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ABSTRACT

Reconstruction of 3D surface models has been a fundamental problem in com-

puter vision and there has been a lot of work done in this area. In this thesis, we

introduce a novel approach to 3D surface reconstruction by “shrink wrapping” a

surface around 3D point clouds using weighted geometric flows.

Specifically, we consider the problem of scanning and modelling small objects us-

ing easily available RGBD sensors such as the Kinect. These sensors allow for the

acquisition of view-based registered depth and color data. We register the point

clouds by recovering the rigid transformation between successive pairs in a sequence

of views, and then demonstrate the utility of surface evolution for shrink wrapping

the result using geometric flow based approaches for surface modelling. In our ex-

periments we use a PrimeSense Carmine 1.09, which is a high resolution short range

RGBD sensor suited to capture small objects.

We present results of our experiments on four different objects. We obtain high

quality surface and appearance models of small objects that are competitive with

commercial software packages while better capturing surface detail.
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ABRÉGÉ

La reconstruction de modèles de surfaces en trois dimensions est un problème

fondamental en vision par ordinateur, et de nombreux travaux ont été effectués sur

ce sujet. Dans cette thèse, nous introduisons une nouvelle approche de la reconstruc-

tion de surface en trois dimensions qui consiste à “emballer” la surface comme un

film plastique autour d’un nuage de points en trois dimensions à l’aide d’équations

d’évolution géométrique pondérées.

Plus spécifiquement, nous considérons le problème de scanner et modéliser de pe-

tits objets en utilisant des capteurs RGBD facilement accessibles tels que le Kinect.

Ces capteurs permettent d’acquérir à la fois des donées de profondeur de champ et de

couleurs. Nous acquérons le nuage de points en retrouvant la transformation rigide

entre deux prises de vue successives, puis utilisons une surface évolutive pour “em-

baller” le résultat en utilisant des équations d’évolution géométrique afin d’obtenir

un modèle de surface.

Nous présentons les résultats de nos expériences sur quatre différents objets. Nous

obtenons des surfaces de haute qualité ainsi que des modèles d’apparence pour de

petits objets qui sont au niveau de ceux qui sont obtenus avec des logiciels commer-

ciaux, tout en capturant mieux les détails des surfaces.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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CHAPTER 1
Introduction

1.1 Introduction

Computer vision is a sub-discipline of artificial intelligence that studies how

to understand the real world by acquiring and analysing images projected by the

real world. The data, besides 2D images, can also be video sequences, images from

multiple cameras, three dimensional data from RGBD sensors, laser scanners or

multidimensional data from medical scanners, etc. The goal of computer vision is

to replicate human vision by extracting and interpreting useful information from the

image data so as to be able to make inferences about the visual world.

Current research in computer vision has allowed machines to reliably perform

tasks such as face recognition, tracking objects in a video sequence and 3D scene

reconstruction. However, computer vision as a discipline has a long way to go. This

is because of the inherent challenges of modelling the human visual system without

fully understanding how it works. Another reason why computer vision is non trivial

is because of its inverse nature, i.e., we try to reconstruct the world we see given

images or other visual data, but without being able to make direct physical mea-

surements. Zucker summarizes the vision problem in his Early Vision paper [33] as

follows,
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“Three dimensional physical structure in the scene projects into two-dimensional

structure in the image. This process must be inverted i.e., somehow, physical struc-

tures must be inferred from image structures.”

Generally, low-level computer vision tasks have to do with extracting low level

features such as edges and corners from images. Mid and higher level vision prob-

lems deal with tasks like inference of surfaces from low level data. They also include

high level tasks such as object recognition, scene reconstruction etc. These stages

of computer vision tasks were based on the views of two vision scientists, Helmholtz

(1821-1894) and Mach (1838-1916) [33]. Helmholtz separated the vision problem into

low level and high level processing. On the other hand Mach suggests that a separa-

tion should be made between the analysis of a task and the mechanism proposed to

accomplish it [33]. The first attempt at a computer vision system by L.Roberts was

also based on both these themes. In Roberts’ system, low level processing involved

the extraction of a “cartoon-like” drawing out of an image and high level processing

involved recognition of objects. The mechanism applied at the low-level was called

“edge detection” and the high level mechanism being called object matching into a

database.

This thesis focuses on the specific mid level vision problem of 3D surface recon-

struction. 3D surface reconstruction involves trying to understand and model the

shape of physical objects from visual data which is described in the following section.

1.2 Surface Reconstruction

The goal of surface reconstruction is to find a surface, that approximates a

physical surface, using points sampled from the physical surface. These points can
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be obtained either from RGB images, in which case the depth has to be computed

or as 3D point clouds obtained from 3D sensors such as the Microsoft Kinect [31].

Surface reconstruction from unorganized point clouds, like most vision problems,

is ill-posed, i.e., it has no unique solution. The connectivity of the data set and the

topology of the real surface can be complicated. A good surface reconstruction

algorithm should have a surface representation that is good for both static rendering

and also for deformation and other dynamic operations on surfaces. It should also

be able handle a variety of topologies as well as noisy and non-uniform data sets

[20, 32].

1.2.1 Surface Representations

There are two types of surface representations: explicit and implicit. Explicit

representations describe precisely the location of the surface, i.e., they explicitly

define the set of points belonging to a surface. Surfaces can also be represented

implicitly as a particular isocontour of some scalar function.

Consider for example a curve φ(~x) = x2 + y2 − 1 seen in figure (1–1). Here

the border between the inside, Ω−, and the outside, Ω+, is called the interface.

The interface can be implicitly defined by the φ(~x) = 0 isocontour. The explicit

representation of this interface is the unit circle defined by ∂Ω = {~x||~x| > 1} [20].

