© American Psychological Association, 2023-02-01. This paper is not the copy of record and may not exactly replicate the authoritative document published in the APA journal. Please do not copy or cite without author's permission. The final article is available at DOI:10.1037/pas0001181

1 Comparison of the accuracy of the 7-item HADS Depression subscale and 14-item total 2 HADS for screening for major depression: a systematic review and individual participant 3 data meta-analysis 4 5 Abstract 6 The 7-item Hospital Anxiety and Depression Scale Depression subscale (HADS-D) and 7 the total score of the 14-item HADS (HADS-T) are both used for major depression screening. 8 Compared to the HADS-D, the HADS-T includes anxiety items and requires more time to 9 complete. We compared the screening accuracy of the HADS-D and HADS-T for major 10 depression detection. We conducted an individual participant data meta-analysis and fit bivariate 11 random-effects models to assess diagnostic accuracy among participants with both HADS-D and 12 HADS-T scores. We identified optimal cutoffs, estimated sensitivity and specificity with 95% 13 confidence intervals (CIs), and compared screening accuracy across paired cutoffs via two-stage 14 and individual-level models. We used a 0.05 equivalence margin to assess equivalency in 15 sensitivity and specificity. 20,700 participants (2,285 major depression cases) from 98 studies 16 were included. Cutoffs of \geq 7 for the HADS-D (sensitivity 0.79 [0.75, 0.83], specificity 0.78 17 [0.75, 0.80] and ≥ 15 for the HADS-T (sensitivity 0.79 [0.76, 0.82], specificity 0.81 [0.78, 18 0.83]) minimized the distance to the top-left corner of the receiver operating characteristic curve. 19 Across all sets of paired cutoffs evaluated, differences of sensitivity between HADS-T and 20 HADS-D ranged from -0.05 to 0.01 (0.00 at paired optimal cutoffs), and differences of 21 specificity were within 0.03 for all cutoffs (0.02 to 0.03). The pattern was similar among 22 outpatients, although the HADS-T was slightly (not non-equivalently) more specific among

- 23 inpatients. The accuracy of HADS-T was equivalent to the HADS-D for detecting major
- 24 depression. In most settings, the shorter HADS-D would be preferred.
- 25 Keywords: HADS-D, HADS-T, individual participant data meta-analysis, depression
- 26 screening, diagnostic accuracy

27 **Public significance statements:**

- 28 The present study suggests that the accuracy of 14-item Hospital Anxiety and Depression Scale
- 29 (HADS-T) and the 7-item HADS Depression subscale (HADS-D) are equivalent for detecting
- 30 major depression. Using the 7-item HADS-D for depression screening instead of the full 14-item
- 31 HADS-T has minimal influence on performance of the measure but would reduce patient and
- 32 participant burden in most clinical and research settings.

34	The 14-item Hospital Anxiety and Depression Scale (HADS) (Zigmond & Snaith, 1983)
35	was developed to facilitate the identification of anxiety disorders and major depression in people
36	with a physical illness. The HADS includes two subscales. The 7-item Depression subscale
37	(HADS-D) was designed to assess continuous depressive symptoms and for depression
38	screening, whereas the 7-item Anxiety subscale (HADS-A) was designed to assess and screen for
39	anxiety (Zigmond & Snaith, 1983). Both HADS-D and full HADS total scores (HADS-T) have
40	been used to screen for major depression (Mitchell, Meader, & Symonds, 2010; Vodermaier &
41	Millman, 2011). The HADS-T takes more time to complete and includes anxiety items not
42	specific to depression. Some have suggested, though, that anxiety symptoms should be
43	considered when assessing depression (Schatzberg, 2019). Furthermore, previous reviews have
44	provided some preliminary evidence that HADS-T may perform better than the HADS-D
45	(Mitchell, Meader, & Symonds, 2010; Vodermaier & Millman, 2011).
46	Commonly used HADS-D cutoff thresholds of ≥ 8 for "possible" depression and ≥ 11 for
47	"probable" depression were established in the original validation study, which included only 100
48	participants (11 depression cases) (Zigmond & Snaith, 1983). A recent individual participant
49	data meta-analysis (IPDMA) on HADS-D accuracy to screen for major depression (101 studies;
50	22,574 participants; 2,549 major depression cases) found that a cutoff of \geq 7 maximized
51	combined sensitivity and specificity across reference standards; standard cutoffs of ≥ 8 and ≥ 11
52	were less sensitive but more specific (Wu, Levis, Sun, et al., 2021). There is not a standard cutoff
53	for screening to detect major depression with the HADS-T.
54	Two previous meta-analyses, both done with studies of cancer patients, have indirectly
55	compared the HADS-D and HADS-T for detecting major depression (Mitchell et al., 2010;
56	Vodermaier & Millman, 2011). Both searched through October 2009 for eligible studies. One

57	evaluated 9 studies that used the HADS-D with a cutoff of 8 or greater and 6 studies that used
58	the HADS-T with a cutoff of 15 (number of participants not reported) (Mitchell et al., 2010),
59	whereas the other included 2-5 studies each in analyses of HADS-D cutoffs of 7, 9, and 11 and
60	HADS-T cutoffs of 15, 17, 19 and 20 (470 to 872 participants per analysis) (Vodermaier &
61	Millman, 2011). Both meta-analyses suggested that the HADS-T may perform better than the
62	HADS-D, but there was a high level of uncertainty due to indirect comparisons between
63	participants from different studies that reported HADS-D and HADS-T results, the small number
64	of total participants, and possible selective outcome reporting bias (Levis et al., 2017; Neupane
65	et al., 2021; Rice & Thombs, 2016; Thombs et al., 2011; Thombs & Rice, 2016) since not all
66	primary studies reported results from the same cutoffs.
67	Using the full 14-item HADS-T for depression screening would be warranted if it is
68	sufficiently more accurate than the shorter 7-item HADS-D to justify the additional time and
69	patient burden involved. We previously assessed the accuracy of the HADS-D using IPDMA
70	(Wu, Levis, Sun, et al., 2021). IPDMA involves a standard systematic review, followed by
71	synthesis of original research data from primary studies, rather than extracting summary data
72	(Riley, Lambert, & Abo-Zaid, 2010). In that IPDMA, we found that diagnostic accuracy of
73	HADS-D was not significantly different for any cutoffs across reference standards based on
74	participant characteristics, including age, sex, cancer diagnosis, country human development
75	index levels, participant recruitment settings, or the study's risk of bias ratings (Wu et al., 2021).
76	In the present study, we included studies from the HADS-D IPDMA where HADS-T scores were
77	provided or could be calculated from individual item scores. Our objectives were to (1) directly
78	compare screening accuracy of the HADS-T and HADS-D for major depression detection using
79	the same participant data across all studies regardless of reference standard, and (2) replicate the

80	comparison among studies that used a semi-structured diagnostic interview [e.g., Structured
81	Clinical Interview for the DSM (SCID) (First, 1995)] as a reference standard, since semi-
82	structured interviews more closely reflect the actual diagnostic process than fully-structured
83	interviews.
84	Methods
85	The present study used a subset of studies and participants from our previously conducted
86	HADS-D IPDMA (Wu, Levis, Sun, et al., 2021) for which HADS-T scores were also available.
87	Analyses of HADS-D and HADS-T diagnostic accuracy were conducted according to the
88	HADS-D IPDMA methods (Wu, Levis, Sun, et al., 2021) with the addition of analyses to
89	directly compare HADS-D and HADS-T accuracy.
90	Dataset eligibility
91	For the main HADS-D meta-analysis, datasets from articles in any language were eligible
92	for inclusion if (1) they included diagnostic classification for current Major Depressive Disorder
93	(MDD) or Major Depressive Episode (MDE) using Diagnostic and Statistical Manual of Mental
94	Disorders (DSM) (American Psychiatric Association, 1987; 1994; 2000; 2013) or International
95	Classification of Diseases (ICD) (World Health Organization (WHO), 1992) criteria based on a
96	validated semi-structured or fully structured interview; (2) they included total scores for the
97	HADS-D; (3) the diagnostic interview and HADS-D were administered within two weeks of
98	each other, because DSM and ICD major depression diagnostic criteria specify that symptoms
99	must have been present in the last two weeks; (4) participants were ≥ 18 years of age and not
100	recruited from youth or psychiatric settings; and (5) participants were not recruited because they
101	were identified as having symptoms of depression, since screening is done to identify previously
102	unrecognized cases. We focused on MDD and MDE because major guidelines on depression

103 screening have focused on screening for major depression but have not considered screening for 104 less severe conditions, such as dysthymia or persistent depressive disorder, for which treatment 105 options and effectiveness are much less well delineated (Joffres et al., 2013; National 106 Collaborating Centre for Mental Health (UK), 2010; Siu & US Preventive Services Task Force, 107 2016). Consistent with this, few primary studies collect or report diagnostic status for dysthymia 108 or persistent depressive disorder. Datasets where not all participants were eligible were included 109 if primary data allowed selection of eligible participants. For the present study, we only included 110 primary datasets from the HADS-D IPDMA that also provided HADS-T scores or item scores to calculate HADS-T scores. 111

112 Search strategy and study selection

113 A medical librarian searched Medline, Medline In-Process & Other Non-Indexed Citations 114 and PsycINFO via OvidSP, and Web of Science via ISI Web of Knowledge from inception to 115 October 25, 2018 using a peer-reviewed (McGowan, Sampson, Salzwedel, Cogo, Foerster, & 116 Lefebvre, 2016) search strategy (Supplementary Methods A). We also reviewed reference lists of 117 relevant reviews and queried contributing authors about non-published studies. Search results 118 were uploaded into RefWorks (RefWorks-COS, Bethesda, MD, USA). After de-duplication, 119 unique citations were uploaded into DistillerSR (Evidence Partners, Ottawa, Canada) for 120 tracking search results.

Pairs of investigators independently reviewed titles and abstracts for eligibility. If either
deemed a study potentially eligible, full-text review was done by two investigators,

independently, with disagreements resolved by consensus, consulting a third investigator when
 necessary. Translators were consulted for languages other than those for which team members
 were fluent.

126 Data contribution, extraction, and synthesis

127 Authors of eligible datasets were invited to contribute de-identified primary data. We 128 emailed corresponding authors of eligible primary studies at least three times, as necessary. If we 129 did not receive a response, we emailed co-authors and attempted to contact corresponding 130 authors by phone.

131 Diagnostic interview and country were extracted from published reports by pairs of 132 investigators independently, with disagreements resolved by consensus. Countries were 133 categorized as "very high", "high" or "low-medium" development based on the United Nation's 134 Human Development Index (HDI) for the country for the year of the study publication. The HDI 135 is a statistical composite index that includes indicators of life expectancy, education, and income 136 (United Nations Development Programme, 2020). Participant-level data included age, sex, 137 participant recruiting setting, HADS-D scores, HADS-T scores, and major depression status 138 (case or non-case). For defining major depression, we considered MDD or MDE based on the 139 DSM or ICD. If more than one was reported, we prioritized MDE over MDD (because screening 140 would attempt to detect depressive episodes and further interview would determine if the episode 141 is related to MDD, bipolar disorder or persistent depressive disorder). We also prioritized DSM 142 over ICD because most studies use DSM criteria.

Individual participant data were converted to a standard format and synthesized into a single dataset with study-level data. We compared published participant characteristics and diagnostic accuracy estimates with results from raw datasets and resolved any discrepancies in consultation with primary study investigators.

147 **Risk of Bias Assessment**

148Risk of bias of included studies was assessed by two investigators independently using149the QUality Assessment of Diagnostic Accuracy Studies-2 tool (QUADAS-2; Supplementary150Methods B) (Whiting et al., 2011). Any discrepancies were resolved via consensus with a third151investigator involved as necessary. Risk of bias was coded at both study and participant levels152since some classifications (e.g., the time between index test and reference standard) may have153differed among participants from the same study. The QUADAS-2 results were used to describe154the risk of bias of each included study.

155 Statistical Analyses

156 To compare the screening accuracy of the HADS-D and HADS-T across relevant cutoffs to 157 detect major depression, we first estimated overall sensitivity and specificity for HADS-D and 158 HADS-T by combining all studies regardless of reference standard. Reference standards used in 159 primary studies included semi-structured interviews (e.g., SCID (First, 1995)), fully structured 160 interviews (the Mini International Neuropsychiatric Interview (MINI) excluded) (e.g., Composite 161 International Diagnostic Interview (CIDI) (Robins et al., 1988)), and the MINI (Lecrubier et al., 162 1997; Sheehan et al., 1997). Different types of reference standards have different design and 163 performance characteristics (Levis, Benedetti, et al., 2019; Levis et al., 2020; Wu, Levis, 164 Ioannidis, et al., 2021; Wu, Levis, Sun, et al., 2020), and estimates of sensitivity and specificity 165 differ by type (Negeri, et al., 2021; Levis, Benedetti, et al., 2019; Levis et al., 2020; Wu, Levis, 166 Sun, et al., 2021). It is reasonable to assume, though, that differences in sensitivity and 167 specificity between HADS-D and HADS-T accuracy among the same participants are not 168 associated with reference standard type, since in each primary study the HADS-D and HADS-T 169 were compared to the same reference standard. Thus, our main analysis included all studies 170 regardless of reference standard.

