.2 2.82
No IriR b

Asymptotic Carling Gain dB 6.53 7.78 8.75 9.54 10.2

63

(

Table 3.1: Coding gain of short constraint length TR1I codes at different bit error

probabilities~ in dB.

3.4 TRM2 Codes

In this section, we construct another cIass of good caset-selecting codes. Cnlike TR~I1

codes~ these codes achieve the maximal possible number of inputs (ma"{imum coding

rate~ for a given R( 1 ~ m) block codeL while satisfying the code construction rules of

section 3.2.2 with dmf = 2. vVe will refer ta these codes as TR.112 codes.

3.4.1 Code Construction

Consider first a general coset-selecting trellis code \Vith b inputs. Any node in the

corresponding primary trellis diagram has 26 branches departing from it. According

ta rule 3 for the construction of good coset-selecting codes. these 2b branches must

select distinct coset leaders~ 1J, ... ~ ~2b - L•

Suppose there are 2b coset leaders available. ~(h" •• A2b-l' Then~ for each trellis

nade, there is exactly one outgoing brandI with coset leader do, one \Vith AL' and so

on. Consider the path no consisting of starting in sorne state 50 and always selecting

the next state such that the sequence of coset leaders selected is (1J,~, ... ). There

also exists a path nI. starting at sorne state SI, such that the sequence of caset

leaders selected is also (An, ào, ... ). From rule 3, the paths 7rl and iio never rnerge.

which implies that the code is catastrophic.

Hence a coset-selecting code \Vith b input bits must use a set of caset leaders of
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( more than 2b elements. Since the number of coset leaders is an odd power of 2. a

coset-selecting code must have at least 2b+ l available coset leaders if b is even. and 2b+2

if b is odd. Putting it the other \Vay around~ if the R~I code has length 2m (m even) ~

the maximal number of inputs to the coset-selecting trellis code is bmax = m - 2.

This staternent holds for an arbitrary good coset-selecting trellis code (i.e. for any

coset-selecting trellis code satisfying the construction rules of section 3.2.2). ~ote

that the value of bmax is significantly larger than that of the TR~Il codes considered

earlier.

.pt

® :- /,., >j Ta Modul"or

f
VI '~- 0 1-1 Coset

5P ' fi Mapping
v: +

)l, f1
0..0 - ~o>~+ -

.,m- ,,
COSC[ Leader

[1>-1

1..1- ~:!l'I

~-'V +
t>

~
ft> \11

)1

_____m_;>"7'+/.....1 ----:3r~1 Reed-Muller R( I.m) Encoder 1 2;/

1

L:

b
bits

Figure 3.10: Encoder structure of TR:"I2 codes.

(

Figure 3.10 shows a feedhack free irnplenlentation of a TR:\I2 code. It consists

of a convolutional code with b + 1 delay elenlents, and b + 1 output bits which are

the indices of the corresponding coset leaders. The state of the convolutionaI encoder

is given by the vector !::!.. = (vo, VI, .• " Vb), and its b input bits are given by the

vector g = (a[,···,ab)' Note that in Figure 3.10, fI E {O,l}b.!!.. E {O,l}b+l, and

F = {I} E {D, 1}b+l. On the other hand, the coset leaders and the output of the R:",I

encoder belong to {l, -1 }2m
• The input-output relation of the convolutional encoder



(

Chapter 3. Construction of Very Low Rate Codes

is given by
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(3.49)

where addition is understood ta be modulo 2. \-Ve shaH now proceed ta show that the

coset-selecting code of Figure 3.10 code satisfies aIl the construction rules of section

3.2.2.

1. Rule 1 is verified trivially because of the one-to-one mapping from the output

of the convolutional encoder to the set of coset leaders.

2. Rule 2 is verified since each input bit is [ed into a memory element which affects

the state of the encoder.

3. Suppose the encoder is in a certain state !!..: and consider two distinct input

vectors g and g'. From (3.49)~ we have

L(g,~)+L(g'.~) = (O~al+a;.···.ai+a~~···~ab-l+a~_L·ab+a~) (3.50)

Hence,

(3.51)

(

Thus any two distinct branches emanating from the same node are mapped into

distinct coset leaders.

Consider now the case of branches merging inta the same node. ~ote that this

requires that the corresponding input \Yords be identical (it should be clear frorn

Figure 3.10 that two distinct input words must yield distinct "next states~').

Suppose we have two distinct states y. and ~': and sorne input vectar g. Then

Hence,

(3.53)

Thus any two distinct branches merging into the sanIe state are mapped inta

distinct coset leaders.
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4. .-\ convolutional code is non-catastrophic provided the state diagrarn contains no

loop of zero weight other than the self-loop aroulld the zero state [33~ pp. 308].

Equivalently~ the coset-selecting code of Figure 3.10 is non-catastrophic pro

vided that there exists no infinite-length sequence of inputs (~(O) ~ (l( 1) ••••L with

a non-zero Harnrning weighL which generates an output sequence ([(0). L( l) •••• )

of zero Hamming weight.

Let us try ta construct an arbitrary long sequence of input vectors~ ((l(O). g} l) ~ •.. ) ~

which generates consistently zero output vectors. Suppose we start off in sorne

state ~. We must have Vo = VL = 0; othenvise. a non-zero output vector would

be generated after at most 1 delay. Similarly~ we must have aii
) = 0 for aIl i.

If a~i) = O~ then V2 must also always be zero. which implies that a~i) = a for aIl

i. By repeating the same reasoning, we end up \Vith the following condition: in

arder ta have a continuous stream of zero output vectors. the initial state must

be zero, and aIl the input vectors must be zero. Hence the coset-selecting code

of Figure 3.10 is non-catastrophic.

Note that the modified free distance has not increased fronl TR~Il ta TR~I2 codes.

The raIe of the additional delay element is to provide more states. relaxing the condi

tion that distinct states transitions bear distinct coset leaders. thereby allowing larger

values of b for the same m.

3.4.2 Evaluation of the Transfer Function

In order ta apply the performance analysis tools that were used for TR1Il codes~ we

need ta derive the modified generalized transfer function T(D. L, IL or at least a suf

ficient number of coefficients in the long-division expansion of T( D ~ L~ 1). vVe denote

by Si the state specified by the state vector ~ such that the base-2 representation of
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( i is (VOVL ... vbh. L t SU) - S \Ve define the following vectors of statese i = j2b - 1+i·

fin = (SL ... S2b - 1_L)T (S~O) SeO) )T
2b - 1 _L

U (S26 - 1 S26 _dT - (Sal) S~L) S(L) )T
-1

2
6

-
1 -L f3.54.)

U (S26 S2b +2b - 1 _dT (Sa2) S~2) ('l)
-2 = - 52;-1_L)

fLJ - (S26 +26 - 1 S2b+1_dT (S~3) s~:q S;~~1_L)T

vVe shaH denote by Ui the set of states ta which the elements of U i belong. Hence the

sets {So}~ Ua, UL• U2 , U3 induce a partition of the set of states. \Ve shaH refer to the

[.liS as superstates. This allows to draw the vectorized state diagram of Figure :3.11.

Figure 3.11: Vectorized state diagram for the coset selecting code of a TR:\I2 code.

In Figure 3.1 L the superstates are shown with double circles. \Vhen more than one

branch links two superstates, this is indicated by a thick arrowed Hne. The transfer

function between two superstates is represented by a matrix.

The state equations in matrix forro are then

LLo do Sa + Tao fi.D + T20 U2 (3.55)

[I - AL Sa + TOL fi.D + T21 U2 (3.56)-L

U 2 T l2 U L + T32 rl..J (3.57)

( f1..J - TL3 U 1 + 713 !l..J (3.58)

Sb - (B 2 1 U2) + (!in 1 Llo) (3.59)
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( The vectors k and l1.o and the matrices Too : T"2o: and TOI are given explicitly in

Appendix BA.

The solution of the state equations is not trivial. and is practical only for smaIl

values of b, typically b < 5. For larger values of b, it is difficult to compute the transfer

function. However, it is still possible to obtain iteratively the path enumerating

function yU, d, l): which gives the number of paths of length 1 and modified weight

d which are generated by an input sequence of Hamming weight j. The improved

upper bound on the performance of TR~I1 codes used this approach! not because of

the unavailability of the transfer function, but because of the greater accuracy that

was obtained. The unavailability of the transfer function deprives us only of a looser

upper bound, which would have the sole advantage of being in closed form.

The state equations (3.55-3.59) can be written as

(3.60)

where J;.T = (Sb, fil, ur, [ir: [i 3 )T. and the matrices A and B are in accordance \Vith

(3.55-3.59). :\s shown in [40. Section 6A), the formaI solution J2 = (1 - A) -150 leads

to the conventional transfer function, while the equivalent matrix series solution

(:3.61)

provides an algorithm for the computation of the transfer function. Knowledge of the

relation between (1 + A + ... An) and (1 + A + ... An+l) yields an iterative method

to compute the transfer function.

The iterative computation of the path enumerating function is better understood

br looking at the treHis diagram of TR~I2 coset-selecting codes. illustrated in Figure

3.12. Let nn) denote the vector of transfer runetions between 56°) and uSn ). and let

~(n) denote the transfer function between 56°) and 56n
). \Ve then have

nn+l) T33nn
) + T13Tt) (3.62)

( nn+l) - T32TJt} + T12T.in
) (3.63)

]jn+l) - T21nn
) + TOlUn

) (3.64)
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Stage 1 Stage 2 Stage n Stage n+1

Figure 3.12: Trellis diagram of a TR:\I2 coset-selecting trellis code.

T.(n+l)
s

T ..-r<n) T ,,(n)
20.L2 + 1. OOLo (3.65)

(3.66)

which is the iterative relation ta compute the transfer function. T( D. L. 1) = lim ~(n).
rl-X

For finite n, ~(n) is a polynomial in D, l, and L. where the exponent of L is always

n (by inspection From the trellis). :\Ioreover. the coefficient of each ternl in Dd [l Ln

is the number of trellis paths with a modified weight d. length n and generated by an

input sequence of weight j. :\Iathernatically

lm n

~(n)(D. L, l) = L 2: g(i d, n)Dd[j L Tl

)=0 d=2

(3.67)

n lm

:::}Ts(n)(D,L.l) - 2:Lg(j.d.n)Dd L n

d=2j=O
._---.......--

c(d.n)

(3.68)

and
8r}n)(D, L. 1) 1

al l=l
- Ë(~j9(j,d,n)) DdLn

, ,

(3.69)

(
h(d.n)

Hence, in principle, one cauld obtain h(d, n) and c(d, n) for an arbitrary range of

values of n = 2 ... J.V. In practice, a relatively small ~V provides a sufficient accuracy
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in computing the upper bound on the bit error probabiIity. This is because for large

,'alues of n. good codes haye c(d. n) = h(d. n) = 0 for d« n. which nleans that lenger

di\"erging paths ha\'e a larger modified distance and hence a smaller probability of

being chosen, If the signal ta noise ratio is not tao small. the probability of choosing

erroneous long paths in the trellis is negligible when compared with the probability

of making an error on shorter paths. despite the fact that the number of paths of

a given length n increases rapidly with n. The computation of T;n j
( D. L. /). of its

derivati\'e, and of dd. n) and h(d. n) for aIl n ~ .Y is easily done on a computer.

