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SUMMARY 

An investigation is made to ascertain the relative 

importance of three and two-body /\-nucleon potentials which 

have the same order of coupling constant. The three-body potential, 

which is derived using perturbation theory from a pseudoscalar 

interaction, is found to be weakly singular and hence rouch smaller 

than the two-body potential. ln addition, the largest terms are 

non-central. 

In the hypertriton where correlations are large, it is 

found that three-body forces are repulsive for S states and may 

amount to 4%. D state admixture tends to make the three-body 

force less repulsive. 

In heavy hypernuclei, three-body forces are found to 

have a relative importance of about • So/o if correlations are neglected, 

and may be as large as S. S% if correlations are as strong as in the 

hypertriton. In either case, they are repulsive. 

It is also found that, by omitting the Feynman graphs 

with bare lines, the three-body co~tributions are negligible. 

The material in this thesis is the original work of the 

author unless otherwise explicitly stated. 



Section I 

INTRODUCTION 

A. Introduction 

It is now well known that the unstable fragments which are 

observed in many types of nuclear disintegrations may be interpreted by 

assuming that they are due to a !\ particle which remains bound in the 

nuclear fragment. Such nuclei are called hypernuclei. The A particle 

decays by two modes 

A-{ 
-10 

with a mean life - 3 x 10 seconds. This time is long compared to 

atomic times and very long compared to characteristic nuclear times. 

Hypernuclei are observed in cosmic-ray emulsions. A 

typical event taken from Schneps et al (1) is shawn in Fig. 1.1 • 

Here the hyperfragment "H
4 

is 

observed as a result of the cosmic-

ray star at A. 
4 

The "H decays at 

B with a proton 1, tri ton 2 and a 

17-meson 3. One can therefore write 

this reaction as 

1.1 

,.H .. __ p~t+71'-rQ 1.2 

Q is measured to be 35.1 '!: • 3 Mev. 

The particles and their e nergies are 

Fig. 1. 1 obtained from the length of the tracks, 

the grain densities, and by a momentmn 
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balance. 

From equation 1.1 and 1. 2 we deduce that the separation 

energy of the 1\ particle is 1. 8 Mev. The binding energy and separation 

energy of the /\ particle are taken throughout this thesis to mean the 

same thing. The average binding energies (separation energies) of 

the 1\ particle in sorne hypernuclei are shown in Table 1.1 • 

The situation becomes very complicated for Z > 5 since 

then the decay products become very complex. Also, the binding energy 

of the 1\ particle becomes comparable to 37 Mev, so that there is no 

characteristic energy to look for and the '1( meson emitted may be 

Hyperfragment 

" 
H3 -0.3 

H4 
" 

1. 8 

fi, 
He4 1.9 

"He 
5 1.6 

L.6 
1\ 1 6.8 

8 
11
Be 5.1 

1\ 
Be9 6.3 

,..c 
11 

13 

Taken from Schnees 

Table 1.1 

~ 

+ 
0.4 -

+ 0.4 -
+ 0.4 -
+ 0.6 -
+ 3.0 -
+ 4.0 -
+ 

0.6 -
+ 6 -

et al {!} 

absorbed by another nucleon so that 

it leaves no track. In addition, the 

heavier Z particle no doubt plays 

an important role in the heavier 

hypernuclei, since the mass difference 

between the 2: and 1\ ( 80 Mev) 

becomes more comparable to the 

binding energy. However, for very 

light hypernuclei the 1\ particle will 

play a more important role, except for 
-;

hyperfragments such as the Z- proton (2). 

Various authors (3, 4) have tried 

to calcula te the binding energies of the 

;1 particle for a few specifie cases, 

but in all of the early attempts the binding was attributed to the exchange 

force between the Jl particle and the nucleon through the K meson, that is, 

N 
or 1\ 1.3 
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Dalitz (5) pointed out the possibility that the hypernuclear 

force could be brought about through the -rr meson. This would mean 

that the lowest order process would be a double pion exchange. The 

possibility of a single pion exchange 

!\ -,Il +V 

may be ruled out since the isotopie spins of the /t and nucleon are 0 

and l and the force re sul ting from 1. 4 would not be charge independent. 

In fact, the 1\ -proton and /\-neutron forces would be opposite in sign 

in violation with experimental evidence (see Table 1. 1) . Therefore, 

one must consider the /\-nucleon force as being due to the reaction 

in the lowest order process. 

Calculations of the Il-nucleon potential for the double pion 

exchange have been carried out by Dallaporta and Ferrari (6) (hereon 

this paper will be referred toby the letters DF) and by Lichtenberg 

and Ross (7) • The elementary reactions are taken as 

N -Al +"TT" 

A 
z 

+7T 

+7f" 

The interaction terms of the Hamiltonian may be written (8) as 

if one assumes pseudoscalar coupling. 

1.4 

1.5 

1.6 

1.7 
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where the repeated index i denotes summation and ~~ ~ and 1\ are 

the baryon wave functions and p is the wave function of the 7T me son. 

The work of Ruderman and Karplus (9) indicates that the 

spin of the 1\ particle is ~ 3
/2 . We assume that the spins of the Il 

and Z are -J. and that they have the same relative parity according 

to the "global" theory (8). Further, we also investigate 1. 7 in the non-

relativistic limit and setting ML = M" 

the Dyson (10) transformation give 

the lowest arder terms of 

+ [ !;;_jd~ L,· ~ 1\ • V~· f-Co7/'t~fCllj 
" 

1.8 

This interaction may be schematically represented by means of 

Feynman graphs as shawn in Fig. 1. 2, where a and b show the first two 

terms of 1. 8 , and c shows the pair terms. 

Fig. 1. 2 

In the analyses of Lichtenberg and Ross (7) only graphs with 

bare nucleon lines were considered, that is, graphs corresponding to (a) 
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in Fig. 1. 2 . Their calculation led to the spin triplet state as lower than 

the singlet for the bound !\-nucleon problem. The recent work of 

Dalitz and Downs (11) shows that the singlet spin state is more attractive. 

Dallaporta and Ferrari considered graphs corresponding to Fig. 1. 2 (b} 

and (c), as well as exchanges with the K meson. They found that the 

potential from graphs (b) dominated the pair terms and the K meson 

exchange terms, and that graphs (b) led to a potential more attractive in 

the /1-nucleon singlet spin state, which indicates that it is probably a 

more appropriate potential. They also assumed that the pair terms were 

damped by a factor ~ according to Brueckner and Watson (12), and 

neglected them entirely in the subsequent analysis. They also did not 

consider bare nucleon !ines. The potential resulting from (b) was 

where fis the meson mass which equals 140 Mev, and x equals fLY',,. , 

the distance between the nucleon and the 1\-particle in units of a meson 

compton wavelength. Here ...f1 = c = 1 . The K functions are 

1 
Hankel functions of an imaginary argument where K 1 (x) ~ x for small x 

2 
and K

0
(x) ~ 1nyx where '( is Euler' s constant. {See Jahnke and Erode.) 

Lichtenberg and Ro ss obtaine d 

VLR = 
1.10 
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where LJ := M~ - M,.. = 80 Mev • 

It is interesting to notice that V LR given by 1.10 behaves 

like Î' for small x , while V behaves like 
DF 

In both of these calculations, the baryon recoil was neglected, 

and their wave functions assumed to be delta functions. 

In the intermediate states, the mass difference /J was neglected in 

comparison withWt, the meson energy, if a meson was present. The 

factor 1 ~ appears in V LR since in the bare-nucleon intermediate 

state, the energy denominator is 6 (no meson is present) . 

The ca1culation performed by DF was carried out further than 

that of Lichtenberg and Ross. After deriving the potential V DF given 

by 1. 9 , they constructed an approximate model for the hypernucleus as 

consisting of a nuclear core together with a rather loosely bound !\-

particle. The hypertriton, for example, was assumed to consist of 

a deuteron with a /\- particle where the deuteron part of the hypernucleus 

retains its characteristic shape. Actuall~ the presence of the 1\-
particle will deform the deuteron. Estimates of the distortion have been 

made by Brown and Peshkin ( 13) using a phenomenological /\-nucleon 

potential and it was found that the linear distortion of the deuteron is 

about 10o/o . 

