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Jensen@Phys. Rev. Lett.83, 76 ~1999!# proposed a new technique to study the scaling behavior of
turbulent velocity fields. Inverse structure functions—defined as average moments of distances~or
times! corresponding to a specified difference of a turbulent quantity—were used to investigate the
intermittency of the turbulent velocity field. The present Brief Communication employs inverse
structure functions to study the behavior of a passive scalar~temperature! in high-Reynolds-number
grid-generated turbulence. It is shown that the scaling exponents of inverse structure functions of
temperature are significantly different than those of the longitudinal and transverse velocity. Such a
result is attributed to the higher level of intermittency associated with passive scalar fields. ©2004
American Institute of Physics.@DOI: 10.1063/1.1710890#

Since Kolmogorov’s 1941 prediction1,2 regarding the
small-scale structure of a turbulent velocity field, structure
functions have been commonly used in the study of turbu-
lence. They are defined as statistical moments of velocity
differences over a specified scale:

^~Dui~r j !!n&[^~ui~xj1r j !2ui~xj !!n&, ~1!

whereui is a turbulent velocity fluctuation andr j is a sepa-
ration ~often measured in the direction of the mean flow and
calculated using Taylor’s hypothesis!. Kolmogorov1,2 pre-
dicted the inertial-range scaling behavior of thenth-order
structure function to be

^~Dui~r !!n&5 f ~e,r !}r zn, ~2!

where, from dimensional considerations,

zn5n/3. ~3!

Note thatr 5ur j u and e is the dissipation rate of turbulent
kinetic energy~which, in the inertial subrange at large Rey-
nolds numbers, is equal to the spectral energy transfer rate!.

Since 1941, it has become apparent that the scaling im-
plied by Eq.~3! needs refining.3–8 Due to the large variations
in space and time ofe ~called internal intermittency!, the
probability density functions~PDFs! of Dui(r ) cannot be
collapsed by a rescaling scheme and the dependence ofzn on
n becomes nonlinear. The relationship betweenzn andn has
been the focus of much research—see Ref. 8 for a review.

To consider the scaling and intermittency of turbulent
velocity fields from a novel point of view, Jensen9 proposed
inverting structure functions and studying average moments
of distances between two points possessing a specified ve-
locity difference. Whereas traditional structure functions
quantify statistical moments of velocity differences over a
specified scale, inverse structure functions10 are defined to be
average moments of distances~or times! corresponding to a
specified difference of a turbulent quantity. Using velocity as

an example, they can be written as^(r (uDui u))n& when con-
sidering spatial separations or^(t(uDui u))n& when consider-
ing temporal separations.r (uDui u) or t(uDui u) represent the
minimal separation in space or time, respectively, for which
the magnitude of the measured velocity difference isuDui u.
The averaging is performed in the same manner as for~tra-
ditional! structure functions~i.e., over space or time for ex-
periments such as those described herein!.

Just as an inertial-range scaling behavior of regular
structure functions is expected, so would be that of inverse
structure functions, i.e.,

^~r ~ uDui u!!n&}uDui udn. ~4!

However, the relationship betweenzn and dn is non trivial.
Using GOY shell model computations,11–13 Jensen9 calcu-
lated inverse structure functions up to order 8 and showed
that i! strong intermittency effects are also observed fordn

~i.e., dnÞ3n), ii! dnÞ1/zn and iii! the PDFs ofr for a given
Dui are non-Gaussian for both small and large scales.

Using experimental and synthetic data, inverse structure
functions of the velocity field have also been used to inves-
tigate the intermediate dissipation range.14 It was shown that
the latter is more extended than when studied by means of
traditional structure functions.15–17 Inverse structure func-
tions have also been used to study two-dimensional
turbulence.18,19

The purpose of the present Brief Communication is to
investigate the scaling and intermittency of a turbulent pas-
sive scalar field by means of inverse structure functions. In
doing so, we also present experimental measurements of in-
verse structure functions of the longitudinal and transverse
velocity fields and compare them with those of the scalar.

