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Finite Element Gaussian Belief Propagation Solver for Multi-Physics
Modeling of Radiofrequency Tumor Ablation

Amir Akbari, Ali Akbarzadeh-Sharbaf, Student Member, IEEE, and Dennis D. Giannacopoulos, Senior Member, IEEE
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A new finite element Gaussian belief propagation (FGaBP) algorithm for multi-physics applications is presented in this paper. The
FGaBP method is first modified for solving the heat-transfer problem and then verified against an analytical solution. Combined
with a Gauss-Seidel algorithm, FGaBP is used to solve the coupled electrical-thermal problem that emerges in radiofrequency
ablation of hepatic tumors while the extent of ablated zone is computed for a simplified model. The multi-physics FGaBP algorithm
preserves the parallel scalability of FGaBP as in previous uni-physics works.

Index Terms—FGaBP, Gauss-Seidel algorithm, Radiofrequency Ablation (RFA).

I. INTRODUCTION

THE finite element Gaussian belief propagation (FGaBP)
method [1] is an alternative to the traditional finite-

element formulation, whose main advantage is providing abun-
dant parallelism based on localized computations and dis-
tributed message communication. While FGaBP uses message
passing for communications between different parts of the
domain, the same approach could be utilized for communi-
cation between different physics in a multi-physics scheme.
This work presents a multi-physics reformulation of FGaBP
realized by combining its localized computations and message
passing scheme with the coupled phenomena that appear in
radiofrequency ablation (RFA) of hepatic tumors.

RFA is a technique that is employed in destruction of
tumors in different locations including liver, kidney, lung,
bone, prostate, and breast. It uses devices operating between
460-550 kHz delivering electrical currents to biological tissues
to thermally damage a tumor by raising its temperature to
approximately 100 oC for a period of 10-15 minutes. Effective
RFA is defined as an entire ablation of the tumor with a safety
margin of destroyed healthy tissue in its vicinity, which in
turn relies on optimal probe placements and the extent of
ablation zone. However for treating tumors in the liver, the
latter is difficult to control as the hepatic blood vessels and
the parenchyma perfusion dissipate heat and change the size
and shape of the lesion zone. In fact, clinical evidence shows a
noteworthy mismatch between expected and observed ablation
zone leading to reduced survival rates due to over-treatment
with severe injuries (up to 9%) or under-treatment with tumor
recurrence (up to 40%) [2].

Theoretical models and computer simulations are non-
invasive powerful tools providing critical information on the
electrical and thermal behavior of RFA. Recently, computa-
tional models of RFA have gained attention as a tool for
studying the heat distribution around the ablation probes [3],
[4]. In order to simulate RFA therapies and predict the extent
of the ablation zone, a multi-physics approach that combines
electrical-thermal heating process with a biophysical model of
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the heat transfer and cellular necrosis is needed. To investigate
the capabilities of FGaBP for solving multi-physics problems,
the coupled electrical-thermal phenomenon in a simplified
model of RFA is simulated in this paper. Section II presents
the mathematical model of electrical heating, heat transfer
and their coupling in the liver. Section III provides a review
on the FGaBP algorithm and introduces a new multi-physics
FGaBP method, based on a Gauss-Seidel algorithm; Section
IV describes a test case and the results obtained.

II. MODELING OF ELECTRICAL HEATING AND HEAT
TRANSFER IN THE LIVER

Modeling of RFA is based on a transient analysis of a
coupled electrical-thermal problem. The spatial distribution of
temperature inside the tissues is obtained by solving the bio-
heat equation [5]:

ρcti
∂T

∂t
= ∇ · (d∇T ) +Q (1)

where ρ is the mass density (kg/m3), cti is the tissue specific
heat (J(kgK)−1), T is the temperature (oC), d is the thermal
conductivity (W(mK)−1), and Q is the heat source (W/m3).
We add the cooling term H(Tbo − T )/(1 − ε) to (1) when a
point belongs to a large liver vessel or −ερcblv ·∇T/((1− ε)
when it belongs to the parenchyma. Here, cbl is the blood
specific heat, v and ε stand for blood velocity and blood
volume fraction (fraction of blood volume over total volume),
and Tbo is the normal body temperature, i.e 37 oC. At the
frequencies employed in RFA (460-550 kHz) the displacement
currents are negligible and the electrical problem is resolved
using Laplace’s equation:

∇ · (σ(T )∇v) = 0 (2)

where ∇ is the gradient operator, σ(T ) is the temperature-
dependent electrical conductivity (S/m), and v is the elec-
tric potential (V). The bio-heat equation is coupled to the
Laplacian equation by its source term Q = σ|∇v|2. On
the other hand, most RFA models consider a temperature-
dependent change in σ using a temperature coefficient of
+2 %/oC [3]; Thus, the thermal profile and the electric
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Fig. 1. Example quadrilateral (1st order) (a) FEM mesh and (b) its equivalent
factor graph [6].

field are interdependent. After using theta-scheme for time-
discretization of the heat transient problem, and similar space
discretization for both (1) and (2), we will have the following
set of coupled discrete equations:[

Mv(T )
] {
v
}

= 0 (3a)

[
MT + δt θ ST

] {
T
}n+1

=
[
MT − δt (1− θ)ST

] {
T
}n

+

δt
{

(1− θ)
{
f(v)

}n
+ θ

{
f(v)

}n+1}
(3b)

where Mv,ij(T ) =
∫
σ(T )NiNj dV , MT,ij = ρc

∫
NiNj dV ,

ST,ij = d
∫ −→
∇Ni ·

−→
∇Ni dV and fj(v) =

∫
σ(T )Nj |∇v|2 dV .

The choice of solution approach for these coupled equations
depends on a number of considerations. From a practical
standpoint, existing codes for component solutions motivates
successive substitution as the route to a first multi-physics
simulation, which is typically done in a Gauss-Seidel iterative
manner. A conventional Gauss-Seidel algorithm solves the uni-
physics problems sequentially, however, as explained in the
next section, the message passing scheme of FGaBP and its
localized computations allow us to solve the coupled electrical
and thermal equations in parallel in order to make a more
efficient use of the processing resources.

III. SOLVING THE COUPLED PROBLEM WITH FGABP

FGaBP reformulates FEM into an inference problem over
a factor graph, which may then be solved applying the belief
propagation rules. As shown in Fig. 1, there are two distinct
nodes in the factor graph, variable nodes (VN, nodes of
unknowns) represented by circles, and factor nodes (FNs)
represented by squares. FGaBP assumes the solution at each
VN is a random variable with a Gaussian distribution whose
shape is defined by two parameters, α and β, where α is the
reciprocal of the variance and β/α is the mean. By passing
two types of messages, factor node messages and variable node
messages, FGaBP tries to find the values of α and β for each
node. A factor node message, mai, is sent from factor node a
(FNa) to the connected variable node i (VNi) and represents
the most probable state of ui, as observed from FNa. In return,
the variable node message ηia is a distribution in terms of ui
representing observations from other connected FNs.

The main steps applied in FGaBP are as follows:

1) The first step updates β and α values for all VNs
associated with each FN. This operation is done by each
FN sending messages to all connected VNs, which then

updates the local α and β values. This requires solving
two small systems of equations [6]:

αt
ai =ML(i) − V T

(
W̄ (t∗)

)
V

βt
ai =BL(i) −

(
K̄(t∗)

)T (
W̄ (t∗)

)−1
V. (4)

Noteworthy, M , V , W , and K are small matrices
corresponding to the local factors ψa and t∗ represents
the previous value.

2) In the second step, each VN receives the new beliefs
from the connected FNs, computes VN messages ac-
cordingly and sends them back to each neighboring FN
[6]:

α
(t)
i =

∑
k∈N(i)

α
(t∗)
ki , α

(t)
ia = α

(t)
i − α

(t∗)
ai

β
(t)
i =

∑
k∈N(i)

β
(t∗)
ki , β

(t)
ia = β

(t)
i − β

(t∗)
ai (5)

where N(i) is the set of all FNs connected to VNi.
These steps are repeated until the changes in α and β values
reach a certain threshold. After convergence, the solution is
recovered computing the median as µ = β/α. It is important
to observe that FNs (where most of the computation is done)
are only connected through variable nodes and that messages
are only sent to local neighboring FNs. This is a key feature
that gives FGaBP great potential for parallel processing; in
this paper, we show that this parallelism of FGaBP could be
preserved in a multi-physics scheme.