DF then assumed a spherically-symmetric density function 

for the nuclear core p ( 1 xJ ) a nd then calculated the effective 

nuclear core potential 

1.11 

where R is the radius vector from the 1\ to the centre of mass of the 
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- -
nuclear core. V { IR - r 1 is the potential given by equation 1. 9 

plus the contributions from the K meson graphs after spin integrations. 

The K meson contribution was only singular to first order here and 

rouch smaller than V since the tensor terms vanished. 
DF 

In the evaluation of V eff one cannot integrate over all space 

since V DF has a singularity of order 5. They therefore assumed that 

-13 
V DF was eut off at . 3 3 x l 0 cm. or x = . 234 meson units. By 

eut off it was meant that V DF = 0 , 0 5: x ~ O. 234 • This may be 

considered as having a compensating effect for the high singularity 

incurred by neglecting the nucleon recoil. They also assumed that 

A trial wave function y; = -aR 
e was then chosen for the 

system and the parameter a was varied for minimum binding by the 

Ritz variational method. The results for the binding energies of the 

hypernuclei 
4 4 5 

AH , "He and /\He gave remarkably 

good agreement with experiment. One might, however, view the results 

with a certain distrust since the entire procedure depended very critically 

on the value of the core radius of V DF . In addition, no attempt was made 

to correlate the spins and space parts of the 1\- nucleons. Either of 

these two factors would seriously change the relative magnitudes of the 

binding energies of the hypernuclei considered by DF . 

B. Three-Body Force Considerations 

From equation 1. 5 , it seems likely that three-body forces 

may play an important role in hypernuclei. In ordinary nuclei, many-

body forces are believed to be small. Estimates have been made by Drell 

and Huang { 14) who find that the many-body forces may be important 
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for nuclear saturation. However, a later calculation by Brueckner 

et al (15) has shawn that three-body nuclear forces are probably 

negligible. One reason for the smallness of many-body forces in 

ordinary nuclei may be thought of in terms of perturbation theory. 

Three-body forces require at least fourth-order perturbation theory, 

which is the next arder above the lowest, that is, second arder perturbation 

theory or single pion exchange. 

In hypernuclei the situation is different. The lowest arder 

two-body process requires two pions exchanged, or fourth-order 

perturbation theory, but this is just the order required for a three-body 

force. 

1\ f\ "· 

NI 1\ N.._ rJ, 1\ ftl"l. "· f\ f/1-

~ {b) (c) 

Fig. 1.3 

The diagrams shawn in Fig. 1.3 all lead to three-body forces. 

In ordinary nuclei one could consider a graph such a s (b) in Fig. 1. 3 as 

a n iteration o f two-body p r ocesses. However, for /\-nucleon fo r ces, 

since the lowest arder process is a double-pion exchange, no combination 

of two-body force diagrams leads to a ny of the graphs in Fig. 1. 3 • We 

therefore call the s e g raphs three-body fo rce diagrams. From this we see 

that it is possible that three-body forces could be large enough in 

hypernuclei to effect the binding ener gy of the J1-pa rticle, and, if we 
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accept the "global" concept .J"' = .3 , it may also effect the value of 

the core in the potential. For the heavier hypernuclei, one might also 

expect that its effect on saturation would be important. 

C. Outline of the Work 

ln Section II the three-body potential is derived considering 

ail three graphs in Fig. 1. 3 . It was found that the potential due to {a) 

was only singular to the order j_.J for small x and that with no 
x 

correlations the expectation value was negligible. The potential resulting 

from the bare lines (b) was found to be singular to the same orde:r as the 

graphs {a) , but was larger in magnitude. The potential resulting 

from the pair terms was only singular to .::.~ for small x • In addition, 

with no correlations the expectation value of the latter potential was zero, 

and since it was assumed to be multiplied by the damping factor À {12) 

it was neglected in ail of the subsequent analyses. 

Without correlations in the wave functions the expectation 

value of the three-body potential was small. It was decided, therefore, 

to make a quantitative calculation on the hypertriton with correlations 

included so that a reasonable estimate could be made of the relative 

importance of the three-body to the two-body hypernuclear force. The 

procedure adopted for this calculation was as follows: 

{1) A trial wave function 

l. 12 

was chosen where o(is the variational parameter, ')(5 is the 

spin wave function 
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which is a spin wave function for J = f· M = .!.. and x, 
J ~ 

y and p are the relative co-ordinates in meson units. 

This particular spin wave function was chosen so that the two 

nucleons were in a mutual triplet spin state. The constant 

(3 was chosen from other theoretical work ( 17 and 18 ) . 

(2) In Section Ill, using the trial wave function 1. 12, the 

separation energy of the /\-particle was calculated 

considering only two-body forces. The neutron-proton 

phenomenological potential was taken from Garnrnel and 

Thaler (16) , and the two-body /\-nucleon potential was 

assumed to be given by V DF (equation 1. 9) . The 

expectation value of V DF depends on the parameters «and {J 

and also on the core €" • With f3 , the deuteron part 

of the wave function fixed, a variation of CC.will not necessarily 

give the correct separation energy BI\ of the /l-particle at 

the minimum, which is experimentally known to be near zero. 

It was found, in fact, that when using € = O. 234 , which is 

the value used by DF , a variation in cc yielded a value for / 8" f 

which was greater than 60 Mev . This clearly showed the 

inadequacy of the treatment by DF. The difference in these 

two results can be explained by noting that DF introduced no 

3 
correlations, and in the case of 1\H , for example, they 

assumed that the /\-particle interacted in a pure singlet 

state with each nucleon, which is certainly not true for the 

spin wave function }(
5 

(see equation 1. 12) • 

Therefore, the core € was varied until the minimum 

value of B"(€,<X.) with respect to oc. occurred at BA = 0 . 
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(3) The values of ~, ~ and é, which were calculated in 

Section III , were then used to calculate the expectation value 

of the three-body potential in Section IV • The same core €, 

as was determined for the /\-nucleon two-body potential 

V DF , was used for the three-body potential. When 

calculating the three-body expectation values, an admixture 

of D state was included in the hypertriton wave function to 

determine the sensitivity of the three-body potential to amounts 

of D state. This was done by writing the total wave function 

as 

= c os p t/;5 + sin p 1/J0 

where ~ and 1../1, are normalized and the percentage D 

state is given by lOO x sin2 p . ~ was taken to be 

l. 13 

-x5 
~ 

-~{)(+v) - /l. f e ~ J • (see 1.12) 

where N s is the norrnalizing constant and ~was taken as 

l. 14 

Here ND is the normalizing constant and 

s"',Y = 3 (6,· i)(6~ ·x) 6,· 6,.. 
:x.~ 

l. 15 

s~lltJ = :3 (t1;·y)(6",.-y) 
y a. 

ôl. . -5",.. 

Other D stat e wave functions are possible ( 19) but 

i t was assumed that the symmetric one between the nucleons 

would give the largest contribution . The ranges o1.. and p we r e 
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chosen the same for the D state and S state wave functions. 

oC was taken from the result of the variational calculation 

using only two-body potentials. 

In Section V the ratios of the expectation value of the three-

body potentials < V(3) > with arbitrary admixtures of D state was made 

with the expectation value of the two-body potential <V DF(2) > where 

the value of< V DF(2) ) was taken from the results of Section III, that is, 

with only the S state wave function given by 1. 12 • These ratios were 

considered for both the three-body potential derived from diagrams with 

no bare lines (Fig. l. 3 (a)) and also when including the bare line 

diagrams (Fig. l. 3 (a) and (b)) • The pair terms (Fig. l. 3 (c)) 

were not included. It was found that for small D admixtures, the 

ratio considering only Fig. l. 3 (a) was only about . 2% • When Fig. 1. 3 

(a) and (b) were considered, the ratio became about 4% • In both cases, 

the three-body contribution was repulsive. A 4% contribution would be 

significant in any precise calculation, since the value of the core would be 

changed and this in turn would affect the relative binding of hyperfragments 

significantly. 