The measurements were made in the 0.91 m30.91
m39.1 m low-speed, low-background-turbulence wind tun-
nel in the Sibley School of Mechanical and Aerospace Engi-
neering at Cornell University. The flow is homogeneous,
quasi-isotropic, high-Reynolds-number, grid-generated tur-
bulence. Large Reynolds~and Pe´clet! numbers were obtaineda!Electronic mail: laurent.mydlarski@mcgill.ca
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by use of an active grid.20–22 Passive scalar~temperature!
fluctuations were produced by the action of the turbulent
velocity field against an imposed mean temperature gradient.
The latter was generated by differentially heating parallel
ribbons located at the entrance to the wind tunnel plenum
chamber. The characteristics of the velocity and thermal
fields, as well as the details of the apparatus, are documented
in Refs. 21 and 23. Hot-wire anemometry and cold-wire ther-
mometry were employed to measure the respective fields.
The hot-wire signals were compensated for the temperature

fluctuations by means of a modified King’s law with
temperature-dependent coefficients.24

Measurements are presented for three Reynolds num-
bers:Rl5140, 306, and 582, whereRl5^u2&@15/(ne)#1/2.
The dissipation rate of turbulent kinetic energy is estimated
from e515n*0

`k1
2F11(k1)dk1 , where F11(k1) is the one-

dimensional, longitudinal power spectrum ofu. The flow pa-
rameters for these three cases are summarized in Table I.
More details can be found in Ref. 23.

Figures 1 and 2 plot the first- and second-order temporal
inverse structure functions ofu andv for the three Reynolds
numbers.25 Both behave in very similar fashions.~Spatial
inverse structure functions can be obtained from the present
results by multiplying the ordinates of the figures by
(t^U&/h)n, where n is the order of the inverse structure
function under consideration.! At small scales, the first- and
second-order inverse structure functions exhibit slopes of ap-
proximately 1 and 2, respectively, as required by the small-
scale, ‘‘laminar,’’ asymptotic limit ofDun}r n. At intermedi-
ate separations, another scaling range is observed. The slopes
of these ranges are given in Table II. We observe the magni-
tudes of the inverse structure function scaling exponents for
Rl5140 to be slightly higher than those at the other two
Reynolds numbers. For these highest Reynolds numbers, the
values ofd1

u andd1
v ~approximately 2.0!, d2

u andd2
v ~approxi-

mately 3.9! and those ofd3
u andd3

v ~approximately 5.6! are in
FIG. 1. Inverse structure functions ofu of the ~a! first order and~b! second
order.Rl5140 ~L!, Rl5306 ~n!, Rl5582 ~s!.

FIG. 2. Inverse structure functions ofv of the ~a! first order and~b! second
order.Rl5140 ~L!, Rl5306 ~n!, Rl5582 ~s!.

TABLE I. Flow parameters. All measurements were made atx/M562. The
Rl5140 case used the active grid operating in its synchronous mode. The
other two cases employed its random mode.~See Refs. 21 and 23.!

Rl 140 306 582

^U& (m/s) 3.3 3.3 7.0
dT/dy (K/m) 2.5 2.7 3.6
^u2& (m2/s2) 0.0290 0.0911 0.583
^v2& (m2/s2) 0.0209 0.0594 0.424
^u2& (K2) 0.176 0.800 1.07
e ~m2/s3! 0.0418 0.0833 0.940
eu (K2/s) 0.277 0.799 1.74
h(5(n3/e)1/4) (mm) 0.55 0.47 0.26
t(5(n/e)1/2) (s) 0.0193 0.0139 0.00413
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close agreement with the numerical work of Ref. 9. Figure 1
also exhibits an inertial range that is better defined than in
Fig. 1 of Ref. 15. We also remark that the width of the
scaling region in Fig. 1 is less Reynolds number dependent
than the scaling range of the traditional structure functions
~not shown!. The latter is also notably larger than the former.
Lastly, at the largest scales, the inverse structure functions
plateau, as also observed in Ref. 9. Similar results~not
shown! were obtained for the third-order inverse structure
functions.26

Inverse structure functions for the temperature field are
shown in Fig. 3. Comparing them with the previous results
~Figs. 1 and 2!, we note that the values ofd1

u , d2
u , andd3

u are
significantly lower than the corresponding values for the ve-
locity field—their values are approximately 1.5, 2.7, and 3.8,
respectively. Consequently, the shape of the inverse structure
functions appear more ‘‘linear,’’ due to the smaller difference
between the small-scale and inertial-range scaling exponents.
The smaller values ofdn

u with respect todn
u and dn

v are re-
lated to the intermittency of the passive scalar field, which is
more intense than that of the velocity field—see Ref. 27. As
for the Reynolds number dependence of the scaling expo-
nents, there appears to be a small tendency towards lower
values as the Reynolds number increases.

