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Abstract  

This paper examines the vibration of fiber-steered laminated plates, such as those used in the 

skins of a sandwich panel, manufactured by automated fiber placement. We use third-order shear 

deformation theory, hybrid Fourier-Galerkin method, and numerical integration technique to 

predict their vibration responses, and to study the role of manufacturing defects, in particular 

gaps and overlpas, as well as the parameters representing the stiffness of the sandwich core. With 

the aim of improving both structural and vibration performance, we first adopt a passive 

approach to search for optimal fiber paths that can concurrently maximize the undamped 

dynamic out-of-plane and in-plane stiffness of laminates with gaps and overlaps. To further 

reduce vibration, we then follow an active approach that uses magnetostrictive layers to suppress 

the structural vibration of laminates with optimal vibration characteristics. The results of the 

vibration analysis show that for plates with gaps, as opposed to those with overlaps, the dynamic 

out-of-plane deflection has a higher amplitude and a lower frequency than that of a defect-free 

plate. In addition, the results show that magnetostrictive layers with a higher gain control can 

lead to a lower vibration frequency, and better attenuate the vibration response of the panel. 

Keywords: B. Defects; A. Laminates; A. Smart materials; B. Vibration; Automated fiber 

placement. 

 

1. Introduction 

Compared to single phase metallic and nonmetallic materials, composite materials, including 

fibrous, particulate, and laminated, offer improved stiffness, strength, fatigue life, corrosion 

resistance, weight reduction, and self-healing functionality [1-3]. For these reasons, fiber 

reinforced composites are often preferred in a wide range of applications from aerospace and 

construction to medicine, among several others [4-6]. Traditionally, laminated fiber-reinforced 

composites are fabricated by stacking laminae of straight fibers that exhibit the highest strength 
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in the fiber direction and the lowest in the direction transverse to the fibers [1, 7]. The recent 

advent of Automated Fiber Placement (AFP) is contributing to yield a paradigm shift in 

composite design, i.e. variable stiffness laminates can be built by steering fiber-tows along 

curvilinear paths [8]. Fiber-steered laminates have been shown to outperform conventional 

straight-fiber laminates, thereby offering enhanced damage resistance [9], enhanced buckling 

load [10-14], higher fundamental frequency [15], and improved strength with respect to quasi-

isotropic laminates [16], besides reduced levels of stress concentration [17]. While these 

structural improvements are particularly encouraging, manufacturing deviations introduced 

during the AFP process result in laminates with mechanical properties that differ from those of 

the original design. In particular, a range of defects, such as gaps and overlaps, appear between 

the tows, which are resin-rich areas (gaps) and thickness build-ups (overlaps). Recent studies 

have focused on the effect of gaps and overlaps on the structural properties of steered-fibers 

laminates. A method introduced in reference [11] to capture the impact of gaps and overlaps on 

the mechanical properties of fiber-steered composites has been used to achieve improved in-

plane stiffness and buckling load in thin-walled laminates with embedded gaps and overlaps [18, 

19]. A finite element analysis has been also recently carried out to simulate the first-ply failure of 

tow-steered panels with manufacturing defects [20]. The numerical results revealed how matrix 

cracking is influenced by gaps between adjacent courses. 

Laminated composites with straight fibers are commonly used as skins in sandwich structures 

[21, 22]. More recently, fiber-steered composites have been used as the skins of sandwich panels 

for stowed solar array wings [23]. It has been shown that the localized bending, buckling, and 

wrinkling of the skins could be approximately modelled by assuming the skin as a plate or shell 

resting on an elastic foundation that replicates the elastic interaction of the sandwich core [24, 

25]. Well-known approaches to model elastic foundations include the Winkler and Pasternak 

models [26, 27], which are relevant to model the response of a flexible and compressible core of 

a sandwich panel. Their use in the analysis of sandwich panel responses is often beneficial, as 

they enable to bypass detailed simulations, where each constituent is individually modelled. In 

addition, approaches incorporating an elastic foundation could also model the soil-structure 

interaction of laminated composite slabs in structural systems [28], portable composite bridges 

on marshy lands [29], and stiffeners of pressurized composite cabins [29]. In this paper, we adopt 

an elastic foundation model to describe the interaction between the core and skins of a sandwich 

panel, with the latter made of fiber-steered laminates.  