In Section VI an investigation was made into the variation 

of the values of ~ V(3-body)) with small changes in the constants CX. , 

f3 and E • This was done in the event that the value chosen for {3 

did not correspond to the best value or that the form of the w ave function 

was deficient. 

Finally in Section VII a semi-quantitative calculation was made 

on a heavy hypernucleus to determine the relative importance of three-body 



- 13 -

forces. This was done since in the hypertriton the A-particle is 

quite loosely bound and three-body forces would be expected to be quite 

small. It was found, however, that with no correlations (one expects 

correlations to decrease as A increases}, the ratio of the expectation 

values of the three-body to the two-body A- nucleon potentials was only 

about -. 005. The method used for this calculation followed Drell and 

Huang (14). The reason for the smallness of three-body forces in 

hypernuclei can be seen if one examines the potentials given in Section II. 

The angular dependent parts of the potential are more strongly singular 

than the central parts. In the case of the hypertriton, correlations 

lead to contributions from these more singular parts of the potential, 

and in heavy hypernuclei the /1.- particle interacts with many pairs and the 

effect of correlations may be expected to be smeared out. If strong 

correlations are assumed for heavy hypernuclei, then repulsive three-body 

contributions in excess of 5% can be expected. 
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Section II 

DERIVATION OF THE THREE-BODY POTENTIAL 

A. The Perturbation Terms 

Graphs of the type in Fig. 1. 3 (a) (no bare lines) were first 

considered. There are sixteen possible time orderings that can occur which 

are shawn in Fig. 2. 1 . One therefore writes 

V(3-body) = 
( FIJ./;1 I ><I 1 lldi')<I'/1-/,·/.J"><I'i 1-J,·Io> 

( E,. -EI )( E.- t:~·) ( E. -Er-) 

where E is the total energy of the system, i.e. 2M + M 0 I" I' 1 
0 " J , ' 1 

and F are the original, three intermediate and final states. The sums 

are taken over all intermediate spins, isotopie spins and momenta. 

Actually, since the baryon recoil is neglected the state F and 0 are the 

same. 

We shall now compute V(3-body) in detail for the diagram 

in Fig. 2. 2 • The interaction Hamiltonian is given by 1. 8 • The 

r-1, 

F 

I 

0 

N, 

Fig. 2. 2 

meson function p can be 

written as 

where the a's are the usual 

creation and destruction 

operators for mesons of 

momentum k and isotopie spin 

component ~ 

the meson energy ./r .... + k 
2 

He re, of course, 1î = c = 1 and 

2. 1 

2.2 



'· 
' 

\ 

'\ 1 

1 

\ 
\. 

1 

1 
1 

1 \ 
• 

\ 

1 

The Three-Body Graphs With No Bare Lines 

FIG. 2. l 

1 

\ 
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is the meson mass. 

If the baryon wave functions are assumed to be delta 

functions, then the gradient coupling part of 1. 8 becomes 

H. 
1 = 

2. 3 

where L; denotes the isotopie spin part of the 2:: particle. 

For Fig. 2. 2, E
0 

- E 111 =-wk' , E
0 

- E 1, = -(Wk + Wk' ) 

and E
0 

- E 1 = - wk 

where /!:,. = Ml: M,.. • We assume that Wk' >> ~ = 80 Mev 

and neg1ect it in all of the diagrams of Fig. 2. 1 • Then we get 

< l" 1 Hi 1 o> = -i~ 2; e -~"k:r-~ (ci;.· Ï<'; 
:l~ 

v'..zwk·V 
<'l' 1 H. ' l'' > = _,·9 ·/;y. -

1 ~c e·" · · (tf.J:; 
,<fYl 

v..za~.v 

( l > ,·9 - 1 
1 H. II' = e~·~:.~ ( 6;. .k} 1 '"C4./I 

:ZIYl -tl.zw,.·v 
(F t H. 1 l > = ,;gl\ e ,;'[,.~ (6;.·k) 1 ~" .:<Pl" 

V..2wkv 

We now multiply these equations together, divide by the 

energy denominators and sum over all intermediate state quantum 

numbers. The result is 

2.4 
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,'[ "k · ( r:"-7; ) + k · · ( ~- r,. ù 
x e ---
W~c w~c' ( WI#-IW~o') 

~[ [. (rf- r,) +- ï,.'. ( ~ -F,. J) 
x e 

The ,;6" À parts of the isotopie spin portion reduce to unity in the 

same manner as the meson isotopie spin parts. (See Bethe and de 

Hoffman Vol. II, p. 58) - r,.. = r and r - r = r1 
2. ,., 

d _j_ "')" an replace Li v k 
by 

so that 

V(3-body) = 

- -We notice that the integrand of 2. 5 is invariant if we put k --.. -k 

- -or if we put r -- -r which is why the phase factor was put into the 

form as shown. 

Evaluation of the fifteen ether diagrams in Fig. 2. 1 leads to 

the same phase factor but different energy denominators and different 

ordering of the two 1\ spin parts. The orderings of a;- , <5~ 

2.5 

and o;. do not matter since they operate in different spaces. Therefore, 

apart from the phase factor, the integrand for the diagrams in 
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Fig. 2. l is 

2.6 

The three-body potential with no bare nucleon lines is therefore 

given by 

VNB 

2.7 

The obvious relation ( ~ · k) ( 6;_. k
1

) + ( 6,... k ~ ( 6-',..·k) = 2k • k f was 

not utilized since the resulting integration becomes more complex. It 

was found that the form given by 2. 7 was more easily handled. 

B. Evaluation of thè Integrais 

First consider 

-Then take r 
- 1 - _, 

and r as the polar axes of k and k and examine the 

angular part of the k integration. 

Th en 
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are the polar angles 

-
of k ~ and 6~ referred to the direction r . The integrand does 

not depend on p so that integration with respect to p gives 

where 

-
The angular integration (p' part) of the k' momentum yields a 

similar term. 

Omitting the factor 
) 

equation 2. 7 becomes 
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We next rnake use of the relations 

( rS;· 6,. )( 6l-. ci..) + (62 · 6") (6,· 6,.) = 2~·r:52-

( 6,-· 6/\ ) 5.2/1, ;' + 5.z.,/ ( 6, .6,.) = :L 5,2., r' 

( <S:· <{,) 5o•, Y' + 5,11,1' (62 .6,..) = 2 :i~. Y' 

sl_,,. 5,11,. + 5,,,.. s .21!,1'1 = .2 Sn,rr' -2 5/.l,,.- 2 50 ,}· 
9 

where = 3 {6;. f)(~· p) - ( 6:· 6',) 
p• 

and s,~,rr' = 9(r--,r'J(6,.r) C6;. · ~·J _ (o,-.6'.) 
r1-r,:z.. 

Also 

ïï 
( ;kr"CDSt!l Je s;n@dG 

0 

= 

and [

r, ·/ 
t,I(Y'(oSfl 

3 e Sm ed& = 4-( Sm~ C'oSbr} 
(kv} l. 

" 
(kv-JJ 

From these relations, equation 2. 8 becomes 

-3 ( I3, + :&3) +- I;. , 
r,r' rr,j rzr' 

-r3{~1.. + I:n )+ I;_J 
r3r' ,_ ,_-;,.3 rr'3 

1-I,L ) 
r~" ' z.. 

