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ABSTRACT 

The Raman scattering cross sections are ca1cu1ated for 

the longitudinal collective modes in n-type Pb Te in a static 

magnetic field oriented symmetrica11y with respect to the 

four e11ipsoida1 energy surfaces, and varying in strength 

from 10 Kgauss to 200 Kgauss. On1y modes propagating par a1-

1e1 to this field are considered. Because of the anisotropy 

of the energy surfaces, a low-frequency charge density oscil­

lation can exist in the plasma. ~It is shown that the presence 

of this mode can be detected most easi1y through its inter­

action with the longitudinal optica1 phonons or the usua1 

p1asmons. A one-band mode1 is used to describe the carriers, 

and the e1ectron-e1ectron interact~on is treated within the 

random phase approximation. The resu1ts can be adapted 

easi1y to Ge by e1imination of the phonons. 
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PREFACE 

The results of the calculations in this thesis are an 

original contribution to knowledge. Both the Raman scatter-

ing process and the excitations considered are well-known; 

however, the combination of the two is original. In the 

calculation many standard techniques are employed and pub­

lished results of others are used freely; aIl these contri­

butions to the thesis are acknowledged in the bibliography. 



ABSTRACT 

The Raman scattering cross sections are calculated for 

the longitudinal collective modes in n-type PbTe in a static 

magnetic field oriented symmetrically with respect to the 

four ellipsoidal energy surfaces, and varying in strength 

from 10 Kgauss to 200 Kgauss. Only modes propagating paral-

leI to this field are considered. Because of the anisotropy 

of the energy surfaces, a low-frequency charge density oscil-

ration can exist in the plasma. It is shown that the presence 

of this mode can be detected most easily through its inter­

action with the longitudinal optical phonons or the usual 

plasmons. A one-band model is used to describe the carriers, 

and the electron-electron interaction is treated within the 

random phase approximation. The results can be adapted 

easily to Ge by elimination of the phonons. 
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CHAPTER l 

INTRODUCTION 

in 

The availability of lasers has stimulated much interest 

1 the problem of light scattering by solid-state plasmas 

In this thesis we deal with the solid state plasmas of lightly-

doped many-valley semiconductors, consisting of carriers with 

anisotropic energy surfaces. In a DC magnetic field these 

plasmas, under suitable conditions, support a low-frequency 

h d ' '11' 2 c arge ens1ty OSC1 at10n. Such a mode must not be confused 
3 

with the sound mode of two-carrier plasmas . The mode we discuss 

exists only in a magnetic field, and results from the coupling of 

motion along the field to motion transverse to the field (which 

is quantized in Landau levels) through the anisotropic effective: 

mass tensor. 

The purpose of this thesis is to calcula te the inelastic 

light-scattering cross section by this mode. The scattering pro-

cess will be treated to lowest order in pe~turbation theory in 

the photon field. The carriers of the plasma will be treated in 

the effective mass approximation4 AlI other crystal structure 

effects will be aeglected, except for screening through virtual 

interband transition which will be accounted for by an optical 

dielectric constant Eoo (we assume Eoo to be independent of 

frequency for the frequencies with which we work). The inter-

action between carriers will be calculated in a random phase 
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approximation (RPA)t. In a polar semiconductor the coulomb 

interaction will be augmented in an important way by an inter­

action due to the exchange of longitudinal optical (LO) phonons; 

the two can be conveniently combined as shown in reference (1). 

We will wor~ in particular with n-type PbTe which is a 

polar substance. Our results will then be easily adaptable ta 

Ge by elimination of the phonons. Both crystals have a bcc in-

verse lattice structure with four ellipsoidal energy surfaces 

in the [111] and equivalent directions. We will treat each 

ellipsoid separately, ignoring intervalley effects. 

Finally, we restrict ourselves to a static magnetic field 

in the [001] direction, and consider only propagation of the 

mode parallel to the field. 

The one-band model we use is valid only if the incident 

photon frequency is far from the frequency corresponding to 

the band gap.For PbTe the gap is 0.19 ev 5, so that a convenient 

wavelength is probably 10.6 ~ such as provided by the CO 2 laser. 

t The baTe electron propagators used in the irreducible polar-

ization part will be Landau state propagators rather than 

free-particle ones. 
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CHAPTER II 

THE MODEL 

A. The Hamiltonian 

Figure 1 shows the ellipsoids in k-space occupied by 

the carriers in n-type PbTe or Ge. The coordinate system 

we denote by t; . To find the effective one-band hamiltonian 

for the crystal we assume parabolic bands of the form* 

E(--&')= -' o< .. ~.J. 
ZWJ lJ L J (2.1) 

for each of the ellipsoids, where k is measured from the 

Brillouin zone boundary. The shape of each ellipsoid is char-

acterized by constants ŒT and ŒL so that in the proper co-

ordinate systems we have the energy relationship 

(2.2) 

where k...- is expressed with respect to a coordinate system 1: . 
~ 

Within the effective mass approximation, the effective hamil-

tonian, for one sur face" t ", in a DC magne t ic field is 

(.t) 1 (t) , ~t) 
X = - rr· ex • TT - e (/) + - g Ua B . cr ( 2 . 3) 

CIt 2m --- ~ - 1 fOI .-""'" 

ADe 
where TT= D + e -;:.. ~ 

(the charge of the electron is -e ), p 

is the canonical momentum, t(t) is the effective g-factor, 

B= 'il xADC , and cp is a potential due to other electrons in the 

plasma. Later, when we calculate the interaction of the plasma 

with incident photons, we will replacelT by Tr+eA - - ---

* In the formalism we use natural units "'fi = 1= i! . 
calculations cgs units will be used. 

