1 The genesis of the giant Dajiangping SEDEX-type pyrite deposit, South

2 China

3

4	Wenhong Johnson Qiu, ¹ Mei-Fu Zhou, ^{1, †} Xiaochun Li, ¹ A.E. Williams-Jones, ² and
5	Honglin Yuan ³
6	
7	¹ Department of Earth Sciences, University of Hong Kong, Hong Kong SAR, China
8	² Department of Earth and Planetary Sciences, McGill University, 3450 University
9	Street, Montréal, Québec, Canada
10	³ State Key Laboratory of Continental Dynamics, Department of Geology, Northwest
11	University, Collaborative Innovation Center of Continental Tectonics, Xi'an, China
12	

- 13 [†] Corresponding author: e-mail, mfzhou@hku.hk
- 14

15 Abstract

16	The late Devonian Dajiangping pyrite deposit in South China is a giant sediment-
17	hosted stratiform deposit and contains >200 Mt of pyrite ores with an average grade of
18	30 wt.% S. The orebodies are hosted in carbonaceous siltstone and black shale and
19	consist mainly of laminated pyrite ore. Small euhedral pyrite crystals (Pyrite 1) and
20	larger subhedral pyrite crystals (Pyrite 2) are the main ore mineral and occur as
21	laminated aggregates of subhedral to euhedral grains. Anhedral pyrite crystals (Pyrite
22	3) associated with pyrrhotite are present in the host rocks and are interbedded with the
23	ore layers. Mass-balance calculations reveal that the pyrite ores have Al-normalized Ca,
24	Mg, Mn, Si, Na, K and organic carbon contents similar to the host sedimentary rocks,

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

precluding substantial carbonate dissolution and a stratiform replacement origin for theores.

27	<i>Pyrite 1</i> and 2 crystals in the laminated ores have δ^{34} S values ranging from -28.7 ‰
28	to 23.6 ‰, and mostly lower than -16 ‰. Such highly negative values indicate that the
29	sulfur in these ores was sourced from bacterially reduced seawater sulfate in an open
30	system. <i>Pyrite 1</i> and 2 crystals within a single laminated ore sample have similar $\delta^{34}S$
31	values. The mostly negative sulfur isotopic composition implies that the pyrite
32	crystallized above to just below the seawater-sediment interface by consuming aliquots
33	of H ₂ S supplied by bacterial sulfate reduction in sulfate-dominated shallow muds.
34	<i>Pyrite 3</i> crystals have mostly positive δ^{34} S values, ranging from -3.2 ‰ to 42.8 ‰ with
35	a mean of 5.7 ‰. There are also large ranges of δ^{34} S values within a single sample, for
36	example, from 12.1 to 42.8 ‰ in sample YF0204. Such positive and highly
37	heterogeneous δ^{34} S values likely resulted from thermochemical sulfate reduction (TSR)
38	and anaerobic oxidation of methane coupled with sulfate reduction (AOM-SR) in a
39	tightly closed system of deep sediments during diagenesis that experienced strong
40	Rayleigh fractionation.
41	We propose that the laminated pyrite ores of the Dajiangping deposit formed by

- 42 sedimentary exhalation in an anoxic sea water column. Hydrothermal fluids leached Fe
- 43 from the metamorphic basement underlying the stratiform orebodies, as indicated by

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

44	the similar Pb isotopic compositions of the laminated ores and metamorphic basement,
45	and vented onto the sea floor. Mixing of Fe^{2+} from the exhaled metalliferous fluids with
46	H_2S from the ambient anoxic seawater resulted in the precipitation of <i>Pyrite 1</i> and 2
47	crystals above and immediately below the sea floor, respectively, and the formation of
48	laminated ores. This was followed by crystallization of a small proportion of Pyrite 3
49	in the pores deep within the sediment pile.
50	
51	Keywords: SEDEX, syngenetic pyrite, in-situ sulfur and lead isotope analysis, sulfate
52	reduction pathways, mass gains and losses.
53	

54 Introduction

55	The Devonian sediment-hosted stratiform Dajiangping deposit in South China is
56	the largest pyrite deposit in the country (Qiu et al., 2018) and contains >200 million
57	tons (Mt) of pyrite ores with an average grade of 30 wt.% S (BGE723BGD, 1965). The
58	orebodies are laminated and extend laterally for over 4.2 km (BGE723BGD, 1965). The
59	Dajiangping deposit, the Hongyan deposit (20 Mt @ 26% S) and the Xiniu deposit (37
60	Mt @ 20.5% S) are together to form the most important pyrite district in China,
61	accounting for >40% of the pyrite production of the country (Fig. 1) (Editorial Board
62	of The Discovery History of Mineral Deposits of China, 1996).

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

63	Several preliminary studies of the Dajiangping pyrite deposit have been published
64	in Chinese (Zhang et al., 1992; Zhang et al., 1993; Chen et al., 1998a; Chen et al., 1998b)
65	and most of them have interpreted it to be a sedimentary-exhalative (SEDEX) deposit
66	because of the laminated nature of the ores and the conformable contact between the
67	stratiform orebodies and their host sedimentary rocks (Zhang et al., 1992; Zhang et al.,
68	1993; Pan and Zhang, 1994; Wang et al., 1996; Chen et al., 1998a; Chen et al., 1998b).
69	Owing to the fact that the ores in the eastern part of the deposit are massive, some
70	authors have concluded that they may be epigenetic and have formed from
71	hydrothermal fluids that overprinted the primary SEDEX-type laminated ores (Zhang
72	et al., 1992; Zhang et al., 1993; Zhang et al., 1994). It is noteworthy that similar
73	laminated ores of stratiform sediment-hosted sulfide deposits elsewhere also have been
74	interpreted to have formed by epigenetic hydrothermal replacement of stratiform
75	sedimentary rocks or by sub-seafloor replacement of the host mudstone during
76	diagenesis (Williams, 1978; Eldridge et al., 1993; Almodóvar et al., 1997; Perkins and
77	Bell, 1998; Gadd et al., 2015; Magnall et al., 2016). Previous Pb and Nd isotopic studies
78	of pyrite ores from the Dajiangping deposit have concluded that the metals were derived
79	from the upper crust (Zhang et al., 1993; Chen et al., 1998b). The large range of $\delta^{34}S$
80	values (-25.5 ‰ to 21.1 ‰) of pyrite separates has been noted and taken to indicate that
81	the sulfur was derived from seawater sulfate by bacterial reduction (BSR) (Zhang et al.,

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

82 1993).

83	The obvious limitation of sulfur isotope analyses of sulfide separates is that a
84	sample may contain fine-grained sulfide minerals with complex textures in different
85	origins, something that is common in the Dajiangping deposit. High spatial resolution
86	in-situ sulfur isotopic analysis, however, is able to detect the isotopic compositions of
87	individual sulfide grains of different origin (Mason et al., 2006; Kozdon et al., 2010;
88	Ulrich et al., 2011), making it possible to distinguish syngenetic, diagenetic and
89	epigenetic pyrite in finely laminated ores. Owing to the lack of in-situ sulfur isotopic
90	data, the ore forming process of the Dajiangping deposit is still an open question. In
91	addition, the samples analyzed in previous studies were mostly collected randomly
92	from the open pit, as systematic stratigraphic sampling was not possible. Such random
93	sampling made it impossible to evaluate the depositional history of the stratiform
94	orebodies and thus the ore-forming process.
95	In this study, we use high spatial resolution LA-MC-ICP-MS analyses to obtain
96	in-situ sulfur isotopic compositions of pyrite in samples collected systematically from
97	two drill holes, which intersected the four main stratiform orebodies and the
98	immediately adjacent host sedimentary rocks of the Dajiangping deposit. Here, we also
99	report sulfur isotope compositions of pyrite separates, lead isotope compositions of
100	pyrite grains, and major element compositions and organic carbon concentrations of

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

101	bulk rocks and ores. These new datasets are used to (1) determine if the laminated ores
102	of the stratiform orebodies formed by syn-sedimentary or diagenetic processes or were
103	the result of epigenetic stratiform replacement, (2) determine the sources of metal and
104	sulfur and the sulfate reduction pathways for each type of pyrite, (3) reconstruct the
105	ore-forming process, and (4) compare the distinct sulfur isotopic compositions and
106	sulfate reduction pathways for this pyrite deposit to those of other SEDEX deposits,
107	which are mostly dominated by Pb-Zn sulfides. By integrating these datasets, we have
108	been able to develop a new, well-supported model for the formation of the Dajiangping
109	deposit and the implications for the genesis of other SEDEX-type deposits are also
110	discussed.
111	Regional geology
112	The South China Block, in which the Dajiangping deposit is located, comprises
113	the Yangtze Block to the northwest and the Cathaysia Block to the southeast (Fig. 1),
114	which were welded together at ca. 830 Ma (Zhao et al., 2011). The Cathaysia Block
115	consists of a metamorphic basement of Neoproterozoic to Silurian siliciclastic
116	successions and early Paleozoic granites (Zhong et al., 1996; Wan et al., 2010), overlain

- 117 unconformably by Devonian and younger sedimentary strata.
- 118 The Cathaysia Block was in a marginal setting in Gondwana during the 119 Neoproterozoic to Silurian, as indicated by the faunal affinity of fossils in the Early

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

120	Paleozoic shallow marine sedimentary strata of the South China Block to those of
121	northeast Gondwana (Zhao et al., 1996; Metcalfe, 2006). During the early Paleozoic
122	(460–420 Ma), the block was involved in an intracontinental orogeny (Wan et al., 2010;
123	Wang et al., 2013a; Zhang et al., 2017), which was accompanied by upper amphibolite-
124	granulite facies metamorphism and coeval magmatism (Wang et al., 2013b).
125	The South China Block was rifted and separated from Gondwana during the
126	Devonian due to the opening of the Paleo-Tethys Ocean (Metcalfe, 2006). During this
127	period, the South China Block is thought to have been situated along a passive
128	continental margin on the northern side of Palaeo-Tethys (Zhao et al., 1996). This
129	interpretation is supported by the presence of a conspicuous unconformity between pre-
130	Devonian metamorphic basement rocks and Devonian strata, and a subsequent
131	Devonian-Triassic passive margin sequence along the southern margin of the South
132	China Block (Metcalfe, 2006; Zhang et al., 2017). A series of fault-bounded basins,
133	controlled by NNE-SSW and NW-SE trending growth faults, such as the Wuchuan-
134	Sihui deep fault zone (Fig. 1), developed on this passive margin as a result of the rifting
135	and northward drift of the South China Block from Gondwana during the Devonian
136	(Zhao et al., 1996; Chen et al., 2001; Chen et al., 2006; Zhang et al., 2017). Thick
137	sedimentary successions of deep-water facies filled these basins, and as a result of the
138	activation of growth faults, exhalation of hydrothermal fluids led to the formation of

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

139 chert and numerous SEDEX deposits in the Devonian strata (Fig. 1) (Zhou, 1990; Xu et al., 1996; Zhao et al., 1996; Chen et al., 2006; Gu et al., 2007). The South China 140 141 Block collided with the Indochina Block during the late Permian-early Triassic, leading 142 to the accretion of the allochthonous continental blocks of Southeast Asia (Metcalfe, 143 2006; Qiu et al., 2016; 2017). Pre-Devonian metamorphic rocks and late Paleozoic 144 sedimentary rocks in the Cathaysia Block were reworked by thrust faults, ductile shear 145 zones and granitoid intrusions (Wang et al., 2005). 146 In the southwestern part of the Cathaysia Block, numerous stratiform-stratabound 147 pyrite, Pb-Zn sulfide and barite deposits formed in the Devonian-Carboniferous strata 148 of the fault-bounded basins. These stratiform-stratabound deposits are widespread in 149 basins such as the Qingzhou-Luoding trough of western Guangdong Province (Lai,

150 1996) and the Guizhong Basin of Guangxi Province (Fig. 1) (Chen and Gao, 1987).

151 Strike-slip basins in the Qingzhou-Luoding trough were produced by the deep, NNE

trending Wuchuan-Sihui fault (Lai, 1996), whereas those in the Guizhong Basin were

153 controlled by NE-trending transtensional faults (Chen and Gao, 1987) (Fig. 1). The

154 stratiform pyrite deposits occur mainly in the Qingzhou-Luoding trough, and include

the giant Dajiangping, and large Hongyan and Xiniu deposits, which are hosted in

156 Devonian carbonaceous clastic and carbonate sedimentary rocks (Pei, 1989; Lai, 1996).

157 The sulfide minerals in these deposits are dominated by pyrite, and include minor

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

158	proportions of pyrrhotite, galena and sphalerite. The sediment-hosted stratiform nature
159	of these pyrite deposits is similar to that of many SEDEX deposits elsewhere in the
160	world, except that the latter are mostly dominated by Pb-Zn sulfides (Large et al., 2005;
161	Leach et al., 2005; Sangster, 2017). The pyrite deposits, therefore have been interpreted
162	to be SEDEX deposits. They are considered to have formed contemporaneously with
163	sedimentation by exhalation of hydrothermal fluids along basin-bounding growth faults
164	during the Devonian to Carboniferous (Lai, 1996; Yang et al., 1996; Chen et al., 2006).
165	Deposit geology
166	The Dajiangping deposit in the northern Qingzhou-Luoding trough, west of the
167	Wuchuang-Sihui fault belt (Fig. 1), comprises stratiform orebodies distributed within a
168	~6 km long \times ~4 km wide zone (Fig. 2). Within the district, there are three contiguous
169	mining centers, namely Jianshan in the south, Dajiangping in the center and
170	Changpailing in the north (Fig. 3). Only orebodies in Dajiangping are currently being
171	mined, with the production coming from a large open pit. A recent Re-Os isochron age
172	of 389 ± 62 Ma Ma for the pyrite ores (Qiu et al., 2018), indicate that the deposit formed
173	in the late Devonian, which is the period assigned to the host strata (see below). The
174	deposit was locally affected by a late Permian-early Triassic orogenic event
175	(BGE723BGD, 1965) that thrust the basement rocks to the east onto the ore-bearing
176	strata along the east-dipping F4 fault, which dips at an angle of 44° to 58° (Figs. 2 and

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

177	3). In the west, the west-dipping F1 fault (63° to 79°) separates the western basement
178	complex from the eastern ore strata (Fig. 3). An east-dipping normal fault (F3)
179	subdivides the Dajiangping mining district into western and eastern mining areas (Fig.
180	3).

181 The orebodies and host sedimentary layers in the western mining area are weakly 182 deformed and conformable (Figs. 4a and b), and the primary laminated textures of the 183 ores are well preserved (Figs. 4c to f). The stratiform orebodies consist dominantly of 184 intercalated parallel layers of pyrite, chert, black shale and siltstone-sandstone (Figs. 4c 185 to f). In contrast, orebodies in the eastern mining area form an east-dipping syncline 186 that developed due to thrusting along the F4 fault (Fig. 3). These orebodies show 187 evidence of extensive deformation and crystallization to form massive ores (Figs.4 g 188 and h). The primary bedding of ores close to the thrust faults in the eastern mining area 189 has been destroyed and replaced by massive pyrite and shear structures (Figs. 4g and 190 h). Some massive ores were intensely deformed, crosscut by quartz and calcite veins 191 (Fig.9g) and placed in irregular contact with primary laminated ores (Fig. 9h).

192 Host sedimentary rocks

Pyrite orebodies in the Dajiangping deposit are hosted in a carbonaceous
sedimentary sequence (Chen et al., 1998a; Chen et al., 1998b). Based on observations
of samples from a 550 m deep drill hole, YF02, ~1km to the south of the deposit (Figs.

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

196	3 and 5), the strata hosting the ores are underlain by a metamorphic basement complex
197	of quartz-mica schist (Figs. 6c and d). The overlying strata, which include the ore strata,
198	are dominated by carbonaceous limestone, siltstone and black shales (Figs. 6a and b).
199	The stratigraphic succession is similar to that of the late Devonian Liujiang group in
200	the Cathaysia Block, which is also unconformably underlain by a Pre-Devonian
201	metamorphic basement (BGMRGD, 1988). This suggests that strata hosting the
202	Dajiangping ores were deposited in the late Devonian, which is the period of ore
203	formation, based on the age of the deposit of 389 ± 62 Ma reported above.
204	The ores are hosted by carbonaceous rocks that have been subdivided into three
205	units. The Lower Unit is 50 m thick and consists of interlayered carbonaceous limestone
206	and siltstone (Fig. 5). The Middle Unit is 30 m thick and consists mainly of
207	carbonaceous limestone with a minor clastic component. There are thin pyrite layers at
208	the top of the unit. The Upper Unit is >100 m thick and is composed of carbonaceous-
209	calcareous siltstone and black shale (Fig. 5). Brachiopod and crinoid fossils are widely
210	distributed in the carbonaceous limestone and are closely associated with organic matter
211	(Figs. 6a and b).