+-~L '-) 
yr' 

+ .1,, 
.3 rr 1 

+ 0J, r ( -.J.IJ 3 

ys,.J 

+- s: 1 ( -3Ij3 
o, r yJ/'/?1 

- 3 In. 
,.-z..y,l-

- 3Il. .. 
r:J,r, .,_, 

2. 10 



where 

and I 
33 = 

= 

From the relations 
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0 -, 
ôr 

= 

K~ { Z ) = - K 1 { Z ) 

and K 1 ( Z) 
1 = 

and by putting fL r = x and f-r' = y 

0 
ôr 

(;)ra Y 
1 

the three-body potential 

for the graphs corresponding to Fig. 1. 3 {a) {no bare lines) become 
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+ ~ (2k,tx) 1-Y kol"))(y~Jy+3V - ~:2,x ( e -)f. k.lJ)( X'l.+3x+ 3) 
3y3x Y.j 

+ ~'J (2k,(x} -rxklv))fJ-r')} -~~v r'Ê-~3 k,C~)0f..,-r3J -rJ) 2.11 
z.y3 :./ :c,y 

+ e-)( {.<k,{_y) +yko[YJ){x+r))- ~]z. ( e->C( k.ly) -ykolyJ) 
xy 3ry 

+ e-Y ( k,c .. J - xk.C><J) j 

In a similar manner the bare nucleon line graphs, or the 

types shown in Fig. 1. 3 (b), give 

2. 12 

+ 
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The pair terms, Fig. 1. 3 (c) , give 

where ,À is the damping coefficient introduced by Brueckner and 

Watson (11) • It is interesting to notice that the three-body forces 

depend on the total isotopie spin due to the factor ( \:
1 

• il) . They 

are inde pendent of the spin of the 1\- particle. 

We also see that with no correlations in the direction x 

and y or with these directions and the nucleon spins, the terms 

2. 13 

involving s 1 eJ x y s ll,J( and s,,_~ become zero and that 

one is on1y left with a small 0'"
1

• 6'z. part. This partis much smaller 

since it has a weaker singularity than the angu1ar dependent terms. The 

term Vp becomes exactly zero with no correlations. lt is also seen 

that even with correlations, V P 
1 

behaves like ~ :l x y 
for small x 

and y, whereas V B and V NB are more strongly singular. The 
:a. -/ 

damping coefficient À = (1 + .!Îk,.,-) then further reduces the 

importance of this potential. It is therefore neglected in all of the 

subsequent ana1ysis. 

Comparing V B and V , 
N B 

we see that all things being equal 

is 1arger than V by a factor of approximately 7T~/tJ -:::r 6 
NB 

To get orders of magnitude from these potentials, then, we examine V B 

with no correlations. It becomes 

(no corr.) = -A,A;LJ l. u 1.. q z.. u ,_ L<- .2 (.- - )(- ~) - ;;c. ~y 
,- iz: r- VI\ 1~ /;_ ·- r-·~ 6, •Vl- <::::: 

47T 4!17 .. 4'7r 4~'1< Ll 3 ' .3x.)' 
2.14 
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If we consider the two nucleons in a spatially syrnmetric state, the 

expectation value of ( r:, . ra. ) ( t5, . 5.,., ) = -3 

Putting = o. 08 ' /A- = 140 Mev, L1 = 80 Mev 

and MA = 2182 electron masses we get 

V (no corr.) 
B 

= O. 7402 e-x e-Y 
x y 

Mev 2.15 

which is very small and can certainly be neglected in comparison with the 

two-body potential. 

It therefore is essential to have correlations in the wave 

function in order that three-body forces be important. 
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S e c ti o n III 

VARIATIONAL CALCULATION ON THE HYPER TRITON 

CONSIDERING ONLY TWO-BODY FORCES 

A. Preliminary Considerations 

The form of the three-body potentials derived in Section II 

show that without correlations in the wave function for the hypernucleus, 

one would expect that they would not be very important. However 1 since 

the angular dependent parts are more singular, i t is worth while to 

consider a particular hypernucleus in sorne detail to see if correlations 

can make three-body forces important. The simplest hyperfragment, 

of course, is the hypertriton. A complete calculation on any heavier 

hyperfragment would become much more complex. 

To calculate the expectation value of the three-body /)-nucleon 

potential for the hypertriton, a wave function with correlations included 

is required as well as a knowledge of the core € of the A-nucleon 

three-body potential. If one were to choose sorne arbitrary correlated 

wave function and calculate ( V(3-body) > / < V(2-body) > using the 

core € = O. 234 meson units for both the 2- and 3-body potentials, which 

was the value used by DF, the ratio would not mean very much since if the 

value of B 1\ , the separation energy, were calculated using € = O. 234, 

there is no guarantee that BI\ would be anywhere near the true value 

of 'V 0 • Therefore a variational trial function 

3. 1 
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where 

3.2 

was chosen where <X. is the variational parameter. In the calculation oc.. 

was varied for a minimum of B" , the !\-separation energy, for various 

values of € , the !\-nucleon core radius. The core E for the 1\-
nucleon potential was then chosen so that the minimum B" for a 

variation of O(.occurred at B,.. = 0 • This calculation then determined 

an é which would give the proper value of B,c. . It also determined 

an oc. which gave the best wave function of this type in the potential 

determined by E . 

As was stated in Section I , the spin part )( was chosen so 
s 

that the two nucleons were in a mutual triplet state. This spin wave 

function has J = k and MJ = j_ in accord with evidence that theÂ-nucleon 

interaction is more attractive in the singlet state (11). 

The parameter p was chosen to be 1. 4 inverse meson units. 

This value was fixed under the following considerations: Downs ( 1 7) is 

at present carrying out a calculati on on the hypertriton using a six- parameter 

trial function of the form 

~ = 
- A. X 

(e 3.3 

where the variational parameters are a, b, a', b', c, and c
2 

• His 

b e st value s for the pa r ameter of the deuteron part of the wave func tion are 

a' = • 635 b 1 = 1. 835 and c 2 = 1. 33 
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If this is approximated by a simple exponential of the form 

where the approximation is best for the small values of f, one 

obtains ~,..Jl.S. Also Feshbach and Rarita (18) chose f3 = 1. 52 

for the deuteron part when they carried out a calculation on the 

ordinary triton. One would expect that in the ordinary triton, p would 

be somewhat larger for the deuteron part than it would be for the deuteron 

part of the hypertriton, since the hypertriton is a more loosely-bound 

system. From these considerations, the value for f3 was chosen to be 

1. 40 inverse meson units. 

B. The Hypertri ton Hamiltonian 

Excluding three-body forces, which we assume are small 

compared to two-body forces, the total energy of the hypertriton can 

be written as 

H = 

where T tot is the total kinetic energy of the system excluding the 

motion of the centre of mass, V D is the two-body nucleon potential, 

and V DF( 1\ N,), V DF( f\ N2 ) are the Â·nucleon two-body potentials. 

3.4 

If one calculates the expectation value of 3. 4 and adds the absolute value 

of the binding energy of the deuteron (2. 226 Mev) , one obtains B" , 

the separation energy of the 1\ particle. 

V D' the deuteron potential, was taken ( 16) as 

! >. 283 

= 0 p < . 283 

3.5 
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where V c = lOO. 7 Mev, V T = 257 Mev, and '{ and y 1 are l. 735 

and l. 696 inverse meson units. We see that the potential given by 3. 5 

differs from that mentioned in reference 16 in that the latter has a hard 

core at p = . 283 • It was modified by putting V D = 0 at f = • 283 

so that it would be more suitable for the wave function 3. 1 . The most 

suitable wave function would be zero at the hard core. Therefore, use 

of the wave function 3. 1 incurred an error since it is too large 

immediately outside the core, and too smooth near the core. This had the 

effect of making the value of the kinetic energy too small, since the wave 

function used was too smooth, and of making the value of 1 < V D> 1 too large 

since the wave function was quite large at the core boundary. These errors, 

which are in the same direction, are discussed in the conclusions at 

Section VIII. 

V DF , the 1\ nucleon potential, was taken to be given by 

equation l. 9 , that is, the potential with no bare nucleon lines derived by 

Dallaporta and Ferrari (5), as it is more attractive in the singlet state. 

C. The Variational Calculation 

The expectation value of the kinetic energy Ttot of 

equation 3. 4 was done as follows: 

,. ( 1- '') ~1. l. 
Ttot = -~ \7, + ~ - - ~ 

.2fl1 .ZM/1 

where - -x = x, - x,. 