Generally, in two spatial dimensions, the explicit representation of an interface

needs to specify all the points on the curve. A general approach to do so is to

parametrize the 2D curve with a vector function ~x(s), where s is parameter, that

moves along the length of the curve, in the interval [so, sf ] [20]. For closed curves,

~x(so) = ~x(sf ). A straightforward method of discretizing this explicit representation
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Figure 1–1: Implicit representation of the curve x2 + y2 − 1 (adapted from [20])

is to discretize the parameter s into a finite set of points such that so < ... < si−1 <

si < si+1 < ... < sf . Thus a point si in the parameter space has a corresponding

point on the interface represented by the vector function as ~x(si). In an explicit

discretization we only know the location of the 2D curve in these finite set of points.

To approximate the location of the curve in the remaining infinite set of points,

interpolation is usually used.

An implicit representation of a 2D curve, is expressed as an isocontour of an

implicit function φ. For such a representation, we need to discretize the implicit

function φ. Just as in the case of the explicit representation, we know the location of

the implicit function φ only in finite number of points. To locate the interface, we use

the values of φ at the known data points and interpolate the isocontour, φ(~x) = 0.

In three spatial dimensions, explicit surface representations are difficult to dis-

cretize when connectivity is not known. Connectivity is straightforward, however,
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in 2D; it is based on the ordering of the points. For example, ~x(si) is connected to

~x(si−1) and ~x(si+1) and so on. However, it is not as straightforward in 3D. If we know

the connectivity and the exact surface, then surface reconstruction by tiling using

triangles is very simple. But if the connectivity is not known, surface representations

can be very inaccurate.

Implicit surfaces have several advantages over explicit ones in that they are

flexible to topological changes, they use simple data structures and they are more

efficient to store in memory. A major drawback of implicit surfaces is that they can be

computationally more expensive. To be precise, in <n, an explicit discretization needs

to resolve only a (n − 1)-dimensional set [20]. For example, in the two dimensional

example from above, only a one dimensional set in the interval [so, sf ] has to be

resolved. However for the implicit approximation has to resolve an n−dimensional

set. One easy way to deal with this issue is to only consider points close to the

isocontour φ(x) = 0 since we are only concerned with the zero isocontour.

One nice thing about implicit surfaces is that connectivity need not be deter-

mined for discretization. But the most powerful property of implicit surfaces is that

it is straightforward to go from two spatial dimensions to three or higher spatial

dimensions.

There has been a lot of work done in surface reconstruction using each of these

representations. This is discussed in detail in Chapter 2.

1.3 Objective Of this Thesis

In this thesis, we consider the problem of scanning and modelling small objects

using RGBD data acquired from 3D sensors like the Kinect [31]. The goal of this

5



thesis is to use geometric flow based approaches to “shrink wrap” a surface around

registered dense 3D point clouds of small objects that can be scanned on a desktop

with a turn table.

1.4 Contributions of this Thesis

The main contributions of this thesis are listed below.

• We are able to generate accurate dense 3D point clouds of objects using regis-

tered depth and color point cloud data from easily available RGBD cameras.

• We obtain high quality surface and appearance models of small objects by

wrapping a surface around dense 3D point clouds using active surface flows.

• Our method is able to capture better surface detail and is robust to holes

because of the doublet term in the geometric flow. We are able to create

watertight models even in the presence of some missing data.

• We are also able to obtain accurate estimates of surface normals and mean

curvature.

1.5 Publications arising from this thesis

Shrink wrapping small objects. Sricharana Rajagopal and Kaleem Siddiqi.

In Proceedings of the 2015 Conference on Computer and Robot Vision, Halifax,

Canada, June 2015.

The majority of the algorithm development, implementation, experimental work

and writing was carried out by the author of this thesis. K. Siddiqi assisted in

methodological development and writing.
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1.6 Thesis Overview

The chapters in thesis are organized as follows. Chapter 2 discusses some of

the related work in surface reconstruction. Chapter 3 describes how an incremental

Iterative Closest Point algorithm is used to register pairs of views of 3D point cloud

data to create a dense point cloud representing the surface of the object.

Chapter 4 introduces the “shrink wrapping” method of surface reconstruction

used in this thesis based on weighted geometric flows. We discuss in detail the theory

of front evolution and level set methods or curve and surface evolution. We then,

describe how these are modified to attach themselves to a dense 3D point cloud. We

also present experimental results of our surface reconstruction algorithm in Chapter

5. Finally, Chapter 6 discusses advantages and caveats of our approach and suggests

future directions for this work.
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CHAPTER 2
Related Work

There has been a lot of work in surface recovery from unorganized data sets over

the years. Based on the two kinds of surface representations, there are two popular

surface reconstruction approaches: explicit and implicit.

2.1 Explicit Surface Representations

Well-known explicit surface representation methods use either parametric sur-

faces or triangulated surfaces. Parametric surface reconstruction approaches use

energy minimizing methods to constrain the class of possible solutions by fitting

models whose topology is known, such that an error is minimized.

This section discusses popular surface reconstruction approaches that use ex-

plicit surface representations that globally parametrize the surface such as NURBS

[22], superquadrics [27] as well as those that fit local surfaces such as the works of

Sander and Zucker [24], Fua and Sander [11] and Mathur and Ferrie [17]. We also

include discussions of works based on Delaunay triangulation and Voronoi diagrams

like the Power Crust Algorithm of [2].

Surfaces reconstructed using parametric surfaces, such as NURBS, [15, 22] are

quite smooth and these approaches work well for non-uniform data sets. However,

the parametrization of the data set can be difficult for arbitrary data sets. It is also

difficult to deal with noise in the data sets.
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In [27], superquadrics with parametric deformations are used to recover compact

volumetric models for single-part objects. Solina and Bajcsy in [27], use a least

squares minimization of a cost function (which for example, could depend on the

distance to data set) to recover the model. By enforcing constraints on the search in

the parameter space, they arrive at a specific solution such that most of the points

on the data set lie close to the model surface.