212 Stratiform orebodies and mineralized units

213 The stratiform orebodies of the Dajiangping deposit are conformable with the host

214 clastic carbonaceous strata (Figs. 4a and b), vary in total thickness from 50 to 172 m

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

215	and extend laterally along a north/south strike for more than 4160 m (Fig. 3)
216	(BGE723BGD, 1965). Based on the lithological changes in drill hole YF04 in the center
217	of the deposit (Fig. 3), the orebodies, which dip shallowly, have thicknesses of up to
218	200 m. They have been divided into four ore units (M1 to M4) (Fig. 5). The lowermost
219	unit (M1), 11 m thick, is the basal unit, lies unconformably on the metamorphic
220	basement and is marked by silicification (Fig. 5). This unit consists of poorly bedded
221	pyrite-pyrrhotite with minor sphalerite in a calcareous-carbonaceous siltstone
222	containing a small proportion of organic matter (Fig. 5). The second unit (M2) is 79 m
223	thick and comprises massive to laminated pyrite ores with black shale interlayers (Fig.
224	5). It is separated from the M1 unit by a thin carbonaceous limestone bed. The third unit
225	(M3) is 36 m thick and consists of pyrite laminae interlayered with black shale and
226	carbonaceous siltstone (Fig. 5). It is separated from the massive ores of M2 by a weakly
227	mineralized black shale layer. The uppermost unit (M4) is 19 m thick, comprises thickly
228	laminated pyrite ores with carbonaceous siltstone (Fig. 5) and is separated from M3 by
229	an unmineralized 35 m thick black shale layer (Fig. 5).

230 Ore mineralogy

The pyrite layers are composed of aggregates of subhedral to euhedral pyrite crystals which are cemented by authigenic quartz and calcite (Figs. 7a, b and d). The associated black shale and siltstone layers are composed mainly of diagenetic

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

234	muscovite and illite, quartz, K-feldspar and calcite with minor pyrite (Figs. 7c and e).
235	Three types of primary pyrite have been recognized on the basis of macro- and micro-
236	textures. The first two types, Pyrite 1 and 2, form the laminated ores and are the
237	dominant pyrite types in the ore (Figs. 8a to d), however, Pyrite 2 is much more
238	abundant than Pyrite 1 (Figs. 8a to d). In contrast, Pyrite 3 occurs in irregular patches
239	and commonly in pores and fractures in the weakly mineralized sedimentary rocks,
240	where it is commonly associated with pyrrhotite (Figs. 9a to b). The thick, weakly
241	pyritic sedimentary unit between the M3 and M4 units of drill hole YF04 and the black
242	shales in the Upper Unit of drill hole YF02 contains abundant Pyrite 3 (Fig. 4).
243	Pyrite 1 generally occurs as euhedral-subhedral micron-size cubes <10 to 20 μ m
244	in diameter and needles (Figs. 8c and d) that are interspersed among detrital grains of
245	quartz and feldspar. Layers containing Pyrite 1 are commonly intercalated with layers
246	of Pyrite 2 and quartz-carbonate siltstone layers (Figs. 8a and b). Pyrite 1 crystals are
247	also present in the layers of Pyrite 2.
248	Pyrite 2 crystals commonly occur as aggregates along the sedimentary bedding
249	and form continuous to semi-continuous pyrite laminae (<1 mm to several mm thick)
250	that are intercalated with non-pyritic sedimentary layers and fine-grained Pyrite 1 layers
251	(Figs. 8a and b). The crystals range in diameter from 100 μm to >1000 μm and are
252	subhedral in shape (Figs. 8a and d). Locally, Pyrite 2 crystals occur as overgrowths on

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

253	Pyrite 1 crystals (Figs. 8d to f), indicating that they crystallized after Pyrite 1. The
254	Pyrite 2 crystals commonly contain inclusions of detrital quartz and K-feldspar (Figs.
255	8b and c). Quartz and calcite are frequently observed filling the interstices and void
256	space between these euhedral pyrite crystals and display complex intergrowths and
257	comb-like textures (Figs. 7b and d). These features distinguish them from the detrital
258	silicate grains of the clastic sediments, which do not display these textures (Figs. 7c and
259	e). This indicates that the quartz and calcite crystallized slightly after <i>Pyrite 2</i> and are
260	of hydrothermal origin.
261	Pyrite 3 crystals are generally anhedral and, as noted above, form irregular patches
262	commonly with pyrrhotite. Both the pyrite and pyrrhotite are concentrated mainly in
263	interstices among detrital grains, pore spaces and discrete micro-fractures (Figs. 9a and
264	b and 16). The micro-fractures are highly discontinuous, irregularly distributed, parallel
265	to or across sedimentary layers and may have formed by the fracturing of partially
266	unconsolidated muds during diagenesis (Figs. 9a and b and 16). The pyrite and
267	pyrrhotite frequently form irregularly-shaped fine-grained porous aggregates, which
268	contain inclusions of fine clastic silicate grains, and fill pores in the sediment (Figs. 9d
269	to f). The pyrrhotite crystals of this stage may be intergrown with or surround large
270	subhedral Pyrite 3 grains in the sedimentary layers of the laminated ores (Fig. 9c),
271	indicating that the pyrrhotite formed slightly later than <i>Pyrite 3</i> .

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

272 Sampling and analytical methods

273	Ore and sedimentary rock samples were taken at ~2 m intervals from drill holes
274	YF04 and YF02. They show no evidence of deformation and metamorphism, based on
275	field observation and petrographic examination (Fig. 5 to 9). Laminated and massive
276	ores from the open pit were also sampled systematically to provide a coverage from the
277	center to the margin of the Dajiangping deposit. The samples were crushed and
278	powdered for analysis of their bulk composition. Some crushed samples were sieved
279	and panned, and pyrite separates were handpicked under a binocular microscope for
280	sulfur isotope analyses. Polished thin sections were prepared for petrographic
281	examination and in-situ sulfur and lead isotope analyses from a representative suite of
282	samples. The methods for the analyses of the major element compositions, in-situ sulfur
283	and lead isotope ratios and sulfur isotope ratios of the pyrite separates are described in
284	the appendix.

285 Analytical Results

286 Major element and organic carbon concentrations

The major element and organic carbon contents of the laminated pyrite ores and sedimentary rocks from the drill hole YF04 are listed in Table 1 and plotted against depth in Figure 10. The contents of selected elements/oxides of the pyrite ores and black

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

shales from drill hole YF04 and black shales of the Upper Unit from drill hole YF02

291	are also shown	ı in binary	v plots	(Fig.	11;	Qiu	et al.,	2018).
-----	----------------	-------------	---------	-------	-----	-----	---------	------	----

292	As expected, the laminated pyrite ores from drill hole YF04 have high Fe_2O_3 (7.1
293	to 53.3 wt.%) and S contents (4.5 to 41.4 wt.%), whereas weakly mineralized black
294	shales between the M3 and M4 units have much lower Fe_2O_3 (2.4 to 5.0 wt.%) and S
295	contents (0.6 to 2.9 wt.%) (Fig. 10). Almost all the samples have ZnO, PbO and CuO
296	contents <1 wt.% (Fig. 10), reflecting the dominance of pyrite over sphalerite, galena
297	and chalcopyrite. The MnO content increases sharply from the base to the top of the
298	M1 unit (0.04 to 0.16 wt.%), is high in the M2 unit (0.18 to 1.26 wt.%), the M3 unit
299	(0.14 to 0.78 wt.%) and the M4 unit (0.24 to 1.38 wt.%) and is low in the black shale
300	layer (0.06 to 0.18 wt.%) between the M3 and M4 units (Fig. 10). The Al ₂ O ₃ and SiO ₂
301	contents range from 1.0 to 18.2 wt.% and 10.1 to 75.5 wt.%, respectively (Fig. 10).
302	Black shale layers, which consist dominantly of quartz and phyllosilicates, including
303	muscovite and illite, generally have much higher Al ₂ O ₃ and SiO ₂ concentrations than
304	the laminated ores (Fig. 10). The total organic carbon content (C_{org}) ranges from 0.1 to
305	1.5 wt.% in the mineralized units and is higher in the black shales between the M3 and
306	M4 units, ranging from 1.0 to 2.2 wt.% (Fig. 10). The major element and organic carbon
307	compositions of the black shales of the Upper Unit in the host strata from drill hole
308	YF02 are very similar to those of the black shales between the M3 and M4 units in drill

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

309 hole YF04 (Fig.11).

310	Not surprisingly, Fe and S display a strong positive correlation ($R^2=0.98$),
311	indicating that the Fe and S are mostly from pyrite crystals. The $\mathrm{Al}_2\mathrm{O}_3$ and $\mathrm{Fe}_2\mathrm{O}_3$
312	contents of the laminated ores display a negative correlation (R ² =0.40), consistent with
313	the fact that the Al ₂ O ₃ content reflects the phyllosilicate mineral content and the Fe ₂ O ₃
314	content reflects the pyrite content (Fig. 11). The black shales from both drill holes have
315	uniformly low Fe ₂ O ₃ and variable Al ₂ O ₃ concentrations (Fig. 11). The strong positive
316	correlation between the TiO ₂ and Al ₂ O ₃ concentrations ($R^2=0.82$) of the laminated ores,
317	and black shales from both drill holes, and the high Al ₂ O ₃ and TiO ₂ concentrations of
318	the black shales, indicate that the Ti and Al in the ores and host rocks are hosted mainly
319	in detrital minerals (Fig. 11). Similarly, the strong positive correlation of these samples
320	between K_2O and Al_2O_3 contents ($R^2=0.70$) is consistent with the presence of muscovite
321	and illite. The relationship between SiO ₂ /Al ₂ O ₃ and K ₂ O/Al ₂ O ₃ shows that significant
322	Si was sourced from a mixture of detrital muscovite (or diagenetic illite) and quartz
323	(Magnall et al., 2015) (Fig. 11). However, the negative correlation between SiO_2/Al_2O_3
324	and TiO ₂ implies that much of the silica has a nondetrital origin (Fig. 11). Organic
325	carbon shows a weakly negative correlation with S content and the laminated pyrite
326	ores have organic carbon concentrations lower than that of the black shales (Fig. 11).
327	The C _{org} /Al values of the laminated pyrite ores range from 0.01 to 0.62 (mean=0.12),

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

328 similar to those of the black shales, which range from 0.06 to 0.45 (mean=0.16) (Fig.

329 11).

330	The gains and losses of elements during formation of the laminated pyrite ores in
331	the major mineralized units (M2, M3 and M4) were evaluated by normalizing the bulk
332	compositions to constant Al ₂ O ₃ and comparing them to those of the black shales in the
333	Upper Unit of the host strata from drill hole YF02, on the assumption that these shales
334	are representative of the unmineralized rock. The normalization was justified by the
335	observation that there is a good linear correlation between Al_2O_3 and TiO_2 (Fig. 11) and,
336	because Ti is almost invariably an immobile element, the same must be true for Al. The
337	calculation made use of the following equation:
338	$\Delta \text{ Mass} = \frac{C_i^O/C_{Al2O3}^O - C_i^B/C_{Al2O3}^B}{C_i^B/C_{Al2O3}^B} = (C_i^O/C_i^B)^* (C_{Al2O3}^B/C_{Al2O3}^O) - 1,$

339 where C is concentration, superscript O represents ores, superscript B represents black 340 shale, and subscript i represents a specific element. In Figure 12, we illustrate the 341 percentile changes for some elements in the mineralized units relative to their 342 concentrations in the unmineralized rock. Our results show that pyrite mineralization in 343 each major ore unit of the Dajiangping deposit was accompanied by major additions of 344 Fe, S, Mn, Ca and Ba and minor additions of Na. Minor proportions of Mg and P were 345 added to units M2 and M4 and concentrations of Si, K and organic carbon (Corg) were 346 almost unchanged (Fig. 12).

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

347 *Lead isotope compositions*

348	Pyrite 1 and 2 grains and some composite Pyrite 1-Pyrite 2 grains in laminated
349	ores from the Dajiangping deposit were analyzed at the State Key Laboratory of
350	Continental Dynamics, Northwest University of China for their in-situ lead isotope
351	compositions, which are reported in Table 2 and shown in Figure 13. The results of
352	these analyses show that although there is a relatively large range for each of the ratios,
353	the distribution of the ratios is the same for both types of pyrite. The ranges are 17.976-
354	18.490 for ²⁰⁶ Pb/ ²⁰⁴ Pb, 15.600-15.866 for ²⁰⁷ Pb/ ²⁰⁴ Pb and 38.089-39.054 for ²⁰⁸ Pb/ ²⁰⁴ Pb
355	(Fig. 13 and Table 2). The majority of the pyrite grains have Pb isotope ratios similar
356	to those of the metamorphic basement rocks in the Wuchuan-Sihui region (Fig. 13)
357	(Zhang et al., 1993).
358	Sulfur isotope compositions

In-situ sulfur isotope analyses: A total of 138 analyses on 37 samples were made at the Northwest University of China (Table 3) and 39 analyses on 6 samples at the Geological Survey of Finland (Table 4). Single spots of pyrite grains were ablated at a spatial resolution of 37 to 53 μ m. The in-situ S isotopic analyses generally have analytical errors < 0.2 ‰ (Table 3 and Table 4). The results from both laboratories are indistinguishable within the analytical error, confirming the reliability of the data. Owing to the large diameter of the laser beam relative to that of individual *Pyrite 1*

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

366	crystals, the data for <i>Pyrite 1</i> were obtained from crystal aggregates. Values of δ^{34} S for
367	Pyrite 1 and 2 crystals (laminated ores) both display wide ranges and vary from -29.2
368	to 17.7 ‰ and from -28.9 to 25.3‰ respectively, with most values being less than -16 ‰
369	(Fig. 17 and Tables 3 and 4). Some Pyrite1 and Pyrite 2 crystals of samples from the
370	open pit and the lowermost ore layers in drill hole YF02 have positive $\delta^{34}S$ values. The
371	in-situ analyses show that the δ^{34} S values for both <i>Pyrite1</i> and <i>Pyrite2</i> crystals within
372	individual laminae vary over a very narrow range (<2 ‰) (Figs. 14 and 15 and Tables
373	3 and 4). Values of δ^{34} S for <i>Pyrite 3</i> (in-situ analyses) in the black shales are mainly
374	positive (-1.5 $\%$ to 42.9 $\%$), with most values being > 3 $\%$ (Table 3). They vary
375	considerably within a single sample (Figs. 16a to f), e.g., from -0.5 ‰ to 5.6 ‰ in
376	YF0409, 12.1 ‰ to 42.8 ‰ in YF0204, and -1.5 ‰ to 25.2 ‰ in YF0205.
377	Sulfur isotope compositions of pyrite separates: Given that the laminated ores have
378	a relatively homogenous sulfur isotope composition on the scale of individual laminae,
379	pyrite separates of 33 laminated ores from drill hole YF04 and pyrite separates of 33
380	laminated and massive ores from the open pit were analyzed. These separates have $\delta^{34}S$
381	values from -28.7 ‰ to 19.0 ‰ (Table 5), consistent with the range obtained with in-
382	situ analysis. Pyrite separates of laminated ores from the mineralized units in drill hole
383	YF04 yielded negative δ^{34} S values, ranging from -28.2 ‰ to -1.8 ‰, whereas some
384	samples collected from the open pit yielded positive δ^{34} S values (Table 5). In Figure 16,

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

385	the isotopic data of pyrite separates are combined with the in-situ isotopic data for
386	<i>Pyrite 1, 2 and 3</i> in a histogram that compares the δ^{34} S values of <i>Pyrite 1 and 2</i> from
387	the laminated ores with those for <i>Pyrite 3</i> from the host rocks. From this diagram, it is
388	evident that the δ^{34} S values for the pyrite of the laminated ores (<i>Pyrite 1</i> and 2) are
389	mostly negative (<-16 ‰), ranging from -28.7 to 23.8 ‰, whereas those for <i>Pyrite 3</i> in
390	the black shales are mostly positive (>3 ‰), ranging from -1.5 ‰ to 42.9 ‰ (Fig. 17).