-y = x - x,. 2 

p = x - x. ~ 
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N, Therefore using the wave function 3. 1 

~ T > = -~,_ f -o<.(,u,y. )-{f [ o<.~p 2. 
tot - e d"C -

211/Vs z 

+ ~).r(YJ J- 2~(1+fYl) .2-ft 
2 (Y/11 .<: f?1" ? 

+ _.!_{ .:ZfYJo<.'l.~ - (!1 oc:f].. t-:lo<;9~ 

N7. 
4 rn,.. y rr;,.. xy ;; 

A 
Fig. 3. 1 + .2 o(, ~f - -< 0( f3:. x.,)_} 3.6 

x .Yf 

where the spin integrations yield unity. Here, N5 is the normalization 

constant of 3 . 1 and d "C is the volume· element of the product space 

d 3 x d 3y or d12Jcx2d x d.01 y 2dy. In all integrais of this type, if y 

is chosen as the polar axis for x , then the only angular part which 

appears in the integrand is in f 
Integration over dily and dp 

x 

since f.._= x 2 + y 2 - 2xy cos 8" • 

yields a factor of 811"
2 

so that we are 

left with an integration of Fig. 3. 1 over all configurations in a plane. 

d 't: therefore reduces to 

d"C 2 2 2 
= 81{ sinD dG' x dx y dy 

where the subscript x has been dropped on the B . 2 The factor 811" 

may be omitted providing it is also omitted in the normalizing constant, 

N
5 

yielding by a simple transformation 

d'C = x dx y dy f dr 3. 7 
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Therefore one can write integrais of the type 

which involves a split range integration after the p integration. 

It frequently occurs that it may be more convenient to 

integrate x first, say, rather than p . We can then write our integral 

as 

and get a split range integration of y and p after integrating with 

respect to x first. ln Appendix C, the normalization integral is 

carried out. The result is 

N = s 

The expectation value of T tot becomes 

f-!:' 1. 8rA.4 + IS"o<. 
3@ f-1/~ ~ :j 5"otj3 3 +p 4-

:lfYJ 8o<., +s-ol~ + ;9 ').. 

3.8 

3. 9 
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The spin integration over the tensor part of the p henomenological 

potential V D gave zero so that 

l-
+ .2g3 ( .ZoC.Jj&fl) 

:Jg(_ 1, ( ~ f 1 -r 'l) 1.-

The spin integrations of V DF are given in Appendix A. The 

results are 

The exp.ectation value of the A-nucleon two-body potential is 

.0 

=- 8J-L.2 !=' ,_ ./l/t ~ ~~}- . d o< o( f-(3 ) d ~ e [ o<(q/f ;3 )x~ l.. 3( ... 1 ( -{,(+~~·)~ 
4d ~n "'-;,. 4~~ 7Î w-flt<fo("':js-otf1+t/ ~ x-3 

_ 4~-[i~ ] 1 e-(2Ql:II)L ;sc«+(3Jx"" +If~;;( l)(k,t;cJ ( 4+4x -x 1
) 

~ -;B o<-j3 x 

+ /<,(x)(:U2XfX') + 8{3k,(.t.r) 1- {31-.<r')k,~xJ)) 3.11 

The integration 3. 11 was performed numerically for various values of OG 
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and € , the core radius. 

To equations 3. 9, 3. 10 and 3. 11 the absolute value of 

the binding energy of the deuteron, 2. 226 Mev, was added. The result 

gave B"' the separation energy of the 1\ particle. The results are 

plotted in Fig. 3. 2. We see that the value G = • 388 yields the minimum 

B" very close to zero. From this we took 

€ = . 386 meson units 

0( = l. 8 inverse meson units 3. 12 

Using these values of the parameters «and € , we get 

<. T ) = 58 Mev 
tot 

'v > = -14.2 Il 

D 

<. V DF( 1\ N,) + VDF(/\N )> = -46 Il 3. 13 

It was stated in part B of this Section that an error was 

introduced by using the trial wave function 3. 1 with the phenomenological 

neutron-proton potential 3. 5 . 

Fig. 3. 3 

If we examine Fig. 3. 3 we see 

that in our calculation, the value 

of .CT tof was probably too small 

since the true wave function has 

more curvature, and also 1< V D'> 1 

was too large, since the trial wave 

function was large in the region 
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of the large potential. 

To estimate the error, we first return to the expression 

for ~ T > which is given by 3. 9 . The error would be closely 
tot 

connected with the value of ~- However, the expression is more 

dependent on eX.. than ~ so we infer that the err or would not be too 

large. The value of 1 < V D> l is also seen to be fairly small compared 

to the absolute value of the other quantities ( see equation 3. 13 ). 

In the conclusions at Section VIII a consideration of these errors is 

made. It is found that the combined error is probably no more than 

about 4. ·5 Mev. An examination of Fig. 3. 2 shows that this would not 

effect o<. very much since the minima are quite shallow. €. the core 

radius for the !\-nucleon potential, could be decreased from O. 386 to 

O. 380 meson compton wavelengths. This small decrease in é 

will not appreciably effect our ultimate result for 

< V(3-body) > /<V ( 2-body) > 

One item of interest at this pointis the s i ze of the parameter 

0(. = 1. 8 , which h a s turned out to be lar ger tha n the deuteron para meter 

(~= 1.4). This may seem objectionable since it infers that the 1\-N 

part of the wave function is more concentrated at the origin than is the 

deute ron part, whi ch appears to contradict the assumption that the 1\ -
particle is loosely bound. To explain this we note that both the true 

A- nucleon and deuteron wave functions are composed of two parts: one 

being in the region of the potential, and the other in the tail region. The 

l a tter i s the part which d epends on how l oose ly-bound the particles a r e . 

The trial wave function chosen for this calculation corresponds more to 
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the part in the region of the potential, since it was there that the 

parame ter s were determined. The value obtained for oc th us reflects 

the fact that the effective range of the ;\-nucleon potential is smaller than 

the nucleon-nucleon potential. 

A better trial function for the hypertriton would have been one 

similar to equation 3. 3, where the tail part is included. In view of the 

fact, however, that what was desired from those calculations was a measure 

of the ratio of the three-body forces to the two-body forces and not a 

precise value of their magnitudes, the use of the trial function 3. 1 was 

justified. 



- 34 -

S e c ti on IV 

THREE-BODY EXPEC TA TION VALUES 

A. The Wave Function 

ln the calculation of the expectation value of the three-body 

potential, an achnixture of D state was included and the wave function 

put into the form 

1.j.t = cos p ~ + sin p 7./;0 

where 

Vi = 

~· the D state admixture, was taken to be 

tPo = 

where 'Xl>, the spin part of this wave function, was assumed ( 16) to 

be 

NS and N
0 

are normalizing constants and p is a parameter which 

determines the percentage of S or D state. As was stated in 

4.1 

4.2 

4.3 

4.4 

Section 1, the D state part was assumed as shown since it was thought 

that the one spatially symmetric between the two nucleons would give the 
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largest contribution to the binding energy. 

The expectation value of the three-body potential was 

calculated and compared to the value of <.V (2) > = -46 Mev (see 
DF 

equation 3. 13). The wave function was not consistent in the evaluation 

of the ratio <. V( 3-body) > / < V(2-body)> since < V(2-body} > was 

only calculated using the S state wave function 4. 2 • For small 

values of D state admixture, it is expected that the ratio would be 

quite meaningful as 1.. V(2-body) ) does not change too rapidly with 

percentage D state. This can be seen by noticing that central and 

tensor parts of the /\-nucleon two-body potential, V DF , given by 

equation 1. 9 , are singular to the same order ( .!.
5

) • For large 
x 

D state admixture the ratio would be expected to be somewhat poorer. 

B. The Spin Isotopie-spin Integrations 

The expectation value of ( '"C
1
• l:z ) is -3 . This is 

because the wave function 1/f , given by 4. 1, is symmetric in space 

and spin exchange of the two nucleons. 

