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Summarx

A general theory is presented for the response, to

an arbitrary random pressure field, of a3 uniform or axially~-

non~uniform thin cylindrical shell. The theory is then sSpe~-

cialized to the case where the pressure field orlglnates from
- the turbulent boundary-layer of 5 subsonic internal flow.

The basic formulation of the dynamical problem is
in terms of a hybrid cla351cal/f1n1te—e1ement theory in which
the finite elements are cylindrical frusta and the displace-
ment functions are determined from the shell equatione,'the
. pressure forces are lumped at the nodes of the finite elements.
| The cross- correlation spectral density and the mean
Square value of the displacements of the shell are obtained

for an arbitrary pressure field and for a boundary-

fiela,

layer pressure

Some calculations of the latter case are conducted to

_illustrate the theory. In one case the theory is compared with

experiment, and agreement is found to be quite good.
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1. INTRODUCTION

In this paper we are concerned with the vibration
of thin circular cylindrical.shells, either uniform or

axially noh~uniform, due to random pressure fields., 2 gen-

Several theories are available for determining the
response of beams and Plates subjected to general, or bbundary—

layer excited, pressure fields, e.q. (11 - (73. Considerably

ing flow, or surrounded by axially flowing fluid, in industrial
applications {including those in the more exotic fields of
nuclear and Space engineering). This reflects the added com-
- Plexity of the problem in the case of cylindrical shells, To
the authors' knowledge oﬁly two such studijes have been made
one by Cottis and Jasonides [8], and the other by Clinch [9].
The former is a general mathematical theory for
simply—sﬁpported, uniform, thin cylindrical shells, based on
Reissner's simplified, shallow shell, equations of motion.
Using assumed correlation functions for the pressure fielq,
Cottis and Jasonides derive 5 general expression for the space-
time correlétion of the response, for both arbitrary and

boundary-layer induced pressure fields: but they do not proceed




to evaluate the mean square value of the response; moreover
they do not undertake numerical solution of the problem. This
work was later extended to orthotropic shells [10].

Clinch also considers simply-supported thin cylindrical
shells which he analyses using Powell's [11] joint-acceptance
method, essentially by-passing the need to introduce specific
equations of motion. 1In the analysis he assumes that the
éreas ovef which the wall pressure fluctuations are correlated
are.small compared with pipe dimensions and, more importantly,
considers the response only in the high modes of the shell
(where resonances are so close to one another that a.continuous
curve of respohse versus frequency may be assumed). With.these
assumptions, and some others which are also made in [8] ané
in this paper, Clinch derives an expression for the root-mean-
équare of wall displacement essentially as a function of fre-
quency bandwidth. He then compares his theoretical results
to his own experimental data for a long and slender thin
cylinder conveying water:; the average r.m.s. wall displacement
plotted against frequency displays remarkably good agreement
between theory and experiment (in the range 100 ~_1;000 Hz).

It should also be added that Clinch obtained experimentally
- some very useful correlation functions for the pressure field.

A particularly attractive feature of Clinch's work

from the application point of view, provided thaﬁ the aﬁplicaw

tion falls within the limits of applicability of the theory,



is that one may calculate the r.m.s, response by performing

a@ number of simple arithmetic calculations using several
expressions and graphs in the paper. The most severe limita-
tion of his theory is that it applies only for high mode
numbers and frequencies. |

The work presented in this paper is an éttempt to
produce a general theory for the response of cylindrical
shells to random pressure fields, with a minimum of limita-
tions and, hence, with wide range of applicability. Tt is
based on a recently developed theory, [12) - [14], by the
authors for the dynamical analysis of thin cylindrical shells,

The theory of [13], and hence the theory of this
pPaper, is capable of analysing geometrically. axially—symmetrlc,
long or short, thin cylindrical shells which are not necessarlly
unlform, subject to any set of kinematic boundary conditiong
(including Supports other than at the two axial extremities of
the shell).

The specification of the random pressure field is
first done in terms of quite general correlation functions,
which are subsequently given special form appropriate for sub-
sonic turbulent boundary layers; these latter correlation
functions are taken from the existing literature [15, 9]. -The
assumption is made that the pressure field is spatially homo-
geneous and that it has the properties of a weakly stationary,
ergodlc process, as was done in both [8] and [9].

A number of other assumptions are also made which




are easiest understood when Presented in the coursé of the
analysis; a compendium of the assumptions and limits of appli-
cability of the theory will be presented in.the Conclusions.

| The organlzatlon of the paper is as follows Flrst
the matrlx formulation of the problem is presented, in the
course of which the theory of [13] is outlined and the con-
tinuous pressure field is transformed to a discrete set of
forces. Secondly, the cross-correlation spectral density and
the mean square value of the shell are expressed in terms of
correiation functions of the pressure field. Then, the spécial_
form of the theory for boundary-~layer pressure fieldslis pre-
sented, and the root-mean-square of the response is obtained.
Fiﬁally, the method of calculatioﬁ is developed and the fesults
of some calculatlons, conducted to illustrate the theory, are

dlscussed



2. MATRIX FORMULATION

We consider the dynamical behaviour of the shell

- subjected to arbitrary loads to be governed by'the following-

- equation
My+Cy+Ky=F, (1)
oAy Ny oy n '
where y is a displacement vector, M, C and X are the mass,
e N N
damping and stiffness matrices, respectively, and F is a vector
N

of the external forces. Thus, we have assumed that the con-
tinuum has been transformed to an equivalent discrete system
with a finite number of degrees of freedom.

Whereas (1) is quite general, the particular form df
its constituent terms depends on the particular theory uséé.
- In this paper we base our theory on a recently developed method
for the analysis of axially non-uniform thin cylindrical shells
[12] - [14], in which M and K were determined in order to obtain
the free vibration characteristics of such shells. Only an out-
line of this theory is given here; for a detailed account the
reader is referred to [13] or to [14]. |

The theory is a hybrid of the finite element and
classical shell theories. The finite élement chosen is a cy—.
lindrical frustum (Figure 1), and accordingly no geometrical
modelling of the structure is necessary. Moreover, this allows
- us tb use the shell equations, in full, for the determinatioﬁ
of the displacement functions, instead of the more commonly used

polynomial displacement functions.