Sandwich panels can also be provided with sensing and actuation functionalities by embedding 

smart materials into their skins [30, 31]. Improved structural performance, active control of 

structural vibration, and structural health monitoring are some of the main functionalities that can 

be obtained with the use of piezoelectric, magnetostrictive, and other active materials. Their use 

in sandwich panels subjected to vibratory loads has been demonstrated to be effective in 

attenuating structural vibrations that can lead to catastrophic failure [32]. In general, smart 

materials are commonly bonded via epoxy-based adhesives to the skins [33]. For example, 

Terfenol-D, a commercially available magnetostrictive material, has been used for active 



vibration suppression. One of its characteristics is its high energy density and easiness to be 

embedded into the host materials [34, 35]. Magnetostrictive patches/layers are also broadly used 

to control noise and vibration of composites panels with constant stiffness [34, 36-38]. On the 

other hand, the application of smart materials to fiber-steered composites is an area of research 

currently unexplored, but with a strong potential to reduce vibration. To improve structural and 

vibration performance, this paper adopts not only a passive approach via optimal fiber steering, 

but also its active counterpart which involves the integration of magnetostrictive materials.  

The paper is organized as follows. Section 2 introduces the geometric parameters used in the 

equations describing steered fiber trajectories in a laminated composite. Sections 3 and 4 use a 

third-order shear deformation theory (TSDT) to develop the governing equations for variable 

stiffness composites with surface-bonded magnetostrictive layers. The TSDT theory is chosen to 

provide a general framework that models skins with both thin and moderately-thick thickness 

[39-49]. The advantage of TSDT is the relaxation of the kinematic assumptions on the 

straightness and normality of the transverse plane, thereby avoiding the use of any shear 

correction factor. Sections 5.1 to 5.3 describe a passive approach to vibration reduction, with 

particular focus on the search of optimal fiber paths in the skins that simultaneously minimize 

vibration and maximize the panel stiffness. Finally, the active approach is presented in Section 

5.4, where magnetostrictive layers are bonded to the skins with the optimal steered-fibers found 

in section 5, to gage whether smart materials can further improve panel vibrations.  

 

2. Fiber-steered laminated composite 

An AFP machine is capable of combining tape placement and filament winding by placing on a 

mould  a band of tows, called a “course”, of prepreg composites along a predefined path [11, 20, 

50]. To model a fiber-steered laminate, we define here a reference path along which the AFP 

machine places the first course. Subsequent fiber paths are obtained by shifting the reference 

path along a given direction, e.g. x- or y-directions [51]. A reference fiber path can be defined by 

a continuous and smooth mathematical function. A complex function can offer high flexibility 

for laminate tailoring; this, however, increases the number of design variables and comes with an 

additional computational cost. Moreover, highly curved paths modelled with a complex function 

might not be necessarily manufacturable with AFP due to the likelihood of violating the 

constraint imposed to the minimum turning radius. In this study, we opt for  a constant curvature 

fiber path [52] with a trajectory given by  
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where   represents the fiber orientation along the fiber path, 0T  is the fiber orientation at the 

plate center, 1T  is the fiber orientation at the plate edges, R is the turning radius, and |.| denotes 

the absolute value. The curvature k of the fiber path is also defined by Rk /1= . A single layer 

with this fiber path definition may be represented by 10 TT , where 10 TT =  represents a straight 

fiber. The shifting direction of the reference fiber path, affecting both fiber angle and defect 

distribution, plays a major role on the maximum performance that can be achieved by fiber-

steering [53]. Figure 1 depicts the impact of the shifting direction on both the fiber angle and gap 

distribution within a <45|26> layup, chosen here as an example. For more details on the effect of 

the course offset direction, interested readers may refer to [53, 54]. 

 

Fig. 1. Gap (shaded area) distribution; (a) fibers are shifted along the y-direction and (b) fibers are shifted along the 

x-direction. 

 

3. Problem definition and governing equations  

We consider a rectangular sandwich plate with fiber-steered skins and assess the role of a range 

of parameters describing fiber-steering, manufacturing defects, and elastic stiffness of the 

sandwich core. The compressibility and shear deformation of the sandwich core, which can be 

made for example of  polyurethane foam, are described by the spring stiffness wk  and the shear 

layer stiffness sk , which are commonly used in the analysis of an elastic foundation with a 

Pasternak model [55]. A dynamic distributed transverse load ( , , )q x y t  is applied, as a step 

function, to the composite plate. Furthermore, we introduce magnetostrictive patches fully 

bonded to the surface of the fiber-steered laminates away from the neutral axis [1, 34], and assess 

their impact on the following  responses: linear forced-vibration, time harmonic, and vibration 

suppression control. Figure 2a shows four patches distributed in the x and y directions with 

respective spacing Mx  and My . While the number, shape, and size of the patches can vary, here 

we simplify the current analysis by considering the skin of a sandwich with attached 

magnetostrictive layers covering the entire surfaces of the panel, as shown in Fig 2b. The 



thickness of the composite laminate and the magnetostrictive layers are h  and Mh , respectively, 

and the plate dimensions, i.e. length, width, and the total thickness, are a, b, and h+2hM   (Fig. 