In numerical 
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Figure 1. The four pro1ate spheroids of carriers in k-space. 

are shown for n-type PbTe and Ge. The spheroids 

are centred on the Bri110uin zone faces. 
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B. The Single-Particle States 

We consider only the case of B pointing in the ~3 

direction. Working with one surface at a time we look for 

eigenstates of the hamiltonian 

() l , ~ B 
)f = - lT· ",·TT + -,q, Ua ·cr 

CIl. 2.m - ?= - 2. 0 1 ----
(2.4) 

Since the two terms of this hamiltonian commute, we treat 

them separately. As indicated in equation (2.2) we perform a 

rotation of the coordinate system from e to e so that 

(2.5) 

and 

(2.6) 

By rescaling length according to 

(2. 7) 

(i,j,k cyclic) 

and a 3 = aL ' and wi th no summa t ion over 

repeated indices, we can rewrite the hamiltonian 

(2.8) 

We now perform a second rotation to e where 
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K- = 5 .. K-­
T ~ J 

(2.9) 

-
so that the resca1ed field J!, has components Bor = BtS!) 

and we will have the usua1 Landau wave functions as solutions. 

In the coordinate system ~ we choose the gauge 

(2.10) 

and the Schr8dinger equation becomes 

(2.11) 

whose solutions are 

(2.12) 

where 

(2.13) 

1 xz. 
--m(..ù ==< H t.~ ) e 2. CI., Qmc..Je X; 
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and H are the Hermite po1ynomia1s. 
n == 
The coordinates in system ~ are re1ated to those in C 

as fo11ows 

(2.14) 

with 

(2.15) 

Note that the matrices M will differ for the four e11ipsoids. 

From the properties of Hermite po1ynomia1s it is easy to 

verify that the Un (,) satisfy the re1ationships 

(2.16) 

Going back to the unsca1ed coordinates in e we define 

our wave functions 

(2.17) 

for each surface, with The norma1izations 
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have been chosen so that 

s P:l~ PWQ'K'~) d'x = dhnl d(K-K')~(Q-Q? 

) Un (f) Un' (J) df = S .. , 
(2.18) 

If we now inc1ude the spin part of our hami1tonian (2.4), we 

get solutions 

(2.19) 

with energies 

(2.20) 

where 0= 1 (-1) for spin para11e1 (antipara11e1) to the 

magnetic field J!. Xtr is a two-component eigenspinor of 0;. 

For purposes of second quantization we will use e1ectron 

opera tors 

(2.21) 

with the crs satisfying the anticommutation relations 

(2.22) 
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C. The Matrices M 

We calculate the matrix M for the [111] ellipsoid. The 

two coordinate systems ~ and ~ are shown in figure 2. Ex­

pressing aIl vectors with respect to e , we write J&.2.=(a~b~c) 

and choose it orthogonal to A as weIl as to 313 =~(J)/)). We 

find 

'ga = ~ (-1,1,0) 

Characterizing the rotation by 

R .. (equation 2.5), and expressing an arbitrary vector V with 
1.J . ~ 

respect to both coordinate systems ~ and ~ ,we find 

Accordingly 

R--=ll.- ·U-
or 

lJ ,.......l--J 

1 , 2 
if: (6-f6 

R(lII) = 1 1 0 -vz: JZ 
1 1 1 

V3 {3 i13 

Applying the rescaling prescription to ~ we find 

- 2 
BT ;::: - V6 VOil..o(r 8 

Bz= ° 
- ()(. 
B- = -X. B 

3 {3 

(2.23) 

(2.24) 



Figure 2. 
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We perform one more rotation to get ~ into the form (O,O,a). 

With the same procedure as for our first rotation we find 

(2.25) 

0 V 20(~ 
5(111) _ 

0<,..+ 2LJ(1-

0 

1 2.tXl. 0 ~ tXT+ZIXt.. lX,T2OCL.. 

From (2.15) we now find 

o<.r+ ZoCl.. ~O<T-;' 20<1.. *' (t ... -tXT 
6 3;O(T+Z O<I.-

M("~::: -1-7, iF 0 (2.26) 

0 0 .3 0< ",lX.r 
o(T + 2 0l ... 

The same treatment of the other e11ipsoids yie1ds 

,V "'1-+-2«t.. 1(t:x:~20(L if o( ... -ocT 

- 6 31tXT+ 2tX ... 

Mf-,,~ = 1~ -~ 0 - Z 

0 0 1 3O< ... O{x 

0(7+ 2 0(1. 
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~ o(T~2.D(b -1 ~+Z~: if O(L-C(T 
6 3' Ye>(T+2.O<c.. 

(1-1 V-
V ~T W M = 0 

0 0 

(2.27) 

Detailed calcula tion shows tha t w is the same for each 
ç 

ellipsoid (as one would expect from symmetry) 

where w = eB 
o m 

electron. 

(2.28) 

is the usual cyclotron frequency for a free 

D. Electron-Electron Interactions 

To complete the description of our crystal model we 

specify the electron-electron interactions. In a polar crystal 

there are two. The first is the coulomb interaction screened 
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by virtua1 interband transitions 

(2.29) 

The second is the interaction due to the exchange of virtua1 

LÜ phonons, for which we need to consider the phonon field. 

