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Summary

Recurrent event data are commonly encountered in observational studies where each subject may

experience a particular event repeatedly over time. In this article, we aim to compare cumulative

rate functions of two groups when treatment assignment may depend on the unbalanced distribu-

tion of confounders. Several estimators based on pseudo-observations are proposed to adjust for

the confounding effects, namely inverse probability of treatment weighting estimator, regression

model-based estimators and doubly robust estimators . The proposed marginal regression estima-

tor and doubly robust estimators based on pseudo-observations are shown to be consistent and

asymptotically normal. A bootstrap approach is proposed for the variance estimation of the pro-

posed estimators. Model diagnostic plots of residuals are presented to assess the goodness-of-fit

for the proposed regression models. A family of adjusted two-sample pseudo-score tests is pro-

posed to compare two cumulative rate functions. Simulation studies are conducted to assess finite

sample performance of the proposed method. The proposed technique is demonstrated through

an application to a hospital readmission data set.
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treatment weighting; Doubly robust estimator; Two-sample pseudo-score tests.

1. Introduction

In clinical studies, patients may experience a same type of event of interest repeatedly over

time, which are referred to as recurrent events. Examples of recurrent events include recurrent

asthma attacks in children (?) and repeated hospital readmission for colorectal cancer patients

(?). The investigators are often interested in the effect of covariates on the recurrent events

and in the comparison of cumulative rate functions (CRF) or mean functions among groups

receiving different treatments. In randomized trial, subjects are randomly assigned to different

treatment groups with no systematic difference between covariate factors. In such studies, the

nonparametric Nelson-Aalen (NA) estimator (?) is commonly used to estimate the CRFs for

specific groups, and the two-sample pseudo-score tests proposed by ? can be applied to test

the null hypothesis that the CRFs for two treatment groups are identical. For non-randomized

trials or observational studies, confounding often occurs due to a dependence of the treatment

assignment on the subjects’ baseline characteristics and prognosis. The NA estimator and the two-

sample pseudo-score tests may be biased and unreliable due to confounding effects arising from

the possibly different distributions of subjects’ baseline characteristics in the different treatment

groups.

An illustrating example in this work is the hospital readmission dataset of colon cancer pa-

tients obtained from Hospital de Bellvitge in Barcelona, Spain, which were originally analyzed

by ?, but also available in the R library frailtypack (?). For each of the 403 colorectal cancer

patients who were treated or not treated with chemotherapy, the times between each admission

and readmission to the hospital were observed. Potential confounders include patients’ sex and

the Duke’s staging classification of the tumor. A direct comparison of CRFs between the treated

and untreated groups may not be valid as the unbalanced distribution of confounders such as

gender or Duke’s staging classification. Suitable adjustment for confounding effects is thus needed
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in order to make valid causal conclusions.

A milestone in causal inference is the emergence of the potential outcome framework, first

raised by ?. The main idea is to consider all possible observable and counterfactual outcomes

simultaneously. The focus is often concentrated on estimating the average causal effect (ACE) in

the whole population, i.e. the difference between the mean outcome over the target population if

all subjects were in the treatment group and the mean outcome if all subjects were in the control

group. Several methods have been proposed to estimate the ACE in the presence of confounders.

They fall into three categories: (a) estimators using inverse probability of treatment weighting

(IPTW) based on propensity score (PS) based on a model for the treatment assignment; (b)

outcome regression (OR) model where estimators are often built on a standard regression model

for the conditional expectation of the outcome given treatment and confounders; and (c) doubly

robust (DR) estimators that include both OR and PS models simultaneously, and are robust to

model misspecification as they are valid when at least one of the PS or OR model is correct.

Those approaches have been widely discussed in the literature (???).

? proposed the pseudo-observations approach to model the state probabilities in multistate

models. Consequently, pseudo-observations can be treated as complete data and be used for

regression analysis such as generalized linear model (GLM). Many applications based on pseudo-

observations are discussed in the literature including the estimation of: the restricted mean sur-

vival times (?), the survival function at a fixed time point (?) and the cumulative incidence func-

tion in the framework of competing risks (?). Additionally, their large sample properties have

also been thoroughly investigated by ?, ? and ?. Recently, ? introduced how pseudo-observations

can be utilized to estimate the ACE in the context of competing risks.

To estimate an ACE of interest in the context of recurrent event data, ? investigated causal

inference for randomized trials and all-or-none compliance. They proposed a complier average

causal effect (CACE) which is the difference between the average numbers of recurrences in the
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treatment and control groups within the compliers. ? studied the effect of omitting covariates in

both the marginal rate model and the partially conditional rate model. The partially conditional

rate model induces confounding through conditioning on the event history which leads to a biased

estimate of treatment effect. This induced confounding by the conditioning is well-known in causal

inference (?). However, those approaches mentioned above are valid only if the assumed regression

model with confounding factors as covariates is correctly specified, which is however never known

in practice.

In this work, we aim to develop DR estimators espically using the pseudo-observations to

compare the CRFs of two groups and estimating the ACE for recurrent events in the presence of

confounders, which has not been studied in the literature. We aim to fill this gap. The proposed

DR estimators based on pseudo-observations assess some advantages. First, DR estimators are

robust to model misspecification as they are based on a combination of IPTW and the regression

model-based adjustment approaches. Second, the parameters related to OR model in the DR

estimators are easily to estimate as pseudo-observations can be straightforward used for regres-

sion analysis such as GLM without censoring issue. Third, the proposed DR estimators can be

easily constructed and implemented via standard software. Specifically, a model for treatment

assignment with confounders as covariates is fitted to treatment assignment and confounder data.

Given a set of time points, the pseudo-observations for each subject are then generated from the

nonparametric NA estimator for recurrent event data. The IPTW estimator for the ACE is the

difference between the weighted means of pseudo-observations from the two groups. The ACE

can also be estimated via the G-formula approach in which two OR models are considered with

treatment and confounders as covariates. While the first model assumes a semiparametric mul-

tiplicative rate (SMR) model on the event rate of recurrent process, the second one treats the

pseudo-observations of CRF calculated at a set of time points as responses in a GLM. Finally,

the DR estimators are constructed by combining both the IPTW estimator and the G-formula
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estimator obtained from either the SMR model, GLM or Super Learner (SL) approach. To test

the null hypothesis that the CRFs for the treated and untreated groups are identical, adjusted

versions of the two sample pseudo-score tests are proposed.