The spin integrations yield 

(Xs/ Xs) = 1 

(Xs/ Xo) = 0 

(XD / XrJ 4 2 2 2 4 = 2(y + x y ( 3cos G - 1) + x ) 

(Xs/B.·~rx~) = 1 4.5 
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= 0 

= 0 

= 
2 

3cos '& - 1 

4.5 

( 'X 1 .:::: 1 rv ) = - 12 cos 
2

19 (x 
2 + y

2 
) 

o -Jr~,~ 1\o 

4 2 2 2 4 
= 2(y + x y (3cos & - 1) + x ) 

4 2 2 2 2 4 
= -2 y ( 3 cos ~ - 1 ) - 4x y ( 3 cos & - 1) - 4x 

( 'Y- D 1 :S,""L,J J 'Xo ) 
4 2 2 2 4 2 

= -4y - 4x y (3cos fJ - 1) - 2x (3cos & - 1) 

= -2y4(3cos 2t; + 1) - 2x2y2(9cos 2~- 1) 

4 2 
-2x ( 3cos 'P + 1) 

Sample spin integrations are explicitly carried out in Appendices A 

and B. 

The spatial parts of the integration resulted in three types of 

terms since the expectation value of the three-body potential with the 
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wave function 4. 1 gave 

( V(3-body) > = cos2~ oc5 + sin ~ cos ~ 0( SD + sin2~ C(D 

4.6 

where O(S , O(SD and CXD are the contributions from the 

( X.!>l j'X~ ), ('X
0
1 l'X

5
) and (')(0 \ 1'")(0 ) terms respectively, given 

in equation 4. 6 • ~V( 3-body)) was separately calculated for the 

potential with no bare lines, or equation 2. 11 , and also for the sum. of 

bath potentials 2. 11 and 2. 12 . 

C. Calcula tian of the S State Part (CXs) 

The calculation of the expectation value of equation 2. 11 , 

considering only O(,.S, is carried out below. 

We get 

4.7 



- 38-

We first consider the y part of the integration of the first 

term of 4. 7 • We have 

1 = j ~e -"'.J-1 .;;._ r·-•;yr ( .2k.c!f) +.Y f-.fyJ }ydy 
G-

Integrating by parts we get 

I 

Returning to our original integral given by equation 4. 7 , we see that 

most of the contribution to the integral is from the region of small x and 

y and also from the region r = + 1 , since then the factor in the 

exponential ~~ x
2 + y 2 

- 2xyt" i s smaller. 

equal to 

We therefore compare the values of I and l' for x 

E and + f= - 1 
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I = 

l' = e :t;B1~[.,t.~}1 yk,(~) r~-[al-l(d )y) -J-ko(Cf) (t-{o<f ;J)tj)j 'Y 
~ 

Calculating I and 11 numerically with~, (3 and G equal to 1. 8 , 

1. 4 and O. 386 gives 

l'ji = - O. 543 

and since most of the contribution to the integral I cornes from the region 

of small x , we take 

-otb- fNx1+e"'-:z~é-f"" 
1 ~ e ( ! 2. k,(~) +-€ ko(é)) 

/.5'43 

We would not expect the ratio 1'/I to remain at -. 543 for 

large values of x, but since the contributions to the integral of equation 

4. 7 will be rouch smaller from the larger values of x, we take our ratio 

I'j I = -. 543 , the ratio at x = € . ln addition, this ratio is seen to be 

the same { -. 543) for p..= ± l when x = iE , so that we expect that 

it would not change rouch for other values off"'. ln part D of this 

Section, an estimate of the error involved in evaluating integrais of the 

above type is made. It is found that for a les s singular integral than 

the first term in equation 4. 7, the error is about 10% . { The less 
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singular the integral, the poorer the approximation.) The first 

integral of 4. 7 then becomes 

The same procedure was carried out for the x integration. 

Put 

Integrating by parts, we obtain 

-:t(3€ (if ... 
J = -Ei (- (o( -J• )6] e • ( G + 3 6 + 3) 

1 

t J 

+ 
at r = - 1, omitting a common factor 

J = 

J' = 

J = 

j~ -ftx. E~ ( - rot+'Jx.)( ;Jx 2-1- x. (3;J -.:z) r3'f-'J) ~ 
~ 

e-'.l..,lf""e-( ~ -~- _!._ "). f-1 - ) -3E.· { - {ot+f+ 'J€) 
/..foi+/ (l+«f;BJ /-foU~-

= • 422 
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The exponential function Ei(x) is tabulated in Jahnke and Erode. 

By numerical integration 

J' = - o. 0596 

so that J /J' = - o. 14 

The first term in equation 4. 7 therefore becomes 

= 

= 2. 236 x • 07214 

= O. 161 Mev 

where a = 2 (Jé 
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The errors invo1ved in the above approximations are estimated in 

part D of this Section and are found to be about 10%. 

The second term of equation 4. 7 was eva1uated exactly. 

Omitting the factor -12.985 , and putting K 1 (y) - yK (y) = K, we 
0 

obtain by the transformation given by equation 3. 7 

where F(y) 
-4. 6y -3. 2y 

= .16197e +e (.26360y- .15970) 4.9 
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Performing this integration numerically and including the 

factor -12.985 gave the result -0. 0530 Mev. 

Combining both results, we see that with no bare lines, 

<X5 = o. 16 1 - o. o 53 o 

= O. 108 Mev 

which is repulsive. 

Since < V{2-body} ) from Section III was found to be -46 Mev, 

our ratio with just S state in the wave function is therefore 

= • 00235 

which is quite small. 

4. 10 

A similar calculation for the expectation value of V B( 3-body) 

given by equation 2. 12 for the S state part of the wave function gave 

l. 892 Mev 

which is also repulsive and much larger than the preceding value of O. 108 

Mev. 

is 

Therefore the total expectation value of the ratio 

+ V B(3)) 

V{2-body) ) 

-2/46 = -0. 0435 

so that with an S state wave function the relative importance may be 

as large as 4. 35% and repulsive. 
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D. Cale ula ti ons of the D Sta te Part ( oC.Sp and CX:o) 

The D state part of the calculations involves the cross terms 

resulting from (')(5 1 I'XP) and (')(J I'"'KJ, ortheevaluationofCXSD 

and CX D • Many of the integrais contained the factor (3f-'J..- 1). If x 
and y were not correlated by the f-in the factor e-(3.tf~z."".Y .... _2 1f.Jr or 

if p were zero, the integral off"',. would be 113 , or ail integrais with 

a factor {3f-""- 1) would be zero. A me as ure of the correlation is given by 

= 

= 0.07171 

which we see is small compared to unity. Therefore in all of the D 

state integrations f',was put equal to 113. In the evaluation of "'s• 

the S state part of the expectation value, this deviee would have led to 

4. 11 

very erroneous results since the major part of the expectation value carne 
,.. 

from the terrn which has a (3f.J- - 1) in it (see equation 4. 7). In the 

D state calculations, however, the more strongly singular parts of the 

potential still were present even after putting fA}'"= 113 . 
The norrnalization constant ND is evaluated in Appendix C. 

It is O. 64766 . The cross terms O(SD for no bare nucleon lines give 
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which, after interchanging y for x to get x in the exponential 

throughout, becomes 

- .2~,.C~!yz.) ( ..2 k,cy) +y Ko(yJ)(x-z-t3x-t3?} .x~x y,.~ d'fL 
x y 

This was then split up into integrais with various powers of x. Neglecting 

the factor 27. 88, we get 5 integrations 

A = JÏ{e-~c-.y~-t•P ;;i ç,yk,ty) 

" ~ -1 
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jrrr' --'(Y+yJ-I P y! / L •Jl '1 
B = ) ) e Yi~ 0*.(y)- {3f''l-11)(:Lk,{y)-~::jFo(y)l_j x'a-dxy ~~ 

E- ~ - J 

jj-~- ' -<Xf)l+y)-fJf' -'X(, L )) 1 1.. ( t)} c = e ~ fy(:zk,cy) -2/"'J. ( .Zk,t.y)ij~o{y) Y;-; (1«- -1) k,ey; f-?;;Î:oly)~ • 
E- G _, 

.. x1.t:tzy~.Y~ 
..., .... 

