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Abstract
Rationale Systemic amphetamine (AMPH) administration
increases the rate of 50-kHz ultrasonic vocalizations
(USVs) in adult rats and preferentially enhances the ‘trill’
subtype; these effects of AMPH critically depend on norad-
renergic transmission, but the possible contributions of do-
pamine are unclear.
Objective To assess the role of dopamine in 50-kHz
USVs emitted drug-free and following systemic AMPH
administration.
Methods Adult male Long–Evans rats pre-selected for high
AMPH-induced calling rates were tested with AMPH
(1 mg/kg, intraperitoneal (IP)) and saline following pretreat-
ment with the following dopamine receptor antagonists:
SCH 23390 (0.005–0.02 mg/kg, subcutaneous (SC)), SCH
39166 (0.03–0.3 mg/kg, SC), haloperidol (0.1, 0.2 mg/kg, IP),
sulpiride (20–80 mg/kg, SC), raclopride (0.1–0.5 mg/kg, SC),
clozapine (4 mg/kg, SC), risperidone (0.5 mg/kg, SC), and
pimozide (1 mg/kg, IP). The dopamine and noradrenaline
reuptake inhibitors (GBR 12909 and nisoxetine, respectively)
were also tested, alone and in combination.
Results SCH 23390, SCH 39166, haloperidol, and raclopr-
ide dose-dependently inhibited vocalizations under AMPH
and suppressed the proportion of trill calls. Sulpiride,

however, had no discernable effect on call rate or profile,
even at a high dose that reduced locomotor activity. Single
doses of clozapine, risperidone, and pimozide all markedly
decreased calling under saline and AMPH. Finally, GBR
12909 and nisoxetine failed to promote 50-kHz USVs detect-
ably or alter the subtype profile, when tested alone or in
combination.
Conclusions The rate of 50-kHz USVs and the call subtype
profile following systemic AMPH administration depends
on dopaminergic neurotransmission through D1-like and
D2-like receptors. However, inhibiting dopamine and/or
noradrenaline reuptake appears insufficient to induce
calling.
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Introduction

Higher-frequency ultrasonic vocalizations (USVs) emitted
by adult laboratory rats, generally termed “50-kHz calls”
(for review, see Brudzynski 2009; Wohr and Schwarting
2010), are frequently associated with appetitive stimuli
(Burgdorf et al. 2010; Knutson et al. 2002) and have been
proposed to reflect positive affect (Brudzynski 2007;
Burgdorf and Moskal 2009; Burgdorf et al. 2010). However,
50-kHz USVs are acoustically diverse, with many identified
subtypes including flat (i.e., constant frequency) calls and at
least 12 types of frequency-modulated (FM) calls (Wright et
al. 2010). The relative prevalence of the different call sub-
types, which we have termed the “call profile” (Wright et al.
2010), can be experimentally modified independently of the
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overall rate of 50-kHz call emission (Ciucci et al. 2007, 2009;
Wright et al. 2012b).

Dopaminergic (DAergic) neurotransmission appears to
play a key role in USV emission. Notably, acute systemic
injection of the dopamine (DA) agonist apomorphine pro-
moted 50-kHz calls (Williams and Undieh 2010), and intra-
accumbens administration of the D2/D3 agonist quinpirole
modulated USV production in a dose-related triphasic fash-
ion (Brudzynski et al. 2012). Conversely, DA receptor
antagonists are reported to inhibit 50-kHz USVs elicited
by several natural and artificial rewarding stimuli, namely
systemic cocaine (Williams and Undieh 2010), intracerebral
amphetamine (AMPH) and glutamate (Thompson et al.
2006; Wintink and Brudzynski 2001), tickling (Burgdorf
et al. 2007), electrical brain stimulation (Burgdorf et al.
2007), and copulation-related contexts (Bialy et al. 2010;
Ciucci et al. 2007, 2009).

The psychostimulant AMPH, which enhances both
DAergic and noradrenergic transmission (McKittrick and
Abercrombie 2007), exerts two principal effects on 50-kHz
vocalizations: It increases the overall call rate (Ahrens et al.
2009; Simola et al. 2009; Wintink and Brudzynski 2001;
Wright et al. 2010, 2012b), and in relative terms, it shifts the
“call profile,” thereby enhancing the trill subtype while
suppressing flat calls (Wright et al. 2010, 2012b). These
rate-enhancing and call profile-altering effects of AMPH
are critically dependent on α1 and β adrenergic receptor
function, respectively (Wright et al. 2012b). To our knowl-
edge, however, it has not been determined whether the
effects of systemic AMPH administration on 50-kHz USV
emission are also dependent on DAergic transmission.

The first main aim of the present study was therefore to
test the hypothesis that DAergic neurotransmission is re-
quired for 50-kHz calls that are emitted when tested drug-
free or following systemic AMPH administration. The sec-
ond, related, aim was to determine whether either D1-like or
D2-like DA receptors (Le Foll et al. 2009) play a role. These
questions were addressed in Experiments 1–7, in which we
tested the effects of acute pretreatment with several D1- or
D2-like DA receptor antagonists in combination with sys-
temic saline or AMPH challenge (see Table 1). During
testing, it emerged that the atypical antipsychotic drug sul-
piride (Rama Rao et al. 1981) did not inhibit AMPH-
induced calling, in striking contrast to two classical D2
antagonists (i.e., haloperidol and raclopride). Therefore, as
a third aim, we assessed whether sulpiride’s lack of effect
reflected its atypical antipsychotic profile, by testing two
other atypical neuroleptic drugs (clozapine and risperidone)
and one additional classical D2 antagonist (pimozide). We
also recorded USVs and locomotor activity simultaneously
(Experiment 7), in order to confirm that sulpiride was be-
haviorally active, despite its failure to influence 50-kHz
calling.

A final aim was to address whether enhancing DA or
noradrenaline (NA) transmission is sufficient to induce 50-
kHz USVs or affect the call profile (Experiments 8–10—see
Table 1). To this end, rats were acutely challenged with the
selective DAT inhibitor GBR 12909 and the selective NET
inhibitor nisoxetine, given alone and in combination.

Methods

Subjects

Subjects were 114 male Long–Evans rats (Charles River
Laboratories, St Constant, Quebec, Canada), weighing 376
±50 g (mean±SD) at the start of the experiment. They were
housed two or three per cage (25×48×20 cm3) in a
temperature- and humidity-controlled colony room (19–
20 °C, 50–60 %) at the McGill University Animal Research
Center. Rats were maintained on a reverse 12:12 light/dark
cycle, with lights off at 0700 h. All behavioral testing took
place during the dark phase of the cycle. Food and water
were available ad libitum, except during testing sessions. In
all experiments, rats were initially drug- and experimentally
naïve, with the following exceptions: In Experiments 3 and
4, rats had received four prior systemic injections of AMPH
(0.25, 0.5, 1, and 2 mg/kg, IP), and in Experiment 7, rats had
received four prior administrations of morphine (1 mg/kg,
SC). All procedures were approved by the McGill Animal
Care Committee in accordance with the guidelines of the
Canadian Council on Animal Care.

Overview of experiments

Ten experiments were performed, as summarized in Table 1.
Briefly, Experiments 1–7 tested the effects of antagonist
pretreatment on the USV response (i.e., call rate and subtype
profile) to systemic AMPH. Experiment 7 additionally ex-
amined locomotor activity during the USV recording. The
acute USV responses to the DA and NA reuptake inhibitors
(i.e., GBR 12909 and nisoxetine), given alone or in combi-
nation, were examined in Experiments 8–10.

