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PREFACE

The results of the calculations in this thesis are an
original contribution to knowledge. Both the Raman scatter-
ing ﬁrocess and the excitations considered are well-known;
however, the combination of the two is original. In the
calculation many standard techniques are employed and pub-
lished results of others are used freely; all these contri-

butions to the thesis are acknowledged in the bibliography.
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CHAPTER I

INTRODUCTION

The availability of lasers has stimulated much interest
in the problem of light scattering by solid-state plasmasl.

In this thesis we deal with the solid state plasmas of lightly-
doped many-valley semiconductors, consisting of carriers with
anisotropic energy surfaces. In a DC magnetic field these
plasmas, under suitable conditions, support a low-frequency
charge density oscillationz. Such a mode must not be confused
with the sound mode of two-carrier plasmas . The mode we discuss
exists only in a magnetic field, and results from the coupling of
motion along the field to motion transverse to the field (which
is quantized in Landau levels) through the anisotropic effective=
mass tensor.

The purpose of this thesis is to calculate the inelastic
light-scattering cross section by this mode. The scattering pro-
cess will be treated to lowest order in perturbation theory in
the photon field. The carriers of the plasma will be treated in
the effective mass approximation4. All other crystal structure
effects will be ﬁeglected, except for screening through virtual
interband transition which will be accounted for by an optical
dielectric constant €, (we assume e, to be independent of
frequency for the frequencies with which we work). The inter-

action between carriers will be calculated in a random phase



approximation (RPA)T. In a polar semiconductor the coulomb
interaction will be augmented in an important way by an inter-
action due to the exchange of longitudinal optical (LO) phonons;
the two can be conveniently combined as shown in reference (1).

We will work in particular with n-type PbTe which is a
polar substance. Our results will then be easily adaptable to
Ge by elimination of the phonons. Both crystals have a bcc in-
verse lattice structure with four ellipsoidal energy surfaces
in the [111] and equivalent directions. We will treat each
ellipsoid separately, ignoring intervalley effects.

Finally, we restrict ourselves to a static magnetic field
in the [001] direction, and consider only propagation of the
mode parallel to the field.

The one~band model we use is valid only if the incident
photon frequency is far from the frequency corresponding to
the band gap.For PbTe the gap is 0.19 ev 5, so that a convenient

wavelength is probably 10.6 i such as provided by the CO2 laser.

f‘The bare electron propagators used in the irreducible polar-
ization part will be Landau state propagators rather than

free-particle ones.



CHAPTER II

THE MODEL

A. The Hamiltonian

Figure 1 shows the ellipsoids in k-space occupied by
the carriers in n-type PbTe or Ge. The coordinate system
we denote by 1: + To find the effective one-band hamiltonian

for the crystal we assume parabolic bands of the form*
|
8(4&)—5—4 D(LJ’,{LJ?J (2.1)

for each of the ellipsoids, where k is measured from the
Brillouin zone boundary. The shape of each ellipsoid is char-
acterized by constants aT and o, so that in the proper co-

ordinate systems we have the energy relationship

Sé&) —— o<(Jz_+,& )+zx ,2_] (2.2)

where kf is expressed with respect to a coordinate system c.
Within the effective mass approximation, the effective hamil-

tonian, for one surface" 2 ", in a DC magnetic field is

@ (l)
Y= 5 T TT - e‘P*a%/‘*BNN (2.3)
D
where 'If=lz+-e£&c (the charge of the electron is-e ), P

#(2)

is the canonical momentum,g is the effective g-factor,
B=V xA. s and(P is a potential due to other electrons in the
plasma. Later, when we calculate the interaction of the plasma

with incident photons, we will replacejI'by ]IWFQAE .

* In the formalism we use natural units H=1l=c¢c. In numerical
calculations cgs units will be used.
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Figure 1. The four prolate spheroids of carriers in k-space
are shown for n-type PbTe and Ge. The spheroids

are centred on the Brillouin zone faces.
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B. The Single-Particle States

We consider only the case of B pointing in the yé
direction. Working with one surface at a time we look for

eigenstates of the hamiltonian

}(;=E‘rnrgj+%?¥/48§g ' (2.4)

Since the two terms of this hamiltonian commute, we treat
them separately. As indicated in equation (2.2) we perform a

—

rotation of the coordinate system from € to € so that

and

. |
X o= [a(T(TTT2+TIf +o<,_‘rT§?] (2.6)

By rescaling length according to

- _ xr
R T

(2.7)

AT:-..\)—&Z AT B’C="O(Jo<k BT (i,3,k cyclic)

with o =0y= O and a3==aL , and with no summation over

1

repeated indices, we can rewrite the hamiltonian

T

— — 2
Mo o= L (——V + eA°‘) (2.8)
¥/ 3 L —~

I

We now perform a second rotation to C? where



KT“‘Sg Kj- (2.9)

so that the rescaled field ,E has components By = 5813 s

and we will have the usual Landau wave functions as solutions.

In the coordinate system E? we choose the gauge
4 )
= (0,%B,0) (2.10)

and the SchrBdinger equation becomes

~§',-n[—3;_r (aaxz+LeBX_) ax-]‘l’x) £ J(x) (2.11)

whose solutions are

(Q@Xy + LKXz
\I)hqx(.)g)': é_f:-(;(;z_&‘_)z. e z X; Un(X=+FnQTOC) (2.12)

where
.- B
c m
_ K
("‘*‘z)w *om (2.13)

u,,<x—7>=(%%ﬁ,zi———ﬁ e )
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and Hn are the Hermite polynomials.