At long wave1engths we can start off with a macroscopic 

1agrangian density 

'i .2. ()(( )2. a '2. 
~=-p +- d.p. +~p +P·D 

2 2.. lJ 2. -- (2.30) 

where1..(3S) is the po1arization at the point )S. due to the Lü 

phonons, and ..Q.<.~) is the e1ec tric disp1acemen t. Note that 

other simple derivative terms need not be inc1uded because of 

the condition 1/ x X:= 0 The 1ast term is the FrBh1ich 

. t . 6 f . fi 1d d h d . 1n eract10n 0 a macroscop1C e ue to t e con uct10n 

e1ectrons with the phonon po1arization. D satisfies the Maxwell -
equation 

\7'12 = 4 Tr (? (2.31) 

where P is the conduction charge density. To determine the 

phenomeno1ogica1 constants in this 1agrangian we need FrBh1ich's 

original arg~ment that a conduction e1ectron in a crystal 

causes a total po1arization P made up of that due to the ,....,t 

phonons, ,!" and that due to virtua1 interband transitions,P 
.--00 

(2.32) 
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The latter is approximate1y independent of frequency for 

frequencies much 1ess than the band gap. Thus, from the high-

frequency response we find 

and 

P-(x'=-' fD-e:)=J.Dfr-l..) ~ ':;/ 41f ~ - 4-rr ~ li € .... 

(2.33) 

At zero frequency we have 

and 
'" = é E ~ 0,..... 

p ==' -L. (D-e:) = ..L D (1- .J..) 
t 4rr.-"" 41f ,.... L: 
~ ~ 

(2.34) 

where Eo is the static die1ectric constant. Rence, for the 

static case 

p_ Q (J.. __ , ) 
,..... - 4 Tf" E."o é.D 

(2.35) 

since 100 is independent of frequency. With the additiona1 

fact that the undoped crystal will vibrate at a frequency wL ' 

we find that 

(2.36) 

in order that (2.28) will give us the correct equations of 

motion. The constant a will come into the dispersion re-

1ation of the phonon. However, since we dea1 with wave numbers 
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much sma11er than an inverse 1attice vector, we will neg1ect 

dispersion. 

The usua1 no~ma1 coordinate-creation, destruction operator 

forma1ism gives the fo11owing resu1ts: 

(2.37) 

with 

(2.38) 

and 

The Fr8h1ich interaction becomes 

H = - P'D dx. F J ~ 
1 -,..... 

(2.40) 

with 

(2.41) 
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We have used the Lydda~e, Sachs, Teller relation 

(2.42) 
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CHAPTER III 

THE SCATTERING CROSS SECTION 

A. The Photon Field 

The free-fie1d 1agrangian density in vacuum is 

in unrationa1ized units. The Greek subscripts run from 1 to 

4, and the Latin ones from 1 to 3. The equations of motion 

are 

1. 

dA·= 0 1. 
(3.2) 

in the radiation gauge ~~A~=O An easy way to adapt this 

lagrangian to a medium characterized by a die1ectric constant 

Eoo is to reinterpret as fo1lows 

(3.3) 

where n is the optica1 index of refraction, n= ïfÇ The 

equation of motion becomes 

(3.4) 

which is equivalent to the macroscopic Maxwell equations. The 

canonical momentum is t 

i!l L • 
rr:. := A . 4 ::: .!L A· 

~ 41T~... 4Tr L 
(3.5) 

t This TT must not be confused wi th the Tf we used in Chapter II. ,...., ,..., 
We will not use this form of II again after this section. 



-18-

and the hamiltonian density, 

(3.6) 

This verifies that the choice of normalization of (3.1) is 

correct. Introduction of creation and destruction operators, 

via normal coordinates, leads to the following results 

H=fi wC!!) a~(~)aÀ(-!J 
J_ 

(3.7) 

with the dispersion relation 

(3.8) 

and with À. denoting the two kinds of polarization, and 

with 

al (~)== t- e~ (-:!) a). (~) 

[a)(~), at(.!')] = ~ S).).I --

(3.9) 

(3.10) 
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V is the quantization volume which drops out at the end of 

the ca1cu1ation. 

In finding the cross section we will need the density of 

photons and the density of final states in k-space. The former 

is ca1cu1ated from 

(3. 11) 

which shows a density of photons of 1 
V • The latter is given 

by 

which shows a density of states in k-space of V 

B. The Cross Section- Forma1ism 

In the absence of perturbing photons, the hami1tonian for 

our system is 

where HF 
l 

is given by (2.40) and 

(3.12) 
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We have neglected intervalley effects, and have assumed g*to 

be the same for each ellipsoid. Since the ~(~) are solutions 
,,-,,0 

of 1TCfL, we can rewrite (3.11) 

(3.14) 

with 

(3.15) 

We find the hamiltonian in the presence of the photons 

by replacing TI by E+ e~ in (3.12) and adding the free photon 

hamiltonian (3.7): 

H=HCIt+Hem +H;m (3.16) 

with 

(3.17) 

In calculating the cross section we treat the crystal exactly 

(at least in principle) and treat the field A to second order 

in perturbation theory. It is well-known that, as long as the 

effective mass approximation holds, 

(3.18) 
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contributes a neg1igib1e amount to the cross section compared 

with 

(3.19) 

e~ 7 8 
Therefore we will neg1ect Hrt '. 