Figure 4 shows PDFs oft(uduu) for small and large val-
ues ofDu. It was noted in Ref. 9 that the PDFs oft(udui u) do
not tend to Gaussian distributions for large scales as do the
PDFs of Dui . The same holds for the PDFs oft(uduu),
which are approximately log-normal.~The deviation from
log-normality increases for largeruDuu.!

Lastly, we point out that ‘‘signed’’ inverse structure func-
tions were also studied~i.e., structure functions conditioned
on increments of a given sign, as opposed to ones condi-
tioned on the absolute value of the increment!. Though the
signed inverse structure functions possessed a different shape

and, therefore, different inertial range slope, the same trends
as discussed above were observed.~At small scales, signed
inverse structure functions asymptote to a constant value that
is equal to the Kolmogorov time scale for the first order. This
behavior is attributed to the fact that theaverageminimum
time for the velocity field to exhibit a velocity difference of a
given sign is bounded on the lower end by the average time
taken for a velocity difference of initially opposite sign to
return to zero and become of the desired sign.! Differences
between signed inverse structure functions based on positive
and negative increments are possible~particularly for Du,
which is asymmetric!. No measurable differences, however,
were observed.

In conclusion, results of inverse structure functions of a
passive scalar field~temperature! were presented over the
range 140<Rl<582. Their scaling exponents are signifi-
cantly lower than the corresponding ones of the velocity
field—an indication of the stronger internal intermittency in
passive scalar fields. The PDFs oft for specified values of
uDuu were shown to be non-Gaussian at all scales. In addi-
tion, inverse structure functions of the longitudinal and trans-
verse velocity fields in grid-generated turbulence were pre-
sented. Both were quite similar with inertial-range scaling
exponents exhibiting a slight tendency towards smaller val-
ues as the Reynolds number is increased. The scaling expo-
nents of both the longitudinal and transverse velocity fields

FIG. 3. Inverse structure functions ofu of the ~a! first order and~b! second
order.Rl5140 ~L!, Rl5306 ~n!, Rl5582 ~s!.

TABLE II. The scaling exponents of the traditional and inverse structure
functions ofu, v, andu for orders 1, 2, and 3. The exponents are determined
by fitting a best fit power-law to the scaling range. The odd-ordered tradi-
tional structure functions are calculated using averages of moments of the
absolute value of the differences.

Rl 140 306 582 Jensen~Ref. 9!

z1
u 0.29 0.33 0.32 0.39

z1
v 0.27 0.30 0.34 ¯

z1
u 0.36 0.36 0.37 ¯

z2
u 0.52 0.63 0.62 0.73

z2
v 0.48 0.58 0.63 ¯

z2
u 0.58 0.61 0.62 ¯

z3
u 0.80 0.90 0.89 1.0

z3
v 0.65 0.84 0.90 ¯

z3
u 0.74 0.79 0.81 ¯

d1
u 2.1 2.0 2.0 2.04

d1
v 2.5 2.1 2.1 ¯

d1
u 1.7 1.6 1.5 ¯

d2
u 4.1 3.9 3.9 3.70

d2
v 4.6 4.0 3.9 ¯

d2
u 3.1 2.8 2.7 ¯

d3
u 5.8 5.6 5.6 5.4

d3
v 6.6 5.6 6.0 ¯

d3
u 3.9 3.8 3.8 ¯
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agree with the previous numerical work9 and exhibit better
defined scaling ranges than observed in Ref. 15.

The authors thank Professor Z. Warhaft for his help with
this work. Beneficial comments were also provided by a re-
viewer. Support was graciously provided by the Natural Sci-
ences and Engineering Research Council of Canada. The
measurements were made at Cornell University by means of
support from the United States Department of Energy~Basic
Energy Sciences!.
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