2.1 DETERMINATION OF THE MASS AND STIFFNESS M.ATRICES'

| The displacement functions are determined by Sanders'
”:tﬁeory [16, 17] for thin cylindrical shells. This shell theory
waé preferred, for the following reason: in Sanders' theory
all strains vanish for small riéid—body motions, which is not
true for Léve's or Timoshenko's theories, for instance. By
using such displacement functions we automatically Satisfy

the convergence criterion of the finite-element method stating

that all strains within the element should vanish when the
nodal displacements are generated by rigid-body motions.
In the continuum, we express the axial, circumferential

and radial displacements of the middle surface of the shell by

U(x,9) = % un(x) cos n¢,
n

Vix,¢) = £ v_(x) sin np, - (2)
n .

W(x,¢)' =1 w, (x}) cos n¢,
n

where u,. v, and w, are the amplitudes of the displacements

associated with the nth circumferential wavenumber. Then, for

a_specific n, the nodal displacement, say at node i (Figure 1),

is defined by

Si = {uni, wni, (dwn/dx)i, vni} (3)

for a finite element with nodes i and j, the nodal displacement

vector is {§,, &.}7.
NP



Substituting (2) into Sanders' equations of equili-
brium for the shell and proceeding accor&ing to the finite~
eiement method [18], the displacement functions were determiﬁed
[13] which relate the continuum displacement to the nodal diéF
placements. Then the mass and stiffness matrices for one finite

element, m and k, respectively, were obtained analytically by
4" Y] -

carrying out the necessary matrix operations and integrations:
- after lengthy manipulation, expressions for the general terms

k and m of k énd m were obtained [12; 13]; these will not
Pq jote | "y "

be reproduced here for the sake of brevity.

With m and k determined, the global mass and stiffness
"N "

matrices for the whole shell, M and X, respectively, may be con-
. ~ A

structed by superposition in the normal manner. Each of these
(square) matrices is of order 4(N+1); where N is the total num-

ber of finite elements. The displacement vector y, for a shell
MY

subdivided into N finite elements, has the form

5 5. 3T

y = {8,, 227 Sl

n "
It should be added that the analysis of reference [13)

(4)

was extended in [19] for cases where the shell is fluid-filled,
rather than in vacuo, essentially by'modifying the mass matrix.

It must be stressed that, becéuse of the form of. |
equation (3), the mass and stiffness matrices_obtained are
as$ociated with a specific n, as is the nodal displacement vector.

Thus the analysis is carried out independently for each n.



2.2 REPRESENTATION OF CONTINUOUS PRESSURE FIELD AT NODAL POiNTS

In equation (l) F is quite general. In this paper all
the external forces arise ;rom an internal pressure fieid. It
will be assumed that displacements are small enough for the
resultant forces to be always normal to the shell. We shall now
proceed to transform the continuous excitation field to a dis-
crete set of forces acting at the nodal points.

| It is well known that a set of forces on a rigid
body may be represented by another set of forces acting at_a
different point, along with appropriate couplés. The contin-
‘uous random pressure field of the deformable body will be
appfoximated here by a finite set of discrete forces and
moments acting at the nodal points [20].

As previously mentioned, the shell is divided into N..
finite elements, each of which is a cylindrical frustrum. :The
'position of the N+1 nodal points may be chosen arbitrarily :

- (Figure 1).

Any pressure field is considered to be acting on an
area Se sdrfounding the node e of coordinate Lo as shown in
Figure 2a. This area Se_is delimited by the positiohs ﬁ;
and £, with respect to the origin in the x direction. It is
fherefore possible to approximate the preésure distribution
acting over the area Se by two mﬁtually ﬁerpendicular forces
per unit length. The forces f, {(x,t) and f,(x,t) are at dis-

tance X, from the origin of the shell as shown in Figure 2a; they



are given by

2m
fR(xrt) = I [ P(X:¢rt) COS¢' d¢ r (5)

27 :
folx,t) = ¢ fo pi{x,¢,t) sing d¢ , | (6)

where p(k,¢,t) is the instantaneous pressure on the surface.
These two forces, f; and fC' acting at point A are
'tfansfo:med-to two forces and one moment,1+£rr acting at the
‘node e, as shown in Figure 2b.
The external force vector at a typical node e can

now be written in the following form:

/0
r" _
1
. £f_(x,,t) dx;
(F(t)} _ £i RYi’ 1
e ]
2,
e | | |
F‘Q‘;
£.(x_,t) dx :
C
J f‘é : P b Je
i " wo__ [ " ' - ' = ! - ' =
where Ri = 2j_- zp = Le’ li lj ip ze and 2e zj ; the

peculiar indicial notation having been introduced for convenience

in subsequent manipulations,



2.3 DECOUPLING OF THE EQUATIONS

All the terms in equation (1) have now been de-
fined, except for C which will not be given an explici£ form
for reasons to becgme obvious below. Before proceeding
with the discussion of the response of the shell to random
pressure fields, we shall discuss how the equations of motion
may bé decoupled, thereby defining a number of gquantities
whidh will be needed in the subsequent analysis.

To decouple the equations of motion we proceed by
first considering the free vibration of the conservative sys-
tem [13] and determining the eigenvalues and eigenvectors of
the system. For a cylindrical shell subdivided into N finite
elements where J kinematic boundary conditions have Eeen im-

posed, the eigenvalue problem is of order 4(N+1)-J. Here we

consider that the natural frequencies, Qi, and the eigenvectors,

¢i, i=1, 2, ... . 4(N+1)~J, have been determined by the methods
u .
of [13].