171	Separately, as a sensitivity analysis, to ensure that results would not differ by clinical
172	interview, we repeated all analyses for only studies that used a semi-structured interview as the
173	reference standard. Semi-structured interviews (e.g., SCID (First, 1995), Schedules for Clinical
174	Assessment in Neuropsychiatry (WHO, 1994), Schedule for Affective Disorders and
175	Schizophrenia (Endicott & Spitzer, 1987), and Monash Interview for Liaison Psychiatry (Clarke,
176	Smith, Herrman, & McKenzie, 1998)) are intended to be administered by experienced
177	diagnosticians and are considered to more closely reflect clinical diagnostic procedures than fully
178	structured interviews or the MINI (Brugha, Bebbington, & Jenkins, 1999; Brugha, Jenkins, Taub,
179	Meltzer, & Bebbington, 2001; Nosen & Woody, 2008). We did not conduct additional sensitivity
180	analyses with fully structured interviews or the MINI.
181	Overall and separately, for studies that used a semi-structured reference standard, for all
182	possible cutoffs 0-21 of the HADS-D and 0-42 of the HADS-T, we fitted bivariate random-
183	effects models via Gauss-Hermite quadrature (Riley, Dodd, Craig, Thompson, & Williamson,
184	2008). This is a two-stage meta-analytic approach that models sensitivity and specificity
185	simultaneously and accounts for the correlation between them and the precision of estimates
186	within studies. We also constructed empirical receiver operating characteristic (ROC) plots based
187	on pooled sensitivity and specificity estimates and calculated area under the curves (AUC) for
188	the two tests.
189	To investigate heterogeneity across studies, overall and for studies with a semi-structured
190	reference standard, we generated forest plots for the differences in sensitivity and specificity
191	estimates between the HADS-D and HADS-T for the optimal cutoffs based on pooled results.
192	We also quantified heterogeneity at the optimal cutoffs for the HADS-D and HADS-T by

193 reporting the estimated variances of the random effects for the differences in the HADS-D and

HADS-T sensitivity and specificity (τ²) (Fagerland, Lydersen, & Laake, 2014; Higgins &
Thompson, 2002).

196 To compare the diagnostic accuracy of the HADS-D and HADS-T, using the analyses 197 that pooled across reference standards and within semi-structured reference standard category, 198 we first calculated the differences of the AUCs with 95% confidence intervals (CIs). Second, we 199 compared the ROC plots visually to determine if one measure consistently perform better than 200 the other across cutoffs. Third, we compared differences in sensitivity and specificity for optimal 201 cutoffs and other cutoffs close to the optimal cutoff to determine if there were differences and the 202 magnitude of any differences. To do this, we identified the optimal cutoff that minimized the 203 values of the distance to the top-left corner of the ROC curves (NCSS, 2017) for both HADS-D 204 and HADS-T and a set of other cutoffs that were close to the optimal cutoff. The distance to the 205 top-left corner of the ROC curve for each cutoff value is calculated by d = $\sqrt{(1-\text{Sensitivity})^2+(1-\text{Specificity})^2}$ (NCSS, 2017). Since there is no *a priori* method to align 206 207 cutoffs on the HADS-D and HADS-T that perform most similarly in terms of sensitivity and 208 specificity, we did this based on examination of results and consensus among investigators. 209 Then, we compared the sensitivity and specificity between the HADS-D and HADS-T for pairs 210 of optimal cutoffs and four other pairs of cutoffs close to the optimal; the interval between 211 cutoffs for HADS-T was 2 instead of 1 because HADS-T doubled the length and the total score 212 of HADS-D. For all cutoffs on the HADS-D and HADS-T, 95% CIs for the differences between 213 HADS-D and HADS-T sensitivity and specificity were constructed via a cluster bootstrap 214 approach (Van der Leeden, Busing, & Meijer, 1997; Van der Leeden, Meijer, & Busing, 2008) 215 with resampling at the study and subject level. For each comparison, we ran 1000 iterations of

the bootstrap. For each bootstrap iteration, the bivariate random-effects model was fitted to the

HADS-D and HADS-T data, and the pooled sensitivities and specificities were computed
separately, as described above, for all cutoffs of HADS-D and HADS-T.

219 In addition to comparing the HADS-D and HADS-T with pooling of study-level results, 220 as a sensitivity analysis, we compared sensitivity and specificity of the HADS-D and HADS-T 221 across cutoffs via an individual-level analysis. For the individual-level analysis, for each pair of 222 matched HADS-D and HADS-T cutoffs, we fitted a linear mixed model with the difference 223 between the HADS-D and HADS-T screening results as the outcome. The screening result is 224 dichotomous, either positive = 1 or negative = 0. If the HADS-T screening result was positive 225 (which was 1), but HADS-D was negative (which was 0), the outcome, i.e., the difference 226 between HADS-T and HADS-D results, was 1 - 0 = 1; if both screening results were positive or 227 negative, the outcome was 0(1 - 1 or 0 - 0); and if the HADS-T screening result was negative, 228 but HADS-D was positive, the outcome was -1 (0 - 1 = -1). This model modeled the differences 229 in sensitivity and specificity simultaneously and included random effects both at the study level. 230 From this model, for each set of HADS-D and HADS-T paired cutoffs, we estimated the 231 difference in sensitivity and specificity between the two tests and associated CIs. These CIs from 232 the bootstrap approach and individual-level analysis allowed us to test whether the sensitivity 233 and specificity of the HADS-T is equivalent to that of the HADS-D based on a pre-specified 234 equivalence margin of $\delta = 0.05$ (Walker & Nowacki, 2011), as we have done in previous studies 235 (Harel et al., 2021; Ishihara et al., 2019; Wu, Levis, Riehm, et al., 2020). 236 As a sensitivity analysis, we compared accuracy of HADS-D and HADS-T results 237 stratified by subgroups based on inpatient and outpatient care settings (we planned to conduct 238 sensitivity analysis in each participant recruit setting, separately, but we were able to do this only 239 for inpatient and outpatient medical settings because there were too few participants from non-

medical and mixed inpatient/outpatient settings). In addition, we conducted a subgroup analysis
only among patients from cancer studies because meta-analyses (Mitchell et al., 2010;
Vodermaier & Millman, 2011) of studies from cancer care settings reported that the HADS-T
may perform better than the HADS-D in those settings. We did not conduct the sensitivity
analysis to assess whether inclusion of published results from the eligible studies that did not
provide raw data influenced results because we did this in the main HADS-D IPDMA and found
no differences (Wu et al., 2021).

247 To examine whether measurement differences across participant characteristics, 248 including country, may have influenced our results, we assessed whether sensitivity and 249 specificity differed for the HADS-D based on these characteristics, and then, we re-examined 250 HADS-D and HADS-T differences for any variables where differences were found. To assess 251 possible influences on sensitivity and specificity, we conducted one-stage meta-regressions. In 252 the first step, we repeated the analysis that we did in the main HADS-D IPDMA by interacting 253 all subgrouping variables (age [measured continuously], sex [reference category = female]), 254 country HDI level [reference category = very high], cancer diagnosis [reference category = no], 255 participant recruiting setting [reference category = inpatient specialty care], interactions of 256 QUADAS-2 signaling item responses [reference category = low risk] with logit (sensitivity) and 257 logit (1 – specificity) of the HADS-D (Wu et al., 2021). We conducted these analyses separately 258 by reference standards (semi-structured interview, fully structured interview, MINI), since these 259 types of interviews have been shown to identify different individuals (Wu et al., 2021). In the 260 second step, we added country/language variables to the model (Germany, Spain, Lithuania, 261 Norway, Korea, Japan [reference category = English speaking countries]). These models were 262 restricted to the subset of the studies from countries with more than 500 participants that had

complete data for all relevant variables and used a semi-structured interview or the MINI (there
were not enough data for the studies that used a fully structured reference standard). Country
HDI level was dropped from the model because all countries included in this analysis had very
high HDI. For any variables that were found to be associated with the sensitivity or specificity
across all cutoffs, we compared accuracy of HADS-D and HADS-T results stratified by
subgroups based on these variables.

All analyses were run in R (R version R 3.5.0 (R Core Team, 2020) and R Studio
version 1.1.423 (RStudio Team, 2020)) using the lme4 package (Bates, Maechler, Bolker, &
Walker, 2015).

272 Registration and Protocol

The main HADS-D IPDMA was registered in PROSPERO (CRD42015016761), and a protocol was published (Thombs et al., 2016). The present study was not included in the protocol for the main HADS-D IPDMA, but a separate protocol was developed and posted online prior to initiating the study (<u>https://osf.io/438ak/</u>).

277 Data Availability

278 Data contribution agreements with primary study authors do not include permission to

279 make their data publicly available, although the dataset used in this study will be archived

- 280 through a McGill University repository (Borealis,
- 281 https://borealisdata.ca/dataverse/depressdproject/). The R codes used for the analysis will be
- 282 made publicly available through the same repository. Requests to access the dataset to verify
- study results but not for other purposes can be sent to the corresponding authors via the "Access"
- 284 Dataset" function on the repository website.
- 285

Results

286 Search Results and Inclusion of Primary Data

287 For the main HADS-D IPDMA, of 14,465 unique titles and abstracts identified from the database search, 13,895 were excluded after title and abstract review and 330 after full-text 288 289 (Supplementary Table A), leaving 240 eligible articles with data from 165 unique participant 290 samples (Supplementary Figure A). Of the 165 unique samples, 93 (56%) contributed data (66% 291 of eligible participants). In addition, authors of included studies contributed data from 10 studies 292 that were unpublished or did not come up in the search, for a total of 103 HADS-D datasets 293 contributed to our IPDMA. Five studies without HADS individual item scores or separate total 294 scores for the HADS-D and HADS-T were excluded from the present study (see Supplementary 295 Table B2). Thus, 20,700 participants (2,285 major depression cases) from 98 studies were 296 analyzed (91% of 22,755 participants from the 103 HADS-D datasets). Included study 297 characteristics are shown in Supplementary Table B1. Characteristics of eligible studies that did 298 not provide data, including the five studies excluded because they only provided HADS-D or 299 HADS-T total scores, are shown in Supplementary Table B2. 300 Of 98 included studies, 58 used semi-structured interviews to assess major depression 301 (10,311 participants), including 54 that used the SCID (9,676 participants); 31 used the MINI 302 (7,445 participants); and 9 used other. Participant characteristics are shown in Table 1. 303 Supplementary Table C shows QUADAS-2 ratings for included studies. There were only 304 11 studies with "low" risk of bias rating across all QUADAS-2 domains. 305 **Comparison of Screening Accuracy Between the HADS-D and HADS-T** 306 ROC plots comparing sensitivity and specificity estimates for all cutoffs between the 307 HADS-D (0-21) and HADS-T (0-42) among all included studies are shown in Figure 1. A large 308 part of the plots for the HADS-D and HADS-T were overlapping. The HADS-T performed better

309	than HADS-D at some cutoffs, but this pattern was not consistent across cutoffs. The AUCs for
310	the HADS-D and HADS-T were similar among all studies (0.853 versus 0.872). We also
311	compared the ROCs among studies that used a semi-structured reference standard and found a
312	similar pattern (Supplementary Figure B).
313	Based on the pooled sensitivity and specificity across all HADS-D and HADS-T cutoffs,
314	among all studies, the cutoff that minimized the values of the distance to the top-left corner of
315	the ROC curves was \geq 7 for the HADS-D (sensitivity [95% CI] = 0.79 [0.75, 0.83], specificity
316	$[95\% \text{ CI}] = 0.78 \ [0.75, 0.80])$ and ≥ 15 for the HADS-T (sensitivity $[95\% \text{ CI}] = 0.79 \ [0.76,$
317	0.82], specificity [95% CI] = 0.81 [0.78, 0.83]) (Table 2).
318	The comparison of sensitivity and specificity between the HADS-D and HADS-T for the
319	optimal cutoffs (HADS-D \geq 7 vs. HADS-T \geq 15) and other cutoffs close to the optimal cutoffs (\geq
320	5 vs. ≥ 11 ; ≥ 6 vs. ≥ 13 ; ≥ 8 vs. ≥ 17 ; ≥ 9 vs. ≥ 19 ; ≥ 10 vs. ≥ 21 ; and ≥ 11 vs. ≥ 23 are presented
321	in Table 2. Overall, for the pairs of optimal cutoffs or other cutoffs close to the optimal, the
322	differences in sensitivity and specificity between HADS-D and HADS-T using the bootstrapping
323	approach across all 98 primary studies were small. Precision of estimates was high, and the
324	width of 95% CIs ranged from 5% to 9% for sensitivity and 2% to 4% for specificity across all
325	cutoffs examined. For sensitivity, the differences of HADS-T – HADS-D for all pairs of cutoffs
326	were not statistically significant (the differences were between -0.05 and 0.01, CIs were within
327	or overlapped with the range of -0.05 and 0.05). Therefore, at five pairs of optimal cutoffs or
328	other cutoffs close to the optimal, the sensitivity of the HADS-T was equivalent to that of the
329	HADS-D; the equivalency was indeterminant on the other two pairs, based on the pre-specified
330	equivalence margin of $\delta = 0.05$. For specificity, estimates of HADS-T were equivalent to HADS-
331	D for all seven pairs of cutoffs (the differences of HADS-T – HADS-D were between 0.02 and

0.03; CIs were all within -0.05 and 0.05). Relevant results among studies that used a semistructured reference standard were consistent with overall estimates (Supplementary Table D1).
The comparison of results via individual-level analysis are presented in Table 3. For each
pair of matched HADS-D and HADS-T cutoffs, the differences in sensitivity and specificity
between the two tests were similar to those from the bivariate random-effects models. This was
also true among studies that used a semi-structured reference standard (Supplementary Table
D2).