In order to solve the coupled electrical-thermal problem
described in Section II with FGaBP, we should have messages
αv and βv in the electrical problem and αT and βT in
the thermal problem. We can exploit the local computations
and message passing strategies used in FGaBP in order to
derive a parallel Gauss-Seidel algorithm. Unlike a classical
Gauss-Seidel in which the uni-physics problems are solved
sequentially, in the proposed parallel algorithm we can solve
both electrical and thermal problems in parallel. This method
is shown in Algorithm 1. The electrical problem updates its
local FN matrices according to the temperature obtained in
the previous iteration (or the initial temperature for the first
iteration) and starts calculating βv and αv messages for each
cell. A local convergence could be satisfied if the messages of
one cell or one group of cells are converged. The electrical
component sends the updated βv and αv messages of the
locally converged cells to the thermal component. The thermal
problem then updates the local right hand side (RHS) matrices
of the corresponding cells and starts calculating βT and αT

messages while waiting for more cells in the electrical problem
to be converged. Whenever a number of cells are converged
in the thermal problem, the FN matrices of those cells are
updated accordingly in the electrical problem and messages are
calculated again. This procedure continues until a convergence
criterion such as L2-norm of the electrical conductivity is
smaller than a threshold. To make FGaBP solver converge
faster, we can use the values of α and β messages from the
previous iteration. Hence, the messages αv and βv in the
electrical problem and αT and βT in the thermal problem
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only need to be initialized in the first iteration and then will
continue by just updating their values. In fact, as shown by
[6], we only need to update βv and βT after a few iterations
since α messages converge very fast.

Algorithm 1 FGaBP Gauss-Seidel algorithm.
1: Set T (0) = T0, v(0) = 0, and σ(0) = σ(T0) = σ0
2: for t = 1 to Nt do
3: Set T = T (i− 1) and v = v(i− 1)
4: for i = 1 to N do
5: if i = 1 then
6: Initialize αv = 1 and βv = 0
7: Compute αv and βv
8: Send αv and βv to thermal problem
9: else

10: Update βv for each cell from previous iteration
11: Send βv to the cell in thermal problem
12: Update RHS matrix of the cell in thermal problem
13: end if
14: if i = 1 then
15: Initialize αT = 1 and βT = 0
16: Compute αT and βT
17: else
18: Update βT for each cell from previous iteration
19: Send βT to the cell in electrical problem
20: Update FN matrix of the cell in electrical problem
21: end if
22: if |σ − σ0| < γ then
23: Save βT and βv
24: Set σ0 = σ
25: Go to 2 for next t
26: end if
27: Set σ0 = σ and go to 4 for next i
28: end for
29: end for

IV. NUMERICAL RESULTS

The tests were performed on an Intel Core i7-5960X CPU
clocked at 3 GHz, with eight cores (totaling 16-threads) and
16 GB DDRAM3. The operating system installed was 64-
b Ubuntu Linux 14.04.4 LTS (kernel 3.13.0-79), with GNU
Compiler Collection version 4.9.3. Also, the code was devel-
oped using the deal.II 8.2.1 library.

A. Quantitative Verification of the Heat Transfer Model

To evaluate the FGaBP heat transfer solver, its behavior is
compared on a regular rectangular domain with an analytical
solution. For a source released at x0 at time t0, the 2D
analytical solution of the diffusion equation: ρcti(∂T/∂t) =
∇ · (d∇T ) +Q is [7]:

T (x, t) =
M

[4π(t− t0)D]
exp

(
−‖x− x0‖2

4D(t− t0)

)
(6)

To have the same conditions as the RFA computa-
tion on a patient’s liver, parameters ρ, cti and d have
the values 1.06× 103 kg/m3, 3.06× 103 J(kgK)−1, and
0.512 W(mK)−1 as reported for liver in the literature [5].

We initialized the temperature values at each point of the
domain with the analytical solution at time t = 0 with this
set of parameters: M = 450 oC ·mm2, D = 0.15 mm2/s,
t0 = −0.1 s, x0 = (0, 0). The diffusion equation is solved
using our FGaBP solver and the temperature at a typical point
of the domain is reported and compared with the analytical
solution values. Neumann boundary conditions were used at
the border of the domain, which was chosen to be large enough
to get rid of the boundary effect at the probed points.