Experimental protocol

AMPH screen A significant minority of rats emit few calls
in response to systemic AMPH (Wright et al. 2010). There-
fore, subjects in most experiments were initially screened
for AMPH-induced calling. Exceptionally, in order to re-
duce pre-experiment drug exposure, subjects in Experiments
3, 4, and 7 were not screened since they had already re-
ceived prior AMPH or morphine administration (see above).
The AMPH screening method was as described previously
(see Wright et al. 2012b for further details). Briefly, rats
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received three administrations of AMPH (1 mg/kg, IP)
spaced 2 days apart; rats with the lowest rate of calling on
the third AMPH test were excluded from subsequent testing.
Only the third AMPH test session was analyzed because the
first two sessions are not necessarily indicative of a rat’s
subsequent USV response to AMPH (unpublished observa-
tion). In total, 52 rats (out of 126 rats that underwent screening)
were excluded on this basis.

Drug testing All experiments featured a fully parametric
within-subject design, whereby each rat was tested once
under each drug/dose condition (see Table 1 for details).
Thus, in Experiments 1–7, rats received all combinations of
pretreatment and treatment drugs including all vehicle con-
trols. After the pretreatment time interval had elapsed, each
rat was injected with saline or AMPH (1 mg/kg, IP) and
immediately placed in a test chamber and recorded for
20 min. Similarly, in Experiments 8–10, every rat was tested
under the following conditions: vehicle, AMPH (1 mg/kg—
positive control), and each dose of the drug(s) being tested.
Here, recording sessions were of 20-min duration except for
the GBR 12909 dose–response study (Experiment 8), where
rats were tested for 40 min. Within each experiment, the
order of testing was counterbalanced as far as possible given
the number of subjects. Test sessions were always spaced
2 days apart in order to minimize possible carry-over effects
of the drugs.

Drugs

All test drugs, doses, routes of administration, and pretreat-
ment/treatment time intervals are shown in Table 1. Drugs
were: D-amphetamine sulfate (Sigma-Aldrich, Poole, UK);
haloperidol and S(−)-sulpiride (both from Sigma-Aldrich,

St. Louis, MO); pimozide, R(+)-SCH-23390 HCl, SCH
39166 HBr (i.e., Ecopipam), raclopride, and risperidone
(all from Tocris Bioscience, Ellisville, MO); clozapine,
GBR 12909 2HCl, and (±)-nisoxetine HCl (all from the
NIMH Chemical Synthesis and Drug Supply Program).
Doses of the different compounds refer to the form indicated
above. GBR 12909 was administered in a volume of 2 ml/kg;
all other drugs were administered in a volume of 1 ml/kg.
Sulpiride was dissolved in a few drops of glacial acetic acid
and diluted with sterile saline. Clozapine, GBR 12909, halo-
peridol, pimozide, and risperidone were dissolved in a 0.1 M
tartaric acid solution. All other drugs were dissolved in sterile
saline. Drug vehicles were used for control injections. The pH
of GBR 12909 could not be raised beyond 4.5 (with NaOH)
without precipitation. In case the lower pH affected call emis-
sion, each rat was tested twice with AMPH in Experiment 10,
once with the standard drug solution and once with the same
solution acidified with HCl to pH 4.5. Since there was no
difference in call rate or profile between the two AMPH tests,
data from these tests were pooled for the remainder of the
analysis.

Behavioral recording

USV recordings were conducted as previously described
(Wright et al. 2012b). With the exception of Experiment 7
(see below), recordings took place in four clear Plexiglas
experimental chambers (ENV-007CT, Med Associates, St
Albans, VT), each of which was enclosed in a melamine
compartment lined with sound-attenuating acoustic foam
(Primacoustic, Port Coquitlam, British Columbia). A con-
denser ultrasound microphone (CM16/CMPA, Avisoft Bio-
acoustics, Berlin, Germany) was securely inserted through a
small (5-cm diameter) hole located centrally in the top panel

Table 1 Summary of
experiments Experiment Pretreatment Doses, mg/kg Route Time before saline/AMPH, min n

1 SCH23390 0.005, 0.01, 0.02 SC 20 10

2 SCH39166 0.03, 0.1, 0.3 SC 30 12

3 Haloperidol 0.1, 0.2 IP 60 12

4 Sulpiride 20, 40 SC 60 12

5 Raclopride 0.1, 0.2, 0.5 SC 30 12

Sulpiride 40, 80 SC 30

6 Clozapine 4 SC 30 12

Risperidone 0.5 SC 30

Pimozide 1 IP 30

7 Sulpiride 80 SC 30 16

Experiment Drug Doses, mg/kg Route Time before testing, min n

8 GBR 12909 5, 10, 20 IP 20 8

9 Nisoxetine 4, 8, 16 IP 15 8

10 GBR 12909 10 IP 20 12

Nisoxetine 12 IP 15
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of each experimental chamber. Consequently, the micro-
phones were 15–30 cm from rats during testing. Micro-
phone signals were fed into an UltraSoundGate 416 H data
acquisition device (Avisoft Bioacoustics) with a sampling
rate of 250-kHz and 16-bit resolution.

For Experiment 7, USV recordings were made in rectan-
gular, open-topped chambers (58 cm long×29 cm wide×
53 cm high) to allow simultaneous recording of USVs and
locomotor activity, as previously described (Wright et al.
2012a). Two ultrasound microphones were secured inside
each chamber at opposite corners, approximately 10 cm
from the top (i.e., 40 cm above the floor). Sound-
attenuating acoustic foam enveloped the walls and extended
20 cm above the top of each chamber. A video tracking
system (EthoVision v 3.0, Noldus Information Technology,
Leesburg, VA, USA) measured locomotor activity
(expressed as the total horizontal distance moved) during
the second half (i.e., min 11–20) of the session to allow
AMPH to take effect.

All lights were off during behavioral testing, except for
Experiment 7, where far-red (wavelength>650 nm) illumina-
tion using a Kodak GBX-2 safelight filter (Vistek, Toronto,
Ontario, Canada) provided darkroom lighting.

Analysis and classification of ultrasonic vocalizations

Acoustical analysis was performed using Avisoft SASLab
Pro (version 5.1, Avisoft Bioacoustics), as previously de-
scribed (Wright et al. 2012b). Calls were selected manually
from spectrograms by an individual who was masked to the
treatment condition. Each identified 50-kHz call was classi-
fied into 1 of 14 distinct categories: complex, upward ramp,
downward ramp, flat, short, split, step-up, step-down, multi-
step, trill, flat–trill combination, trill with jumps, or com-
posite (see Wright et al. (2010) for criteria for call identifi-
cation and classification, several examples of each call type,
as well as descriptive statistics relating to acoustic parame-
ters). A few representative 50-kHz calls are shown in Fig. 1.
This method of manual call selection has been validated by
surgical devocalization, and classification is associated with

high inter- and intra-rater reliability (Wright et al. 2010).
The 22-kHz calls were not analyzed since they were rarely
observed in this study (specifically, one rat made two calls
under sulpiride 40 mg/kg plus AMPH 1 mg/kg and another
rat made 20 calls under sulpiride 80 mg/kg plus AMPH
1 mg/kg).