339 Among participants in inpatient care settings (Table 4a; 8,827 participants from 38 340 studies), the comparison results of HADS-T – HADS-D in sensitivity were similar to the overall 341 estimates; the differences in specificity were slightly larger than overall estimates, however, the 342 95% CIs generally overlapped with -0.05 and 0.05 and were classified as indeterminate to 343 equivalency, with one exception (HADS-D \geq 6 vs. HADS-T \geq 13) for which HADS-T specificity 344 was greater than for the HADS-D. The comparison results among participants in outpatient care 345 settings (Table 4b; 9,547 participants from 54 studies) and participants from studies done in 346 cancer care settings (Supplementary Table E; 5608 participants from 23 studies) were similar to 347 overall estimates. Within the semi-structured reference standard category, similar patterns were 348 found (Supplementary Tables D3 and D4).

The meta-regression results indicated no significant differences in sensitivity and specificity were found for any individual participant characteristics or risk of bias ratings (Supplementary Table F1-F3). After adding the country/language variables to the model, the sensitivity and specificity of HADS-D was invariant based on all variables across reference standards except that specificity estimates of the HADS-D were associated with Germany and Spain among studies that used a semi-structured reference standard; specifically, the HADS-D

had lower specificity among participants from Germany and Spain compared to studies donewith participants from English speaking countries (Supplementary Table G1-G2).

357 Therefore, we conducted subgroup analysis of our comparisons of HADS-D and HADS-T 358 accuracy for participants from Germany or Spain. For each pair of matched HADS-D and 359 HADS-T cutoffs among participants from Germany (Supplementary Table H1), the comparison 360 results of HADS-T – HADS-D in sensitivity and specificity were similar to the overall estimates; 361 among participants from Spain (Supplementary Table H2), differences in specificity were 362 slightly larger than overall estimates, however, the 95% CIs all overlapped with -0.05 and 0.05 363 and were classified as indeterminate to equivalent, and differences in sensitivity were similar to 364 the overall estimates.

A forest plot of the differences of sensitivity and specificity estimates for HADS-D \geq 7 vs. HADS-T \geq 15 across all studies is shown in Figure 2. At the optimal cutoffs, there was low heterogeneity in the differences between HADS-D and HADS-T across the 98 studies with estimated inter-study heterogeneity (τ^2) < 0.01 for sensitivity and < 0.01 for specificity. The forest plot of the differences of sensitivity and specificity estimates at optimal cutoffs for the HADS-D and HADS-T among studies that used a semi-structured reference standard is shown in Supplementary Figure C.

372

Discussion

We assessed the equivalency of screening accuracy of the HADS-D and HADS-T across all cutoffs to detect major depression and compared accuracy across paired optimal cutoffs and other cutoffs close to the optimal cutoffs to test whether the HADS-T is superior to HADS-D for major depression detection. There were two main findings. First, among all 98 included studies the values of the distance to the top-left corner of the ROC curves (Riley et al., 2008) were

378 minimized at a HADS-D cutoff \geq 7 (sensitivity = 0.79, specificity = 0.78) and at a HADS-T

379 $\operatorname{cutoff} \ge 15$ (sensitivity = 0.79, specificity = 0.81). Second, at paired optimal cutoffs and six other

380 cutoffs close to the optimal cutoffs, the HADS-D was similarly accurate compared to the HADS-

381 T overall and among studies that used a semi-structured reference standard.

Overall, for all 98 primary studies, across all sets of paired cutoffs, the sensitivity and specificity of the HADS-T were classified as equivalent to that of the HADS-D based on the prespecified equivalency margin. Although the HADS-T was slightly more specific (range 0.02 to 0.03), all the 95% CIs for differences in sensitivity and specificity of HADS-T – HADS-D were within or overlapped with the range of -0.05 and 0.05. When we analyzed data separately among studies that used a semi-structured reference standard, differences in sensitivity and specificity between the HADS-D and HADS-T were similar to the overall estimates.

Furthermore, similar to overall estimates, there were no substantive differences in performance between the HADS-D and HADS-T in detecting major depression among medical outpatients. Among inpatients, the HADS-T and HADS-D were also equivalent in sensitivity. The HADS-T performed slightly better than HADS-D in terms of specificity, and equivalency was indeterminant based on the pre-specified equivalence margin, except for one pair of cutoffs. This finding is possibly related to the greater presence of anxiety symptoms in inpatients versus outpatients and its relationship to depression (Schatzberg, 2019).

Previous conventional meta-analyses of results from cancer patients (Mitchell et al.,
2010; Vodermaier & Millman, 2011) suggested that the HADS-T may perform better than the
HADS-D, but that conclusion was highly uncertain given the limitations of the samples and
methods. Through our IPDMA, with its large dataset and more rigorous comparison methods
including both bivariate random-effects models and individual-level models, a two-level

401 bootstrap approach (Fagerland et al., 2014; Higgins & Thompson, 2002), and subgroup analysis, 402 we found there was no consistent evidence that the HADS-T is superior to HADS-D for major 403 depression detection, including in cancer care settings. In addition, we did not identify any 404 differences between HADS-D and HADS-T accuracy that were associated with individual 405 participant characteristics or countries. Therefore, in research and clinical general practice, using 406 the full 14-item HADS-T for depression screening would likely result in no to minimal gain in 407 screening accuracy but would add unnecessary burden to patients compared to the 7-item 408 HADS-D.

409 To our knowledge, this is the first meta-analysis that directly compared the HADS-D and 410 HADS-T for screening for depression using the same large individual participant dataset for both 411 screening tools. Strengths of this study included the large overall sample size and high precision 412 of estimates of differences, the ability to compare results for HADS-D and HADS-T across all 413 cutoffs from all studies, and the ability to assess screening accuracy overall and by inpatient and 414 outpatient subgroups. There are also limitations to consider. First, for the full IPDMA data, 415 primary data from 72 of 165 published eligible datasets (44% of datasets, 34% of participants) 416 were not included, and only those datasets with complete data for all individual HADS item 417 scores (91% of available data) were included in this study. Nonetheless, this sample was much 418 larger than the few primary studies that have previously compared the HADS-D and HADS-T. 419 Second, we did not conduct analyses restricted to studies with "low" risk of bias ratings across 420 QUADAS-2 domains. However, in sensitivity analysis in this study and in our main IPDMA on 421 the HADS-D (Wu, et al., 2021), risk of bias ratings were not associated with screening accuracy. 422 Third, the present study used a subset of studies and participants from our previously conducted 423 HADS-D IPDMA (Wu, et al., 2021). This IPDMA project was designed to assess the accuracy

424 of the HADS-D for detecting major depression. Diagnoses of other mental disorders, including, 425 anxiety disorders, were not collected in most of the included primary studies. Thus, we were not 426 able to evaluate the sensitivity and specificity of the HADS-D, HADS-Anxiety, or HADS-T for 427 detecting mental disorders generally. Forth, we did not record inter-rated reliability for risk of 428 bias ratings; however, all ratings were done by trained reviewers and any disagreements were 429 addressed by consensus, including a third investigator as necessary.

430

Conclusions

431 In summary, this study found that sensitivity and specificity of the HADS-T were not 432 superior to the HADS-D for detecting major depression in a large individual participant dataset. 433 Using the 7-item HADS-D for depression screening instead of the full 14-item HADS-T has 434 minimal influence on performance of the measure but would reduce patient and participant 435 burden in clinical and research settings. Both HADS-D and HADS-T have only modest 436 screening ability and discussion of their exact indications for use and related caveats are beyond 437 the scope of this article. However, there were no substantive differences in performance between 438 the HADS-D and HADS-T in detecting major depression among medical outpatients, although 439 there was a slight advantage in specificity of indeterminate equivalency for the HADS-T among 440 medical inpatients, for whom adding the anxiety items of HADS-A may improve accuracy.

441

Ethical Approval: As this study involved secondary analysis of anonymized previously
collected data, the Research Ethics Committee of the Jewish General Hospital declared that this
project did not require research ethics approval. However, for each included dataset, we
confirmed that the original study received ethics approval and that all patients provided informed
consent.

447 **REFERENCES**

448	*Akechi, T., C	Dkuyama, T.,	Sugawara,	Y., Shima,	Y., Furukawa,	T. A., &	Uchitomi,	Y. (2	2006).
-	, ,			, , ,	, , ,)	,	(/

449 Screening for depression in terminally ill cancer patients in Japan. *Journal of Pain &*

450 *Symptom Management*, 31(1), 5-12.

- 451 *Al-Asmi, A., Dorvlo, A. S., Burke, D. T., Al-Adawi, S., Al-Zaabi, A., Al-Zadjali, H. A., ... &
- Al-Adawi, S. (2012). The detection of mood and anxiety in people with epilepsy using
 two-phase designs: experiences from a tertiary care centre in Oman. *Epilepsy Research*,
- 454 *98*(2-3), 174–181.
- 455 American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders:

456 DSM-III. 3rd ed. Washington, DC: American Psychiatric Association.

- 457 American Psychiatric Association. (1994) Diagnostic and statistical manual of mental disorders:
 458 DSM-IV. 4th ed. Washington (DC): American Psychiatric Association.
- 459 American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders:
- 460 DSM-IV-TR. 4th ed, Text Revision. Washington (DC): American Psychiatric

461 Association.

- 462 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders:
- 463 DSM-5. 5th ed. Washington (DC): American Psychiatric Association.
- 464 *Amoozegar, F., Patten, S. B., Becker, W. J., Bulloch, A. G., Fiest, K. M., Davenport, W. J., ...
- 465 & Jette, N. (2017). The prevalence of depression and the accuracy of depression
 466 screening tools in migraine patients. *General Hospital Psychiatry*, 48, 25-31.
- 467 Bates, D., Maechler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting Linear Mixed-Effects
- 468 Models Using Ime4. *Journal of Statistical Software*, 67(1), 1-48.
- 469 doi:10.18637/jss.v067.i01

470	*Bayón-Pérez, C., Hernando, A., Álvarez-Comino, M., Cebolla, S., Serrano, L., Gutiérrez, F.,
471	& Pulido, F. (2016). Toward a comprehensive care of HIV patients: finding a strategy to
472	detect depression in a Spanish HIV cohort. AIDS Care, 28, 834 - 841.
473	*Beck, K. R., Tan, S. M., Lum, S. S., Lim, L. E., & Krishna, L. K. (2016). Validation of the
474	emotion thermometers and hospital anxiety and depression scales in Singapore:
475	Screening cancer patients for distress, anxiety and depression. Asia-Pacific Journal of
476	Clinical Oncology, 12(2), e241–e249.
477	*Beraldi, A., Baklayan, A., Hoster, E., Hiddemann, W., & Heussner, P. (2014). Which
478	questionnaire is most suitable for the detection of depressive disorders in haemato-
479	oncological patients? Comparison between HADS, CES-D and PHQ-9. Oncology
480	Research and Treatment, 37,108.
481	*Bernstein, C. N., Zhang, L., Lix, L. M., Graff, L. A., Walker, J. R., Fisk, J. D., & CIHR
482	Team in Defining the Burden and Managing the Effects of Immune-mediated
483	Inflammatory Disease. (2018). The validity and reliability of screening measures for
484	depression and anxiety disorders in inflammatory bowel disease. Inflammatory Bowel
485	Diseases, 24(9), 1867-1875.
486	*Braeken, A. P. B. M., Lechner, L., Houben, R. M. A., Van Gils, F. C. J. M., & Kempen, G. I. J.
487	M. (2011). Psychometric properties of the Screening Inventory of Psychosocial Problems
488	(SIPP) in Dutch cancer patients treated with radiotherapy. European Journal of Cancer
489	<i>Care</i> , 20(3), 305-314.
490	Brugha, T. S., Bebbington, P. E., & Jenkins, R. (1999). A difference that matters: comparisons of
491	structured and semi-structured psychiatric diagnostic interviews in the general