=

The coordinates in system 6 are related to those in C

as follows

X, = )(1 MAL (2.14)
with
MLf%JWRiL ' (2.15)

Note that the matrices M will differ for the four ellipsoids.
From the properties of Hermite polynomials it is easy to

verify that the'u“<§) satisfy the relationships

U, (5)= ", (-3)

(2.16)

U, (5)= s [ U, (5) +9757 U, (9)]

v <%)=1F’%‘E[vw Uy, (5) =751 Uy, ()]

Going back to the unscaled coordinates in Cf we define

our wave functions

énQK(29= df-nok (ZQ (2.17)

for each surface, with XL=X1 MJ(i . The normalizations



have been chosen so that

f B o e @ e =§,,, 56-K)5(a-0)
(2.18)

fau,6)u, (5) de = 5,

If we now include the spin part of our hamiltonian (2.4), we

get solutions

éﬁnqxa—@ = \JJ?..,QK(,.X) Xc— (2.19)

with energies

E, - = (n+ )w +-—--+ fwo— (2.20)

where ¢ = 1(-1) for spin parallel (antiparallel) to the
magnetic field B. 7C¢-is a two-component eigenspinor of O;.
For purposes of second quantization we will use electron

operators
1) 0 ©
_ (2.21)
LPG' (“J’() édedK CM_(Q’@ %nQKg—(})

with the c¢'s satisfying the anticommutation relations

{Cﬁ)(Q,K),Cg?(Q: k’)}= & 8, $@-Q) §(K~K) (2.22)



C. The Matrices M

We calculate the matrix M for the [111l] ellipsoid. The
two coordinate systems 6 and 6 are shown in figure 2. Ex-
pressing all vectors with respect to € , we write Tj,_:(a,b,c)

: U =1
and choose it orthogonal to B as well as to 33_‘5-_(]’|’[> . We

find

! (__ )
U, = = 1,0
Then E'=EZXE3 =J-——é'(",'—2) . Characterizing the rotation by
Rij (equation 2.5), and expressing an arbitrary vector V with
respect to both coordinate systems ﬁ and 6 , we find

Viy = RcJﬂ\f,' M,
Accordingly

Rij=1; " X4
or

R(m)- -+ L 0 (2.23)

Applying the rescaling prescription to B we find

VY

B =-2
B—r" JE‘WT

= 0 (2.24)

N

W/

“R



Figure 2.
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The two coordinate systems € and € .
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We perform one more rotation to get B into the form (0,0,B).

With the same procedure as for our first rotation we find

(2.25)
From (2.15) we now find
Oyt 200, Ao+ 20 g o~ Ay
» 6 V 6 V37 +2x
I
M= _1I45; Ez_ o} (2.26)
O o) S oy
Oty + 204,

The same treatment of the other ellipsoids yields

1}*_4.2::(,_ ,"?I-!—ZO(, 2 K-y

el 1& +20,

14 v

M= _,u%gr_ "d Z o
O

30 Ky
Xt 20X,
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0(I+ZO(‘ ""l 0_¢E+2“u ’_2_ K~ Ky

6 6 3 Ayt 2,
('_”); At
M7= F o
O ) O 30(!,0(1'
L Ol+200

(2.27)

o‘T"'Z“L — 0(-|-+2.0(L _2_ dl.."' “T
3 sz»m

6
€-19) = =
= Lok & —
M 2 \l 'E.I o
O

3 At
A+,

Detailed calculation shows that y is the same for each
c

ellipsoid (és one would expect from symmetry)

O)C.—.:Cs.)o‘f__LL___.h.;o(g"'z“) (2.28) ‘

B
& is the usual cyclotron frequency for a free

m

W =
where o

electron.

D. Electron—-Electron Interactions

To complete the description of our crystal model we

specify the electron-electron interactions. In a polar crystal

there are two. The first is the coulomb interaction screened



by virtual interband transitions

|
‘x|",1.t,

o~

(2.29)

2
V(Er‘£0==é;

The second is the interaction due to the exchange of virtual
LO phonons, for which we need to consider the phonon field.

At long wavelengths we can start off with a macroscopic
lagrangian density

. Z 2
- :25_ e _34_(9(.%) + —g— P +PD (2.30)

where P(x) is the polarization at the point x due to the LO
phonons, and D(x) is the electric displacement. Note that
other simple derivative terms need not be included because of
the condition V x 2=0 . The last term is the Fr8hlich
interaction6 of a macroscopic field due to the conduction

electrons with the phonon polarization. D satisfies the Maxwell

equation
V:D=4mTQ (2.31)

where P 1is the conduction charge demnsity. To determine the
phenomenological constants in this lagrangian we need Fr8hlich's
original argument that a conduction electron in a crystal
causes a total polarization’_l_’/t made up of that due to the
phonons, P, and that due to virtual interband transitions,P

P (= P@+B () (2.32)

—
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The latter is approximately independent of frequency for
frequencies much less than the band gap. Thus, from the high-

frequency response we find

D=e.E
and
(2.33)
R@= —-(,Q £)=2=D(- )
At zero frequency we have
D=¢E
and
(2.34)

=L
g’arr(D £)= D(‘"“)
where Eo is the static dielectric constant. Hence, for the

static case

Q(L :)
J?_ yrs . ) (2.35)
since P is independent of frequency. With the additional

fact that the undoped crystal will vibrate at a frequency Wr

we f£ind that
~)
(:‘——4Tr<‘ )
S (2.36)
—|
- 4ﬁ'C { !
X‘ Wy é;-— éB)

in order that (2.28) will give us the correct equations of
motion. The constant 0 will come into the dispersion re-

lation of the phonon. However, since we deal with wave numbers
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much smaller than an inverse lattice vector, we will neglect

dispersion.

The usual normal coordinate-creation, destruction operator

formalism gives the following results:

H;“ =§d3c£ “. Q) b+(i) b(‘i} (2.37)

with
[b(g) ’b+(il)_] = Ss(i_il) (2.38)
and
B -9 X '

The Fr8hlich interaction becomes

Hf: —_— E’Q Orx

(2.40)
_ Te (UI W) (g i y
g S R )
with

e wr
? 2 || g (! w;) (2.41)
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We have used the Lyddane, Sachs, Teller relation

= = Le (2.42)
W) €o

£.
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CHAPTER III

THE SCATTERING CROSS SECTION

A. The Photon Field

The free-field lagrangian density in vacuum is

-k

in unrationalized units. The Greek subscripts run from 1 to
4, and the Latin ones from 1 to 3. The equations of motion

are
dA;=0 (3.2)

in the radiation gauge 5‘:AC—_—O . An easy way to adapt this

lagrangian to a medium characterized by a dielectric constant

°

€x 1s to reinterpret — as follows
X4
2 =-in2 (3.3)

where n 1is the optical index of refraction, n==‘\j€°° . The

equation of motion becomes
2

VzA-L—q -5“2{=o (3.4)

which is equivalent to the macroscopic Maxwell equations. The

canonical momentum is+

-=-£—'-ﬂ- . =i“'
T, A 41rrA (3.5)

¢

t This TT must not be confused with the T we used in Chapter II.
We will not use this form of TU again after this section.
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and the hamiltonian density,
Y=L |fE +B*

This verifies that the choice of normalization of (3.1) is
correct. Introduction of creation and destructiom operators,

via normal coordinates, leads to the following results

H=ﬁw(!g) aj@)a)(é) (3.7)

with the dispersion relation

w(k)= —L,l!i' (3.8)

and with A denoting the two kinds of polarization, and

Ac‘(%‘)=7l(]f2;l—%ﬂ—g&‘) e_ié'%[acéé)+aj(é)] (3.9)

with

0, (k)= €l(k) a,(4)

[a,\(:’é), CZI(%)F S&g Sy (3.10)

JE,;/L' .