391 Discussion

392 **Environment of ore deposition**

393 The stratiform nature of the orebodies and the sulfide lamination are essential 394 features of the Dajiangping deposit. Such features are commonly taken as evidence for 395 the sedimentary-exhalative (SEDEX) origin of deposits of this type, although these 396 deposits are generally dominated by galena and sphalerite rather than pyrite (Large et 397 al., 1998; Leach et al., 2005). According to the SEDEX model, exhalative metalliferous 398 fluids mix with anoxic H₂S-rich seawater, leading to crystallization of sulfide particles 399 in the water column along an interface between these two fluids, followed by 400 gravitational deposition of the sulfide aggregates to the basin floor to develop the 401 characteristic laminated sulfide textures (Large et al., 1998; Large et al., 2005). A 402 number of studies, however, have proposed that the sulfide minerals of laminated ores 403 crystallize within both the shallow sulfate-rich zone and deep sulfate-depleted zone of

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

404	muds below the sediment-water interface of brine pools on the sea floor, and that the
405	required H ₂ S is produced within the sediments by bacterial reduction of the infiltrating
406	seawater sulfate (Sangster, 2002; Ireland et al., 2004; Sangster, 2017). Laminated
407	sulfide ores also have been interpreted to form by replacement of the host strata, a
408	hypothesis that is supported by the observation that sulfide mineral deposition involves
409	acid generation (e.g., $Fe^{2+}+2H_2S=FeS_2+4H^+$), which promotes carbonate mineral and
410	organic carbon dissolution and enhances porosity, thereby facilitating lateral fluid
411	migration.(Eldridge et al., 1993; Hinman, 1996; Perkins and Bell, 1998; Chen et al.,
412	2003). For example, Perkins and Bell (1998) proposed that laminated sulfide ores in the
413	stratiform orebodies of the McArthur River (HYC) deposit formed by replacement of
414	carbonate and bituminous beds. Similarly, Eldridge et al. (1993) proposed that the
415	laminated sulfide ores of the Mount Isa and Hilton deposits formed by replacement of
416	dolomite. In the following paragraphs, we test these hypotheses for the Dajiangping
417	deposit using the observations and data that have been presented in this paper.
418	As reported earlier, much of the pyrite in the stratified ores of the Dajiangping
419	deposit occurs as small euhedral to subhedral pyrite cubes (<i>Pyrite 1</i>) measuring <10 to
420	20 μ m in diameter. This observation clearly rules out the replacement model, which
421	would predict the formation of dominantly anhedral pyrite resulting from the alteration
422	of precursor minerals or the filling of voids. Furthermore, the fact that Pyrite 1 and

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

423 *Pyrite 2* grains are partly cemented by calcite (Fig. 7b2) and there was no loss of
424 carbonate-associated elements (e.g., Ca, Mg and Mn) and organic matter (C_{org}) (Fig. 12)
425 is inconsistent with carbonate and bituminous dissolution.

426	A process that could explain the small size and cubic morphology of the Pyrite 1
427	crystals is direct precipitation from a mixture of vent fluid and seawater. In this respect,
428	it is noteworthy that Feely et al. (1987,1990) has described smoker particulates from
429	active vents on the Juan de Fuca Ridge, in which the pyrite occurs as euhedral cubes
430	ranging in diameter from $\sim 0.1~\mu m$ to tens and in some cases hundreds of microns. It is
431	thus reasonable to propose that the Pyrite 1 crystals, which have diameters within this
432	range, settled under gravity from a mixed hydrothermal fluid-seawater column to form
433	the observed laminae at the sediment-seawater interface.
434	The origin of Pyrite 2 is less obvious. As reported earlier, it enclosed and formed
435	overgrowths on <i>Pyrite 1</i> indicating that it formed later. For one of the reasons given for
436	eliminating the replacement model for Pyrite 1, namely the lack of evidence of

437 carbonate and bituminous dissolution, we can also eliminate this model for *Pyrite 2*,

438 which is commonly cemented by calcite and quartz. Given its clearly secondary origin,

439 we therefore propose that *Pyrite 2* formed by growing on *Pyrite 1* crystals in relatively

440 shallow muds below the sediment-seawater interface. The laminated nature (Figs.4c to

441 f, Fig.5) and minor detrital content of some *Pyrite 2* dominated massive ores (Fig. 4e)

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

442	indicate that they were unlikely to have crystallized in deep muds well below the
443	sediment-water interface because, if this were the case, there would have been a very
444	much higher proportion of detrital material in the ores.

- In contrast to *Pyrite 1* and *2*, *Pyrite 3* and pyrrhotite crystals, based on their anhedral shapes, and occurrence in voids between clasts (Figs. 9a to f), likely crystallized deeper in the sediment column during diagenesis. Some *Pyrite 3* and pyrrhotite crystals occur in micro-fractures within sediment layers (Figs.9a and b), which likely formed due to compaction when the sediment was partially consolidated, which is also consistent with a diagenetic origin for *Pyrite 3 and* pyrrhotite.
- 451 **S**

Source of reduced sulfur

452	In spite of the different modes of δ^{34} S values for each pyrite type (Fig. 17), the
453	maximum δ^{34} S values are very similar and strongly positive (~24 ‰), suggesting that
454	the sulfur of the three types of pyrite in the Dajiangping deposit had the same source,
455	namely sea water sulfate (Seal, 2006). In order to reliably estimate the δ^{34} S value of the
456	source from the data for pyrite, it is necessary to know the temperature of pyrite
457	deposition. Owing to a lack of fluid inclusions suitable for microthermometric analysis
458	and a lack of mineral pairs suitable for stable isotope geothermometry, we assume that
459	the Dajiangping deposit formed at a temperature comparable to that of SEDEX deposits
460	elsewhere, i.e., 150°C to 270 °C (Cooke et al., 2000). For these temperatures, the sulfur

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

470	Sulfate reduction pathways
469	hosted Zn-Pb-(Cu-Ag-Ba) deposits (Leach et al., 2005).
468	seawater sulfate, a conclusion that has been drawn for most other stratiform sediment-
467	therefore conclude that the sulfur for the Dajiangping deposit was sourced from coeval
466	(Claypool et al., 1980; Kampschulte and Strauss, 2004; Bottrell and Newton, 2006). We
465	sea water for the late Devonian-early Carboniferous is estimated to have been 23‰
464	mineralizing fluid of ~19‰ at 10°C or 23‰ at 270°C. Significantly, the δ^{34} S value of
463	$\delta^{34}S$ value analysed for pyrite would correspond to a $\delta^{34}S$ value of H_2S in the
462	and even at 10 °C is only 5‰ (Seal, 2006). Based on this fractionation, the maximum
461	isotope fractionation between pyrite and H ₂ S (ϵ^{34} S _{Pyrite-H2S}) is 2‰ and 1‰, respectively,

471	Although seawater sulfate is ultimately the source for sulfur in the sulfide minerals
472	of most SEDEX deposits and sedimentary rocks (Leach et al., 2005; Rajabi et al., 2014),
473	the sulfate reduction pathways may be different as will be the resulting sulfur isotope
474	signatures. Bacterial sulfate reduction (BSR) will lead to very negative δ^{34} S values, as
475	was the case for syn-sedimentary framboidal pyrite in the Howard's Pass SEDEX Zn-
476	Pb deposit (-16.6 ‰ on average), whereas thermochemical sulfate reduction, which
477	might occur during diagenesis will produce very positive values (Gadd et al., 2016).
478	Sulfate reduction coupled with anaerobic oxidation of methane (SR-AOM) which
479	occurs in the sulfate-methane transition zone (SMTZ) during diagenesis, would also

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

480 produce H₂S with very positive δ^{34} S values (Borowski et al., 2013; Magnall et al., 2016; 481 Fernandes et al., 2017). The reason for such different sulfur isotope signatures is that at 482 the very low temperature of BSR the fractionation between sulfate and H₂S is very high, 483 it can reach 70 ‰ at the temperature of seawater on the ocean floor (Canfield, 2001; 484 Canfield et al., 2010; Sim et al., 2011; Wing and Halevy, 2014), whereas at the 485 temperatures required for thermochemical sulfate reduction (TSR), it is very low, e.g., 15 ‰ at 150°C (Seal, 2006). The positive δ^{34} S values of H₂S during SR-AOM are 486 487 due to the rapid reduction of infiltrated sulfate in sediment pores and strong Rayleigh 488 fractionation of sulfur isotopes during the oxidation of methane (Borowski et al., 2013; 489 Magnall et al., 2016; Fernandes et al., 2017). 490 *Pyrite 1* and 2 crystals generally have δ^{34} S values between -16 and -30 ‰, although 491 a small proportion of crystals have values > +20 ‰. This indicates that most of the 492 sulfur in *Pyrite 1 and 2* originated by bacterial sulfate reduction. Such negative δ^{34} S 493 values (<-16 ‰), even with BSR, however, would have required an open system with 494 an unlimited supply of seawater sulfate, e.g., within a seawater column above the 495 seawater-sediment interface in a restricted marine basin, like that of the modern Black 496 Sea (Lyons, 1997; Neretin et al., 2003). The observation that the δ^{34} S values of 497 individual pyrite ore laminae (Pyrite 1 and 2) vary within a very small range is

498 consistent with this conclusion (Fig. 14, Fig. 15 and Tables. 3 and 4). In contrast, as

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

499 *Pyrite 3* appears to have crystallized in sediment pores during diagenesis, its high δ^{34} S 500 likely resulted from either TSR or SR-AOM in response to a high geothermal gradient 501 or hydrothermal activity.

502 The genesis of *Pyrite 1 and 2*

503 As discussed above, the available evidence indicates that the micron-sized *Pyrite* 504 *I* cubes formed in the seawater column. We consider that this occurred rapidly (thereby 505 explaining the small size of the crystals) when a hot, iron-rich fluid mixed with cold 506 seawater containing H₂S that was being produced by bacterial reduction of sulfate. In 507 contrast, the much larger *Pyrite 2* crystals that enclose and overgrew *Pyrite 1* crystals 508 are interpreted to have formed later and much more slowly beneath the sediment-509 seawater interface. This pyrite preserved the laminar distribution of *Pyrite 1* effectively 510 and replaced Pyrite 1 to form coarse-grained laminae that are intercalated with the 511 Pyrite 1 laminae. We therefore conclude that Pyrite 1 and 2 formed syngenetically in 512 the water column and below the sediment-seawater interface, respectively. 513 The strongly negative δ^{34} S values of the bulk of the *Pyrite 1 and 2* crystals in the 514 Dajiangping deposit contrast with the predominantly positive δ^{34} S values of the major 515 sulfide minerals in most distal-type SEDEX Pb-Zn deposits with laminated ores. 516 Whereas the former can be explained simply by BSR, the latter require more convoluted 517 explanations. These explanations include strong Rayleigh fractionation by BSR, TSR

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

518 or anaerobic oxidation of methane (AOM) within closed or partly closed local 519 reservoirs, e.g., pores beneath the seawater-sediment interface (Lyons et al., 2006; 520 Magnall et al., 2016; Fernandes et al., 2017; Sangster, 2017) or euxinic water columns 521 in restricted basins where sulfate is quantitatively consumed by sulfide formation 522 (Goodfellow, 1987; Goodfellow and Lydon, 2007). As shown in Figures 14 and 15, the very homogenous δ^{34} S values of *Pyrite 1 and* 523 524 2 in individual laminae referred to above also indicate that these pyrite derived H_2S 525 from sea water, in which the sulfur isotope of H_2S are stable, like those in the modern 526 Black Sea (Neretin et al., 2003). Such feature contrast with the sulfur isotopic behavior in Pb-Zn SEDEX deposits where there is considerable δ^{34} S fractionation among the 527 528 major sulfide minerals on a very small scale, e.g., at HYC, Howard's Pass and Tom-529 Jason (Eldridge et al., 1993; Ireland et al., 2004; Gadd et al., 2016; Magnall et al., 2016; 530 Sangster, 2017). Importantly for the present study, this behavior is interpreted to reflect 531 sulfide mineralization in a thick sediment column in a relatively closed system, where 532 sulfate supply from the seawater column is slow and seawater sulfate in the pore fluids

- 533 is quantitatively reduced by BSR, TSR or anaerobic oxidation of methane (AOM).
- 534 These observations provide compelling evidence that the laminated ores of the
- 535 Dajiangping deposit could not have formed diagenetically in a deep sediment column
- 536 or epigenetically.

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

537	Although the δ^{34} S values of the <i>Pyrite 1 and 2</i> crystals are mostly negative, some
538	of these crystals also have positive values. The latter Pyrite 1 and 2 crystals are
539	indistinguishable from those with strongly negative $\delta^{34}S$ values, indicating that they
540	formed in the same environments (above and below the seawater-sediment interface,
541	respectively) and therefore were also the products of BSR. The reason for these high
542	$\delta^{34}S$ values is unclear. They may have resulted, however, from local disequilibrium
543	(sulfate supply < sulfate consumption), addition of toxins to the bacteria, or locally high
544	temperature in the water column due incomplete mixing of the seawater with the
545	hydrothermal fluid leading to TSR instead of BSR (Sangster, 2017).
546	Organic matter is essential to maintain the anoxic conditions on the sea floor
547	required for BSR and is also the main electron donor for sulfate (electron acceptor)
548	reduction. The similar C_{org}/Al values of the laminated pyrite ores and black shales
549	indicate that primary productivity in the water column was high and stable during both
550	the ore-forming and non-ore forming stages (Fig. 11), thereby ensuring that there was
551	sufficient stable organic matter accumulation on the sea floor for the BSR required to
552	crystallize large amounts of Pyrite 1 and 2. The abundance of micro-fossils (Figs. 6a
553	and b) in the carbonaceous limestone of the host strata at the margin of deposit, shows
554	that there was a high level of micro-organism activity in the shallow part of the basin
555	(Fig. 5). It is therefore possible that decomposition of these shelly animals may have

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

556 introduced abundant organic matter to the sediments, thereby providing the nutrients

557 for BSR.

558 The genesis of Pyrite 3

559	The distribution of <i>Pyrite 3</i> in the interstices among detrital grains, pores in sedimentary
560	layers and fractures of probable diagenetic origin (Fig. 9), suggest that crystallization
561	of <i>Pyrite 3</i> occurred during diagenesis. The mostly positive δ^{34} S values (-1.5 ‰ to
562	42.8 ‰; on average 5.7 ‰) of the Pyrite 3 crystals (Fig. 17) and the lack of highly
563	negative δ^{34} S values suggest that sulfur of this pyrite was reduced from sea water sulfate
564	by TSR. Assuming that the initial $\delta^{34}S_{sulfate}$ value of sea water sulfate in the pores was
565	approximately ~21‰, as discussed above, the δ^{34} S values of <i>Pyrite 3</i> can be explained
566	satisfactorily by ϵ $^{34}S_{SO4\text{-}H2S}$ values of TSR <20 ‰ at 100 °C (Machel, 2001), a
567	temperature that is reasonable for diagenesis. The extremely positive δ^{34} S values, e.g.,
568	42.8 ‰ in YF0204, for <i>Pyrite 3</i> also imply that anaerobic oxidation of methane (AOM)
569	was likely involved in the sulfate reduction (Borowski et al., 2013; Magnall et al., 2016;
570	Fernandes et al., 2017). The high variability of the δ^{34} S values of the diagenetic pyrite,
571	even at the scale of a single thin section (Fig. 16), is evidence of extensive Rayleigh
572	fractionation of sulfur isotopes during TSR or AOM in a very tightly closed system. It
573	therefore follows that Pyrite 3 must have crystallized in a relatively deep part of the
574	sediment pile well beneath the sediment-water interface during but more likely after

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

575 formation of the laminated ores.