D =-j f 1 ~-~t<+y}-,lf e-x ( 3f"'-1)( k,iy) oykoCyJ) -x;'d.:r:y'a_ydf'-

G- G- -1 y 

At this point we put • 1/3 f-= and obtain 

B = z JT/ ~-~r--,-J-N ~~ ( k,cy; --y k.cyl) x '.t..:y•.tya,.... 
G- G -1 

4. 13 

c = J]j 'e .. àf>+yl-N e;_Y [ .2k.cy; -j pk.ty) +yf.cJij ;t"dx_y'':J~ 4. !4 

G- f-- -J 

D = 0 
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E= 

The integrals 4. 14 are now done one at a tirne 

Carrying out the x integration by parts we get 

= z"' 

Again, as in part C of this Section, we compare 111 and 1111 for f-= ± 1 , 

and y which equals € • 

l" 
rBé ( 1>0 - (Q('.J.I +'Jx. er ; e ~ 

E X 
= 

-
• -;3 e ~1'1 e -~LE.- (-tl+"') x)""" l"' 



and 

Therefore 

l'" 
l" 

= 

- 48-

= o. 337 

= 

#<> 

1. 679] y 1 
( k;fy) -ykcyJ) e -(·aiJ.J G(_y)ct.y 

€ 

where G(y) = • 40506 y - . 02763 

and A = • 00803 

Again, performing the x integration using the same method as for A, 

we get 

B 

where G(y) is given by 4. 15, 

so that B = • 0040 1 

4. 15 

4.16 

4. 17 
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C was carried out using two methods. The first method 

involved the use of the approximations of integrating by parts as we did for 

A and B, and for sorne of the integrations in part C of this Section. 

The second method was exact. 

(i) A pp r o xi rn at e Met ho d 

c 

We write the x part of the integration as 

J" = 

= 

where J"' = 

Again for y = 

-{f-Iel)~ lli'4yl.-2?'f"' 
€ e -rJ"' 

1 loi. 

a nd 

J" <X 

+ 
t- = 1 

1- -{ tlol'/ )" xe dx 

~ 

J" 1 0( 
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so that 

Jill = = • 072 

J" 

Therefore 

c = 

where G(y) is given by 4. 15 

c = .00079 4. 18 

(ii) Ex a c t M e th o d 

c 

00 

= j J yz(k,ryJ -yk{yJ) Fcy)tty 
e 

where F(y) is given by 4. 9 • 

Therefore 

c = • 00087 4. 19 

Comparing 4. 18 and 4. 19 we see that the error involved 

in using the se approximations is about 1 O%. 
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Continuing, 

where H{y) = {. 6950ly - 1. 0795)e - 3• 2Y +(. 22676y2+. 86384y + 1. 0798)e -
4

• 6Y 

4.20 

E = -. 00864 4. 21 

Therefore, adding the equations A, B, C and E we obtain 

• 00803 + • 00401 + • 00087 • 00864 

= • 00427 

Therefore the term ()(. with no bare lines becomes 
SD 

.00427 x 27.88 

= • 119 Mev 

We see that the terms nearly cancelled out. This result 

is therefore a poor estimate for CX. SD. Howeve r, if . 119 we re in 

error by a large amount (even lOOo/o) the term would still give an 

unimportant contribution to the three-body force (see equation 4. 25). 
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The value of o(SD calculated for the bare line potential 
J,. 

V B(3), after putting 3f = 1, gave 

= -2191..., ~-Y ( I-I.Y+J1 j#tyJdy 
6 J 3. '3 

= -3. 21 Mev 4.23 

where H(y) is given by equation 4. 20. 

The calculations for ~X0 were carried out in a siznilar manner. 

The results were 

o(D (no bare lines) = -. 106 Mev 

4.24 

oc
0 

(bare lines included) = -. 719 Mev 

A summary of these calculations is given be1ow. 

Expectation values with no bare lines: 

ols = + • 108 Mev 

o<.SD = + • 119 Mev 4.25 

o..-D = • 106 Mev 
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Expectation values with bare lines included: 

01 = + 2.00 Mev s 

O(SD = 3.09 Mev 

cxs = 0.719 Mev 

The comparison of <. V(3-body) > with <. V(2-body) > is 

made in the next Section. 

4.26 
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Section V 

COMPARISON OF THE THREE-BODY AND TWO-BODY POTENTIAL 

IN THE HYPER TRITON 

As was stated at the beginning of Section IV, the wave function 

employed for the calculation of three-body expectation values was 

= cos p ~ + sin p i 

We therefore get for our expectation value of V{3-body) 

< V{3-body)) 

Table . 5. 1 shows the variation of 1.. V(3-body)) for both 

cases, that is, with the o(. 1 s given by equation 4. 25 and 4. 26 

The value of ( V{2-body)) was ta ken to be -46 Mev, as was 

calculated in Section III (equation 3. 13). In Fig. 5. 1, the ratio 

( V(3-body)) / (.V(2-body)) is plotted in per cent against percentage 

5. 1 

D state. We see that if the three-body potentia1 is given by the terms with 

no bare lines its contribution is small, whereas if the bare line three-body 

potential is used, it may contribute about 4% for small D admixtures, and 

will be repulsive. We also see that for large D admixture s the 

contribution just exceeds 3%. However, since 1... V{2-body)) was 

calculated using the S state wave function given by equation 3. 1, the 

curve in Fig. 5. 1 shows only the effect of three-body forces for .large 

D state admixtures in the wave function. 
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~ Percent < V(3-body)) ( V(3-body)) 8v(3-body)> / <V(2-body)Jc 100 
Degrees D State Mev Mev 

100xsin p no bare !ines bare plus no bare !ines bare plus no 
bare !ines bare !ines 

0 0 • 108 2.00 -.24 -4.35 

10 3. 01 • 122 l. 39 -.26 -3.02 

20 Il. 7 • Ill • 70 -.24 -1.52 

30 25 • 107 -.02 -.23 • 04 

40 41.4 • 055 -.65 -. 12 l. 41 

50 58.7 • 042 -1. 11 -.09 2.41 

60 75 0 -1.38 0 3.00 

70 88.3 -.043 -1. 39 • 09 3.02 

90 lOO -. 106 - • 72 • 23 l. 56 

Table 5. 1 
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Se c ti on VI 

VARIATION IN THE THREE-BODY EXPECTATION VALUES 

WITH TRIAL WAVE FUNCTION PARAMETERS 

The foregoing calculations were made with the trial wave 

function parameters ot and (1 equal to 1. 8 and 1. 4, and the core size 

of the /\-nucleon potential E equal to • 386. The quantities of and €-

were chosen in a consistent manner but ü (3, the deuteron parameter, 

were actually different from 1. 4, ~ and € would also change in arder 

that zero binding for the 1\-particle would be obtained. There is also 

the possibility that the ,/\-nucleon potential, which is taken to be given 

by V , may not be a very satisfactory potential. The entire calculation 
DF 

from that standpoint was rather artificial since to be consistent one 

should also include the/lnucleon two-body force with bare lines V LR" 

This, however, was not taken into consideration. Nevertheless, from 

a phenomenological point of view V DF probably has all the required 

features of the /\-nucleon two-body potential. Qualitative changes in 

the {\-nucleon potential would be reflected in the wave function pararneters 

<:X and (3 , and in the eut-off parameter G • 

It is therefore of interest to investigate changes of 

< V(3-body)) with small variations in the quantities ~ , ~ and € • 

Writing E"( IX, (3,€ ) for <V(3-body) > we have 

6. 1 

where the derivatives are to be evaluated at ct , f , é = 1. 8, 1. 4 and • 3 8 6. 
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For this calculation only the S part of the wave function was considered. 