Data analysis and statistics

Data were analyzed using commercial software (Systat v11,
SPSS, Chicago, IL; GraphPad Prism 4, GraphPad Software,
La Jolla, CA). For Experiments 1–7, USVs that occurred
during minutes 12, 14, and 16 of the 20-min session were
counted and classified. These minutes were chosen since
AMPH-induced calling becomes most pronounced within
the 10–20 min time interval following AMPH administra-
tion (Wright et al. 2010). In Experiment 8, data throughout
the entire 40 min session were analyzed. Finally, for Experi-
ments 9 and 10, USVanalysis was performed for minutes 3,
8, 13, and 18 of the 20-min session (i.e., we chose 4 min of
time-sampling and spread it evenly across the session). One
rat was removed for the call subtype analysis in Experiment
2 (SCH 39166) because it only emitted one call at the
highest dose, making it an extreme outlier when evaluating
the percentage data. Repeated-measures ANOVA was per-
formed to determine the effect of the within-subjects factors
“pretreatment” and “treatment,” where appropriate. Pairwise
comparisons were performed using paired t tests or Wil-
coxon tests; the choice of test depended on the distribution
of the raw data. ANOVA p values were subject to the
Huynh–Feldt correction, where appropriate. Multiple com-
parisons relating to the call rate data were subject to Holm–
Bonferroni corrections, except where stated. However, for
the call subtype analysis, pairwise comparisons were per-
formed using uncorrected tests, in order to maintain statis-
tical power. For all analyses, a two-tailed p value<5 % (after
any correction) was considered significant.

Results

Note that statistically significant results were found for
certain of the less frequent call subtypes, but they were not
consistently observed across doses or drugs of the same
class and are likely to be false-positives; hence, these results
are not reported here.

Experiments 1 and 2: effects of the D1 antagonists SCH
23390 and SCH 39166

As expected, AMPH given alone (i.e., with vehicle pretreat-
ment) greatly increased the rate of 50-kHz calling (Wilcoxon
Z02.80 and 3.06, both p<0.01; Fig. 2a, b). The call rate under

Fig. 1 Spectrogram containing individual 50-kHz calls representative
of the following subtypes (left to right): split, step-down, flat, flat-trill
combination, and trill. See Wright et al. (2010) for additional examples
of all fourteen 50-kHz call subtypes
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AMPH was dose-dependently reduced by both SCH 23390
and SCH 39166, with significant effects at the two higher
doses (SCH 23390,Wilcoxon Z02.70 and 2.70, p<0.05; SCH
39166, Wilcoxon Z02.90 and 3.06, p<0.01; Fig. 2). Each
antagonist, given alone, tended to suppress calling below the
already-low baseline call rate, but a statistically significant
inhibitory effect only occurred at the highest dose of SCH
39166 (Wilcoxon Z02.80, p<0.05; Fig. 2b).

Higher doses of the D1-like antagonists also significantly
affected the call profile. More specifically, the proportion of
trill calls under AMPH was dose-dependently suppressed by
both SCH 23390 (0.01 and 0.02 mg/kg versus vehicle,
Wilcoxon Z02.29 and 2.19, p<0.05; Fig. 3a) and SCH
39166 (0.3 mg/kg versus vehicle, Wilcoxon Z02.52, p<
0.05; Fig. 3c). In addition, SCH 39166 significantly enhanced
the proportion of flat calls under AMPH at the highest dose
tested (i.e., 0.3 mg/kg) (Wilcoxon Z02.38, p<0.05; Fig. 3d).
Although the proportion of flat calls appeared to be enhanced
by SCH 23390, this failed to reach statistical significance
(Fig. 3b). No other call subtype was significantly altered.

Experiments 3–5: effects of the D2 antagonists haloperidol,
sulpiride, and raclopride

Call rate under AMPH Haloperidol, at both doses tested
(0.1 and 0.2 mg/kg), significantly inhibited calling follow-
ing AMPH administration (respectively, Wilcoxon Z02.31,
p<0.05, and 3.06, p<0.01; Fig. 4a); sulpiride (20 and
40 mg/kg), in contrast, had no effect (Fig. 4b). Sulpiride
was tested again at a higher dose (Experiment 5), this time
in parallel with raclopride (Fig. 4c). Sulpiride again failed to
affect the rate of calling after AMPH treatment, whereas
raclopride behaved similarly to haloperidol, inhibiting 50-
kHz calling at all doses tested (Wilcoxon Z03.06, 2.98, and
3.06, p<0.01; Fig. 4c).

Call rate after antagonist alone Haloperidol did not alter
the call rate after saline challenge (Fig. 4a); here, however,

control call rates were very low (i.e., <3 calls/min). Sulpir-
ide, tested alone, significantly reduced calling at only one
dose (40 mg/kg Wilcoxon Z02.28, p<0.05; Fig. 4c), and
this apparent effect was not replicated across experiments

Fig. 2 Experiments 1 and 2: The D1 antagonists SCH 23390 (a) and
SCH 39166 (b) dose-dependently inhibited the call rate under AMPH.
The y axes represent mean+SEM calls/min. Each rat was tested under
all pretreatment/treatment conditions (SCH 23390 group n010; SCH

39166 group n012). SCH 39166 alone also decreased the call rate at
the highest dose tested (i.e., 0.3 mg/kg). *p<0.05, **p<0.01 versus
corresponding vehicle pretreatment condition

Fig. 3 Experiments 1 and 2: Pretreatment with the D1 antagonists
SCH 23390 (a) and SCH 39166 (c) before AMPH dose-dependently
reduced the percent of trill calls. SCH 39166 also increased the percent
of flat calls at the highest dose tested (0.3 mg/kg) (d). The apparent
increase in the percent of flat calls with SCH 23390 was statistically
non-significant (b). Each rat was tested under all pretreatment/treat-
ment conditions (SCH 23390 group n010; SCH 39166 group n012).
*p<0.05 versus vehicle control
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(i.e., Experiment 4 versus 5; see Fig. 4b versus c). In
contrast, raclopride tested alone significantly inhibited the
call rate at all doses tested (0.1, 0.2, and 0.5 mg/kg versus
vehicle, Wilcoxon Z02.85, 3.06, and 3.06, p<0.01; Fig. 4c).

Call profile Haloperidol and raclopride dose-dependently
suppressed the proportion of trill calls following AMPH
challenge (haloperidol 0.2 mg/kg versus vehicle, Wilcoxon
Z02.51, p<0.05; raclopride 0.5 mg/kg versus vehicle, Wil-
coxon Z02.1, p<0.05; Fig. 5a, c). This effect appeared less
potent than the rate-inhibiting effect (Fig. 4a, c). Raclopride
(0.2 mg/kg) also increased the proportion of flat calls under
AMPH (mean±SEM percent of flat calls following pretreat-
ment with vehicle versus 0.2 mg/kg raclopride, 12.7±2.9
versus 32.8±4.5; Wilcoxon Z02.5, p<0.05). In contrast,
sulpiride marginally increased the proportion of trill calls
at 40 mg/kg in Experiment 5 (Wilcoxon Z02.19, p<0.05;
Fig. 5c) but not in Experiment 4 (Fig. 5b).

Experiment 6: effects of pimozide and the atypical
antipsychotics clozapine and risperidone

Pimozide, clozapine, and risperidone were all tested at a
single, high dose. All three antagonists markedly inhibited

both USV after saline treatment and AMPH-induced USV
production (see Fig. 6). Despite low rates of calling, call
subtype analysis revealed that pimozide significantly re-
duced the proportion of trill calls under AMPH (mean±
SEM percent of trills: vehicle versus pimozide, 36.4±6.5
versus 13.3±11.4, respectively; Wilcoxon Z02.37, p<0.05).