576 An integrated model for the genesis of the Dajiangping deposit

577	Recent studies of the genesis of stratiform sediment-hosted sulfide deposits (Zn-
578	Pb deposits) have favored diagenetic models over the original syn-sedimentary-
579	exhalative (brine pool) model, even for the pre-ore pyrite. For example, Magnall et al.
580	(2016) concluded that pre-ore pyrite in the Tom-Jason Pb-Zn-Ba deposit formed
581	diagenetically in the sulfate-methane transition zone (SMTZ) of the sediments, with the
582	H ₂ S being derived from reduction of sulfate in pore fluids by anaerobic oxidation of
583	methane (AOM) and the iron being sourced from Fe^{2+} produced by the breakdown of
584	Fe-bearing minerals during diagenesis. It is difficult, however, to envisage such a
585	process producing the large tonnage (>200Mt) and high ore grade (52 wt.% Fe and 30
586	wt.% S) of the Dajiangping deposit, given the very low content of iron in the
587	surrounding black shales (Fig.10). Moreover, as has already been discussed, pyrite
588	formed in the SMTZ by AOM would be characterized by positive $\delta^{34}S$ values close to
589	or higher than those of sea water sulfate (Magnall et al., 2016; Fernandes et al., 2017;
590	Lin et al., 2017), which is not the case for the Dajiangping ores (strongly negative; see
591	above). In a variation of the diagenetic model, Gadd et al. (2015, 2016) proposed that
592	pyrite, sphalerite and other sulfide minerals of the main mineralization stage in the
593	Howard's Pass SEDEX Zn-Pb district crystallized in the pores of sediments, when

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

594	downwardly diffusing metal ions from a dense brine pool interacted with upwardly
595	diffusing H ₂ S reduced by TSR. The sulfide minerals in this deposit are also
596	characterized by positive $\delta^{34}S$ values, interpreted to have resulted from thermal
597	reduction of seawater sulfate in the pore fluids (TSR) in a closed system (Gadd et al.
598	2015; 2016). This model, too, is not applicable to the Dajiangping deposit because of
599	the strongly negative δ^{34} S values of the ores.
600	Fluid inclusion analyses and analyses of basinal brines have established that the
601	fluids responsible for metal transport in SEDEX Pb-Zn deposits have relatively high
602	salinity (6 to 20 wt.% NaCl equivalent) (Cooke et al., 2000; Sangster, 2002; Leach et
603	al., 2004). These metalliferous brines are vented at the seafloor and, depending on the
604	discharge rate, will either form a column that mixes with the overlying seawater (higher
605	temperature and higher discharge rate) or flow away from the vents as bottom-hugging
606	fluids and/or collect in depressions on the sea floor to form brine pools (lower
607	temperature and lower discharge rate). We propose that the former was the case for
608	Dajiangping deposit and that the predominantly syngenetic pyrite in this deposit
609	crystallized in a plume above the sediment-water interface, which mushroomed out and
610	mixed fully with ambient sea water, as observed for modern black smokers (Turner and
611	Campbell, 1987; Sangster, 2017). We further propose that the iron was transported as
612	FeCl ⁺ (Heinrich and Seward, 1990) and deposited as pyrite in a mixed seawater-brine

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

613 column with unlimited access to seawater sulfate, when it interacted with isotopically614 light reduced sulfur produced by BSR.

615	A genetic model is illustrated in Figure 18 and satisfactorily explains the formation
616	of the Dajiangping deposit. According to this model, iron was introduced along a
617	growth fault bounding a basin that developed as a result of rifting during the northward
618	drifting of the South China Block from Gondwana. The source of the iron, based on the
619	Pb isotopic composition of Pyrite 1 and 2, was the metamorphic basement (Zhang et
620	al., 1993; Chen et al., 1998b) (Fig. 13) and the agent of its transport was a hot brine,
621	which likely reached high temperature due to a relatively steep geothermal gradient
622	(Large et al., 2002; Leach et al., 2005). Syngenetic Pyrite 1 crystallized when the
623	metalliferous (FeCl ⁺ -rich) brine vented through the sea floor and mixed with anoxic
624	organic-rich bottom seawater in which the sulfate had undergone bacterial reduction to
625	H ₂ S (Figs. 18a and b). After fully mixing with the euxinic seawater, the metalliferous
626	brine became less buoyant and descended to the sea floor, where it began infiltrating
627	the underlying sediment. Pyrite was then able to crystallize slowly by surface-
628	controlled processes as coarse-grained pyrite (Pyrite 2) in a lower thermal gradient at
629	and below the sea floor, overgrowing and encompassing the accumulated Pyrite 1 (Fig.
630	18b). Each pulse of hot metalliferous brine exhalation would have resulted in rapid
631	crystallization of Pyrite 1 from ascending hot metalliferous fluids, forming fine-grained

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

632	pyrite layers, followed by subsequent crystallization of <i>Pyrite 2</i> in shallow muds to
633	form coarser-grained layers (Fig. 18b). As the H ₂ S in the seawater column was well
634	mixed and had a homogenous sulfur isotopic composition, Pyrite 1 and 2, having both
635	precipitated through interacting with H2S during the same exhalation, had the same
636	sulfur isotopic composition. Pyrite 3 crystallized diagenetically in pore spaces and
637	diagenetic fractures in the sediment column, through the interaction of Fe-bearing fluids
638	with sulfur reduced from infiltrated seawater sulfate by TSR and AOM (Fig. 18c). As
639	temperature increased due to increasing sediment deposition or the redox condition
640	became more reducing due to oxidation of organic matter in the deep sediments during
641	diagenesis, pyrrhotite also crystallized in the pores (Fig. 18c).

642 Conclusions

643 The Dajiangping sediment-hosted pyrite deposit, which is the largest pyrite deposit 644 in China, comprises stratiform orebodies with finely laminated ores similar to those of 645 many SEDEX deposits. It differs from most SEDEX deposits, however, in that the ores have strongly negative δ^{34} S values, reflecting bacterial sulfate reduction of seawater 646 647 sulfate in a completely open system. A model is proposed, in which the finely laminated 648 ores represent the rapid crystallization of pyrite in a thoroughly mixed metalliferous 649 vent fluid-seawater column containing abundant bacterially reduced sulfur (H2S). In 650 this model, each pulse of vent fluid-seawater mixture is marked by a waning stage in

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

which the column loses buoyancy and descends to the seafloor, infiltrating the underlying sediment to form coarser-grained intercalated pyrite layers through replacement of the preceding fine-grained pyrite layers. Minor proportions of pyrite formed in the pores of the sediment pile during diagenesis as a result of ongoing downward diffusion of seawater sulfate and its conversion to H₂S by TSR and AOM.

656 Acknowledgements

657 This study was supported by a grant from the National Natural Science Foundation 658 of China (41772087) and the Research Grant Council of Hong Kong (17306814). We 659 would like to express our thanks to the geologists of the Yunfu Guangye Pyrite Group 660 Limited, especially Junqiao Tu and Yicheng Wang for their help during our field trip to 661 the Dajiangping deposit. Thanks are also extended to Lu Chen and Zhian Bao of the 662 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest 663 University and Wei Terry Chen from the Institute of Geochemistry, Chinese Academy 664 of Sciences for their assistance with the in-situ sulfur isotope analyses. The manuscript 665 benefited from a review of an early version by John Malpas and was further improved 666 significantly as a result of the comments of two anonymous reviewers and associate 667 editor, Sarah Gleeson.

668

669

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

670 **REFERENCES**

671	Almodóvar, G. R., Sáez, R., Pons, J. M., Maestre, A., Toscano, M., and Pascual, E.,
672	1997, Geology and genesis of the Aznalcóllar massive sulphide deposits,
673	Iberian Pyrite Belt, Spain: Mineralium Deposita, v. 33, no. 1, p. 111-136.
674	Bao, Z., Chen, L., Zong, C., Yuan, H., Chen, K., and Dai, M., 2017, Development of
675	pressed sulfide powder tablets for in situ sulfur and lead isotope measurement
676	using LA-MC-ICP-MS: International Journal of Mass Spectrometry, v. 421, p.
677	255-262.
678	BGE723BGD, 1965, Detailed exploration report of Dajiangping prite deposit, Yunfu.,
679	44 p. (in Chinese with English abstract).
680	BGMRGD, 1988, Regional Geology of Guangxdong province, Geological
681	Publishing House, Beijing (in Chinese with English abstract).
682	Borowski, W. S., Rodriguez, N. M., Paull, C. K., and Ussler, W., 2013, Are ³⁴ S-
683	enriched authigenic sulfide minerals a proxy for elevated methane flux and gas
684	hydrates in the geologic record?: Marine and Petroleum Geology, v. 43, p.
685	381-395.
686	Bottrell, S. H., and Newton, R. J., 2006, Reconstruction of changes in global sulfur
687	cycling from marine sulfate isotopes: Earth-Science Reviews, v. 75, no. 1-4, p.
688	59-83.
689	Canfield, D., 2001, Biogeochemistry of sulfur isotopes: Reviews in Mineralogy and
690	Geochemistry, v. 43, no. 1, p. 607-636.
691	Canfield, D. E., Farquhar, J., and Zerkle, A. L., 2010, High isotope fractionations
692	during sulfate reduction in a low-sulfate euxinic ocean analog: Geology, v. 38,
693	no. 5, p. 415-418.
694	Chen, D., Chen, G., Pan, J., Ma, S., Dong, W., Gao, J., and Chen, X., 1998a,
695	Chracteristics of the hydrothermal sedimentation of the Dajiangping
696	superlarge pyrite deposit in Yunfu, Guangdong: Geochimica, v. 27, no. 1, p.
697	12-19. (in Chinese with English abstract).
698	Chen, D., Ma, S., Dong, W., Chen, X., Chen, G., and Gao, J., 1998b, Pb and Nd
699	isotopes of the Dajiangping pyrite deposit, Guangdong province, and its'
700	metallic ore source: Mineral Deposits, v. 17, no. 3, p. 215-223. (in Chinese
701	with English abstract).
702	Chen, D., Qing, H., Yan, X., and Li, H., 2006, Hydrothermal venting and basin
703	evolution (Devonian, South China): Constraints from rare earth element
704	geochemistry of chert: Sedimentary Geology, v. 183, no. 3, p. 203-216.
705	Chen, D., Tucker, M. E., Jiang, M., and Zhu, J., 2001, Long-distance correlation
706	between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.
707	and sequence stratigraphy in the Devonian of South China: Sedimentology, v.
708	48, no. 1, p. 57-78.
709	Chen, J., Walter, M. R., Logan, G. A., Hinman, M. C., and Summons, R. E., 2003, The
710	Paleoproterozoic McArthur River (HYC) Pb/Zn/Ag deposit of northern
711	Australia: organic geochemistry and ore genesis: Earth and Planetary Science
712	Letters, v. 210, no. 3, p. 467-479.
713	Chen, L., Chen, K., Bao, Z., Liang, P., Sun, T., and Yuan, H., 2017, Preparation of
714	standards for in situ sulfur isotope measurement in sulfides using femtosecond
715	laser ablation MC-ICP-MS: Journal of Analytical Atomic Spectrometry, v. 32,
716	no. 1, p. 107-116.
717	Chen, X., and Gao, J., 1987, Thermal water sedimentation and Pb-Zn-Barite deposits:
718	Acta Sedimentologica Sinica, v. 5, no. 3, p. 149-158. (in Chinese with English
719	abstract).
720	Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I., 1980, The age
721	curves of sulfur and oxygen isotopes in marine sulfate and their mutual
722	interpretation: Chemical Geology, v. 28, p. 199-260.
723	Cooke, D. R., Bull, S. W., Large, R. R., and McGoldrick, P. J., 2000, The importance
724	of oxidized brines for the formation of Australian proterozoic stratiform
725	sediment-hosted Pb-Zn (SEDEX) deposits: Economic Geology and the
726	Bulletin of the Society of Economic Geologists, v. 95, no. 1, p. 1-17.
727	Eldridge, C., Williams, N., and Walshe, J. L., 1993, Sulfur isotope variability in
728	sediment-hosted massive sulfide deposits as determined using the ion
729	microprobe SHRIMP: II. A study of the HYC Deposit at McArthur River,
730	Northern Territory, Australia: Economic Geology, v. 88, no. 1, p. 1-26.
731	Fernandes, N. A., Gleeson, S. A., Magnall, J. M., Creaser, R. A., Martel, E., Fischer,
732	B. J., and Sharp, R., 2017, The origin of Late Devonian (Frasnian) stratiform
733	and stratabound mudstone-hosted barite in the Selwyn Basin, Northwest
734	Territories, Canada: Marine and Petroleum Geology, v. 85, p. 1-15.
735	Gadd, M. G., Layton-Matthews, D., Peter, J. M., Paradis, S., and Jonasson, I. R.,
736	2016, The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin,
737	Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in
738	metal fixation: Mineralium Deposita, v. 52, no. 3, p. 1-15.
739	Gadd, M. G., Layton-Matthews, D., Peter, J. M., and Paradis, S. J., 2015, The world-
740	class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I:
741	trace element compositions of pyrite record input of hydrothermal, diagenetic,
742	and metamorphic fluids to mineralization: Mineralium Deposita, v. 51, no. 3,
743	p. 1-24.
744	Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., Shimizu, N., Gurenko, A., Meffre,

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

745	S., Thomas, H., Large, R. R., and Death, D., 2014, Optimisation of laser
746	parameters for the analysis of sulphur isotopes in sulphide minerals by laser
747	ablation ICP-MS: Journal of Analytical Atomic Spectrometry, v. 29, no. 6, p.
748	1042-1051.
749	Goodfellow, W. D., 1987, Anoxic stratified oceans as a source of sulphur in sediment-
750	hosted stratiform Zn-Pb deposits (Selwyn Basin, Yukon, Canada): Chemical
751	Geology: Isotope Geoscience section, v. 65, no. 3, p. 359-382.
752	Goodfellow, W. D., and Lydon, J. W., 2007, Sedimentary exhalative (SEDEX)
753	deposits: Mineral deposits of Canada: A synthesis of major deposit types,
754	district metallogeny, the evolution of geological provinces, and exploration
755	methods: Geological Association of Canada, Mineral Deposits Division,
756	Special Publication, no. 5, p. 163-183.
757	Gu, L., Khin, Z., Hu, W., Zhang, K., Ni, P., He, J., Xu, Y., Lu, J., and Lin, C., 2007,
758	Distinctive features of Late Palaeozoic massive sulphide deposits in South
759	China: Ore Geology Reviews, v. 31, no. 1, p. 107-138.
760	Heinrich, C. A., and Seward, T. M., 1990, A spectrophotometric study of aqueous iron
761	(II) chloride complexing from 25 to 200°C: Geochimica et Cosmochimica
762	Acta, v. 54, no. 8, p. 2207-2221.
763	Hinman, M., 1996, Constraints, timing and processes of stratiform base metal
764	mineralisation at the HYC Ag-Pb-Zn deposit, McArthur River, New
765	developments in metallogenic research: The McArthur, Mount Isa, Cloncurry
766	Minerals Province, Volume 56: Townsville, EGRU, p. 56-59.
767	Ireland, T., Large, R. R., McGoldrick, P., and Blake, M., 2004, Spatial distribution
768	patterns of sulfur isotopes, nodular carbonate, and ore textures in the
769	McArthur River (HYC) Zn-Pb-Ag deposit, Northern Territory, Australia:
770	Economic Geology, v. 99, no. 8, p. 1687-1709.
771	Kampschulte, A., and Strauss, H., 2004, The sulfur isotopic evolution of Phanerozoic
772	seawater based on the analysis of structurally substituted sulfate in carbonates:
773	Chemical Geology, v. 204, no. 3, p. 255-286.
774	Kozdon, R., Kita, N. T., Huberty, J. M., Fournelle, J. H., Johnson, C. A., and Valley, J.
775	W., 2010, In situ sulfur isotope analysis of sulfide minerals by SIMS:
776	Precision and accuracy, with application to thermometry of ~3.5 Ga Pilbara
777	cherts: Chemical Geology, v. 275, no. 3, p. 243-253.
778	Lai, Y., 1996, Devoian-Carboniferous sedimentary basin structure and stratatound
779	deposits in Guangdong: Guangdong Geology, v. 11, no. 2, p. 27-37. (in
780	Chinese with English abstract).
781	Large, R. R., Bull, S. W., Cooke, D. R., and McGoldrick, P. J., 1998, A genetic model
782	for the H.Y.C. Deposit, Australia: Based on regional sedimentology,