2 W)y WF C L Ak
Eg‘eLG£)€j€£L'85 -ﬁzJ
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V is the quantization volume which drops out at the end of
the calculation.

In finding the cross section we will need the density of
photons and the density of final states in k-space. The former

is calculated from
CIVDER (3.11)

. The latter is given

<|=

which shows a density of photons of

by

-2 1D <] -3 s (1D o

V .
(2m)3

which shows a density of states in k-space of

B. The Cross Section- Formalism

In the absence of perturbing photons, the hamiltonian for

our system is

(0 |
Hew thp“)(x)[ Lal -é-%’}ag.g—] qzof“)@ di +

(3.12)

A atp Bgbg

where Hi is given by (2.40) and

¢C e @) (Q) 3
Hﬁg?we'z,; g% ()Y &,.) {x E= *-P X)L{/o', }J)dgx,dxz_(B.l3)
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We have neglected intervalley effects, and have assumed g*to

be the same for each ellipsoid. Since the ®(x) are solutions
of 7%: we can rewrite (3.11)
c F
Ho = Ho+Hp +H; (3.14)
with
Ho ngQdK Em_ ne_(QK)C ‘,(Q,lg) +§d§ «(q) "+(i) bg) (3.15)

We find the hamiltonian in the presence of the photons
by replacing Tl by If+€ﬁ in (3.12) and adding the free photon

hamiltonian (3.7):
H=Hy +H,, +H: (3.16)

with

Zij\{Jd_ )eo( J A,

+eo< AAJ]HDC—de (3.17)

In calculating the cross section we treat the crystal exactly
(at least in principle) and treat the field A to second order
in perturbation theory. It is well-known that, as long as the

effective mass approximation holds,

Ho = —e——Zj W (A -+ A ) LP,,.(x) d (3.18)

Il 2m s
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contributes a negligible amount to the cross section compared

with

o g (OB ()
i 2 2 (4oglwag And a9 -
em 7,8

[y

We now consider the scattering process in which a photon

Therefore we will neglect H

th>» scatters off the crystal in the state ,C) into the
state \49)1> , leaving the crystal in the state I{> . In

the end we shall be left with matrix elements of the type

<L!H.”l€> by which we mean an average over the grand canonical

ensemble, and which we shall weite simply as < ------- > . Using
em

only H and to lowest order in A, we get for the trans-

Iz :

ition amplitude
L{_ o em + .
_]:z "<{ ‘a&('&g)( L)JHIZ t)dt QA' (Jﬁ)l L> (3.20)

The time dependence of the interaction hamiltonian is of the

form

em

) = o {Hewt Hon )t e o (et He )t

1 (3.21)

H

Using (3.19), (3.10), (3.9) and (3.7) in (3.20) we find’

*The density is not a spinor as we have taken the product ‘)Lt.‘xo-=' .
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L L l.wt ?)0)
T2 T PP )G ) oz

where

/&-—//%7_-7:3‘

~!

W= 0o, = w(&)-w@apw (3.23)

- 4oyl

The transition probability is just the modulus squared of this
transition amplitude. We include all possible excitations of
the crystal by summing this probability over all final statesS.

The generalized transition probability le is then

|z _4me lwlt-t)
W, = % [P =y v sztzygam
(3.24)
w (ﬂ%—
{4t et g Ao
We have defined

e() d3 Qo_(x t) —('i.-..

(3.25)
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Since the integrand is a function of (t-t') we can do one time

integration to get

W- B, 125 S CRI M) S MR

oo’

where T is the total time and r, s the classical electron radius.
The cross section is the transition probability per uanit

time per unit incoming flux, times the density of final states

do = \fl‘/_‘ = (2rr)3’k dk, d2 (3.27)

where v is the velocity of light in the crystal. We find

ds _ S wt, (1) @)
d dw -Z_T_r—v—f %) ”fdte < (t) A—io)))z,/\,_, (3.28)

Because retarded commutators are simply related to
temperature Green's functions, we write the correlation function

as a commutator

f ORI \_erwjdt “Chigksd o
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The cross section becomes

SN 0) ) @
do e n s Reggdt e Qg,)(i,t),pf,.(-g,@))\z,/\z, (3.30)

dQ dw ﬂTf(J' I-e

Because we deal often with the Fourier transform of this re-

tarded commutator, we give it a symbol

TR ECOw XIRIC ) S

O

and the cross section 1is

de Lo 1 g et Y oo

dQdw T 4 - e R

o’



-25-

CHAPTER IV

THE RETARDED COMMUTATOR F(g,w)

A. The Thermodynamic Correlation Function

At finite temperatures the commutator (3.31) is not a con-
venient quantity to calculate directly. Rather one defines and

calculates the temperature correlation function

7 gre)-<rgatige) e

where < ........ ) again denotes an average over the grand canonical
ensemble. T and T' are restricted to the region (-8 , B) and

the t-dependence of the operators is given by9

(H-pNT

6(3{§ﬁ=e

0@, 0) o (H-+N)T

(4.2)

e(H-—/u.N)‘C ~(H~pN)T

7, 0- < glg0e

It is easy to show that
35(3,1'(3‘)=5‘(3,f) (4.3)

for T €(0,B) . Defining G;Qbﬂg outside the region (-8 , B)

by requiring periodicity, we can expand it in the usual Fourier



series

with

and
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#g0)-] 2,

(4.4)

<) et dt (4.5)

The two functions F and # are related to each other

through their analytic properties in the

w-plane.

the following spectral representations

a‘o-'(q uJ) Z Le

Bl tpN,-E, ){<n! o(@)lm¥im| Qw( Qi |

W+E, ~Em +L6

.6)
_ ¢nl 9w im] 0 %% ln>}

W +E,,~E,+16

| (>r @)l im| 9 4 I

F 1 (gw)=-3 L@ E){<“

_ Gl alm<m| oig)ly

EE+Lw
} (4.7)

Em~Ent tW

They have
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where

g2, Pl

. .We can analytically continue F

in the w-plane to obtain the equality
u'y . < A1
Fo-"o" (i’('(‘)&) = =L go’-a-'(jnws) (4.8)

for ws) 0 . Conversely we can analytically continue F

uniquely10 and obtain
! . ¥y .
F;g'(i’w) ==t ?:rs' (17—L(‘)) (4.9)

for w in the upper half-plane.