The idea of using algebraic curves and surfaces as geometric models or shape

priors have also been explored by Taubin et al. in [28]. Algebraic curves and surfaces

suffer from instability issues, despite having nice properties that make them suitable

for object recognitions and positioning algorithms. This is because unlike the data

sets which are always bounded, the resulting algebraic curves or surfaces are always

unbounded. In [28] a method to constrain polynomials to a family with bounded zero

sets is proposed and only this family is used for the fitting process. This approach

works well as long as data is available i.e. they cannot “invent” data where it is

not available. Another nice thing is that unlike superquadrics [27], they do not force

structure onto objects which do not possess any. However, it is still not sufficient

enough to capture surface detail.

The parametric approaches discussed above impose a global parametrization on

the surface. There are other parametric surface recovery methods which fit local

parametric patches to the data set like the works of Sander and Zucker [24] and Fua

and Sander [11]. In [11] local quadric patches are fit to a small neighbourhood of

each 3D point. These patches are then used to impose a graph structure by defining

the points as connected components of a graph. The surface is then interpolated
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using Delaunay triangulation. Similar work is done in [17] by Mathur and Ferrie,

where a curvature consistency algorithm is used for surface recovery by first fitting

local surface descriptors to each 3D point and then iteratively refining them so that

each surface descriptor is consistent with its neighbours.

Delaunay triangulation and Voronoi diagrams are commonly used approaches

in Computer Graphics to reconstruct triangulated surfaces from point sets. There

has been a lot of work done in this line and there are several efficient algorithms to

compute Delaunay triangulations and Voronoi diagrams. One such work based on

Voronoi diagrams is the Power Crust algorithm of [2]. Given a set of sampled points

from the surface of a 3D object, the power crust algorithm constructs a piecewise-

linear approximation to both the object surface and the Medial Axis Transform

(MAT). The medial axis transform or MAT is a skeletal shape representation that

represents a solid by the set of maximal balls completely contained in the interior

rather than the set of points in the boundary [2]. They use the sampled set of points

to first approximate the MAT and then use inverse transformation on the MAT to

produce a piecewise-linear surface approximation.

These approaches are capable of dealing with more general data sets. However,

the reconstructed surfaces are only piecewise linear and it does not work well in the

presence of noise and non-uniformity in the data.

2.2 Implicit Surface Representations

This section examines some work done in implicit surfaces or volumetric rep-

resentations. The two main classes of approaches discussed here as the following:

approaches that represent the reconstructed surface as an isocontour of an implicit
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function and those that define a signed distance function based on the data set and

then express the reconstructed surface as the zero isocontour of the distance function.

The approaches used in [18] and [29] fall into the first class where the recon-

structed surface is expressed as an isocontour of an implicit function. In [18], Muraki

uses primitives such as blobs and minimizes an energy function which measures the

shape difference between the range data and the “blobby model”. The approach in

[29], however is more concerned with shape transformation between two N dimen-

sional objects and thus they place constraints on the starting and final objects. Turk

and O’brien [29] formulate the transformation between two N dimensional objects

by casting it as a scattered data interpolation problem in N+1 dimensions. For a 2D

shape, for example, they create an implicit function in 3D and intermediate shapes

are zero isocontours of the implicit 3D function.

However these approaches suffer from high computation costs for large data sets

since the construction is global and a single data point change can greatly affect the

coefficients thus making deformation, incremental updates and human interaction

difficult. In [5], polynomial radial basis functions (RBF) are used to model large

data sets with single RBF which greatly reduces storage and computational costs.

Another class of approaches based on implicit surface representation uses the

data set to define a signed distance function on a rectangular grid with the zero

isocontour of the signed distance function representing the reconstructed implicit

surface [9, 12]. In [3] alpha shapes are used to construct the signed distance func-

tion to which implicit polynomials are fitted. The representational power of such

approaches is only limited by the size and resolution of the 3D grid in which they
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are embedded and they must transformed back to parametric meshes for efficient

storage [9].

Level-set approaches to surface reconstruction have been used in both [30] and

[32]. Whitaker [30], uses a computational technique for level set modelling, called

the sparse-field algorithm, that combines the advantages of the level-set approach

with the computational efficiency and accuracy of parametric representation. The

surface reconstruction problem is posed as the process of finding the surfaces that

are most likely to have given rise to the data in a Maximum A Posteriori (MAP)

strategy.

Zhao et al. use in [32] a new weighted minimal surface model based on variational

and partial differential equations (PDE) methods. The flow used in their method is

a special case of the conformal flow introduced in [6] and [14] where the distances to

the data are used to weight various terms in the surface evolution equation. Their

algorithm however is very dependent on a good initial approximation to the real

surface.

2.3 KinectFusion

One important work in real-time 3D reconstruction is KinectFusion [13]. Izadi et

al in [13] use a Kinect camera and a novel GPU pipeline to rapidly create detailed 3D

reconstructions of indoor scenes. There is no explicit feature detection and the whole

depth map is used. KinectFusion allows users to segment objects by having them

physically move the object in a large, almost, unchanging scene. By detecting large

changes in the 3D scenes when an object is physically moved, it allows users to cleanly

segment objects from the scene. Then, they use a volumetric surface representation
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based on [9] which raycasts the volume to extract views of the implicit surface for

rendering to the viewer.

The surface reconstruction approach used in this thesis is based on active sur-

faces. The idea of using active contour based methods for implicit surface represen-

tation has been used earlier in [6] and [16]. The advantage of such active surface

approaches is that the flows can be data driven, while being derived from first prin-

ciples such as weighted length (2D) or surface area (3D) geometric flows [6, 14, 32].

Such weighted geometric flows have been used in [26], [6] and [14] for shape segmen-

tation by adjusting them so that they cling to features of interest.

In [26], they introduce a gradient flow based on a weighted area functional with

image dependent weighting factor. They combine this with the weighted length gra-

dient flow of [6, 14] to obtain a PDE for the purpose of shape segmentation. The

gradient flow used in this thesis is different from the one in [26] and uses only the

weighted length component (or weighted surface area in 3D), for surface reconstruc-

tion. This is because although the weighted area component is robust in the presence

of small gaps, in the presence of larger gaps the weighted area flow will leak through

[26]. Because of the way we acquire point clouds (details in Chapter 3) as well

as other reasons like self occlusion for example, we would expect the point cloud

data to have large gaps. So the weighted length flow is more suited for the surface

reconstruction method used in this thesis.