3.4.3 Performance Evaluation

In this section. we e,'aluate the performance of TR.\[2 codes as a function of signal ta

noise ratio. \\-e first argue that the closed foml upper bounds are not tight enough

for the signal ta noise ratio range of interest. \\-e then proceed to use the truncated

path enumeration bound ta estimate the bit error probability of TR.\I2 codes.

Closed Form Upper Bound

The closed form upper bound of (.3.36) is meaningful pro\'ided the infinite SUffiS (Jf

(B,12-B.16) converge. which happens at sufficiently large signal-to-noise ratio. This

is insured if the \'ariable D. e\'aluated at D = (-tJ::E•.\''J. is smaller than the smallest

root of the denominator of T(D.L'/)'D=~-"-:E•. So. Since T(D.L./) is a ratio of
1=:.L=1n't-:

polynamials in D.L.I. its poles are also the poles of its partial deri\'ati\'es with respect

ta D. L. or J. For example. with b = 2 and m = 6. numerical t'valuation shows that

the smallest pole of T(D. L. /):I=1.L=128 = -1.731 10-7
. This means for a b = :2. m = 6

TR~I2 code. the upper bound of (3.36) is useful for Eb/.Yo > 5.ïdB. which is weIl

outside the range of interest. As m increases. the minimum required Eb/_Yo ta ensure

the con\"ergence of (3.36) increases tao. This is a consequence of the large number of

parallel branches in the full TR~I trellis. Ir also enforces the obser;ation that closed

form upper bounds based on the transfer function of the coset selecting code does not

lead to a usefuI measure of the performance of TR~[ codes,
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Truncated Path Enumeration Approximation

71

<

This method was used in the evaluation of an upper bound on the bit error probability

of TR),[1 codes. By evaluating (3.33-3.3.)) for a sufficiently large of terms in the

infini te surns. an approxinlate upper bound which is tighter than the transfer function

bound is obtained. Therefore. the truncated path-enumeration approximation is the

only indicator we use in the performance e,"aluation of TR),I2 codes. and we will

sornewhat Ioosely refer to it as an upper bound. Figure 3.13 shows the upper and

lower bounds for aIl TR~[2 codes ,,;th m = 6.8. 10. 12. The tightness of the bounds

increases with signal to noise ratio (as expected since they are asymptotically tight).

but decreases with the number of input bits to the coset-selecting code. since larger

\'alues of b implies a large number of paths. The looseness of (3.-18) at low S:\R is

due to the large number of paths in the full TR~I trellis. since we are in fact using

a unIOn bound o"er aIl paths of the full TR~I trellis. Tables 3.2-3.-1 surnmarize the

TRivI Code: (m,b) (6!4) (6,3) (6, 2) (8,6) (8,5) (8,4) (8,3} (8.2)

Band\\idth Expansion il 5.8 6.4 7.11 17.1 18.3 19.7 21.3 23.3il
~I gPb = 10-4 :1 2.7-2.9·) j 3.2 3.675 1.8-2.2 ! 2.12-2.3.) 2..)-,2.6.) 1 2.875 3.3
Sa 1 11

i ~ldB f!Pb = 10-''i
:\ 3.6 4.1·5 -L.52 "i 2.6-2.T 2.!J7 3.3 3.67 4.0T

1 il!

il E. f f!Pb = 10-6 4.3 4.75 - 'J- :1 3.3 3.63 3.96 ..1..13 ..t7
:1

--41 ·)._1
S., IdB

il ACG (dB) .5.·5 .5.0 4..5 7..5 7.0 6.5 6.0 .) ..)

Table 3.2: Required E,,/-Yo for TR:\I2 codes at different bit error probabilities. and

asymptatic cading gain. (m = 6.8)

conclusions that cao be drawn from Figure 3.13. by displaying the required Eb/ .Yo

to achie'"e bit errar probabilities of 10-4
• 10-'5. and 10-6

. \\"hene\'er the difference

between the upper and lawer bound of Figure 3.13 is less than 0.1 dB. we consider

the a"erage of these two values as a reliable estimate. thus ensuring that the ma..ximal

error is never greater than 0.05 dB. Otherwise. we list the corresponding Eb/-YO range

(lower and upper bound). Bit errar probabilities of 10-3 and larger are not considered

because the bounds are Dot tight enough in this region.
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Figure 3.13: Upper and lower bounds on TR:\I2 codes.
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TRM Code: m = 10, b : 8 7 6 5 4 3 2

Bandwidth Expansion 53.9 56.9 60.2 64 68.3 73.1 78.8

.§.Il. @Pb = 10-4 1.2-1.84 1...t6-1.93 1.74-2.06 2.02-2.22 2.38 2.67 3.0
~Vo riR

§. @Pb = 10-5 1.97-2.14 2.28 2.52 2.78 3.08 3.39 3.74No .-fA

.§.Il. @Pb = 10-6 2.61-2.63 2.8 3.12 3.-1 3.7 -1.0 4.35No riR

ACG (dB) 9.5 9.0 8.5 8.0 ~o6-l.lJ 1 • .<J

Table 3.3: Required Eb/1VO for TR~vr2 codes at different bit error probabilities. and

asymptotic cading gain. (m = 10)

m = 12,b: 10 9 8 7 6 5 4 3 2

B\V Expansion 178.1 186.2 195 204.8 215.6 227.6 240.9 256 273.1

fu. @Pb = 10-4 0.75-1.6 0.96-1.7 1.2-1.8 1.4-1.86 1.65-1.97 1.9-2.1 2.23 2...t9 2.77
'Va ,.fR.

§. @Pb = 10-5 1.5-1.8 1.7-1.9 1.9-2.06 2.18 2.39 2.63 2.89 3.16 3...t6
'Va riR.

fu. @Pb = 10-6 2.11 2.3 2.5 2.73 2.96 3.21 3...t7 3.74 4.04
Na dR

ACG (dB) ~ 11.5 11.0 10.5 10.0 9.5 9.0 1 8.5 ~ 7.5 ~

(

Table 3.4: Required Eb!JVO for TR~\'r2 codes at different bit error probabilities. and

asymptotic coding gain. (m = 12)
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The required Eb/i'io estimates for most of the codes of Figure 3.13 are accurate

at bit error probabilities of 10 -5 or lower. For sorne codes. the estimates are accurate

at even higher bit error probabilities. However. for probabilities of error of the arder

of 10-3 or higheL we need to resort ta simulations to estimate with precision the

corresponding Eb/ iVo.

3.5 Conclusions

In this chapter, we have introduced Trellis/Reed-:\Iuller codes~ a new class of very

low rate codes which is based on the combinat ion of trellis codes and first-order Reed

:\Iuller codes. vVe derived a set of ruIes on the construction of the trellis code. These

ruIes lead to the development of two main fanülies of Trellis/Reed-:\'Iuller codes: the

TR:\III codes which use very simple trellis codes~ and the TR.\I2 codes which use

a more complex trellis code in exchange for a higher achievable coding rate. and a

better performance.

vVe have aIso explored in this chapter analytical rnethods of estimating the bit er

ror probability of TR~I codes as a function of the bit energy to noise power spectral

density ratio (Eb/l\lo). \Ve used these methods in the estimation of the bit error prob

abiIity of bath the TR;\Il and TR:\/I2 codes. In the next chapter. wc will thoroughly

compare the TR~I codes with the other known very law rate codes mentioned in the

early sections of the current chapter.
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Chapter 4

Comparison of Very Low Rate

Codes

This chapter presents a thorough comparison of TR1I codes with the other very

low rate codes examined in this thesis. The comparisons are made on the basis of

performance (required signal to noise ratio ta achie\"e a gÏven bit error probability)~

coding rate~ and decoding complexity.

4.1 Analytical Methods

In this section~ \ve look at sorne analytical methods of assessing the performance of aIl

the very low rate codes considered in this thesis. For most codes. no exact expression

of the bit error probability is known. However. one can derive tight bounds which

can accurately approximate the bit error probability of the codes. especially at high

signal to noise ratio.

The construction of the orthogonal and superorthogonal convolutional codes are

attributed ta Viterbi [12~ 2ï], whereas that of the biorthogonal convolutional codes

is attributed to Rikkinen [26]. :\ performance analysis of the orthogonal and super

orthogonal convolutional codes is given in (19] and [27] respectively. The author relies

on the dassical upper bounding technique which uses the generating function of the

code and the approximation of the complementary error function by an exponential.

The resulting bound is known to be asymptotically tight.

The derivation of the generating function of orthogonal, and superorthogonal con-
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( volutional codes can be found in (27}. \Ve assume that aH the codes have a rate 1/2h'.

and adapt the results of (27J to obtain

TOrtho(n'~1)

TSuportho (Hl~ 1) =

1 - (1 + I)Hl + I~Vl\

IH,~K+4(1 - ~V)

1 - (1 + I)~V - Ir,Vl\ + 2I~VK+L

(4.1)

(4.2)

where ~V = D 2K
-

1
• Recall that the exponent of D in each term of the series expansion

of the generating function gives the Hamming weight of the corresponding path. In

Initial

State

WLL'(/
,,,

, -C>-

WL

WLI

"WLI, , ,

Final
State

-/<-1 K-I
Biorthogonal Convolutional Code: a=2, W=D- Rate = 1/2

Orthogonal Convolutional Code: a= 1. w=of Rate = 112 K

Figure 4.1: State diagram of an orthogonal and biorthogonal convolutional code.

order ta obtain the generating function of the biorthogonal convolutional code. we

use the great similarity between orthogonal and biorthogonal convolutional codes.

Consider the state diagram of a biorthogonal convolutional code of rate 1/2K . depicted

in Figure .t, 1. As emphasized in Figure -1. L this diagram is also the state diagram

of an orthogonal convolutional code of rate 1/2K + 1, The only difference lies in the

labeling of the tirst branch~ and in the expression of l,V in terms of D. Therefore~

T~:~ho(lIV,1) - l'VT6~;~) (rV~ 1)
IHrK+2(1 - IY)

- 1 - (1 + I)~V + IHiK+L

(4.3)

(4.4)

(
K-l

where ~V = D 2
.

The closed form upper bound on the bit error probabilities of a convolutional code
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is given by [19. chap. -lI

77

2drreeEs) ~ 8T(D~ 1) 1e .Vo

~Vo al 1=L.D=e-~
(4.5)

For the rate 1/2K codes under analysis~ ~ = 2t'N
o

~ and we evaluate the transfer

function at vV = D2K
-

L = e-f:t. :\IoreoveL the product drr~!E.• is equal to ~',~b for
.~o _i~O

orthogonal convolutional codes~ (K~~~Eb for biorthogonal convolutional codes. and

(K~~lEb for superorthogonal convolutional codes. Thus (4.5) becomes

2dfreeEs) drrt~E5 aT(H/-~ 1) 1

,V; e al _~
• 0 1= 1,~F=e 2:\Q

(4.6)

We can now use the generating functions to obtain

Pb,Ortho <

Pb,Bionho <

Pb,Suportho <

(-l.7)

(4.8)

At moderate to high signal to noise ratio. i.e. whenever H -K « H· ~ the denominators

of aIl three bounds are the same. In this situation~ a superorthogonal convolutional

code of rate 1/2K has the same performance as a biorthogonal convolutional code of

rate 1/2[(+2 and of an orthogonal convolutional code of rate 1/2K -"-4. :\aturally. this

observation fails at lo\\' signal to noise ratio~ but it is lnuch stronger than a cornparison

based on asymptotic coding gain. Actually. the series expansion of aIl three bounds

yield the same first [( coefficients. which shows the great simiIarity in the distance

profiles.