Experiment 7: effect of high-dose sulpiride on 50-kHz
USVs and locomotor activity

Sulpiride (80 mg/kg) significantly decreased AMPH-
induced locomotor activity (ANOVA pretreatment×treat-
ment interaction, F1,15014.85, p<0.01; Fig. 7). Sulpiride
also reduced locomotor activity when given alone (t150
3.39, p<0.01; Fig. 7a). In contrast, sulpiride exerted no
detectable effect on either the call rate (Fig. 7b) or profile
(not shown).

Experiments 8–10: effect of GBR 12909 and nisoxetine,
alone and in combination

Unlike AMPH, neither GBR 12909 nor nisoxetine signifi-
cantly promoted 50-kHz calling at any dose tested; all
comparisons were statistically non-significant after Holm–

Fig. 4 Experiments 3–5: Haloperidol (a) and raclopride (c) dose-
dependently inhibited USV emission under AMPH (grey bars) at all
doses tested, while sulpiride (b, c) was ineffective. Raclopride (c) also
reduced the call rate following saline treatment (open bars). Sulpiride

only modestly reduced the drug-free call rate at 40 mg/kg in Experi-
ment 5 (c). Each rat was tested under all pretreatment/treatment con-
ditions (n012 rats per experiment). *p<0.05, **p<0.01, ***p<0.001
versus corresponding vehicle pretreatment

Fig. 5 Experiments 3 and 5: Haloperidol (a) and raclopride (RAC) (c)
suppressed trills (as a proportion of all 50-kHz calls) following AMPH
administration at the highest doses tested. Sulpiride (SUL), in contrast,
was largely ineffective (b, c), except for an increase in the proportion

of trills at 40 mg/kg in Experiment 5 (c). Each rat was tested under all
pretreatment/treatment conditions (n012 rats per experiment). *p<
0.05 versus vehicle control
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Bonferroni correction (Experiments 8 and 9, respectively;
Fig. 8a, b). In Experiment 8, GBR 12909 tended to increase
the call rate at 10 mg/kg, especially in the first half of the 40-
min session, i.e., time 20–40 min post-injection (Supple-
mental Fig. S1). Accordingly, this shorter post-injection
interval was used when this drug was retested in Experiment
10. Here, selected doses of GBR 12909 (i.e., 10 mg/kg) and
nisoxetine (i.e., 12 mg/kg) were administered, not only
alone but also in combination; there was still no significant
enhancement (or suppression) of call rate (Fig. 8c). Notably,
the 10 mg/kg dose of GBR 12909 which appeared to in-
crease calling in Experiment 8 no longer showed such a
trend (Fig. 8c).

The reuptake inhibitors, given alone or in combination,
failed to mimic the effect of AMPH on the call profile. For
example, in Experiment 10, AMPH significantly increased
the relative prevalence of trill calls, but neither GBR 12909,
nor nisoxetine, or their combination showed this effect
(mean±SEM percent trills: vehicle versus AMPH, 22.9±
5.2 versus 46.3±6.7, respectively; Wilcoxon Z02.58, p<
0.01). Conversely, a significant reduction in the proportion
of flat calls was observed following the co-administration of
GBR 12909 and nisoxetine, yet AMPH unexpectedly did
not reduce the proportion of flat calls in this particular
experiment (mean±SEM percent flat calls: vehicle versus
GBR 12909+nisoxetine, 21.9± 6.3 versus 10.3±6.0, re-
spectively; Wilcoxon Z02.67, p<0.01).

Discussion

The present study provides the first evidence that D1-like and
D2-like receptor antagonists modulate the effects of systemic
AMPH administration on the 50-kHz call rate and profile.
Exceptionally, sulpiride, which is a D2-like antagonist with
atypical antipsychotic features, consistently failed to affect
USV emission. In addition, neither GBR 12909 (DAT inhib-
itor) nor nisoxetine (NET inhibitor), or their combination,
mimicked the effects of AMPH on USV production. Below,
we argue that both D1-like and D2-like DA receptors play a
critical role in 50-kHz USV emission, and we suggest mech-
anisms contributing to sulpiride’s lack of effect. We subse-
quently review antagonist-induced USVs suppression in the
context of other behavioral and clinical effects of the same
drugs. Finally, we discuss whether enhanced DA or NA
transmission is sufficient to promote USVemission.

D1 dopaminergic receptor antagonism

The D1-like antagonists SCH 23390 and SCH 39166 dose-
dependently inhibited the 50-kHz call rate and the percent-
age of trill calls following AMPH challenge; both antago-
nists also tended to reduce the call rate below control (i.e.,
drug-free) levels, although a significant reduction was only
seen at the highest dose of SCH 39166. SCH 23390 and
SCH 39166 both bind with high affinity to D1 and D5
receptors, with negligible affinity for D2-like receptors
(i.e., D2, D3, and D4) (Tice et al. 1994). While SCH
23390 also has considerable affinity for serotonin receptors,
namely 5HT2 and 5HT1C (Bischoff et al. 1986; Nicklaus et
al. 1988), SCH 39166 does not (Alburges et al. 1992;
McQuade et al. 1991a, b; Wamsley et al. 1991). To our
knowledge, these drugs do not have any other significant
off-target effects. Thus, DA D1-like receptors appear critical
to the USV-altering effects of systemic AMPH and may also
regulate USV emission in the absence of this drug.

Fig. 6 Experiment 6: Single doses of clozapine (4 mg/kg, SC; CLO),
risperidone (0.5 mg/kg, SC; RIS), and pimozide (1 mg/kg, IP; PIM), all
markedly reduced the 50-kHz call rate under saline (open bars) and
AMPH 1 mg/kg IP (grey bars). Each rat was tested under all pretreat-
ment/treatment conditions (n012 rats). ^^p<0.01 versus vehicle/saline
control, **p<0.01 versus vehicle/AMPH control

Fig. 7 Experiment 7: Sulpiride (SUL; 80 mg/kg, SC) significantly
inhibited AMPH-induced locomotor activity (panel a) (ANOVA pre-
treatment×treatment interaction—F1,15014.85, p<0.01) but produced
no detectable effect on the rate of USV emission (panel b). The y axes
represent mean+SEM total horizontal distance (meters) travelled (pan-
el a) or the 50-kHz call rate (panel b), following administration of
saline (open bars) or AMPH (grey bars). **p<0.01, ****p<0.0001
versus corresponding vehicle (VEH) control
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D2 dopaminergic receptor antagonism

All six D2-like antagonists, with the notable exception of
sulpiride, markedly inhibited or abolished the stimulatory
effect of AMPH on call rate. Additionally, haloperidol and
raclopride dose-dependently decreased the proportion of trill
calls under AMPH. The latter finding is in line with previ-
ous studies showing a reduction in the proportion of FM
calls in response to sexual odors following systemic halo-
peridol pretreatment (Ciucci et al. 2007, 2009). It appears
likely that DA transmission through D2-like receptors is crit-
ical for both the call rate and profile following AMPH, since
several possibilities exist as to why sulpiride is anomalous:

1. Sulpiride may exert an additional (as yet unidentified)
action which functionally counteracts D2 receptor
blockade. Indeed, studies with muscarinic cholinergic
and adenosine A2A receptor antagonists have provided
such a precedent, in that these drugs can reverse the
behavioral effects of DA receptor blockade (Collins et
al. 2012; Morpurgo and Theobald 1964).

2. The phenomenon of D2-like receptor heteromerization
(Maggio et al. 2009) suggests another plausible mecha-
nism by which sulpiride might exert functional effects
that are distinct from those of other D2-like antagonists.