We now consider the scattering process in which a photon 

, scatters off the crystal in the state /L) I~I~I/ into the 

state \~J)2.> , 1eaving the crystal in the state Il>. In 

the end we sha11 be 1eft with matrix e1ements of the type 

<~ 1·· ... Il.) by which we mean an average over the grand canonica1 

ensemble, and which we sha11 wEite simp1y as < ...... ) Using 

on1y , and to lowest order in Â' we get for the trans-

ition amplitude 

The time dependence of the interaction hami1tonian is of the 

form 

(3. 21 ) 

Using (3.19), (3.10), (3.9) and (3.7) in (3.20) we find t 

tThe density is not a spinor as we have taken the pro duc t ~~ Xcr == 1 
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where 

!,-~ '?" i 

w,-w, = w(~J-w(-!1.)= W (3.23) 

~~ (~)= ~~~ y;~1s 
The transition probability is j~st the modulus squared of this 

transition amplitude. We include aIl possible excitations of 

3 the crystal by summing this probability over aIl final states • 

The generalized transition probability Wl2 is th en 

(3.24) 

We have defined 

(3.25) 
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Since the integrand is a function of (t-t') we can do one time 

integration to get 

(3.26) 

where T is the total time and r ,the classical electron radius. 
o 

The cross section is the transition probability per unit 

time per unit incoming flux, times the density of final states 

(3.27) 

where v is the velocity of light in the crystal. We find 

(3.28) 

Because retarded commutators are simply related to 

temperature Green's functions, we write the correlation function 

3 as a commutator 

(3.29) 
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The cross section becomes 

Because we dea1 often with the Fourier transform of this re-

tarded commutator, we give it a symbo1 

(3.31) 

and" the cross section is 

(3.32) 
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CHAPTER IV 

THE RETARDED COMMUTATOR F(S'W) 

A. The Thermodynamic Correlation Function 

At finite temperatures the commutator (3.31) ia not a con-

venient quantity to ca1cu1ate direct1y. Rather one defines and 

calcula tes the temperature correlation function 

. (4.1) 

where ( ...... .) again denotes an average over the grand canonica1 

ensemble. T and T'are restricted to the region (-S, S) and 

the T-dependence of the opera tors is given by9 

(4.2) 

It is easy to show that 

(4.3) 

for T e: (0, S) • Defining 1f(i,'C) outside the region (-S , S) 

by requiring periodicity, we can expand it in the usua1 Fourier 
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series 

(4.4) 

with 

n=O,±I, .. , ' 

and 

(4.5) 

The two functions F and ~ are related to each other 

through their analytic properties in the w-plane. They have 

the following spectral representations 
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where We can ana1ytica11y continue F 

in the w-p1ane to obtain the equa1ity 

(4.8) 

for w ) a 
s 

Converse1y we can ana1ytical1y continue ~ 

. 1 la db' un~que y an 0 ta~n 

(4.9) 

for W in the upper ha1f-plane. 

B. Perturbation Theory 

The most important pdrt of the prob1em still remains; 

name1y, to ca1cu1ate the quantity :1 (i;-C) . Of course, we 

are unab1e to do so exact1y, but will use the RPA (which is 

equiva1ent to the self-consistent field approximation, and which 

can be argued to be a good approximation in the high density 

1imit of the electron gas that we encounter in PbTe 11 ). Before 

making this approximation, however, we will continue with some 

we1l-known thermodynamic Green's function forma1ism 9 , part1y for 

the sake of continuity, and partly to establish our conventions. 

Fol10wing Abrikosov et al. we write 

(4.10) 
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where we have assumed that H can be written as Ho+ Hr. This 

defines r.!(.-cJ 

(4.11) 

which can a1so be written as 

(4.12) 

with HI(~) in the interaction representation 

(4.13) 

We can now write (4.1), in which the operators are in the 

Matsubara representation, in the interaction representation* 

CO\'VY\., 

Here ( ..... ')0 me ans l:ii.. te ~ (.no + )'t/\I-I-Io) .. ... .} 

-(3.ao T 

connected diagrams are a110wed, and e =~ 

Via (3.25) we can rewrite (4.14) 

(4.14) 

where on1y 

et!»(fAtJ- Ho) 

*From this point on a11 opera tors will be written in the inter­

action representation. 
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We calI the matrix element of the integrand the polarization 

part 

and represent it by the diagram in figure 3. The solid lines 

represent bare particle propagators, and the shaded portion 

includes aIl possible processes. This polarization part can 

be expanded in terms of the proper polarization part l2 (proper 

with respect to both the coulomb interaction ------ and the 

phonon interaction ~ ) as shown in figure 4. The proper 

polarization part is represented by the shaded bubble. If we 

denote the total interaction by ~ = ----- + MMA 

we may redraw figure 4 as shown in figure 5, where the braided 

line denotes the screened interaction between electrons and 

whose expansion is shown in figure 6. 

Figures 4,5 and 6 aIl represent integral equations which 

we write down in section D. 

Thus far we have not yet made any approximations (at least 

not for".f). The approximation is the subject of the next 

section. 

c. The Random Phase Approximation 

We now approximate the proper polarization part by the 

simple bubble diagram as shown in figure 7. 



Figure 3. 

e
la 

1'CT'-

Diagrammatic representation of the polarization 
J). , 

part ~cr' (~~ "(" ; ~', 0) The solid lines denote 

bare particle propagators, and the shaded portion 

includes all possible processes. 

~i~ 

@~u.&aa'+ 
@io- 0---

~--- + k i.O'i + 
l'd .fICTI 

0~,:,-

.(er 

~IU + 
l.'d + 

E + ...... 
l,CT, 

___ 0(cr la-

+ r 
i,rr, 

p'o-' ,0; 0L~ 

Figure 4. Expansion of the polarization part in terms of the 

proper polarization part. 

+ .. 
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C{CY = 
\h,~. 

+ 

Figure 5. 

Figure 6. 

= + 

Expansion of the po1arization part in terms of the 

proper po1arization part using the screened e1ectron­

e1ectron interaction. 

=~+k 
L,o; 

---~--~-

+ ..... 

i. at 

Expansion of the screened e1ectron-e1ectron inter­

action in terms of the proper po1arization part. 
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Figure 7. Diagrammatic representation of the RPA. 

X-C lC'" ,.., 
?Ct: 

,... 

!:: o & U' S,,"" + 

1(.'0 
X'o x'o .v 

.... .... 