B. Perturbation Theory

The most important part of the problem still remains;
namely, to calculate the quantity E;Qi;() . Of course, we
are unable to do so exactly, but will use the RPA (which is
equivalent to the self-consistent field approximation, and which
can be argued to be a good approximation in the high density
limit of the electron gas that we encounter in PbTell). Before
making this approximation, however, we will continue with some
well-known thermodynamic Green's function formalismg, partly for

the sake of continuity, and partly to establish our conventions.

Following Abrikosov et al. we write

e‘(H‘/AN)T _ e—(Ho'/‘"N)T jj(_’t) (4.10)
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where we have assumed that H can be written as Ho+ HI. This

defines J(’C)

Jj('c)-.-_ e(H“*N)T e"("""“l\ot (4.11)

which can also be written as

T
cp(’c)r- TMP[—JHI(’C') df’] (4.12)
0
with HI(T) in the interaction representation

—~ - —uN
H, ()= e‘“"/‘N)tH[e (HopN)T (4.13)

We can now write (4.1), in which the operators are in the

Matsubara representation, in the interaction representation¥*

éii,(g;c, ) ={T in’(i,r) Pg')(fbf) o (@)}Com (4.14)

Here {....... ):, means ‘Du{ep ° IR } where only
e—@.o-o =-[;'b ep(/‘N’Ho)

connected diagrams are allowed, and

Via (3.25) we can rewrite (4.14)

%0 (4, {d& o o BEF,
(4.15)

ATl PR T DY ()

o

*From this point on all operators will be written in the inter-
action representation.
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We call the matrix element of the integrand the polarization

part

o-,,L, ;50= (TQJ«(,,’NJ ?.,t‘)%. o)qi(q) ‘,o?cj((s)gm (4.16)

and represent it by the diagram in figure 3. The solid lines
represent bare particle propagators, and the shaded portion
includes all possible processes. This polarization part can
be expanded in terms of the proper polarization part12 (proper
with respect to both the coulomb interaction =------ and the
phonon interaction mmm ) as shown in figure 4. The proper
polarization part is represented by the shaded bubble. TIf we
denote the total interaction by ~rw = —-—-——- + AMA
we may redraw figure 4 as shown in figure 5, where the braided
line denotes the screened interaction between electrons and
whose expansion is shown in figure 6.

Figures 4,5 and 6 all represent integral equations which
we write down in section D.

Thus far we have not yet made any approximations (at least
not forﬂ?’). The approximation is the subject of the next

section.

C. The Random Phase Approximation

We now approximate the proper polarization part by the

simple bubble diagram as shown in figure 7.



Figure 3.

H

Figure 4.

Diagrammatic representation of the polarization

! )
‘part .?,.6.. (},’C;%,O) . The solid lines denote

bare particle propagators, and the shaded portion

includes all possible processes.
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Expansion of the polarization part in terms of the

proper polarization part.
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Figure 5. Expansion of the polarization part in terms of the

proper polarization part using the screened electron-

electron interaction.
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Figure 6. Expansion of the screened electron~electron inter-

action in terms of the proper polarization part.
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Figure 7. Diagrammatic representation of the RPA.
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Figure 8. A first order approximation for the polarization

part ﬂ'(gg;C;,x_.',o) in the RPA.
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We will show that g)(\j’?) depends only on the difference of

its coordinates %—2 . As a result we will be able to change
the integral equations represented by figures 5 and 6 into
algebraic ones. This dependence of gP on ‘%—2 can be under-

stood if we note that in (2.3) a translation is equivalent to a
gauge transformation of ADC. And physical quantities such as

the dielectric constant to which ép(v,2> is closely related

must not depend on gauge.

We define the bare particle Green's function

B2 =yl T,
Q) is

The function

)
2= Bl b6

For T')Té we have, using (2.21)

W .
G, 4,2)= 3. [dodardkdi BB~ )l G, T ) @),

_ ()
—Zjdo i« é‘” § P )T, ((_{(:)M_)

T.We omit the spinor part of the wave functiomn as }% is diagonal
in spin.
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Similarly, for ‘TT<1;

@ 0)% © _ W
2042 =2[000KE, o () ) £ N fﬂr

The function £MK€' is the usual fermi function
i (Em- G 1"
{nw + | (4.17)

and /ﬁﬂ is the fermi level for carriers of ellipsoid &
An easy way to find the time Fourier transform of
to notice that it has the same periodicity in T as 3;

Calling ’f=1}~1} we see that

i,z, )= «9(1,2,’5)»9(53 ~T) (4.18)

for T€(0,@) . Using the fact that’
)= -b-p) (4.19)

for T in this same interval, we have
Q)(i, T)= g)(y,g;(—-p) (4.20)

Therefore

¢ (W, T
(i,ﬂ, " =S 9)(1,3,1‘) e ™dt (4.21)
0

2

is
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with (= 22% . We find

mp

%z (}anm) = ‘%j dkdKdQIQ' énox(ﬂ) @:QK(?")

(4.22)

B @ B ly) g

En‘x'o’ Em Ko™

We suppress the superscript £ until it becomes relevant.