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

783	geochemistry, and sulfide-sediment relationships: Economic Geology, v. 93,
784	no. 8, p. 1345-1368.
785	Large, R. R., Bull, S. W., McGoldrick, P. J., and Walters, S., 2005, Stratiform and
786	strata-bound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern
787	Australia: Economic Geology, v. 100, p. 931-963.
788	Large, R. R., Bull, S. W., Selley, D., Yang, J., Cooke, D., Garven, G., and
789	McGoldrick, P., 2002, Controls on the formation of giant stratiform sediment-
790	hosted Zn-Pb-Ag deposits: With particular reference to the north Australian
791	Proterozoic: University of Tasmania, Centre for Ore Deposit Research Special
792	Publication, v. 4, p. 107-149.
793	Leach, D., Sangster, D., Kelley, K., Large, R. R., Garven, G., Allen, C., Gutzmer, J.,
794	and Walters, S., 2005, Sediment-hosted lead-zinc deposits: A global
795	perspective: Economic Geology, v. 100, p. 561-607.
796	Leach, D. L., Marsh, E., Emsbo, P., Rombach, C. S., Kelley, K. D., and Anthony, M.,
797	2004, Nature of Hydrothermal Fluids at the Shale-Hosted Red Dog Zn-Pb-Ag
798	Deposits, Brooks Range, Alaska: Economic Geology, v. 99, no. 7, p. 1449-
799	1480.
800	Lin, Z., Sun, X., Strauss, H., Lu, Y., Gong, J., Xu, L., Lu, H., Teichert, B. M. A., and
801	Peckmann, J., 2017, Multiple sulfur isotope constraints on sulfate-driven
802	anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage
803	areas of the South China Sea: Geochimica et Cosmochimica Acta, v. 211, p.
804	153-173.
805	Lyons, T. W., 1997, Sulfur isotopic trends and pathways of iron sulfide formation in
806	upper Holocene sediments of the anoxic Black Sea: Geochimica et
807	Cosmochimica Acta, v. 61, no. 16, p. 3367-3382.
808	Lyons, T. W., Gellatly, A. M., McGoldrick, P. J., and Kah, L. C., 2006, Proterozoic
809	sedimentary exhalative (SEDEX) deposits and links to evolving global ocean
810	chemistry: Geological Society of America Memoirs, v. 198, p. 169-184.
811	Machel, H. G., 2001, Bacterial and thermochemical sulfate reduction in diagenetic
812	settings-old and new insights: Sedimentary Geology, v. 140, no. 1-2, p. 143-
813	175.
814	Magnall, J. M., Gleeson, S. A., and Paradis, S., 2015, The importance of siliceous
815	radiolarian-bearing mudstones in the formation of sediment-hosted Zn-Pb±Ba
816	mineralization in the Selwyn Basin, Yukon, Canada: Economic Geology, v.
817	110, no. 8, p. 2139-2146.
818	Magnall, J. M., Gleeson, S. A., Stern, R. A., Newton, R. J., Poulton, S. W., and
819	Paradis, S., 2016, Open system sulphate reduction in a diagenetic environment
820	– Isotopic analysis of barite (δ^{34} S and δ^{18} O) and pyrite (δ^{34} S) from the Tom

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

821	and Jason Late Devonian Zn-Pb-Ba deposits, Selwyn Basin, Canada:
822	Geochimica et Cosmochimica Acta, v. 180, p. 146-163.
823	Mason, P. R., Košler, J., de Hoog, J. C., Sylvester, P. J., and Meffan-Main, S., 2006, In
824	situ determination of sulfur isotopes in sulfur-rich materials by laser ablation
825	multiple-collector inductively coupled plasma mass spectrometry (LA-MC-
826	ICP-MS): Journal of Analytical Atomic Spectrometry, v. 21, no. 2, p. 177-186.
827	Metcalfe, I., 2006, Palaeozoic and Mesozoic tectonic evolution and palaeogeography
828	of East Asian crustal fragments: The Korean Peninsula in context: Gondwana
829	Research, v. 9, no. 1, p. 24-46.
830	Neretin, L. N., Böttcher, M. E., and Grinenko, V. A., 2003, Sulfur isotope
831	geochemistry of the Black Sea water column: Chemical Geology, v. 200, no. 1,
832	p. 59-69.
833	Pan, J., and Zhang, Q., 1994, A preliminary discussion on geochemical chracteristics
834	and genesis of the Dajiangping pyrite deposit, western Guangdong Province:
835	Mineral deposits, v. 13, no. 3, p. 231-241. (in Chinese with English abstract).
836	Pei, T., 1989, Geological Characteristics and Genesis of the Hongyan pyrite deposits
837	in Yinde County, Guangdong Province: Mineral Deposits, v. 8, no. 2, p. 81-90.
838	(in Chinese with English abstract).
839	Perkins, W. G., and Bell, T. H., 1998, Stratiform replacement lead-zinc deposits: A
840	comparison between Mount Isa, Hilton, and McArthur River: Economic
841	Geology, v. 93, no. 8, p. 1190-1212.
842	Qiu, W. J., Zhou, MF., and Liu, Z. R., 2018, Late Paleozoic SEDEX deposits in
843	South China formed in a carbonate platform at the northern margin of
844	Gondwana: Journal of Asian Earth Sciences, v. 156, p. 41-58.
845	Rajabi, A., Rastad, E., Canet, C., and Alfonso, P., 2014, The early Cambrian Chahmir
846	shale-hosted Zn-Pb deposit, Central Iran: an example of vent-proximal
847	SEDEX mineralization: Mineralium Deposita, v. 50, no. 5, p. 1-20.
848	Sangster, D. F., 2002, The role of dense brines in the formation of vent-distal
849	sedimentary-exhalative (SEDEX) lead-zinc deposits: field and laboratory
850	evidence: Mineralium Deposita, v. 37, no. 2, p. 149-157.
851	Sangster, D. F., 2017, Toward an integrated genetic model for vent-distal SEDEX
852	deposits: Mineralium Deposita, p. 1-19.
853	Seal, R. R., 2006, Sulfur isotope geochemistry of sulfide minerals: Reviews in
854	Mineralogy and Geochemistry, v. 61, no. 1, p. 633-677.
855	Sim, M. S., Bosak, T., and Ono, S., 2011, Large sulfur isotope fractionation does not
856	require disproportionation: Science, v. 333, no. 6038, p. 74-77.
857	Stacey, J. S., and Kramers, J. D., 1975, Approximation of terrestrial lead isotope
858	evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, no.

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

859	2, p. 207-221.
860	Turner, J. S., and Campbell, I. H., 1987, Temperature, density and buoyancy fluxes in
861	"black smoker" plumes, and the criterion for buoyancy reversal: Earth and
862	Planetary Science Letters, v. 86, no. 1, p. 85-92.
863	Ulrich, T., Long, D., Kamber, B., and Whitehouse, M., 2011, In situ trace element and
864	sulfur isotope analysis of pyrite in a paleoproterozoic gold placer deposit,
865	Pardo and Clement Townships, Ontario, Canada: Economic Geology, v. 106,
866	no. 4, p. 667-686.
867	Wan, Y., Liu, D., Wilde, S. A., Cao, J., Chen, B., Dong, C., Song, B., and Du, L.,
868	2010, Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP
869	zircon U-Pb dating, geochemistry and Nd isotope: Journal of Asian Earth
870	Sciences, v. 37, no. 2, p. 140-153.
871	Wang, D., Zheng, J., Ma, Q., Griffin, W. L., Zhao, H., and Wong, J., 2013a, Early
872	Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China:
873	Lithos, v. 175, p. 124-145.
874	Wang, H., Li, H., Wang, Y., and Wang, H., 1996, The mineralization age of
875	Guangdong Dajiangping massive sulfide deposit- Rb-Sr isotopic study of
876	siliceous rock: Chinese Science Bulletin, v. 41, no. 21, p. 1960-1962. (in
877	Chinese with English abstract).
878	Wang, Y., Zhang, A., Fan, W., Zhang, Y., and Zhang, Y., 2013b, Origin of
879	paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block:
880	Geochronological and geochemical evidence: Lithos, v. 160-161, no. 0, p. 37-
881	54.
882	Wang, Y., Zhang, Y., Fan, W., and Peng, T., 2005, Structural signatures and ⁴⁰ Ar/ ³⁹ Ar
883	geochronology of the Indosinian Xuefengshan tectonic belt, South China
884	Block: Journal of Structural Geology, v. 27, no. 6, p. 985-998.
885	Williams, N., 1978, Studies of the base metal sulfide deposits at McArthur River,
886	Northern Territory, Australia; I, The Cooley and Ridge deposits: Economic
887	Geology, v. 73, no. 6, p. 1005-1035.
888	Wing, B. A., and Halevy, I., 2014, Intracellular metabolite levels shape sulfur isotope
889	fractionation during microbial sulfate respiration: Proceedings of the National
890	Academy of Sciences, v. 111, no. 51, p. 18116-18125.
891	Xu, K., Wang, H., Zhou, J., and Zhu, J., 1996, A discussion on the exhalative
892	sedimentary massive sulfide deposits of South China: Geological Journal of
893	China Universities, v. 3, p. 242-257. (in Chinese with English abstract).
894	Yang, Z., Chen, K., Cheng, S., Mao, X., and Jiang, D., 1996, Late Paleozoic
895	sedimentary basin-extension and metallogenic in the northern Guangdong
896	Province, China: Geology and Mineral Resources of South China, v. 3, p. 23-

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

897	30. (in Chinese with English abstract).
898	Zhang, B., Zhang, Q., and Pan, J., 1994, Trace element characteristics and their
899	geological significance of Dajiangping Pyrite Deposit, Western Guangdong:
900	Geology and Prospecting, v. 30, no. 4, p. 66-71. (in Chinese with English
901	abstract).
902	Zhang, Q., Zhang, B., Cao, Y., Pan, J., Zeng, t., and Hao, s., 1993, Priliminary
903	discussion on sulfur and lead isotope compositions of the Dajiangping Pyrite
904	Deposit in Western Guangdong Province: Acta Geologica Sinica, v. 67, no. 3,
905	p. 232-243. (in Chinese with English abstract).
906	Zhang, Q., Zhang, B., Pan, J., and Cao, Y., 1992, The characteristics and REE element
907	pattern of hydrothermal sedimentary silecious rock in Dajiangping Pyrite
908	Deposit: Chinese Science Bulletin, v. 37, no. 17, p. 1588-1591. (in Chinese
909	with English abstract).
910	Zhang, X., Xu, X., Xia, Y., and Liu, L., 2017, Early Paleozoic intracontinental
911	orogeny and post-orogenic extension in the South China Block: Insights from
912	volcanic rocks: Journal of Asian Earth Sciences, v. 141, p. 24-42.
913	Zhao, J., Zhou, MF., Yan, D., Zheng, J., and Li, J., 2011, Reappraisal of the ages of
914	Neoproterozoic strata in South China: no connection with the Grenvillian
915	orogeny: Geology, v. 39, no. 4, p. 299-302.
916	Zhao, X., Mark B, A., Andrew G, W., and Simon P, P., 1996, Rift-related Devonian
917	sedimentation and basin development in South China: Journal of Southeast
918	Asian Earth Sciences, v. 14, no. 1, p. 37-52.
919	Zhong, Z., You, Z., Zhou, H., and Han, Y., 1996, The evolution and basic structural
920	framework of the basement of the Yunkai uplift: Regional Geology of China,
921	v. 1, p. 36-43. (in Chinese with English abstract).
922	Zhou, Y., 1990, On sedimentary geochemistry of siliceous rocks originated from
923	hydrothermal water in the Nandan-Hechi Basin: Acta Sedimentologica Sinica,
924	v. 8, no. 3, p. 75-83. (in Chinese with English abstract).
925	
926	
927	
928	
929	

⁴²

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

930 Figure captions

931	Fig. 1. A map of southern China showing the location of the Dajiangping pyrite deposit,
932	SEDEX Pb-Zn deposits, SEDEX barite deposits, major structural elements and the
933	distribution of Devonian-Carboniferous sedimentary strata.
934	
935	Fig. 2. A simplified geological map of the Yunfu region. Modified from the Yunfu
936	Dagangshan 1:50000 geological map of the region (BGE723BGD, 1965).
937	
938	Fig. 3. A geological map of the Dajiangping deposit. The locations of cross-section A-
939	B and cross-section C-D are identified on the map. Modified from a local geological
940	map of the Dajiangping deposit (BGE723BGD, 1965).
940 941	map of the Dajiangping deposit (BGE723BGD, 1965).
940 941 942	map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from
940 941 942 943	map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from open pit of the Dajiangping pyrite deposit. A and B. Stratiform pyrite orebodies showing
940 941 942 943 944	 map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from open pit of the Dajiangping pyrite deposit. A and B. Stratiform pyrite orebodies showing the conformable nature of the mineralization; C. Laminated pyrite ore intercalated with
940 941 942 943 944 945	 map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from open pit of the Dajiangping pyrite deposit. A and B. Stratiform pyrite orebodies showing the conformable nature of the mineralization; C. Laminated pyrite ore intercalated with black shale; D. A 'Slump fold' developed in laminated pyrite ore; E. Massive pyrite ore
 940 941 942 943 944 945 946 	map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from open pit of the Dajiangping pyrite deposit. A and B. Stratiform pyrite orebodies showing the conformable nature of the mineralization; C. Laminated pyrite ore intercalated with black shale; D. A 'Slump fold' developed in laminated pyrite ore; E. Massive pyrite ore with a weakly preserved laminar structure and minor sedimentary clasts; F. Laminated
 940 941 942 943 944 945 946 947 	map of the Dajiangping deposit (BGE723BGD, 1965). Fig. 4. Photographs of the stratiform orebodies and different types of pyrite ores from open pit of the Dajiangping pyrite deposit. A and B. Stratiform pyrite orebodies showing the conformable nature of the mineralization; C. Laminated pyrite ore intercalated with black shale; D. A 'Slump fold' developed in laminated pyrite ore; E. Massive pyrite ore with a weakly preserved laminar structure and minor sedimentary clasts; F. Laminated pyrite ore intercalated with black shale, chert and siltstone; G. Massive pyrite ore cut

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

950	Fig. 5. Schematic stratigraphic columns and images of representative drill hole samples
951	from each sedimentary and mineralized unit. The stratigraphy was established from drill
952	hole YF02, which penetrates the stratigraphic interval hosting the deposit adjacent to
953	mineralization, and is subdivided into three sedimentary units, namely the Lower Unit,
954	Middle Unit and Upper Unit. The mineralized stratigraphy of the orebodies was
955	established from drill hole YF04, which penetrates the full mineralized succession in
956	the center of deposit, and is subdivided into four mineralized units, namely M1, M2,
957	M3 and M4.
958	
959	Fig. 6. Photomicrographs of carbonaceous limestone from the strata hosting the ore and
960	mica-quartz schist from the metamorphic basement below the deposit. A and B. Typical
961	carbonaceous limestone containing crinoid and brachiopod fossils; C and D. Mica-
962	quartz schist.
963	
964	Fig. 7. Photomicrographs of typical laminated pyrite ore and black shale taken in
965	reflected and transmitted light. A. A hand specimen of laminated pyrite ore consisting
966	of pyrite layers, black shale layers and siltstone layers. B and D. Enlargements of parts
967	of pyrite layers composed of coarse-grained pyrite (B1, D1), quartz and calcite. The

44

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

968	quartz and calcite occur between the pyrite crystals and display a comb-texture
969	perpendicular to the crystal faces of pyrite grains (B2, D2). C. Black shale layers
970	composed of bedding-parallel muscovite/illite and quartz (C2) with minor disseminated
971	fine-grained pyrite (C1). E. Siltstone layers dominated by quartz and clasts of other
972	silicate minerals and muscovite/illite (E2) with minor disseminated fine-grained pyrite
973	(E1). Py= <i>Pyrite</i> , Qz=quartz, Cal=calcite, Ms=Muscovite.