Motivated by these geometric flows and their demonstrated success in fitting

point clouds as in [32], in this thesis we develop a method that uses a weighted

surface area gradient flow to shrink wrap a dense point cloud obtained from a small
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object, one that can be scanned by placing it on a desktop with a turntable. For

such objects it is possible to obtain a dense point cloud such that a co-dimension 1

geometric flow is applicable.

In the next chapter, we introduce the incremental ICP algorithm used in this

thesis to build 3D point cloud models of small objects.
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CHAPTER 3
Scanning dense 3D Points from a small object

We now consider the problem of building a dense 3D point cloud. First, we

sense point clouds of surfaces of small objects using a RGBD camera. We then have

to stitch these point clouds, taken from different viewpoints, to build a dense 3D

point cloud of the sensed object.

3.1 Acquiring the data

The input is in the form of 3D Point clouds with xyz point values and RGB

color values. The input point clouds are grabbed using the Primesense Carmine 1.09

short range sensor, using OpenNI [8], a multi-language, cross-platform framework

for writing APIs to grab RGB and depth data from RGBD sensors. Figure (3–1)

shows a single frame captured by the PrimeSense sensor.

The PrimeSense sensor is kept fixed at one side of the table and the object is

placed at a distance of about 0.3m - 0.35m from the sensor and rotated manually by

small amounts to capture a 360◦ view of the object. Since the background is unchang-

ing, it provides no information to the registration and therefore is removed. Since

the objects are sensed from a fixed distance, the object being sensed is bounded by

certain dimensions. Thus the background can be eliminated by simply thresholding

the depth values using a fixed parameter.
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(a) RGB image of a single viewpoint (b) 3D Point Cloud of the same scene

Figure 3–1: RGB Image and 3D Point Cloud of a single viewpoint of the small model
horse. The background is removed before registration

3.2 Registration of the Point Cloud: ICP

ICP or the Iterative Closest Point algorithm introduced in [4] is one of the

most widely used methods to align 3D point clouds. This algorithm is used to

minimize the distance between two point clouds [4]. To be precise, given two point

clouds, the source and the target, ICP estimates the transformation matrix that

would transform the source point cloud onto the target point cloud. The original

ICP algorithm proposed in [4] can be used in many representations of geometric data

such as point sets, line segment sets, implicit curves, parametric curves, triangle sets,

implicit surfaces and parametric surfaces. However, regardless of what data sets are

used for the data (source) and the model (target), the ICP algorithm proposed in

[4] matches a point in the source data set to one of the points in the target data

set, i.e., it minimizes a point-to-point error metric. This is done by pairing each

point in the source data set with the closest point in the target data set to form

correspondences. Then the point-to-point error metric is used to minimize the sum
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of the squared distance between points in each pair of correspondences. This process

is then iterated until the error falls below a threshold or it stops changing.

Since the introduction of the original ICP in [4], many variants have been intro-

duced such as the one in [7] which minimizes a point-to-plane error metric as opposed

to the point-to-point of [4]. These variants have been surveyed by Rusinkiewicz, Szy-

mon and Levoy in [23].

In this thesis, we use the original ICP introduced in [4], one which minimizes

point-to-point error metric and estimates the rigid transformation matrix using Sin-

gular Value Decomposition (SVD). The point-to-point metric used here takes into

account both the distance between the points as well as the difference in colors. This

section outlines the main steps of the ICP algorithm.

The first step of ICP is to estimate correspondences. For each point in the source

point cloud, the closest point in the target point cloud is its corresponding point.

Here “closest” point would mean the point in the target data set that has the smallest

Euclidean distance from the point in the source cloud. The next step is to estimate

the rigid transformation between the two point clouds using the correspondences.

Let ~q = [~qR|~qT ] be the complete registration state vector where ~qR = [q0q1q2q3]t is

the unit rotation quaternion and ~qT = [q4q5q6]t is the translation vector [4]. Then

if P = {~pi} is a source data set to be aligned with X = {~xi} a target data set, the

mean objective function to be minimized as given in [4] is

f(~q) = 1
Np

∑Np

i=1 ‖~xi −R(~qR)~pi − ~qT‖

where Np is the total number of points in P and Np = Nx the total number of points

in X. R(~qR) is a 3× 3 rotation matrix generated by the unit quartenion as given in
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[4]:

R(~qR) = 
q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

1


An effect of the least square solution, f(~q), is that the two point sets P and X

should have the same centroid [10]. Therefore, we can define,

P̄ =
1

Np

Np∑
i=1

~pi ~pci = ~pi − P̄ (3.1)

and

X̄ =
1

Nx

Nx∑
i=1

~xi ~xci = ~xi − X̄. (3.2)

f(~q) can be rewritten as,

f(~q) =
1

Np

Np∑
i=1

‖~xci −R(~qR)~pci‖ (3.3)

= ( ~xci
T ~xci + ~pci

T ~pci − 2R ~pci) (3.4)

The above equation is minimized when the last term is maximized, i.e., when

Trace(RH) is maximized [10]. Here, H is a correlation matrix given as

H =
∑Np

i=1 ~pci ~xci
T

If the SVD of H is given by H = UΛV then the optimal rotation matrix R can be

calculated as

R = V UT (3.5)
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and the translation vector ~qT can be computed as

~qT = X̄ −RP̄ (3.6)

At each iteration ICP estimates the 4 × 4 transformation matrix T (see equation

(3.7)) based on the rotation matrix and translation vectors as computed above and

transforms the source point cloud using it. The ICP algorithm [4] converges when

the mean square error falls below a preset threshold τ > 0 .

T =



R1 R2 R3 q4

R4 R5 R6 q5

R7 R8 R9 q6

0 0 0 1


(3.7)

In equation (3.7), the “R”s are elements of the rotation matrix and the last column

is the translation vector previously defined.