The remainder of the paper is organized as follows. In Section 2, we formalize the ACE

parameters of interest and use a naive NA estimator for estimation. In Section 3, we propose

several estimators including IPTW estimator, G-formula estimators and DR estimators. The

asymptotic properties of the proposed regression estimator and DR estimators based on pseudo-

observations are established, and a procedure to estimate variance with the bootstrap is also

provided. Graphical model diagnosis based on (pseudo-)residuals to assess the adequacy of the

proposed OR models are also presented. A family of adjusted two-sample pseudo-score tests is

proposed in Section 4. Section 5 reports some simulation results. The analysis of a real dataset

is provided in Section 6, and some concluding remarks are given in Section 7. All proofs, extra

simulation tables and additional figures are provided in the online supplementary materials. Also,

the R codes are deposited to github (https://github.com/ChienLinSu/CIRED-PO).

2. Notations and formulation of the problem

Consider a clinical trial of total duration τ in which n patients are assigned to receive one

of two treatments. For subject i (i = 1, ..., n), let Zi be a dichotomous treatment indicator

and Xi a p-dimensional vector of confounders. We denote observed values of Zi by zi and let

z = (z1, ..., zn) be the vector of treatment assignments for the whole sample where zi = 1 if

subject i is in the treatment group and zi = 0 otherwise. Under the stable unit treatment value

assumption (SUTVA) of ?, subjects’ outcomes are independent of the treatment assigned to other

patients. Under treatment assignment z, we define Ñz
i (t), the potential outcomes for the number

of events observed by time t ∈ [0, τ ], and Czi , the potential right censoring time. We assume

that the outcome for subject i depends only on their treatment and not that received by other

patients. In addition, let Ỹ zi (t) = I(Czi > t) be the potential outcomes for the “at risk” function
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indicating whether subject i is under observation at time t. With two treatments, z ∈ {0, 1}, and

all these elements indexed with z are defined for both treatments. Throughout this paper, we

assume (i) independence of vectors (Ñz
i (·), Ỹ zi (·), Czi ,Xi, Zi), i = 1, ..., n, which are also identically

distributed; (ii) random assignment where Ñ1
i (·), Ỹ 1

i (·), C1
i , Ñ

0
i (·), Ỹ 0

i (·), C0
i are independent of

Zi conditional on Xi, and (iii) censoring at random, meaning that censoring mechanisms Czi are

independent of the recurrent event processes Ñz
i given confounders Xi. The focus of this work

is to estimate the average causal effect (ACE) at a specific time t ∈ [0, τ ], which is defined as

the difference in the average number of recurrent events observed by time t for patients in the

treated and untreated groups, i.e., we consider θ(t) = E[Ñ1(t)] − E[Ñ0(t)] ≡ Λ1(t) − Λ0(t),

where Λz(t) = E[Ñz(t)]. When the occurrence rate of events is conditional on the event history

FzH(t) = {Ñz(u) : 0 6 u 6 t}, Λz(t) is called a mean function (MF), but otherwise, it is

a cumulative rate function (CRF). ? showed that the estimated parameters in the Cox model

cannot be interpreted causally. The problem stems from conditioning on the event history, namely

that the hazard function for an individual at time t implies that he survived up to that point. By

conditioning on a so-called collider, noncausal pathways may get activated and commonly used

effect estimates may not be interpreted causally as short-term risks (?). To avoid a similar issue,

we consider the occurrence rate of events at time t unconditionally on the event history FzH(t)

throughout this paper.

Instead of observing both potential counting processes Ñ1
i (t) and Ñ0

i (t) simultaneously, we

only observe Ñi(t) = ZiÑ
1
i (t) + (1 − Zi)Ñ0

i (t) for subject i and similarly for the observed at

risk process Ỹi(t) = ZiỸ
1
i (t) + (1 − Zi)Ỹ

0
i (t). When the treatment assignment Zi is indepen-

dent of the potential processes (Ñ1
i (t), Ñ0

i (t)) for i = 1, ..., n; i.e., E[Ñi(t)|Zi = 1] = E[Ñ1
i (t)]

and E[Ñi(t)|Zi = 0] = E[Ñ0
i (t)], one might utilize the Nelson-Aalen (NA) estimator (?) to

estimate the CRF for the treated and untreated groups respectively. That is, θ(t) can be es-

timated by θ̂NA(t) = Λ̂1
NA(t) − Λ̂0

NA(t) where Λ̂1
NA(t) =

∑n
i=1

∫ t
0

ZiỸi(s)∑n
j=1 Zj Ỹj(s)

dÑi(s) and
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Λ̂0
NA(t) =

∑n
i=1

∫ t
0

(1− Zi)Ỹi(s)∑n
j=1(1− Zj)Ỹj(s)

dÑi(s). However, in observational studies, the existence

of confounders prevents straightforward estimation of θ(t) based on θ̂NA(t) because the inde-

pendence between the assignment Zi and the potential processes (Ñ1
i (t),Ñ0

i (t)) does not hold

anymore.

3. Proposed Methodology

In this section, we propose six different estimators for θ(t) that account for confounders. Ta-

ble 1 summarizes the links between the proposed estimators and their corresponding models and

censoring assumptions. Basically, estimators based on pseudo-observations require censoring to

be independent of all other variables (censoring completely at random); while the conditional

regression model for the event times (SMR model) requires only that censoring is independent of

the counting process given the covariates (censoring at random).

3.1 IPTW Estimator

To construct the IPTW estimator for θ(t), we utilize the pseudo-observations approach to CRF.

To be specific, given a time t, the CRF-based pseudo-observation for subject i is calculated by

Λ̂i(t) = nΛ̂NA(t)− (n− 1)Λ̂−iNA(t), where Λ̂NA(t) is the NA estimator calculated with all subjects

and Λ̂−iNA(t) is the same estimator obtained when leaving out subject i. Illustrations of Λ̂i(t) may

be found in Web Appendix C. Simulated data are used to represent different shapes that can

occur: functions that are all positive, all negative, or display positive and negative values. In Web

Appendix A from the online supplementary materials, we show that

E[Λ̂i(t)|Zi,Xi] ≈ E[Ñi(t)|Zi,Xi] = Λ(t|Zi,Xi), (3.1)

where Λ(t|Zi,Xi) shows that individual treatments and covariates may influence the expected

outcome. We then construct the IPTW estimator based on Λ̂i(t) as defined above. Specifically,

we adopt the propensity score (PS) of ? to balance the confounders between the treated and

untreated groups in the sense that a PS-corrected distribution of the confounders would be
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identical in the two groups. In practice, the PS can be modeled by a logistic regression where we

denote the individual probabilities

ei(α) = Pr(Zi = 1|Vi) =
exp(αTVi)

1 + exp(αTVi)
, (3.2)

with Vi = (1,Xi)
T , i = 1, ..., n and where α is the (p+1)-dimensional vector of regression

parameters. Using the IPTW approach proposed by ? as well as (3.1) and (3.2), Λz(t), z ∈

{0, 1} can be estimated based on the pseudo-observations Λ̂i(t). For a fixed time t, the IPTW

estimator for Λz(t) can be constructed as Λ̂1
IPTW(t) = n−1

∑n
i=1

ZiΛ̂
i(t)

ei(α̂)
and Λ̂0

IPTW(t) =

n−1
∑n
i=1

(1− Zi)Λ̂i(t)
1− ei(α̂)

,where α̂ is the estimate for α obtained by fitting the PS model in (3.2).