As mentioned in (26L the number of non-zero data bits on a diverging path at a

Hamming distance drree + n2 K -1 from the zero path is given by

3 K L = 2n + (n ~ 1)2(n-2), dCree+n2 - n = 1~ .. '. [{ - 1 (-1.10)

{ and ,80 = 1. Although (4.10) is given for orthogonal and biorthogonal convolutional

codes~ it also holds for superorthogonal convolutional codes. This can be checked~
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{ for example. by performing a long division of the right hand sides of (..1.ï). (..1.8). and

(4.9). These coefficients are extremely helpful in conlputing a much tighter upper

bound on the bit error probability. Indeed~ given the coefficients 3n~ the union bound

on the bit error probability of a convolutional code is given by

(4.11 )

The closed form upper bound is obtained by upper bounding the Q(.) function by an

exponential, such that (4.11) is recognized as the series expansion of the derivative

of the generating function~ evaluated at D = e-E~ ~Vo. However. as seen earlier \Vith

TRNI codes. a tighter approximate bound is obtained by simply truncating the sum in

(4.11) to a sufficient1y large number of terms. If the 3n ~s are known~ the computation

is straightfonvard. In our case~ the Ii first non-zero values of 3n are given by (4.10).

Finally, a simple lower bound on the bit error probability is gi\'en by the proba

bility that the minimum distance path is decoded. Since for the codes under analysis.

the minimum distance path is unique. and is generated by a single bit. we have

(-1.12)

(

Figure 4.2 systematically displays the above-mentioned bounds for OBS codes of

rates 1/8 to 1/2048. These curves show that it is difficult to get a reliable estimate

on the bit error probability for low signal ta noise ratio. The tightness of the bounds

increases with signal to noise ratio and \Vith the coding rate. Hence for low coding

rates. these bounds are tight only at very low bit error probabilities. However. it is

seen from Figure 4.2 that we can reliably estimate the bit error probability of sorne

codes starting at a given signal to noise ratio threshold.

It is shown in [261 that the path-enumerating bound is very tight for orthogonal

and biorthogonal convolutional codes of rate greater or equal to 1/128 and bit error

probabilities less or equal to 10-3 . However, no such guarantees are given for lower

coding rates, higher bit error probabilities, or for the superorthogonal convolutional

codes. In order to assess when and which of the bounds of Figure 4.2 can be used ta

reliably estimate the code performance, we need to resort to simulations.
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(

(

Another conclusion that can be drawn from Figure -1.2 is that the closed-form

upper bound can be much looser than the path-enumerating bound of (-1.11). For

example~ the two bounds differ by almost 1 dB at 10-3 for the superorthogonal

convolutionai code of rate 1/256. For this reason. we will only use the upper bound

based on (4.11) in aIl future references to upper bounds on the bit error probability

of orthogonal~ biorthogonal. and superorthogonal convolutionai codes.

The last code under consideration that was not yet mentioned in this section is

the IS-95 uplink code. The natural method of e\'aluating analytically its performance

is to use a transfer function method (or better. a path-enumerating methodL which

is modified to take into account the inner Hadamard code. Basically. we consider

the whole code as a 2-bit input. 64-symboi output convolutional code of constraint

length 9. HoweveL due to the curnbersome expressions that resuIt from trying to

evaluate the transfer function of a constraint length 9 convolutionai code. we will

limit ourselves to simulations to assess the performance of the r5-9.j uplink code.

Since there is only one such code (as opposed to a family of codes) ~ \\'e can afford the

extra computational effort to reliably estimate the code performance even at relati\'ely

low bit error probabilities.

4.2 Simulations Results over the AWGN Channel

Ali the very la\\' rate codes under consideration were sirnulated on an :\.\VG:.'\ channel.

The simulator was written in C. and its output format is compatible \Vith ).[atlab. In

this section. we display the simulation results as the bit error probability of a given

code versus the corresponding Eb / ~Vo.

4.2.1 Procedure

vVe estimate the bit error probability at a given Eb/.VO by running the simulator for

a certain number of input bits~ and taking the ratio of the number of bit errors over

the number of transmitted bits. By repeating the experience with different seeds

to the random number generator~ we can obtain several estimates of the same bit
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(

(

error probability. In aIl the cun'es presented in this section. the data points are

obtained by averaging ten simulation points. This allows us ta compute the standard

de"iation of the estimate. thereby determining a confidence interval. ~ote that the

number of transmitted bits may \'ary from one data point ta another. since lower bit

error rates require longer data streams for an accurate estimate. However. the ten

simulation points that are used to obtain one data point must be obtained from the

same number of transmitted data bits: otherwise. the derived statistics. namely the

standard deviation. are meaningless.

The cun'es of bit error probability estimates are plotted with ~[atlab on a loga

rithmic scale. The data points are clearly identified. together with the corresponding

standard deviation, The cun'es are obtained from a cubic spline data interpolation.

4.2.2 18-95 Uplink Code

In the 15-95 standard. the error control code used in the uplink consists of a rate 1/3.

constraint length 9. convolutional code. followed by a Hadamard (6-1. 6) encoder. In

other words. each two output symbols of the convolutional encoder are encoded into

a 64-bit orthogonal codeword by the Hadamard encoder. The resulting codeword is

further spread four-fold by a PX sequence. Hence this can be \'iewed as a rate 1/3

code. followed by a rate 6/64 code. followed by a rate 1/-1 repetition code (the latter

providing no coding gain), .-\S shown earlier. such a code has an asymptotic coding

gain of 6 dB,

The rate 1/3 constraint length 9 con\"olutional code used in the 15-95 standard

has generating polynomials (557. 633. (11) in octal notation. Its free distance is 18

[33] which yields an asymptotic coding gain of approximately Î.8 dB. .-\lthough the

con\'olutional code is almûst 1 dB better than the 15-95 code at \'ery large signal ta

noise ratio. Figure -1.3 shows that for probability of errors of interest. the 15-9.) code

offers the best performance. ActuaIly. the two cun-es meet for Eb/.VO ~ -1.2 dB for a

bit error probability of about 3 10-ï.
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4.2.3 OBS Codes

EblNo

(a) 15-95

\

t
{
.,

7 8

.
~

\
\ Î

K=12 ~ \
~,

. ,
i

\
2 3 4 5 6

EblNo

(b) Orthogonal ConvolutionaI Codes

-si
10 :-

-4i
10 :-

-1
10 ~-----.-----~-------,

, ;

i, ,
-\

\

1,

32

Rate 113
.\Volutional code

'-'\
\

\

't

\ \,
\\
\ \

\ \
\\ \'1

\, '.

o

Rate 1/32

[5-95 uplink code

-1

~ jQ2
l-
e 10 •
l-

El-
;.,tJ •r
CCl r

10-4L
~.
f
r
l

-51
10 f

~

10~1

Figure ·!.3: (a) Bit error probability of the IS-9.j uplink code and its rate 1/3. con

straint Iength 9. con\"olutional code. (b) Bit error probability of orthogonal convolu

tionaI codes of rate 1/2K • l\.- = 3 ... 10. 12

Figures 4.3. and 4A show the simulation results for aIl the OBS codes of interest. The

coding rates under examination range from 1/4 ta 1/-1096. It can be '·erified that the

bit error probability of different codes of the same rate are for aIl practicaI purposes

shifted versions of each othec. This observation confirms the earlier prediction based

on the generating functions. There is not much more about these cun'es that needs

ta be further emphasized. Howe,·er. these are the performance curyes that will he

used later for a comparison between different coding methods.

(
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4.2.4 TR!vI Codes

The estimated bit error probability of TR}'I1 codes. obtained fronl simulations. are

shown in Figure -1 ..) (a). for m = 6.8.10 and 12. This corresponds to coding rates

of 9/6-1. 12/256.15/102-1. and 18/-1096 respectÏ\"ely. Equh-alently. these TR),I1 codes

spread the bandwidth by factors of about 7.1. 21.3. 68.3. and 22ï.6 respecti,-ely.

Figure -1.5 (b) shows the estimated bit error probability for TR~I2 codes with

m = 6 and m = 8. The corresponding coding rates are 9/6-1. 10/6-1. 11/6-1. 11/256.

12/2.)6. 13/256. 1-1/2.)6. and 15/256- It is seen that the larger m and b are. the bener

is the performance. Cnlike other families of lo\\" rate codes. it is not necessary ta

decrease the coding rate to impro\-e the performance. since the rate is an increasing

(
function of b.

The estimated bit error probability for TR~I2 codes with m = 10 and m = 12 is
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Figure -1.5: (a) Bit error probability of TR:\I1 codes with m = 6.8.10. 12. (b) Bit

errar prabability af TR~I2 codes with m = 6 and 8.

shawn in Figure -1.6. For m = 10. the cading rates are 13/102-1. 12/102..1. " 19/1024.

For m = 12. the cading rates considered are 15/-l096. 16/-1096. up ta 22/-lü96. \\'e

can verify again the performance improyement \vith increasing m or b.

\Ve also use the simulation results ta verify that the average bit error rate estimate

is dominated by the bit error rate of the m + 1 bits fed ta the first-order Reed

:\:Iuller encoder! and that the b input bits to the coset-selecting trellis code are better

protected than the remaining m + 1. This is a confirmation of the discussion of section

3.2.4. In Appendi.x C! we give the bit error rates for both ~·types!~ of input bits! and

the correspanding average bit error rate data that is used in sorne curves of Figures

-l.5 and 4.6.

(
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channel.

4.3 Performance Comparison of Different Corling

Scheme

In this section. we collect the fruits of our labor. \Ye use the performance analyses

and simulation results to compare the different coding schemes. This is not a simple

t~_sk. Indeed~ a fair comparison must compare codes of the same rate and comparable

complexity. However~ because of their different structures~ it is not always possible to

have codes of different families with exactly the same rate. :\Ioreover. the definition

of complexity opens up a new discussion~ and usually leads to more questions than it

provides answers.

(
vVe \vill ignore the issue of complexity for the purpose of this section. and will strive

to compare in a fair manner the different codes based on the bit error probability.

In Figure 4. 7~ we compare aIl the codes under study on the basis of the required
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( Eb/iVO to achieve a bit error probability of 10-3
• Each code is represented by a point:

the abscissa is the required Ebj.VO' and the ordinate is the code rate. For the same

rate, it is the code \Vith the smallest required Eb/1Vo value that is the best, whereas

for the same required Eb/~VO value, it is the code with the largest rate that is best.

Rence the better codes are those in the top left corner of the diagram~ since they

combine relatively large coding rates \Vith good performance.
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Figure 4.7: Comparison based on coding rate and required EblVo to achieve a bit

error probability of 10-3 .

In Figure 4.7, the performance hierarchy of oas codes is very c1ear, since the rates

of these codes match exactly. Renee, as far as rate and performance is concerned.

the superorthogonal convolutional code constantIy and significantly outperforms the

orthogonal and biorthogonal convolutional codes. \Ve aiso notice that the rS-95 uplink

code is only slightly better than the superorthogonai convolutional code of the same

(
rate.