3. It is unlikely that our doses of sulpiride were insufficient
to antagonize USV emission, since comparable or even
lower doses have proven effective in a number of DA-
dependent behavioral assays, i.e., apomorphine hyper-
activity and stereotypy (de Paulis et al. 1985), the
AMPH cue (Nielsen and Andersen 1992; Nielsen and
Jepsen 1985), conditioned place preference (CPP) in-
duced by food or testosterone (Guyon et al. 1993;
Schroeder and Packard 2000), and intravenous self-
administration of nicotine or cocaine (Sorge and Clarke
2009). Importantly, a high dose of sulpiride that failed to
affect the call rate did, at the same time, reduce AMPH-
induced hyperactivity (present study—Experiment 7);
the latter effect is consistent with previous findings

(Ljungberg and Ungerstedt 1985; Moore and Kenyon
1994; Sharp et al. 1986; White et al. 1992).

4. Sulpiride, in contrast to many D2-like antagonists, pos-
sesses considerably lower affinity at D4 compared with
D2 and D3 receptors (Rondou et al. 2010; Seeman et al.
1997; Seeman and Van Tol 1994). However, it is un-
likely that D4 receptors are critical to USVemission since
raclopride (Experiment 5) markedly reduced USVs
despite also having very low affinity at D4 receptors
(Seeman and Van Tol 1994).

5. The “atypical” antipsychotic properties of sulpiride do
not appear related to its lack of effect on USV emission,
since the atypical drugs clozapine and risperidone clearly
inhibited calling.

6. Since D2-like antagonists tend to be pharmacologically
non-selective (Jafari et al. 2012), it is conceivable that
all the D2-like antagonists tested, except for sulpiride,
fortuitously suppressed calling through some shared
non-DAergic mechanism. However, this possibility
seems remote since the compounds were drawn from
multiple, structurally heterogeneous chemical classes
(Jafari et al. 2012), and we are unaware of any such
shared receptor candidate. Notably, α1 adrenergic recep-
tor blockade abolishes AMPH-induced calling (Wright et
al. 2012b), but some DA antagonists (e.g., raclopride)
lack significant affinity for this receptor (Hall et al.
1986; Ishiwata et al. 2001; Ogren et al. 1986).

Behavioral mechanisms

The USV-related effects produced by the DA-like antago-
nists in the present study are summarized in Table 2, togeth-
er with several other behavioral effects of the same drugs
reported in the literature. Antagonist doses that inhibited
saline- or AMPH-induced USVs frequently overlapped with
those affecting other behavioral measures. However, as dis-
cussed below, no particular behavioral measure matched our
USV findings completely.

Fig. 8 Experiments 8–10: GBR 12909 (a) and nisoxetine (b) failed to
significantly promote 50-kHz calling at any dose tested. Panel c shows
that single doses of GBR 12909 (GBR, 10 mg/kg IP) and nisoxetine

(NIS, 12 mg/kg IP), given either alone or even in combination (GBR+
NIS), still failed to modify the call rate detectably (c). *p<0.05, **p<0.01
versus vehicle control (VEH)

860 Psychopharmacology (2013) 225:853–868



T
ab

le
2

E
ff
ec
ts
of

an
ta
go

ni
st
s
on

U
S
V
s
an
d
ot
he
r
be
ha
vi
or
al

m
ea
su
re
s

P
re
tr
ea
tm

en
t

U
S
V
re
su
lts

(p
re
se
nt

st
ud
y)

O
th
er

be
ha
vi
or
al

ef
fe
ct
s

D
ru
g

D
os
e

U
S
V

ra
te

un
de
r

sa
lin

ea

U
S
V

ra
te

un
de
r

A
M
P
H

T
ri
lls

un
de
r

A
M
P
H

S
po
nt
an
eo
us

L
M
A

C
at
al
ep
sy

A
M
P
H
b
-i
nd
uc
ed

L
M
A

C
PA

/C
P
P

A
M
P
H
c
C
P
P

A
M
P
H
d
cu
e

S
C
H

23
39
0

0.
00
5

–
–

–
–
(C
er
vo

an
d
S
am

an
in

19
96

;
H
of
fm

an
an
d

B
en
in
ge
r
19
85

;
M
en
za
gh
i
et

al
.
19
97

;
S
ac
aa
n
et

al
.
19
96

;
S
al
m
i
et

al
.
19
98

)

–
(C
hr
is
te
ns
en

et
al
.

19
84

;
M
or
el
li
an
d

D
i
19
85

;
O
ua
ga
zz
al

et
al
.
19
93

)

?
–
(A

cq
ua
s
et

al
.
19
89

;
L
eo
ne

an
d

D
i
C
hi
ar
a
19
87

)

–
(H

ir
oi

an
d

W
hi
te

19
91

)
–
(C
al
la
ha
n
et

al
.
19
91
;

N
ie
ls
en

an
d
A
nd
er
se
n

19
92

;
N
ie
ls
en

an
d

Je
ps
en

19
85
)

0.
01

–
↓

↓
–
(C
er
vo

an
d
S
am

an
in

19
96

;
H
of
fm

an
an
d

B
en
in
ge
r
19
85

;
S
ac
aa
n
et

al
.
19
96

),
↑

(M
ey
er

et
al
.
19
93

),
↓

(M
en
za
gh
i
et

al
.
19
97
;

S
al
m
i
et

al
.
19
98

)

–
(C
hr
is
te
ns
en

et
al
.

19
84

;
M
or
el
li
an
d

D
i
19
85

;
O
ua
ga
zz
al

et
al
.
19
93

)

↓
(O

ua
ga
zz
al

et
al
.
19
93

)
–
(A

cq
ua
s
et

al
.
19
89

;
L
eo
ne

an
d
D
i

C
hi
ar
a
19
87

),
C
PA

(S
hi
pp
en
be
rg

an
d

H
er
z
19
87

;
S
hi
pp
en
be
rg

an
d
H
er
z
19
88

)

–
(H

ir
oi

an
d

W
hi
te

19
91

)
–
(C
al
la
ha
n
et

al
.

19
91

;
N
ie
ls
en

an
d

A
nd
er
se
n
19
92

;
N
ie
ls
en

an
d
Je
ps
en

19
85

;
N
ie
ls
en

et
al
.

19
89

),
↓
(A

rn
t
19
88

)

0.
02

–
↓

↓
–
(C
er
vo

an
d
S
am

an
in

19
96

;
S
he
n
et

al
.

20
10

),
↓
(M

en
za
gh
i

et
al
.
19
97

;
S
al
m
i

et
al
.
19
98

)

–
(C
hr
is
te
ns
en

et
al
.

19
84

;
M
or
el
li
an
d

D
i
19
85

;
O
ua
ga
zz
al

et
al
.
19
93

)

↓
(O

ua
ga
zz
al

et
al
.
19
93

)
–
(A

cq
ua
s
et

al
.

19
89

;
L
eo
ne

an
d

D
i
C
hi
ar
a
19
87

),
C
PA

(S
hi
pp
en
be
rg

an
d
H
er
z
19
87

;
S
hi
pp
en
be
rg

an
d

H
er
z
19
88

)

–
(H

ir
oi

an
d

W
hi
te

19
91

),
↓

(A
cq
ua
s
an
d

D
i
C
hi
ar
a
19
94

)

↓
(A

rn
t
19
88

;
E
xn
er

et
al
.
19
89

;
N
ie
ls
en

an
d
A
nd
er
se
n
19
92

;
N
ie
ls
en

an
d

Je
ps
en

19
85
;

S
m
ith

et
al
.
19
89

)

S
C
H

39
16
6

0.
03

–
–

–
–
(B
at
sc
he

et
al
.
19
94

)
–
(H

ie
ta
la

et
al
.
19
92

),
ye
s
(P
ri
ns
se
n

et
al
.
19
93

)

?
?