Next we take the Fourier transforms with respect to L

and 2
g w4192
9)(393,',%)49)(3,2,%) g XETA2 dsua, d%
(4.23)
! )gnko"' '{n'K’O'
B —"2"' dkdk Il En’K’o'— EhKO'+£wm
where

L =j dRdQ'dy oIz e TR @hak(ji) @:\;K(?—) @h'Q'K'(E) qsrox(ﬁ) (4.24)

Substituting in the functions § from (2.17) and (2.12) we

find

T~ §(M(q - q7) Sfa(qi- 40 Sl q;)dedzT d, & P
(4.25)

MY IMiqZ & %
et Tk Aia el iq Tuh(ﬂ)un'(y?—%t)ﬂ:)un(z'f)un'(z'\'_M)

mw,



-36-~

The integral over the degenerate quantum number Q gives us

the desired result

,
M)&g3@ i) k- K+M3¢qt) W( Mg 2J%)‘ (4.26)

uTL.

where the matrix elements X;V are defined

nn'(%"iz dee "% (X)un,(X-!-mw) (4.27)

Putting (4.26) back into (4.23) and integrating over K' we

obtain

Y Mig - Mzﬂ))
deK = fnuc—" {n‘u‘o‘

anlo—-— EV\K‘-+ me

Y (iiwvn) MS(&&

4.28)

where we understand that K'= K - M3§i'
We have shown explicitly that 67 is a function of the
difference of its coordinates only. We define a new space

Fourier transform

(ii w,)= (ZTT)S(S_‘ (%, ) (4.29)

We use the properties of #nxc' and X;n’ to write
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2
V\n' (Mli,qi o_Mz‘,qu')leK #,K,(—-E'EKL—E—'"%’_%'E (4.30)

'Kla- EV\ Ko,

G- 2,

The matrix elements X;n, can be evaluated in closed form. We

do so in section E.

D. Evaluation of the Polarization Part and the Dielectric

ngﬁﬁant
We shall write down and solve the integral equations
which correspond to the diagrams in figures 5 and 6 (within
the RPA). )
To establish the Feynman rules which conform to our con-
ventions, we do a first order calculation of the polarization
part 3‘(25_;(.‘;,95',0) . The diagrams are shown in figure 8. Using

the appropriate expansion of (4.12) with the hamiltonian

HI= Hi + Hg , we find
u ® 0 U
(9( 1‘-3210) <T4) (,-x-:fl'l) (Z)’C*- (%,) )q)a—( )>0 111 5-0-/ +

recrilel )il wﬁ)(x'omf.» R
° p
+3ar Ak R T N O R Y
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where we have yet to choose the proper contractions. For con-

venience we write

[-A

K ---;—;j MR sy e

with

’U'(\?r—?)=—2£ élgf;ﬁ) (4.33)

Using Wick's theorem we obtain

Ao i-5,8, P lemzs jd* 2P e ) Ul 9% o
(4.34)
fdyts Pl s ) W99 9

with the effective potential due to the phonon exchange
Wly-z)= ‘“Te 2 qﬂ 4l J{(Tb(i’c Jb(g,Ta)), +

(4.35)
+T b(j,’fz JbC j'c}))o}

We define the bare phonon propagator

(3,7, %, (Tb 7)b(g, %)) (4.36)
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Its Fourier transform is¥

D(q, )= == (4.37)

L - Le
21Ts

with u%=-ir- . The Fourier transform of the potential (4.35)

is then

_yrer wi-wi
- 2
€. ql W+

w'(i,ws (4.38)

The rules are now evident. Remembering to associate a
negative sign with each closed fermion loop, we can make the

following identifications

-Vly-2)  5----5 A

W(x}-z) 1;\/\/\/\/\/\/\

The negative sign associated with 1r(7—2) automatically
takes care of the (—)n associated with any n~th order per-
turbation diagram. The phonon interaction only appears in
even orders.

The RPA result for the polarization part is

fAs mentioned earlier, we neglect the dependence of W. on

wave number (section II D). L
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(4.39)

- Jd"‘,td"? @w(z <y U (4-2)62(.0 & %9

We have chosen the sign of U so that in the absence of

phonons it reduces to the screened coulomb potential. The

equation for U  is

~UlyA=[- V-2 W7 +

(4.40)

+zj[ Ul Wly-3] D62 Uk db s,

Because QD depends only on the difference of its coordinates,

we can Fourier transform equations (4.39) and (4.40)
g f
9;(1,%% —V[S,,.S,,.Q,’“é,w + @«)@3 ) U(g,03,) @(U(i umz-) (4.41)

where V is the volume of the crystal, and

U(g,4,) = UG, 2 -U(g, 00n) +
+[Ug, )1, w5 9 g, 9. Ulg,on)

(4.42)
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The last equation has the solution

U(ﬂ; “m)"hr(ﬂ) OJM)
D))z Pl

U (3, W,,)=

(4.43)

The sum of the bare interactions can be conveniently written

. 2
U(q,0.) - W(g,%) = amet Crt e (4. 44)

€.9° ltwn

so that (4.43) becomes

amwe* @‘3"*’”7@
= €o Q" Wi+
u(i,wm)_ l 2§ T L m (4.45)

_ ATrer Witwd < N
€.q" oﬁf+uﬁ;%;~L-(’°%Q

At this stage it is appropriate to go back to physically-
meaningful quantities by the analytic continuation of equation

(4.9). Defining

Pr(ﬂ)(g’ w)___ _C)Z_&)(’i,‘ . LJ)

U (q,%) = U(g,-iv)

(4.46)
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we get from (4.41) and (4.45)

mv(‘i"’) LV[M,“. (ng)+Uq,w) iw) (,)] (4.47)

Z%@@v“) (4.48)

and from (4.30)

Paé,w)=—M zZ 1

o Z‘Tz (X,_ nn'

n'k'c

(- 28 EVIKG"
,.,,, uqu ,JdK ———“—E@-:)f—(a 49)

In all these expressions W is assumed to have a small

positive imaginary part. U(g,w) is the effective interaction
between the conduction electrons in the crystal. It is con-
ventional to lump all the screening factors into a dielectric

constant
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tﬂTe

= (4.50)
ﬂ ) é(iw)c%
with the dielectric constant defined
€(g,0)=€, Sk ‘”reZ w( w) (4.51)
% R Ly g )

The first term is the lattice contribution and the second term
is due to the conduction electrons. We see that the polar-
izabilities are additive, and in this respect we have found

nothing new13.