Figure 8. A first order approximation for the polarization 

part -a-C?f,"C ;:::;,0) in the RPA. 
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We will show that §J('1;~) depends on1y on the difference of 

its coordinates As a resu1t we will be able to change 

the integra1 equations represented by figures 5 and 6 into 

a1gebraic ones. This dependence of ~ on ~-~ can be under­

stood if we note that in (2.3) a translation is equiva1ent to a 

gauge transformation of A
DC

. And physica1 quantities such as 

the die1ectric constant to which §J(~,~) 

must not depend on gauge. 

is c1ose1y re1ated 

We define the bare partic1e Green's function t 

fi~ (1fI~) =<TlJ1~(~)~:t"l)l 
The function qp i5 

For we have, using (2.21) 

t We omi t the spinor part of the wave func tion as il is diagonal 
in spin. 
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Simi1ar1y, for "L,.. < --r~ 

The function ~hK~ is the usua1 fermi function 

) fJ) (t}) ] -1 tK ... ~[e~(t· ..... -N+ / (4.17) 

and JAW is the fermi 1eve1 for carriers of e11ipsoid ~ 
An easy way to find the time Fourier transform of 9 is 

to notice that it has the same periodicity in "( as.g, 

Ca11ing "t"= 'lfl~ we see that 

(4.18) 

Using the fact that 9 

(4.19) 

for ~ in this same interva1, we have 

(4.20) 

Therefore 

(4.21) 
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with We find 

(4.22) 

.:h () ~* () .:f1'lf!(1f""- {II'I<'cr 
'i' n~'K':?:. în'Q'K' ~ r:: - E + iw 

(,.n'K'(S" "'Ker" ni 

We suppress the superscript t unti1 it becomes relevant. 

Next we take the Fourier transforms with respect to ~ 

and .3. 

where 

9{j,:(, w .. ) ~ S 9(~.:c. "'~) ëi.i°t+ 'i~ d~ d' .. 

= -2:.(dKdK'I, lnKa--1n'~'~ 
Y1nj En'K/C-- EnKo-+u""m 

(4.23) 

Substituting in the functions p from (2.17) and (2.12) we 

find 
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The integral over the degenerate quantum number Q gives us 

the desired result 

(4.26) 

where the matrix elements Xn l are defined 

(4.27) 

Putting (4.26) back into (4.23) and integrating over K' we 

obtain 

where we understand that K'= K - M3~ .• 
~ ~ 

We have shown explicitly that G? is a function of the 

difference of its coordinates only. We define a new space 

Fourier transform 

(4.29) 

We use the properties of fnK~ and V o t'In' to write 



-37-

The matrix elements t nnl can be evaluated in closed forme We 

do so in section E. 

D. Evaluation of the Polarization Part and the Dielectric 

Constant 
• .. --. - 1 

We shall write down and solve the integral equations 

which correspond to the diagrams in figures 5 and 6 (within 

the RPA). 

To establish the Feynman rules which conform to our con-

ventions, we do a first order calculation of the p01arization 

The diagrams are shown in figure 8. Using 

the appropriate expansion of (4.12) with the hamiltonian 

, we find 
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where we have yet to choose the proper contractions. For con-

venience we write 

(4.32) 

with 

(4.33) 

Using Wick's theorem we obtain 

with the effective potential due to the phonon exchange 

î.U{'J.-2) = 4;:' 1~5 ~ e't(:i-JJ { (Tb(i, '(1)b Ci. -r ')k T 
(4.35) 

+<Tb(-:1;r.Jb(-j~-C~~ } 

We define the bare phonon propagator 

(4.36) 
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Its Fourier transform ist 

(4.37) 

zrr.5 
with W.s=~ The Fourier transform of the potential (4.35) 

is then 

2-
W-(q w)= ~lfe 

~, 5 €DO ~2. 
(4.38) 

The rules are now evident. Remembering to associate a 

negative sign with each closed fermion loop, we can make the 

following identifications 

------
t 

The negative sign associated with tr(~-~) automatically 

takes care of the (_)n associated with any n-th order per-

turbation diagram. The phonon interaction only appears in 

even orders. 

The RPA result for the polarization part is 

tAs mentioned earlier, we neglect the dependence of wL on 
wave number (section II D). 
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(4.39) 

We have chosen the sign oft{ 50 that in the absence of 

phonons it reduces ta the screened coulomb potentia1. The 

equation for 11 is 

- 11(~7):[-1J(1f-~+W(lJ-r)] + 
(4.40) 

+ M ~ 1J(1-~+ LUCV--~J fîJ.~~ ,t,) WZ,-~ d'k, d·~ 
Because ~ depends on1y on the difference of its coordinates, 

we can Fourier transform equations (4.39) and (4.40) 

(4.41) 

where V is the volume of the crystal, and 

'U (Ï'Wtoo) = 1J~ l-Vno)-wCi, w~) + 
(4.42) 

+[1)(1, w..,)-w(j" w~~ ~ ~"(~ w..,) 11 % wtt1) 
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The 1ast equation has the solution 

(4.43) 

The sum of the bare interactions can be convenient1y written 

(4.44) 

50 that (4.43) becomes 

(4.45) 

At this stage it is appropriate to go back to physica11y-

meaningfu1 quantities by the ana1ytic continuation of equation 

(4.9). Defining 

~) /Î(Û, ,\ 
~ (q,w)= tJJ; (~'-<'WI --- ......., (4.46) 

U (i' <.ù) = li (1, -iw) 
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we get from (4.41) and (4.45) 

(4.47) 

(4.48) 

and from (4.30) 

In a11 these expressions W is assumed to have a sma11 

positive imaginary part. U(~,W) is the effective interaction 

between the conduction e1ectrons in the crystal. It is con-

ventiona1 to lump a11 the screening factors into a die1ectric 

constant 
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(4.50) 

with the die1ectric constant defined 

'1. 2-

( 
,) W-Wa.. 

