
1392 IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 3, MARCH 2009

Efficient Multicore Sparse Matrix-Vector
Multiplication for FE Electromagnetics

David M. Fernández, Dennis Giannacopoulos, and Warren J. Gross

Department of Electrical and Computer Engineering, McGill University, Montreal QC H3A 2A7, Canada

Multicore systems are rapidly becoming a dominant industry trend for accelerating electromagnetics computations, driving
researchers to address parallel programming paradigms early in application development. We present a new sparse representation
and a two level partitioning scheme for efficient sparse matrix-vector multiplication on multicore systems, and show results for a set of
finite element matrices that demonstrate its potential.

Index Terms—Finite element (FE), multicore, parallel computation, sparse matrices, sparse matrix-vector multiplication (SMVM).

I. INTRODUCTION

T HE trend towards solving increasingly complex compu-
tational electromagnetics problems has relied, in part, on

continual CPU improvements; however, technological limita-
tions have dictated the need to explore new alternatives. Increas-
ingly, industry leaders (e.g., Intel, AMD, IBM) are displacing
traditional single core CPUs with multicore architectures to im-
prove performance, thus creating new programming opportuni-
ties and challenges; finite-element (FE) practitioners must ex-
plicitly consider parallel algorithms and techniques in order to
exploit the full potential of emerging multicore CPUs.

Sparse matrix-vector multiplication (SMVM) is a kernel at
the core of many widely used iterative solvers in FE appli-
cations, such as the conjugate gradient (CG) method. In fact,
SMVM can be a dominant cost in obtaining FE solutions, thus
making it an important kernel for parallelization on multicore
CPUs. The SMVM kernel’s main objectives are to compute

with the nonzero values of and reduce its storage re-
quirements. However, traditional sparse matrix storage formats
used for SMVM are not necessarily well suited for efficient
parallel processing, limiting the use of hardware optimization
techniques and requiring a great deal of instruction overhead
for their implementation [1]. For example, one drawback that
limits attainable performance is the irregular memory access
patterns to the elements in the vector . The purpose of this
contribution is to introduce a new sparse format for FE matrices
coupled with a two level data partitioning scheme, to overcome
this bottleneck and improve the speedup possible with multi-
core-based SMVM implementations.

II. MULTICORE SMVM CHALLENGES

The size of modern FE computations is continuously driven
by the need for larger and more accurate simulations, thus the
importance of accelerating dominant computing kernels such as

Manuscript received October 07, 2008. Current version published February
19, 2009. Corresponding author: D. Giannacopoulos (e-mail: dennis.gianna-
copoulos@mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2009.2012640

SMVM. Multicore processors have become the industry main-
stream CPU platform, providing significant performance ben-
efits without depending on higher clock frequencies that have
traditionally fueled single core processor performance.

The key challenges that arise when accelerating the SMVM
kernel on multicore systems can be summarized in three central
tasks (addressed in this paper): selection of clever data structures
[2] or sparse formats, sparse matrix partitioning and distribution
schemes across parallel cores, and use of explicit parallel algo-
rithms. In particular, the data format used is key to facilitating
the other tasks; however, this selection might prove daunting be-
cause of the variety in sparse formats, which range from simple
and direct representations to elaborate compressed ones that ex-
ploit different matrix properties [3]–[5]. One of the most popular
of these formats is the compressed sparse row (CSR, also called
AIJ or YALE format). In CSR, three vectors represent the sparse
matrix, the first stores the matrix nonzero values in row order;
the second, stores the column indices of the nonzero values; and
the third, contains the indices of the first vector elements that
begin a new row (including an additional index with the total
number of nonzeros plus one). Many efficient libraries used to
solve linear systems implement this format or some variation of
it, as is the case with PETSc [6]. Fig. 1 shows the CSR format
as well as the new pipeline-matched sparse (PMS) format pro-
posed.

Single instruction multiple data (SIMD) processing has
become an important source of parallelism widely available
in most modern multicore environments. To exploit these
resources, additional challenges arise such as: the use of ar-
chitecture-specific SIMD instructions, data partitioning on
SIMD boundaries, and memory alignment requirements, yet
many sparse formats might not consider these factors. Another
important issue is the irregular-indirect access to the vector
in SMVM (see line 4 in Algorithm 1). For large matrices this
translates into long data access times due mainly to cache
misses in general purpose processors (GPP). Software con-
trolled memory hierarchies (e.g., Cell processor [7]) overcome
the cache effect but may require previous knowledge of data
access patterns. Among other challenges, the SMVM kernel
requires additional data transfers (nonzero row/column indices)
making it bandwidth (I/O) limited, and more control instruc-
tions increasing the processor work load per floating point
computation. Finally, explicit parallel programing is required

0018-9464/$25.00 © 2009 IEEE

FERNÁNDEZ et al.: EFFICIENT MULTICORE SPARSE MATRIX-VECTOR MULTIPLICATION FOR FE ELECTROMAGNETICS 1393

Fig. 1. CSR and PMS representations of an example sparse matrix. The PMS
format is configured to contain two elements per sub-rows/vector. Star entries
represent zero padding to match the two-way pipeline width.

to schedule tasks on the processing cores, a common challenge
to parallel programming in distributed memory systems. The
next section describes the new sparse format created as well
as the partitioning technique used to address the three central
tasks mentioned above.