In terms of the dielectric constant, the function F(g,m)

becomes

U
qw) LV[}J' - (’?)( D+ /-gr;e E—%@’%&)] (4.52)

E. The Matrix Elements Ynn'

The only quantities that remain to be calculated are

given by (4.27)



-

LW @4‘) =jd’° & U, (0w, (x+ y—"g:—;)

ﬂ' jdx Lqx ‘“’“‘*"H(v—x) (4.27)

-4 3 )
o-tma (ot ) H.,-(mm(x . rnqﬁ))

Through a chamge of variable we get

99 _4itds 2
z2m mw, ~(G+b .
Xﬂn’ (Q"qﬁj= e’)l?l‘:‘:""f n':,‘ Sd? € s ) Hh(f)Hn'(g"'ﬂ}é—Z,‘:)

with

b=322-_'1".n"“_%'_ (4.53)
e

Calling the integral 12, we have

I,= f dg &7 an(g-—b)H,,, (5+b%)

These Hermite polynomials can be expanded about the point ?14.

H,(5-a)= Z(‘z“) Hm(z;) (4.54)

omlfn- m)l
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Substituting, and using the orthogonality relation of the

Hermite polynomials
o0 _gz
SHm(ﬂHn(i)e dg =2"nhrs (4.55)

we find

n-m b ¥ N=m ' ,'

I Zr()nmn+nmb

(n-m)] fr=m :m:

where the largest value of m is determined by the factorials.

We have the result

9% q: +q" hinl n-m%n-m
hnl 1 §2, m.o ml (Y\-—Wl)! ("I_m)J

A case of special importance is q,= 0 . Then

7- 2 >h+n —m—m’

Hl(;mhh

pladf=e ™2 L
hn' it mm/ o m'm"(n-m)‘(n m){n-m)! (n-m’))

(4.57)

a result which will prove useful later.
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CHAPTER V

THE SPECIAL CASE g = (0,0,q)

A. The Cross Section

We restrict ourselves to modes traveling in the direction

of the static magnetic field. The function P(q,w) simplifies
to

) o W w U)

p( ) _”_Vi‘__‘-__ M )‘ dK{ Enwo~Enke (5.1)

’ 2 R .

o i’ 277 1& % nn’ nn ( l3 hKo'(—E-lfK’o_ (:\}Ko“)"w i 5
for positive frequencies, and with K'= K - Mgg)q . Ex-
pressions (2.26) and (2.27) show that M13 and M33 are the same

for each ellipsoid. Hence P(q,w) no longer depends on 4 , and
we shall often suppress the superscript. The real part of the
retarded commutator F(q,w)s which we need for the cross section

—~

(3.33), becomes

ReE ()= V[, SR ) + 42 9'"‘——"‘3‘“9’(2’?3% w)] -2

Since we are interested in the collective modes given by the

zeros of €(g,w) , the first term in (5.2) does not contribute.
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Substituting the second term into the cross section we have

(5.3)

do _ ne v, V 4Tre (Z_pc_(g,w)) 0y
d0dw TP W 1-ere Don e 2 (g, T e(q,w) IZ/\,_,

In the absence of damping (i.e..QmP(ﬂ]w)=,Dmé(ng)=O ) we

obtain
do | __n2V __ wy Am’e"(ze_( s 4
ddwl, p(-ePP) @ gF (& 'ab 6(1"*’) (5.4)

where e! o is the derivative of ¢ w with respect
g’ ﬂ, )

to W , evaluated at the resonance given by e(g,&)::'o

B. The Photon Polarization

The polarization factor is

(5.5)

Efki)(’fi) as & )

To evaluate it, we need to express gfz) with respect to the co-

(for convenience we have written

ordinate system 6 . In e ,» O is diagonal, and the energy

surface is
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_ ] 2 2 rA
E(k) = i (o Ar + 0 g+ o )
With equation (2.5) this becomes in ﬁ

e(k)=7m (RAR), ki

where O means the matrix expressed with respect to E- .

Therefore
g
o= (R"=R)y (5.6)

Calling Op= OLL=A , we find

206+ ___é_ ___é__
3 3 3
O(('”)- _A 200+00, A
3 3 3
D _4a 20(r+o
-3 3 3
20(14'0(:. a _A_
3 3 3
O{"”) A 20+ A
- = LT L =
3 3 3
R N 5
3 3 3
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20+ 4 _a
3 3 3
IS U N S
3 3 3
L D 20+,
3 3 3
(5.7)
2oqton, A iy
3 3 3
| _a et 4
3 3 3
A A 20t
3 3 3
- Thus ZO(@"—‘-ﬁ'ZO(. +ol S and (5.5) becomes
T Yy 3 T WY
@z e 2| « |7
30 1= § e || 5.9

The largest cross section will be obtained for light polar-
ized in a plane perpendicular to the scattering plane.

C. The Long-Wavelength Limit

For values of q<£ 104 cm—l and magnetic fields B 210

Kgauss it is usually sufficient to work to lowest order in ¢
(see Appendix). We obtain this limit by expanding both the

2
integrand and YénJ in expression (5.1) to order q2

R(qw)= ~ ) SdK n«czm{‘f“’}‘f }4—0@“) (5-9)
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The sum and integral over n and K is related to the total

number of electrons

T.L

N(:‘) V= E”.g deK gffir (211')

i

- e ok o

where V is the rescaled volume. We find

muw, o

W e
Zde{hm_-—- ml\lw (5.10)

where Néz) is the electron density of spin o due to el-

lipsoid ¢ . The function P(q,w)becomes

w wxw*

<

u’ (3 z 2
Hlg Nt {h e ) 510

and the dielectric constant,

’:.(_,)7" 2 1._ wcz_
€(o,w)= 60,[3,__&;% - g& ‘:),_i)c,_] (5.12)

with
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(5.13)

z2_ 4rrNe* (.2 (42
Wp = me, (M'3+M!3>

These results are identical with those of reference (11).
Figure 9 shows the general structure of £(0,w) for w >wog .
c
It is not valid to extend the graph to frequencies that approach

the band gap frequency, as then € becomes frequency de-

pendent.

The derivative of €(0,w)is

d Qﬁ— 2,
2ﬁ3‘60%°9=‘6“,[?UJ@jﬁff%z'F

(5.14)

2 Wi gt (Wo—2w?
+2 2% “’“L(f)z_zjfz)i )]

Numerical results for the modes and their cross sections

. 5,15,16
were obtained for PbTe with the following parameters

w, = 1.8 x 108 %sec™  wp = 4.9 x 107 %sec™t e =30

™
|
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Figure 9. The general structure of the long-wavelength

dielectric constant as a function of frequency,

for wc) W
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g* [001] = 29

N=1018 ca™?® ana v=10"3 cn.