The performance of TR~I1 codes on the other hand is comparable to that of the

superorthogonal convolutional codes except at very low rate (less than 1/512) and
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at relatively large rate (greater than l/lüL where the superorthogonal convolutional

codes are slightly better.

The important observation that follows from Figure ..1. ï is the superior perfor

mance of TR~vI2 codes. Indeed, for aIl rates of interest. there exists a TR),I2 code

which outperforms aIl other codes under study. In Figure 4.ï~ for every point repre

senting a code of rate less than 1/5~ there exists a TR:\T2 code which is both left and

above of that point. In other words, for any non-TR:\I2 code, there exists a TR~vI2

code of higher rate and better performance (where performance is here measured by

the required Eb/iVo to achieve a bit error probability of 10-3
)

In Figures 4.8 and 4.9, we repeat the comparison of Figure 4. ï for bit error proba

bilities of 10-4 and 10-5 . A careful examination of these comparisons shows that the

general pattern of Figure 4.7 is repeated in Figures 4.8 and 4.9. Hence the relative

performances of the codes under study are consistant O\'er the range of errar rates of

interest. This cansolidates the superiority of TR~I2 codes in terms of providing the
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best coding gains for a given coding rate. amongst aIl the low rate codes considered.

4.4 Effects of Carling on System Capacity

In this section, we try to quantif:y the increases in capacity that the different cading

schemes can pravide to an asynchronous DS-CD~'I:\system. The STIR for an uncoded

such system has been computed in section 2.1 and given by (2.11). \Vith perfect power

control conditions, we have

STIRuncoded -
2

~ + ~(.\[ - 1)
(-1.13)

(

Suppose no\v that we are using coding on top of p~ sequence spreading. Let Re

denote the coding rate! Es the energy per coded symbol, and let l be the PN sequence

spreading factor (on top of the coding, such that the total spreading factor is liRe).
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(4.15 )

(

The equivalent bit energy to interference ratio is

Eb STIRuncoded 2 2
1 - Re - Rc& + 14x p(.\1 - 1) :Yu. + BpTp(J[ _ 1) (--1.14)

E~ 1 E b Be·

where Be is the effective bandwidth expansion factor given by BpTel/Re = BpTb~

which takes into account the normalized band\vidth of the chip pulse shape. As

argued in section 2.2.2~ the best pulse shapes minimize the time-bandwidth product

TpBp. Indeed~ (4.14) shows that for a given effective bandwidth expansion factor. the

lower TpBp is the higher is the effective bit energy to interference ratio. vVe restrict

ourselves~ for the remaining part of this section~ ta the 15-95 chip pulse shape~ which

was shown to be close to optimal for a 95% energy containment bandwidth definition.

Let p be the desired bit error probability which ensures a satisfactory grade of service

to the user. vVe evaluate the impact of coding on the system capacity in the following

way. For a given code~ we find out the required Eb/I necessary ta obtain a bit error

probability of p~ based on the curves of section 4.2. vVe then solve for JI in (4.14) to

obtain

Be ( 2 1).\1 = 1 + -- -- - --
BpTp Eb/I Ebj;.Vo

From (4.15)~ the relationship between JI -1 and Be is linear. Since Be = BpTel/Re.

it fo11ows that PN sequence spreading provides a linear increase in system capacity.

In the following~ we disregard the TR~I1 codes and the orthogonal and biorthogonal

convolutional codes, because the TR~I2 codes and the superorthogonal con"olutional

codes (respectively) provide a better performance for similar or larger coding rates.

vVe will now compare the r5-95 uplink code~ the superorthogonal con"olutional

codes~ and the TRlVI2 codes, based on the number of users per unit bandwidth that

a system can support with these different coding schemes. The number of users per

unit bandwidth is a function of

• The desired grade of service (for example, a bit error rate of 10--1)

• The amount of thermal noise, i.e. the ratio Eb/1Vo

• The FONI of the chip shape. vVe consider here the 15-95 chip shape \Vith a 95%

energy containment bandwidth.
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( • The coding scheme

• The bandwidth expansion factor Be, or the ratio liTe since we restrict ourselves

to the 18-95 chip shape with a 95% energy containment bandwidth

Once the above-listed information is known. one can solve for JI in (4.15).
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Figure 4.10: Number of users per unit bandwidth for the best TR~vI2 and super

orthogonal convolutional codes, and the IS-95 code, as a function of IIRe, and with

Pb = 10-3
.
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(

Since we constrain ourselves to the 15-95 pulse shape. the bandwidth of the system

is proportional to IIRe' Hence we slightly abuse the language and refer ta .\1/([/Re)

as the capacity per unit bandwidth or the system efficiency, In the Figures that follow.

we show the capacity per unit bandwidth versus IIRe for the IS-95 code~ and the best

superorthogonal convolutianal and TR~f2 codes. For each family of codes~ we only

show a code if it yields a greater efficiency than aIl codes of the same family with a

lower liRe. Note that since AI is aimost proportional to L the number of users per

unit bandwidth is independent of l. Therefore the bandwidth expansion through p~

sequence does not increase the system efficiency~ emphasizing that spreading through

p~ sequences is an inefficient spectrum spreading method (in the abscissa of our

plots, liRe is actually equai to 1/Re)'

Figure 4.10 shows the capacity per unit bandwidth versus li Re for a bit error

probability of 10-3 grade of service. and three values of EbrVo. .-\ 5 dB value for

EbliVo represents a relatively noisy environment. whereas a 20 dB value reflects an

interference-limited system. The codes shawn which yield the largest number of

users per unit bandwidth are the rate 1/32. 1/6-1. 1/128, and 1/256 superorthogonal

convolutional codes~ and the (JI = 8~ b = 6). (m = 10, b = 8). and (ln = 12. b = 9)

TR~I2 codes, )iote that the (m = 12. b = 10) TR~I2 c:ode would yield an even greater

capacity per unit bandwidth~ but we ha\'e not simulated its performance.

It is seen that the best TR~I2 codes provide consistently a greater number of users

per unit bandwidth than the best superorthogonal convolutional codes and the r5-95

code. Also, the superorthogonal con\'olutional codes are seen ta be superior to the

15-95 coding scheme.

Figure 4.11 shows again the capacity per unit bandwidth for a bit error proba

bilities of 10-4 criterion, and confirms the superiority of TR:\T2 codes over the other

coding schemes considered, AIso, the advantage of superorthogonal con\'olutional

codes over the IS-95 code is less pronounced. As a matter of fact. for liRe < 64. the

capacity per unit bandwidth induced by the r5-95 code is slightly greater than that

of the corresponding rate 1/32 superorthogonal convolutional code.

In Figure 4.12, the system efficiency is given for a bit error probabilities of 10-5
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(

criterion. CnIike the case with less stringent grades of service criteria. the rS-95 code

is seen ta provide a greater capacity per unit bandwidth than the superorthogonai

convolutional codes. The TR~I2 codes are still superior to the 1S-95 code. albeit less

markedIy. rndeed~ for liRe < 1024/19 ~ 53.9. the r5-95 code and the best TR:\f2

code (m = 8~ b = 6) provide the same number of users per unit bandwidth. However.

the TR~I2 code requires aimast haIf the bandwidth expansion necessary ta the 15-95
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code ta achieve the same efficiency. For IIRe ~ .53.9. the TR~I2 codes proyide a net

improvement o,"er the 15-95 code.

In summary. TR~I2 codes pro,-ide cansistently a superior capacity per unit band

width over the whole range of bit error probabilities of interest. The improyement over

other lo\\" rate codes is substantial. ranges from 15 to -10'k. Although our definition

of capacity employs sirnplifying assumptions. similar improvements can be expected
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(

(

when system capacity is measured with more practical grades of sen-ice criteria (snch

as blacked and dropped calI rates). and more realistic assumptions.

4.5 Complexity Issues

\Ye naw address the crucial issue of decading camplexity which was put aside earlier.

1ndeed. decoding complexity is a prime concern for any implementation of error con

trol cading. \re will start by assessing the decoding complexity of the OBS codes. and

the 15-95 uplink code. \\-e will then deri'·e the decoding complexity of TR~I codes.

In doing 50. we will shaw that the combination of seyeraI FHTs sharing intermediate

resuIts pro'·ides sorne complexity reduction without sacrificing the performance,

4.5.1 OBS Codes

\\"e remind the reader that the ma~imum-likelihooddecoding algorithms of each of the

OBS codes are aimost identical. They aIl inyoh"e a \·A. with the metrics computation

being performed by a FHT. and the standard add-compare-select operation. The

decoding complexity is thus determined by

1. The FHT. which. for codeword of lengths 2K requires h-2 K additions and sub

tractions.

2. The number of met ries adjustments (the "add" part of ··add-compare-seleet"'

operation). Since there are two outgoing branches per state. the number of

metrie adjustments per decoding stage is twice the number of states. Each

metric adjustment requires a single addition or subtraction.

3. The number of "compare" operations. which. for each decoding stage and for

each state. equals the number of incoming branches minus one. This is the

number of eomparisons required to determine the sun"j"ing path. \'"e assume

that a comparison is of the same eamplexity as an addition.
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·L The number of -select- operations. which dplete the n0n-sun-i\"ing pathso Their

complexity should not exceed that of an addition for each deleted path. at lea~t

from an aIgorithmic point of \iew. Hence we will assume that the cost of the

-select- is the same as that of the -compare- operation,

The maximum-likelihood decoding of an ortho~onal cOll\Oolutional code of rate

1/2K requires a \ -,-\. with 2K - I states. Each stage of the \ ".-\. requiff5 üné 2K -FHT for

the computation of the metncs. 2K additions. 2K - I r:omparisons and select ionso The

decoding complexity of orthogonal conyolutional codes of rate 12;': per information

bit is then

The maxirnum-likelihood decoding of a biortho~onal crJn\O(Jlutional cüde of rate

1/2K requin~s a \'.-\ ,,"ith 21\ states. Each stage of the \-A requir~s fJn€ 2h'-FHT for

the computation of the metncs, 2;': -: additions and subtraetioll~, 2K ("rJmpari50n~

and selections. The decoding comple::-:ity of biorthogonal crJll\-(J!utional codes of rate

1/2K per information bit is then

, .l.I:-

FinaIly. the maximum-likelihood decoding of a superorthogonal (:rJn\-{Jluti0llal codp

of rate li2 K requires a \ -A \\-ith 2n:-: states. Each stage of th~ \ -_-\. n:-quires ()nr- 21-.."_

FHT for the computation of the metries. 2A: -2 additions and 51lbtractirJIlS. 2h --: cüm

parisons and selections_ The decoding complexity of superrJrthügonal conyolutional

codes of rateI:2 K per information bit is then

'-! .18)

(

The decoding complexity of the superorthogonal cr.Jn\'ülutional code i5 slightly

greater than that of the biorthogonal conyolutional code. which is in turn slightly

greater than that of the orthogonal conyolutional code. Howeyer the difference

1.:;; rather small 'While the performances \-ary considerably. \\-e emph~ize. ba..~

on (-!.I6}-( -!.18) that the increase in constraint length from the orthogonal to the
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( biorthogonal and then the superorthogonal con\'olutional code (aIl of the same rate)

does not induce a corresponding doubling in decoding complexity. For example.

for the rate 1/256 codes (K=8). we ha\'e \:Ortho = 2560. XBiortho = 30ï2. and

XSuportho = 4096.