We next form the modal matrix

= [d,, ¢, . . . & ] (8)
by L N2 . W4 (N+1) =T !
and define :
y = bz ., : {9)
Ny Ny . . .
Substituting equation (9) into (1) and pre-multiplying by 6T
.- n,
we obtain
MZ + Dz + Sz = 3°F = p', | ' (10)
Ny vy LYY LAVINL VY 2V . ' .



here ¥ is the generalized mass matrix and § is the spectral

Y _ Ny
atrix, and they are both diagonal. D = ¢TC ¢, on the other
: v LAVERRA VIR V)

hand, is not diagonal, in general - albeit for small damping
the off-diagonal terms are small and often negligible. Here
we shall assume that C is linearly related to M and X, or to

“ N N "
" either one, in which case D does become diagonal; moreover,

_ ~
- we shall consider the case of hysteretic ('structural') damping
to be a special case, from the point of view of mathematical
representation, of the general viscous damping formulation

adopted in equation (1). Denoting the rth {diagonal) term of

1/2 . s
(Ser) , Sr and Mr being the correspondlng

D by D = 2z
o r r

terms of S and M, equation {10) leads to the decoupled set of

Y v
equations
" . 2 _ ' _ _ : ~
z. + 2chrzr +. Qrzr = Fr / Mr' r=1, 2, . . . 4(N+1)-T
' (11)
Upon solving equations (11), the response in terms of the or-
iginal co-ordinates is found by
4 (N+1)-J S
y., = 5 ¢ zZ_. (12)
g r=1. ar r

This then is the instantaneouérresponse due to an
arbitrary force vector F. We recall that it represents the'_
response at the nodal pgints, i.e. at specific values of the
co~ordinates x and ¢, namely x = Xy, i= 1,.2, . .'N+1, and
¢ = ¢o’ where ¢o was defined consistently with 5. Moreove;,

the response obtained above is associated with a specific n (Section

2); by repeating the analysis for a sufficient number of n, the



total response for any point on the nodal circles may be ob-

~ tained by superposition, using equation (2).



3. RESPONSE TO ARBITRARY RANDOM PRESSURE FIELD

Had the pressure field been deterministic, the res-
ponse as expressed by (12) would have been the solution to
the problem. 'In the case of a random field, however, we must
proceed differently. In sections 3.1 and 3.2 we shall express
the mean square of the response in terms of the spect;al den-
sity of an.arbitrary'random pressure field, first in general
terms (§3.1), and then using special forms of the spectral den-

sity of the pressure field (§3.2).

3.1 THE MEAN SQUARE RESPONSE IN TERMS OF THE CROSS-CORRELATION

SPECTRAL DENSITY OF THE FORCE FIELD .

The spatial cross-correlation function of the response

.is defined by

wyij (X, X1 0ot T) = ¥ (X6, yj(xp’¢o’t+T)’ (13)

where Yi and yj are two elements of the nodal displacement vector

w_ and

(it is recalled that y is a generic notation for Upr Vor W

.dwn/dx); xk.and xp are the axial.locations pf the two nodes in-
volved, where indices k and p are related to indices i and j,
such that (for an unconstrained shell) to each k correspond
fOur'sequéntial values of i [equation (4)]; T is the time delay
‘and. the bar denotes a time average. |

Assuming that we are.dealing with an'ergodic process,

using the correlation theorem, we may write



o

T . . = 11 * iQrt
'wyij (xk,xp, ¢O:T) %:2 o J 4 (xk,tbO,SZ,T) Yj (xp,q;o,g,'r)e an,

_ (14)
"where the Y's are the finite Fourier transforms of the y's,

- such that
it

T
Y, (xkr é , 2, T) = [ yi(xk’¢o’t) e at;
=T

i Q

the asterisk denotes the complex conjugate. Now for T=0, and
i=3j =g, and hence k = p = g (where g and g must be consistent),

equations (13) and (14) may be written in the form

5T |
Y q(ng¢o,t) = ¢ (x_: ¢_.: 0)

o0
_ . l * -
= %ig ST [0 Yq (xg,¢0,Q,T) Yq (xg,¢o,9,T) dae, = (15)

*
where the fact that Yq Yq / 2T is an even function of Q has

been used.
Introducing the Fourier transforms of equations (11)

and (12) into (15), we obtain

: 4 (N+1)-T 4 (N+1)-J o &
'y2 (x.’¢o't) = 5 T gqr gs <
T S r=1" s=1 Qe m m

@x
. _ ' T &
x lim i J et Os=®rh iy oy u @) [ef Fr,T) 0. Fi(o,T) dn |
To> o0 ™ 0 r s ,.br " ,\JS '\.-

(16)

where Qr is the rth natural frequency, Mr is the rth element



‘of the generalized mass matrix, qu is the gqrth element of
the modal matrix, Br and GS are phase lags between the force

and the response, Hr(ﬂ) is the magnification factor defined-

by
| Ho@) = (11 - (5717 + (20, &~ 12y
r r

and F(Q2,T) is the finite Fourier tfansform of the force yecﬁor.