€ Q,(.)j = ~DO 1- 1-
.l; W -w,: 

(4.51) 

The first term is the 1attice contribution and the second term 

is due to the conduction e1ectrons. We see that the po1ar-

izabi1ities are additive, and in this respect we have found 

nothing 13 new 

In terms of the die1ectric constant, the function F(S~W) 

becomes 

E. The Matrix E1ements Ynn' 

The only quantities that remain to be ca1cu1ated are 

given by (4.27) 
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Through a chamge of variable we get 

with 

(4.53) 

Calling the integral 1 2 , we have 

These Hermite polynomials can be expanded about the point ~l4. 

H ('f-a)~i (-2af-~! H (1) 
fl J tJt-o m ! (rt-m) J rn 

(4.54) 
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Substituting, and using the orthogonality relation of the 

Hermite polynomials 

)~.l1)f-I.(1) e-5~S ; Z"n!fTf li ... (4.55) 

-1)0 

we find 

where the largest value of m is determined by the factorials. 

We have the result 

A case of special importance is qZ= o. Then 

(4.57) 

a result which will prove useful later. 
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CHAPTER V 

THE SPECIAL CASE q = (O,O,q) 
,.-

A. The Cross Section 

We restrict ourselves to modes traveling in the direction 

of the static magnetic field. The function P~,w) simplifies 

to 

(5.1) 

for positive frequencies, and with K I = K - M~;)q Ex-

pressions (2.26) and (2.27) show that M13 and M33 are the same 

for each ellipsoid. Hence P(g,w) no longer depends on ~ , and 

we shall often suppress the superscript. The real part of the 

retarded commutator F(S,w), which we need for the cross section 

(3.33), becomes 

Since we are interested in the collective modes given by the 

zeros of E(S'W), the first term in (5.2) does not contribute. 
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Substituting the second term into the cross section we have 

(5.3) 

In the absence of damping (Le. ~ P0vw)=~€(,i.e,..))==O ) we 

obtain 

(5.4) 

where is the derivative of e:(S,w) with respect 

to W evaluated at the resonance w given by e:(q,üS) = 0 
---

B. The Photon Polarization 

The polarization factor is 

\ 
(.f) 1'2. l '* (t) Il. f\,=~~·~·~ (5.5) 

(for convenience we have written ) 

To evaluate it, we need to express a:(J(,) with respect to the co­-
ordina te sys tem e 
surface is 

In e , a is diagonal, and the energy 
~ 
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With equation (2.5) this becomes in e 

€(1)=1w. (t~-~ R~j ~l~ 
where ~ means the matrix expressed with respect to ~ • 

Therefore 

(5.6) 

, we find 

~O(T+OCL Â Ô 
3 -3" -3 

0«/11) = Ll 2~+()(L Â 
-8 3 -3 

Cl _À 
-3 3 

2(.)(::t+()('" .é.. ..ft 
3 .3 3 

J-III)- ~ 20<T;-0(1= Â 
3 --3 3 

.à. A 2 Ot':r+OC 
3 -3 3 
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t Cl 
-T 

J-I~ ~ 2lX.r+OC b A-
T 3 3 

1:1 Cl 20(::r+()(!: 
-T "3 3 

(5.7) 

2 tx.r+ CXb A Â 
3 -"3 3 

d-'-"~ Cl 2."",+OCI- ..ê.. 
-3 3 3 

A A 2OC::r+0(1.. 

3 T 3 

"~" 

- Thus (!J. 4(: )~ J O<(.J = '3 ZO(r +DlL. ~. and (5.5) becomes 

(5.8) 

The largest cross section will be obtained for light polar-

ized in a plane perpendicular to the scattering plane. 

c. The Long-Wavelength Limit 

For values of q ~ 10 4 cm- l and magnetic fields B ~10 

Kgauss it is usually sufficient to work to lowest order in q 

(see Appendix). We obtain this limit by expanding both the 

integrand and \Xn't' in expression (5.1) to order q2: 

(5.9) 
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The sum and integra1 over n and K is related to the total 

number of e1ectrons 

- mwcV yd jU) 
- (e:rr? ~ K ~r1Kt1" 

where V is the resca1ed volume. We find 

(5.10) 

where N (.il,) 
cr 

is the e1ectron density of spin cr due to e1-

1ipsoid R, The function P(q,w)becomes ,...., 

(5.11) 

and the die1ectric constant, 

(S.12) 

with 
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(5.13 ) 

These resu1ts are identica1 with those of reference (11). 

Figure 9 shows the genera1 structure of E(O,W) for wc>w
T 

It is not va1id to extend the graph to frequencies that approach 

the band gap frequency, as then Eoo becomes frequency de-

pendent. 

The derivative of E(O,w)is 

(5.14) 

Numerica1 resu1ts for the modes and their cross sections 

5,15,16 
were obtained for PbTe with the fo11owing parameters 

- 42 

E =30 
00 
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€ (0, w) 

~--------~-------4~----+----r~----------------------~~----W IWT Wc 

1 1 

1 1 

1 1 
1 1 
1 1 

1 1 
1 1 
1 1 

1 1 

Figure 9, The general structure of the long-wavelength 

dielectric constant as a function of frequency, 

forwc)w T , 
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g* [001] 29 

N = 1018 cm- 3 and -3 v= 10 cm. 