4.5.2 18-95 uplink code

(-1.19)= 1-lï2 additions/bit
2

\.15-9.5 =

The rS-95 uplink code has 256 states. Each decoding stage uses one received Reed

:\.fuller codeword. which encodes two data bits. The cast of performing a FHT of

length 64 is 6 x 64 = 384 additions and subtractions. :\Ioreover. each state has

four outgoing branches. which means that the computation of the cumulati\"e rnetric

requires -! x 256 = 102-1 additions. Finally. the "compare-select"' operation in\"olyes

four incoming branches per state. In order to find the maximum of four numbers.

three comparisons are necessary. The select operation chooses one suryiying path out

of four. for each state. Hence the complexity associated with the '~compare-select"

operation is 3 x 256 x 2 = 1.536. Putting it aIl together. the decoding complexity per

information bit of the r5-9.5 uplink code is

38-1 + 102-1 + 1·536

4.5.3 TRM Codes: Straightforward l\IIetrics Computation

\\"e no\\" turn to the estimation of the ma.ximum-likelihood decoding complexity of

Trellis/Reed-:\Iuller Codes. Consider a TR:\I code with a b-input coset-selecting trellis

code. and Reed-:\Iuller code of length 2m
. \\"e denote the nUlnber of states of the

trellis by a. and the number of additions required ta compute aIl branch metrics for

each decoding stage by ..:\11. \\"e need 2m comparisons per state in arder to select the

correct primary branch metric. Since each stage has 2b incoming and outgoing primary

branches~ we also require a2b additions to update the cumulative path metrics. and 2 x

0'2b additions for the '~compare-select" operation" per decoding stage. The decoding

complexity per bit is then(
XTR.\I

.."If + 3a(2
b + 2

m
) dd·· lb'- b a luons lt

m+ +1
(-1.20)
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For TR~I1 codes. the number of states is al = 'lb. whereas for TR~r'l codes. it is

In a straightfonvard implementation of the metrics computer. the decoder per

forms a. number of FHTs. one for each coset leader that is used. The FHT complexity

is of m2m additions. For TR~Il codes. 22b coset leaders are employed. whereas TR~I2

codes use 2b+ 1 coset leaders. Hence we can write

XTR~[l

XTR~[2 =

22b x m2m + 3a(2b + 2m ) 22b

= ((m+3)2m +3) (-1.21)
m+b+1 m+b+1

2b- 1 x m2m + 3a(2b + 2m ) 22b-'-1
= ((m + 3)2m

-
b + 3) (-1.22)

m+b+l m+b+l

From the above expressions. it follows that the decoding complexity is hea\·ily domi

nated by the computation of the branch metrics through the series of FHTs. This is

particularly true for TR~Il codes and TR~I codes with relati\·ely small values of b.

HoweveL e\Oen when b = bmax for TR~r2 codes. the decoding complexity 2:!rn-2J~~~-15)

is dominated by the metrics computation since --lm > 15.

Another important obsen-ation is thaL for TR~I 1 and TR~I2 codes with the same

m and b. we ha\Oe

XTR..\[l

XTR~[2

(m+3)2m +3 (m+3)2m~3
>

(m + 3)2m - b+ 1 + 6 (m + 3)2m - 1 + 6

9
2 - (-t>.)1)

(m + 3)2m - 1 + 6 -'

(

This shows that TR~I2 codes are less complex than TR~I1 codes of the same pa

rameters. The inherent reason for this is thaL although the TR~I2 code has more

states~ it employs much fewer distinct coset leaders than the TR~r1 code of the same

parameters.

4.5.4 TRM Codes: Reduced Complexity l\IIetrics Computa-

tian

Since the decoding complexity of TR~I codes is dominated by the branch metrics

computation. it is very important ta compute these metries in the most efficient way.

In this section~ we will show that different FHTs can share intermediate results and

thereby decrease the complexity of the metrics computation.
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Input Output Permutation

a ===-= a+b X a-b

b~a-b a+b
2-pt FHT FHT(a.-b)

Figure 4.13: FHT of (a~ -b) obtained from the FHT of (a~ b).

98

(

Every stage of the FHT is composed of several t\vo-point FHTs, or butterfly

structures. Suppose that we have computed the two-point FHT of .!J = (a~ b). Then~

as shown in Figure 4.13~ the FHT of (a. -bL is obtained by a simple permutation of the

FHT of g. :.J'aturally~ FHT( -a, b) = -FHT(a. -b) and FHT( -a~ -b) = -FHT(a.b).

This shows that the FHT of (±a, ±b) is obtained from the FHT of (a~ b) without any

further computation~ since the permutation can be hardwired and the possible minus

signs incorporated in subsequent stages of the larger FHT. Therefore, in the branch

metrics computation of TR)'I decodes. aIl simultaneous FHTs can share the same

first stage.

u[O)=x[O] X[O]

u[ 1J=;([4] X[II

u[2J=x[2] X[21

u[3J=x[6J X[31 ~-::: oô0..
c u[4J=x[ 1] X[41 E-

u[5)=x[5] X[5J

u[61=x[3] X[6J

u[7]=x[7] X[7]

a a
b~a+b b~a-b

Figure 4.14: 8-point Fast Hadamard Transform.

Nloreover, sorne intermediate results which are at deeper stages may be shared

among FHTs. The number of such occurrences depends on the different coset lead

ers. In order ta determine exactly how many intermediate results can be shared or,
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( equivalently! how many 2-pt FHTs are required to compute aIl branch metrics. we

first rearrange the usuai structure of the FHT to that of Figure 4.14.

Take a vector 11:. and a coset leader à of length 2m ~ which is aiready sorted for

the FHT implementation of Figure 4.14. Suppose the FHT computation of Q is

available (i.e. the final resuit and aIl intermediate values). vVe wish to determine the

number of unnecessary (redundant) intermediate results that would be computed in

the FHT evaluation of y.0A. A butterfly structure is redundant if the corresponding

butterfly in the computation of the FHT of l! computes the sarne two functions up

to sign and permutation. vVe have shown that aIl first-stage butterfly structures are

redundant! since aIl simultaneous FHTs can share the same first stage. :\Ioreover.

as we established above! for two 2-point FHTs to compute the same functions up to

sign and permutation! they must have the same inputs up to sign and permutation.

Indeed! the two outputs of a depth k butterfly structure in the computation of a FHT

are of the form

24: - l - L+offset 2k +offset - L

L Ci Ui + L Ct Ui

i=offset i=2k - 1 +offset

2k - l - 1+offset 2k +offset-1

2: Ci Ui - L ct Ui

i=offset i==2 k - 1 ""offset

(4.24)

(4.25 )

(

where the Ci ~s are the ±1 coefficients. and '~offseC is a power of two which specifies

which butterfly structure of depth k is referred to. The corresponding butterfly

structure in the computation of the FHT of g~A yields

2k -1 -1 +offset 2k +offset -1

(~ - L Ci -\i Ui + L Ci À i Ui (4.26)
i=offset i==2 k - 1 +offset

2 k - 1 -1+otfset 2k +offset - L

(~ L Ci "\i Ui - 2: Ci "\i Ui (4.2i)
i=offset i==2 k - 1 +otfset

For these two butterfly structures to yield the same results up to sign and permutation

for any 11:.~ we require

Àoffset = Àoffset+ 1 = ... = Àoffset+2k-I_1

(4.28)
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( The above conditions show one possible way to reduce the complexity of the branch

metrics computation~ by avoiding redundant computations. The number of such

redundant operations is estimated by looking at the set of coset leaders~ and counting

the number of times where (4.28) is verified. vVe can design an algorithm for this

purpose, which works as follows

• Create a list of examined coset leaders which contains only the first one

• for each coset leader ~ not in the list do

for each coset leader X' in the list! compute ~ = ~'~l1".

check whether (4.28) is satisfied for sorne '~offset" values~ and SOIne k

update accordingly the complexity counter

Such an analysis shows that about 30% reduction in complexity is possible~ compared

to the straightforward rnethod. However~ it is not optimal in generaL Indeed. it is

shown through an empirical method in [41] that a 40% reduction in complexity is

possible for the case m = 4. vVe conjecture therefore that some additional reduetion

may be aehievable.

xO

:; xl
0..

..5 x2

x3

xO + xl

xO - xl

x2+ x3

x2 - x3

xO + x 1 + x2 + x3

:<0 - xl + x2 - x3

xO + xl - x2 - x3

xO - xl + x2 - x3

xO + x 1 + x2 - x3

xO - x 1 + x2 + x3

xO - x 1 - x2 - x3

xO + x 1 - x2 + x3

(

Figure 4.15: Computation of aIl binary funetions of four variables.

The key to a further reduction in eomplexity is the computation of intermediate

results which may not be necessary to any particular FHT stage~ but is useful ta many
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( later stages. Ta illustrate this concepL consider the structure of Figure -1. 15. Such

a structure~ which involves 6 butterfly operators~ computes aIl possible functions of

four variables of the form

3

f(xo, Xl ~ X2, X3) = Ia + L CiXi

i=l

(4.29)

with ct == ±l. Therefore, such a structure can provide intermediate results to aIl

4-point FHTs involved in the metrics computation. The structure can also be gen

eralized for an arbitrary number of inputs 2k . Let (k be the number of butterfly

structures required to compute aIl possible functions of the form

2k -1

f(Ia~··· ~ X2 k -d == Ia + L CtXi
i=l

(4.30)

with Ci = ±1. vVe will refer to such a forro as binary function. Then (k+l can be

obtained from the following observation: we first need aIl possible binary functions

of (xa,··· ~ X 2k_d and (X2k.···, X2k+1_l), and then aIl possible combinat ions of these.

The number of such combinations is given by the number of possible binary functions

of (xa, . ", X2k+1_d, which is 22k
+

1
-

1• Since each butterfly structure yields two such

combinations, we have

(.1.31)

(

and (1 = 1. This is a fast growing function of k, but for k <= .1. the values of (k are

reasonable. Indeed, (2 = 6, (3 = 76, and (-1 == 16536.

\Ve now combine the two methods to try to minimize the complexity of the branch

metrics computation. Each branch metrie computation starts with the structure of

Figure 4.15 of arder k. It is then followed by the last m - k stages of the FHT for each

coset leader. :\tloreover, FHTs with different coset leaders share when possible their

intermediate results of depth greater than k: this is determined by the first method,

where the condition of (4.28) is tested for lengths greater than 2k . Table 4.1 shows the

resulting complexity reduction coefficients (number of required operations/number of

operations with a straightforward implementation). These reductions in complexity

are not dramatic. However, even the smallest reductions (highest coefficients) are still
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TRivn Codes TR112 Codes

m, b h\m 6 8 10 12

m=6, b=2 62.6 % 2 73.7% 80.2 % 84.2 % 86.6 %

m=8, b=3 64.3 % 3 62.6% 72.0 % 77.7 % 81.3 %

m=10, b=4 68.2 % 4 56.3% 67.0 % 73.7 % 77.9 %

m=12, b=5 69.4 % 5 64.3 % 71.3 & 76.0 %

m=14, b=6 69.3 % 6 62.6 % 69.7 % 74.5 %

1 68.2 % 73A %

8 66.2 % 71.7 %

9 69A %

10 66.8 %

102

(

Table 4.1: Complexity reduction coefficients achievable for various TR~!l and TR:\I2

codes

significant. For the case m = 6, b = -t TRI\I2 code, the decoding complexity is reduced

almost by half. \Vhenever the number of coset leaders required by a code was less

than the maximum possible (b < bmaxL we just picked the first ones. It is very likely

that an additional complexity reduction is possible by carefully selecting the coset

leaders in order for the corresponding FHTs ta share as much intermediate results as

possible.