2b).  

 

(a)                                                                                   (b) 

Fig. 2. Rectangular variable stiffness plate resting on an elastic foundation with: (a) magnetostrictive patches; (b) 

magnetostrictive layers covering the whole panel and bonded to both the outer skin surfaces. Simply-supported 

boundary conditions are specified along the edges ABCD. 

To accurately predict the kinematic behavior of moderately-thick plates with variable stiffness, 

the displacement field ( , , )u v w , along the ( , , )x y z  coordinate axes, is expressed via TSDT as 

[1]: 
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where 0 0 0( , , )u v w  represents the displacement components of the midplane ( 0)z = . Moreover, 

x  and y  stand for the rotations about the y- and x- axes, t represents time, and 
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4
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c
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+

. Substituting the displacement field, Eq. (2), into the linear strain-displacement 

relations results in [1, 34]: 
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where 2 13c c= , and the normal and shear strains are represented by ( , )xx yy   and 

( , , ) 2( , , )xy xz yz xy xz yz     = ; comma stands for the partial differentiation operator.  

The TSDT equations of motion for a plate resting on a Pasternak elastic foundation are derived 

by the principle of the virtual work [1, 26, 56]: 

, , 0 1 1 3 0,xx x xy y o x xN N I u J c I w+ = + −  

, , 0 1 1 3 0,xy x yy y o y yN N I v J c I w+ = + −  

2

, , 1 , , , 0 0, 0, 0 1 6 0, 0,

1 3 0, 0, 4 , ,

( 2 ) ( , , ) ( ) ( )

( ( ) ( ))

x x y y xx xx xy xy yy yy w s xx yy o xx yy

x y x x y y

Q Q c P P P q x y t k w k w w I w c I w w

c I u v J  

+ + + + + − + + = − +

+ + + +

, , 1 2 1 4 0,xx x xy y x o x xM M Q J u K c J w+ − = + −  

, , 1 2 1 4 0,xy x yy y y o y yM M Q J v K c J w+ − = + −                                        (4) 

where 

2
3

2

( , , ) (1, , )

M

M

h
h

h
h

N M P z z dz   

+

− −

=  , 
2

2

2

( , ) (1, )

M

M

h
h

z

h
h

Q R z dz  

+

− −

=  , 1M M c P  = −  

2Q Q c R  = − ,
2

2

M

M

h
h

i

i

h
h

I z dz

+

− −

=  , 1 2i i iJ I c I += − , 
2

2 2 1 4 1 62K I c I c I= − +  

  ( , , )x y  =  ( 0,1,...,6)i =   (5) 



and   and   are, respectively, the stress components and mass density; the superposed dot on 

a variable stands for the time derivative. We note that TSDT governing equations include FSDT 

and CLPT formulations as special cases [1, 48]. 

The stress resultants N , M , P , Q , and R of the actively controlled composite plate are related 

to the strain and displacement fields as [1, 34]: 
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The components of 3 3  stiffness matrices are [57-59]: 
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where ijQ  is the components of the transformed plane stress-reduced stiffness matrix. The 

actuation stress resultants of the magnetostrictive layers presented in Eq. (6),  
M
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where zH  is the magnetic field intensity; 31d , 32d , and 36d  are the 

magnetostrictive/piezomagnetic coefficients of the smart material layers at the top ( TopM ) and 

bottom  ( BottomM ) of the plate (Fig. 2b).  

Magnetostrictive materials contribute to the vibration control via a velocity dependent feedback 

law that governs the current of the magnetic coils, which activate the magnetostrictive materials 

[62]. For velocity-proportional, and closed-loop feedback control, the magnetic field intensity 

( zH ) produced by the coil is expressed in terms of the coil current ( , )I x t  as [34, 63]:   

( , , ) ( , )z CH x y t K I x t=                                                      (9) 

and ( , )I x t  is obtained as a function of the out-of-plane deflection velocity 0w  through [34]: 

0( , )I x t Cw=                                                           (10) 

where CK  is the coil constant and C  is the gain control. The coil constant depends on the coil 

width and radius, and the number of turns of the coil [1, 64]. 