It is also necessary to take into account the special case when the SVD computes

a reflection instead of a rotation, i.e., the determinant of R is −1 instead of 1. This

can happen when the two point sets are planar, or if there are large amounts of noise.

In this case, the rotation matrix R can be computed using the equation as

R = V ′UT where V ′ = [v1, v2,−v3] is formed from the columns of V and v3 is the

column that corresponds to the singular value of H that is zero [10].
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3.3 Construction of the Final PointCloud

The pairwise ICP is then implemented incrementally to stitch several pairs of

point clouds taken from slightly different viewpoints. For each object around 25-30

views were used to generate a 3D point cloud. The basic steps are outlined below:

• For each point cloud in the dataset do

– Pick one point cloud as source and the next one in the list as target.

– Estimate correspondences between source and target

– Compute the rigid transformation between source and target

– Align source to target using the transformation matrix

– Replace source with a new point cloud that fuses the transformed source

and target.

Figure (3–2) shows the incremental ICP results for the humanoid object.

Figure 3–2: Incremental ICP

20



(a) Before Pruning (b) After Pruning

Figure 3–3: Pruning Strategy to remove outliers: The figure highlights some areas
where our pruning method has successfully removed outliers.

One major issue with the sensing of point cloud data is the presence of outliers

(can be seen in figure (3–3a)) in the regions where there is a sharp change in depth

(the occluding contour) due to an artefact of the sensing device. In this thesis, we

tried two methods to deal with these outlier points. In the first method, we use a

“voting” strategy where we remove the outlier points as they are sensed by looking

at several frames and picking only those points which are persistently present over

all or most of the frames. For example, suppose we look at ten frames of the same

scene. We pick the first frame and add all points in this scene. We then look at the

next frame and add only those points which appear in both frames. We do this for

all ten frames and finally pick only those points which appear in the majority of the

frames considered.
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In the second method, we “prune” the point cloud after the final reconstruction

as a post processing step. We do this by first placing the point cloud in an octree.

Each voxel in the octree is three-dimensional grid containing a small portion of the

point cloud. We look at the voxel density (the number of points in a voxel) at each

voxel of the octree and eliminate those with low density. The size of the voxel i.e.

the resolution of the octree depends on the density of the final point cloud.

Both these methods, however, have their drawbacks. The former slows down the

acquisition process because we are dynamically checking how many times each point

appears over several frames and the latter is heuristic and depends on the density

of the final point cloud. Also, since these outliers are caused due to the sensing

device, they can sometimes persist over several frames and thus can be missed by

both voting and pruning strategies. Despite these issues, using one or both of these

methods, we have managed to get reasonably good dense point cloud data as can be

seen in the figure.
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CHAPTER 4
Shrink Wrapping a Surface

Once we have a dense 3D point cloud using the incremental ICP method of the

previous chapter, we can consider the problem of shrink wrapping a surface around

it using a geometric flow.

Before we discuss surface evolution we first introduce its two dimensional coun-

terpart, the concept of front evolution or curve evolution in 2D.

4.1 Front Evolution

Suppose we have a closed curve in 2D or closed surface in 3D that separates

two regions of < from each other. If the curve or surface is evolving in the direction

of its normal (the normal direction can be oriented towards the inside or outside)

with a speed function F then the goal of front evolution is to track the motion of

the interface (i.e boundary) as it evolves, given the initial position and the speed

function F.

The speed function F may depend on local geometric properties of the evolving

front such as the curvature or the normal, global properties that depend on the shape

and position of the front and other independent properties like an external velocity

field.

In general, if we have a closed curve C then a simple curve evolution equation

is of the form,

∂ ~C

∂t
= F ~N. (4.1)
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Figure 4–1: Curve propagating with speed F in the direction of the local normal
(adapted from [25])

A straightforward approach to the front evolution problem would be to param-

eterize the interface by some variable and then discretize this parameterization into

a set of “marker points”. By approximating the equations of motions in time as

the interface evolves, the positions of the marker points are updated. This approach

is very accurate for small-scale motions of interfaces. However, for more complex

motions of the interface,it suffers from numerical instabilities as the marker particles

come together in regions of high curvature. The computed curvatures change drasti-

cally from one marker to the next causing an unstable growth of small errors in the

positions of the markers [25].

The problems with marker methods discussed above deal with stability and local

singularity. Another issue with these methods has to do with topological changes

of the moving front. As regions on a plane merge together or pinch apart, their

boundaries become a single curve or split into two or more curves. The task of
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keeping track of the marker points, removing, redistributing or connecting them is

complex, particularly for higher dimensions.

Another approach to front evolution is the “volume-of-fluid” technique which

tracks the “interior” of an interface by discretizing the interior with a grid. Each

cell on the grid is assigned a “cell fraction” corresponding to the amount of the

cell within the interior of the grid. The original algorithm [19] was called “SLIC”,

i.e., “Simple Line Interface Algorithm”. The idea is to evolve the front by updating

the cell fractions on this fixed grid corresponding to the progress of the evolving

front. This method has an advantage over the parameterized method in handling

topological changes. However, there are some drawbacks. These techniques are

inaccurate, requiring a large number of cells to obtain reasonable results. Also, it

is difficult to calculate intrinsic properties of the front such as its curvature and the

direction of the normal.

The surface evolution technique used in this thesis is based on the notion of level

sets for front evolution introduced by Osher and Sethian in [21]. The main idea of

the level set methodology is to embed the evolving front as the zero level set of a

higher dimensional function Ψ. The next section introduces the concept of level sets

for front evolution.

4.1.1 The Level Set Formulation for Front Evolution

Let Γ(t) be a family of closed (N − 1) dimensional hyperspaces parameterized

by t, moving along the direction of the inward normal with speed F. Here F can be

a function of curvature, normal direction and other quantities. As mentioned above,
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the idea of level set front evolution is to embed Γ as the zero level set of a higher

dimensional function Ψ [25].