- 492 population. *Psychological Medicine*, *29*(5), 1013-1020.
- 493 doi:10.1017/S0033291799008880
- 494 Brugha, T. S., Jenkins, R., Taub, N., Meltzer, H., & Bebbington, P. E. (2001). A general
- 495 population comparison of the Composite International Diagnostic Interview (CIDI) and
- 496 the Schedules for Clinical Assessment in Neuropsychiatry (SCAN). *Psychological*
- 497 *Medicine*, *31*(6), 1001-1013. doi:10.1017/S0033291701004184
- 498 *Bunevicius, A., Peceliuniene, J., Mickuviene, N., Valius, L., & Bunevicius, R. (2007).
- 499 Screening for depression and anxiety disorders in primary care patients. *Depression and*500 *Anxiety*, 24(7), 455–460.
- *Bunevicius, A., Staniute, M., Brozaitiene, J., & Bunevicius, R. (2012). Diagnostic accuracy of
 self-rating scales for screening of depression in coronary artery disease patients. *Journal of Psychosomatic Research*, 72(1), 22–25.
- *Butnoriene, J., Bunevicius, A., Norkus, A., & Bunevicius, R. (2014). Depression but not
- anxiety is associated with metabolic syndrome in primary care based community sample.
 Psychoneuroendocrinology, 40, 269–276.
- 507 *Can, C., Cimilli, C., Ozenli, Y., Ergor, G., Aysevener, E. O., Unek, T., & Astarcioglu, I. (2018).
- 508Quality of life and psychiatric disorders before and one year after liver
- transplantation. Journal of Clinical and Analytical Medicine, 9(5), 396-401.
- 510 *Chen, C. K., Tsai, Y. C., Hsu, H. J., Wu, I. W., Sun, C. Y., Chou, C. C., ... & Wang, L. J.
- 511 (2010). Depression and suicide risk in hemodialysis patients with chronic renal failure.
 512 *Psychosomatics*, 51(6), 528–528.e6.
- *Cheung, G., Patrick, C., Sullivan, G., Cooray, M., & Chang, C. L. (2012). Sensitivity and
- 514 specificity of the Geriatric Anxiety Inventory and the Hospital Anxiety and Depression

515	Scale in the detection of anxiety disorders in older people with chronic obstructive
516	pulmonary disease. International Psychogeriatrics, 24(1), 128-136.
517	Clarke, D. M., Smith, G. C., Herrman, H. E., & McKenzie, D. P. (1998). Monash Interview for
518	Liaison Psychiatry (MILP) - Development, reliability, and procedural validity.
519	Psychosomatics, 39(4), 318-328. doi:10.1016/S0033-3182(98)71320-9
520	*Consoli, S. M., Rolhion, S., Martin, C., Ruel, K., Cambazard, F., Pellet, J., & Misery, L. (2006).
521	Low levels of emotional awareness predict a better response to dermatological treatment
522	in patients with psoriasis. Dermatology, 212(2), 128-136.
523	*Costa-Requena, G., Ballester Arnal, R., & Gil, F. (2013). Perceived social support in Spanish
524	cancer outpatients with psychiatric disorder. Stress and Health: Journal of the
525	International Society for the Investigation of Stress, 29(5), 421–426.
526	*Cukor, D., Coplan, J., Brown, C., Friedman, S., Newville, H., Safier, M., & Kimmel, P. L.
527	(2008). Anxiety disorders in adults treated by hemodialysis: a single-center
528	study. American Journal of Kidney Diseases, 52(1), 128-136.
529	*da Rocha e Silva, C. E. D. R., Brasil, M. A. A., Do Nascimento, E. M., de Bragança Pereira, B.,
530	& André, C. (2013). Is poststroke depression a major depression?. Cerebrovascular
531	Diseases, 35(4), 385-391.
532	*De Souza, J., Jones, L. A., & Rickards, H. (2010). Validation of self-report depression rating
533	scales in Huntington's disease. Movement Disorders, 25(1), 91-96.
534	*de la Torre, A. Y., Oliva, N., Echevarrieta, P. L., Pérez, B. G., Caporusso, G. B., Titaro, A.
535	J., & Daray, F. M. (2016). Major depression in hospitalized Argentine general medical
536	patients: Prevalence and risk factors. Journal of Affective Disorders, 197, 36-42.

537	*de Oliveira, G. N., Lessa, J. M., Gonçalves, A. P., Portela, E. J., Sander, J. W., & Teixeira, A.
538	L. (2014). Screening for depression in people with epilepsy: comparative study among
539	neurological disorders depression inventory for epilepsy (NDDI-E), hospital anxiety and
540	depression scale depression subscale (HADS-D), and Beck depression inventory (BDI).
541	Epilepsy & Behavior, 34, 50–54.
542	*Douven, E., Schievink, S. H., Verhey, F. R., van Oostenbrugge, R. J., Aalten, P., Staals, J., &
543	Köhler, S. (2016). The Cognition and Affect after Stroke - a Prospective Evaluation of
544	Risks (CASPER) study: rationale and design. BMC Neurology, 16, 65.
545	*Dorow, M., Stein, J., Pabst, A., Weyerer, S., Werle, J., Maier, W., & Riedel-Heller, S. G.
546	(2018). Categorical and dimensional perspectives on depression in elderly primary care
547	patients-Results of the AgeMooDe study. International Journal of Methods in
548	Psychiatric Research, 27(1), e1577.
549	*Drabe, N., Zwahlen, D., Büchi, S., Moergeli, H., Zwahlen, R. A., & Jenewein, J. (2008).
550	Psychiatric morbidity and quality of life in wives of men with long-term head and neck
551	cancer. Psycho-Oncology, 17(2), 199–204.
552	Endicott, J., & Spitzer, R. L. (1987). [Schedule for Affective Disorders and Schizophrenia
553	(SADS)]. Acta psychiatrica Belgica, 87(4), 361-516.
554	*Fábregas, B. C., Moura, A. S., Ávila, R. E., Faria, M. N., Carmo, R. A., & Teixeira, A. L.
555	(2014). Sexual dysfunction and dissatisfaction in chronic hepatitis C patients. Revista da
556	Sociedade Brasileira de Medicina Tropical, 47(5), 564–572.
557	Fagerland, M. W., Lydersen, S., & Laake, P. (2014). Recommended tests and confidence
558	intervals for paired binomial proportions. Statistics in Medicine, 33(16), 2850-2875.
559	doi:10.1002/sim.6148

560	*Ferentinos, P., Paparrigopoulos, T., Rentzos, M., Zouvelou, V., Alexakis, T., & Evdokimidis, I.
561	(2011). Prevalence of major depression in ALS: comparison of a semi-structured
562	interview and four self-report measures. Amyotrophic Lateral Sclerosis, 12(4), 297-302
563	*Fiest, K. M., Patten, S. B., Wiebe, S., Bulloch, A. G., Maxwell, C. J., Jette, N. (2014).
564	Validating screening tools for depression in epilepsy. Epilepsia, 55(10), 1642-1650.
565	First, M. B. (1995). Structured Clinical Interview for the DSM (SCID). New York (NY): John
566	Wiley & Sons, Inc.
567	*Fischer, H. F., Klug, C., Roeper, K., Blozik, E., Edelmann, F., Eisele, M., & Herrmann-
568	Lingen, C. (2014). Screening for mental disorders in heart failure patients using
569	computer-adaptive tests. Quality of Life Research, 23(5), 1609–1618.
570	*Gagnon, N., Flint, A. J., Naglie, G., & Devins, G. M. (2005). Affective correlates of fear of
571	falling in elderly persons. The American Journal of Geriatric Psychiatry, 13(1), 7-14.
572	*Gandy, M., Sharpe, L., Perry, K. N., Miller, L., Thayer, Z., Boserio, J., & Mohamed, A. (2012).
573	Assessing the efficacy of 2 screening measures for depression in people with epilepsy.
574	Neurology, 79(4), 371–375.
575	*Golden, J., Conroy, R. M., & O'Dwyer, A. M. (2007). Reliability and validity of the Hospital
576	Anxiety and Depression Scale and the Beck Depression Inventory (Full and FastScreen
577	scales) in detecting depression in persons with hepatitis C. Journal of Affective Disorders,
578	100(1-3), 265–269.
579	*Gould, K. R., Ponsford, J. L., Johnston, L., & Schönberger, M. (2011). Predictive and
580	associated factors of psychiatric disorders after traumatic brain injury: a prospective
581	study. Journal of Neurotrauma, 28(7), 1155-1163.

582	*Grassi, L., Sabato, S., Rossi, E., Marmai, L., & Biancosino, B. (2009). Affective syndromes and
583	their screening in cancer patients with early and stable disease: Italian ICD-10 data and
584	performance of the Distress Thermometer from the Southern European Psycho-Oncology
585	Study (SEPOS). Journal of Affective Disorders, 114(1-3), 193–199.
586	*Hahn, D., Reuter, K., & Härter, M. (2006). Screening for affective and anxiety disorders in
587	medical patients - comparison of HADS, GHQ-12 and Brief-PHQ. GMS Psycho-Social
588	Medicine, 3.
589	Harel, D., Levis, B., Ishihara, M., Levis, A. W., Vigod, S. N., Howard, L. M., DEPRESsion
590	Screening Data (DEPRESSD) EPDS Collaboration. (2021). Shortening the Edinburgh
591	postnatal depression scale using optimal test assembly methods: Development of the
592	EPDS-Dep-5. Acta Psychiatrica Scandinavica, 143(4), 348-362. doi:10.1111/acps.13272
593	*Härter, M., Woll, S., Wunsch, A., Bengel, J., & Reuter, K. (2005). Screening for mental
594	disorders in cancer, cardiovascular and musculoskeletal diseases. Social Psychiatry and
595	Psychiatric Epidemiology, 41, 56-62.
596	*Hartung, T. J., Friedrich, M., Johansen, C., Wittchen, H. U., Faller, H., Koch, U., Brähler,
597	E., & Mehnert, A. (2017). The Hospital Anxiety and Depression Scale (HADS) and
598	the 9-item Patient Health Questionnaire (PHQ-9) as screening instruments for depression
599	in patients with cancer. Cancer, 123(21), 4236-4243.
600	Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis.
601	Statistics In Medicine, 21(11), 1539-1558. doi:10.1002/sim.1186
602	*Hitchon, C. A., Zhang, L., Peschken, C. A., Lix, L. M., Graff, L. A., Fisk, J. D., Patten, S. B.,
603	Bolton, J., Sareen, J., El-Gabalawy, R., Marriott, J., Bernstein, C. N., & Marrie, R. A.

604	(2020). Validity and Reliability of Screening Measures for Depression and Anxiety
605	Disorders in Rheumatoid Arthritis. Arthritis Care & Research, 72(8), 1130-1139.
606	*Honarmand, K., & Feinstein, A. (2009). Validation of the Hospital Anxiety and Depression
607	Scale for use with multiple sclerosis patients. Multiple Sclerosis, 15(12), 1518–1524.
608	*Huey, N. S., Guan, N. C., Gill, J. S., Hui, K. O., Sulaiman, A. H., & Kunagasundram, S. (2018).
609	Core Symptoms of Major Depressive Disorder among Palliative Care Patients.
610	International Journal of Environmental Research and Public Health, 15(8), 1758.
611	Ishihara, M., Harel, D., Levis, B., Levis, A. W., Riehm, K. E., Saadat, N., Thombs, B. D.
612	(2019). Shortening self-report mental health symptom measures through optimal test
613	assembly methods: Development and validation of the Patient Health Questionnaire-
614	Depression-4. Depression and Anxiety, 36(1), 82-92. doi:10.1002/da.22841
615	*Jackson, M. L., Tolson, J., Schembri, R., Bartlett, D., Rayner, G., Lee, V. V., & Barnes, M.
616	(2021). Does continuous positive airways pressure treatment improve clinical depression
617	in obstructive sleep apnea? A randomized wait-list controlled study. Depression and
618	Anxiety, 38(5), 498–507.
619	*Jang, J. E., Kim, S. W., Kim, S. Y., Kim, J. M., Park, M. H., Yoon, J. H., & Yoon, J. S.
620	(2013). Religiosity, depression, and quality of life in Korean patients with breast cancer:
621	a 1-year prospective longitudinal study. Psycho-Oncology, 22(4), 922-929.
622	Joffres, M., Jaramillo, A., Dickinson, J., Lewin, G., Pottie, K., Shaw, E., Gorber, S. C., &
623	Tonelli, M. (2013). Recommendations on screening for depression in adults. CMAJ:
624	Canadian Medical Association Journal, 185(9), 775–782.
625	https://doi.org/10.1503/cmaj.130403

626	*Juliao, M., Barbosa, A., Oliveira, F., & Nunes, B. (2013). Prevalence and factors associated
627	with desire for death in patients with advanced disease: results from a Portuguese cross-
628	sectional study. Psychosomatics, 54(5), 451-457.