↓
(A

cq
ua
s
an
d

D
i
C
hi
ar
a
19
94

)
?

0.
1

–
↓

–
–
(B
at
sc
he

et
al
.
19
94

)
–
(H

ie
ta
la

et
al
.
19
92

),
ye
s
(P
ri
ns
se
n

et
al
.
19
93

)

?
?

↓
(A

cq
ua
s
an
d

D
i
C
hi
ar
a
19
94

)
↓
(W

es
t
et

al
.
19
95

)

0.
3

↓
↓

↓
–
(B
at
sc
he

et
al
.
19
94

),
↓

(C
ol
lin

s
et

al
.
20
10

)
–
(H

ie
ta
la

et
al
.
19
92

),
ye
s
(P
ri
ns
se
n

et
al
.
19
93

)

?
?

↓
(A

cq
ua
s
an
d

D
i
C
hi
ar
a
19
94

)
↓
(W

es
t
et

al
.
19
95

)

H
al
op
er
id
ol

0.
1

–
↓

–
–
(S
an
ch
ez

et
al
.
19
91

)
–
(C
hr
is
te
ns
en

et
al
.

19
84

;
L
ia
o
et

al
.
19
99

),
ye
s
(H

of
fm

an
an
d

D
on
ov
an

19
95
b;

M
or
el
li
an
d
D
i
19
85

)

↓
(A

rn
t
19
95

;
H
of
fm

an
an
d
D
on
ov
an

19
95
a;

H
of
fm

an
an
d
D
on
ov
an

19
95
b;

P
on
ce
le
t

et
al
.
19
87

)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a;

S
py
ra
ki

et
al
.
19
82

)

↓
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(E
xn
er

et
al
.
19
89

;
N
ie
ls
en

an
d
Je
ps
en

19
85

;
N
ie
ls
en

et
al
.
19
89

)

0.
2

–
↓

↓
↓
(S
an
ch
ez

et
al
.
19
91

)
–
(C
hr
is
te
ns
en

et
al
.

19
84

;
L
ia
o
et

al
.
19
99

),
ye
s
(H

of
fm

an
an
d

D
on
ov
an

19
95
b;

M
or
el
li
an
d
D
i
19
85

;
S
an
ch
ez

et
al
.
19
91

)

↓
(A

rn
t
19
95

;
H
of
fm

an
an
d
D
on
ov
an

19
95
a;

H
of
fm

an
an
d
D
on
ov
an

19
95
b;

M
ith

an
i

et
al
.
19
86

;
P
on
ce
le
t

et
al
.
19
87

)

–
(S
py
ra
ki

et
al
.
19
82

)
↓
(H

of
fm

an
an
d

D
on
ov
an

19
95
a;

M
ith

an
i
et

al
.1

98
6;

S
py
ra
ki

et
al
.
19
82
)

↓
(A

rn
t
19
96

;
E
xn
er

et
al
.
19
89

;
N
ie
ls
en

an
d
Je
ps
en

19
85

;
N
ie
ls
en

et
al
.
19
89

)

(-
)S
ul
pi
ri
de

20
–

–
–

–
(F
er
ra
ri
an
d
G
iu
lia
ni

19
95

;
M
or
ge
ns
te
rn

et
al
.
19
83

)

–
(I
m
pe
ra
to

an
d
D
i

C
hi
ar
a
19
85

;
T
ag
lia
m
on
te

et
al
.
19
75

)

↓
(L
ju
ng
be
rg

an
d
U
ng
er
st
ed
t

19
85

;
M
oo
re

an
d

K
en
yo
n
19
94

;
P
on
ce
le
t
et

al
.

19
87

;
W
hi
te

et
al
.
19
92

)

–
(S
hi
pp
en
be
rg

an
d

H
er
z
19
88

)
–
(H

ir
oi

an
d

W
hi
te

19
91

)
–
(N

ie
ls
en

an
d
A
nd
er
se
n

19
92

;
N
ie
ls
en

an
d

Je
ps
en

19
85
)

40
–
or

↓
–

–
or

↑
–
(F
er
ra
ri
an
d
G
iu
lia
ni

19
95

;
M
or
ge
ns
te
rn

et
al
.
19
83

)

–
(I
m
pe
ra
to

an
d

D
i
C
hi
ar
a
19
85

;
T
ag
lia
m
on
te

et
al
.
19
75

)

↓
(L
ju
ng
be
rg

an
d
U
ng
er
st
ed
t

19
85

;
M
oo
re

an
d
K
en
yo
n

19
94

;
P
on
ce
le
t
et

al
.

19
87

;
W
hi
te

et
al
.
19
92

)

–
(S
hi
pp
en
be
rg

an
d

H
er
z
19
88

)
↓
(H

ir
oi

an
d

W
hi
te

19
91

)
–
(N

ie
ls
en

an
d
Je
ps
en

19
85

),
↓
(N

ie
ls
en

an
d

A
nd
er
se
n
19
92

)

Psychopharmacology (2013) 225:853–868 861



T
ab

le
2

(c
on

tin
ue
d)

P
re
tr
ea
tm

en
t

U
S
V
re
su
lts

(p
re
se
nt

st
ud
y)

O
th
er

be
ha
vi
or
al

ef
fe
ct
s

D
ru
g

D
os
e

U
S
V

ra
te

un
de
r

sa
lin

ea

U
S
V

ra
te

un
de
r

A
M
P
H

T
ri
lls

un
de
r

A
M
P
H

S
po
nt
an
eo
us

L
M
A

C
at
al
ep
sy

A
M
P
H
b
-i
nd
uc
ed

L
M
A

C
PA

/C
P
P

A
M
P
H
c
C
P
P

A
M
P
H
d
cu
e

80
–

–
–

↓
(C
er
vo

an
d
S
am

an
in

19
96

;
pr
es
en
t
st
ud
y)

–
(I
m
pe
ra
to

an
d
D
i

C
hi
ar
a
19
85

;
T
ag
lia
m
on
te

et
al
.
19
75

)

↓
(p
re
se
nt

st
ud
y;

L
ju
ng
be
rg

an
d
U
ng
er
st
ed
t
19
85
;

M
oo
re

an
d
K
en
yo
n
19
94
;

P
on
ce
le
t
et

al
.
19
87

;
S
ha
rp

et
al
.
19
86

;
W
hi
te

et
al
.
19
92

)

?
↓
(H

ir
oi

an
d

W
hi
te

19
91

)
↓
(N

ie
ls
en

an
d
A
nd
er
se
n

19
92

;
N
ie
ls
en

an
d

Je
ps
en

19
85
)

R
ac
lo
pr
id
e

0.
1

↓
↓

–
–
(G

ar
ci
a
H
or
sm

an
an
d

P
ar
ed
es

20
04

;
H
ill
eg
aa
rt
an
d

A
hl
en
iu
s
19
87

;
S
al
m
i
et

al
.
19
98

;
S
he
n
et

al
.
20
10

),
↓

(M
ill
an

et
al
.
20
04

)

–
(H

ill
eg
aa
rt
an
d
A
hl
en
iu
s

19
87

;
H
of
fm

an
an
d

D
on
ov
an

19
95
b;

O
ua
ga
zz
al

et
al
.
19
93
;

W
ad
en
be
rg

et
al
.
20
00
a;

W
ad
en
be
rg

et
al
.
20
00
b)

–
(O

ua
ga
zz
al

et
al
.
19
93

),
↓

(H
of
fm

an
an
d
D
on
ov
an

19
95
a;

H
of
fm

an
an
d

D
on
ov
an

19
95
b)

–
(G

ar
ci
a
H
or
sm

an
an
d

P
ar
ed
es

20
04

;
H
of
fm

an
an
d
D
on
ov
an

19
95
a)

?
–
(F
ur
m
id
ge

et
al
.
19
91
;

N
ie
ls
en

an
d
A
nd
er
se
n

19
92

),
↓
(V
ar
ty

an
d

H
ig
gi
ns

19
97
)

0.
2

↓
↓

–
–
(H

ill
eg
aa
rt
an
d

A
hl
en
iu
s
19
87

;
S
al
m
i
et

al
.
19
98

),
↓
(M

ill
an

et
al
.