975 Fig. 8. Photomicrographs showing representative textures of the laminated pyrite ores 976 under reflected light. A. Laminated pyrite ores showing the intercalation of detrital 977 sedimentary layers with fine-grained pyrite (Pyrite1) and pyrite layers composed of 978 coarse-grained pyrite aggregates (Pyrite 2). B. A gradual transition from thick coarse-979 grained pyrite layers (Pyrite 2) to layers of fine-grained pyrite (Pyrite 1). C. Cubes and 980 needles of Pyrite 1 and coarse anhedral-subhedral Pyrite 2; D. Small euhedra of Pyrite 981 I enclosed in a large subhedral Pyrite 2 crystal. E and F. Overgrowths of anhedral Pyrite 982 2 on fine-grained Pyrite 1 aggregates. Py1=Pyrite 1, Py 2=Pyrite 2, Qz=quartz, 983 Cal=calcite, Kfs=K-feldspar.

984

Fig. 9. A and B. Photographs of thin sections showing *Pyrite 3* in fractures (diagenetic?)

986 and pore spaces between sedimentary layers. C. Reflected light image of anhedral

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

987	Pyrite 3 and pyrrhotite (Po) in the interstices between sedimentary clasts. D. Porous
988	Pyrite 3 (Py3) and pyrrhotite (Po). E. Pyrite 3 (Py3) filling pores between clasts. F.
989	Pyrrhotite in a fracture (diagenetic?) cutting black shale. Py 3=Pyrite 3, Po=pyrrhotite.
990	

- Fig. 10. Stratigraphic profiles showing concentrations of S, C_{org} (Organic carbon),
 TFe₂O₃ (total iron), Al₂O₃, SiO₂, MnO and ZnO+PbO against depth in drill hole YF04
 (Table 1). Also shown is the stratigraphic column for drill hole YF04 illustrating the
 distribution of the various ore and sedimentary units. The filled black spots represent
 samples of laminated ores, the hollow circles represent samples of black shale or low
 grade ores.
- 997

998	Fig. 11. Binary plots of the concentrations of S vs. Fe, Al ₂ O ₃ vs. Fe ₂ O ₃ , Al ₂ O ₃ vs. TiO ₂ ,
999	Al ₂ O ₃ vs. K ₂ O, SiO ₂ /Al ₂ O ₃ vs. K ₂ O/Al ₂ O ₃ , SiO ₂ /Al ₂ O ₃ vs. TiO ₂ , S vs. C _{org} and S vs.
1000	Corg/Al for bulk samples from drill hole YFO2 and YF04. The filled black spots
1001	represent samples of laminated ores from drill hole YF04, the hollow circles represent
1002	samples of black shale from drill hole YF04 and the grey squares represent samples of
1003	black shale from the Upper Unit in drill hole YF02.

1005 Fig. 12. Histograms showing net mass changes of elements and oxides for ores from

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1006	the three major mineralized units (M2, M3, M4) of drill hole YF04 relative to the
1007	unmineralized black shale in the Upper Unit intersected in drill hole YF02 ~1km south
1008	of the deposit.
1009	

1010 Fig. 13. Lead isotope compositions of *Pyrite 1* and 2 in the laminated ores. Also shown 1011 is the Pb isotope composition (asterisks and shaded area) of the metamorphic basement 1012 rocks in the Wuchuan-Sihui region (Zhang et al., 1993). The growth curves of two stage 1013 evolution model of Stacey and Kramer (Stacey and Kramers, 1975) with μ =9.5 and

- 1014 μ =11 are shown in ²⁰⁶Pb/²⁰⁴Pb vs ²⁰⁷Pb/²⁰⁴Pb.
- 1015

1016	Fig. 14.	Images of the	laminated pyrite ores	in three representative	samples from drill
------	----------	---------------	-----------------------	-------------------------	--------------------

1017 hole YF04 showing the in-situ-determined δ^{34} S values of *Pyrite 1 and 2* crystals. A to

1018 C. The δ^{34} S values of *Pyrite 1* and 2 crystals are all negative and very similar in a single

- sample, either within single layers or in multiple layers. Py1=Pyrite 1, Py 2=Pyrite 2.
- 1020

1021 Fig. 15. Variation of δ^{34} S values of each analyze spots of *Pyrite 1* and *Pyrite 2* of

1022 different laminations in two representative laminated ore samples YF10-2 and YF46-1.

1023

1024 Fig. 16. A to E. Images showing *Pyrite 3* and pyrrhotite crystals in five representative

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1025 black shale samples. The pyrite crystals all have positive δ^{34} S values, some of which

- 1026 vary considerably in the same sample. Py 3=Pyrite 3, Po=pyrrhotite.
- 1027

1028 Fig. 17. A histogram of sulfur isotopic compositions for the different pyrite types 1029 representing results of both in-situ analyses and analyses of pyrite separates. The 1030 samples were taken from both drill holes and the open pit. *Pyrite 1 and 2* crystals and 1031 pyrite separates of laminated pyrite ores exhibit a wide range of δ^{34} S values, although 1032 most of them are concentrated between -16 ‰ and -30 ‰. *Pyrite 3* crystals mostly have 1033 positive δ^{34} S values with a mode of ~5 ‰. Py1=*Pyrite 1*, Py 2=*Pyrite 2*, Py 3=*Pyrite 3*.

1034

1035 Fig. 18 A cartoon showing a model for the formation of the Dajiangping pyrite deposit. 1036 A. Syn-sedimentary sulfide deposition is associated with the venting of hydrothermal 1037 fluids and their mixing with seawater in a H_2S -rich basin that experienced intense 1038 sulfate-reducing bacterial activity, producing pyrite with strongly negative δ^{34} S values. 1039 B. Rapid crystallization of *Pyrite 1* in a mushrooming column, in which vent fluid 1040 mixed with H₂S-rich seawater, and slower crystallization of Pyrite 2 as the column 1041 collapses and the fluid collects on the seafloor and infiltrates the underlying sediment. 1042 C. Percolation of fresh seawater into fractures and pores of muds during diagenesis, 1043 leading to the crystallization of *Pyrite 3* and pyrrhotite by thermochemical sulfate

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1044	reduction (TSR) and anaerobic oxidation of methane coupled to sulfate reduction
1045	(AOM-SR). Py1=Pyrite 1, Py 2=Pyrite 2, Py 3=Pyrite 3, Po =pyrrhotite.
1046	
1047	
1048	
1049	
1050	
1051	
1052	
1053	
1054	
1055	
1056	
1057	
1058	
1059	
1060	
1061	
1062	Appendix

- 1064 Major element and organic carbon concentrations of the bulk samples were analyzed
- 1065 by ALS Minerals/ALS Chemex Co. Ltd, Guangzhou, China.
- 1066 *Pyrite ores with high sulfur contents (>3 wt.%):*
- 1067 A powdered sample (0.2 g) was added to a lithium metaborate/lithium tetraborate flux
- 1068 (0.9 g), mixed well and fused in a furnace at 1000°C. The resulting melt was then cooled
- 1069 and dissolved in 100 mL of 4% nitric acid/2% hydrochloric acid. This solution was
- 1070 analyzed by ICP-AES and the results were corrected for spectral inter-element
- 1071 interferences. The oxide concentration was calculated from the elemental concentration
- 1072 and the result was reported in that format.
- 1073 Sedimentary rocks with low sulfur contents (<3 wt.%):
- 1074 A calcined or ignited sample (0.9 g) was added to 9 g of lithium borate flux (50% 50%
- 1075 Li₂B₄O₇- LiBO₂), mixed well and fused in an auto fluxer between 1050 1100°C. A
- 1076 flat molten glass disc was prepared from the resulting melt. This disc was then analysed
- 1077 by X-ray fluorescence spectrometry. The organic carbon content was measured using a
- 1078 LECO CS-200 analyzer after the samples had been treated with hydrochloric acid to
- 1079 remove carbonates.

1080 In-situ sulfur isotope analyses by LA-MC-ICPMS

1081 In-situ sulfur isotope analyses of the pyrite were performed using a Nu Plasma 1700

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1082	MC-ICP-MS (Nu instruments, UK) equipped with a Resolution M-50 193nm ArF
1083	Excimer laser ablation system at the State Key Laboratory of Continental Dynamics,
1084	Northwest University, Xi'an, China (Bao et al., 2017; Chen et al., 2017). Samples were
1085	ablated in He gas (gas flow = 0.28 L/min) and Ar gas (gas flow = 0.96 L/min) within a
1086	two-volume chamber (Laurin Technic S-155). Sulfur isotope concentrations were
1087	analyzed at high resolution. During the ablation, data were collected in a static mode
1088	(³² S, ³⁴ S). Single spots of pyrite grains were ablated at a spatial resolution of 37 to 53
1089	μ m, using a fluence of 3.7 J/cm2 at 2-4 Hz. The total S signal obtained for pyrite was
1090	typically 8-12 V. Under these conditions, after a 30 s baseline, 50 s of ablation was
1091	needed to obtain an internal precision of ${}^{34}S/{}^{32}S \le \pm 0.000002$ (1 SE). Two pyrite
1092	standards were used for external standard bracketing (Py-4) and quality control (PTST-
1093	2) of analyses (Chen et al., 2017). Their $\delta^{34}S_{CDT}$ values had been determined by GS-
1094	MS or solution introduced MC-ICP-MS. For a $\delta^{34}S_{CDT}$ (‰) value of 32.5 ‰ of PTST-
1095	2, the average value was determined to be 33 ± 0.6 (2SD, n=63). The external precision
1096	of the standard is less than 0.3 (2SD, n=150).
1097	Additional in-situ S isotope analyses of pyrite were performed at the laboratory of
1098	the Geological Survey of Finland in Espoo using a Nu Plasma HR multicollector
1099	ICPMS equipped with a Photon Machine Analyte G2 laser microprobe (Müller et al.,
1100	2009). Samples were ablated at a spatial resolution of 50 μ m, using a fluence of 0.83

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

conditions, after a 20 s baseline, 50-60 s of ablation was needed to obtain an internal precision of ${}^{34}S/{}^{32}S \le \pm 0.000005$ (1 SE). Two pyrite standards were used for external standard bracketing (PPP-1) and quality control (Py2) of analyses (Gilbert et al., 2014). The in-house standard Py2 was previously measured by gas mass spectrometry. For a $\delta^{34}S_{CDT}$ (‰) value of -0.4 ± 0.5 ‰ (1s), the average value was - 0.22 ± 0.35 (1s, n=35). Sulfur isotope composition of pyrite separates

J/cm² at 5Hz. The total S signal obtained for pyrite was typically 1.9-2.3 V. Under these

1101

1109 Sulfur isotope analyses of the pyrite separates were carried out at the State Key 1110 Laboratory of Environmental Geochemistry, Institute of Geochemistry (Guiyang), 1111 Chinese Academy of Sciences. Mineral separates were extracted from crushed and 1112 washed sample fragments and were selected by handpicking under a binocular 1113 microscope to achieve a purity of >99%. Sulfur was extracted with a continuous flow 1114 device, wherein 0.2 to 0.3 mg of sulfide was converted to SO₂ in an EA-IsoPrime isotope ratio mass spectrometer (Euro3000, GV instruments). The δ^{34} S values are 1115 1116 reported relative to the Canyon Diablo Troilite standard (CDT) and were calibrated by 1117 the international standard sample GBW-4414 (Ag₂S, δ^{34} S = -0.07 ‰).

1118 In-situ lead isotope analyses by LA-MC-ICPMS

1119 In-situ lead isotopic analyses of pyrite and chalcopyrite were conducted on 50 - 100-

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1120	µm-thick polished sections, using a Nu Plasma [™] multi-collector ICPMS with a
1121	femtosecond laser ablation system (NWR UPFemto, ESI, USA) (fLA-MC-ICPMS) at
1122	the State Key Laboratory of Continental Dynamics, Northwest University, Xian, China.
1123	A detailed description of the analytical procedure is available in Chen et al. (2014) and
1124	Yuan et al. (2013). Argon and helium were used as the carrier gases for laser ablation.
1125	The aerosol from the ablation cell was mixed with Tl (argon with Tl) in a glass aerosol
1126	homogenizer and then introduced into the ICP for atomization and ionization. During
1127	the instrumental analysis, the intensities of the ion beams of 202 Hg, 203 Tl, 204 Pb + Hg,
1128	²⁰⁵ Tl, ²⁰⁶ Pb, ²⁰⁷ Pb and ²⁰⁸ Pb were monitored simultaneously with Faraday collectors L4,
1129	L3, L2, L1, Ax, H1 and H2, respectively. The concentrations of lead and mercury in the
1130	gas blank were lower than 10 and 20 pg/l, respectively, and thus their contributions to
1131	the analyses were negligible. Thallium was used to monitor and correct for instrumental
1132	mass discrimination, and ²⁰² Hg was used to correct for the isobaric overlap of ²⁰⁴ Hg on
1133	²⁰⁴ Pb. The interference of ²⁰⁴ Hg on ²⁰⁴ Pb was corrected to enable use of the natural
1134	abundance ratio ${}^{204}\text{Hg}/{}^{202}\text{Hg} = 0.229883$ (${}^{202}\text{Hg} = 0.29863$ and ${}^{204}\text{Hg} = 0.06865$)
1135	adjusted for instrumental mass fractionation as monitored by the $^{205}\text{Tl}/^{203}\text{Tl}$ ratio. The
1136	204 Hg/ 204 Pb ratios varied from day to day, but they were <20 ppm in the experimental
1137	system when the ion beam of 204 Pb had an intensity >0.25 V.

1138 The acquisition of the MC-ICP-MS data employed the time-resolved analysis

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

1139	(TRA) mode with an integration time of 0.2 s, and laser ablation was performed in the
1140	line scan ablation mode at a speed of 5 $\mu\text{m/s}$ with the laser beam focused on the sample
1141	surface. Each line scan analysis consisted of background collection for 40 s followed
1142	by an additional 50 s of ablation for signal collection and 40 s of wash time to reduce
1143	memory effects and to allow the instrument to stabilize after each analysis. All of the
1144	recorded Pb and Hg signals were corrected for background by subtracting the
1145	background signals (gas blank and dark noise signals) from the corresponding gross
1146	signals (signals obtained after firing the laser), whereas the Tl signals were corrected
1147	for background by subtracting the average dark noise signals (stability 25 ppm at 10
1148	min). To ensure the stability of the ²⁰⁸ Pb signal obtained from different samples with
1149	disparate Pb concentrations, samples were ablated with laser line scans approximately
1150	120 μm in length and 30–65 μm in width with adjustable laser frequency. NIST SRM
1151	610 was used as a quality control sample (Yuan et al. 2013), and was analyzed once for
1152	every five sample points. The average Pb isotopic compositions of NIST SRM 610 in
1153	this study are: ${}^{208}Pb/{}^{204}Pb = 36.981 \pm 0.004$; ${}^{207}Pb/204Pb = 15.515 \pm 0.001$; ${}^{206}Pb/{}^{204}Pb$
1154	= 17.052 ± 0.001 (1 σ), and are similar to those of the reference values of NIST SRM610:
1155	$^{208}Pb/^{204}Pb=36.964 \pm 0.022; \ ^{207}Pb/^{204}Pb=15.504 \pm 0.001; \ ^{206}Pb/^{204}Pb=17.045 \pm 0.008$
1156	(2σ).