” Figure 3 shoﬁs [HI(Q)| plotted against f for a

lightly damped multi-degree-of-freedom system. We see that

IHI(Q)[ displays pronounced peaks in thé neighbourhpod of the

¢ ‘naturai frequencies of the system. The products.IHr(Q)llHS(Q)|
for r # S are seen to be small in comparison to the products .
for r = g. In addition, the terms in equation (16) with f # s
may be negative or positive depending on the sign of the product
qu¢qs’ while terms with r = s are always positive. Therefore,
the contribution of the cross-product terms to the mean sguare

. response will be small and may be ignored [21]. Equation (16)

may how be written as

3 4 (N+1)-J ¢2r
Y (x :4’ rt) = L X .
-4 g ° r=1 - Qsz
rr
*
X lim i f lu_@) 1% of Fia,m) of F(a,T) an. (17)
T+ 0 r oy AT oa

We next define the cross-correlation spectral density
of a force f by

, 1 *
We (xi,‘xj; Q; T=0) = %ig [ T~F(xi,9,T) F (xj,Q,T)] (18)



where F is the Fourier transform of f. Substituting the Fourier
transform of equation (7) into (17}, expanding and making use

of equation (18), we obtain

| 4 (N+1)~J ®
Ve (x50000t) = z —3% J [H_@) [ x
g r=1 219 M° 0
rr
N+1 N+1 |fﬁi [iu 1
X : . .
iil uil‘q)irtpur Ei 2& 'WfR (a; xi,xu,O) dxi dxu
N+1 N+1 | o2 Ty l
) ' t - . .
+ iil El ¢ir®kr li Qk (xk Rk) WfR {(02; Xy o Xy 0)_dxi dxk
[1] "
N+1 N+1 [21- [2v i
+ % z . W (R x.,x. : 0) dx. dx
i=1 y=] Lir vr Qi Eé fRC iy i v
N+1 N+1 ' 25 1t - | '
+ jil uil 5e%ur 123 2& (xj—zj) WfR {(Q; Xj' X, 0) dxj dxu
" 1t
N+1 N+1 iyt ,
+ jzl kil er¢kr 423 2& (xj - Rj)(xk - ﬂk) wfR(R:xj:xk;O) dxj dx
r ” n
N+1 N+1 l 'Q'j [gv o |
. .= : . H . a
+ jil vil 5rlur -R; 2& (:x:I lj) WfRC (2 XXy 0) dxj .
N+1 N+1 ’ Izp fzu '
+ T N T , W {Q: x_,x : 0) dx_ d&x (19)
p=1 u=1 PY &' i o fop pu p Tul
N+1 N+1 [ fp [*x . I
+ El kil Qperr \ 2& (Xk—%c} WfCR(Q: xk,xp: 0) dxp dxk



N+1 N+1 J?’p gv
+ X L o 0

ool v privr Wf (Q: x_,x_; 0) dx dxv as,

25 e o v’ P

where Wf and Wf are forms of (18) involving the forces fR
R C

and fC’ respectively, and W and Wf represent mixed terms

fRC CR
involving both fR and fC [see also equation (23)]. 1In the
_ above equation the indices i and u are associated with radial
forces, p and v with circumferential forces, and § and k with

moments.



3.2 THE CROSS~CORRELATION SPECTRAL DENSITIES OF THE FORCE FIELD

The cross-correlation spectral density, Wf, of a
force field, f(x,t), may be obtained'experimentally, in prin-
ciple, by multiplying electronically f(xs,t) and_f(xk,t) after
passing them through identical nerrow~band'fi1ters with central

freqeency , and taking a long time average., Thus

Now, if the force field is derived from a homogeneous
pressure field, the cross-correlation spectral density of.both
the pressure and the force fields may be expressed in terms of
- distances of separation &= Ixs-xkl and n—[r(¢ ¢ )], instead of

the co~ordinates themselves. Thus, we have

Po{xg.0,.,t) Pq (X165t} = po(x,6,%) pg(g+g,¢+n,t), (21)

and

Fy %y E) I, (%, 8) = I5(%,E) £, (x9E, E). (22)

In this paper the pressure field is related to the components
‘of the force field f and f through equations (5) and (6).
Accordlngly, the cross—correlatlon spectral den31t1es employed

in equatlon (19) may now be wrltten as follows:

W, (£,2,0) = FL (%€ Fo (5FEE)
r R Rq

5 f2r f2m L ' o ' _
=r pg(k.¢,t)'pg(*+5,¢+n,t)cos¢cos(¢+n) d¢d (¢+n) ,



£, (x,t) £

W, (£,0,0) (x+£,t)
£e Cq Q

c
{(23)

5 27 {27 _ :
r 6 P, (x,6,t) po(xX+E,¢+n,t) sing sin(¢+n) déd (¢+n)
0

We (£,2,0) = T (X E) EL GFELT)
fre Rq Cq

2 2m {27
r Po{X,9,t) pg (x+E,¢+n,t) cosdsin (¢+n)ded (¢+n),
0 ‘0

and

H

We (£,2,0) =W, |
fCR ' fRC

Thus the We's, and hence the response of the shell [through equa-

tion (19)], will be determined once the quantity pQ(x,¢,t)pQ(x+£,¢+n,t
is'specified.
We introduce. the normalized spatial cross-correlation

function for the pressure field

wp(gfn’.[) = pix,¢,t) p(x+E,¢+n,t+1) .(24)
 p%Ux,9,t)

where pz(x,¢,t) = pz(t) is the mean square of the pressure fluc-
tuations. It will be assumed that wé'can write ¢p(£,n,0)_=
bp(£/0,0) Y (0,n,0). The quantities ¥ (£,0,0) and y_(0,n,0),
which are, respectively, the axial and circumferential spatial
correlation functions, may be determinedrexperimentally with
relative ease; by a procédure sﬁch as that outlined at the ‘

beginning of this section we may obtain these values of wp for




- specific frequency bands, which we denote by wp . Accordingly,

equation (24) may be re-written in the form

PR/ $, 8 BT E, 6F1,E) = vy, (£,0,0) ¥, (0,1,0) pg(e)

P

Equations (25) and (23) express the spectral cross-
correlations of the force field in terms of the pertinent
correlation of the pressure field. Thué equations (25), (23)
and (19) together express the response of the shell to an

arbitrary homogeneous random pressure field.

(2



4, RESPONSE TO BOUNDARY-LAYER PRESSURE FIELD

In the pfevious section we obtained expressions for
the response of a shell subjected to an arbitrary random pres-
sure field.:.The origin of the pressure field was left undefined.
Here we shall consider the particular case where the pressure
field arises from pressure fluctuations in the subsonic, tur-

bulent boundary layer of a fluid flowing inside the shell.