Thus, θ(t) can be estimated byθ̂IPTW(t) = Λ̂1
IPTW(t) − Λ̂0

IPTW(t) which is an unbiased estimate

of θ(t) as long as the logistic regression in (3.2) is correctly specified.

3.2 G-formula Estimators

Our second strategy is motivated by the G-formula (?), where outcome regression (OR) models

for the relationship between the outcome of interest, confounders and treatment are used to

eliminate the bias directly. We consider two versions thereof.

3.2.1 Semiparametric multiplicative rate (SMR) estimator We first consider the following semi-

parametric multiplicative rate (SMR) model

E
[
dÑi(t)|Xi, Zi

]
= h{γZi + β>Xi}dµ(t), (3.3)

where β and γ are regression parameters, and µ(t) is the unspecified baseline rate function.

The link function, h : R → R with h(·) > 0, is pre-specified and assumed to be continu-

ous almost everywhere and twice differentiable. Possible link functions include h(x) = exp(x),

h(x) = 1 + x and h(x) = log(1 + exp(x)). Notice that the proposed model (3.3) is in line

with the models in ? and in subsection 3.3.3 of ?. Under model (3.3), θ(t) can be expressed

as θ(t) = EX

[
E
[
Ñ(t)|Z = 1,X

]
− E

[
Ñ(t)|Z = 0,X

]]
, where EX stands for taking expec-
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tation with respect to the distribution of X in the whole population. Hence, one can esti-

mate θ(t) by θ̂SMR(t) =
1

n

∑n
i=1

[
h{γ̂SMR + β̂>SMRXi}µ̂(t) − h{β̂>SMRXi}µ̂(t)

]
, where β̂∗SMR =

(γ̂SMR, β̂SMR, µ̂(t)) are estimators of β∗SMR = (γ∗,β∗, µ∗(t)). Note that β̂∗SMR can be obtained

using results from ?, in particular their estimating equations (5) and (6) with K = 1 since

we consider only one type of recurrent events. Asymptotic properties of β̂∗SMR proved in The-

orem 1 of ? hold here, and details about inference procedures can be found therein. The va-

lidity of the estimator for θ̂SMR(t) depends on the correct specification of the SMR model

(3.3), which can be assessed by examining the total summation of the residuals for each sub-

ject, M̂i(t; γ̂SMR, β̂SMR) = Ñi(t) −
∫ t
0
Ỹi(u)h{γ̂SMRZi + β̂>SMRXi}dµ̂(u), as proposed by ?. For a

correct model, these residuals should have a mean of approximately zero and be independent of

the covariates.

3.2.2 Pseudo-Observations Estimator Instead of imposing a certain structure for all time points

such as the proportional rates in model (3.3), an alternative strategy consists of modelling the

covariate effects directly on the CRF at a finite set of time points using the pseudo-observations

approach. As investigated by ?, estimators based on the pseudo-observations approach are still

unbiased for the ACE of interest while the proportional hazard assumption is violated for the

Cox model. The same idea applies here and using pseudo-observations for CRF allows avoiding

bias when proportional rates are misspecified. The pseudo-observations are evaluated at those

time points and used as response in a generalized linear model (GLM) for the covariate effects.

Note that the individuals’ pseudo-observations in the GLM may not really be interpretable but

are rather just devices for estimation. Specifically, denote t = {t1, ..., tH} as the set of distinct

times and define the pseudo-observation for subject i at time th as Λ̂i(th) where h = 1, ..., H and

i = 1, ..., n. We then assume a GLM with

g(Λi(th)) = ξth + γZi + β>Xi, (3.4)
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where ξth is the intercept term for time th, β and γ are regression parameters and g is a link

function. Common choices include the cloglog function g(x) = log(− log(x)) and g(x) = log(x). In

practice, the choice of link function depends on the parameter of interest. For example, one would

choose the logarithm function when estimating the cumulative hazard or the cloglog function for

estimating the probability of survival at a given time point. Note that when g(x) = log(x) and

ξth = log µ(th), model (3.4) is equivalent to the SMR model (3.3), but since the estimating

strategies are different, a comparison between these two approaches is presented in Section 5. To

estimate the unknown parameters γ, β and βH = {ξt1 , ..., ξtH}, we use the generalized estimating

equation (GEE) as proposed by ?. We get the gradient

U(β∗) =

n∑
i=1

∂%−1i (t,β∗;Zi,Xi)

∂β∗
V −1i

(
Λ̂i(t)− %−1i (t,β∗;Zi,Xi)

)
, (3.5)

where β∗ = (βH , γ,β), Λ̂i(t) = (Λ̂i(t1), ..., Λ̂i(tH))>, %−1i (t,β∗;Zi,Xi) is a vector of H elements

whose jth component is equal to g−1(ξtj + γZi + βTXi), and Vi : H × H is the usual work-

ing covariance matrix which may account for the correlation structure inherent to the pseudo-

observations as mentioned by ?. Note that although the pseudo-observations can be negative and

the proposed GLM in (3.4) has a log link function, the equation (3.5) still works for estimating

β∗ since it does not use the logarithm of the pseudo-observations. In the simulation studies and

the real data analysis presented in a later section, we adopt an independent correlation structure

among pseudo-observations. Additional simulations not reported here showed that specifying a

correlated matrix brings no advantage. This is in line with ? and ? who also suggest to use an

independent correlation structure in the context of competing risks. Under model (3.4), θ(t), t ∈ t

can therefore be estimated by θ̂PO(t) =
1

n

∑n
i=1

[
g−1(ξ̂tPO + γ̂PO + β̂TPOXi)−g−1(ξ̂tPO + β̂TPOXi)

]
,

where β̂∗PO = (ξ̂tPO, γ̂PO, β̂PO) are estimators obtained from solving equations (3.5) which can be

done by using the “geese” function in the R package geepack (?) using Zi, Xi and a dummy

categorical variable for t = {t1, ..., tH} as covariates.

For a given time t, denote by β∗0 = (ξ∗tPO, γ
∗
PO,β

∗
PO) the true parameters of interest. Theorem 1
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in Web Appendix B shows the asymptotic normality of β̂∗PO; the proofs based on the ideas of

? and ? are found in Web Appendix B. In addition, to assess the fitness of the model (3.4), we

adopt the idea of pseudo-residuals proposed by ? and ? to the context of recurrent event data.

