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This paper presents a theoretical evaluation of the axial stiffness characteristics of elastic rods partially embedded in elastic 
media. The novel analytical-numerical technique is based on an energy or variational scheme in which the deformation of 
the bar is specified by a function, which is indeterminate to within a set of unknown constants. A minimization of the potential 
energy of the bar-elastic medium system is used to determine these arbitrary constants. The numerical results presented 
illustrate the influence of the relative flexibility of the bar, its length-to-radius aspect ratio, etc. on its axial stiffness. 
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Cet article prtsente une Cvaluation thtorique des caracttristiques de raideur axiale de tiges tlastiques qui sont partiellement 
enrobtes d'un mattriau tlastique. Cette nouvelle technique analytique-numtrique repose sur une methode variationnelle i 
l'inttrieur de laquelle la dtformation de la tige est sptcifite par une fonction, laquelle est indtterminte i I'inttrieur d'un 
ensemble de constantes inconnues. Une minimisation de I'tnergie possible du systkme de tiges tlastiques partiellement enro- 
btes d'un mattriau tlastique est utiliste pour determiner ces constantes arbitraires. Les rtsultats numtriques illustrent I'in- 
fluence de la flexibilitt relative de la tige, de son rapport longueur-rayon, etc., sur la raideur axiale. 
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Introduction 
An examination of the load transfer mechanism from an 

elastic bar to an elastic halfspace region can be motivated by 
a number of useful engineering applications. The basic model 
of the embedded elastic bar serves as a useful approximation 
for the study of the axial load transfer from flexible piles to 
the surrounding soils, or reinforcing rods to the surrounding 
concrete, especially in the working load range (Fig. 1). The 
load transfer model is also of importance to the study of load 
transfer from cylindrical inclusions, which are used as rein- 
forcement for multiphase composite materials. The funda- 
mental work related to the load transfer from a cylindrical 
elastic inclusion of infinite length to an elastic medium was 
first examined by Muki and Sternberg (1969), who also 
presented approximate procedures which can be used to deter- 
mine the decay of load in a bar with an arbitrary cross section. 
Muki and Sternberg (1970) also investigated the problem of 
the diffusion of axial load from an elastic bar of finite length 
and circular cross section which is embedded in bonded con- 
tact with an isotropic elastic halfspace. This investigation is 
based on the assumption that the bar behaves as a one- 
dimensional elastic continuum which exhibits a uniform axial 
stress distribution. Such an assumption essentially reduces the 
problem to the solution of a Fredholm integral equation of the 
second kind. The solution procedure is valid for situations in 
which the length-to-diameter ratio of the bar is comparatively 
large. Luk and Keer (1979) presented an exact analytical for- 
mulation of the problem of a rigid cylindrical inclusion which 
is embedded at the surface of an isotropic elastic halfspace. A 
-- 

NOTE: Written discussion of this paper is welcomed and will be 
received by the Editor until October 31, 1990 (address inside front 
cover). 

Hankel transform development of the governing equations 
yields a system of coupled singular integral equations for the 
normal and shear traction distributions at the inclusion- 
elastic medium interface. 

Poulos and Davis (1968) examined the problem of the axial 
loading of incompressible piles embedded in elastic media by 
employing a discretization procedure. The interface between 
the pile and the elastic medium was discretized into a series of 
ring elements of finite length. The expressions for the axial 
displacement due to vertical stresses acting on these elements 
were derived by employing Mindlin's solution (1936) for con- 
centrated axial load acting at the interior of the halfspace. The 
intensity of the interface stresses acting on each element was 
determined by prescribing the compatibility of vertical dis- 
placement between the pier and the elastic halfspace at the 
interface. The analysis neglected the influence of radial trac- 
tions acting along the interface. Suriyamongkol et al. (1973) 
investigated the behaviour of an axially loaded rigid cylindri- 
cal body embedded in bonded contact at the surface of an elas- 
tic halfspace. The region of the embedded body and the 
remainder of the halfspace were treated as a single domain and 
the field of distributed traction-resultants were applied at the 
boundary of the cylindrical region. The intensities of these 
traction resultants were evaluated at discrete locations bv 
invoking the requisite axial and radial compatibility con- 
straints. Niumpradit and Karasudhi (1979) considered the 
quasi-static axial load transfer from a cylindrical elastic bar 
into a saturated porous elastic solid. Karasudhi et al. ( 1 9 8 4 ~ )  
reconsidered the load transfer problems involving axial, 
lateral, and moment loading by using an improved compatibil- 
ity condition proposed by Karasudhi et al. (19846) for a torque 
transfer problem. Selvadurai and Rajapakse (1985) have pre- 
sented a comprehensive study of the problem of load transfer 
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FIG. 1. Engineering situations involving load transfer from a bar 
to an elastic medium: (a) axially loaded flexible pile; (b)  load transfer 