Table 4.1 shows that it is possible to obtain at least the complexity reduction coef

ficients shown. Furthermore, since the complexity reduction coefficients of the TR~I2

codes \Vith the maximum number of coset leaders approach 50%, we conjecture that

it is unlikely to obtain reductions in complexity significantly better than this figure.

For small values of m, it is possible to exhaustively examine aIl combining possibili

ties to minimize the number of required computations. In [41], it is argued that 304

additions is the minimum number of operations (additions) needed ta compute aIl 8

FHTs, for m = 4. This is a reduction coefficient of 59A % over the 512 additions

required by a straightforward implementation of the 8 FHTs.
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Figure 4.16: Code comparison based on the decoding complexity per bit.

Figure 4.16 shows the complexity per bit and the coding rate for aIl the codes that

were studied so far. It is seen that TR.\I2 codes require more cornputations than other

codes of comparable rate. These results must be used with caution since the criterion

used does not take into account many practical considerations. Indeed. measuring

complexity in a fair manner is very difficult. In particular~ the .\IL decoding of TR.\I

codes contains a high degree of parallelism~ which can bring down dramatically the

implementation complexity. Nevertheless! it is safe to say that TR.\[ codes are more

complex than the other codes of similar cading rate under study

4.6 Conclusions

In this section, we have assessed the performance of TR:\,{ codes in the presence of

AWGN (and multi-user interference modeled as such). It was found that TR.\J2 codes
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(

(

in particular provide a better coding gain than other low rate codes of similar rate.

The analysis of the effect of different codes on the number of users that a system can

support has shown the superiority of TR~I2 codes.

The capacity improvement carried by TR112 codes cornes at the cost of a larger

decoding complexity. Despite the fact that our rneasure of complexity is somewhat

simplistic, it is clear that TRwI2 codes are substantially more complex to decode

than the other low rate codes of similar rate (and poorer performance). For these

reasons, the investigation of sub-optimal decoding techniques might be useful. In

particular, aIl sub-optimum trellis search techniques. which have been widely studied

in the context of convolutional codes, can be used for TR~I2 codes. The complexity

of the FHTs can be reduced by using semi-soft decoding, whereby the received vector

is hard-quantized. The FHT implementation is then simpler, and the components

of the FHT output vector are integers over [-2m - L 2m - Il. The metrics to the

trellis search algorithm are then naturally quantized tom + 1 bits and can he further

quantized if needed by simple truncation of the least significant bit(s). Naturally,

the benefits of such an approach depend on the performance degradation versus the

reduction in complexity that can be achieved.
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Chapter 5

Conclusions and Recommendations

In this thesis we have addressed the problems of chip shaping and channel coding in

asynchronous DS-COJ\IA systems. vVe have derived a criterion for chip shapes which

quantifies their interference rejection capabilities while taking their bandwidth into

account. vVe also gave sorne quasi-optimal pulse shapes for a 95% energy containment

bandwidth. The important role that error control coding plays in CDl\IA was pointed

out and quantified. It was revealed that careful chip shaping combined with pow

erful error control carling could allow CO~IA to compete with other multiple access

schemes~ even in a single cell with :\\VGN and no other type of interference. which

strongly favors orthogonal multiple access schemes.

vVe have then focused our efforts to\vards the design of lo\\" rate error control codes

which would outperform the other known la\\' rate codes that had been proposed for

CD?\lA. The TR:\I codes presented in this thesis are the resuit of that effort. \Ye

discussed in the detail the construction of TR:"I codes~ bath from conceptual and

practical points of view~ thereby revealing the tradeoffs and constraints particular to

this class of codes. vVe aiso provided analyticai tools which allow the estimation of the

bit error probability of TR:\[ codes. In Chapter .-1. we used these tools in conjunction

\Vith computer simulations to show the improvement abtained with TR:\I codes over

the other low rate error control codes that \'le consider. l t \Vas shown that the impact

of such codes yield substantiai increases in system capacity~ of the order of 20 to 40%.

vVe aiso looked at the decoding complexity~ where it \Vas found that TR:\I codes

are in general more complex than the other codes. Sorne reduced-cornplexity decoding

methods were then suggested~ which might deserve to be further investigated.
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The analyses presented in this work were limited ta the A\\"GX channel and

approximations of the other-user interference by Gaussian noise. It is expected that

the coding gains exhibited on more realistic channel models are actually greater than

those obtained on the .-\.\\-GX channel. It wOllld be interesting ta quantify those

"realistic~~ coding gains. in the presence of multi-user interferenee not approximated

by Gaussian noise. multi-path fading. imperfect power control. \-arying number of

users. other-cell interference. etc...

Our work could also be generalized. for example by replacing the first-order Reed

~Iuller code by another code rich in structure. \\"hich could lead ta another family of

interesting codes..-\nother avenue that could be explored consists in the use of cosrt

leaders which are not neeessarily bent funerions. Indeed. the number of caser leaders

candidates in the TR.\f code constructions presented earlier is limited ta 2m
-

1
. For

example. instead of partitioning the Kerdock code into its first-order Reed-:\Iuller

cosets. one can also partition the second-arder Reed-.\Iuller code. R(2. m). inta its

2m (m-1 )/2 first-order Reed-:\I uller cosets. Along any incorrect state transition, the

minimum Hamming distance is at least 2m - 2
. _-\.lthough this is less than the 2m - l 

2T- 1 achievable with bent runctions as coset leaders, this alternatÎ\'e construction

has the following advantages

• A large number of coset leader candidates allowing for coset-selecting codes of

higher rate

• Odd \'alues of mare also permitted. \\'hich pro\-ides a greater flexibility in the

o\'erall coding rates

On the other hand. because of the shorter minimum Hamming distance on different

branches. it is predictable that the alternative codes might require coset-selecting

codes with a greater eonstraint length to achie\"e the same free distance as the TR:\I

codes presented earlier. This in turn would increase the complexity of the \Ïterbi

algorithm" Howe\"er. the linearity of the second-order ReEd-:\IulIer code might alla\\"

more efficient branch metric computations. which is the bottleneck in the decoding

complexity of TR~11 and TR~I2 codes.
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In summary. starting with a new approach ta the combinat ion of trellis and block

codes. we haye constructed low rate codes which are superior in performance to aIl

other lo\\" rate codes known to us. :\"eedless to say. there are many possible extensions

to the work reported in this thesis. in terrns of finer analysis. alternatiye decoding

schemes. and \'ariations or generalizations on the proposed TR~[ codes. It is my \,-ish

that the ideas presented in this thesis open up nev; directions in error control corling.

and help in funher impro\"ements and refinements in the search for good low rate

codes.
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Appendix A

A.l Computation of the Statistics of the Decision

Variable Yk

A.l.1 l\'Iean of the Decision Variable

The mean of the decision \-ariable is meaningful only when the transmitted infor-

mation is known. :\Iore precisely. we are interested in computing the mean of Yk

conditioned on II;;.

= E [1 (tI)(t-Dl ) cosO) - V'2J7(tlC-OS..:t) c
k

(t)dt

= E [1 (t V07J~x I)r c/ It-D, JC k It 1 COS 0) ) dt l'']
where we used the fact that 1](t j is independent of ail the other random quantities

in the expression of E~Yk Ik~. and that E~1]( t <= o. Interchanging iotegration (and

summation) with expectation.

1:\.21

(
where we used the mutual independence of the data. the spreading sequences. and

the random phases. 00 the other hand. the random \"ariable el (j ;.. J[.' is uniformly
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distributed on (O. 2iï]. if j i- -lJ. whereas B.\f = O. Hence.

{

1 j = 1.\1
E[cos Oj] =

o j i= JI

Therefore. recalling that n.\f = 1. \ve end up with

E[Yklxk] = ! t E[xrlxk]E[cirl(t) c1k)(t)] dt
r=-x

Let us examine the quantity

109

(.-\.3)

(AA)

E[c1rJ(t) c(kJ(t)j = E L~o C.\(.m~rl ptt - mTe - riTe)ËC.\(.n~kl pet - nTe - klTcl]

l-l l-l

= L L E[C;\f.m~d C.\f.n-kilp(t - mTc - rlTc)p(t - nTc - klTrJ (.-\.5)
m=On=O

~ote that the indices m + ri = n + kt if and only if m = n and r = k. Csing (2.1).

the aboye expression is non-zero only for r = k and we haye

(.-\.6)

:\Ioreover. since E(Xk IXk) = Xk. (:\.-1) reduces to

(.-\. ï)

The conditional mean of the decision \'ariable is then

(.-\.8)

(

A.l.2 Variance of the decision variable

\Ye start by computing the second moment of Yk!Xk.

E[Y~lxkJ - E [{! (~Xl(t + D)) cas6) + V27/(t) cos wt) c1k1(t) dt (.'...9)

x ! (fi Xm(T + Dm) cos 6m + V27/(T) COSWT) c1k)(T) dT } 1Xk]
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( Csing the independence of the noise from aIl the other random quantities in E[yilxkl

and the fact that the noise has a zero mean. we obtain

Replacing E[ry(t)T](T)] by ~e5(t - T). and using the inciependence between the data

and the spreading sequences. the thermal noise contribution /VTf becomes

NTf = l~O12E [(c(kl(t) cos2 wt/] dt

= ~o 1E [(dkl(t)f] dt + l~O 1E [(c(k)(t)f] cos 2wt dt -
.., ,.... .,

y ~

LEe 0 for w » liTe

Returning now to the full expression of the second moment of ?1kiIk' and replacing

the Xj(t)"s by their expansion in function of the data and the spreading sequences.

we get

J
JI JI x:

+ L L jo.Jo.m L {E[x).pxm.rlxk]E[cos 8) cos Om]}
)=1 m=l p.r=-x

E[c~P)(t+ D j ) C~)(T + Dm) c(k)(t) c(k)(r)] } dtdr (.-\.12)

Given that

E[cas Bj cos Bm ] - {~ ::~: ::~
o m::fij

(.-\.13)

\Ve ha,oe,

E[ ')1 1 1'10 1 rr .~l .ç.. E[ . 1· 1 E[ (pl (r) D.) (1:) () (1:)( )]
Yï.Xk =lEc2 + 2}} L- 0 ) L- XJ.pXJ.rXk, c) U+DJ}c) (7+ ) c t C ï,dtdï

)=1 p.r=-x ...
A](t.TI

( + Il f.. E[xpx.lx.] E[ C
lp) (t) c;') (T) Clk )(t) C'kl (T)] dt dT

p,r=-'X;