To be specific, we compare the pseudo-observations Λ̂i(t) to the predicted values Λ̂(t|Zi,Xi),

yielding the pseudo-residuals {Λ̂i(t)− Λ̂(t|Zi,Xi); i = 1, ..., n}. If the model fits the data well, no

trends should be perceptible in plots of the residuals against a covariate at any given time point.

We illustrate both residuals on a real dataset in Section 6.

3.3 Doubly Robust Estimators

The IPTW estimator θ̂IPTW(t) and G-formula estimators θ̂SMR(t) and θ̂PO(t) are unbiased for

the ACE θ(t) only if the statistical models for the PS from (3.2) and OR model in (3.3) or (3.4)

are correctly specified. Doubly robust (DR) estimators, however, are robust to misspecification

in the sense that they combine both IPTW and OR estimators while remaining consistent as

long as one of those two models is correctly specified (?). Following this idea, we propose two

DR estimators which are constructed by combining the IPTW estimator θ̂IPTW(t) with an OR

estimator using either θ̂SMR(t) and θ̂PO(t). Specifically, the DR estimators for CRFs Λ1(t) and

Λ0(t) can be constructed as follows:

Λ̂1
DR(t; α̂, Θ̂) =

1

n

n∑
i=1

[ZiΛ̂i(t)
ei(α̂)

− (Zi − ei(α̂))Ê(Ñ(t)|Z = 1,Xi)

ei(α̂)

]
,

Λ̂0
DR(t; α̂, Θ̂) =

1

n

n∑
i=1

[ (1− Zi)Λ̂i(t)
1− ei(α̂)

+
(Zi − ei(α̂))Ê(Ñ(t)|Z = 0,Xi)

1− ei(α̂)

]
, (3.6)

where Θ̂ is the estimator related to Ê(Ñ(t)|Z = z,X), the estimator for E(Ñ(t)|Z = z,X),

z ∈ {0, 1}, obtained from one of the OR models. Thus, the SMR-based DR estimator for θ(t) is

θ̂SMR
DR (t) = Λ̂1

DR(t; α̂, Θ̂SMR)− Λ̂0
DR(t; α̂, Θ̂SMR) (3.7)

in which Θ̂SMR = (γ̂SMR, β̂SMR, µ̂(t)) and Ê(Ñ(t)|Z = 0,Xi) and Ê(Ñ(t)|Z = 1,Xi) are sub-

stituted by h{β̂>SMRXi}µ̂(t) and h{γ̂SMR + β̂>SMRXi}µ̂(t), respectively, both obtained from the
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SMR model in (3.3). Another alternative DR estimator relies on pseudo-observations, and

θ̂PO
DR(t) = Λ̂1

DR(t; α̂, Θ̂PO)− Λ̂0
DR(t; α̂, Θ̂PO) (3.8)

in which Θ̂PO = (ξ̂tPO, γ̂PO, β̂PO) and Ê(Ñ(t)|Z = 0,Xi) and Ê(Ñ(t)|Z = 1,Xi) are replaced

by g−1(ξ̂tPO + β̂>POXi) and g−1(ξ̂tPO + γ̂PO + β̂>POXi), respectively, both coming from the GLM

in (3.4) which used pseudo-observations. The consistency and normality for DR estimators (3.7)

and (3.8) as well as their proofs are summarized in Web Appendix B.

We also investigate the DR estimator based on pseudo-observations when (3.2) and (3.4) are

nonparametrically estimated at slower convergence rates which can be reached by considering

the Super Learner (SL) estimators (?). That is, we consider θ̂SLDR(t) = Λ̂1
DR(t; Θ̂SL)− Λ̂0

DR(t; Θ̂SL)

in which Θ̂SL denote the SL estimators for (3.2) and (3.4). For illustration, we only consider

algorithms, SL.knn, SL.glm, SL.mean and SL.randomForest, from the R package Super Learner

(?) to investigate the performance of θ̂SLDR in Section 5.

3.4 Variance Estimation

The variance formulae for regression model-based estimators θ̂SMR(t) and θ̂PO(t) may be calcu-

lated based on the delta method using the asymptotic properties of β̂∗SMR and β̂∗PO, respectively.

Such calculations are however not straightforward as they involve complicated formulae. Due to

the complexity of the variance formulae for θ̂SMR
DR (t) and θ̂PO

DR(t) as shown in Web Appendix B,

it may not be straightforward to calculate the variance. In addition, ? showed that a bootstrap

approach estimator results in better performances in terms of smaller standard error and approx-

imately correct coverage rate when using the IPTW approach for survival outcomes. Therefore,

to avoid the issues mentioned above, we propose to estimate the variances of the estimated ACEs

using nonparametric bootstrap which has also been adopted by ? to obtain confidence limits

for the ACE of interest in the context of competing risks. That is, we first resample n subjects

with replacement from the original data in order to obtain a bootstrap sample. Second, we re-
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calculate the PS and the NA estimator based on a bootstrap sample. Third, we calculate the

pseudo-observations based on the recalculated NA estimator and the proposed estimators are

applied on a bootstrap sample. Finally, the above procedure is repeated B times. The variances

are computed empirically from the B estimates.

4. Two-Sample Tests

We now consider developing tests for H0 : Λ1(t) = Λ0(t), 0 < t 6 τ, versus H1 : Λ1(t) 6= Λ0(t), for

some 0 < t 6 τ , where Λz(t), z = 0, 1 are the CRFs for the untreated and treated groups respec-

tively. In the absence of confounders, ? investigated a family of pseudo-score test statistics for

the null hypothesis H0. The test statistics studied by ? are based on UCLN(t) =
∫ t
0
Q(u)dθ̂NA(u),

where Q(u) = {Ỹ0.(u)Ỹ1.(u)a(u)}/Ỹ..(u), a(u) is a fixed weight function such as 1 or t − u,

Ỹz·(u) =
∑
i:Zi=z

Ỹi(u) is the size of the risk set at time u for treated (z = 1) and untreated

(z = 0) groups, and Ỹ..(u) = Ỹ0.(u) + Ỹ1.(u) is the total number of individuals at risk at

time u in the whole sample. ? proposed standardized form of the test statistic using a vari-

ance estimate V̂P(t) based on a Poisson process assumption, and an alternative variance estimate

V̂R(t) robust to a departure from that assumption. Under H0, both UCLN
P (t) = [UCLN(t)]2/V̂P(t)

and UCLN
R (t) = [UCLN(t)]2/V̂R(t) are asymptotically χ2(1). These tests assume random assign-

ment and can therefore not be directly performed when the groups are unbalanced due to

confounding. Consequences of ignoring the failure of this assumption are shown in Section 5.