Substituting Eqs. (6) through (10) into the equation of motion (4) leads to five coupled 

differential equations that govern the response of a thin and moderately-thick fiber-steered plate. 

We note that the governing equations are derived here for a specially orthotropic 

16 26 16 26 16 26( 0)D D F F H H= = = = = =  laminated composite with a balanced 16 26( 0)A A= =  and 

symmetric ( 0)ij ijB E= =  layup.  

 

4. Methodology 

In contrast to constant stiffness composites, the stiffness matrix of a fiber-steered plate depends 

on the spatial coordinates ( , )x y . As a result, the development of closed-form solutions of 



vibration response for variable stiffness composites is cumbersome. Here, we use a semi-analytic 

methodology [48] for a plate with simply-supported boundary conditions (SS-1) [1, 64].  

The displacement fields can be expressed in terms of Fourier series expansion to satisfy the 

boundary conditions [57]: 


= =



























=





























y x
n

n

m

m

nmmn

nmmn

nmmn

nmmn

nmmn

y

x

yrxrtY

yrxrtX

yrxrtW

yrxrtV

yrxrtU

tyx

tyx

tyxw

tyxv

tyxu

1 1

0

0

0

)cos()sin()(

)sin()cos()(

)sin()sin()(

)cos()sin()(

)sin()cos()(

),,(

),,(

),,(

),,(

),,(





                                (11) 

where 
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= , and yn  and xm  are arbitrary integers for summation. The unknown 

coefficients mnU , mnV , mnW , mnX , and mnY  could be determined by using the displacement field 

Eq. (11) and enforcing the residual to be orthogonal to given weight functions [1]. The governing 

differential equations could be solved via the semi-analytic Fourier-Galerkin method [48]: 
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where )5,...,1( =iRi  represent the residual of each governing differential equation. The resulting 

)5()5( yxyx nmnm   system of differential equations could be written as:  

          TSDT TSDT TSDT TSDT TSDT TSDT TSDTK C M F +  +  =                     (13) 

where TSDTK , TSDTC , and TSDTM  are the stiffness, damping, and mass matrices, respectively; 

TSDTF  represents the mechanical force vector and 

   11 11 11 11 11 ...
x y x y x y x y x y

T

TSDT m n m n m n m n m nU V W X Y U V W X Y = . The damping 

matrix, TSDTC , vanishes in the absence of the active magnetostrictive layers and internal 

structural damping. 

For forced-vibration analysis, the Newmark integration procedure is used to solve Eq. (13) in the 

time domain [1]. For vibration control, the force vector TSDTF  is neglected in Eq. (13) and the 

solutions for Eq. (13) are sought in the form of [34, 65]:  



    t

TSDT TSDT e =                                                        (14) 

where   is obtained for non-trivial solutions by setting the following determinant to zero: 

      2 0TSDT TSDT TSDTK C M + + =                                            (15) 

The lowest eigenvalue of Eq. (15), in the form of di  = − + , corresponds to the out-of-plane 

deflection. It is worthwhile to note that n =  and  , n , and d  are, respectively, the 

damping ratio, the undamped angular natural frequency, and the damped angular frequency as 

the characteristics of the suppressed vibration. Furthermore, the harmonic responses could be 

obtained by substituting [66, 67]   

       t

TSDT TSDT e =  ,     t

TSDT TSDTF F e=                                    (16) 

into Eq. (13) and solving the resulting algebraic equation for a range of harmonic angular 

frequencies,  . MATLAB scripts have been developed to implement the abovementioned 

procedure for the vibration analysis of a fiber-steered plate with embedded defects. 

 

5. Results and discussion 

The methodology described above is applied to a simply-supported, moderately-thick, fiber-

steered composite plate, such as that used for the skin of a sandwich panel (Fig. 2). The plate has 

square geometry ( 1 )a b m= =  with a symmetric composite layup, and it is subjected to a 

uniformly distributed transverse load, represented by 0 0( , , ) ( )q x y t q t= . The results described 

here focus on a number of factors; in particular the role of manufacturing defects, i.e. gaps and 

overlaps, fiber orientation, stiffness parameters of the sandwich core, and length-to-thickness 

ratio of the plate on the undamped forced-vibration (Sections 5.1) and time-harmonic responses 

(Section 5.2). In addition, we present results for the optimum fiber paths of fiber steered skins 

that maximize the dynamic out-of-plane and static in-plane properties of a sandwich panel under 

multiple load cases (Section 5.3). We finally turn our attention to the integration of the 

magnetostrictive layers on the characteristics of the damped responses of an optimal fiber-steered 

layup (Section 5.4).  