The modes were calculated by Newton's method. Although the
equation €(0,w) =0 1is a cubic equation whose roots can be
found analytically, Newton's method was found more convenient.
The results are shown in Table 1 for various magnetic field

strengths. The quantity A(w) is given by

2 2 2
/\(w)=%‘%;v(zoq+oq) (E—ré%-)) (5.15)

where the long-wavelength limit of PQg,w) is used. In terms

of A(w), the cross section is

5 ORIl Ted oo

for the mode at W. i

At 10.5 Kgauss W, =W and only two modes exist in the

T’
plasma. Physically what happens is that as wc approaches W

the zero of & between W, and W is forced into the damping

region near wc(the long-wavelength limit of € is no longer
valid; see section D); the mode becomes damped, and eventually
the resonance becomes so wide that it is no longer well-defined.
If one sets wc:= wT in (5.12), the equation €(0,w)=0 reduces

to a quadratic.



Table 1
The collective modes and their relative cross sections A(w) are shown for

various magnetic fields.

1
Magnetic Field | Cyclotron Frequency | Mode Frequency E_ég@l Aw)
(Kgauss) (1013 sec-l) (1013 sec_l) (10-13 sec) (cgs units)

10 .47 5.86 . 343 1390
.49 4.03x10° 1650

.27 1720 118

10.5 .49 5.86 .343 1390
.28 1510 144

12 .56 5.86 .343 1390
.50 31000 1400

.31 1090 249

15 .70 5.87 . 344 1390
.54 2040 1040

.36 764 616

—<|7g_



Table 1 (continued)

Magnetic Field | Cyclotron Frequency | Mode Frequency e A(w)
¢+

(Kgauss) (1013 sec_l) (1013 sec_l) (10 13 sec) | (cgs units)
20 .93 5.89 . 345 1390
.64 339 455
.40 779 1170
50 2.33 6.13 .361 1350
1.44 15.1 15
.43 1150 1570
100 4.67 7.06 441 1150
2.50 2.26 63
.43 1220 1600
200 9.34 10.50 .820 657
3.35 .781 388
43 1240 1600

_gg_
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The frequencies of the three modes are plotted versus
magnetic field in Figure 10. The graph shows the usual
repulsion of interacting modes. For fields less than 50
Kgauss the low-frequency (LF) plasmon and phonon modes mix
strongly. For larger fields it is the LF and high frequency
(HF) plasmons that mix. Table 1 suggests that the LF plasmon
is most easily detected at fields of 10 - 15 Kgauss, although
at higher fields it can be detected through the magnetic field
dependence of the HF plasmon.

Numerical calculations show that if the phonons are elim-
inated (but the other parameters remain unchanged), the LF
plasmon has a very small cross section compared with the HF
plasmon for fields less than 100 Kgauss. The results are
tabulated in Table 2. Comparison with Table 1 shows that it
is the phonons that enable one to detect the LF plasmon at
low magnetic fields. Furthermore, direct evidence of the LF
plasmon may be easier to obtain in a nonpolar substance, pro-

vided one goes to high enough magnetic fields.

D. Damping

We wish to consider two types of damping. The first is
damping as predicted by our theory; the second is collision
damping which we introduce in an ad hoc manner with a phen-
omenological relaxation time.

For the first type of damping we return to (5.1), per-

form the integration, and substitute the result into (4.51).
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Figure 10.. 'The three collective mode 'fre'quér'zcies are plotted against magnetic field.
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Table 2

Collective modes and their relative cross sections for

various magnetic fields for a model substance which is

nonpolar, but has the same parameters aT’ aL,.and €,a8

PbTe.
Magnetic Field Mode Frequency A(w)
(Kgauss) 1013 sec_1 (cgs units)
10 5.59 1600
.28 b
15 5.59 1580
.42 1.2
50 5.91 1510
1.32 40
100 6.92 1220
2.25 250
200 10.4 620
3.0 680




-59-

We find the real part of the dielectric constant, at zero

temperature,

(M

V\r\'

R w._ 4e*m?,
Re €(q,0)= €0 St — TH2 T

(5.17)

[h L M‘fﬁ'fﬁ] W
[(n‘—n)w+_:13_.uc+"_4;ﬁ: -

Kno is the maximum value of K for the level (n, 0). The

imaginary part of the dielectric constant, at any tempera-

ture, 1is

hn’ (Mnsq )'{nxa-d"?'"( kM, B )(5 .18)

Qaelqw)=4dEmie 1
e(qw)= T Mﬁ >

for w> 0 , and with Ky the solutions of

2 %

Although (5.17) is a complicated function, careful ex-
amination shows that it has the general form indicated in
Figure 11, at least in the regions W e(w,,ws) and ®,<w< 20

The asymptotes are given by

2.2

Lu==lwﬁﬂkhb__Maﬂ
! m Zm
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Re € (2,w)

gz

AMUEIRNINRNUEN RN NN

Figure 11.The‘genefal structure of Re e(gy) shown only in
the regions W s(wz,wB) and w>w4{ The shaded
regions are those for which Im e(sy) is nonzero

(for T = o) .
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w=M3_31lﬁoi+M;ﬁ?
z m 2m
2.2
wf‘*’c“"‘g—ny;K +—”j‘:m (5.20)

(= UL+ —”i—m +—2—32m

To determine the location of these asymptotes, we estimate

Ko& by calculating the fermi momentum while ignoring the

Landau level structure. We write

V 4 3 _
‘ éﬁ¥ E;TTKF—JQV

where V denotes the rescaled volume, so that

K> =3T3, N

or
K.=14x10 cm’ (5.21)
Assuming that Ko& is of this order, we find for q = 104,
W= W, = 5X 10" sec”

(g = W~ 5X 10" (5.22)

"
a%;=u£+§x|o

Of course there are more asymptotes (and hence_godes) than
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those shown in Figure 1ll; there are asymptotes near each of
the frequencies ch, 3wc and so on. However, contributions
to the dielectric constant due to terms with ln - n'\2.2 are
negligible at frequencies of interest because of the factor

Y (Ml3q,0 ) 2 in the expression (5.17). In the long-

nn'

wavelength limit these contributions reduce to zero.