I from a cylindrical bar; (c)  cracks in fibre reinforced solids; (d) load 
1 transfer in cracked fibres. 

from a hollow rigid cylindrical inclusion under general loading 
conditions. More recently, Selvadurai and Rajapakse (1987) 
have examined the problem of the torsional load transfer from 
an elastic bar into an isotropic elastic halfspace. 

In this paper we consider the idealized problem of an axially 
loaded elastic bar partially embedded in an isotropic homo- 
geneous elastic halfspace as shown in Fig. 2. It is assumed that 
due to the application of the axial load the bar is subjected to 
a deformation which includes rigid body and other terms that 
incorporate variations of the displacement along the length of 
the bar. This deformation is specified to within a set of 
unknown coefficients. The bar itself is assumed to behave as 
a one-dimensional elastic continuum. The surrounding elastic 
medium which is in contact with the elastic bar deforms 
according to the imposed deformation field. A discretized 
form of the stresses induced in the bar-elastic medium inter- 
face due to the imposed deformation can be computed by using 
a fundamental solution related to the vertical ring load acting 
at the interior of an elastic halfspace. Using these techniques 
we develop a total potential energy functional for the 
bar-elastic medium system. This functional includes the elas- 
tic energy of the halfspace, the elastic energy of the bar, and 
the potential energy of the applied axial loads. This functional 
is indeterminate to within the arbitrary constants characteriz- 
ing the deformation of the bar. The minimization of the total 
potential energy functional can be used to determine these 
arbitrary constants. The results obtained from the present 
scheme are compared with those presented by Karasudhi et al. 
(1984a). Numerical results presented in the paper illustrate the 
effect of flexibility of the bar and the geometric aspect ratio 
on the computed axial stiffness of the bar at the surface of the 
halfspace region. 

The fundamental solution 
Figure 3 illustrates a halfspace region in which (r, 8, z) is 

the cylindrical polar coordinate system, and the associated rec- 
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FIG. 2.  Geometry of the nonuniform bar embedded in an elastic 
medium. 

FIG. 3. System considered in the derivation of the fundamental 
solution. 

tangular Cartesian coordinate system (x, y, z) is chosen such 
that the z-axis is normal to the free surface. For an isotropic 
linear elastic medium undergoing torsion-free axisymmetric 
deformations, the displacement equations of equilibrium in a 
medium which is void of body forces take the form 

where u and w are the components of the displacement vector 
referred to the cylindrical polar coordinates r and z ,  respec- 
tively; v is Poisson's ratio; V2 and A are the Laplacian opera- 
tor and dilatation, respectively, defined by 

Muki (1960) presented a Fourier (in terms of 8) - Hankel 
(in terms of r) representation of the general solution of [ l]  by 
expressing the displacements in terms of a combination of 
biharmonic and harmonic functions. Accordingly, the dis- 
placements u and w can be expressed as 
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FIG. 4.  Discretization for the fictitious contact surface S. 

where 

G([, z) = (A + Bz) e-tz + ( C +  Dz) etz 

In [3], J,,, is the Bessel function of the first kind of mth 
order and A([), B([), C([), and D([) are arbitrary functions 
which should be determined by invoking appropriate boundary 
and (or) continuity conditions. At this stage, it is convenient 
to nondimensionalize the problem by defining a length param- 
eter, a, which denotes the radius of the cylindrical bar at z = 
0 as the unit of length. 