In presenting the results for the out-of-plane deflection, out-of-plane velocity, and response 

frequency, we make use of the following non-dimensional terms: 
3
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 = , where the superscript “c” stands for composite and the subscript “2” 



represents the material properties along y-axis, with values for fiber and resin given in reference 

[48]. 

 

5.1. Forced-vibration response 

For the undamped/uncontrolled (hM=0) forced-vibration responses, we examine the effect of 

manufacturing parameters, elastic foundation constants, and fiber orientation for a plate with 

length-to-thickness ratio of a/h=10. A 16-ply balanced and symmetric fiber-steered laminate 

with a 
4

[ 58 39 ]
s

    layup is considered to validate the numerical results with those given in 

reference [48].  

Role of manufacturing defects. Figure 3a merely shows the undamped temporal deflection at the 

plate midpoint, where the maximum out-of-plane deflection of the fiber-steered plate occurs. It 

can be seen that the panel made with a complete-gap strategy has a higher amplitude of dynamic 

deflection and a lower response frequency than that of a defect-free panel. A complete overlap 

strategy, on the other hand, leads to a lower amplitude of deflection and a higher frequency. For 

example, the deflection amplitude increases of 9% and the frequency decreases of 3% for a plate 

with gaps compared to a defect-free plate, whereas the deflection amplitude for a plate with 

overlaps decreases of 24% and the frequency increases of 10%. These observations are in 

agreement with the results given in reference [48] for static deflection and natural frequency. We 

attribute to the morphology of manufacturing defects the cause for the changes in the dynamic 

responses. Gaps are resin-rich areas with lower stiffness, while overlaps are thickness build-ups 

with improved flexural stiffness.  

 

(a) 

 

(b) 



Fig. 3 Dynamic out-of-plane deflection ( 100)w  at the center of a variable stiffness plate for (a) alternative 

manufacturing strategies and (b) alternative elastic foundation for a defect-free design. 

Role of core stiffness constants. Figure 3b shows the role of the elastic foundation parameters on 

the undamped temporal deflection for a defect-free variable stiffness plate. The time evolution of 

the midpoint out-of-plane deflection is plotted for alternative elastic stiffness, given in non-

dimensional forms as: 
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 is the flexural 

rigidity of a constant stiffness composite plate. The dynamic responses are compared in Fig. 3b 

for four alternative elastic foundations: ( , ) (0,0)wn snK K =  (Unconstrained), ( , ) (50,0)wn snK K =  

(Winkler foundation), ( , ) (0,5)wn snK K =  (Shear layer foundation), and ( , ) (50,5)wn snK K =  

(Pasternak foundation) [68]. The presence of an elastic foundation, caused by the compressible 

support of the core material in a sandwich panel, decreases the amplitude of the dynamic out-of-

plane deflection and increases the frequency responses due to the increased out-of-plane stiffness 

of the structure. We observe that the shear layer parameter ( )sk  has a more pronounced effect on 

the dynamic responses than the Winkler parameter ( )wk . A Winkler elastic foundation 

( , ) (50,0)wn snK K =  decreases the amplitude of the dynamic deflection by 27% and enhances the 

response frequency by 19% compared to the unconstrained plate. For a shear layer elastic 

foundation ( , ) (0,5)wn snK K = , the dynamic deflection decreases of 42% and the frequency 

increases of 35%. 

To show the potential of a variable stiffness design in improving the dynamic out-of-plane 

response of a composite panel, we plot in Fig. 4 the response domains for deflection amplitude 

and frequency versus the curvature of a curvilinear fiber path ( )k . Considering 0.635 m (25 in) 

as the minimum turning radius of the fiber path imposed as a manufacturing constraint by a 

typical AFP machine, the numerical results are limited to curvatures 10 1.57 ( )k m−  . We 

recall that 0k =  corresponds to a straight fiber path, which represents a constant stiffness plate. 

In Fig. 4 the boundaries between the upper and lower bounds for both dynamic deflection ( )w  

and frequency ( )  appear for  0=k  and 57.1=k  respectively. The domains show that a 

complete gap manufacturing strategy shifts the response domain towards a dynamic deflection 

with higher amplitude and a lower response frequency compared to the defect-free strategy, due 

to the lower stiffness of gaps, which are resin-rich areas. In contrast, overlaps shift the response 

domain towards a lower deflection and a higher frequency, as overlaps are thickness build-ups 

that stiffen the composite plate along the fiber path. In addition, the boundaries of the domain 

responses are dependent on the manufacturing strategy, besides the curvature of fiber path. For 

defect-free fiber-steered composites with 57.1=k , the boundaries of the dynamic deflection and 

frequency response are, respectively, 69.3% and 35.7% lower than those for 0k = . 