We define Ψ such that Ψ(x, t = 0) = ±d where x is a point in <N and d is

the Euclidean distance from x to Γ(t = 0). d is positive if the point x is outside

the initial hypersurface Γ(t = 0) and negative if it is inside. The initial function

Ψ(x, t = 0) : <N → < is defined as:

Γ(t = 0) = [x|Ψ(x, t = 0) = 0]. (4.2)

We now have to produce an equation for the evolving function Ψ(x, t) such that

the level set Ψ = 0 contains the embedded function Γ(t). Suppose we consider the

path, x(t), of a point, x, on the evolving front. As mentioned earlier, we have to

ensure that the zero level set of Ψ matches the propagating hypersurface. This means

that,

Ψ(x(t), t) = 0 (4.3)

By the chain rule,

Ψt +∇Ψ(x(t), t) · x′(t) = 0 (4.4)

If F = x′(t) · ~n is the speed in the direction of the outward normal and ~N =

∇Ψ/‖∇Ψ‖ is the outward normal then we can write,

Ψt + F‖∇Ψ‖ = 0 (4.5)

given Ψ(x, t = 0).
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Figure (4–2) illustrates the outward propagation of an initial curve and the

motion of the level set function Ψ that accompanies it. (Figure adapted from [25]).

(a) Initial Circle (b) Initial Position of level
set function Ψ

(c) Circle at later time t (d) Position of level set function Ψ at
later time t

Figure 4–2: Propagating Circle: This figure illustrates the outward propagation of
an initial curve and the accompanying motion of the level set function Ψ (adapted
from [25])

There are several advantages to this level set formulation. First, as long as F

is smooth, the evolving function Ψ(x, t) will remain a function. This means that the

level set surface Ψ = 0 and in turn the propagating hypersurface Γ(t) may change

topology, i.e., break or merge and form sharp corners as the function evolves.
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Second, it is easy to determine intrinsic properties of the front such as the normal

and curvature from the level set function Ψ, as follows. The unit outward normal to

the front is given by,

~N =
∇Ψ

‖∇Ψ‖
(4.6)

and the curvature of each level set can be given as the divergence of the unit outward

normal as follows,

κ = ∇ · ∇Ψ

‖∇Ψ‖
. (4.7)

Since the level set function Ψ remains a function as it evolves, it is also easy

to numerically discretize the function using finite difference schemes to approximate

both the spatial and the temporal derivatives. For example, if we use a forward first

order in time difference scheme then we can discretize equation (4.5) as follows:

Ψn+1
ij −Ψn

ij

∆t
+ (F )‖∇ijΨ

n
ij‖ = 0 (4.8)

where ‖∇ijΨ
n
ij‖ is the finite difference approximation of the spatial derivatives of Ψ.

Finally, with the level set formulation, it is very simple to extend the approach

to the case of surfaces evolving in 3D as will be covered in the next section.

4.2 Surface Evolution

In this section, we discuss the level set front evolution in three dimensions and

introduce the specific weighted gradient flow used in this thesis. This is the weighted
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surface area minimizing flow, which is used in [14], [6] and [26] for shape segmen-

tation. Such flows when applied to 3D point cloud data could have weights that

depend upon local distance to 3D points [6, 14, 32].

If ~S is the surface to be evolved, then the general form of the evolution equation

is the same as the curve evolution equation of (4.1)

∂~S

∂t
= F ~N (4.9)

where the surface ~S moves in the direction of its normal ~N and F is the speed

function.

Given that ~S evolves according to (4.9), the level set surface Ψ satisfies the level

set equation:

∂Ψ

∂t
= F ‖∇Ψ‖ . (4.10)

This equation can be solved by discretization and numerical techniques based on

hyperbolic conservation laws.

4.2.1 Weighted Gradient Flows

The weighted gradient flow used in this paper is based on the “Weighted Surface

Area Gradient Flow” in [26].

Let S : [0, 1] × [0, 1] → <3 denote a compact embedded surface with mean

curvature κ and unit inward normal ~N .

Let φ : Ω→ < be a positive differentiable function defined on an open subset of

<3. This function can be considered as “stopping” function. Here we define φ as a

scalar function of location in 3D space, which plays the role of a weight. In practice,
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φ, is an unsigned outward distance function with each voxel containing the distance

to the closest point in the sensed 3D point cloud.

The weighted surface area flow derived in[6] and [14] is given as:

∂~S

∂t
= φκ ~N −∇φ. (4.11)

Equation (4.11) can be written in level set form as:

Ψt =

[
φκ+

〈
∇Ψ

‖∇Ψ‖
,
∇φ
‖∇φ‖

〉]
‖∇Ψ‖ . (4.12)

The geometric flow in equation (4.12) has two main terms. The first is the

“φκ” term and the second is a “doublet” term that has the advantage of trapping

an evolving surface at a local minimum of φ because it switches its sign where that

occurs.

4.2.2 Numerical Implementation

We now review some of the key numerical steps that are needed to implement the

surface evolution. We first need an arbitrary initial surface that contains the data.

Since we do not know the topology of the surface to be reconstructed in advance,

we use a bounding box that is known to contain the data set. In practice, the level

set function Ψ is set up as a signed distance function to the data, where distances

within the box are negative and distances outside are positive. As mentioned in the

previous section, φ is the outward distance function containing distances to the point

cloud data.

The two terms of equation (4.12) also have to be carefully computed. The mean

curvature κ can be calculated using the equation (4.7) in the previous section as
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follows.