In the ensuing section dealing with variational formulation, 
we need to obtain the traction distribution generated along a 
fictitious contact surface S (Fig. 4) on the extended halfspace 
(i.e., uniform halfspace without an inclusion) due to a set of 
deformations imposed along S. To the authors' knowledge, an 
exact analytical solution does not exist for the traction distri- 
bution generated due to an arbitrary displacement pattern 
imposed along S. The most efficient and accurate way to com- 
pute the traction distribution along S is to discretize the surface 
S and to develop a numerical solution. The surface S is dis- 
cretized into ring elements as shown in Fig. 4. It may be 
observed that any contact surface corresponding to a non- 
uniform bar can be discretized by the three different types of 
elements referred to the surface S ,  namely, vertical (VE), 
inclined (IE), and base (BE) elements shown in Fig. 5. The 
traction distribution within each element is as shown in Fig. 5. 

Since we are concerned with the evaluation of the axial stiff- 
ness of long elastic bars, it is reasonable to neglect the dis- 
placement and tractions in radial directions in determining the 
traction, T(r, z), in the z-direction on the surface S due to 
imposed displacement field w(r, z). To obtain a numerical 
solution for T(r, z) at discrete points along the surface S, we 
need to derive the fundamental solution corresponding to a 
concentrated circular ring load acting in the z-direction at the 
interior of a halfspace as shown in Fig. 3. Referring to Fig. 3,  
and by defining a fictitious plane at z = z', we can reduce the 
problem to one that has two domains. The superscript (or sub- 

' pj I 
I 

base element 

inclined element 

FIG. 5. Basic elements used to model the load transfer mechanism 
at the fictitious contact surface S. 

script) i (i = 1, 2) is used to identify the quantities associated 
with the appropriate domain. The displacement field in each 
domain has the general form given by [3] consisting of func- 
tions A,([), Bi([), Ci([), and Di([). In the domain 2, however, 
to ensure regularity of displacements and stresses derived 
from [3], the terms C2(0 and D2([) are set equal to zero. The 
remaining six functions Al ([), BI ([), CI  ([), D l  ([), A2([), and 
B2(0 are determined from the following boundary and con- 
tinuity conditions: 

[4l w(l)(r, z') = w(2)(r, zl) 

The solution of the set of simultaneous equations cor- 
responding to [4] results in expressions for displacements of 
the halfspace. It is found that the expression for vertical dis- - 
placement takes the form 

S m 

[5I w(r, z; s ,  zf)  = s o  in1 + [Iz - z1II 
- v) 

x e-tlz-z'l + [X2 + XIKz + z') + 2[2a'] 

X e-t(z+z'))Jo([s)J,,([r) d[ 

O I Z , Z '  2 m 

where X1 = 3 - 4v and X2 = 8u2 - 12v + 5. 
The displacement, A,, at point Pi(ri, z,) on the interface S 
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due to tractions of unit intensity distributed over any type of 
element (j) shown in Fig. 4 can be derived by integrating the 
fundamental solution given by [5] across the width of the ele- 
ment. It is noted that the fundamental solution could be inte- 
grated analytically for tractions applied over the vertical and 
base elements. For the inclined element, however, a numerical 
integration has to be employed across the element width to 
computehj. The expression forJj corresponding to each type 
of element depicted in Fig. 5 is given below. 

For a vertical element, 

For a base element, 

s=s.+ A612 + 2zizjz;*(o, l )  1 
In [6] and [7], 

For an inclined element the displacement expression given 
by [5] is numerically integrated over the thickness of the ele- 
ment by using Simpson's rule. 

The variational formulation 

Consider an elastic halfspace with an embedded elastic bar 
as shown in Fig. 1. It is assumed that the bar is subjected to 
an axial load, b, at z = 0 and that the bar is perfectly bonded 
to the surrounding elastic medium along its contact surface. 
Since we are concerned with the deformation of an elastic bar 
which has a large length-to-radius ratio, it is well justified 
(see, e.g., Muki and Sternberg 1969, 1970) to assume one- 
dimensional behaviour for the embedded bar. The state of 
deformation represented by the one-dimensional theory can be 
expressed in the form 

The above displacement profile along the bar is indetermin- 
ate to within the arbitrary coefficients a l ,  a2, . . . , CYN. 

Considering the displacement field defined by [9], the strain 
energy, U6, of a tapered elastic bar as shown in Fig. 5 can be 
expressed as 

FIG. 6. Geometry of nonuniform bars considered in the present 
study. (a)  uniform tapering; (b) step tapering. 