	1			1	17				5									
Sample	YF04-01	YF04-02	YF04-03	YF04-04	YF04-05	YF04-06	YF04-07	YF04-08	YF04-09	YF04-10	YF04-11	YF04-12	YF04-13	YF04-14	YF04-15	YF04-16	YF04-17	YF04-18
Rock	Ore	Host	Host	Ore	Ore	Ore	Ore	Ore	Host	Host	Host	Host	Host	Host	Ore	Host	Host	Host
Depth(m)	35.4	36.0	37.6	38.2	41.0	43.5	45.0	47.0	50.0	54.0	56.0	59.0	62.5	68.0	70.0	77.0	81.0	85.0
S(%)	2.98	2.59	26.84	18.84	18.52	21.00	22.48	1.45	1.75	1.75	1.65	1.77	1.93	6.18	1.46	1.00	1.62	26.52
Corg(%)	0.87	1.57	1.58	0.88	0.66	0.80	0.76	0.70	1.71	2.21	1.19	1.26	1.47	2.20	1.34	1.40	0.95	1.41
Major oxides (wt	. %)																	
SiO_2	36.23	56.88	61.95	39.33	28.73	38.96	42.54	39.74	68.66	69.96	69.19	65.15	64.10	75.46	61.45	71.71	67.14	68.47
Al_2O_3	5.63	12.48	11.66	3.66	5.31	7.54	6.95	6.10	13.38	11.22	13.20	10.83	12.07	5.02	12.35	10.14	14.25	14.60
Fe_2O_{3t}	33.26	4.00	3.40	33.70	23.67	22.17	26.68	28.59	3.66	4.18	3.68	3.39	4.24	4.91	11.24	3.45	3.83	4.04
K ₂ O	1.54	3.28	3.16	1.05	1.49	2.18	2.16	1.94	3.76	3.64	4.15	3.29	3.53	1.48	3.60	2.90	4.39	4.71
Na ₂ O	0.04	0.06	0.04	0.03	0.04	0.05	0.04	0.04	0.12	0.05	0.10	0.04	0.10	0.01	0.11	0.10	0.10	0.08
CaO	1.38	6.87	6.05	1.25	13.15	5.96	2.56	2.82	1.88	1.90	2.07	6.33	5.97	4.72	1.66	3.65	2.77	0.97
MgO	0.67	2.02	1.70	0.56	1.08	0.93	0.74	0.73	1.68	1.34	1.00	0.88	1.33	0.63	1.96	1.09	1.46	1.32
MnO	0.24	0.84	0.73	0.16	1.38	0.80	0.33	0.33	0.10	0.11	0.08	0.18	0.15	0.15	0.11	0.17	0.10	0.06
BaO	0.55	0.97	0.82	0.24	0.34	0.53	0.37	0.26	0.18	0.12	0.16	0.15	0.17	0.05	0.16	0.09	0.09	0.13
P_2O_5	0.05	0.06	0.07	0.04	0.07	0.06	0.05	0.05	0.07	0.05	0.07	0.05	0.06	0.06	0.12	0.08	0.06	0.06
TiO_2	0.29	0.51	0.46	0.17	0.29	0.31	0.29	0.30	0.48	0.39	0.60	0.42	0.46	0.18	0.58	0.45	0.60	0.55
РЬО	0.05	ND	ND	0.06	0.06	0.05	0.04	0.05	ND	ND	ND	ND	ND	ND	0.04	ND	ND	ND
ZnO	0.02	ND	ND	0.02	0.03	2.51	0.20	0.11	ND	ND	ND	ND	ND	ND	0.24	ND	ND	ND
Total	79.95	87.97	90.04	80.27	75.64	82.05	82.95	81.06	93.97	92.96	94.30	90.71	92.18	92.67	93.62	93.83	94.79	94.99

Mai	or element com	positions c	of bulk sam	ples of t	write ores	and sedimentary	v rocks from	drill hole	YF04 at	nd black shale	from drill hole	YF02
Ivia		positions c	of Dulk Sall	ipies or p	Jynic Ores	and southennal	y 100KS 110III		11 0 7 ai	nu black shale	nom unn noic	1102.

Table 1

Notes: Host = host sedimentary rock; Ore = laminated pyrite ore; ND = not detected; low totals are due to losses of sulfur, H₂O, and/or CO₂.

Sample	YF04-19	YF04-20	YF04-22	YF04-23	YF04-24	YF04-25	YF04-26	YF04-27	YF04-28	YF04-29	YF04-30	YF04-31	YF04-32	YF04-33	YF04-33B	YF04-34	YF04-35	YF04-36
Rock	Ore	Host	Host	Host	Ore	Ore	Ore	Ore										
Depth(m)	90.5	91.5	98.0	100.0	109.0	113.0	115.0	117.0	121.0	124.0	133.0	136.0	141.0	145.0	149.0	155.0	157.0	164.0
S(%)	4.50	2.86	2.26	2.99	14.12	29.28	7.58	26.12	11.48	18.32	21.96	19.88	23.96	8.60	5.78	10.04	20.24	6.38
C org(%)	0.71	0.96	1.43	0.78	1.09	1.22	0.30	0.65	0.68	0.71	1.03	0.93	0.47	0.64	0.48	0.84	0.69	1.21
Major oxides (wt.	%)																	
SiO ₂	63.65	64.78	38.61	65.21	52.24	35.56	68.62	36.46	59.93	41.04	36.76	42.34	36.96	57.05	65.13	41.94	40.26	39.23
Al ₂ O ₃	14.45	16.29	8.56	13.40	10.50	3.14	8.04	6.78	9.84	10.10	10.25	10.00	8.12	6.96	11.00	6.26	8.48	6.92
Fe ₂ O _{3t}	7.11	4.82	3.98	5.07	17.83	36.46	9.46	32.56	14.88	23.17	28.27	25.67	29.76	10.78	7.63	12.64	25.67	7.83
K ₂ O	4.13	4.87	0.82	3.99	2.61	0.48	2.49	1.40	2.80	3.00	3.13	2.93	1.66	1.80	2.88	1.31	2.03	2.40
Na ₂ O	0.16	0.17	0.24	0.13	0.15	0.09	0.05	0.13	0.13	0.09	0.11	0.11	0.09	0.08	0.08	0.09	0.13	0.08
CaO	1.87	1.64	24.7	3.73	2.75	2.11	1.72	1.81	1.69	4.80	3.19	1.71	3.67	9.20	4.08	16.65	5.01	18.65
MgO	1.48	1.38	1.04	1.40	0.81	0.29	0.60	0.80	0.92	1.00	0.66	0.84	0.99	0.84	1.50	0.85	0.92	1.23
MnO	0.11	0.09	0.76	0.18	0.34	0.16	0.30	0.47	0.22	0.40	0.14	0.27	0.91	0.90	0.72	0.91	1.19	1.19
BaO	0.14	0.17	0.06	0.13	0.16	0.08	0.13	0.11	0.23	0.25	0.12	0.08	0.06	0.06	0.07	0.04	0.09	0.07
P_2O_5	0.04	0.06	0.05	0.04	0.05	0.04	0.05	0.05	0.05	0.05	0.05	0.07	0.04	0.04	0.06	0.04	0.06	0.05
TiO ₂	0.62	0.68	0.33	0.62	0.48	0.10	0.51	0.29	0.46	0.50	0.41	0.56	0.35	0.39	0.55	0.26	0.41	0.27
РЬО	0.01	ND	ND	ND	0.02	0.03	0.01	0.03	0.02	0.02	0.04	0.02	0.02	0.01	0.02	0.01	0.04	0.01
ZnO	0.01	ND	ND	ND	0.01	0.01	0.12	0.01	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.02	0.71
Total	93.78	94.95	79.15	93.90	87.95	78.55	92.10	80.90	91.17	84.43	83.14	84.63	82.64	88.12	93.73	81.01	84.31	78.64

Sample	YF04-37	YF04-38	YF04-39	YF04-40	YF04-41	YF04-42	YF04-43	YF04-44	YF04-45	YF04-46	YF04-47	YF04-48	YF04-49	YF04-50	YF04-51	YF04-52	YF04-54
Rock	Ore	Ore	Ore	Ore	Ore	Ore	Host	Ore	Host								
Depth(m)	166.0	167.0	172.0	175.0	181.0	189.0	195.0	198.0	203.0	210.0	211.0	214.0	215.0	216.0	223.0	224.0	226.0
S(%)	25.60	25.12	41.40	23.28	10.56	10.72	1.62	33.16	30.16	25.24	27.92	11.36	14.60	1.44	10.04	12.76	0.60
C org(%)	1.06	0.63	0.59	0.94	0.29	0.27	1.42	0.70	0.68	0.51	0.69	1.09	0.76	1.53	0.14	0.19	0.00
Major oxides (wt.	%)																
SiO ₂	37.66	34.36	10.06	39.26	43.01	59.43	55.06	22.72	28.93	36.03	32.73	53.05	44.64	41.99	39.56	42.25	69.54
Al ₂ O ₃	5.98	7.62	0.95	6.27	18.24	9.23	11.34	4.23	5.32	8.14	5.76	9.17	7.69	3.42	16.30	12.10	15.96
Fe ₂ O _{3t}	31.96	31.30	53.26	29.16	12.98	13.58	2.50	41.45	37.91	31.69	35.81	15.25	20.26	2.69	18.53	28.87	2.40
K ₂ O	1.94	2.34	0.27	2.08	5.61	3.50	5.51	1.08	2.15	2.77	2.39	2.94	2.23	0.98	1.65	1.00	3.81
Na ₂ O	0.05	0.07	0.01	0.04	0.15	0.08	0.06	0.03	0.03	0.03	0.01	0.08	0.07	0.01	1.44	0.80	1.55
CaO	1.94	3.79	3.40	3.47	5.89	2.93	10.55	3.81	1.48	1.70	1.42	5.82	7.92	26.0	6.64	5.26	1.97
MgO	0.58	0.94	0.58	1.24	2.03	0.81	3.91	0.82	0.56	0.81	0.67	0.74	1.39	0.97	2.10	2.03	1.54
MnO	0.39	0.83	0.39	0.71	1.02	0.67	1.26	1.16	0.67	0.40	0.49	0.18	0.33	0.65	0.16	0.09	0.04
BaO	0.06	0.09	0.02	0.03	0.08	0.06	0.07	0.03	0.05	0.05	0.04	0.11	0.06	0.02	0.01	0.01	0.08
P_2O_5	0.05	0.06	0.05	0.07	0.09	0.09	0.07	0.04	0.05	0.06	0.05	0.05	0.06	0.05	0.14	0.09	0.11
TiO ₂	0.25	0.37	0.05	0.31	0.89	0.51	0.41	0.17	0.22	0.39	0.23	0.43	0.31	0.13	0.48	0.45	0.48
РЬО	0.03	0.03	0.06	0.03	0.02	0.02	ND	0.06	0.12	0.03	0.07	0.01	0.02	ND	0.04	0.03	ND
ZnO	0.03	0.11	0.02	0.26	1.01	0.15	ND	0.18	0.12	0.27	0.06	0.07	0.05	ND	5.45	0.03	ND
Total	80.92	81.91	69.11	82.93	91.02	91.06	90.74	75.78	77.61	82.37	79.73	87.90	85.03	76.90	92.50	93.01	97.48

Bblack shale from drill hole YF02, data cited from Qiu et al. (2018)												
Sample	YF02-03	YF02-04	YF02-05	YF02-06	YF02-07	YF02-08	YF02-09	YF02-10	YF02-11	YF02-12	YF02-13	YF02-14
Rock	Black shale											
Depth(m)	166.0	167.0	172.0	175.0	181.0	189.0	195.0	198.0	203.0	210.0	211.0	214.0
S(%)	2.74	3.53	2.80	1.59	2.54	3.29	3.75	3.18	3.25	1.94	0.69	1.60
C org(%)	1.02	1.28	1.44	1.12	1.83	2.03	0.36	1.91	1.02	1.42	2.89	1.26
Major oxides (v	wt. %)											
SiO ₂	59.89	63.78	53.65	62.01	75.69	69.82	60.87	63.85	60.02	70.14	82.79	68.25
Al ₂ O ₃	9.28	10.93	10.86	15.79	8.06	11.16	6.64	14.62	18.55	12.51	5.18	11.73
Fe ₂ O _{3t}	4.96	5.90	5.03	3.58	4.72	5.62	6.17	5.48	5.57	4.00	2.50	3.60
K ₂ O	2.38	2.83	2.75	4.35	1.87	3.03	1.00	4.38	5.51	3.48	1.31	3.31
Na ₂ O	0.09	0.10	0.17	0.21	0.09	0.09	0.03	0.12	0.13	0.10	0.04	0.09
CaO	8.75	5.51	11.66	3.85	1.83	1.42	10.89	1.78	1.01	2.06	1.33	3.60
MgO	1.73	0.92	1.17	1.43	1.10	1.41	3.34	1.43	1.52	1.34	0.89	1.88
MnO	0.06	0.03	0.12	0.08	0.05	0.06	0.25	0.06	0.02	0.04	0.04	0.09
BaO	0.62	0.77	0.69	0.12	0.04	0.06	0.02	0.13	0.11	0.08	0.06	0.09
P_2O_5	0.09	0.08	0.05	0.06	0.04	0.07	0.05	0.07	0.06	0.08	0.11	0.05
TiO ₂	0.28	0.32	0.31	0.59	0.20	0.40	0.34	0.56	0.74	0.54	0.18	0.51

Table 2

Lead isotope ratios of Pyrite 1 and 2 determined by in-situ analyses of pyrite in the laminated ores.

	206 Pb/ 204 Pb	1σ	$^{207}\mathrm{Pb}/^{204}\mathrm{Pb}$	1σ	²⁰⁸ Pb/ ²⁰⁴ Pb	1σ
YF09-2PY1	18.195	0.020	15.708	0.018	38.576	0.044
YF09-2SP1	18.195	0.034	15.718	0.029	38.595	0.071
YF09-2PY2	18.225	0.009	15.718	0.029	38.628	0.023
YF09-2SP2	18.167	0.023	15.695	0.021	38.529	0.050
YF09-2Py	18.264	0.022	15.772	0.019	38.709	0.047
YF09-2Py4	18.241	0.036	15.753	0.030	38.608	0.072
YF09-2PY3	18.167	0.154	15.718	0.134	38.512	0.328
YF09-2PY5	18.320	0.040	15.832	0.035	38.816	0.084
YF44-PY1	18.199	0.031	15.722	0.027	38.568	0.066
YF44-PY2	18.160	0.101	15.686	0.086	38.494	0.213
YF44-PY3	18.097	0.049	15.636	0.042	38.356	0.103
YF44-PY5	18.216	0.002	15.724	0.002	38.599	0.004
YF44-PY6	18.224	0.007	15.727	0.006	38.612	0.015
YF44-PY7	18.216	0.002	15.724	0.002	38.599	0.004
YF46-PY1	18.260	0.007	15.775	0.007	38.749	0.018
YF46-PY2	18.216	0.012	15.731	0.010	38.638	0.026
YF46-PY3	18.224	0.012	15.751	0.012	38.687	0.031
YF46-PY4	18.253	0.007	15.766	0.006	38.721	0.017
YF46-PY5	18.241	0.014	15.768	0.014	38.724	0.038
YF46-PY6	18.222	0.010	15.730	0.009	38.619	0.024
YF46-PY7	18.250	0.016	15.770	0.014	38.636	0.055
YF10-PY2	18.154	0.005	15.697	0.005	38.566	0.015
YF10-PO1	18.108	0.008	15.665	0.007	38.442	0.019
YF10-PY3	18.139	0.008	15.698	0.008	38.538	0.028
YF10-PY4	18.142	0.007	15.698	0.006	38.513	0.015
YF10-PY5	18.124	0.022	15.685	0.019	38.491	0.047
YF10-PY6	18.050	0.035	15.617	0.031	38.335	0.074
YF10-PO7	18.110	0.025	15.680	0.021	38.462	0.052
YF10-PY8	18.153	0.039	15.704	0.035	38.559	0.085
YF258-PO1	18.205	0.023	15.700	0.020	38.558	0.048
YF258-PY2	18.272	0.046	15.779	0.041	38.734	0.099
YF258-PY3	18.203	0.006	15.714	0.005	38.580	0.013
YF258-PY4	18.210	0.004	15.724	0.004	38.620	0.009

YF258-PY5	18.161	0.042	15.687	0.036	38.516	0.089
YF258-PY6	18.208	0.008	15.715	0.007	38.597	0.018
YF52-PY2	17.997	0.014	15.673	0.013	38.089	0.038
YF52-PY3	18.051	0.034	15.699	0.030	38.297	0.073
YF52-PY4	18.004	0.019	15.672	0.017	38.408	0.042
YF52-PY5	17.967	0.049	15.666	0.046	38.364	0.110
YF52-PY6	18.000	0.009	15.660	0.008	38.370	0.019
YF32-PY2	18.167	0.006	15.711	0.006	38.565	0.016
YF32-PY3	18.234	0.016	15.770	0.014	38.683	0.035
YF32-SP3	18.034	0.050	15.604	0.044	38.328	0.108
YF32-PY5	18.155	0.010	15.696	0.008	38.520	0.021
YF32-PY4	18.121	0.031	15.702	0.028	38.515	0.068
YF32-SP4	18.241	0.084	15.797	0.073	38.800	0.179
YF46-M1	18.253	0.011	15.777	0.010	38.716	0.027
YF10-M1	18.035	0.087	15.600	0.078	38.315	0.183
YF10-M3	18.113	0.051	15.615	0.043	38.338	0.104
YF10-M4	18.139	0.030	15.675	0.026	38.466	0.065
YF258-M1	18.220	0.028	15.701	0.023	38.589	0.058
YF258-M4	18.224	0.026	15.734	0.023	38.625	0.056
YF0426-01	18.370	0.046	15.791	0.039	38.830	0.097
YF0426-02	18.316	0.006	15.747	0.006	38.722	0.015
YF0426-03	18.343	0.034	15.746	0.028	38.731	0.071
YF0426-04	18.490	0.026	15.866	0.023	39.054	0.056
YF0426-05	18.404	0.028	15.806	0.025	38.915	0.060
YF0436-01	18.283	0.029	15.746	0.024	38.718	0.061
YF0436-02	18.270	0.033	15.721	0.029	38.633	0.070
YF0436-03	18.358	0.025	15.778	0.022	38.851	0.054
YF0436-04	18.298	0.037	15.762	0.032	38.751	0.079

Note: The samples were analysed by LA-MC-ICPMS at the State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, China.