20
04

;
S
he
n

et
al
.
20
10

)

–
(H

ill
eg
aa
rt
an
d
A
hl
en
iu
s

19
87

;
H
of
fm

an
an
d

D
on
ov
an

19
95
b;

W
ad
en
be
rg

et
al
.
20
00
b)
,

ye
s
(O

ua
ga
zz
al

et
al
.
19
93
)

↓
(H

of
fm

an
an
d
D
on
ov
an

19
95
a;

H
of
fm

an
an
d

D
on
ov
an

19
95
b;

O
ua
ga
zz
al

et
al
.
19
93

)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(G

ar
ci
a
H
or
sm

an
an
d
P
ar
ed
es

20
04

)
–
(F
ur
m
id
ge

et
al
.
19
91
;

N
ie
ls
en

an
d
A
nd
er
se
n

19
92

),
↓
(N

ie
ls
en

et
al
.
19
89

)

0.
5

↓
↓

↓
↓
(G

ar
ci
a
H
or
sm

an
an
d
P
ar
ed
es

20
04

;
H
ill
eg
aa
rt
an
d

A
hl
en
iu
s
19
87

;
M
ill
an

et
al
.
20
04

;
S
al
m
i
et

al
.
19
98

;
S
he
n
et

al
.
20
10

)

–
(H

ill
eg
aa
rt
an
d
A
hl
en
iu
s

19
87

),
ye
s
(H

of
fm

an
an
d
D
on
ov
an

19
95
b;

O
ua
ga
zz
al

et
al
.
19
93
;

W
ad
en
be
rg

et
al
.
20
00
b )

↓
(H

of
fm

an
an
d
D
on
ov
an

19
95
a;

H
of
fm

an
an
d

D
on
ov
an

19
95
b;

O
ua
ga
zz
al

et
al
.
19
93

)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(G

ar
ci
a
H
or
sm

an
an
d
P
ar
ed
es

20
04

;
H
of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(F
ur
m
id
ge

et
al
.
19
91
;

N
ie
ls
en

an
d
A
nd
er
se
n

19
92

;
N
ie
ls
en

et
al
.
19
89
)

C
lo
za
pi
ne

4
↓

↓
–

↓
(A

rn
t
19
95

;
S
an
ch
ez

et
al
.
19
91

)
–
(H

of
fm

an
an
d
D
on
ov
an

19
95
b;

L
ia
o
et

al
.
19
99

;
S
an
ch
ez

et
al
.
19
91

)

↓
(A

rn
t
an
d
S
ka
rs
fe
ld
t

19
98

;
H
of
fm

an
an
d

D
on
ov
an

19
95
a;

H
of
fm

an
an
d
D
on
ov
an

19
95
b)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(A

rn
t
19
96

;
N
ie
ls
en

an
d
A
nd
er
se
n
19
92

;
N
ie
ls
en

an
d
Je
ps
en

19
85

)

R
is
pe
ri
do
ne

0.
5

↓
↓

–
–
(A

rn
t
19
95

)
–
(A

rn
t
an
d
S
ka
rs
fe
ld
t

19
98

),
ye
s
(H

of
fm

an
an
d
D
on
ov
an

19
95
b)

↓
(A

rn
t
19
95

;
H
of
fm

an
an
d

D
on
ov
an

19
95
a;

H
of
fm

an
an
d
D
on
ov
an

19
95
b)

–
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(H

of
fm

an
an
d

D
on
ov
an

19
95
a)

↓
(A

rn
t
19
96

)

P
im

oz
id
e

1
↓

↓
–

↓
(A

gm
o
an
d
S
or
ia

19
99

;
H
or
vi
tz

an
d

E
tte
nb
er
g
19
91

;
S
ch
ae
fe
r
an
d

M
ic
ha
el

19
84

;
S
pi
va
k
an
d

A
m
it
19
86

)

–
(M

cM
ill
en

et
al
.
19
80

),
ye
s
(C
hr
is
te
ns
en

et
al
.
19
84

)

↓
(P
on
ce
le
t
et

al
.
19
87

;
S
ch
ae
fe
r
an
d
M
ic
ha
el
19
84

)
?

?
↓
(H

o
an
d
H
ua
ng

19
75

)

M
in
us

si
gn

no
si
gn

if
ic
an
t
ch
an
ge
,
qu

es
tio

n
m
ar
k
cu
rr
en
tly

no
pu

bl
is
he
d
da
ta

(t
o
ou

r
kn

ow
le
dg

e)
,
ar
ro
w
up

or
ar
ro
w
do

w
n
si
gn

if
ic
an
t
in
cr
ea
se

or
de
cr
ea
se
,
re
sp
ec
tiv

el
y

a
P
ar
tic
ul
ar
ly

fo
r
S
C
H

23
39

0,
ha
lo
pe
ri
do

l,
an
d
su
lp
ir
id
e,
in
hi
bi
to
ry

ef
fe
ct
s
m
ig
ht

ha
ve

be
en

m
as
ke
d
by

th
e
lo
w

ra
te

of
dr
ug

-f
re
e
ca
lli
ng

b
0.
5–

3.
5
m
g/
kg

A
M
P
H

c
1–

2
m
g/
kg

A
M
P
H

d
0.
3–

1
m
g/
kg

A
M
P
H

862 Psychopharmacology (2013) 225:853–868



USVs versus motor function Several DA antagonists (i.e.,
haloperidol, clozapine, risperidone, pimozide) inhibited
USV emission at doses expected to markedly suppress
drug-free or AMPH-associated locomotion (Table 2). In
general, however, there was no consistent relationship be-
tween motor impairment and USV emission. In particular,
raclopride inhibited drug-free USV production even at low
doses which tend not to inhibit locomotion, and conversely,
sulpiride inhibited drug-free and AMPH-induced locomo-
tion without detectably affecting USV production (Table 2).

AMPH cue The discriminative stimulus effects of AMPH
are of particular interest since they serve to model the drug’s
subjective effects in humans (Brauer et al. 1997). The USV-
stimulatory and cue effects of AMPH appear similarly af-
fected by our D1 and D2 antagonists, but only the latter is
attenuated by sulpiride (see Table 2 for references).