 

(a) 

 

(b) 

Fig. 4 Dynamic response domains of a variable stiffness laminate: (a) amplitude of out-of-plane deflection ( 100)w  

at the center of plate and (b) dynamic response frequency. The boundaries for deflection and frequency are: 

0 0.0101Defect free

kw −

= = , 
0 0.0137Overlap

kw = = , 
0 0.0166Gap

kw = = , 
1.57 0.0036Defect free

kw −

= = , 
1.57 0.0042Overlap

kw = = , 
1.57 0.0047Gap

kw = = , 

0 3.26Defect free

k
−

= = , 
0 2.72Overlap

k = = , 
0 4.08Gap

k = = , 
1.57 1.38Defect free

k
−

= = , 
1.57 1.75Overlap

k = = , and 
1.57 1.36Gap

k = = . 

 

5.2. Harmonic responses 

This section examines the undamped ( 0)Mh =  harmonic responses of a fiber-steered composite 

plate with a layup 
4

[ 58 39 ]
s

   . The amplitude of the midpoint deflection (w), normalized by 

the static deflection (w0), is plotted in dB for a high frequency range of a harmonic, out-of-plane 

load.   

Figure 5 shows the first-mode ( 1)m n= =  harmonic responses of a variable stiffness plate with 

/ 10a h =  for three manufacturing scenarios, i.e. defect-free, complete gap, and complete 

overlap. For each of them, three peaks corresponding to the resonance frequencies are detected, 

i.e.  out-of-plane deflection 0( )w  and rotation about the y- ( )x  and x- ( )y  axes. We recall that 

the in-plane displacements 0 0( , )u v  are zero for a symmetric layup and simply-supported 

boundary conditions. As mentioned in Section 5.1, a plate with gaps has a lower stiffness and a 

plate with overlaps has a higher stiffness compared to a defect-free plate. As a result, the first 

resonance frequency 0( )w  of a plate with gaps is lower than that of a defect-free plate, as 

opposed to a plate with overlaps which has a higher resonance frequency. In contrast, the 



aforementioned trends are reverse for the second ( )y  and third ( )x  resonance frequency. We 

recall that CLPT neglects the rotational resonance frequencies, whereas TSDT can predict 

transverse, translational, and rotational resonance frequencies. Since the rotational resonance 

occurs at very high frequencies, the use of TSDT becomes relevant in applications involving 

structural health monitoring of fiber-steered composites [69].  

 

Fig. 5 Effect of manufacturing strategies on harmonic responses. 

To isolate the effect of the harmonic mode, length-to-thickness ratio, and elastic foundation 

constants from the manufacturing defects, Fig. 6 depicts the harmonic responses of a defect-free 

variable stiffness plate. As shown in Fig. 6a, an increase of the mode number of the harmonic 

responses enhances all the resonance frequencies, including transverse and rotational, as well as 

the relative deflection. Furthermore, an increase of the length-to-thickness ratio of the plate 

reduces the transverse resonance frequency, a result in agreement with the behaviour observed in 

reference [48], and increases the rotational resonance frequencies. For instance, increasing the 

length-to-thickness ratio from / 5a h =  to / 10a h =  decreases the transverse resonance 

frequency by 34% and increases the rotational frequency y  by 92%. Figure 6c also reveals the 

dominant effect of the elastic foundation on the transverse resonance frequency, compared to the 



rotational one. While increasing the foundation parameters wnK  and snK  significantly enhances 

the transverse resonance frequency, their effect is negligible on the rotational resonance 

frequency. 

 

(a) 

 

  (b) 

 

(c) 

Fig. 6 Effect of (a) mode shape, (b) length-to-thickness ratio, and (c) elastic foundation on harmonic responses. 