At T=0 the imaginary part of €(gq,w) is non-zero in
the shaded regions of Figure 11. Since the modes are given
by the zeros of EQg,w), they are undamped as long as w3) wz,
and wT falls outside the damping regions. In view of the
values given in (5.22), temperature effects on damping may be
neglected for the low temperatures in which we are interested
(4.2°K).

We introduce collision damping through the replacement of

w by w+i/T in the conductivity O0(g,Ww), where T is a relax-
ation time determined by experiment. If we have no damping
due to the vanishing of the denominators in (5.1) (i.e., ex-
pression (5.18) is zero), the whole function €(g,w) is given

by its real part. In regions of frequency in which the long-

wavelength limit is valid we then have

. 2
€(o,w)=€, [wz' W W (k) - STl ]

W= wwrk) @+ Y fFm W2
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If wT>»1 we calculate the imaginary part of the dielectric

constant to be

2
T, €l [q 2, 2, ot 2f, 2 2
€ (ow)= Wi WL+ 570 (W ~-3w
Qw\ (, ) uﬁC@JLbﬁji (A c( c )
while its real part is unchanged from (5.12).

To translate this result into a scattering linewidth,

we return to (5.3) and reconsider the factor

Q.. Fla)
€ (o,w)

where pT(gﬁw)==§ Pg(g,w) and the superscript indicates, as
in e%(0,w) that collision damping has been included. Assum-
ing that Im EI(O,N) is constant over the width of the line

we find

Flw_ ___ & 2
ET(O,UJ) e: ( ) b)) +(€: )2- PR (ia (JJ>

The subscripts denote real and imaginary parts. Near the

mode W we get for this expression

T

&
s 0~ +E)
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which gives a Lorentzian line shape of width

Z300='—§£——
|€xo.w)

We can find a relaxation time T from the data of

Bobayashi et a1.17. For PbTe at 4.2°x they give a mobility

6 2
U= 1.5 x 10 cm /Vsec

2
Using the transport effective mass which appears in wp s We

find a relaxation time

11

T =2.9 x 10~ sec
13 -1
For example, the mode w= .54 x 10 sec at 15 Kgauss has
a calculated linewidth
10 -1

Aw=1.3 x 10 sec
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CHAPTER VI

SOME EXPERIMENTAL CONSIDERATIONS

Because of the high optical dielectric constant of PbTe,
N=5.48, large reflection and refraction will take place at
the surfaces of the crystal in any optical experiment. Re-

flection coefficients for oblique incidence are readily avail-

18. To investigate the restrictions imposed by refraction,

able
we consider a slab of crystal shown in Figure 12. Using the
equations

A 9 =N 9,

Nein O = Jun 9, (6.1)

k=t

with El and EQ the photon momenta in the crystal, we find the

following relationship between 61 and 64

S © Sin” 5
y = T I
\+:i?-25%' F‘~7f74

which simplifies to

-2
Ao gun 5

S CRE

(6.2)
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Figure 12. Refraction at the surfaces of the crystal.
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when we use the fact that sin291<< nz. Since q»-104,

kl-3 X 104, we have approximately

. m B
ﬁme4=—fi"‘-—i—_l— (6.3)
]

The maximum value of 91 is then about 42° before total

internal reflection takes place at the second interface.
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CHAPTER VII

CONCLUSIONS

The existence of a LF magnetoplasma mode should be
observable in PbTe in a Raman scattering experiment. Both
the HF plasmon and the LO phonon modes have appreciable cross
sections; at low fields (B £ 50 Kgauss) the LF plasmon mixes
with the LO phonon, and at higher fields, with the HF plasmon.
In nonpolar crystals evidence of its existence through a

Raman experiment can be obtained only at high magnetic fields.
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APPENDIX

We derive the long-wavelength limit of E(E’w)‘ If

we are outside the damping regions, the dielectric constant

is given by (5.17)

Sowi _ 4emiu ,
© =W TTFD(,_ 3q3 o hn’(Mlsq C}

ﬁlvou)—b4 K"f+“Jﬁi] w* (A.1)
[@ o, + Miar M) - 0o

e(qw=¢€

We expand the matrix element IXIZ to order q2 (equation 4.57)

o (Ms.9] =55 |+

(A.2)
S MZ 2
l3 i 13
+ e (1) zmay, T Onnel N Zmay,
For the term n'=n the logarithm is (in cgs units)

o (MsagKbo-#I _ _M;%j’_;ﬁ)z
Mﬁg Kngk + __aﬂ?i?




-70~-

. 4 7
If we put in some numbers, M33 = 3.24, =10", an= 10" we
find
M353Kna‘t — 1 -]
o 3.8Xi0 sec
2 2 (A.3)
Ml h 61 x10% sec
Zm
Any modes in which we are interested lie in the range 1012
to 1013 sec—l. Therefore for these modes we can expand the
logarithm
g 333) 3 3
/Qv\ ( ~ ZMBSQKV\O‘ (A.4)

W ( ﬂmg Kno“+ Zsng Mmoot M;; ‘f’K;—o‘

For the term n'=n+ 1 the logarithm is

(U)c—l"—lsﬂ'?—) w gMiﬂ_ﬁ:(w .*___ézéjf
= e

A
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For fields of 10 Kgauss or greater w, exceeds 4 x 1012 sec

Because of (A.3) we therefore simplify this factor to

King-
J (/*)Z_" wz_ 4 Ma:g ne e
n

Wr- W+ _Q_Ma&_’ﬁnzﬁ’:‘

For frequencies not near w, we expand this logarithm and

obtain

/‘l MsquV\o’wf_
m (W2- w*?)

Note that this expansion is not valid for the mode between

w,, and w, if W, approaches w Finally the term for which

T T®

n'=n - 1 becomes

4 M33C%KM-U¢
m (W2E- W)

. . . 3
If we combine these approximations, and work to order q we

find

Elqw)=e CE0C _ Bl [Ms  ME |5y
1 PWRwWE TR, W WOWE ke T

By counting states one can show that (equation 5.10)

s K o TN
ne ¢ Z2muw,

and (5.12) follows.
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