κ = ∇
(
∇Ψ

‖∇Ψ‖

)
(4.13)

This expands to,

κ =
1

‖∇Ψ‖3 (Ψ2
xΨyy − 2ΨxΨyΨxy + Ψ2

yΨxx + Ψ2
xΨzz − 2ΨxΨzΨxz + Ψ2

zΨxx+

Ψ2
yΨzz − 2ΨyΨzΨyz + Ψ2

zΨyy) (4.14)

Here, the gradient of Ψ is calculated using central differences everywhere except

at the boundaries where one-sided differencing is used. The “doublet” term is slightly

more complicated. Unlike in the case of the “φκ” term, the computation of spatial

derivatives for Ψ, is not as straightforward and we have to use an upwind differencing

scheme to calculate it. This is because this term can lead to singularities in the

evolving surface. The upwind differencing scheme given here is based on [20] and

[25]. A first order time discretization of the equation (4.10) using the forward Euler

method is given as:

Ψt+1 −Ψt

∆t
= Ft ‖∇Ψt‖ (4.15)

where Ft is the speed at time t and ∇Ψt is the spatial gradient of Ψ at time t. The

gradient term in equation (4.15) can be expanded to

Ψt+1 −Ψt

∆t
= F t

xΨ
t
x + F t

yΨ
t
y + F t

zΨ
t
z. (4.16)
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This expression can be evaluated in each dimension (x, y and z) separately. Suppose

we consider one dimension F t
xΨ

t
x where the sign of F t

x along x determines the direction

of flow.

At each grid point i, we determine the spatial derivative (Ψx)i, at i based on

the sign of (Fx)i at i. As given in [20], if (Fx)i > 0, the values of Ψ are propagating

from left to right which implies that, according to the method of characteristics, we

have to look to the left of the point xi to determine the value of Ψ at xi at the

end of the time step, ∆t, (i.e., we use the first order accurate backward difference,

D−x). Likewise if (Fx)i < 0 then the information is flowing from right to left and we

have to use the first order forward difference denoted as D+x The same approach is

taken for spatial derivatives Ψy and Ψz. This method of choosing spatial derivatives

based on the sign of the speed function is called upwinding or upwind differencing.

In summary, equation (4.15) can be approximated with simple upwinding using a

first-order space convex [25] as:

Ψt+1 = Ψt + ∆t[max(F (i, j, k), 0)∇+ + min(F (i, j, k), 0)∇−] (4.17)

where,

∇+ = [max(D−x, 0)2 + min(D+x, 0)2 + max(D−y, 0)2

+ min(D+y, 0)2 + max(D−z, 0)2 + min(D+z, 0)2]1/2
(4.18)

and

∇− = [max(D+x, 0)2 + min(D−x, 0)2 + max(D+y, 0)2

+ min(D−y, 0)2 + max(D+z, 0)2 + min(D−z, 0)2]1/2
(4.19)
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where, D+ and D− are forward and backward finite differences as mentioned previ-

ously.

The complete algorithm to implement the weighted geometric flow of equation

(4.11) is given in algorithm (1). In order to speed up the flow, the “φκ” term is

Algorithm 1: Level Set Surface Evolution.

for each iteration t do
Estimate the “φκ” term

Estimate the doublet term,
〈
∇Ψ
‖∇Ψ‖ ,

∇φ
‖∇φ‖

〉
.

for each voxel (i, j, k) do
if φ(i, j, k) < threshold then

speedTerm = φκ +
〈
∇Ψ
‖∇Ψ‖ ,

∇φ
‖∇φ‖

〉
else

speedTerm =
〈
∇Ψ
‖∇Ψ‖ ,

∇φ
‖∇φ‖

〉
end

end
Update equation: Ψt+1 = Ψt + ∆t(speedTerm)

end

added only when the level set surface gets within threshold voxels of the data set.
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CHAPTER 5
Experiments and Results

In this chapter, we present experiments demonstrating the application of the

ICP method to generate dense point clouds of small objects, followed by surface

evolution to obtain surface and appearance models of them. The results of our

“shrink wrapping” approach are presented on both a prototype point cloud, obtained

from sampling points from a mesh object, and real data obtained from ICP method.

We also present color plots to show how accurately our method represents the

point cloud data. A qualitative comparison of our results against that of a commercial

tool, Skanect, is also presented.

5.1 Results of the ICP

In this section, we present the results of our incremental ICP algorithm to build

dense 3D point clouds from RGBD data obtained from several views of scanning the

small object.

Figure (5–1) shows two views of the final 3D point cloud obtained for 4 objects,

a small model horse, a humanoid object, a model dinosaur and a human head. As

can be seen in the figure, due to way in which we capture point clouds, there are

some holes in our 3D point cloud model (such as the back of the horse or the top

of the head). Although this can be rectified by obtaining new views by moving the

camera, it is not needed for our surface evolution method because of the way the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5–1: The results of our ICP method. The top row shows registered dense point
clouds for 4 objects: (5–1a) a horse, (5–1b) a humanoid object, (5–1c) a dinosaur and
(5–1d) a human head. The bottom row shows different views for the same object.
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surface evolution equation (4.12) is set up. This is demonstrated in the following

sections.

5.2 Results of the “shrink wrapping” flow

This section reviews the results of our shrink wrapping flow. We first illustrate

the stages of our surface evolution method and then present some results on the 4

objects.

Figure (5–2) illustrates the stages of surface evolution applied to a point cloud

obtained from a model horse. As explained in Algorithm (1), in order to speed up

the flow, until the level set surface Ψ gets “close” (i.e within a distance of threshold

voxels) to the data, the speed function only contains the “doublet” term (Figures

(5–2a), (5–2b) and (5–2c)). Figure (5–2d) shows the result of including the “φκ”

term as well. In all experiments the value of the threshold is 2 voxels and the time

step ∆t is 0.5 when the speed term is only the doublet term and is 0.1 when the

“φκ” term is also included. These constants are in units of voxels. As it can be seen

in figure (5–2), our surface reconstruction method effectively fills holes like the top

of head or the back of the horse for example because of the “doublet” term trapping

the flow at these locations. The last row shows results of applying a mean curvature

smoothing flow. This is done as a post processing step to smooth the bumps in the

zero isocontour of Ψ.