- 629 *Kang, H. J., Stewart, R., Kim, J. M., Jang, J. E., Kim, S. Y., Bae, K. Y., ... & Yoon, J. S.
- 630 (2013). Comparative validity of depression assessment scales for screening poststroke
 631 depression. *Journal of Affective Disorders*, *147*(1-3), 186–191.
- 632 *Keller, M., Sommerfeldt, S., Fischer, C., Knight, L., Riesbeck, M., Lowe, B., ... & Lehnert, T.

633 (2004). Recognition of distress and psychiatric morbidity in cancer patients: a multi634 method approach. *Annals of Oncology*, *15*(8),1243.

635 *Kjaergaard, M., Arfwedson Wang, C. E., Waterloo, K., & Jorde, R. (2014). A study of the

636 psychometric properties of the Beck Depression Inventory-II, the Montgomery and

637 Åsberg Depression Rating Scale, and the Hospital Anxiety and Depression Scale in a

638 sample from a healthy population. *Scandinavian Journal of Psychology*, 55(1), 83–89.

639 *Kugaya, A., Akechi, T., Okuyama, T., Nakano, T., Mikami, I., Okamura, H., & Uchitomi, Y.

- 640 (2000). Prevalence, predictive factors, and screening for psychologic distress in patients
 641 with newly diagnosed head and neck cancer. *Cancer*, 88(12), 2817–2823.
- 642 *Lambert, S. D., Clover, K., Pallant, J. F., Britton, B., King, M. T., Mitchell, A. J., Carter, G.

(2015). Making Sense of Variations in Prevalence Estimates of Depression in Cancer: A
 Co-Calibration of Commonly Used Depression Scales Using Rasch Analysis. *Journal of*

- 645 *the National Comprehensive Cancer Network, 13*(10),1203.
- *Law, M., Naughton, M. T., Dhar, A., Barton, D., & Dabscheck, E. (2014). Validation of two
 depression screening instruments in a sleep disorders clinic. *Journal of Clinical Sleep*
- 648 *Medicine*, 10(6), 683–688.

649	Lecrubier, Y., Sheehan, D. V., Weiller, E., Amorim, P., Bonora, I., Sheehan, K. H., Dunbar,
650	G. C. (1997). The Mini International Neuropsychiatric Interview (MINI). A short
651	diagnostic structured interview: Reliability and validity according to the CIDI. European
652	Psychiatry, 12(5), 224-231. doi:10.1016/S0924-9338(97)83296-8
653	*Lee, Y., Wu, Y. S., Chien, C. Y., Fang, F. M., & Hung, C. F. (2016). Use of the Hospital
654	Anxiety and Depression Scale and the Taiwanese Depression Questionnaire for screening
655	depression in head and neck cancer patients in Taiwan. Neuropsychiatric Disease and
656	Treatment, 12, 2649–2657.
657	*Lee, C. Y., Lee, Y., Wang, L. J., Chien, C. Y., Fang, F. M., & Lin, P. Y. (2017). Depression,
658	anxiety, quality of life, and predictors of depressive disorders in caregivers of patients
659	with head and neck cancer: A six-month follow-up study. Journal of Psychosomatic
660	Research, 100, 29–34.
661	*Lees, R.A., Stott, D.J., Quinn, T.J., & Broomfield, N.M. (2014). Feasibility and Diagnostic
662	Accuracy of Early Mood Screening to Diagnose Persisting Clinical Depression/Anxiety
663	Disorder after Stroke. Cerebrovascular Diseases, 37, 323 - 329.
664	Levis, B., Benedetti, A., Levis, A. W., Ioannidis, J. P. A., Shrier, I., Cuijpers, P., Thombs, B.
665	D. (2017). Selective Cutoff Reporting in Studies of Diagnostic Test Accuracy: A
666	Comparison of Conventional and Individual-Patient-Data Meta-Analyses of the Patient
667	Health Questionnaire-9 Depression Screening Tool. American Journal of Epidemiology,
668	185(10), 954-964. doi:10.1093/aje/kww191
669	Levis, B., Benedetti, A., Riehm, K. E., Saadat, N., Levis, A. W., Azar, M., Thombs, B. D.
670	(2018). Probability of major depression diagnostic classification using semi-structured

- 671 versus fully structured diagnostic interviews. *British Journal of Psychiatry*, 212(6), 377672 385. doi:10.1192/bjp.2018.54
- 673 Levis, B., Benedetti, A., Thombs, B. D., Akena, D. H., Arroll, B., Ayalon, L., . . . DEPRESsion
- 674 Screening Data (DEPRESSD) Collaboration. (2019). Accuracy of Patient Health
- 675 Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant 676 data meta-analysis. *BMJ*, 365. doi:10.1136/bmj.11476
- 677 Levis, B., McMillan, D., Sun, Y., He, C., Rice, D. B., Krishnan, A., . . . Thombs, B. D. (2019).
- 678 Comparison of major depression diagnostic classification probability using the SCID,
- 679 CIDI, and MINI diagnostic interviews among women in pregnancy or postpartum: An
- 680 individual participant data meta-analysis. *International Journal of Methods in Psychiatric*681 *Research*, 28(4). doi:10.1002/mpr.1803
- 682 Levis, B., Negeri, Z., Sun, Y., Benedetti, A., Thombs, B. D., & DEPRESsion Screening Data
- 683 (DEPRESSD) EPDS Group. (2020). Accuracy of the Edinburgh Postnatal Depression
- 684 Scale (EPDS) for screening to detect major depression among pregnant and postpartum
- 685 women: systematic review and meta-analysis of individual participant data. *BMJ*, 371.
- 686 doi:10.1136/bmj.m4022
- *Loosman, W. L., Siegert, C. E., Korzec, A., & Honig, A. (2010). Validity of the Hospital
 Anxiety and Depression Scale and the Beck Depression Inventory for use in end-stage
 renal disease patients. *The British Journal of Clinical Psychology*, 49(Pt 4), 507–516.
- ⁶⁹⁰ *Love, A. W., Kissane, D. W., Bloch, S., & Clarke, D. (2002). Diagnostic efficiency of the
- 691 Hospital Anxiety and Depression Scale in women with early stage breast cancer. *The*
- 692 *Australian and New Zealand Journal of Psychiatry*, *36*(2), 246–250.

693	*Love, A. W., Grabsch, B., Clarke, D. M., Bloch, S., & Kissane, D. W. (2004). Screening for
694	depression in women with metastatic breast cancer: a comparison of the Beck Depression
695	Inventory Short Form and the Hospital Anxiety and Depression Scale. The Australian
696	and New Zealand journal of psychiatry, 38(7), 526–531.
697	*Lowe, B., Gräfe, K., Zipfel, S., Spitzer, R. L., Herrmann-Lingen, C., Witte, S., & Herzog, W.
698	(2003). Detecting panic disorder in medical and psychosomatic outpatients: comparative
699	validation of the Hospital Anxiety and Depression Scale, the Patient Health
700	Questionnaire, a screening question, and physicians' diagnosis. Journal of Psychosomatic
701	Research, 55(6), 515–519.
702	*Marrie, R. A., Zhang, L., Lix, L. M., Graff, L. A., Walker, J. R., Fisk, J. D., & Bernstein, C.
703	N. (2018). The validity and reliability of screening measures for depression and anxiety
704	disorders in multiple sclerosis. Multiple Sclerosis and Related Disorders, 20, 9–15.
705	*Massardo, L., Bravo-Zehnder, M., Calderón, J., Flores, P., Padilla, O., Aguirre, J. M., &
706	González, A. (2015). Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P
707	autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus.
708	Lupus, 24(6), 558–568.
709	*Matsuoka, Y., Nishi, D., Nakajima, S., Yonemoto, N., Hashimoto, K., Noguchi, H., & Kim,
710	Y. (2009). The Tachikawa cohort of motor vehicle accident study investigating
711	psychological distress: Design, methods and cohort profiles. Social Psychiatry and
712	Psychiatric Epidemiology, 44(4), 333–340.
713	*McFarlane, A. C., Browne, D., Bryant, R. A., O'Donnell, M., Silove, D., Creamer, M., &
714	Horsley, K. (2009). A longitudinal analysis of alcohol consumption and the risk of
715	posttraumatic symptoms. Journal of Affective Disorders, 118(1-3), 166–172.

716	McGowan, J., Sampson, M., Salzwedel, D. M., Cogo, E., Foerster, V., & Lefebvre, C. (2016).
717	PRESS peer review of electronic search strategies: 2015 guideline statement. Journal of
718	Clinical Epidemiology, 75, 40-46.
719	*Meyer, A., Wollbrück, D., Täschner, R., Singer, S., Ehrensperger, C., Danker, H., &
720	Schwarz, R. (2008). Psychological status and morbidity of the spouses of laryngectomy
721	patients. Zeitschrift fur Klinische Psychologie und Psychotherapie: Forschung und
722	<i>Praxis, 37</i> , 172.
723	*Michopoulos, I., Douzenis, A., Gournellis, R., Christodoulou, C., Kalkavoura, C.,
724	Michalopoulou, P.G., & Lykouras, L. (2010). Major depression in elderly medical
725	inpatients in Greece, prevalence and identification. Aging Clinical and Experimental
726	Research, 22, 148-151.
727	Mitchell, A. J., Meader, N., & Symonds, P. (2010). Diagnostic validity of the Hospital Anxiety
728	and Depression Scale (HADS) in cancer and palliative settings: A meta-analysis. Journal
729	of Affective Disorders, 126(3), 335-348. doi:10.1016/j.jad.2010.01.067
730	National Collaborating Centre for Mental Health (UK). (2010). Depression in Adults with a
731	Chronic Physical Health Problem: Treatment and Management. British Psychological
732	Society (UK). http://www.ncbi.nlm.nih.gov/books/NBK82916/
733	NCSS. (2017). One ROC curve and cutoff analysis, Chapter 546. Retrieved September 20, 2021,
734	from https://www.ncss.com/software/ncss/roc-curves-ncss/
735	Negeri, Z. F., Levis, B., Sun, Y., He, C., Krishnan, A., Wu, Y., Thombs, B. D DEPRESsion
736	Screening Data (DEPRESSD) PHQ Group. (2021). Accuracy of the Patient Health
737	Questionnaire-9 (PHQ-9) for screening to detect major depression: an updated systematic

738	review and individual participant data meta-analysis. BMJ, 375:n2183. doi:
739	https://doi.org/10.1136/bmj.n2183
740	Neupane, D., Levis, B., Bhandari, P. M., Thombs, B. D., Benedetti, A., & DEPRESsion
741	Screening Data (DEPRESSD) Collaboration. (2021). Selective cutoff reporting in studies
742	of the accuracy of the PHQ-9 and EPDS depressions screening tools: comparison of
743	results based on published cutoffs versus all cutoffs using individual participant data
744	meta-analysis. International Journal of Epidemiology, 30(3), e1873. doi:
745	10.1002/mpr.1873.
746	Nosen, E., & Woody, S. R. (2008). Chapter 8: Diagnostic assessment in research. In Handbook
747	of Research Methods in Abnormal and Clinical Psychology (ed. D. McKay), pp. 109-124.
748	Sage: Thousand Oaks.
749	*O'Rourke, S., MacHale, S., Signorini, D., Dennis, M. (1998). Detecting psychiatric morbidity
750	after stroke: comparison of the GHQ and the HAD Scale. Stroke, 29, 980-985.
751	*Öztürk, A., Deveci, E., Bağcıoğlu, E., Atalay, F. & Serdar, Z. (2013). Anxiety, depression,
752	social phobia, and quality of life in Turkish patients with acne and their relationships with
753	the severity of acne. Turkish Journal of Medical Sciences, 43 (4), 660-666.
754	*Patel, D., Sharpe, L., Thewes, B., Rickard, J., Schnieden, V., & Lewis, C. (2010). Feasibility of
755	using risk factors to screen for psychological disorder during routine breast care nurse
756	consultations. Cancer Nursing, 33(1), 19–27.
757	*Patel, D., Sharpe, L.A., Thewes, B., Bell, M.L., & Clarke, S.J. (2011). Using the Distress
758	Thermometer and Hospital Anxiety and Depression Scale to screen for psychosocial
759	morbidity in patients diagnosed with colorectal cancer. Journal of Affective Disorders,
760	131(1-3), 412-6.