Table 3

Sulfur isotope ratios (δ^{34} Sv-cDT‰) determined my in-situ analyses of pyrite grains from drill hole YF04 and drill hole YF02.

	Samples from drill hole YF04					
Sample	Depth	Pyrite type	Spot no	$\delta^{34}S_{V\text{-}CDT}$ (‰)	2σ (‰)	
YF0402	36.0	Py2	YF0402-1	-28.9	0.1	
		Py1	YF0402-2	-26.7	0.1	
		Py2	YF0402-3	-28.6	0.1	
YF0403	37.6	Py2	YF0403-1	-27.5	0.1	
		Py1	YF0403-2	-26.0	0.1	
		Py1	YF0403-3	-29.2	0.1	
YF0409	50.0	Py3	YF0409-1	5.7	0.0	
		Py3	YF0409-2	5.1	0.1	
		Py3	YF0409-3	5.2	0.0	
		Py3	YF0409-4	-0.4	0.1	
YF0410	54.0	Py3	YF0410-1	6.5	0.1	
		Py3	YF0410-2	7.2	0.1	
		Py3	YF0410-3	4.1	0.1	
		Py3	YF0410-4	7.0	0.1	
YF0411	56.0	Py3	YF0411-1	2.8	0.1	
		Py3	YF0411-2	3.6	0.1	
		Py3	YF0411-3	1.7	0.1	
		Py3	YF0411-4	4.7	0.1	
		Py3	YF0411-5	5.2	0.1	
YF0412	59.0	Py3	YF0412-1	8.6	0.1	
		Py3	YF0412-2	5.4	0.1	
		Py3	YF0412-3	7.8	0.1	
YF0413	62.5	Py3	YF0413-1	6.7	0.1	
		Py3	YF0413-2	5.9	0.1	
		Py3	YF0413-3	6.0	0.1	
YF0414	68.0	Py3	YF0414-1	6.9	0.1	
		Py3	YF0414-2	8.3	0.1	
		Py3	YF0414-3	7.2	0.1	
YF0415	70.0	Py3	YF0415-1	12.1	0.1	
		Py3	YF0415-2	11.5	0.1	
		Py3	YF0415-3	13.7	0.1	
		Py3	YF0415-4	12.7	0.2	
		Py3	YF0415-5	14.4	0.1	
YF0416	77.0	Py3	YF0416-1	5.8	0.1	
		Py3	YF0416-2	6.6	0.1	
		Py3	YF0416-3	6.0	0.1	

a .		Samples n		2 ³⁴ G (24)	• • • •
Sample	Depth	Pyrite type	Spot no	$\delta^{34}S_{V-CDT}$ (%)	2σ (‰)
YF0417	81.0	Py3	YF0417-1	5.9	0.1
		Py3	YF0417-2	5.5	0.1
		Py3	YF0417-3	5.8	0.1
YF0418	85.0	Py3	YF0418-1	5.2	0.1
		Py3	YF0418-2	5.2	0.1
		Py3	YF0418-3	4.7	0.1
YF0419	90.5	Py1	YF0419-1	-19.6	0.1
		Py2	YF0419-2	-19.9	0.1
		Py1	YF0419-3	-19.7	0.1
YF0422	98.0	Py1 core	YF0422-1	-18.5	0.1
		Py1 rim	YF0422-2	-18.8	0.1
		Py1 core	YF0422-3	-18.9	0.1
		Py1 rim	YF0422-4	-19.3	0.1
		Py2	YF0422-5	-20.3	0.1
YF0423	100.0	Py2	YF0423-1	-19.4	0.1
		Py1	YF0423-2	-20.4	0.1
		Py2	YF0423-3	-18.8	0.1
YF0436	164.0	Py1 core	YF0436-1	-22.5	0.1
		Py2 rim	YF0436-2	-22.4	0.1
		Py2 core	YF0436-3	-22.4	0.1
		Py2 rim	YF0436-4	-22.5	0.1
		Py2	YF0436-5	-22.3	0.1
		Py1	YF0436-6	-22.5	0.1
YF0438	167.0	Py2	YF0438-1	-21.4	0.1
		Py1	YF0438-2	-21.8	0.1
		Py2	YF0438-3	-21.4	0.1
YF0443	195.0	Py1	YF0443-1	-26.0	0.1
		Py1	YF0443-2	-26.0	0.1
		Py2	YF0443-3	-25.8	0.1
YF0444	198.0	Py2	YF0444-1	-25.2	0.1
		Py1	YF0444-2	-25.1	0.1
		Py2	YF0444-3	-24.8	0.1
		Py1	YF0444-4	-24.8	0.1
YF0450	216.0	Py1	YF0450-1	-15.9	0.1
		Py1	YF0450-2	-17.7	0.1
		Pv1	YF0450-3	-17.3	0.1

		Samples from	drill hole YF	02	
Sample	Depth	Pyrite type	Spot no	$\delta^{34}S_{\text{V-CDT}}(\text{\%})$	2σ (‰)
YF0203	60.0	Py3	YF0203-1	4.0	0.1
		Py3	YF0203-2	4.7	0.1
		Py3	YF0203-3	15.8	0.2
		Py3	YF0203-4	3.8	0.1
YF0204	63.0	Py3	YF0204-1	12.2	0.5
		Py3	YF0204-2	18.6	0.5
		Py3	YF0204-3	42.9	0.1
YF0205	68.0	Py3	YF0205-1	25.3	0.2
		Py3	YF0205-2	-1.5	0.1
		Py3	YF0205-3	-1.4	0.1
YF0206	73.0	Py3	YF0206-1	2.9	0.1
		Py3	YF0206-2	2.7	0.1
		Py3	YF0206-3	1.7	0.1
YF0207	81.0	Py3	YF0207-1	15.6	0.1
		Py3	YF0207-2	16.1	0.1
		Py3	YF0207-3	15.3	0.1
YF0208	83.0	Py3	YF0208-1	11.2	0.0
		Py3	YF0208-2	11.9	0.1
		Py3	YF0208-3	11.5	0.1
YF0209	86.0	Py3	YF0209-1	3.4	0.1
		Py3	YF0209-2	3.1	0.1
		Py3	YF0209-3	2.8	0.1
YF0210	92.0	Py3	YF0210-1	11.0	0.1
		Py3	YF0210-2	11.0	0.1
		Py3	YF0210-3	11.7	0.1
YF0211	100.0	Py3	YF0211-1	3.0	0.1
		Py3	YF0211-2	3.3	0.1
		Py3	YF0211-3	2.8	0.1
		Py3	YF0211-4	2.4	0.1
YF0212	104.0	Py3	YF0212-1	5.4	0.1
		Py3	YF0212-2	5.2	0.1
		Py3	YF0212-3	5.1	0.1
		Py3	YF0212-4	5.2	0.1
YF0213	109.0	Py3	YF0213-1	12.0	0.1
		Py3	YF0213-2	12.2	0.1
		Py3	YF0213-3	12.0	0.1

Samples from drill hole YF02					
Sample	Depth	Pyrite type	Spot no	$\delta^{34}S_{V\text{-}CDT}(\text{\%})$	2σ (‰)
YF0214	113.0	Py3	YF0214-1	3.6	0.1
		Py3	YF0214-2	1.7	0.1
		Py3	YF0214-3	3.8	0.0
YF0215	120.0	Py2	YF0215-1	-25.3	0.1
		Py2	YF0215-3	-25.4	0.1
		Py1	YF0215-4	-25.6	0.1
YF0217	129.0	Py1	YF0217-2	-12.7	0.1
		Py1	YF0217-1	-13.1	0.1
YF0218	137.0	Py1	YF0218-1	-3.1	0.1
		Py1	YF0218-2	-3.0	0.1
YF0220	150.0	Py1	YF0220-1	-2.7	0.1
		Py1	YF0220-2	-3.1	0.1
YF0222	156.0	Py1	YF0222-1	10.7	0.2
		Py1	YF0222-2	9.8	0.1

Note: The samples were analysed by LA-MC-ICPMS at the State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, China. Py1= *Pyrite 1*, Py2= *Pyrite 2*, Py3=*Pyrite 3*.

Tabl	le 4	
------	------	--

Sample Pyrite Spot no $\delta^{34}S_{V-CDT}$ (‰) 2σ (‰) YF09-2 Py1 YF09-2-py1 3.0 0.2 Py2 YF09-2-py2 2.8 0.2 2.9 Py2 0.2 YF09-2-py3 Py2 YF09-2-py4 2.8 0.2 2.9 0.2 Py1 YF09-2-py5 Py1 YF09-2-py6 2.7 0.2 YF10-2 Py1 YF10-2-py1 -16.7 0.5 Py1 -16.4 0.2 YF10-2-py7 Py1 YF10-2-py2 -17.1 0.3 Py1 YF10-2-py3 -17.0 0.1 Py2 YF10-2-py4 -18.1 0.2 Py2 YF10-2-py5 -18.4 0.1 Py2 YF10-2-py6 -17.4 0.1 Py2 YF10-2-py8 -17.5 0.2 YF25-8 YF25-8-po1 17.7 0.2 Py1 Py2 YF25-8-py2 19.3 0.2 **YF32** 0.2 Py2 YF32-py2 18.9 Py2 YF32-py3 18.5 0.1 Py2 YF32-py4 0.2 18.5 Py2 YF32-py5 20.5 0.2 **YF44** Py2 YF44-py2 22.5 0.2 Py2 YF44-py3 22.9 0.2 YF44-py4 Py2 24.1 0.2 Py2 YF44-py5 25.3 0.2 Py2 YF44-py6 23.0 0.2 Py2 YF44-py7 25.1 0.2 YF46-1 Py2 YF46-1-py1 -3.3 0.2 Py1 YF46-1-py2 -3.6 0.2 Py2 YF46-1-py3 -3.4 0.2 Py2 YF46-1-py4 -3.1 0.1 Py1 YF46-1-py5 -3.5 0.2 Py1 YF46-1-py6 -3.4 0.2 -3.4 Py1 YF46-1-py7 0.2 Py2 YF46-1-py8 -3.3 0.2

In-situ sulfur isotopes data (δ^{34} Sv-cDT‰) of pyrite from open pit.

Notes: Samples were measured by LA-MC-ICPMS at the laboratory of the Geological Survey of Finland. Py1= *Pyrite 1*, Py2= *Pyrite 2*.

Table 5

Sulfur isotope ratios (δ^{34} Sv-CDT‰) of pyrite separates from drill hole YF04 and the open pit. The uncertainty (2 σ) of all the samples is <0.2‰.

Sample from the drill hole YF04				Sample from open pit		
Sample	Depth	Pyrite type	$\delta^{34}S_{V\text{-}CDT}(\text{\%})$	Sample	Pyrite type	$\delta^{34}S_{V\text{-}CDT}(\%)$
YF04-1	35.4	Laminated pyrite	-28.7	13YF55	Laminated pyrite	6.0
YF04-4	38.2	Laminated pyrite	-28.5	13YF48	Laminated pyrite	-22.0
YF04-5	41.0	Laminated pyrite	-25.8	13YF52	Laminated pyrite	-28.1
YF04-6	43.5	Laminated pyrite	-26.5	13YF10-2	Laminated pyrite	-17.1
YF04-7	45.0	Laminated pyrite	-25.3	13YF41	Laminated pyrite	12.2
YF04-20	91.5	Laminated pyrite	-19.2	13YF29	Laminated pyrite	14.3
YF04-24	109.0	Laminated pyrite	-18.5	13YF05	Laminated pyrite	-26.3
YF04-25	113.0	Laminated pyrite	-20.6	13YF37	Laminated pyrite	-22.0
YF04-26	115.0	Laminated pyrite	-17.9	13YF15-3	Laminated pyrite	7.4
YF04-27	117.0	Laminated pyrite	-20.6	13YF33	Laminated pyrite	-26.3
YF04-28	121.0	Laminated pyrite	-18.8	13YF10-3	Laminated pyrite	-9.7
YF04-28	121.0	Laminated pyrite	-18.9	13YF23-1	Laminated pyrite	-28.3
YF04-29	124.0	Laminated pyrite	-19.8	13YF25-3	Laminated pyrite	-22.6
YF04-30	133.0	Laminated pyrite	-17.7	13YF25-7	Laminated pyrite	-4.0
YF04-31	136.0	Laminated pyrite	-22.3	13YF23-2	Laminated pyrite	-26.4
YF04-32	141.0	Laminated pyrite	-20.3	13YF25-8	Laminated pyrite	19.0
YF04-33	145.0	Laminated pyrite	-18.8	13YF19-1	Laminated pyrite	18.3
YF04-33B	149.0	Laminated pyrite	-19.9	13YF34	Laminated pyrite	-17.4
YF04-34	155.0	Laminated pyrite	-20.7	13YF27	Laminated pyrite	-27.3
YF04-35	157.0	Laminated pyrite	-20.3	13YF31	Laminated pyrite	-20.3
YF04-36	164.0	Laminated pyrite	-22.3	13YF21-1	Massive pyrite	8.1
YF04-37	166.0	Laminated pyrite	-24.0	13YF08	Massive pyrite	5.9
YF04-39	172.0	Laminated pyrite	-24.3	13YF21-3	Massive pyrite	-8.4
YF04-40	175.0	Laminated pyrite	-25.9	13YF9-3	Massive pyrite	-10.0
YF04-40	175.0	Laminated pyrite	-25.8	13YF46	Massive pyrite	3.1
YF04-41	181.0	Laminated pyrite	-24.2			
YF04-42	189.0	Laminated pyrite	-24.6			
YF04-45	203.0	Laminated pyrite	-25.9			
YF04-46	210.0	Laminated pyrite	-24.7			
YF04-47	211.0	Laminated pyrite	-24.8			
YF04-48	214.0	Laminated pyrite	-17.3			
YF04-49	215.0	Laminated pyrite	-18.3			
YF04-51	223.0	Laminated pyrite	-2.3			
YF04-52	224.0	Laminated pyrite	-1.9			
YF04-52	226.0	Laminated pyrite	-1.7			

Note: The samples were analysed by ICPMS at the State Key Lab of Environmental

Geochemistry, Institute of Geochemistry (Guiyang), Chinese Academy of Sciences.

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

Fig. 1

	-	<u> </u>
- н	10	
- E 1	IУ	. L
-		,
	-	

	٠		_
ы	1	$\mathbf{\alpha}$	· /
Т.	I	Υ.	1
-	-	~	

Fig.9

Fig.10

Qiu, Wenhong Johnson, Mei-Fu Zhou, Xiaochun Li, A. E. Williams-Jones, and Honglin Yuan. "The Genesis of the Giant Dajiangping Sedex-Type Pyrite Deposit, South China." Economic Geology 113, no. 6 (2018): 1419-46. http://dx.doi.org/10.5382/econgeo.2018.4597.

Fig.11

Fig 1	4
1 1g. 1	ιт

Fig.16