To fix the imbalance, we exploit the weighted log-rank test for statistical comparison of sur-

vival functions proposed by ? and define three adjusted versions of the two-sample pseudo-score

tests in which components in Q(u) are re-weighted and θ(t) is estimated by a DR estimate

from θ̂SMR
DR (t), θ̂PO

DR(t) or θ̂SLDR(t). Specifically, let w∗i (u) = Ỹz·(u)wi(α̂)/
∑
i:Zi=z

wi(α̂) be the

weight function at time u for individual i in the untreated (z = 0) or treated (z = 1) groups,

where wi(α̂) = Zi/ei(α̂) + (1 − Zi)/(1 − ei(α̂)). Hence, the weights w∗i (u) are proportional

to the number of individuals at risk for a given time u in each group. We then propose the
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following three adjusted pseudo-score test statistics USMR
DR (t) =

∫ t
0
Q∗(u)dθ̂SMR

DR (u)

σ̂SMR
DR (t)

, UPO
DR (t) =∫ t

0
Q∗(u)dθ̂PO

DR(u)

σ̂PO
DR(t)

, and USL
DR(t) =

∫ t
0
Q∗(u)dθ̂SLDR(u)

σ̂SL
DR(t)

where Q∗(u) = Ỹ ∗0·(u)Ỹ ∗1·(u)a(u)/Ỹ ∗·· (u),

Ỹ ∗z·(u) =
∑
i:Zi=z,Ci>u

w∗i (u) for z = 0, 1, Ỹ ∗·· (u) = Ỹ ∗0·(u) + Ỹ ∗1·(u) is the weighted number of

individuals at risk in the combined sample at time u, and the denominators are the estimated

standard errors of their respective numerators based on a nonparametric bootstrap approach.

Under H0, the test statistics USMR
DR (t), UPO

DR (t) and USL
DR(t) converge asymptotically to a standard

normal for any fixed time point t; thus, the null hypothesis is rejected at level α if the absolute

value of the chosen test statistic exceeds zα/2.

5. Simulations

Several simulation studies are conducted to evaluate the proposed estimators. For subject i, i =

1, ..., n, the data generating process has three independent covariates (Xi1, Xi2, Xi3), a bernoulli

with mean 0.5, a uniform on (0, 1) and a standard normal respectively. The propensity score (PS)

model (3.2) has logit(ei(α)) = 0.2 + 0.4Xi1 + 0.6Xi2 + Xi3. This yields approximately 64% of

treated subjects and 36% of untreated individuals based on 500 simulated data. Event times for

subjects are generated from the homogeneous Poisson processes (HPP): E[dÑi(t)|Xi1, Zi, ηi] =

ηi exp{γZi + βXi1}dµ(t), where ηi is a subject-specific Gamma frailty with E(ηi) = 1 and

Var(ηi) = σ2 inducing a positive correlation among the within-subject events. A large σ2 im-

plies a high positive correlation among event times, and σ2 = 0 yields ηi = 1, which induces

independence for event times within subjects. We set β = − log(5) and γ = log(0.8). A study

duration of τ = 1 is employed, and the censoring time for each subject is independently generated

from a Uniform(0,τ), which is also independent of the event processes. We consider n ∈ {100, 300},

σ2 ∈ {0, 0.25} and µ(t) ∈ {5t, 20t}. With σ2 = 0 and µ(t) = 5t, the expected number of events

per subject are 1.1 and 1.6 in the treated and untreated group respectively. They become 4.5 and

6.4 if µ(t) = 20t. The variances of estimators are estimated based on B = 200 bootstrap samples.
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Table 1 in Web Appendix C presents the performances of the marginal estimators γ̂ and

β̂ obtained from SMR (3.3) and GLM (3.4). For GLM, we assume an independent correlation

structure among pseudo-observations calculated from 4 or 10 time points which are either j/5

for j = 1, . . . , 4 or j/10 for j = 1, . . . , 10. For each estimator, we report the average bias (Bias),

the empirical standard error (ESE), the average of the standard error estimator (SEE) and the

empirical coverage rate (CR) of 95% confidence interval. Overall, the performance of marginal

estimators is reasonable. Compared to the estimates obtained from the SMR model, the estimators

based on pseudo-observations have slightly higher ESE (SEE) especially for estimators using only

4 time points. Indeed, the SMR model uses all data information between times 0 and 1 whereas

the GLM based on pseudo-observations only 4 or 10 time points between times 0 and 1. However,

ESEs (SEEs) from both models are close when the sample size n or the baseline rate function

µ(t) increases. From now on, to obtain better performance, the subsequent analyses related to

pseudo-observations are conducted based on 10 time points.

Table 2 and 3 in Web Appendix C show the performance of estimators θ̂SMR(t) and θ̂PO(t)

when the baseline rate functions are µ(t) = 5t and 20t, respectively. We obtain that θ̂PO has

higher ESE and SEE than θ̂SMR, but that gap decreases as n increases while the CR is getting

closer to the 95% nominal level . As σ2 increases, so does the ESE and SEE of estimators θ̂PO

and θ̂SMR. We also present the mean square error ratio (MSER), which is the ratio of MSE of

θ̂PO to the MSE of θ̂SMR. We observe values of MSER greater than 1, meaning that the MSE of

θ̂SMR is smaller, but this relative advantage seems to decrease as n increases.

Next, we examine the robustness of the IPTW estimator θ̂IPTW(t) and the DR estimators

θ̂SMR
DR , θ̂PO

DR and θ̂SLDR. For comparison purposes, the naive NA estimator is evaluated as well.

We report the MSER of each estimator with the MSE of θ̂SLDR as a reference. We estimate θ(t)

at t = 0.4 and 0.8 for three scenarios: (a) scenario (C,C) where PS model and OR model in

HPP are both correct, (b) scenario (C,N) where the PS model is correctly specified but the OR
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model is not, and (c) scenario (N,C) if which the OR model is correctly specified but not the PS

model. While the incorrectly specified PS model omits covariate Xi3, the incorrect OR model in

HPP includes covariates Xi2 rather than Xi1. Table 2 presents the results with µ(t) = 5t and

σ2 = 0.25. The bias of θ̂NA is obvious with a CR furthest from 95% nominal level in all scenarios

especially for n = 300. For scenario (C,C), θ̂IPTW, θ̂SMR
DR , θ̂PO

DR and θ̂SLDR are unbiased and CRs are

consistent with the 95% nominal level. Moreover, θ̂SMR
DR , θ̂PO

DR and θ̂SLDR have similar performance

as n increases. Their ESE and SEE are slightly lower than that of θ̂IPTW especially for θ̂SLDR.

MSER values imply that θ̂SLDR has the smallest MSE among all DR estimators. As expected,

those estimators improve as n increases from 100 to 300. For scenario (C,N), θ̂IPTW, θ̂SMR
DR , θ̂PO

DR

and θ̂SLDR display little bias with reasonable CRs even when n = 100. ESE and SEE are slightly

higher for θ̂IPTW compared to DR estimators. In addition, θ̂SLDR has the smallest MSE among

all DR estimators. For scenario (N,C), θ̂IPTW is biased as the PS model is incorrectly specified.