The modes were ca1cu1ated by Newton's method. A1though the 

equation E(O,W) = 0 is a cubic equation whose roots can be 

found ana1ytica11y, Newton's method was found more convenient. 

The resu1ts are shown in Table 1 for various magnetic field 

strengths. The quantity A(w) is given by 

(5.15 ) 

where the 10ng-wave1ength 1imit of P(q,w) is used. ...... In terms 

of A(w), the cross section is 

(5.16) 

for the mode at w. 
At 10.5 Kgauss wc=wT , and on1y two modes exist in the 

plasma. Physica11y what happens is that as Wc approaches . wT ' 

the zero of E between Wc and wT is forced into the damping 

region near w (the 10ng-wave1ength 1imit of E is no longer 
c 

va1id; see section D); the mode becomes damped, and eventua11y 

the resonance becomes so wide that it is no longer we11-defined. 

If one sets Wc = wT in (5.12), the equation E(O,W)= 0 reduces 

to a quadratic. 
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Table 1 

The collective modes and their relative cross sections A(w) are shown for 

various magnetic fields. 

Magnetic Field Cyclotron Frequency Mode Frequency E' (O,w) 
A(w) 

Eco 

(Kgauss) (10 13 sec-1 ) (10 13 sec-1 ) -13 (10 sec) (cgs units) 

10 .47 5.86 .343 1390 

.49 4.03x10 5 
1650 

.27 1720 118 

10.5 .49 5.86 .343 1390 

.28 1510 144 

12 .56 5.86 .343 1390 

.50 31000 1400 

.31 1090 249 

15 .70 5.87 .344 1390 

.54 2040 1040 

.36 764 616 , 
-- ---- -'------ ------

e 

1 
U1 
~ 
1 



e 

Table 1 (continued) 

Magnetic Field Cyclotron Frequency Mode Frequency 

(Kgauss) (10 13 sec-1 ) (10 13 sec-1 ) 

20 .93 5.89 

.64 

.40 

50 2.33 6.13 

1. 44 

.43 

100 4.67 7. 06 

2.50 

.43 

200 9.34 10.50 

3.35 

.4~ 
L---- ________ 

e:' (0,00) 
e: co 

-13 (10 sec) 

.345 

339 

779 

.361 

15.1 

1150 

.441 

2.26 

1220 

.820 

.781 

1240 

A(oo) 

(cgs units) 

1390 

455 

1170 

1350 

15 

1570 

1150 

63 

1600 

657 

388 

1600 

e 

! 

1 
VI 
VI 
1 
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The frequencies of the three modes are p10tted versus 

magnetic field in Figure 10. The graph shows the usua1 

repu1sion of interacting modes. For fields 1ess than 50 

Kgauss the low-frequency (LF) p1asmon and phonon modes mix 

strong1y. For 1arger fields it is the LF and high frequency 

(HF) p1asmons that mixe Table 1 suggests that the LF p1asmon 

is most easi1y detected at fields of 10 - 15 Kgauss, a1though 

at higher fields it can be detected through the magnetic field 

dependence of the HF p1asmon. 

Numerica1 ca1cu1ations show that if the phonons are e1im­

inated (but the other parameters remain unchanged), the LF 

p1asmon has a very sma11 cross section compared with the HF 

p1asmon for fields 1ess than 100 Kgauss. The resu1ts are 

tabu1ated in Table 2. Comparison with Table 1 shows that it 

is the phonons that enab1e one to detect the LF p1asmon at 

low magnetic fields. Furthermore, direct evidence of the LF 

p1asmon may be easier to obtain in a nonpo1ar substance, pro­

vided one goes to high enough magnetic fields. 

D. Damping 

We wish to consider two types of damping. The first is 

damping as predicted by our theory; the second is collision 

damping which we introduce in an ad hoc manner with a phen­

omeno1ogica1 relaxation time. 

For the first type of damping we return to (5.1), per­

form the integration, and substitute the resu1t into (4.51). 



e e 

10 

8 

6 -- . 'u 
Cl) 
tn 

',1 
\JI 
""-J ~ 4r . 1 

K 

3 
1 ~ï'<-

2 

O~ x~--------------~----~~ o ' J<" 

50 100 150 ·200 

8 (Kgauss) 

Figure l~ The three collective mode fre~ue~~ies are plotted against 'magnetic field. 
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Table 2 

Collective modes and théir relative cross sections for 

various magnetic fields for a model substance which is 

nonpolar, but has the same parameters a T , aL" and E~as 

PbTe. 

Magnetic Field Mode Frequency A(w) 

(Kgauss) 1013 -1 (cgs units) sec 

10 5.59 1600 

.28 . 4 

15 5.59 :J..580 

.42 1.2 

50 5.91 1510 

1. 32 40 

100 6.92 1220 

2.25 250 

200 10.4 620 

3.0 680 
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We find the real part of the dielectric constant, at zero 

temperature, 

(5.17) 

Kncr is the maximum value of K for the level (n, cr ). The 

imaginary part of the dielectric constant, at any tempera-

ture, is 

for w> 0 , and with K. the solutions of 
~ 

(5.19) 

Although (5.17) is a complicated function, careful ex-

amination shows that it has the general form indicated in 

Figure Il, at least in the regions W E(W 2 ,w 3 ) 

The asymptotes are given by 
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Figure 11. The genera1 structure of Re e;(qw) shown on1y in ..... , 
the regio.ns w e;(w

2
,w

3
) and w>w4 · The shaded 

regions are those for which lm e;'(,g,w) is nonzero 

(for T = 0) • 
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M q." M:;q2. W~= --=3:.::.~ .. _n.:o+.:... + 2.m 

(5.20) 

To determine the location of these asymptotes, we estimate 

Ko~ by calculating the fermi momentum while ignoring the 

Landau level structure. We write 

where V denotes the rescaled volume, so that 

or 

Assuming that K 
o~ 

(5.21) 

4 is of this order, we find for q = 10 , 

1/ -1 
W, c:: Wz. ~ s-x 10 sec. 