(:\.14)
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( The first term is the .-\.\VGN contribution. the second term is the ocr contribution

and the third term corresponds ta the contribution of the desired user. vVe have

[

I-L l-l

E ?; Cj,n-fpl pet - nTe - piTe + Dj) ~o Cj,m+rl p(r - mTe - riTe + D j )

l-L l-L ]
X ~ CM,u+klp(t - uTe - kLTc ) ?; C;\f.t'+kl p(r - vTc - kiTe ) (A.15)

I-L

L (...) X E[Cj,n+plCj.m+rlCM,u+klC;\l.u+kd (A.16)
n.m.u.t:=O

and with the understanding that j =1= J[ ~

{

n = m. U = v_ l r . p
E[Cj,n+plCj,m+rlC.i\.l.u+kICM,v+klJ = E[Cj,n+pICj,m+ptlE[CM.u+klCAf,u+kl]

o Othenvise

In the OUI contribution of (.-\.14L we can drop aIl the terms in double sum when

p =1= r. Hence. we can write

=

[

1-1 1-1 ]

E ~ pet - nTc - piTe + D j ) p(T - nTc - piTe + D j )~ p(t - uTc - kITc)p(T - uTc - klTc }

1-1 1 rT.:2: T Jo pet - (n + pl) Tc + ç) peT + (n + pl)Te + ç)p(t - (u + kl)Tc)p(T - (u + kl)Tc)dç
n.u=O c 0

(

since D j is uniformly distributed on [O~ Tc]. vVe notice that Aj(L r) does not depend

on j anymore (as long as j =1= Al). On the other hand. it depends on p. Let us then

define Bp(t~ r) = ..tj(t. r) as given above. .-\s p describes ZL. and n goes from 0 ta

[- L n + pl also describesZL. Thus.

x Xl 1-1 1 T.:ff L Bp(t, T)dtdT = ff L 2: Tc 1p(t - qTc + ç) peT + qTc + ç)p(t - (u + kl)Tc)p(T - (u + kl}Tc)dtdT
P=-'XI q=-oc u=O 0

l-l

= ; If! L pet + ç) peT + ç)p(t - (u + kl)Tc)p(T - (u + kl)Te)dE,dtdT (:\.17)
c u=o

\Ve perform a first change of variables x = t - (u + kl)Te and y = r - (u + kl)Tc .

00 l rrr I-L1/ L Bp(t~ r)dtdr = T. Jll L p(x + (u + kL)Tc +~) pey + ('ll + kl)Tc + ~)p(x)p(y)dé.dxdy
p=-oc c u=o

vVe continue with z = (u + kl)Tc + ç which yields

00 l 1- LIl 2: Bp(t, r)dtdr = T. /II L p(x + z) p(y + z)p(x)p(y)dzdxdy
p=-oo C u=o

= ;c JR~(z)dz (A.l8)
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where the last line is obtained by recognizing Rp(z) =: f p(x + :) p(x) dx as the

autocorrelation function of p( z). Since the Fourier transform of Rp ( z) is nothing but

the power spectral density IFp(f)12~ of p(t), we have by Parseval's equality

(A.19)

vVe can now go back to (:\.14), and write the second moment of the decision

variable as

1'" 1 ~[-[ l
E[Y~lxk] = LEcT + 2 L Ctj T. f IH(f)l'ldf + desired user contribution(A.20)

J:::1 c

\Ve can avoid the explicit ca1culation of the desired user contribution by noting that

if Qj =: 0 for j = 1.···, Al - 1. then the communications system is the familiar

BPSK system over an A\VGN channel. In particular. the variance of the decision

variable in the absence of noise (~Vo = 0) and ocr should be zero. Thus the other

user contribution must be the square of the conditional mean of the decision variable~

given explicitly by (lEc )2. vVe end up \Vith the following relations

where

(A.21)

(A.22)

.\'-1

,,(AI) == L Qj and
J:::1

(A.23)

(

and Eb = LEc is the energy per bit of the desired user when no channel corling is

used.
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( A.2 Shape Factor of Square Root Raised Cosine

Pulses

(A.25)

(A.24)

(A.26)

:\.S given in [13~ pp. 534-5361, the square-root raised cosine pulse Fourier transform

Fp(f) such that

1
EcTc 0 ~ Ifl ~ (1 - <5)/2Tc

IFp (f)/2 = EcIf [1 + cos Ef (lfl - ~:)] ~T: ~ Ifl ~ ~i-:

o III> ~i:

Using the even parity of IFp(f) 1
2 ~ the pulse shape factor is then

2 { 2 1 - J E~T; r;~; ( rrTc ( 1 - J) )2 }
Xp = E~Tc EcTc-2-+-4-)~"T: l+cos~ f- 2Tc dl

= 1 _ <5 + Tc~ [~rrTc f + 2 sin rrTc[1 _1 - 6] ~i~ + ~ sin 2rrTc (1 _1 ~ 6)] ;i:
2 rrTc 2 6 6 2Tc 1;::"2. 4 6 2Tc _

2Tc - ~

2Tc

3Tc <5 <5
- 1-6+-x- = 1--

4 Tc 4

vVe also use this opportunity to compute the bandwidth of the square root raised

cosine pulse. vVe will consider only the energy containment bandwidth~ i.e. the energy

band around 0 which contains a given fraction '7 of the total energy of the pulse. In

other wards. the bandwidth n" is such that

IFin: IFp (f)1
2 dl = TJEc

The left hand side of the above equatian is

f;:.lFp(f)1 2 = (1 - 6)Ec + EcTc(; [1 + cos "'~c (1 - 12;c
6

)] dl
= (1 _ 6)Ec + EcTc (w _1 - cS +~ sin rrTc (1 _1 - 6) lit" )

2Tc rrTc cS 2Tc !.=i
2Tc

= EcTcW + cSEc sin rrTc (w _1 - <5) (A.27)
2 rr 6 2Tc

(

Thus (.:\..26) becomes

<0} TcW + ~cos (J(TcW - D) = TI

The latter can be easily solved numerically for given values of cS" and Tl

(A.28)
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B.I Statistics of 1i(r®À')

(B.1)

Cov [1l(r:~~)] = E [1lT(r:~~/)1l(r:2A/)] - E [1l(r::-.;~/)]T E [1l(r::~A/)]

= 2- m E [H~(ll~~/)T(rrb~/)Hm]

[ (

<~tlll3~/> )

= 2-
m

E : 1 «ftln"~'>.···. <f2m Inc.;K» (B.2)

<~2mlrrgA>

Hence.

2tn 2m

Cov [1l(r.~A/)] kl - 2-m
E[<~klrr~~'><~lrr2~/>] = 2- rn E[L: CkunuÀ~ L qvnt:À~]

u=l L'::::l

(

2m 2m

= 2-m L L CkuqvÀ~À~ E[nunv ] =
u=lu=l ~

U-dul'

_ 2-m a 2 <~I~>

= {2-m
a

2 k= l
o Otherwise

(B.3)
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( B.2 Upper bound on P(d, l)

(

In this section. we find an upper bound on P(d.l) which will allow an easy evaluation

of (3.33). Let ~ be a codeword of sorne Reed-~Iuller coset code! represented by one

branch in the TR~I full trellis..-\.11 Reed-~-[uller coset codes (represented by the groups

of 2m + Lparallel branches in the TR:\f full trellis) which do not contain ~~ contain 2m

codewords at a Hamming distance WI = 2m
- L- 2m

/
2

-
1 from ç~ and 2m codewords at

a Hamming distance W2 = 2m
- L+ 2m

/ 2 - 1 from ç.

Consider now a path in the primary trellis with a modified distance d to the zero

path~ and which diverges from the zero path for [ > d branches. This path. when

mapped to the full TR~I trellis (refer ta Figure 3.5) ~ generates 2(m+ L)l paths. \Ve

wish ta find out the Hamming weight distribution of these 2(m+L)l paths.

Each of the d prirnary branches with a non-zero modified weight generates. in the

full TRNI trellis~ 2m branches \Vith a Hamming weight of LEL and 2m branches \Vith

a Hamming weight of W2. For a given distribution ofwL anciLL'2 in the d primary

branches~ there are then (2m )d different paths. The number of distinct distributions

with i occurrences of WL and d - i occurrences of 1.L'2 is just (~). Thus. arnong the

2(m+L)d paths generated by the d prinlary branches in question. there are (1) 2md

paths of weight i ml + (d - i)w.,!., (\vith i = O.··· ~ d).

The [- d remaining primary branches (\Vith il zero modified distance to the correct

path), generate (2m + 1 )l-d paths. Each primary branch is associated to 2m + Lfull trellis

branches~ one of Hamming weight O~ one of Hamming weight 2m +1 and 2m + 1
- 2 of

Hamming weight 2m (this corresponds to the weight distribution of the Reed-:\Iuller

code). Of the (2m +1)l-d full trellis paths~ there are then Cid) C-~-j) (2m + I _2)l-d-J -k

of Hamming weight k2m + 1 + (l- d - j - k)2m . This is obtained br noticing that there

are (ljd) ways of choosing j branches of Hamming weight 0 in a path of length [ - d.

Once these are chosen~ there are (l-~-j) ways of choosing k branches of Harnming

weight 2m +L• The remaining l - j - k branches must have Hamming weights of 2m .
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Putting it aIl togetheL we have

o

116

{

i = O.···.d

j = O.···.f - d

k = O~ ... . f _ d _ j (BA)

Otherwise

where A(i~ j, k~ d~ l) is the number of paths of length L modified weight d and Ham

ming weight iWl + (d - i)W2 + k2m + 1 + (l- d - j - k)2m . The probability of selecting

an incorrect prirnary trellis path can be upper bounded by using a union bound on

P(d: l). Let P{d: l) denote that upper bound.

P(d,l) = t ~ Ifi .-l(i, j, k. d.l)Q ()2(iW l + (d - i) W2 + k2~~: + (1- d - j - k)2
m )E')

1=0 j=O k=O

where the energy per channel syrnbol Es is related to the energy per data bit Eb and

the energy per codeword Ed by

E m+b+l E :::::
s - 2m b

\Ve then use (3.33) to obtain

(B.5)

m+l m+l x 1 _

Pb ~ b PR 1f + b (Pbent - PR1() "" "" d c(d.l)P(d.l)m+ +1' m+ +l . L- L-
l=cim! ci=dmr

m+l :x; 1 _ l x: 1 _

+ m + b + 1PR.\t L L c(d.l) IP(d.l) + m + b + 1 L L h(d.l)P(d.l) (8.6)
l=dmrd=dm! l=dm!d=dm!

In practice. the infini te sums in (B.6) are truncated to a finite number of terms.

ft is possible to obtain a simpler albeit 100ser upper bound on the bit error proba

bility. The idea is to consider that aIl branches ha\'e either a Hamming weight of zero

(if they belong to a primary branch of zero modified weight) or a Hamming weight

of Wl (if they belong to a primary branch with a modified \veight of 1). Then ?(d~ l)

becomes

( and we have

2
(m+l)IQ ( 2df 1.U1ES) d/lL'lE.. _dUItEs

~ e ~o e ~o

No

(B.7)

(B.8)
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where we used the relation (see for example [19. pp. 2-17])

Defining f(x) =Q( v'2X)eX~ we have

117

(8.9)

(B. 10)

The surns of (3.28) or of (3.33) can no\v be expressed in terrns of the modified

transfer function T(D, L~ f).