USVs versus reward/aversion Since 50-kHz USVs have
been proposed as a measure of drug reward, it is potentially
informative to compare our results with published work
using the conventional reward measure of CPP, while ac-
knowledging that the latter reflects conditioned rather than
unconditioned drug effects. Both D1 antagonists appeared
to inhibit 50-kHz calling under saline treatment, allowing
for the low rate of drug-free calling. However, it is unclear
whether D1 receptor blockade reliably produces a condi-
tioned place aversion (CPA) in rats (Table 2), since D1
antagonist effects are either mixed (SCH 23390) or unre-
ported (SCH 39166). In contrast, D2-like antagonists con-
sistently fail to produce a CPP or CPA in adult rats
(Tzschentke 1998). The lack of D2 antagonist-induced
CPP or CPA does not appear to reflect a learning or memory
deficit, since D2 receptor blockers do not inhibit the acqui-
sition of all types of CPP or CPA (Tzschentke 1998). Thus,
D2 receptor antagonists appear neutral in the CPP/CPA test,
yet all our D2 receptor antagonists (with the exception of
sulpiride) tended to inhibit calling under saline treatment.

The acquisition of AMPH CPP is inhibited by D1 and D2
receptor antagonists, according to most reports (Table 2).
However, our USV findings reveal two striking differences:
(1) sulpiride did not inhibit AMPH-induced calling (present
study), whereas it inhibited AMPH CPP (Hiroi and White
1991), and (2) clozapine abolished AMPH-induced calling,
yet failed to inhibit AMPH CPP (Hoffman and Donovan
1995a). Importantly, these studies employed comparable
doses of antagonist and AMPH.

USVs versus affect Although classic antipsychotics (e.g.,
haloperidol) do not produce a CPA in rats (see above), they
often produce dysphoria in human subjects (Emerich and
Sanberg 1991; Voruganti and Awad 2004). Atypical anti-
psychotics, in contrast, appear far less commonly associated

with dysphoria, as evidenced by sulpiride, clozapine, and
risperidone (Mehta et al. 1999; Potvin et al. 2003; Voruganti
et al. 2000). Although the latter two drugs produced pro-
found alterations in USV emission in the present study,
circulating levels of these three DA antagonists probably
far exceeded the clinical range.

USVs versus AMPH euphoria The dose of AMPH employed
in the present study (i.e., 1 mg/kg) appears comparable to
euphorigenic doses in human studies (Grilly and Loveland
2001). FM 50-kHz ultrasonic vocalizations (USVs) have
been proposed to reflect hedonia (Burgdorf and Moskal
2009), and the trill subtype in particular appears most close-
ly associated with rewarding doses of AMPH and cocaine
(Wright et al. 2010, 2012b). Although trill calls following
AMPH were preferentially inhibited by both D1-like and
some D2-like (i.e., haloperidol, raclopride, and pimozide)
antagonists in the present study, it is important to note that
animal and human studies do not strongly support a role for
DA in hedonia but rather in incentive salience or “wanting”
(Brauer and de Wit 1997; Leyton et al. 2005, 2007; Smith et
al. 2011). Therefore, in view of the present findings, we
speculate that emission of FM 50-kHz calls, and trills in
particular, may relate to incentive salience rather than
hedonia. Flat calls, in contrast to trill calls, were significantly
increased in relative terms by certain doses of SCH 39166 and
raclopride, possibly as a consequence of trill call suppression.
Flat calls have been proposed to have a social-coordinating
function unrelated to positive affect (Wohr et al. 2008).

Dopamine and noradrenaline reuptake inhibitors

AMPH and cocaine, which increase both DA and NA trans-
mission (McKittrick and Abercrombie 2007), enhance USV
production and modulate the call profile (Wright et al. 2010,
2012b). The results of the present study together with pre-
vious findings (Wright et al. 2012b) suggested that both DA
and NA transmission are necessary for the observed effects
of AMPH on USVemission. The question of sufficiency was
addressed by subsequently examining whether the selective
DAT and NET inhibitors GBR 12909 (Andersen 1989) and
nisoxetine (Wong et al. 1982; Wong and Bymaster 1976),
respectively, could mimic the USV effects of AMPH or
cocaine. Neither GBR 12909 nor nisoxetine, alone or in
combination, mimicked the effect of AMPH on the call rate
or profile in the present study. At doses tested here, GBR
12909 would be expected to elevate extracellular DA, and
co-administration of a NET blocker would likely potentiate
this increase (Carboni et al. 2006). To our knowledge, there
are no studies directly examining extracellular NA follow-
ing nisoxetine administration in rats. Instead, the doses of
nisoxetine were chosen based on their ability to generalize
to the cues produced by the non-selective β-adrenergic

Psychopharmacology (2013) 225:853–868 863



agonist isoproterenol (Crissman and O’Donnell 2002) and
the NET blocker reboxetine (Millan and Dekeyne 2007); the
latter drug produces a marked increase in extracellular levels
of NA (Dekeyne et al. 2001).

GBR 12909 and nisoxetine, unlike AMPH, appear to
exert their behavioral effects solely through transmitter
reuptake inhibition. We have previously found that the
DA/NA reuptake blocker cocaine moderately stimulated
50-kHz calling, while mimicking AMPH’s ability to pro-
mote trill calls preferentially (Wright et al. 2012b). It is
unclear why GBR 12909 and nisoxetine failed to exert
either of these effects; here, cocaine’s ability to inhibit
the 5-HT reuptake transporter (Wall et al. 1995) or enhance
exocytotic DA release (Ramsson et al. 2011) may be
relevant.

Limitations

Adult rats exhibit large variability in their USV response to
systemic AMPH (Taracha et al. 2012; Wright et al. 2010). In
order to examine drug effects on AMPH-induced calling, we
identified low responders using an initial AMPH screen in
most experiments. A substantial number of subjects were
then excluded, resulting in a selected population that may
differ in other behavioral or neurochemical respects
(Burgdorf et al. 2008). Notably, the failure of sulpiride to
modify the call rate or profile was independent of whether
rats were screened or not (compare Experiment 5 with Experi-
ments 4 and 7). The present method of selecting adult rats
based on their acute response to AMPH helps to address the
issue of low baseline call rates and high individual differences.
Other approaches include selective breeding (Burgdorf et al.
2008) and possibly through prior social manipulations (Vivian
and Miczek 1991).

Due to the labor-intensive nature of this type of USV
analysis, only a small fraction of the entire session (i.e., 3 or
4 min) was time-sampled for most experiments. It is possi-
ble that USV effects outside our chosen time intervals were
missed. This method of time-sampling therefore limits in-
terpretation of the present findings.

Finally, certain drugs, namely sulpiride, GBR 12909, and
nisoxetine, exerted no discernable effects on USV emission.
In the case of sulpiride, we performed an additional exper-
iment (Experiment 7) where USVs and locomotion were
assessed simultaneously. However, the negative findings
with GBR 12909 and nisoxetine (or their combination) were
not followed up with additional behavioral testing. While
GBR 12909 would be expected to stimulate locomotor
activity at all the doses tested (Hooks et al. 1994; Powell
et al. 2001), nisoxetine does not appear to affect this mea-
sure in adult rats (Davids et al. 2002; Powell et al. 2001).
The lack of positive controls in Experiments 8–10 is a
limiting factor when interpreting these results.

Conclusion

USVs are a potentially rich source of information about the
rat’s subjective state. The present study furthers our under-
standing of the neurochemical substrates regulating USV
production in adult rats. DA transmission appears critical
for the 50-kHz USV response to systemic AMPH, since
antagonism of either D1-like or D2-like receptors (with the
notable exception of sulpiride) reversed the effects of
AMPH on the call rate and profile. DA transmission also
appears to modulate drug-free call emission. It appears that,
although both DA and NA are required, inhibition of DA
and NA reuptake per se is not sufficient to elicit an AMPH-
like USV response.
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