 

5.3. Optimum fiber path for vibratory variable stiffness composites  

Section 5.1 has shown the dynamic responses of fiber-steered composites with respect to three 

manufacturing scenarios. In this section, structural improvements are sought for a laminated 

plate resting on a Pasternak elastic foundation with ( , ) (50,5)wn snK K = . The goal here is to find a 

trade-off among three antagonist objective functions that involve the minimization of the 

amplitude of the undamped out-of-plane dynamic deflection ( )w , the maximization of the 

undamped frequency ( ) , and the in-plane stiffness ( )eqE . We search for the fiber path 

parameters, 0T  and 1T  (design variables of the optimization scheme), that minimize w , and 

maximize   and eqE  through the following formulation: 

 

0 1

0 1

1 1
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x x
x x                                        (17) 

where x  represents the design variable vector, and R is the minimum turning radius of AFP, 

which is a manufacturing constraint. The design variables should be integer to respect fiber 

orientation constraints imposed by a typical AFP machine. The non-dominated sorting genetic 

algorithm-II (NSGA-II) [70] has been chosen to solve the optimization problem above. Since 

NSGA-II is a population-based algorithm that requires a large number of function evaluations to 

reach the Pareto solutions, we resort here to a surrogate model, i.e. the Radial Basis Function. 

This strategy significantly reduces the computational cost of the optimization process. For a 

more detailed description of this surrogate-based algorithm, the reader is referred to [10, 12, 53].  

Figure 7 illustrates the Pareto solutions that simultaneously minimize the out-of-plane deflection 

)~(w  and maximize the in-plane stiffness )
~

( eqE  and the frequency )~( . The numerical results 

have been normalized by the value of their counterpart quasi-isotropic laminate with layup: 

2[45 / 0 / 45 / 90] s− . As expected, Fig. 7 shows that gaps deteriorate the performance of defect-

free fiber-steered laminates, as opposed to overlaps, which improve it. Overlaps have a more 

pronounced impact on the laminate performance than gaps. The reason is that the gaps in a 

laminate are filled with resin and result in a constant thickness, while overlaps are thickness 

build-up. On an equal-weight basis, the performance of the plate is divided by the plate weight, 

which scales linearly with the overlap area. However, the plate flexural rigidity is proportional to 

the cube of the plate thickness. As a result for vibration reduction, a complete overlap strategy is 

more beneficial than that with complete gap. 



With respect to the fiber orientation, the results in Fig. 7 obtained for a simply-supported square 

plate show the following: ±45° fiber angles are optimal for maximum out-of-plane stiffness [48], 

whereas straight fibers along the loading direction, i.e. 0°, are the best for the maximum in-plane 

stiffness [53]. A curvilinear fiber path, on the other hand, allows for a trade-off between the two 

properties. At the plate center, where the plate is unsupported and the maximum out-of-plane 

deflection occurs, the highest in-plane stiffness is achieved with fibers oriented along the loading 

direction. At the plate edges where the plate is simply supported, the fiber orientation close to 

45° leads to a high out-of-plane stiffness. Hence, as shown in Fig. 7, a large proportion of fibers 

with orientation at the plate center close to 0° favours the in-plane stiffness, whereas a large 

proportion of fibers with angles close to 45° improves the out-of-plane stiffness of the plate.  
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Fig. 7 Pareto fronts for (a) normalized out-of-plane dynamic deflection and (b) normalized frequency versus 

normalized in-plane stiffness.  

 

5.4. Vibration suppression via magnetostrictive layers 

In this section, we seek to actively reduce vibrations in the optimum plate 
4

[ 4 46 ]
s

   , i.e. 

point 3 in Fig.7, through the use of a pair of magnetostrictive layers. As shown in Fig. 2b, we 

consider a moderately-thick plate ( )( / 2 10)ML h h+ =  with active layers ( / 20)Mh h= , one at the 

top and the other at the bottom of the sandwich panel. The material properties of the 

magnetostrictive layers are [1]: 

26.5mE GPa= , 0.0m = , 39250 .m kg m −= , 8 11.67 10 .md m A− −=                (18) 

We study the influence of the gain control parameter ( )cK C  and the elastic foundation constants 

on the damped out-of-plane deflection and velocity, damped angular frequency, and 

magnetostrictive damping coefficients. Figure 8a shows the damped out-of-plane midpoint 

deflection of a defect-free composite for several gain control parameters. In the absence of a gain 

control parameter ( 0)cK C = , the transverse deflection shows undamped oscillatory responses 

around the static deflection. As soon as a gain control is applied, damped controlled responses 

appear. In particular, Fig. 8b illustrates the amplitude versus velocity of the damped out-of-plane 

deflection for several gain control parameters, all starting from the zero initial condition. 

Increasing cK C  enhances the attenuation rate of the transverse vibration amplitude and the 

velocity; these quantities finally approach the static transverse deflection and zero transverse 

deflection velocity for the damped dynamic responses. 