761	*Patten, S. B., Burton, J. M., Fiest, K. M., Wiebe, S., Bulloch, A. G., Koch, M., & Jetté, N.
762	(2015). Validity of four screening scales for major depression in MS. Multiple Sclerosis,
763	21(8), 1064–1071.
764	*Pedroso, V. S., Vieira, É. L., Brunoni, A. R., Lauterbach, E. C., Teixeira, A. L. (2016).
765	Psychopathological evaluation and use of the Hospital Anxiety and Depression Scale in a
766	sample of Brazilian patients with post-stroke depression. Archives of Clinical Psychiatry
767	<i>(São Paulo), 43</i> , 147-50.
768	*Phan, T., Carter, O., Adams, C., Waterer, G., Chung, L. P., Hawkins, M., & Strobel, N.
769	(2016). Discriminant validity of the Hospital Anxiety and Depression Scale, Beck
770	Depression Inventory (II) and Beck Anxiety Inventory to confirmed clinical diagnosis of
771	depression and anxiety in patients with chronic obstructive pulmonary disease. Chronic
772	Respiratory Disease, 13(3), 220–228.
773	*Pintor, L., Fuente, E.D., Peri, J.M., Pérez-Villa, F., & Roig, E. (2006). Evaluación psiquiátrica
774	transversal en pacientes candidatos a un trasplante cardíaco. Psiquiatría Biológica, 13,
775	122-126.
776	*Prisnie, J. C., Fiest, K. M., Coutts, S. B., Patten, S. B., Atta, C. A., Blaikie, L., & Jetté, N.
777	(2016). Validating screening tools for depression in stroke and transient ischemic attack
778	patients. International Journal of Psychiatry in Medicine, 51(3), 262–277.
779	R Core Team. (2020). R: A language and environment for statistical computing. R Foundation
780	for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
781	RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA

782 <u>http://www.rstudio.com/</u>.

783	*Reme, S. E., Lie, S. A., & Eriksen, H. R. (2014). Are 2 questions enough to screen for
784	depression and anxiety in patients with chronic low back pain?. Spine, 39(7), E455-E462.
785	Rice, D. B., & Thombs, B. D. (2016). Risk of Bias from Inclusion of Currently Diagnosed or
786	Treated Patients in Studies of Depression Screening Tool Accuracy: A Cross-Sectional
787	Analysis of Recently Published Primary Studies and Meta-Analyses. Plos One, 11(2).
788	doi:10.1371/journal.pone.0150067
789	Riley, R. D., Dodd, S. R., Craig, J. V., Thompson, J. R., & Williamson, P. R. (2008). Meta-
790	analysis of diagnostic test studies using individual patient data and aggregate data.
791	Statistics in Medicine, 27(29), 6111-6136. doi:10.1002/sim.3441
792	Riley, R. D., Lambert, P. C., & Abo-Zaid, G. (2010). Meta-analysis of individual participant
793	data: rationale, conduct, and reporting. BMJ, 340. doi:10.1136/bmj.c221
794	Robins, L. N., Wing, J., Wittchen, H. U., Helzer, J. E., Babor, T. F., Burke, J., Towle, L. H.
795	(1988). The Composite International Diagnostic Interview: an epidemiologic instrument
796	suitable for use in conjunction with different diagnostic systems and in different cultures.
797	Archives Of General Psychiatry, 45(12), 1069-1077.
798	*Rooney, A. G., McNamara, S., Mackinnon, M., Fraser, M., Rampling, R., Carson, A., & Grant,
799	R. (2013). Screening for major depressive disorder in adults with cerebral glioma: an
800	initial validation of 3 self-report instruments. Neuro-Oncology, 15(1), 122-129.
801	*Ryan, D. A., Gallagher, P., Wright, S., Cassidy, E. M. (2012). Sensitivity and specificity of the
802	Distress Thermometer and a two-item depression screen (Patient Health Questionnaire-2)
803	with a 'help' question for psychological distress and psychiatric morbidity in patients with
804	advanced cancer. Psycho-Oncology, 21(12), 1275.

805	*Sanchez-Gistau, V., Sugranyes, G., Baillés, E., Carreño, M., Donaire, A., Bargalló, N., &
806	Pintor, L. (2012). Is major depressive disorder specifically associated with mesial
807	temporal sclerosis?. Epilepsia, 53(2), 386–392.
808	*Sánchez, R., Peri, J. M., Baillés, E., Bastidas, A., Pérez-Villa, F., Bulbena, A., & Pintor, L.
809	(2012). Evaluación de psicopatología, afrontamiento y apoyo familiar en el cumplimiento
810	de pautas médicas en los 12 meses posteriores a un trasplante cardiaco. Psiquiatría
811	Biológica, 19, 1-5.
812	*Sánchez, R., Baillés, E., Peri, J.M., Bastidas, A., Pérez-Villa, F., Bulbena, A., & Pintor, L.
813	(2014). Cross-sectional psychosocial evaluation of heart transplantation candidates.
814	General Hospital Psychiatry, 36(6), 680-5.
815	*Saracino, R.M., Weinberger, M.I., Roth, A.J., Hurria, A., & Nelson, C.J. (2017). Assessing
816	depression in a geriatric cancer population. Psycho-Oncology, 26, 1484 - 1490.
817	Schatzberg, A. F. (2019). Scientific Issues Relevant to Improving the Diagnosis, Risk
818	Assessment, and Treatment of Major Depression. American Journal of Psychiatry,
819	176(5), 342-347. doi:10.1176/appi.ajp.2019.19030273
820	*Schellekens, M.P., van den Hurk, D.G., Prins, J.B., Molema, J., van der Drift, M.A., &
821	Speckens, A.E. (2016). The suitability of the Hospital Anxiety and Depression Scale,
822	Distress Thermometer and other instruments to screen for psychiatric disorders in both
823	lung cancer patients and their partners. Journal of Affective Disorders, 203, 176-183.
824	*Schwarzbold, M.L., Diaz, A.P., Nunes, J.C., Sousa, D.S., Hohl, A., Guarnieri, R., & Walz,
825	R. (2014). Validity and screening properties of three depression rating scales in a
826	prospective sample of patients with severe traumatic brain injury. Revista brasileira de
827	psiquiatria, 36, 206-12.

828	*Senturk, V., Stewart, R.J., & Sağduyu, A. (2007). Screening for mental disorders in leprosy
829	patients: comparing the internal consistency and screening properties of HADS and
830	GHQ-12. Leprosy Review, 78(3), 231-42.

- 831 Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Janavs, J., Weiller, E., Keskiner, A., . . . Dunbar,
- G. C. (1997). The validity of the Mini International Neuropsychiatric Interview (MINI)
- 833 according to the SCID-P and its reliability. *European Psychiatry*, 12(5), 232-241.

834 doi:10.1016/S0924-9338(97)83297-X

- *Sia, A.D., Williams, L.J., Pasco, J.A., Jacka, F.N., Brennan-Olsen, S.L., & Veerman, J.L.
- 836 (2018). The Population Mean Mood Predicts The Prevalence of Depression in an

837 Australian Context. *Australian & New Zealand Journal of Psychiatry*, 52, 461 - 472.

- *Simard, S., & Savard, J. (2015). Screening and comorbidity of clinical levels of fear of cancer
 recurrence. *Journal of Cancer Survivorship*, *9*, 481-491.
- *Singer, S., Danker, H., Dietz, A., Hornemann, B., Koscielny, S., Oeken, J., ... & Krauss, O.
- 841 (2008). Screening for mental disorders in laryngeal cancer patients: a comparison of 6
 842 methods. *Psycho-Oncology*, 17.
- 843 *Singer, S., Kuhnt, S., Götze, H., Hauss, J., Hinz, A., Liebmann, A., Krauss, O., Lehmann, A., &
- 844 Schwarz, R. (2009). Hospital anxiety and depression scale cutoff scores for cancer

patients in acute care. *British Journal of Cancer*, 100(6), 908–912.

- 846 Siu, A. L., & US Preventive Services Task Force (USPSTF). (2016). Screening for Depression in
- Adults: US Preventive Services Task Force Recommendation Statement. JAMA, 315(4),
- 848 380–387. https://doi.org/10.1001/jama.2015.18392

849	*Soyseth, T. S., Lund, M. B., Bjortuft, O., Heldal, A., Søyseth, V., Dew, M. A., & Malt, U. F.
850	(2016). Psychiatric disorders and psychological distress in patients undergoing evaluation
851	for lung transplantation: a national cohort study. General Hospital Psychiatry, 42, 67–73.
852	*Stafford, L., Berk, M., & Jackson, H. J. (2007). Validity of the Hospital Anxiety and
853	Depression Scale and Patient Health Questionnaire-9 to screen for depression in patients
854	with coronary artery disease. General Hospital Psychiatry, 29(5), 417-424.
855	*Stafford, L., Judd, F., Gibson, P., Komiti, A., Quinn, M., & Mann, G. B. (2014). Comparison of
856	the hospital anxiety and depression scale and the center for epidemiological studies
857	depression scale for detecting depression in women with breast or gynecologic cancer.
858	General Hospital Psychiatry, 36(1), 74–80.
859	*Stone, J., Townend, E., Kwan, J., Haga, K., Dennis, M. S., & Sharpe, M. (2004). Personality
860	change after stroke: Some preliminary observations. Journal of Neurology, Neurosurgery
861	& Psychiatry, 75(12), 1708–1713.
862	*Sultan, S., Luminet, O., & Hartemann, A. (2010). Cognitive and anxiety symptoms in screening
863	for clinical depression in diabetes: a systematic examination of diagnostic performances
864	of the HADS and BDI-SF. Journal of Affective Disorders, 123(1-3), 332–336.
865	Thombs, B. D., Arthurs, E., El-Baalbaki, G., Meijer, A., Ziegelstein, R. C., & Steele, R. J.
866	(2011). Risk of bias from inclusion of patients who already have diagnosis of or are
867	undergoing treatment for depression in diagnostic accuracy studies of screening tools for
868	depression: systematic review. BMJ, 343. doi:10.1136/bmj.d4825
869	Thombs, B. D., Benedetti, A., Kloda, L. A., Levis, B., Azar, M., Riehm, K. E., Tonelli, M.
870	(2016). Diagnostic accuracy of the Depression subscale of the Hospital Anxiety and
871	Depression Scale (HADS-D) for detecting major depression: protocol for a systematic

- 872 review and individual patient data meta-analyses. *BMJ Open*, *6*(4). doi:10.1136/bmjopen873 2016-011913
- 874 Thombs, B. D., & Rice, D. B. (2016). Sample sizes and precision of estimates of sensitivity and
 875 specificity from primary studies on the diagnostic accuracy of depression screening tools:
- a survey of recently published studies. *International Journal of Methods in Psychiatric*
- 877 Research, 25(2), 145-152. doi:10.1002/mpr.1504
- *Tiringer, I., Simon, A., Herrfurth, D., Suri, I., Szalai, K., & Veress, A. (2008). Occurrence of
- anxiety and depression disorders after acute cardiac events during hospital rehabilitation.
- 880 Application of the Hospital Anxiety and Depression Scale as a screening instrument.
- 881 *Psychiatria Hungarica, 23*(6), 430–443.
- *Tung, K. Y., Cheng, K. S., Lee, W. K., Kwong, P. K., Chan, K. W., Law, A. C., & Lo, W. T.
- 883 (2015). Psychiatric Morbidity in Chinese Adults with Type 1 Diabetes in Hong Kong.
 884 *East Asian Archives of Psychiatry*, 25(3), 128–136.
- *Turner, A., Hambridge, J., White, J., Carter, G., Clover, K., Nelson, L., & Hackett, M. (2012).
- 886 Depression screening in stroke: a comparison of alternative measures with the structured
- 887 diagnostic interview for the diagnostic and statistical manual of mental disorders, fourth
- edition (major depressive episode) as criterion standard. *Stroke*, 43(4), 1000–1005.
- 889 United Nations Development Programme. (2020). Human Development Reports.
- 890 http://hdr.undp.org/en/content/human-development-index-hdi. Accessed September 20,
 891 2021.
- 892 van der Leeden R, Busing FMTA, Meijer E. (1997). Bootstrap methods for two-level models.
- *Technical report PRM 97-04.* Leiden University, Department of Psychology: Leiden, The
 Netherlands.