[ lo]  Ub = 2 C D m n ~ , l a l n  
n=1  nt=l  

where 

[ l lb ]  D l ,  = 0 

[I  lc] E* = Eb - E 

[I  ld]  tan f i  = (a - b)/h 

Note that by virtue of the system to be considered in deriv- 
ing the tractions due to deformation specified by [9], the 
modulus of elasticity of the bar has to be modified as given by 
[ l lc] .  For a step-tapered bar as shown in Fig. 6, the strain 
energy, Ub, can also be expressed in the form of [ lo],  except 
that the relevant expression. - for Dm, takes the form 

The strain energy of the extended elastic medium, due to the 
deformation imposed along the contact surface S, could be 
computed if the tractions acting on this surface are known. 
These tractions are computed by imposing independently the 
deformation corresponding to each term of [9] with a , ,  az, 
. . . , a,, equal to unity and then formulating the flexibility 
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TABLE 1. Convergence of results for different 
values of N and N, 

AoEAI V,a 

equation for the contact surface S*. Let us denote the traction 
in the 2-direction generated on the j t h  element due to the nth 
term of [9] with a,, = 1 as ?;,.. Using the influence function 
& defined previously, we can write the following flexibility 
equation to determine Td. 

[I31 [Aj] {i';d) = {w,,~)'  i >  j = 1,  . . . , Nt 

n = 1,  . . ., N  

where 

and 

The solution of the system of simultaneous equations results 
in {T,,.} for n = 1, . . . , N.  The tractions acting on the j th  ele- 
ment at the bar-halfspace interface is denoted by Tu which 
can be expressed in the form 

expressed as 

where S denotes the fictitious contact surface on the extended 
elastic medium; T ( r ,  z )  is the continuous form of the traction 
acting on the contact surface which is expressed in the discrete 
form as given by [15]. Considering [9] and [15], [16] can be 
expressed as 

where A$ = &/cos if j th  element is a V E  or  IE  and A$ = 
Ar if j th  element is a BE. 

The total potential energy functional of the system, 6 ,  can 
be written as 

By minimizing the total potential energy functional (i.e., 
a61aa i  = 0, i = 1, 2, . . ., N ) ,  the following system of 
linear simultaneous equations can be obtained: 

TABLE 2. Comparison of nondimensional axial displace- 
ment of a uniform elaskc bar 

EbIE Karashdhi et al. (1984a) Present study 

(a) hla = 10.0; v = 0.25 
5 0.7896 0.7729 

10 0.6256 0.6043 
50 0.4019 0.3904 

100 0.3618 0.3431 
500 0.3266 0.3182 

1 000 0.3220 0.3137 
10 000 0.3167 0.3096 

(b) hla = 5.0; v = 0.25 
5 0.8261 0.8140 

10 0.6893 0.6812 
50 0.5285 0.5457 

100 0.5049 0.5232 
500 0.4850 0.5043 

1 000 0.4820 0.5019 
10 000 0.4810 0.4995 

TABLE 3. Comparison of nondimensional axial displacement for bars 
of different geometry 

bla = 1.0 
hla uniform 

bla = 0.5 bla = 0.25 
uniform taper uniform taper 

(a) E,IE = 10.0; v = 0.25 
0.7426 0.7896 
0.6630 0.6945 
0.6376 0.6604 
0.6252 0.6429 
0.6179 0.6322 
0.6134 0.6255 

(b) Eb/E = lo5; V = 0.25 
0.5446 0.5986 
0.3562 0.3887 
0.2709 0.2935 
0.2210 0.2382 
0.1880 0.2018 
0.1642 0.1757 

bla = 0.5; 
h,lh = 0.5 
step taper 

0.7153 
0.6332 
0.6085 
0.5986 
0.5945 
0.5927 

0.5360 
0.3535 
0.2696 
0.2205 
0.1876 
0.1640 

The solution of the system of simultaneous equations given 
by [19] gives the numerical values of the arbitrary constants 
a , ,  . . . , a ~ .  The displacements of the bar and the fictitious 
traction acting on S due to the applied force Vo could be 
evaluated by using [9] - [15]. 

For the case of an infinitely rigid bar, a2, . . . , aN = 0;  and 
[19] reduces to 
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FIG. 7. Axial displacement of uniform bars: blcl = 1.0. 