4.1 DYNAMICAL EFFECTS OF A FLOWING FLUID

In reference [19] we have indicatéd how the inertial
effects of a stationary flﬁid éontained by the shell.may be
taken into acéount. Hdwever, when the fluid is flowing, thére
_are additional factors fhat must be considéred, in connection
with the effect of the mean flow on the dynamics of the system.
Thus the shell Will be subjected to 'centrifugal' forces pro-
portional to 52(32w/3x2$_ and Coriolis-type forces proportional
to 26(32w/axat), where U is the mean flow velocity [21], [22].
In broad terms, the former have the effect of diminishing the
natural frequencies of the system, while the latter have a
damping effect on vibrations in cases where one end of the shéil
is free - at least at flow velocitieé that'aré not near to, or
above, those at which instabiliﬁies take place [21]. The mag-
nitude of these effects depends on the dimensionless flow vel-
ocity U =0T [(i-vz)p/Ell/z. Unless we are dealing with very
flexible (e.g. rubber) shells, very heaﬁy fluids, or wvery high

flow velocities, the value of U will be gmall and the effect



: of these forces will be correspondingiy small. Thus, for a

_ steel cylindrical shell with L/r = 26 and t/r = 0.023

conveying air-flow, U = 0.20 corresponds to U = 3,330 ft/sec.;

for this magnitude of flow wvelocity, which is really beyond

the range we shall be considerinﬁ, the natural frequencies

of the shell (clémped at both ends) are found to diminish

by only 3% as a fesﬁlt of the flow. Accérdingly, for metal.

_tubes conveying fluid with flow velocity iﬁ the normal engin-

eerihg range, these effects are negligible and will not be

~ taken into account in this paper. |

o It is also assumed that the internal pressures are

| néf unduly high, so that pressurization of the shell is
negligible. We further assume that pressure drop in the
length of thé shell is sufficiently small for the mean

'pressure to be considered constant over the 1en§th of‘the

| shell (thus excluding very long, slender shells);.this,

however, is not_a limitation of the theory, but a éimplifi—

- cation introduced for convenience.

Finally, in this section we exclude the effect of
random pressure disturbances othér than from a bouﬁdary layer;
this also is not a limitation of the theory, as composite
random pressure fields may always be analysed by the methods"

of §3.



4.2 LONGITUDINAL AND LATERAL CORRELATION FUNCTIONS

In the casé qf subsonic.bOundarf—layer pressure fluc-
fuations, the streamwise and lateral spatial correlation func-
tions have been examined theoretidally and experimentally by
several investigators [24] - [30].

Bakewell [15, 28] measured, and derived exXxpressions
for, the axial and circumferential correlation functions, in
experiments with air flowing in a cylindrical pipe. The ex~-
periments covered a range of Reynolds numbers frbm 105 to
3 x 10°. | | |

We denote the axial and circumferential correlation
functions per unit band-width with centre frequency w by
Y. (£,0,0) and wp (0,n,0), respectively:; the subscfipt W

P
W _ W :
is now used instead of 9 to indicate that the centre frequency

:is in Hz and not in rad/sec: (in this section we shall be

using expressions with numerical coﬁstants, so the distinction
i ,is important). Bakewell found [28] that his experimental

points defined the following approximate expressions for the

- spatial correlations:

b, (£,0,0) e_blsilcosasg o (26)
) |

I

~ds?. -1

1 12 - o795 (27)

12

_ o -
wpw (O{H,O) (1+c Sp)

"where Sg ='Ew /S U and Sn = nm/Ut are the axial and circum-

conv
ferential Strouhal numbers, and a,b,c,d are constants to be



'specifiéd; Uconv and Ut ~are, respectively, the convection
aﬁd the centerline velocities. 1In equations (26) and (27)
there should have heen added the subscript Re for Reynolds
number : butr at least in the range investigated by Bakewell,
the effect of Reynolds number_is small and does not appear
explicitly in the expressions.

The values of the constants used in these two ex-
pfeSsionS for axial and circumferential correlations depend
on the fluid. For turbulent flow in air, the wvalues of a,

b,c and d to be used in equations (26) and (27) with Strouhal

numbers based on centreline velocity are given by [28]

a =8.7266, b = 1.0, for Sp = Ew / U,

(28)
c =20, d = 100, for Sn = nw / U{'

It may be expected, nevertheless, that thesé constants would

be approximately the same for different fluids at the same
Strouhal number, at least for sufficiently high Reynolds number,
This was supported by Clinch's measurements in water [30], of
which the authors have become aware after the completion of
this part of the work. |

Bakewell also obtained measurements of the mean square

pressure per unit band-width, pi(t), which are reproduced in
Figure 4 plotted against Strouhal number 2rw/Ut . For the pur-
pose of this analysis, the following expression for the curve

of best fit was obtained by the authors:

3 _ 2 3 -2k rw/U ' |
P, (t) = 2k2 Pp T Uy e 1 L (29)

where k) = 0.25 and k, = 2 x 107°; p_ is the density of the fluid.