895	van der Leeden R, Meijer E, Busing FMTA (2008). Chapter 11: Resampling multilevel models.
896	In Handbook of Multilevel Analysis (ed. J. Leeuw, E. Meijer), pp. 401-433. Springer:
897	New York.
898	Vodermaier, A., & Millman, R. D. (2011). Accuracy of the Hospital Anxiety and Depression
899	Scale as a screening tool in cancer patients: a systematic review and meta-analysis.
900	Supportive Care in Cancer, 19(12), 1899-1908. doi:10.1007/s00520-011-1251-4
901	*Walker, J., Postma, K., McHugh, G. S., Rush, R., Coyle, B., Strong, V., & Sharpe, M. (2007).
902	Performance of the Hospital Anxiety and Depression Scale as a screening tool for major
903	depressive disorder in cancer patients. Journal of Psychosomatic Research, 63(1), 83-91.
904	*Walterfang, M. A., O'Donovan, J., Fahey, M. C., & Velakoulis, D. (2007). The neuropsychiatry
905	of adrenomyeloneuropathy. CNS Spectrums, 12(9), 696-701.
906	*Wong, L. Y., Yiu, R. L., Chiu, C. K., Lee, W. K., Lee, Y. L., Kwong, P. K., & Lo, W. T.
907	(2015). Prevalence of Psychiatric Morbidity in Chinese Subjects with Knee Osteoarthritis
908	in a Hong Kong Orthopaedic Clinic. East Asian Archives of Psychiatry, 25(4), 150–158.
909	Walker, E., & Nowacki, A. S. (2011). Understanding Equivalence and Noninferiority Testing.
910	Journal of General Internal Medicine, 26(2), 192-196. doi:10.1007/s11606-010-1513-8
911	Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B.,
912	QUADAS-2 Group. (2011). QUADAS-2: A Revised Tool for the Quality Assessment of
913	Diagnostic Accuracy Studies. Annals of Internal Medicine, 155(8), 529-U104.
914	doi:10.7326/0003-4819-155-8-201110180-00009
915	World Health Organization (WHO). (1992). The ICD-10 classification of mental and
916	behavioural disorders: clinical descriptions and diagnostic guidelines. World Health
917	Organization.

- 918 World Health Organization. (1994). Schedules for clinical assessment in neuropsychiatry:
 919 version 2. World Health Organization.
- 920 Wu, Y., Levis, B., Ioannidis, J. P. A., Benedetti, A., Thombs, B. D., & DEPRESsion Screening
- 921 Data (DEPRESSD) Collaboration. (2020). Probability of Major Depression Classification
- 922 Based on the SCID, CIDI, and MINI Diagnostic Interviews: A Synthesis of Three
- 923 Individual Participant Data Meta-Analyses. *Psychotherapy and Psychosomatics*, 90(1),
- 924 28-40. doi:10.1159/000509283
- 925 Wu, Y., Levis, B., Riehm, K. E., Saadat, N., Levis, A. W., Azar, M., ... Thombs, B. D. (2020).
- 926 Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: a systematic review
- 927 and individual participant data meta-analysis. *Psychological Medicine*, 50(8), 1368-1380.
 928 doi:10.1017/S0033291719001314
- 929 Wu, Y., Levis, B., Sun, Y., He, C., Krishnan, A., Neupane, D., . . . DEPRESsion Screening Data
- 930 (DEPRESSD) HADS Group. (2021). Accuracy of the Hospital Anxiety and Depression
- 931 Scale Depression subscale (HADS-D) to screen for major depression: systematic review
- and individual participant data meta-analysis. *BMJ*, 373. doi:10.1136/bmj.n972
- 933 Wu, Y., Levis, B., Sun, Y., Krishnan, A., He, C., Riehm, K. E., . . . Thombs, B. D. (2020).
- 934 Probability of major depression diagnostic classification based on the SCID, CIDI and
- 935 MINI diagnostic interviews controlling for Hospital Anxiety and Depression Scale -
- 936 Depression subscale scores: An individual participant data meta-analysis of 73 primary
- 937 studies. Journal of Psychosomatic Research, 129. doi:10.1016/j.jpsychores.2019.109892
- 938 *Yamashita, A., Noguchi, H., Hamazaki, K., Sato, Y., Narisawa, T., Kawashima, Y., ... &
- 939 Matsuoka, Y. J. (2017). Serum polyunsaturated fatty acids and risk of psychiatric

- 940 disorder after acute coronary syndrome: A prospective cohort study. *Journal of Affective*
- *Disorders, 218*, 306–312.
- 942 Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta
- *Psychiatrica Scandinavica*, 67(6), 361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x
- 945 *Studies that included in the IPDMA

Fig 1. ROC curve for HADS-D and HADS-T across all studies.

Study	MDD/Total N (Weighted)	Difference in Sensitivity (95% CI)	Difference in Sensitivity	Difference in Specificity (95% CI)	Difference in Specificity
Pedroso, 2016 [88] Kang, 2013 [81]	9 / 48 36 / 423	0.45 (0.07, 0.84) 0.21 (0.06, 0.36)			
Sanchez, 2012 [41] Senturk, 2007 [65]	3/22	0.20(-0.46, 0.86) 0.12(-0.29, 0.54)	°	-0.14(-0.06, 0.34)	
Huey, 2018 [19]	22 / 236	0.04 (-0.10, 0.18)		0.21 (0.15, 0.27)	
Michopoulos, 2010 [32]	27 / 193	0.03 (-0.08, 0.15)		0.00 (-0.05, 0.05) 0.20 (0.13, 0.27)	
De Souza, 2009 [9] Akechi, 2006 [1]	12 / 50 17 / 223	0.21 (-0.08, 0.51) 0.05 (-0.12, 0.23)		0.00 (-0.12, 0.12) 0.16 (0.10, 0.22)	
Cukor, 2008 [7] Matsucka, 2009 [86]	14 / 70 26 / 153	0.12 (-0.11, 0.36)		0.07 (-0.01, 0.15)	
Beck, 2016 [67]	53/313	0.09 (-0.02, 0.21)		0.08 (0.04, 0.12)	ф
Ferentinos, 2011 [11]	8/36	0.18(-0.18, 0.52) 0.10(-0.23, 0.43)		0.07 (-0.06, 0.20)	
Jang, 2012 [80] Schwarzbo l d, 2014 [45]	11 / 309 14 / 44	0.08(-0.18,0.33) 0.06(-0.15,0.27)		0.08 (0.05, 0.11) 0.09 (-0.04, 0.23)	÷
Yamashita, 2017 [96] Saracino, 2017 [43]	5/98 6/188	0.14 (-0.33, 0.62)		— 0.01 (-0.04, 0.06)	-
Wong, 2015 [56]	33 / 114	0.09 (-0.04, 0.21)		0.06 (-0.01, 0.13)	
Chen, 2010 [71]	47 / 195	0.04 (-0.07, 0.42)	 	-0.03 (-0.09, 0.02) 0.09 (0.03, 0.14)	- -
Fischer, 2014 [13] Cheung, 2011 [72]	11 / 194 1 / 55	0.08 (-0.18, 0.33) 0.00 (-0.92, 0 .92)		0.05 (0.00, 0.10) 	~
Gagnon, 2005 [14]	14 / 108	0.12 (-0.11, 0.36)		0.00 (-0.06, 0.06)	-
Gould, 2011 [16]	15 / 189	0.06 (-0.14, 0.26)	o	0.06 (0.01, 0.11)	-0-
Juliao, 2013 [20] Tung, 2015 [51]	31 / 75 33 / 136	0.00 (-0.12, 0.12) 0.06 (-0.08, 0.19)	 	0.11 (-0.02, 0.23) 0.05 (-0.01, 0.11)	
Sanchez, 2014 [42] Loosman, 2010 [84]	8 / 120 8 / 28	0.10 (-0.23, 0.43) 0.00 (-0.28, 0.28)		-0.01 (-0.08, 0.06) 0.09 (-0.12, 0.31)	_
O'Rourke, 1998 [33]	9/56	0.09 (-0.21, 0.39)	<u> </u>	0.00 (-0.10, 0.10)	
Kugaya, 2000 [23]	3/81	0.00 (-0.55, 0.55)	<u>_</u>	0.04(-0.17, 0.26) 0.09(-0.01, 0.18)	
Braeken, 2010 [5] Dorow, 2017 [10]	1 / 12 50 / 1143	0.00 (-0.92, 0 .92) -0.02 (-0.13, 0.09)			
Beraldi, 2014 [3] Butnoriene, 2014 [70]	9 / 117 201 / 1115	0.00 (-0.25, 0.25)		0.06 (-0.01, 0.14) 0.04 (0.02, 0.07)	
Fabregas, 2014 [78]	33 / 105	0.00 (-0.14, 0.14)	— <u> </u>	0.05 (-0.02, 0.13)	
Phan, 2016 [89]	6 / 47	0.00 (-0.18, 0.18)		0.05 (0.01, 0.08)	
Jackson, Unpublished McFarlane, 2009 [87]	7 / 52 130 / 859	0.00 (-0.31, 0.31) 0.00 (-0.06, 0.06)		0.04 (-0.10, 0.19) 0.04 (0.01, 0.06)	0
Soyseth, 2016 [91]	9/94	0.00 (-0.25, 0.25)		0.03(-0.03, 0.10)	
Harter, 2004 [50]	28 / 512	0.00 (-0.13, 0.13)		0.03 (-0.00, 0.06)	
Can, 2006 [60]	7 / 1415	-0.11 (-0.48, 0.26)		0.03 (0.07,0.19) 0.13 (0.07,0.19)	- 0 -
de Oliveira, 2014 [75Ĕ Patel, 2010 [63]	35 / 1226 5 / 52 3	0.05 (0.16, 0.55) 0.00 (0.40, 0.46)		0.08(0.01,0.1暨) 0.02(0.07,0.16)	— — ——
Gandy, 2012 [79] [Drabe 2008 [77] (0	35 / 147 3 / 62 /	0.03 (0.15, 0.09) 0.00 (0.55, 0.55)		0.04(-0.02, 0.1)	- -
Grassi, 2009 [59]	11/30-9	0.00 (-0.21, 0.2 ²)	rdies	0.01 (-0.03, 0.08)	
Walker, 2007 [54]	30 / 3621	-0.03 (-0.11, 0.1₽) 0.03 (-0.11, 0.1₽)		-0.03 (-0.06, 0.01)	- • •
Pintor, 2006 [36] Amoozegar, 2017 [2]	13 / 73 51 / 101	0.00 (-0.18 , 0.18) 0.02 (-0.04 , 0.08)		0.00 (-0.09 , 0.09) -0.02 (-0.12 , 0.08)	
Lees, 2013 [83] Lee, 2016 [25]	11 / 65 5 / 106	-0.08 (-0.33, 0.18) 0.00 (-0.40, 0.40)		0.07 (-0.03, 0.17) -0.01 (-0.06, 0.04)	
Lee, 2017 [26]	6 / 143	0.00 (-0.35, 0.35)		-0.01 (-0.06, 0.03)	
Hartung, 2017 [62]	87 / 1393	-0.05 (-0.13, 0.03)	 	0.03 (0.01, 0.05)	
Marrie, 2018 [30] Keller, 2004 [21]	26 / 252 4 / 76	-0.04 (-0.19, 0.12) 0.00 (-0.46, 0.46)		-0.03 (-0.09, 0.04)	- 0 -
Lowe, 2002 [29] Lambert, 2015 [24]	63 / 490 25 / 164	-0.03 (-0.10, 0.04) -0.04 (-0.23, 0.15)	_ 	0.00 (-0.03, 0.03) 0.00 (-0.05, 0.05)	+
Love, 2004 [28] Singer, 2008 [48]	16/227	0.00(-0.15, 0.15)		-0.04 (-0.09, 0.01)	-
Costa-Requena, 2013 [58]	11/192	0.00 (-0.21, 0.21)		-0.05 (-0.10, 0.00)	- <u>-</u>
Simaro, 2015 [47] Ryan, 2012 [39]	7760 87203	-0.10 (-0.31, 0.31) -0.10 (-0.43, 0.23)		-0.05 (-0.13, 0.02) 0.04 (-0.01, 0.09)	
Al–Asmi, 2011 [57] Singer, 2009 [49]	37 / 140 54 / 576	0.03 (-0.06, 0.11) -0.09 (-0.18, 0.00)	 	-0.09 (-0.16, -0.02) 0.03 (-0.00, 0.06)	- o -
Sia, 2018 [46] Stafford, 2007 [92]	53 / 789 35 / 193	-0.04 (-0.14, 0.06)		-0.03`(-0.05, -0.01)	Ð
Sultan, 2009 [94]	29 / 282	-0.06 (-0.19, 0.06)		-0.01 (-0.06, 0.03)	_
Hitchon, 2019 [17]	4 / 102 17 / 149	-0.11 (-0.31, 0.10)		-0.08 (-0.16, 0.00) 0.01 (-0.04, 0.07)	-
Fiest, 2014 [12] Walterfang, 2007 [55]	30 / 179 1 / 10	-0.03 (-0.19, 0.13) 0.00 (-0.92, 0 .92)		-0.06 (-0.12, -0.00) 	_~
Tiringer, 2008 [95]	9 / 143 7 / 92	-0.09 (-0.39, 0.21) -0.11 (-0.48, 0.26)		-0.01 (-0.06, 0.04)	
Kjaergaard, 2014 [22]	20/357	-0.09 (-0.31, 0.12)		-0.01 (-0.03, 0.01)	e e
Dayon–Perez, 2016 [66] Golden, 2006 [15]	24 / 113 7 / 85	_0.12 (_0.34 , 0.11) 0.00 (_0.31 , 0.31)	—— — ——	-0.11 (-0.21, -0.01)	- 0
Love, 2002 [27] Bunevicius, 2007 [68]	28 / 302 40 / 494	-0.10 (-0.27, 0.07) -0.12 (-0.25, 0.02)		-0.02 (-0.06, 0.02) -0.00 (-0.03, 0.03)	- 4 -
Bernstein, 2018 [4] De la Torre, 2016 [74]	20 / 245	-0.09(-0.26, 0.08) -0.15(-0.26, -0.05)		-0.04 (-0.08, -0.00)	م
Ozturk, 2013 [34]	7 / 45	-0.11 (-0.48, 0.26)		-0.02 (-0.13, 0.08)	
Stafford, 2014 [93]	28 / 128 17 / 100	-0.11 (-0.35, 0.14)		-0.14 (-0.22, -0.06) -0.04 (-0.12, 0.05)	
Prisnie, 2016 [37] Sanchez, Unpublished	11 / 114 40 / 394	-0.15 (-0.44, 0.14) -0.10 (-0.21, 0.02)		0.01 (-0.07, 0.09) -0.05 (-0.09, -0.01)	
Turner, 2012 [52] Schellekens, 2016 [44]	13 / 72	-0.13 (-0.39, 0.12)		-0.02 (-0.10, 0.07)	
Bunevicius, 2012 [69]	56 / 517	-0.29 (-0.42, -0.17)		-0.02 (-0.04, 0.01)	e e
Turner, Unpublished [53] Consoli, 2006 [73]	4 / 52 15 / 93	-0.33 (-0.93, 0.26) -0.29 (-0.57, -0.02)		-0.04 (-0.12, 0.04) -0.25 (-0.36, -0.14)	_
Pooled – Random Effects	2285 / 20700	-0.01 (-0.03, 0.01)	9	0.02 (0.01, 0.03)	Θ
		. , ,		. , ,	
				_	
			-0.6 -0.4 -0.2 0.0 0.2 0.4	и 0.6	-0.6 -0.4 -0.2 0.0 0.2 0.4 0