Three DR estimators θ̂SMR
DR , θ̂PO

DR and θ̂SLDR are unbiased with a CR consistent with 95% nominal

level, and θ̂SLDR has the smallest MSE. From the simulation results of three scenarios, researchers

would focus more on getting correct model for OR as the DR estimators tend to have smaller

ESE and SEE once the OR model is correctly specified. In Section 7, we give a concrete set of

recommendations in practice on which estimators to prefer for which situations.

Table 3 presents simulation results of the test statistics given in Section 4. We set a(u) = 1

and examine the empirical type I error rates and power of these test statistics. We re-express the

parameter in HPP as γ = logψ and set β = − log(5). The parameter ψ represents the treatment

effect on the CRF of the treatment group. Under H0 : Λ1(t) = Λ0(t), 0 < t 6 1, event times for

subjects are generated with ψ = 1 and µ(t) = 5t and 20t, respectively. Table 3 summarizes type I

error rates under the scenarios (a), (b) and (c) described in the previous paragraph. We observe

that both tests UCLN
P (t) and UCLN

R (t) proposed by ? have inflated type I error rates increasing

along with larger value of µ(t), particularly for UCLN
P (t). The inflated rates are caused by the fact
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that θ̂NA is a biased estimator (see Table 2) due to confounding, and the value of Q(u) without

adjustment for the risk sets Ỹz.(u), z = 0, 1 is larger than the adjusted Q∗(u). These two factors

lead to UCLN(t) having a large value and then easily rejecting H0, even with robust variance

estimation. Note that two tests UCLN
P (t) and UCLN

R (t) can be performed via the mcfDiff.test

function in R package reda (?). As expected, the proposed tests USMR
DR (t), UPO

DR (t) and USL
DR(t)

generally have similar and satisfactory performance for all scenarios. This is not surprising given

the robustness of the DR estimators for θ(t) observed in Table 2. Overall, the error rates are

consistent with the 0.05 nominal level as n increases.

Table 4 of Web Appendix C shows the empirical power for test statistics under the alternative

hypothesis where ψ = 1.5. When σ2 = 0, the power of USMR
DR (t), UPO

DR (t) and USL
DR(t) are similar

and comparable in all scenario. As expected, power increases as n gets larger for each value of µ(t).

The power also increases with µ(t). We observe that power is higher in scenario (N,C) compared to

the other two scenarios. This result may be induced by the relatively smaller estimated standard

errors σ̂SMR
DR (t), σ̂PO

DR(t) and σ̂SL
DR(t) while their respective numerators are similar, resulting in the

test statistics USMR
DR (t), UPO

DR (t) and USL
DR(t) can more easily reject H0. As σ2 increases from 0 to

0.25, the power of the three proposed tests decreases in each scenario. Note that the power of

the analyses based on UCLN
P (t) and UCLN

R (t) are uninterpretable given the serious inflation of the

type I error rate observed in Table 3.

6. Real Data Analysis

We apply the proposed methodology to a hospital readmission dataset for colorectal cancer

patients. This dataset is available from the R package frailtypack (?). Each of 403 patients

were followed up for a period of time, and the hospital readmission times for each patient were

recorded. Time 0 corresponds to the first hospital admission due to colon cancer. Among 403

patients, 199 patients had no readmission, 150 patients had one or two readmissions and others

patients had up to 22 readmissions. Patients were treated or not treated with chemotherapy, a
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decision that could be influenced by potential confounders including sex (male or female) and

Duke’s stage (combined in 3 groups: stages A-B, stage C, stage D).

The upper portion of Table 4 shows the estimated parameters for the propensity score (PS).

We observe that males have a higher probability to be assigned to the treated group given the

same Duke stage. Patients with Duke’s stage A-B (the baseline group) or Duke’s stage D also tend

to be assigned to the treated group. The estimated weights wi(α̂) = Zi/ei(α̂)+(1−Zi)/(1−ei(α̂))

for both treated and untreated groups are shown in Figure 2 of Web Appendix C. The boxplots

indicate that the weights behave well for both groups with higher variation in the untreated group.

The bottom panel of Table 4 presents the parameters of the OR based on SMR model (3.3) and

GLM (3.4) with g(x) = log(x) and ξt = logµ(t). Pseudo-observations Λ̂i(t) are calculated for

each patient at all 367 observed event times from the hospital readmission data. We observe that

chemotherapy reduces the risk of hospital readmission under both OR models with significant p-

values at the 10% level for both and at the 5% level under GLM (3.4). The coefficient estimate for

females reveals that they have a lower readmission rate than males and is statistically significant

in both OR models. The estimated coefficient for Duke’s stage D is significant, which implies

that patients at the highest stage of the disease have intensive hospital readmission. Overall,

the fitted results from the SMR model are consistent with the findings based on the GLM, but

they display slightly lower standard errors. The results described above are compatible with the

findings of ? in terms of significance and direction of the effects. This is not surprising as they

also assumed that covariates and treatment have proportional effects on the occurrence rate of

counting process although they considered a parametric model.

Figure 3 of Web Appendix C is used to assess the adequency of GLM (3.4) with g(x) =

log(x) and ξt = logµ(t). It shows boxplots of the pseudo-residuals for both treatment groups

at given several time points. Since the pseudo-residuals fluctuate around zero at any given time

point, the plots support the adequacy of the proposed GLM. The variation of pseudo-residuals
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increases as time increases, especially for the untreated group. An additional set of pseudo-

residual plots with sex as a covariate is presented in Figure 4 of Web Appendix C. Therein,

the pseudo-residuals vary around 0 and the variation increases with time, especially for male

patients. Figure 5 of Web Appendix C presents residuals M̂i(Ci; γ̂SMR, β̂SMR) plotted against the

covariate sex and treatment respectively. The residual boxplots indicate that the proposed SMR

model (3.3) is suitable for the readmission data since residuals symmetrically fluctuate around

zero. The variation of residulas tend to be higher in male group and untreated group, which is

consistent with the findings based on pseudo-residuals.

Figure 1 shows the estimated CRFs stratified by the treatment. Since they are so similar, we

omited some curves and present only the estimates based on pseudo-observations along with the

NA estimator. In the untreated group, the DR estimators (plain and longdash lines) are similar

to the NA estimator (dotted line) while the estimator based on GLM is slightly higher. In the

treated group, the curves based on the DR estimators are higher than that of the NA estimator,

indicating a lower treatment effect after the adjustments. That is, the DR estimators reduce the

confounding effect of sex and Duke’s stage, and therefore provide a better estimation of CRF for

the treated group than that of the NA estimator. Note that in both groups, the DR estimator

with SL is overlapping with the DR estimator based on GLM.