4.3 MEAN SQUARE RESPONSF

Upon substituting the experimentally based relations
(26) - (29) inﬁo equations (25) and thence into equations (23)
we obtain expressions for the cross-correlation spectral den-~
sities of the force field arising from boundary-layer pressure
fluctuations. These expressiéné may then be substituted into
. equation (19) to obtain the following expression for the mean

,square response of the shell:

'E) L (p : i % X
j ( [} lE>1f16{Tv46n;
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F has the same form as F F ; in equations (31)-(33) the |

pv
onstants are given by
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. A= a/Ut- + B = b/UQ. r C = crz/Ui. , b = drz/Uf' r and the

functions F$ and F3 ;1 =3, 4

i ; 5 are given by
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where'K1 = 2k 1% / u ! K2 é 2k2b§ r Uz .
Cp =1/, ¢c, =+ (2 -&C, . B (40)
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The response of the shell to a subsonic boundary—

kilayer pressure field is given by ‘equation (30) with the T's

given by equations (31) - (33) and the other terms involved

~given by equ&tions (40) - (47).
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5. CALCULATIONS AND DISCUSSION

' To determine the response of a cylindrical shell
- to a random pressure field we must proceed as follows:
- (a) The shell ﬁust be sﬁbdivided into a sufficient number

of finite elements (sufficiency iﬁ'this context will_

be discussed later). |
(b} For a given value.ofrn, the mass and stiffness matrices

for each finite element must be determined.
{c) The global mass and stiffness matrices must be constructed.
(d)' The eigenvalues and eigenvéctors must be computed.
{e) The r.m.s. response must be computed at each node.

The necessary steps of the computational method
for determining the eigenvalues and eigenvectors have been
outlined in reference [13]. fThe additional computational
task, for determining the r.m.s. response, is evideﬁt from
the work presented here. 1In the case bf an arbitrary but
- specified pressure field we must proceed through equation
(19); in the case of a boundary—layer pressure field, on. the
other hahd, we must proceed with equation (30) EE.EEﬁ-r where
a gfeat deal of the computational task has already been carried
out. |
A computer program has been.written for carrying

out steps (a) - (e) of the calculation and_determining the
response in the case of boundary-layer pressure fields. It is

written in Fortran TV language for the IBM 360/75 computer,

N



using double precision arithmetic throughout the eight overlays
shown in Figure 5.

The necesséry time for the calculation of r.m.s.
response for a typical case involving five.finite elements
is approximately 20 mins. This computer time seems to be
high. The time quoted above refers to the case where all the
computed natural frequencies are used in the calculation_of
response., However, if only a few of the lowest natural fre-
guencies are used in the calculation, Ehe response may be
computed to an acceptable degree of adcuracy, but wiﬁh conéid-
erable saving in computatiohal cost; thus, if only 15% of the
natural fréquencies are utilizéd, then the time given above may
be reduced by a factor of 1/8 approximately. _Moreover, the

computer calculation involves the determination of (u 1/2,

1/2
(v2 )1/2 (w 2 y1/2  ana [ (dw, /dx) 2] at every nodal p01nt.

Accordingly, large savings in time may be realized if the
response is not required at every node, or if only the r.m.s.
radial displacement is desired.

As developed previously, the present theory, and the
computer program based upon it, is capable of determining the
r.m.s. response of the géneral case of an axially non-uniform,
thin cylindrical shell, subjected to subsonic boundary layer
" pressure fluctuationé, with arbitrary boundary conditions,

Some calculations were conducted to illustrate_the
theory. The first set of calculations was for a 51mply supported

uniform shell w1th the following dimensions and material properties:
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= 4.08 in., t = 0.047 in., L = 18.54 in., E = 3 x 10’ 1b./in.

"4 1b.-sec.2/in.?. The fluid is

v=0,3 and p = 7.324 x 10
air at 70°F and atmos?heric pressure, flowing through the
shell. The density of the air is taken as pp = 0.2329 x
1072 1b.sec.?/ft. % and its kinematic viscosity v = 1.631 *
1074 ft.z/sec.
| The free v1brat10n characteristics of this particular
shell in vacuo was studled in reference [13]. From Figure 6,
it is clear that an idealization of the continuous structure
by five finite elements is sufficient to yield reasonably
accufate résults for low as well as high natural frequencies.
The first case studied was for mean centreline
velocity of 24 ft./sec. corresponding to Re = 105 and a
damping factor of L. = 10_5. The results of maximum r.m.s.
response for n = 2,3,4 and 5 are shown in Figure 7. We note

w2 2 wl )

Vi ) r 2 ) and ( 2

that peak values for ( nax W Y ax Yoo ) max

are at n = 3. This confirms the theoretical result, as
obtained in equation (30), that the r.m.s. response is
inversely proportional tb the square of the natural frequency,
W ; the minimum natural frequenéies in this case correspond
ton =3 (Figures 6 and 7).

If the total response is desired, as would be the
case in most applications, this may.be obtained by summation
over n {See.equation (2)1.

In this particular case, the circumferential mode

of greatest interest is n = 3, as it is in this mode that

2

r



the highest response is obtained.. Consequently all subse-

quent calculations are confined to this particular value of n.
_Figuré 8. shows the r.m.s. response for different

mean velocities, namely 24, 75, 120 and 240 ft./sec., using

3 and 1072 as damping factors. It is seen, from the

ST, 10
results plotted in Figure 8, that the r.m.s. displacement

is inversely proportional to the damping factor and propor-
tional £o the mean axial flow velocity raised to the power
2.2, approximately, both effects being as could have been
anticipated.

| The second set of calculations undertaken was for a
shell first studied by Clinch, both theoretically and experi-
mentally [9]. It is a very long, slender and thin cylindrical

shell (r = 3 in., L = 240 in., t = 0.025 in., E = 28.5 x 10°

1b/in.2, v = 0.305, p = 0.749 x 10”3

lb.secz/in.4) conveying
water with flow velocities in the range 248 - 520 in/sec.
Clinch obtained experimental data of the mean square radial
displacement of the shell in frequency bands corresponding to
the third-octave filters he used. Then, by summation, he ob-
tained the response in the frequéncy range of 100 - 1,000 Hz
épproximately: the response in only this frequency range is
given in reference [9] where it is compared with Clinch's own
theory which, as was discussed in the Introduction, only deals

with the high-frequency response of cylindrical shells. More-

over, the experimental values of the mean square radial dis-




- placements given by Clinch are mean values of measurements
?.taken at several locations on the shell.