(5.22) 

Of course there are more asymptotes (and hence ~odes) than 
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those shown in Figure 11; there are asymptotes near each of 

the frequencies 2w , 3w and so on. 
c c 

However, contributions 

to the dielectric constant due to terms with 1 n - n '1 ~ 2 are 

negligible at 

'r nn' (M13q ,O 

frequencies of interest because of the factor 

) 
1 
2. h i 1n t e express on (5.17). In the long-

wavelength limit these contributions reduce to zero. 

At T = 0 the imaginary part of E (S,w) is non-zero in 

the shaded regions of Figure 11. Since the modes are given 

by the zeros of E(S'W), they are undamped as long as w
3
> w

2
' 

and WT falls outside the damping regions. In view of the 

values given in (5.22), temperature effects on damping may be 

neglected for the low temperatures in which we are interested 

o (4. 2 K). 

We introduce collision damping through the replacement of 

w by w+i/T in the conductivity 0'(.90' w), where ·T is a relax-

ation time determined by experiment. If we have no damping 

due to the vanishing of the denominators in (5.1) (i.e., ex-

pression (5.18) is zero), the whole function E(q,W) is given 
..,:.1 

by its real part. In regions of frequency in which the long-

wavelength limit is valid we then have 
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If W'r» 1 we calcula te the imaginary part of the die1ec tric 

constant to be 

whi1e its rea1 part is unchanged from (5.12). 

To translate this resu1t into a scattering 1inewidth, 

we return to (5.3) and reconsider the factor 

where and the superscript indicates, as 

in g'r(O,w) that collision damping has been inc1uded. Assum-

ing that Im gJ(O,w) is constant over the width of the 1ine 

we find 

The subscripts denote rea1 and imaginary parts. Near the 

mode W we get for this expression 
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which gives a Lorentzian 1ine shape of width 

We can find a relaxation time L from the data of 

17 Bobayashi et al. . For PbTe at 4.2 o K they give a mobility 

1 5 10 6 cm2/v ].l = . x. sec 

2 
Using the transport effective mass which appears in wp , 

find a relaxation time 

L = 2.9 x 10-11 sec 

we 

For example, the mode 13 -1 w = .54 x 10 sec at 15 Kgauss has 

a calculated linewidth 

10 -1 b.w = 1.3 x 10 sec 
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CHAPTER VI 

SOME EXPERIMENTAL CONSIDERATIONS 

Because of the high optical dielectric constant of PbTe, 

n = 5.48, large reflection and refraction will take place at 

the surfaces of the crystal in any optical experiment. Re-

flection coefficients for oblique incidence are readily avail-

18 able . To investigate the restrictions imposed by refraction, 

we consider a slab of crystal shown in Figure 12. Using the 

equations 

. . 
.AkM. 9 1 :: vt..ckm- 92 

ytJZf-Vn. 93 = ..eItM. Q4 (6.1) 

~=~2+5i 

with ~l and ~2 the photon momenta in the crystal, we find the 

following relationship between e 1 and e 4 

which simplifies to 

(6.2) 
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Figure 12. Refraction at the sur~aces of the crystal. 
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2 2 when we use the fact that sin 8 1 « n • 

k
l
-3 x 10 4 , we have approximately 

~e = .sJ~9, 
Zj.. I-!L 

--k, 

4 Since q -10 , 

(6.3) 

The maximum value of 8 1 i9 then about 42 0 before total 

internaI reflection takes place at the second interface. 
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CHAPTER VII 

CONCLUSIONS 

The existence of a LF magnetoplasma mode should be 

observable in PbTe in a Raman scattering experiment. Both 

the HF plasmon and the LO phonon modes have appreciable cross 

sections; at low fields (B < 50 Kgauss) the LF plasmon mixes 

with the LO phonon, and at higher fields, with the HF plasmon. 

In nonpolar crystals evidence of its existence through a 

Raman experiment can be obtained only at high magnetic fields. 
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APPENDIX 

We derive the long-wave1ength 1imit of e:(q,W). 
"'" 

If 

we are outside the damping regions, the die1ectric constant 

is given by (5.17) 

(A. 1) 

We expand the matrix e1ement 10/ 2 to order q2 (equation 4.57) 

(A.2) 

For the term n'= n the logarithm is (in cgs units) 



-70-

If we put in some numbers, M33 

find 

4 = 3.24, q= 10 7 K = 10 we 
ncS" 

(A.3) 

12 Any modes in which we are interested lie in the range 10 

13 -1 to 10 sec . Therefore for these modes we can expand the 

logarithm 

(A. 4) 
7. 'Z.. Ml. 2-Kz.. m W - ~~ ncr 

For the term n' = n + 1 the logari thm is 
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For fields of 10 Kgauss or greater W 
C 

exceeds 4 x 10
12 

Because of (A.3) we therefore simp1ify this factor to 

-1 
sec 

For frequencies not near W we exp and this logarithm and 
c 

obtain 

~ M?3 q Kn~Wc. 
m (WZ"- W2.) 

Note that this expansion is not va1id for the mode between 

WT and Wc if Wc approaches wT · 

n'= n - 1 becomes 

Fina11y the term for which 

LI M33 'jKYI .,...Wc. 
m (W;_W1...) 

If we combine these approximations, 

find 

By counting states one can show that 

and (5.12) fo11ows. 

and work to order q3 we 

(equation 5.10) 
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