To test H0 : Λ1(t) = Λ0(t), we conduct several tests based on chosen time points. We applied

the two-sample tests described in Section 4 based on B = 200 bootstrap samples. Table 5 in Web

Appendix C dispays the results. The test statistic UCLN
R (t) implies that the difference of CRFs

between untreated and treated groups is identifiable after t = 560.6 at the 5% level. However,

our proposed test statistics show that the difference of CRFs between two groups never reaches

significance at the 5% level. This might be explained by the fact that our proposed test statistics

are able to provide precise comparison between two CRFs as they are constructed based on robust

DR estimators, which could reduce or eliminate the confounding biases. Also, the test results are
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consistent with our findings as shown in Figure 1 that the CRFs of treated group become higher

after adjustment which shrinks the difference between two CRFs.

7. Discussion

In this work, we propose several estimators for the difference in the CRF of two groups whose as-

signment to a treatment may depend on confounders. Our proposals include IPTW estimator, OR

model estimators and DR estimators. The proposed DR estimators are based on a combination of

PS and OR models, and they are robust in the sense that they are consistent whenever either one

of these models is correctly specified. Asymptotic properties of the estimators are discussed and

the normality of the regression marginal estimators based on pseudo-observations are derived. To

assess the adequency of the two proposed OR models, we develop two graphical model diagnosis

tools. We also propose adjusted two-sample tests to compare two CRFs . Simulation studies show

that the proposed methods perform well for finite sample scenarios. The proposed methodology

is applied to a recurrent hospital readmission dataset for colorectal cancer patients.

Examples of pseudo-observations for CRF in Figure 1 of Web Appendix C show that pseudo-

observations can take negative values, a behaviour akin to pseudo-observations for survival func-

tions which are not necessarily within (0, 1) as showed in ?. This does not affect the consistency

of the proposed DR estimators constructed based on the asymptotic property in (3.1). In addi-

tion, to avoid the possible collider issues as mentioned in Section 2, we consider the marginal rate

model, SMR, with occurrence rate of recurrent events unconditional on the event history. Accord-

ing to ?, marginal rate models are often preferred in practice because they provide more direct

practical interpretations for identifying risk factors when comparing to the models conditioned

on the event history.

As we showed in simulation studies, using 10 equally spaced time points yields good perfor-

mances for the estimation of marginal parameters in (3.4) using pseudo-observations of CRF. A

similar idea is recommended by ? for who choosing 5 to 10 equally spaced time points works well
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for parameter estimation based on pseudo-observations of survival function. It might improve

the efficiency of marginal estimator when using large number of points as mentioned by ? and

studied by ?. However, the tradeoff between using a large versus small number of time points is

that it may be time-consuming to solve the estimating equation (3.5) when the number of time

points is large since it requires a large number of parameters in the intercept term βH . To obtain

smooth looking curves of CRF for the readmission dataset, we utilize all observed event times

as the time set to calculate pseudo-observations instead of using 10 time points. In practice, one

could first adopt 10 equally spaced time points to estimate marginal parameters and plot the

estimated CRF. If the estimated CRF does not look smooth enough, one can use all observed

times as a time set to calculate the pseudo-observations and then obtain a smoother looking

estimated CRF.

The simulation studies show that the IPTW estimator for θ(t) could be biased with small

sample size although it is asymptotically unbiased. We thus suggest that researchers adopt that

estimator only when the sample size is large (n = 300 from our simulation studies) to avoid

the finite-sample bias caused by high variation of weights. The true form of PS model is almost

never known in observational studies, which leads to bias estimation of θ(t) depending on the

unknown extent of model misspecification. When the OR model is correctly specified, two estima-

tors θ̂SMR(t) and θ̂PO(t) have smaller ESE and SEE compared to IPTW estimator and three DR

estimators. We suggest that researchers use the G-formula estimators when the OR model can

be correctly specified. In real-life settings, the true nature of the relationship between exposure

and confounders with respect to the outcome is however never known. Model misspecification

will result in biased estimators for θ(t). To mitigate the effects of misspecification of the PS or

OR model, researchers can use the DR estimators which remain consistent if at least one of the

PS or OR model is correctly specified. Besides, we would recommend that researchers use the

DR estimator with SL approach as it provides substantially better performance.
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In this work, we consider the situation where the treatment is independent of all other vari-

ables. However, some observational studies may just allow conditional independence of the post-

treatment variables given pre-treatment variables. This will be an interesting topic in future work.

Extending current work to admit time-varying confounders will also be future projects.

References



REFERENCES 23

Table 1. List of different models used in the definition of the proposed estimators and their corre-
sponding censoring assumption (shown in the columns).

IPTW G-formula Doubly robust

Model θ̂IPTW θ̂SMR θ̂PO θ̂SMR
DR θ̂PO

DR θ̂SLDR

Logistic regression for PS X X X
Semiparametric multiplicative rate (SMR) X X

Generalized linear model (GLM) X X
Super Learner for PS X

Super learner for GLM X

Censoring assumption
Censoring completely at random X X X X

Censoring at random X X

PO: pseudo-observations; DR: doubly robust; IPTW: inverse probability of treatment weighting; SL:
super learner; Censoring completely at random: censoring is independent of all other variables; Cen-
soring at random: censoring is independent of the outcome given the covariates
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Table 2. Simulation summaries for doubly robust estimator based on 500 replications with µ(t) = 5t and σ2 = 0.25.

Estimators

θ(0.4) = −0.24 θ(0.8) = −0.48

n (PS,Reg) θ̂NA θ̂IPTW θ̂SMR
DR θ̂PO

DR θ̂SLDR θ̂NA θ̂IPTW θ̂SMR
DR θ̂PO

DR θ̂SLDR

100 (C,C) Bias -0.135 -0.015 -0.008 -0.008 0.010 -0.254 -0.047 -0.034 -0.031 0.003
ESE 0.334 0.447 0.399 0.403 0.335 0.706 0.838 0.775 0.782 0.669
SEE 0.339 0.429 0.385 0.389 0.324 0.674 0.859 0.760 0.773 0.652
CR 0.918 0.942 0.938 0.938 0.930 0.914 0.952 0.948 0.949 0.945

MSER 1.267 1.754 1.411 1.441 1(ref) 1.221 1.741 1.362 1.407 1(ref)

(C,N) Bias -0.115 0.028 0.016 0.011 -0.058 -0.212 0.010 -0.013 -0.026 -0.090
ESE 0.343 0.373 0.369 0.371 0.352 0.688 0.776 0.750 0.763 0.730
SEE 0.334 0.383 0.372 0.378 0.333 0.668 0.795 0.790 0.792 0.712
CR 0.916 0.936 0.940 0.944 0.936 0.922 0.942 0.950 0.953 0.940