This shell was analeed by our theory by subdividing
‘the shell into 8 identical finite elements; the boundary con-
‘ditions were taken to bé those of simple support. The natural
frequencies of the shell were calculated firét, and it was
' found that many of the natural frequencies of the shell for
n=2and n = 3 were below 100-Hz, indicating that the high-
frequency fesponse as calculated and measured by Clinch would
likely differ appreciably from the total response.,

- Calculations of the response were confined to ﬁ = 2
to é (from which the approximate 'total' response was obtained
by summation), and to the loWest and highest flow velocities
used,by Clinch. The values of this 'total' response of the
shell at its axial mid-point are shown in Figure 9. Also shown
ih Figqure 9 are values of the high—frequency_résponse, as cal-
culated by this theory, obtained by takiﬁg into account only
the modes whose natural fregquencies are in the range 93 - 1,000
Hz: also shown are Clinch's experimental results.

It is immediately.evident from Figure 9 thét the
response at the high frequéncy range is but a small part of the
total. Thus, at the flow velocitf of 248 in/sec the total |

mean square response is 3.2 x 10_3 in.2 whereas the high—frequency

11

response is 8 x 10 in.2, approximately,'giving a ratio of

20:1 for the-correspbnding'r.m.s. values; the difference at



higher flow velocities is even more pronounced. This is not

' a criticism of Clinch's work, bﬁt it does ‘demonstfate the
limitations of his theory if one is interested in the total
.response of the shell, rather than only the highwfrequehcy
response. It should be added that for shorter shells than this
one the'discrepancbeetween total and high-frequency responée
values would be less pronouhced.

The second point of interest in Figure 9 is that
agreement bétween this theory and experiment, in the freQuency
range of 100 - 1,000 Hé approximately, is quite good; This is
the first and, so far, only experimental verification of this
ﬁheory, as experimental data are very scarce; the results
lend confidence that the values of the overall response of the
shell_may also be reliable. 1In this connection, regarding
.agreement between theory and experiment, the following points
should be made:

(a) In the experiments,the ends of the shell were probably
more nearly.clamped;than simply supported; this would tend
to lower the,theoreticai values slightly, although for such
a long shéll, this effect must be quite small.

(b) The experimental wvalues given.by Clinch are 'mean'
values taken at a number of locatiqns;-hence, they must

be lower than the theoretical values ﬁhich are associated
with the location of maximum response. |

(c) The calculations were carried out with Cr = 2 X 10"2,



for all r, as given by.Clinch, although as he points out
this value was obtained experimentaily by actually exciting
thé'shell in what may have.been one of its beam modes..

The experimental difficulties in this connection are well
appreciated by the authors: nevertheless, the simplifica—
tion of using a single damping coefficiént is doubtlessly
only approkimately correct, at best.

(d) In the theory, the response was calculated by summing
the results of calculations with n =2 ton =26 only (to
.1imit.£he_computationa1 cost). Whereas most of the con-
tribution to the 'total' response was associated with

n.= 2 and n = 3 (Table 1), and whereas the contribution

of n =5 and n = 6 is alréady small, amounting to less

than 1.5% of this 'total', it should be recognized that:
the values given here are only approximate; if the toﬁal
response were calculated using a much higher number of
circumferential wavenumbers, the response obtained would
be higher, although almost certainiy no more than 2% higher.
(e} The contribution to the total response diminishes very
drastically with increasing frequency: accordingly, the
high-frequency response célculated for the frequency range
of 93 ~ 1,000 Hz is appreciaﬁly higher than for ;00 -
1,000 Hz, let us say.

(f) Clinch's own theoretical valueé of the response {only

given as functions of frequency; Fig. 13 of [9])}, are



U = 248 in/sec Ut= 520 in/sec

n ] wh2 (B2 (w2)1/2 w2 ¥ 2 wHl2 - GGz

2] 3.6x10"%  9.8x207%  1.8x1074 2.8x107°  6.7x107%  1.3x1073
3 3.3x0077 33«10 g9.8x107¢ 3.9x20°%  3.4x207%  1.0x107¢
¢ ] 1.8x077  4.2x1077 1.7x1076 3.0x107% . 5.3x1076 2.1x1075
5| 2.0x107%  7.3x10"%  3.6x10"7 5.7x1077  1.2x107%  5.9x1076
6| 4.3x107%  7.3x107%  5.2x10"7 2.5x10°7  1.9%1676  1.2x1075

TABLE 1. Variation of the r.m.s. response with n.

higher than his experiméntal values at the high flow velo-
city.

The results obtained by this theory (Figure 9) indi-
cate that the total r.m.s. radial-displacement response is prb—
portiocnal to flow velocity raised to the 2.7 power, approximately.

Some further results obtained in the course of this
particular set of calculations are presented in Figqures 10 - 12.
JFigure 10 shows the mean square response of ﬁhe shell at its
mid—point, not only in terms:of the radial displacement, but also
‘of the axial and circumferential displacements.

In Figure 11 we see the components of the response at
each of.the_natural frequencies of the syétem, for n = 2 and a
flow velocity of 248 in/sec: Figure.ll shows the correspondiné

results for U‘ = 520 in/sec. Here we seé clearly that the



‘largest contributions to the response of this shell are at
frequencies below 100 Hz. We also note that the contribu-
~ tions of the even axial modes are zero; this is as it should
.bé, because of symmetry. The results for other values of n

are quite similar.



6. CONCLUSION -

In this paper we have presented.a.theory capable of
:predicting the response, to an arbitrary random pressure field,
of an axially stmetric,_non—uniform, thin cylindrical shell.
To this end the shell is subdivided into a number of cylindri-
cél finite elements, each with two nodes, the nodal displace-
ments being the axial, circumferential and radiai displécements
and a rotation. The pressure field is similarly rendered dis-
crete and is represented by two forces and a moment at each
node. The analysis proceeds separately for each circumferen-
tial wavenumber, n, and the response is given in terms of
r.m.s. values of the nodal displacements; the total response
may then be found by summing over n.