 

(a) 

 

(b) 

Fig. 8 (a) Time evolution of suppressed dynamic out-of-plane deflection ( 100)w  (Marked points are: A 

)1015.8,1062.0( 42 −− == tw , B )1045.2,1042.0( 42 −− == tw , and C )1013.4,1042.0( 42 −− == tw )  

and (b) velocity-deflection ( 100)w  at the center of an actively controlled, defect-free, fiber-steered composite for 

several control gain parameters. 

The damping and frequency parameters ( )di − +  of the transverse dynamic deflection are 

presented in Table 1, for given manufacturing scenarios, gain controls, and elastic foundation 

constants. The numerical results for the variable stiffness composite 
4

([ 4 46 ] )
s

   , shown in 

Fig.7, are presented for the first mode of vibration only; similar results obtained for the other 

vibration modes are not included here. As illustrated in Table 1, the application of an elastic 

foundation increases the damped frequency ( )d , but has no remarkable impact on the damping 

parameter ( ) . For instance, the damped vibration frequency of a defect-free variable stiffness 

plate, with an elastic foundation ( , ) (50,5)wn snK K =  and a gain control of  410cK C = , is 51% 

higher than its counterpart which has no elastic foundation interaction  ( , ) (0,0)wn snK K = . The 

numerical results show that the gain control has a significant effect on the vibration attenuation 

while its effect on the damped vibration is negligible. Moreover, the vibration attenuation of a 

plate with gaps is more responsive to the gain control than that of a plate with overlaps. 

 

Table 1 Eigenvalue parameters for vibration suppression control )( di +−=  for prescribed manufacturing 

defects and elastic foundation parameters. 



Foundation 

constants 

Manufacturing 

defects 

0=CKc
 410=CKc

 4105=CKc
 510=CKc

 

310d  210  
310d  210  

310d  210  
310d  

0

0

=

=

sn

wn

K

K  

Defect-free 2.57 0.74 2.56 3.70 2.54 7.38 2.46 

Complete gap 2.45 0.79 2.45 3.93 2.42 7.86 2.32 

Complete 

overlap 
2.94 0.61 2.94 3.04 2.92 6.08 2.87 

0

50

=

=

sn

wn

K

K  

Defect-free 3.07 0.74 3.07 3.70 3.05 7.39 2.98 

Complete gap 2.99 0.79 2.99 3.94 2.97 7.87 2.89 

Complete 

overlap 
3.34 0.61 3.34 3.04 3.32 6.08 3.28 

5

0

=

=

sn

wn

K

K  

Defect-free 3.49 0.74 3.49 3.70 3.47 7.40 3.41 

Complete gap 3.44 0.79 3.43 3.94 3.42 7.88 3.35 

Complete 

overlap 
3.69 0.61 3.69 3.04 3.67 6.09 3.63 

5

50

=

=

sn

wn

K

K  

Defect-free 3.88 0.74 3.88 3.71 3.86 7.40 3.81 

Complete gap 3.84 0.79 3.84 3.95 3.82 7.88 3.76 

Complete 

overlap 
4.01 0.61 4.01 3.05 4.00 6.09 3.97 

 

6. Concluding remarks 

This paper has examined the vibration response of sandwich plates with fiber-steered composite 

skins. The structural and vibration responses of the plates have been predicted with TSDT to 

account for the effect of transverse shear deformation in moderately-thick laminates. The results 

of forced and harmonic vibration analyses have shown a higher amplitude and a lower frequency 

for the dynamic out-of-plane deflection of a defect-free plate, as opposed to a plate with 

overlaps. We have modelled the interaction between the soft core and the fiber-steered laminated 



skins via a Pasternak elastic foundation. To concurrently improve the in-plane stiffness along 

with the vibration responses of sandwich panels, we have first obtained optimal fiber paths using 

a surrogate-based, multi-objective optimization algorithm. For simply-supported boundary 

conditions, we have found that a large proportion of fibers with orientation at the plate center 

close to 0° favours the in-plane stiffness, whereas a large proportion of fibers with angles close 

to 45° improves the out-of-plane stiffness and vibration responses. Second, we have introduced 

magnetostrictive layers on the top and bottom of the optimal laminates to actively improve the 

vibratory characteristics. It has been shown that vibration attenuation is more pronounced for a 

higher value of the gain control in the active layers. The methodology presented in this paper 

could be used in aerospace applications for health monitoring and vibration control of sandwich 

panels. 
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