1. Indeed

(B.1l)

(B.12)

2. Similarly,

(B.13)

(B.14)

3. And finally. in the same \Vay,

oc

L13iP {i)
i=L

(

~aturally, (B.12-B.16) are valid provided the infinite SUffiS converge. Putting it aIl

together yields

Pt, ~ m:-: ~ 1PR.\( + m:-:~ 1f (df~oEs) {(Pb"n' - PR.\I) [D arc~~L l)] DI~<I~;;~';:~~o

[
8T(D, L, I)] 1 [8T(D~ L, I)] }+ PR ...! L aL _ - u.. ~E.! + --1 al __ lL'~E.! (B.17)

D-e . a m + D-t! . 0

f=I.L=2m + 1 f:l.L=Zm+l
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B.3 Upper Bound for TRMI Codes

\Vith TR~I1 codes~ the trellis structure and the coset leader mapping ensure that

there can be no path \vith a diverging length greater than its modified weight. Indeed

the only trellis branches of zero modified weight link a zero state to another zero

state. Hence~

{

a(d) d = l
c(d, l) =

o Otherwise

and h(d, l) =0 for d # l. ~oting that dl = 2~ (B.6) reduces to

(B.18)

R m+l
b ~ m+b+l [

PR.\( + Pbent t da(d) t A.(i. d. d)Piwl·Hrl-t) IL'~]
d=2 i=O

1 ':le d

+ b 2: h(d~ d) L A(i. d. d)Piwl +(d-i) W2

m + + 1 d=2 t=O

(B.19)

The number of paths at modified distance d from the correct path is

{

0 d = 1
a(d) =

(26 - l)d- 1 2 ~ d
(B.20)

Indeed~ for each of the first d - 1 branches, there are 26
- 1 possible state transitions

since the path cannat return ta the zero state. The last state transition on the other

hand. must return to the zero state.

The expressions for c( d~ l) and a(d) are aIsa easily derived from the transfer func

tion of (3.-l5L which can be rewritten as

verifying (B.20) and (B.18).

Let us now derive an expression for h(d~ d). First. without using the transfer

function~ we notice that the number of data sequences of length b and non-zero weight

j is

(

?Cl

= 2: nd Ld (26 - l)d-l

d=2

CU) _ {~D l$.j$.b

Otherwise

(B.21)

(B.22)
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Any path which has a modified distance of 2 from the zero path is generated by

only one non-zero data black of b bits. Hence yU. 2. 2) = ((j) . .-\ path with modified

distance 3 is generated by two consecutive non-zero data blocks of b bits. Thus.

2 :::; i :::; 2b
(B.23)

Otherwise

In generaL

(B.24)
. , 1t,g(k.d)(U - k) d:::; j :::; bd

g(J~ d + 1. d .or 1) = k=1

o Otherwise

Thus g(I d + 1. d + 1) is obtained from the con\'olution of g(i d. d) with (()). One

can view Px(x) =21(~)1 as the probability mass function (p.rn.f.) of a discrete random
d-l

. . bl '\" Th gU,d.d)· h f f}" - ""' \" h \" .. d clvarIa e .. \.. en (26_1)d-l IS t e p.rn.. 0 - L....- - i W ere - i are 1.1. . ran om
i=l

variables with p.m.f. Px(x). Hence~

h(d~d) = tjg(j,d,d) = 'fjg(j~d.d) = (2b _l)d- l E[Y] = (2b_l)d-lE[J~_-:X)]
J=1 )=d L

= (2b - l)d-l(d - I)E[.\'"d

= (2b _ 1)d-2(d _ 1)b2b- l (B.25)

D2L2
= b2b- 1 ')

[1 - DL(2b - l)t
=: b2

b
-

1
D

2
L

2
( a 1 )

2b - 1 ax 1 - ax x=DL.a=2b-l

b2b- 1D 2 L2
= (a + 2a2x + 3a3x 2 + ... + ia1x1

-
l + ... ) -DL -.)b_l2b _ 1 x_ .u-.

=: b2b- l L(d - 1)(2b - 1)d-2(DL)d (B.26)
d=2

.-\ direct long division from (3...15) can also be performed to derive the expression of

h(d~ d). Indeed.

()T(D. L. 1) 1

al 1=1

verifying (B.25). Substituting in (B.19L

m + 1 m + 1 ~ b d-l ~ .
Pb::; b 1PR.\( + b 1Pbent L- d(2 - 1) L....- 04('7.. d. d)Piwl ....(d-i) !L'~

m + + m + + d-d "-0- mf 1_

(
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( B.4 Matrices in the State Equations of TR~12 Codes

\Ye giye here the explicit form of the matrices and \-ectors in (3 ..5.5-3.-59))_ in terms

of the dummy \-ariables D. L. and Jo \\·e denote by St the state specified by the

state \-ector f!. such that the base-2 representation of i is (V(jVI "- "1I?}2· \\-e define the

function ~ (i) which associates ta each decimal integ-er i the last n bits of its base-2

representation. in \·ector forro. Farmally.

( .
~l) (ŒO·Œ:- •• - . Œn-l J

l'l-l

'"' fT .)n-l-]L- .J)_

]=()

18.281

\"aturally. if 1 < 2n
-

l
• then ŒO = 0 and 50 on. For example. Œ;i31 = /0_0.1.11. and

Œ~(l8i = (0.0.1.0)- From this definition. we ha\Oe that 0,_1'1} is the state w:,ctor

c:orresponding- ta St" Let k and 1 be such t hat Q..;_: (k) = f!.and f2h (1) = Q. Then

18029 1

If we stan off in state 50. any non-zerlJ input \-ectrJr g = 1 (1:. - ... (li) J. generates

a branch with a modified wr:ight of 1. )'forefJ\-er. this branch güps fr(Jm Sr: te) state

Sn. such that !Z.b-l (ni = Q. The Hamming v.-eight of the input seqllf:nCe generatin!; a

branch from 50 to Sn is then gh-en by _'r ni = IL
O H i '2..h-: in.i). From this. we ha\·e

1 = 1. .. -.2"'-: - 1 18.301

=;> ~ _ ·DLI. DLI_ DLJ2. DLI.··: T

Similarly. in going from 50 to St :

/8.:311

l = G. o. '.2&-1 - 1 18.32)

. T-T
- .DLI.~.

i8 ..33:

IB.34)

( Consider now going from sorne state St of Co or [·2 to S;. The input \-ector is the

alI-zero \"ector. The output depends on the specifie state St. but its modified weight
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is 1 regardless of the particular Si. Hence

lb = [DL~DL.··· .DL]T
, T '

and

121

(B ..35)

E 2 - [DL~DL.-.·.DL]T, ,...
2b - 1

(B.36)

Consider now a transition from S~u) E L~u to SY) E [.~v' \\~e have 0 ::; i < 2b- 1•

o ::; j < 2b
- 1. and (u. t') E {(o. 0L(O. 1). (1. 2). (1. 3). (2. 1). (2. 0). (3. 2). (3. 3) }. Let!L

be the state vector corresponding to S~u). and g be the input generating the transition

from sfu} ta sjv). Then !!.. = Qh+l (i + u2b-
1

) and ~ = Œ..b(j + v2b- 1
). For this transition.

the Hamming weight of the input vector is

__ { l+....:(j) L' =
{L'H (gJ = WH (fl.b (j + L'2b

-
1
))

..•.:(j) L' =

The corresponding treIIis code output vector is zero if

1.3

0.2
(B.3ï)

{ j + vZ
b

-
1 = 2(i + u2b- 1 ) and i + u2b- 1 < 2b- 1 if l is even

L(g~~) - 0 {::::}

j + v2b- 1 = 2( i + u2b- 1 ) + 1 and 2b- 1 ~ i + u2b- 1 < 2b if l is odd

{ j + vZ
b

-
1 = 2i and u = 0 if l is even

<=> (B.38)
j + v2b- 1 = 2i + 2b + 1 and u = l if l is odd

:\ote that if v 2: 2. then j + v2b
- L 2: 2b

• whereas 2i < 26
• ..\Iso. if l' < 2. then

j + v26- 1 < 2b~ whereas 2i + 2b + 1 2: 2b + 1. Hence. for a transition from S;uJ to Sjl').

the output of the trellis code is zero if

{

j + v2b- 1 = 2i U

j+v2b-
1 = 2i+2b +1 u

o L' < 2 J even

1 L' 2: 2 j odd
(B.39)

Given (B.3ï) and (B.38L one can now construct aIl the matrices Tul:-

(
{

L[;.lU) j = 2'i
[Too 1ji =

D L[,.;(j) Otherwise
o< i < 2b

- 1 ~ 0 < j < 2b
- 1 (B.-10)
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o < i < 2b
-

1
• 0 ~ j < 2b

- l (B.-t1)

= {

and for u > 1.

j == 2i + 1

DLP.;fJ) Othenvise

j + 2b-
1 == 2i + 1

o~ i < 2b
-

1.0 ~ j < 2b
-

1 (B.-t3)

L' == 0.2
(B.-t~)

1.: == 1..3

(

or. more precisely.

ry, 1 DLI~'(]) o<. .)b-l o < j < 2b
-

1 (B.-t5)L 201]i - _z<_ .

[T21 ]]i DLr.:(j)-1 o~ i < 2b
-

1
. o ~ j < 2b

-
1 (BA6)

[T12 1J i
DLI~'(j) o < - .)6-1 o<. .)b-1 (8.-t7)_z<_ . _J<-

[T13Lr DLr':(J)-l o~ i < 2b
-

1
• o ~ j < 2b

-
1 (BA8)
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Appendix C
In this appendi."\: we give the simulation results used in our plots. The lowest bit error

rate estimates are not very reliable! because of the larger standard deviation

TRlVH Code. b = 2.m = 6

Eb/1Vo (dB) 0.0 1.15 2.3 3.45 4.6

Pb.trellis 3.1 10-2 4.7 10-3 3.0 10-4 1.0 10-5 1.6 10-;

Pm+l 6.0 10-2 1.5 10-2 2.3 10-3 2.1 10-4 8.1 10-6

Paverage 5...1 10-2 1.3 10-2 1.8 10-3 1.7 10-4 6.4 10-6

Table C.I: Bit error rates of TR.\II code with b = 2. m = 6

TRlvl2 Code. b = 4. m = 6

Eb/No (dB) 0.0 1.33 2.67 4.0

Pb.trellis 7.7 10-2 4.0 10-:1 4.7 10-') 5.2 10-~

Pm~L 6.7 10-2 5.9 10-:1 2.2 10-4 .5.4 10- fi

Paverage 7.1 10-2 5.2 10-3 1.6 10-4 3.4 10-6

Table C.2: Bit error rates of TR~I2 code with b = -1. m = 6

TRJ.\f2 Code! b = 8, m = 12 TRN[2 Code. b = 9.1n = 12

Eb/No (dB) 0.0 0.9 1.8 0.0 0.7 1...1

Pb,trellis 2.2 10-2 5.0 10--1 3.1 10-6 1.9 10-2 9.3 10-4 1.0 10-.1

Pm+l 1.7 10-2 7.2 10--1 2.4 10-5 lA 10-2 1.1 10-3 4.0 10-5

Pa...erage 1.9 10-2 6...1 10-4 1.6 10-5 1.6 10-2 1.0 10-3 2.8 10-.1

Table C.3: Bit error rates of TR~12 code with m = 12~ b = 8 and 9.
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