A special form of the theofy was develqped for the
.case where the pressure field arises from pressure fluctua-
tions in the turbulent boundary layer of an intérnally flowing
fluid. This theory was computerized so that if the dimensions
and maﬁerial properties of each finite element,and the proper-
ties and flow velocity of thelfluid, are given as inputs, the
program gives as output.the natural"frequencies and eigenvectors
of the shell and the r.m.s. values of the nodal displacements.

A number of.assumptions and simplifications were
introduced into the theory either for expedienéy or lest ex-
cessive generality render it unwieldy. A compendium of the

most important ones is given here.




{i) The shell is assuméd to be thin and geometrically
axially symmetric, althbugh it may be axially non-uniform.

(ii) It is implicitly presumed that a sufficient number
-0of finite elements is utilized in each caée, so thdt no sig-
nificant loss of detail is suffered in transforming ﬁhe con-
tinuous system to a discrete one. (In this theory, 5 to 10
finite elements should be sufficient to adequately analyse
most shells.)

(iii) The damping (damping matrix) is assumed to be such that
decoupling of the equations of motion may be effecfed.

(iv) The pressure field is assumed to be stationary, er-
godic and homogeneous.

{v) In calculating the response it is.assumed that there
. is no coupling between the circumferential wavenumbers.

(vi) The contribution of cross-product terms to the mean
square response is assumed to be negligible (equations 16 to
17).

Where the pressure field arises from internal flow,
the following additional assumptions were made in the special
" form of the theory developed for this case:

(vii) the only source of excitation arises from pressure
fluctuations in the turbulent boundéry lavyer;

(viii) non-inertial dynamical effects of the mean flow are
small (§4.1) in most applications of practical interest and may

be néglected;-




(ix) the frictional losses in the length of the shell
are small and may be neglected:

{x) pressurization and compreésibility effects are
_.negligible;

(x1i) Bakeweli's correlation fuﬁctions for the pressure
field-are applicable to any fluid, provided that the Reynolds
~number is not too small.

These assumptions, when grouped as above, may appear
" to render the theory insufficiently general. On closer exam-
ination, however, this theory is found to be applicable to a
large number of physical problems of practical interest:
moreover, some of these assumptions may be eliminated by simple
. extensions of the theory, should a physical problem present
itself warranting the effort [e.g. (ix) and (x) above]. To

- the authors' knowledge, this is the most general theory pre-
sently available for the physical problem at hand. In this
connection, it should be noted that this theory is equally

. applicable to cases where the shell is subjected to an external,
rather thah internal, pressure field, inciuding the case where

the pressure field arises from an external axial flow.
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APPENDTX

Notation

constants defined by equation f28)
parameters defined in equation (33)
parameters defined in eguation (40)
instantaneous radial and circum-
ferential forces per unit 1ength
mean of the force f per unit band-
width

parameters defined in equations

(34) - (39)

magnification factor defined by (16)
number of constraints imposed
constants defined by equation (29)
parameters defined by equation (40)
length of finite element

coordinate Qf node é in the x-direction
coordinates_of the area Ser surround-
ing the node e, with respect to the
origin in the x-direction (Fig. 2)
total length of shell

axial half wavénumber

moment_acting at a node as_shown

in Figure 2b

rth element of the (diagonal)

generalized mass matrix




p(x,¢,t)

p2 (x,¢.t)

pZ (t)

circumferential wavenumber

number of finite elements in

the structure

instantaneous pressure on the
surface

mean square of pressure fluctuations
mean sSquare pressure per unit band-
width of a homogeneous pressure field
mean radius of shell

axial and circumfefential Strouhal
number, respectively

area surrounding the node e (Fig. 2)
Fourier transform of fj(t) |
complex conjugate of Fj(Q)
wall-thickness of shell, or time.
half-period

axial, circumferential and radial’
diSplacement |

centerline and convection velocities,
respectively'

mean flow velocity

amplitudes of U,V,W associated with
ﬁth ciréumferehtial wavenumber
cross-correlation spectral density
function of the forcelfield £

axial coordinate
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;yq (ng¢ +t)

oz (t)

. (xk,xl; ¢O,T)

Y'ij

wp(ﬁfnfr)

Yy (€, 0, 0),

. (G, n, 0)

mean square displacement of U,

V,r W, or dwn/dx at node

for which x = xg.

normal coordinate at time t
axpressions defined in equations
(31) ~ (33)

expressions defined in equation (47)
genefalized damping.factor

equal to [r(¢i - ¢j)]

phase lag of the displacement rela-
tive to the driving force: defined
by equation (16} |

Poisson's ratio

equal to |[x; - xj[

density of material of the shell
fluid density

time delay

circumferential coordinate

spatiai correlation function of the
aisplaéement'defined by equation (13)
norhalized space-time correlation
function of the fluctuating pressure
of a homogeneous field

axial and circumferential correlation
functions of the fluctuating pressure
per unit band-width with centre fre-

quency




F(x,¢,t)
"
k

N
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excitation frequency in Hz

- ith natural frequency in Hz

excitation circular frequency
(rad/sec.)

ith natural circular frequency
{rad/sec.)’

vector of external forces
stiffness matrix for one finite
element.

stiffness matrik for the whole
shell

mass matrix for one finite element
mass matrix for the whole shell
generalizéd mass matrix (for the
whole shell)

spectral matrix (for the whole shell)
displacement vector defined by
equatidn.(l) |

normal coordinates vector

nodal diéplacement vectors, at
nodes'i and j, respectively
modél:matrix of the system

rth eigenvector of the system
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displacement vector Gi.



{e

«--»-----—-.—-ﬁ---l.—----——'-— —

6 - - S —— -
A

FIGURE 2 (a) Transformation of the continuous pressure field to
a discrete force field
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per unit band-width, compared with the expression
used in this theory. Bakewell's line of best

fit: _ _ equation (29) of this paper.
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