Algorithm 1 Basic SMVM using CSR format.

1: for to number of rows do
2:
3: for to do
4:
5: end for
6: end for

III. PMS REPRESENTATION AND PARTITIONING TECHNIQUE

This section presents the two main contributions of this work,
a new sparse matrix representation and a two-level partitioning
scheme that facilitate data distribution, data processing, and ex-
pose SIMD parallelism to efficiently exploit the processing re-
sources in multicore systems.

A. Pipeline-Matched Sparse Representation

The main goal of the new sparse format called PMS repre-
sentation was to conform to the SIMD instruction set found in
many modern multicore processors. The PMS format is config-
ured using zero padding to match the SIMD pipeline-width in
the target architecture (e.g., four single precision floating point
values per SIMD register or four-way pipeline in the Cell pro-
cessor), to efficiently exploit available processor parallelism.
In the rare case where no SIMD units are available, PMS can
be configured with a one-way SIMD size resulting in no zero
padding. An additional goal, was to solve the irregular-indi-
rect access to the vector in the SMVM kernel and restrict
the amount of data communication, since this kernel is band-
width limited. This is achieved by including the elements of the

vector in the representation.
PMS is based on the compressed sparse row (CSR) format. It

comprises four vectors (see Fig. 1) containing: 1) the nonzero
elements of the matrix, with zero padding (by rows) to match
the number of SIMD pipeline-width of the target processor;
2) the column indices of the first array elements; 3) the number
of pipeline-matched sub-rows per matrix row; and 4) the ele-
ments of indexed by the second array. Once this representa-
tion is built, only the fourth vector need be modified to solve

for different vectors. The mapping of the vector elements
into the new format involves extra processing, but ultimately
this work has to be done in the SMVM kernel regardless of the
sparse format used. By doing this work in advance memory ac-
cess patterns become regular (unit-stride access to the vector
elements is achieved), offering better locality and reduced cache
misses on GPPs.

Compared to the CSR format, PMS requires the storage of an
extra vector of size equal to the number of nonzeros in addition
to the zeros used to match the pipeline-width of the target ar-
chitecture. This extra memory usage yields benefits in terms of
easier matrix and vector partitioning and subsequent data com-
munication to the parallel computing cores as well as a regular
computation. Partitions are easier to determine because of the
vector boundaries defined by PMS and the proposed two-level
partitioning scheme (explained in Section III-B). Also, because
this format already contains the vector there is no need to
transfer it separately, in fact the amount of data transferred to
the processing cores is similar to the amount required by the
CSR format. Only three vectors need be transferred to compute
the SMVM kernel using PMS , , and

, whereas CSR requires an additional vector (the
column indices). Regular computations are achieved by the
layout of the vector into the proposed format.

Thereafter, the pipeline-matched representation renders three
important benefits: 1) it enables exploitation of the SIMD units
within CPU cores (low-level parallelism); 2) it provides nat-
ural boundaries for data partitions when exploiting parallelism
across CPU cores (high-level parallelism); and 3) it offers reg-
ular data access patterns which result in more efficient com-
puting kernel. The proposed format can be thought of as a com-
pressed vector storage of the sparse matrix, with vectors the size
of the target architecture pipeline-width. While this format was
designed within the scope of FE applications, it can be used to
represent other sparse matrix types regardless of their sparsity
pattern, density, symmetry, or target application. This new rep-
resentation could also be used in non conventional multicore
architectures or reconfigurable hardware providing similar ben-
efits.

B. Two-level Partitioning Technique

A two-level partitioning scheme was designed to distribute
data in a shared memory multicore architecture taking into
account the limited memory space available in different types
of parallel computing cores. The data partitioning scheme was
developed to generate coarse (first level partitioning) and fine
grained (second level partitioning) partitions on the sparse
matrix as shown in Fig. 2. The coarse grained partitions were
used to schedule row-blocks across parallel cores, while the
fine grained partitions were used to determine the number of
matrix chunks to stream within each processing core.