Fig 2. Forest plots of the difference in sensitivity and specificity estimates at the optimal cutoff (HADS-D: ≥7; HADS-T: ≥15) between HADS-D and HADS-T across all studies^a (N Studies = 98^b; N Participants = 20,700; N major depression = 2,285)^c

^a τ² for the difference of sensitivity and specificity were both <0.001. ^b References for all included studies are marked with an asterisk in the reference list. The reference numbers refer to Supplementary Material References. ^c The studies were sorted by the sum of difference in sensitivity and difference in specificity in descending order.

Participant Subgroup	N Studies	N Participants	N (%) Major
			Depression
All participants	98	20,700	2,285 (11)
Participants not currently diagnosed with a mental disorder or receiving treatment for	38	6,995	495 (7)
a mental health problem			
Age <60	92	11,795	1,452 (12)
Age ≥60	92	8,741	779 (9)
Women	96	11,111	1,342 (12)
Men	89	9,494	911 (10)
Very high country human development index	90	20,088	2,130 (11)
High country human development index	8	612	155 (25)
Participants diagnosed with cancer ^b	27	5,767	433 (8)
Inpatient specialty care	38	8,827	1,047 (12)
Outpatient specialty care	54	9,547	1,072 (11)
Non-medical	7	1,908	116 (6)
Inpatient/outpatient mixed	3	418	50 (12)

^a Some variables were coded at the study level, while others were coded at the participant level. Thus, number of studies does not always add up to the total number. ^b The statistics here were from individual-level variable of cancer diagnosis, slight different from what we used in the subgroup analysis

which based on the study-level care setting variable.

Table 2. Comparison of sensitivity and specificity estimates between HADS-D and HADS-T for pairs of optimal cutoffs and cutoffs close to the optimal cutoffs across all studies

HADS-D ^a					HADS-T					HADS-T – HADS-D			
Cutoff	Sensitivity	95% CI	Specificity	95% CI	Cutoff	Sensitivity	95% CI	Specificity	95% CI	Sensitivity	95% CI	Specificity	95% CI
5	0.90	(0.87, 0.92)	0.61	(0.58, 0.64)	11	0.91	(0.89, 0.93)	0.63	(0.60, 0.66)	0.01	(-0.01, 0.04)	0.02	(-0.00, 0.04)
6	0.86	(0.82, 0.88)	0.70	(0.67, 0.73)	13	0.86	(0.83, 0.88)	0.73	(0.70, 0.75)	0.00	(-0.03, 0.03)	0.03	(0.01, 0.05)
7 ^b	0.79	(0.75, 0.83)	0.78	(0.75, 0.80)	15°	0.79	(0.76, 0.82)	0.81	(0.78, 0.83)	0.00	(-0.05, 0.02)	0.03	(0.01, 0.04)
8	0.70	(0.66, 0.74)	0.84	(0.82, 0.86)	17	0.70	(0.66, 0.74)	0.87	(0.85, 0.89)	0.00	(-0.05, 0.04)	0.03	(0.01, 0.04)
9	0.60	(0.55, 0.64)	0.89	(0.87, 0.91)	19	0.58	(0.54, 0.61)	0.91	(0.9, 0.93)	-0.02	(-0.07, 0.02)	0.02	(0.01, 0.03)
10	0.50	(0.45, 0.54)	0.92	(0.91, 0.94)	21	0.45	(0.41, 0.49)	0.95	(0.94, 0.95)	-0.05	(-0.10, -0.01)	0.03	(0.01, 0.03)
11	0.39	(0.35, 0.43)	0.95	(0.94, 0.96)	23	0.34	(0.31, 0.37)	0.97	(0.96, 0.97)	-0.05	(-0.10, -0.01)	0.02	(0.01, 0.03)

^a N Studies = 98; N Participants = 20,700; N major depression = 2,285 ^b The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-D.

^c The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-T.

CI: confidence interval

Table 3. Comparison of sensitivity and specificity estimates between HADS-D and HADS-T for
pairs of optimal cutoffs and cutoffs close to the optimal cutoffs across all studies via individual-
level model

HADS-D ^a	HADS-T	HADS-T – F	HADS-D
 Cutoff	Cutoff	Sensitivity	Specificity
 5	11	0.02 (-0.00, 0.03)	0.01 (-0.00, 0.03)
6	13	0.01 (-0.01, 0.03)	0.03 (0.01, 0.04)
7 ^b	15°	0.00 (-0.02, 0.03)	0.02 (0.01, 0.04)
8	17	0.00 (-0.03, 0.03)	0.03 (0.02, 0.04)
9	19	-0.02 (-0.05, 0.01)	0.03 (0.02, 0.04)
10	21	-0.05 (-0.08, -0.02)	0.03 (0.02, 0.03)
11	23	-0.05 (-0.09, -0.02)	0.02 (0.02, 0.03)

^a N Participants = 20,700; N major depression = 2,285 ^b The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-D.

^c The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-T.

Table 4a. Comparison of sensitivity and specificity estimates between HADS-D and HADS-T for pairs of optimal cutoffs and cutoffs close to the optimal cutoffs among participants recruited from inpatient care settings

HADS-D ^a						НА	DS-T		HADS-T – HADS-D				
Cutoff	Sensitivity	95% CI	Specificity	95% CI	Cutoff	Sensitivity	95% CI	Specificity	95% CI	Sensitivity	95% CI	Specificity	95% CI
5	0.90	(0.87, 0.93)	0.55	(0.49, 0.60)	11	0.90	(0.87, 0.92)	0.62	(0.56, 0.68)	0.00	(-0.03, 0.03)	0.07	(0.04, 0.11)
6	0.86	(0.83, 0.89)	0.64	(0.58, 0.69)	13	0.85	(0.81, 0.88)	0.72	(0.67, 0.77)	-0.01	(-0.07, 0.02)	0.08	(0.06, 0.12)
7 ^b	0.80	(0.75, 0.83)	0.73	(0.68, 0.78)	15 ^{cd}	0.79	(0.74, 0.82)	0.81	(0.76, 0.85)	-0.01	(-0.08, 0.02)	0.08	(0.05, 0.11)
8	0.73	(0.68, 0.78)	0.80	(0.76, 0.84)	17	0.69	(0.64, 0.74)	0.87	(0.83, 0.90)	-0.04	(-0.11, 0.03)	0.07	(0.04, 0.09)
9	0.63	(0.58, 0.69)	0.86	(0.82, 0.89)	19	0.59	(0.54, 0.64)	0.91	(0.88, 0.93)	-0.04	(-0.14, 0.01)	0.05	(0.03, 0.07)
10	0.55	(0.49, 0.61)	0.90	(0.87, 0.93)	21	0.46	(0.41, 0.51)	0.95	(0.92, 0.96)	-0.09	(-0.19, -0.03)	0.05	(0.03, 0.06)
11	0.45	(0.39, 0.51)	0.93	(0.91, 0.95)	23	0.36	(0.32, 0.41)	0.97	(0.95, 0.98)	-0.09	(-0.18, -0.02)	0.04	(0.02, 0.05)

^a N Studies = 38; N Participants = 8,827; N major depression = 1,047

^b The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-D.

^c The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-T.

^d On this cutoff of HADS-T, the model convergence code was 0 when using the default optimizer in glmer, but there were meaningful CIs.

CI: confidence interval

Table 4b. Comparison of sensitivity and specificity estimates between HADS-D and HADS-T for pairs of optimal cutoffs and cutoffs close to the optimal cutoffs among participants recruited from outpatient care settings

HADS-D ^a							НА	DS-T		HADS-T – HADS-D				
Cutoff	Sensitivity	95% CI	Specificity	95% CI	Cutoff	Sensitivity	95% CI	Specificity	95% CI	Sensitivity	95% CI	Specificity	95% CI	
5	0.91	(0.87, 0.94)	0.63	(0.60, 0.67)	11	0.92	(0.89, 0.95)	0.62	(0.59, 0.66)	0.01	(-0.02, 0.04)	-0.01	(-0.03, 0.01)	
6	0.87	(0.82, 0.91)	0.72	(0.69, 0.75)	13	0.88	(0.84, 0.91)	0.72	(0.69, 0.75)	0.01	(-0.02, 0.05)	0.00	(-0.01, 0.02)	
7 ^b	0.82	(0.75, 0.86)	0.79	(0.76, 0.81)	15°	0.81	(0.76, 0.84)	0.80	(0.77, 0.82)	-0.01	(-0.07, 0.04)	0.01	(-0.01, 0.03)	
8	0.71	(0.65, 0.77)	0.85	(0.83, 0.87)	17	0.73	(0.67, 0.78)	0.86	(0.84, 0.88)	0.02	(-0.04, 0.07)	0.01	(-0.00, 0.03)	
9	0.60	(0.54, 0.66)	0.90	(0.88, 0.91)	19	0.59	(0.53, 0.65)	0.91	(0.90, 0.92)	-0.01	(-0.08, 0.04)	0.01	(0.00, 0.03)	
10	0.49	(0.43, 0.55)	0.93	(0.91, 0.94)	21	0.45	(0.39, 0.52)	0.94	(0.93, 0.95)	-0.04	(-0.11, 0.02)	0.01	(0.00, 0.03)	
11	0.38	(0.32, 0.44)	0.95	(0.94, 0.96)	23	0.34	(0.29, 0.39)	0.96	(0.95, 0.97)	-0.04	(-0.10, 0.01)	0.01	(0.00, 0.02)	

^a N Studies = 54; N Participants = 9,547; N major depression = 1,072 ^b The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-D.

^c The cutoff minimizes the values of the distance to the top-left corner of the ROC curves for HADS-T.

CI: confidence interval