MSER 1.096 1.289 1.219 1.254 1(ref) 0.953 1.227 1.211 1.217 1(ref)

(N,C) Bias -0.125 -0.048 -0.020 -0.020 0.013 -0.232 -0.071 -0.044 -0.045 -0.011
ESE 0.342 0.319 0.308 0.308 0.303 0.713 0.686 0.664 0.665 0.615
SEE 0.337 0.310 0.298 0.298 0.289 0.668 0.678 0.594 0.595 0.585
CR 0.915 0.912 0.940 0.942 0.935 0.906 0.914 0.940 0.940 0.938

MSER 1.554 1.181 1.072 1.072 1(ref) 1.462 1.357 1.038 1.041 1(ref)

300 (C,C) Bias -0.143 0.001 0.009 0.009 -0.005 -0.300 0.005 -0.001 -0.001 -0.007
ESE 0.214 0.209 0.198 0.198 0.196 0.421 0.425 0.419 0.420 0.415
SEE 0.196 0.203 0.194 0.194 0.190 0.398 0.419 0.411 0.411 0.406
CR 0.874 0.946 0.950 0.948 0.949 0.870 0.936 0.948 0.948 0.946

MSER 1.639 1.139 1.027 1.027 1(ref) 1.493 1.054 1.012 1.012 1(ref)

(C,N) Bias -0.131 -0.007 -0.001 -0.001 -0.002 -0.275 -0.004 0.007 0.007 0.002
ESE 0.204 0.192 0.188 0.189 0.184 0.389 0.413 0.409 0.411 0.409
SEE 0.196 0.209 0.204 0.204 0.197 0.393 0.420 0.413 0.412 0.408
CR 0.888 0.960 0.956 0.950 0.956 0.896 0.950 0.960 0.956 0.955

MSER 1.474 1.157 1.078 1.078 1(ref) 1.411 1.079 1.049 1.037 1(ref)

(N,C) Bias -0.111 -0.012 -0.001 -0.001 -0.002 -0.231 -0.015 -0.002 -0.002 -0.003
ESE 0.208 0.173 0.162 0.162 0.159 0.417 0.343 0.331 0.332 0.329
SEE 0.194 0.169 0.160 0.160 0.157 0.391 0.344 0.330 0.331 0.327
CR 0.908 0.916 0.950 0.950 0.948 0.886 0.915 0.950 0.950 0.948

MSER 2.028 1.166 1.041 1.041 1(ref) 1.943 1.113 1.018 1.028 1(ref)

Bias: bias of parameter estimator; ESE: empirical standard error of the parameter estimator; SEE: mean of the standard error
estimator; CR: coverage rate of the 95% confidence interval; MSER: mean square error ratio NA: Nelson-Aalen estimator; IPTW:
inverse probability of treatment weighting estimator; SMR: semiparametric multiplicative rate; PO: pseudo-observations; DR: doubly
robust; SL: super learner; ref: reference; B = 200 for standard error estimation(SEE).
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Table 3. Empirical type I error rates for test statistics based on 500 replications.

σ2 = 0 σ2 = 0.25

(PS,Reg) µ(t) n UCLN
P UCLN

R USMR
DR UPO

DR USL
DR UCLN

P UCLN
R USMR

DR UPO
DR USL

DR

(C,C) 5t 100 22.0 8.2 4.5 4.5 5.5 31.0 9.2 5.5 5.5 5.7
5t 200 22.0 10.8 4.9 5.0 5.2 25.0 9.6 5.2 5.2 4.9
5t 300 28.2 12.8 4.8 4.8 5.1 30.2 10.2 5.3 5.3 5.3
20t 100 41.6 12.0 5.5 5.5 4.6 51.0 9.4 4.8 4.7 4.8
20t 200 51.4 15.0 4.8 4.6 4.8 57.0 11.8 5.5 5.5 5.3
20t 300 58.8 18.6 5.1 4.9 5.2 58.4 13.2 5.2 5.3 5.1

(C,N) 5t 100 18.0 9.0 4.5 4.5 4.5 23.2 8.6 5.1 5.1 5.2
5t 200 24.4 11.4 5.3 5.5 5.2 30.0 11.6 6.4 6.4 5.6
5t 300 27.8 13.4 4.6 4.6 4.8 34.0 10.6 5.4 5.2 5.2
20t 100 41.6 12.0 5.4 5.5 5.3 54.2 9.8 5.5 5.6 5.5
20t 200 48.2 14.6 5.2 5.3 5.4 55.4 12.2 5.8 5.8 5.4
20t 300 56.2 21.6 5.4 5.4 5.3 61.0 12.8 5.4 5.5 5.3

(N,C) 5t 100 19.4 10.6 5.5 4.5 5.4 26.6 7.6 5.1 5.1 5.2
5t 200 25.6 12.0 5.2 5.2 5.4 30.0 10.0 4.6 4.6 5.4
5t 300 26.4 11.8 4.8 5.8 5.6 34.0 11.6 5.1 5.2 5.2
20t 100 40.2 11.4 5.0 5.0 5.2 46.6 9.2 4.5 4.5 4.6
20t 200 55.2 17.8 5.6 5.5 5.4 55.0 10.3 5.4 5.4 5.3
20t 300 59.6 20.6 5.5 5.5 5.4 60.8 15.8 5.3 5.3 5.4

The numbers for type I error rates are multiplied by 100. SMR: semiparametric multiplicative rate; PO: pseudo-
observations; DR: doubly robust; SL: super learner; UCLN

P : variance estimate is based on Poisson process assumption;

UCLN
R : variance estimate is based on robust to a departure from Poisson process assumption.
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Table 4. Parameter estimates for hospital readmission data.

Logistic Model for PS

Parameter Est. SEE P-value

Intercept 1.024 0.186 <0.001
Female -0.256 0.220 0.245
DukeC -1.771 0.245 <0.001
DukeD -0.563 0.288 0.051

Outcome Regression (OR) model

SMR Model GLM Model

Parameter Est. SEE P-value Est. SEE P-value

Chemo -0.266 0.158 0.092 -0.522 0.250 0.036
Female -0.495 0.166 0.003 -0.427 0.209 0.041
DukeC 0.384 0.228 0.093 0.337 0.254 0.184
DukeD 1.514 0.218 <0.001 1.230 0.240 <0.001

Est.: Parameter estimate; SEE: Standard error estimate; PS: propensity score;
SMR: semiparametric multiplicative rate; GLM: generalized linear model
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Fig. 1. The estimated cumulative rate functions for treat and nontreat groups from hospital readmis-
sion data using the Nelson-Aalen (NA) estimator, pseudo-observations (PO) estimator, doubly robust
(DR) estimator based on pseudo-observations (PO) and doubly robust (DR) estimator based on pseudo-
observations (PO) using Super Learner (SL).
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