The fine grained partitioning allowed us to cope with the lim-
ited memory in the parallel processing cores (cache for GPP
cores or local-space for cores with software controlled memory
hierarchies, e.g., the SIMD cores in the Cell processor called
SPEs [7]) and can be viewed as the cache blocking techniques
used to reduce the effect of cache misses in GPPs. This second
partitioning is key to applying streaming techniques that enable

1394 IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 3, MARCH 2009

Fig. 2. Two-level partitioning scheme of a matrix. Coarse grained partitions
generate row blocks, and fine grained partitions create smaller data sets to
transfer in a block fashion.

overlapping communication with computations. As mentioned
in Section III-A, there is no need to partition the vector sepa-
rately since it is already contained in the proposed format.

Overall, this partitioning scheme achieves load balancing
under sparsity patterns that distribute nonzeros evenly among
matrix rows, which is commonly the case in problems with
fixed degrees of freedom that arise in FE computations. How-
ever, for very irregular sparsity patterns or when clusters of
these multicore processors are considered a more sophisticated
coarse grained partitioning scheme might become necessary
to achieve load balancing and minimize communications
between multicore chips. Important studies on sparse matrix
partitioning based on graph and hypergraph partitioning with
precise estimation of communication volume are presented in
[8]–[11]. The study of these methods will be important when
implementing efficient SMVM operations on massively parallel
multicore clustered systems.

IV. RESULTS

To examine the performance of the new PMS representation
and partitioning scheme the SMVM kernel was implemented
and tested on a Cell processor heterogeneous multicore pro-
cessor installed with a 64-bit Fedora Core 6 Linux operating
system. We also implemented a sequential SMVM kernel
using the CSR matrix format in a latest generation Intel ho-
mogeneous multicore processor with a 64-bit Fedora Core 7
operating system, for validation and comparison purposes. The
use of the Cell was motivated because it provides an efficient
memory bandwidth usage, and it is capable of delivering a
peak performance of over 200 GFLOPS for single precision
floating point (SPFP) computations with a higher percentage of
available peak performance (for kernels with regular memory
access patterns) when compared to GPPs [12].

A. Testbed Description

The Cell system used was composed of one GPP called
PPE, and 6 SIMD processors called SPEs clocked at 3.2 GHz
with 256 MB Rambus extreme data rate (XDR) DRAM global
memory as shown in Fig. 3. The PPE was used for adminis-
trative and control tasks while the SPE cores were used as the
main computing resource. SPEs are high performance 128-bit
SIMD cores with software controlled memory hierarchy, a
four-way SPFP SIMD pipeline, and limited hardware support
for branch prediction. They have a large register file (128–128
b registers), and a 256 kB on-core software managed memory

Fig. 3. Cell processor architectural overview.

called local-store (LS). A distinct difference of the SPEs from
other processor is that transfers to/from LS and main system
memory must be explicitly programmed by the user. The Cell
optimized implementation was executed on the SPE cores using
SPFP (since the four-way SIMD single precision computations
are fully pipelined in this version of the Cell), referred to here
as the Cell-SPE implementation. A reference implementation
using the CSR matrix format was also done on the PPE, referred
to as the Cell-PPE implementation. The Cell implementations
were done using the Cell SDK 3.0. The GPP platform used was
an Intel Core2 Quad 2.40 GHz CPU with 4 MB of L2 cache per
core-pair and 4 GB of global DRAM, and was compiled using
GCC version 4.1.2.

B. Testbed Optimizations

The Intel and Cell-PPE implementations were optimized
using the “-O2” compiler flag which provided the best per-
formance results for all the conducted tests. The Cell-SPE
accelerated version of the SMVM kernel was implemented
using specific vector intrinsics [7] for the SPEs. This mainly
involved intrinsics to control the asynchronous DMA transfers
between SPE LS and the Cell main memory; and specific
intrinsics to perform SIMD multiplications and additions on 4
SPFP elements simultaneously, thus capitalizing the four-way
SIMD pipeline in the SPEs. A multibuffering technique was
used to transfer the matrix and vector data (fine grained
partitions) from main memory to SPEs LS, while overlapping
communication with the computations. The PMS format was
configured to generate four-element SPFP or sub-rows (per
matrix row) to match the SPE pipeline width. To minimize
the overhead effect of the SMVM’s control statements in the
SPEs, simple conditional instructions were substituted with
bit-selection intrinsics, thus eliminating the corresponding
branch occurrences in the code. When ever this was not pos-
sible, branch hint instructions were used to reduce the impact
of misprediction latency.