5.2.1 Results on a prototype point cloud

We first demonstrate the results of our surface evolution method on a prototype

bull point cloud. This point cloud has been obtained by densely sampling points on
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(a) After 25 iterations (b) After 100 iterations

(c) After 250 iterations (d) After 40 iterations of the combined
flow (i.e., including the “φκ” term)

(e) After 25 iterations of mean curva-
ture flow

(f) After 50 iterations of mean curva-
ture flow

Figure 5–2: An illustration of various stages of surface evolution. Panels (5–2a),
(5–2b) and (5–2c) show the level set surface Ψ, after 25, 100 and 250 iterations of
running the weighted gradient flow of equation (4.11) flow on the model horse point
cloud but with only the “doublet” term. This is done to speed up the flow. Panel
(5–2d) shows the result after a further 40 iterations of running the flow with the
“φκ” term included. The last row shows results of a mean curvature smoothing flow
applied as a post processing step.
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(a) Bull Point Cloud. (b) Reconstructed Surface

Figure 5–3: Results on a prototype point cloud data. This point cloud was obtained
by sampling points on a mesh. The reconstructed surface was smoothed using the
mean curvature flow.

a mesh as can be seen in figure (5–3a). The result shown in figure (5–3b) is obtained

after smoothing using few iterations of the mean curvature smoothing flow.

As it can be seen in the figure, our method works extremely well if the point

cloud is dense. The result picks up a lot of shape and curvature detail in the body

of the bull and the shape of its legs and tail, for example.

5.2.2 Results on registered 3D point clouds

Figure (5–4) the results of our shrink wrapping approach on the registered point

clouds of (5–1). The shrink wrapping results reveal the level of surface detail that can

be recovered. The results are shown after post process smoothing and patching the

colors. The smoothing was done by running a few iterations of the mean curvature

flow as seen in the bottom row of figure (5–2). The advantage in using this flow for

smoothing over a simple Gaussian is that, the mean curvature flow smooths along
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5–4: The results of our surface reconstruction method. These results are
shown after few iterations of mean curvature smoothing flow. The bottom row shows
different views of the same result.
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the curvature, thereby preserving the surface shape details. However, too many

iterations of this flow would cause regions of high curvature to break off. Thus there

is a trade off between the smoothness and the level of detail acquired.

5.3 Quantitative and Qualitative summary of results

Table 5–1: Quantitative Results

No Of
Views

Object
Dimensions

(voxels)
Avg. Distance

(voxels)
σ

25 Horse 244× 193× 160 4.4171 4.0038
25 Humanoid 264× 286× 97 6.4073 5.8649
30 Dinosaur 289× 257× 144 5.9817 5.7692
39 Human Head 199× 236× 288 10.1955 9.7089

The results in figure (5–5) show the distance of each point on the shrink wrapped

surface to the closest point on the point cloud in voxel units, as explained by the color

bars. These plots demonstrate the accuracy of the method, particularly at locations

where 3D point cloud data has been sensed, with the regions of larger error typically

corresponding to locations where the point cloud data is sparse or is missing, such as

the top of the human head. A quantitative summary of these results for the various

models is shown in Table 5–1.

Figure (5–6) provides a qualitative comparison of the results obtained by our

approach and those obtained using the commercial software package Skanect. [1].
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(a) (b)

(c) (d)

Figure 5–5: This figure shows the distance errors summarized in Table 5–1 as color
plots.
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(a) (b)

(c) (d)

Figure 5–6: Qualitative comparison of our results against those of Skanect [1]. The
first column shows the results of our surface evolution method. The second column
depicts screen shots of results obtained using Skanect. Our method picks up more
detail in the mane of the horse and the shape of the face and leg. It also better
recovers the curvature of parts of the body of the humanoid object.
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CHAPTER 6
Conclusion and Future Work

In this thesis, we demonstrated the use of weighted geometric flows to recon-

struct surfaces using registered point clouds of 3D data obtained from RGBD sensors.

We first used a simple ICP algorithm to stitch together several views of an object ob-

tained from an RGBD Sensor. We then used a specific geometric flow, the “Weighted

Surface Area Minimizing Flow” and adjusted it to cling on to the points on the point

cloud surface.

Our experimental results show the level of surface detail that can be captured

using this approach. We also presented distance plots that show how accurately our

geometric flow based method is able to reconstruct the 3D point cloud. As figure

(5–6) shows, the result of our reconstruction is qualitatively comparable to that of

Skanect.

The main advantages of our method is that it captures better surface detail as

seen in figure (5–6). It also shows some robustness to holes because of the doublet

term trapping the flow. Thus, we are able to create watertight models even if some

data is missing. Since we use a surface evolution method, we have good estimates of

surface normals and mean curvature which as demonstrated in figure (5–4) has been

used for post processing to smooth using the mean curvature flow.

The main caveat of the method is that we don’t explicitly deal with smoothing

noisy 3D point clouds; we have assumed that outliers have been eliminated and that
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the point cloud is dense, which is a fair assumption for RGBD sensors particularly

given that new views can easily be acquired to fill in regions with missing data.

Also, the ICP algorithm used in this thesis was the standard algorithm introduced

in [4]. Some pre-processing and/or post-processing (voting and pruning strategy, ref.

Chapter 3) were done to reduce noise in the final constructed point cloud. One way

to improve registration could be incorporating some of the more efficient variants of

ICP [23], to weight correspondences and/or reject bad ones. This might eliminate

the need for the pre and post processing strategies to obtain higher quality point

cloud data.

In this thesis, we evaluate the accuracy of our surface evolution method in

terms of the distance errors with respect to the registered point cloud. These results

are summarized in table 5–1 along with the error color plots shown in figure (5–

5). A drawback in the present thesis is a lack of comparison against other surface

reconstruction algorithms. We could run our surface evolution method on standard

data sets and compare in detail the recovered models against those obtained from

other surface reconstruction algorithms. This could be a fruitful direction for future

work.

Some applications of surface reconstruction are 3D printing and object recogni-

tion. It would be interesting to see how well the model generated using our shrink

wrapping approach would perform in these applications. We could perhaps, generate

a database of many objects for such applications. Our approach also provides accu-

rate 3D curvature estimates that can be used in shape analysis and object recognition

tasks.
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It would also be interesting to see how well our approach would work if we used

regular RGB cameras and computed depth values from the 2D images to generate

3D point clouds. This would circumvent some issues of the RGBD sensor such as

dealing with transparent and/or reflective objects.
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