Since the theta-scheme with θ = 0.5 is used for time
discretization, no hard restrictions for time-step exist, but in
practice we still want to make the time-step smaller to decrease
the error. In the FGaBP heat transfer simulation a time-step of
0.2 s appeared to be a good compromise between accuracy and
computational time. When the time-step is fixed to a constant
value, a non-oscillatory criteria imposes an upper bound for
the spatial resolution as [8] :

∆x2 ≤ 20θd

ρcti
∆t. (7)

This means for ∆t = 0.2 s, θ = 0.5, and with other param-
eters values as in the literature [5], ∆x must be smaller than
0.53 mm. In Fig. 2 the analytical solution and FGaBP solution
with a time-step of 0.2 s and different spatial resolutions are
plotted. Fig. 2 shows the smaller the spatial resolution, the
closer the computed solution is to the analytical one. Quan-
titatively, the Root-Mean-Square (RMS) errors between the
computed solution and the analytical one decreased with the
resolution: 3.31 oC, 0.5 oC, 0.14 oC for 0.625 mm, 0.5 mm
and 0.2 mm, respectively. This analysis confirms qualitatively
and quantitatively the accuracy of the implementation of the
heat transfer model with FGaBP.

B. Coupled Electrical-Thermal Computation

In order to simulate the FGaBP Gauss-Seidel algorithm, we
used the same geometry, mesh size, time-step and parameter
values as in the heat transfer model. As shown in Fig. 3,
left, the conducting tip of the electrode is embedded into a
8.0 cm by 8.0 cm rectangular region that simulates tissue
surrounding the probe tip. A source voltage of 16 V is
applied to the conducting tip of the probe. All of the outer
boundaries of the rectangular domain serve as a return ground
electrode. Regarding the thermal problem, the initial value of
the temperature is chosen to be the normal body temperature,
i.e. 37 oC and a Dirichlet boundary condition of 37 oC is
applied at the outer boundary.

The temperature distribution obtained from the FGaBP
Gauss-Seidel algorithm is depicted in Fig. 3, right. To verify
the correctness of the algorithm, the computed temperature at
a certain point in the domain is compared to that obtained from
the FGaBP when used in conventional Gauss-Seidel iterations.
Fig. 4 shows the transient temperature computed from both
methods; the RMS error between them is less than 0.01 oC
which confirms the correctness of our algorithm.

C. Computational Efficiency

In Section III, we merged a Gauss-Seidel algorithm into
FGaBP iterations and designed a new algorithm. We claimed
that this approach is more efficient than using FGaBP in a
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Fig. 2. Temperature distribution for an instantaneous point source using
different space resolutions and time-step = 0.2 s (Colored figure provided
in the electronic version).

Fig. 3. (Left): The geometry of the simple test case. (Right): The coupled
problem temperature distribution in the upper right quadrant of the domain
from the multi-physics FGaBP algorithm.

classical Gauss-Seidel since it makes FGaBP solver converge
faster. This can be confirmed by using FGaBP in a classical
Gauss-Seidel to obtain voltage and temperature values at each
iteration, and then comparing the total number of FGaBP itera-
tions with that obtained from Algorithm 1. The results indicate
that with similar convergence criterion, although Algorithm
1 needs more Gauss-Seidel iterations to converge, its total
number of FGaBP iterations is about half of that needed in
the conventional Gauss-Seidel. To test the parallel scalability
properties of Algorithm 1, a CPU implementation with multi-
threading (OpenMP) is provided. For this purpose, the grid
was further refined to a medium size problem with 1,000,000
elements. The performance scales up almost linearly up to six
threads, experiencing some degradation when the number of
threads reaches eight which is the number of physical cores,
probably because the CPU is also used for processing instruc-
tions of the operating system. The performance is improved
again when the number of threads is further increased up to
fourteen threads. The results show speedups of more than six
times with respect to one CPU core.

V. CONCLUSION

A novel method combining the FGaBP formulation and
Gauss-Seidel iterations has been proposed to solve the
electrical-thermal coupled problem in RFA of hepatic tu-
mors. First, the time-domain heat-transfer equation with theta-
scheme time discretization is solved by FGaBP and verified
against an analytical solution; then, the coupled electrical-
thermal problem is solved with the new FGaBP Gauss-Seidel
algorithm for a simple test case. In order to verify the
correctness of the algorithm, obtained results are compared

Fig. 4. Temperature distribution for the coupled problem obtained from
the multi-physics FGaBP algorithm and a classical Gauss-Seidel algorithm
(Colored figure provided in the electronic version).

Fig. 5. Performance scaling of the multi-physics FGaBP method in terms of
speedup with respect to 1 core implementation.

with the classical Gauss-Seidel, showing good fidelity. The
parallel scalability of the FGaBP method is retained in the
new multi-physics version proposed here. Our results show
speedups of more than six times with respect to one CPU
core. Extending the multi-physics FGaBP algorithm to more
complicated modelings of RFA, including a complete coupled
electrical-thermal-cellular necrosis problem in the liver with a
complex geometry will be addressed in future work.
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