C. Results Discussion

The results for different FE matrices with varying sizes and
different sparsity patterns taken from the Matrix Market data-
base [13] are shown in Fig. 4. These results demonstrate that as
the number of nonzeros grow the performance of the SPE im-
plementation outperforms that of the Intel CPU. This type of
performance is in agreement with the results presented in [14].
For the largest test case (2.5 million nonzeros) the Cell-SPE
SMVM kernel was 2 times faster than the Intel CPU and nearly
14 times faster than the Cell-PPE. When scaling the number

FERNÁNDEZ et al.: EFFICIENT MULTICORE SPARSE MATRIX-VECTOR MULTIPLICATION FOR FE ELECTROMAGNETICS 1395

Fig. 4. Performance results in GFLOPS for six SPEs, the PPE, and the Intel
CPU.

Fig. 5. Speedup achieved by scaling from 1 to 6 Cell-SPEs.

TABLE I
SMVM GFLOPS AND SU RESULTS COMPARISON FOR SIX SPEs WITH

RESPECT TO THE PPE AND THE CPU

Fig. 6. Performance scaling GFLOPS with number of Cell-SPEs.

of SPEs with the new representation we obtained a superlinear
speedup (SU) compared to the Cell-PPE version for the larger
test matrix as shown in Fig. 5.

Average performance results obtained for each test matrix on
the different platforms are presented in Table I. Fig. 6 demon-
strates that the proposed format and partitioning scheme show
linear scaling when incrementing the number of SPEs; on the
other hand, for small matrices and as the number of SPEs in-
creases communication and control overheads hinder perfor-
mance. Nonetheless, this is the expected behavior of parallel
systems, SU can only be achieved when sufficient work-load
exists to overcome communication and control overheads.

V. CONCLUSION

Motivated by the need to solve bigger and more complex FE
problems and meeting the trend towards the multicore parallel

processing paradigm we proposed a new sparse format coupled
with the two-level partitioning scheme. Linear scaling with
the number of parallel cores and matrix nonzeros has been
demonstrated and up to 14 times speedup for the best testcase.
Efficient solutions to the data partitioning, load distribution,
and SIMD processing challenges on multicore systems are the
most significant problems solved by this work. The next step
towards building a complete FE solution is to integrate this
kernel into a CG solver. Ultimately, this work represents an
essential building block towards achieving efficient parallel CG
algorithms in modern multicore CPUs.

ACKNOWLEDGMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] Y. El-Kurdi et al., “Hardware acceleration for finite element electro-
magnetics: Efficient sparse matrix floating-point computations with
FPGAs,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1525–1528, Apr.
2007.

[2] H. Magnin and J. L. Coulomb, “A parallel and vectorial implemen-
tation of basic linear algebra subroutines in iterative solving of large
sparse linear systems of equations,” IEEE Trans. Magn., vol. 25, no. 4,
pp. 2895–2897, Jul. 1989.

[3] S. Yousef, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA: SIAM, 2003, p. 528.

[4] B. Richard et al., Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd ed. Philadelphia, PA:
SIAM, 1994, p. 117.

[5] P. Fernandes et al., “An evaluation of speedup in conjugate gradient
routines with a mathematical vector library,” IEEE Trans. Magn., vol.
27, no. 5, pp. 4214–4216, Sep. 1991.

[6] B. Satish et al., PETSc Users Manual Revision 2.3.3, Argonne Na-
tional Laboratory, IL, May 2007, p. 190. [Online]. Available: http://
www.mcs.anl.gov/petsc

[7] Cell Broadband Engine Programming Handbook. New York: IBM,
Apr. 2007, p. 877, Version 1.1.

[8] B. Hendrickson et al., “An efficient parallel algorithm for matrix-vector
multiplication,” Int. J. High Speed Comput., vol. 7, no. 1, pp. 73–88,
1995.

[9] B. Hendrickson and T. G. Kolda, “Partitioning rectangular and struc-
turally nonsymmetric sparse matrices for parallel computation,” SIAM
J. Scientific Comput., vol. 21, no. 6, pp. 2048–2072, 2000.

[10] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, “Parallel hypergraph partitioning for scientific computing,”
in Proc. IEEE 20th Int. Parallel Distrib. Process. Symp., 2006, p. 20.

[11] Ü. Catalyürek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse matrix vector multiplication,” IEEE
Trans. Parallel Distrib. Syst., vol. 10, no. 7, pp. 673–693, Jul. 1999.

[12] S. Williams et al., “The potential of the cell processor for scientific
computing,” in Proc. 3rd ACM Int. Conf. Comput. Frontiers, 2006, pp.
9–20.

[13] “National Institute of Standards and Technology,”, Gaithersburg, MD,
“Matrix market,” Mar. 2007 [Online]. Available: http://math.nist.gov/
MatrixMarket/

[14] S. Williams et al., “Optimization of sparse matrix-vector multiplica-
tion on emerging multicore platforms,” in Proc. ACM/IEEE Conf. Su-
percomput., 2007, p. 12.