It may be noted that if we consider a rigid bar and solve [13] 
for the appropriate rigid body displacement mode (n = 1 
only), then [20] is simply obtained by the consideration of 
global equilibrium of the bar. 

Numerical solution scheme 

The first step of the numerical solution is to solve the sys- 
tem of simultaneous equations given by [I31 to obtain {T,,.) 
for different n. This involves the computation of the influence 
function, &, for each element. It may be noted that the 
influence function, j j ,  consists of several integrals of the 
Lipschitz-Hankel type, defined by 

Numerical evaluation of such integrals are discussed by 
Eason et al. (1955) and Selvadurai and Rajapakse (1985). 
Once the numerical solution of [13] is obtained, the system of 
simultaneous equations given by [19] is solved to obtain the 
numerical values of a,,. Based on the solution procedure 
described in the preceding sections, the authors have devel- 
oped a computer code to evaluate the axial stiffness of elastic 
bars. The input parameters include Young's modulus of the 
bar, the shear modulus, and Poisson's ratio of the elastic half- 
space, the geometry of the bar, and the values of N, and N. 

FIG. 8. Axial displacement of uniformly tapered bars: bla = 0.50. 

FIG. 9. Axial displacement of uniformly tapered bars: bla = 0.25. 
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FIG. 10. Axial displacement of uniformly tapered bars: bln = 1 .50. 
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FIG. 11. Axial displacement of uniformly tapered bars: bla = 2.0. 

The program computes displacement and tractions in the z- 
direction at discrete points on the contact surface and the load 
transfer curves. 

Discussion of results and conclusions 

The first step of the parametric study is to investigate the 

FIG. 12. Axial displacement of step tapered bars: bln = 0.50; 
hI lh  = 0.5. 

convergence of solutions with respect to the number of terms 
( N )  considered in the assumed displacement approximation 
given by [9] and the total number of elements (N,) used in 
the discretization of the contact surface S. Table 1 presents the 
nondimensionalized axial displacement, AoEAIVon (Ao is the 
axial displacement of the bar at = 0 due to the axial load Vo, 
A is the cross-sectional area of the bar at z = O), for a uniform 
elastic bar (hla = 10.0, E,IE = 10.0, v = 0.25) embedded 
in an elastic halfspace. It is evident that the solution shows 
good convergence with respect to both N and N,. Table 2 
presents the comparison of the nondimensionalized axial dis- 
placement for a uniform elastic bar obtained with the current 
procedure with that obtained by Karasudhi et al. ( 1 9 8 4 ~ ) .  The 
numerical results agree very closely, the difference being less 
than 5 % .  This slight difference may be due to the fact that in 
the results given by Karasudhi et nl. (1984n), the Lipschitz - 
Hankel integrals are evaluated by means of a numerical inte- 
gration scheme, whereas in the present study we express these 
integrals in terms of complete elliptic integrals (see, e.g. ,  
Eason et nl. 1955) which are aeurately computed by a high- 
precision software library for special mathematical functions. 
Table 3 presents a comparison of the nondimensionalized axial 
displacement for bars having different geometries. As can be 
seen from the table, the effect of nonuniformity is more pro- 
nounced for shorter bars than for longer bars, with similar 
conclusions derived for bars with higher EbIE ratios. Figures 
7 -  12 present the nondimensionalized axial displacement of 
uniform, nonuniform, and step-tapered bars having length-to- 
radius ratios in the range 5 -30 and Eb/E ratios in the range 
5 -  lo5. These figures show that when the bar is flexible (E,, 
is low) the stiffness tends to be independent of length. The 
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change in Poisson's ratio of the halfspace from 0.25 to 0.50 
is found to change the axial displacement by less than 3 % for 
flexible bars. 

Finally, it can be concluded that the variational scheme pre- 
sented in this study is an efficient and accurate procedure for 
solving axial load transfer problems involving flexible elastic 
bars. This method can be  extended to analyse general load 
transfer problems without any fundamental difficulty. The  
numerical results presented in the paper, although limited in 
scope, illustrate the significant influence of the relative elastic 
properties of the bar-elastic medium system on the axial stiff- 
ness of the bar at the surface level. 
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