Again, E,_ was evaluated for the case of no bare lines and for the sum 

of ba re and no ba re line gr a phs. The central parts of the three -body 

potential were neglected also since they are small compared to the 

part. We therefore write 

"""' 00 , 

E ANB = . 2~927 f [! e -~<>•yJ-fp ~->: { :1 k;c~) +yk.tyl) (y '13><+3) . 6. 2 

S G €' -1 ;%"~ 

, { 3f!- '1._ 1) -;x;;-z.â .:cy1d..f~ 

and 
6.3 

Consider 6. 2 first 

6.4 

-· 2'9.lJ(i~! 'e-""f.J+&) -(31€'+1"'--2~./F G~-IE { ..2/:;(J) +yhtyJ), 
~ (i _, '..>' 

6. 5 

· (Gz.l3t -13)(3r..,__,) y-;..~~:)"tF 

6.6 
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In these integrals 3 f'-v - 1 was replaced by.) = • 07171 

as given by equation 4. 11. 

Since N
5 

= 8ol'l. + 5t:JrJ +;3 .. 
o<3( o<"+fJ'i" 

-.0485 

-.0263 

= • 020737 

The integral part of 6. 4 was performed in the same manner as in 

Section IV. The result gave 

When calculating 6. 4 it was noticed that the ratio of the second 

term to the first term on the right-hand side was about 1 - 4 , and it was 

therefore assumed srnall when calculating 6. 5 • Using this we obtained 

CJE,..>~a = oa6 • -07 

ô~ 

Equation 6. 6 is a rnuch sirnpler expression since only a double 

integration was involved. The result is 

Collecting terms we get 

E (ex:, a ,€) = .108 + .205~ot: + .096dp- .977'$€: Mev 6.7 
ANB !"' 
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Similarly, the inclusion of the bare lines gives 

E AB ( 0<', ~ , E ) + E A NB ( 1)(, ~ , € ) = 2 + 3. 61 $Dl+ 2. 49 dp- 8. 46 21~ Mev 

6.8 

This result is discussed in the conclusions at Section VIII. 
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S e ct ion VII 

THREE-BODY FORCES IN HEA VY HYPERNUCLEI 

A. General Considerations 

The results of Section V lead us to expect that three-body forces 

may be as large as 4% and repulsive when compared to the two-body 

/1- nucleon potential for the case of the hypertriton. In the hypertriton, 

the 1\-particle is quite loosely bound and therefore one might expect that 

in heavy hypernuclei, three-body hypernuclear forces may be more 

important. Furthermore, in heavy hypernuclei, the j\-particle is not 

governed by the Pauli principle, so that it could exist in an S state and 

be in the vicinity of a large number of nucleons. 

If we again look at the heavy hypernucleus proble m from 

another point of view, we can argue that three -body forces may not be 

very important. To illustrate this, we notice that the largest contribution 

to three-body forces cornes from the angular parts of the potential, since 

they are more singular than the central part. In the case of the 

hypertriton, the angular parts gave almost all of the contributions, because 

the wave function introduced correlations. In heavy hypernuclei, one 

would expect that the effect of correlations would be small since they 

would tend to average out coherently when the /\- particle interacted 

with many pairs of neighbouring nucleons. 

The following consideration of the three-body problem follows 

in many respects the work reported by Drell and Huang {14). We 

consider a large hypernucleus con sis ting of A nucleons and one /\- particle 
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contained in a volume v . W e write the volume v as 

7 .• 1 

where 
1 -13 

1. 42 x 10 cm, a me son compton wave length, and 1 is -= 

a parameter which determines the nuclear density. 

We then imagine that A is large and the hypernucleus is 

composed of an equal number of spin up-and-down protons and neutrons, 

and that the total spin of the nuclear partis zero. With this assumption, 

the total spin will be given by ~ . Following Drell and Huang, we 

further assume that no correlations are present. This will mean that 

the tensor and ( cr1 • ës'~') terms in the A-nucleon two-body potential, 

and all of the angular parts of the three-body /\-nucleon potentials will 

average to zero when the expectation value is calculated. A Iso, the 

three-body pair term given by 2. 13 will vanish The surviving terms 

are the spin independent central part of the two -body potential and the 

( t=;· ~'2. )( 5, • 6'a,.) terms of the three-body potentials. 

B. The W ave Function 

Following Drell and Huang, we further assume that the wave 

function of the A nucleons is given by 

<P,rA) 
1 

= 
[i0 

where 

7. 2 
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whieh are all mutually orthogonal. 

Y..( 6· ) and ;),. ( ·c ) are the spin and isotopie spin variables 
1', J J 

assigning the i'th spin and isotopie spin state to the j'th nucleon in 

the spatial state k. and v, the volume, is defined in equation 7. l • 
1 . 

If we eonsider the A nucleons as eonsisting of an equal 

number of spin up-and-down protons and neutrons, the total spin of the 

system is zero. Sinee the A-particle is not governed by the Pauli 

principle, we ean write the total wave funetion for the A nucleons 

plus j\- particle as 

where we put 

= 
..L ,J,.. (;. IV { 6. ) 

e "'" ,.. rv 

-
where k,. ean take on the value of any of the l<i 1 s • 

7.4 

7.5 

C. Caleulation of the Two- and Three-body Potential Expeetation Values 

We first eale ulate the e x pectation value of the two-body 

potential. We use the potential V given by e quation l. 9 a nd 
DF 

consider only the part which is spin independent. The result is 

V(2-body) 

= 7. 6 



- 63-

where 

V( 1 A ) 

and 

Expanding the Slater wave function p in 7. 6, we obtain 

V(2-body) 7.8 

The factor A~ cornes from the normalization and (A-lH from the fact 

that every term in the sum contains (A-1)~ permutations of the 

remaining A-1 factors which integrate to unity. 

Therefore since 

A z 4:;.'(1) 1/-:./( ch ~ .. (t) A 
= 

,· ~ ' 

( V(2-body) ) = A 1 V( 1/\) d c-,d ~" 
yl. 

= 7. 9 

The surviving terms of the three- body potentials given by 

equations 2. 11 and 2. 12 reduce to the form 

( ~. • ~ l- ) ( (j=
1 

• 6',. ) V ( 1 , 2 , A ) 
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where 

V B ( 1, 2, A) = 7. 11 

The expectation value of the three-body potentials is given by 

1... V(3-body)) = I jrJ~V(tj:A)(r:i.· 9J(if,.~-J p de~''"' 
r"$ 

7. 12 

where ( ~) cornes from the number of pairs and (A-2H from the number 

of permutations of the A-2 factors after a pair is chosen. Since the 

potential does not contain the spin of the A particle, we can put 

1 
= 

v 



1 Il 
<.. V(3-body)> = - G 

:2 v . . 
";) = ( 
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The spin-isotopie spin parts are done as follows: sinee we 

. Aj Aj have assumed A nucleons Wlth 2 protons and 2 neutrons, and A 

to be large, 5/8 of the pairs are antisyznmetrie in their spaee eo-ordinates 

and 3/8 are syznmetrie (see Blatt and Weisskopf p. 147). It therefore 

follows from the Pauli principle that 5/8 of the pairs are syznmetric and 

3
/8 are aritisymmetrie in the spin-isotopie spin variables. 

Table 7. 1 therefore gives the spin-isotopie spin expeetation 

values of ( 6,. 5a.) ( -ë, · i-~) for the different states. 

Spaee Spin triplet , Spin singlet 9 Antis yznmetric !-Spin triplet 1-Spin singlet 

Spaee Spin t r iplet -3 Spin singlet - 3 Symmetrie 1-Spin singlet 1-Spin triplet 

Table 7. 1 

We then write 

< V(3-body) >= o2~ i f V[J2, A) 1>, .. (1 ) ~·.,h}(6,. 6J.) (f, . r~Jcf,· ( ·J~.(z)d c,dc1 de;.. 
'J ~ 1 
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The spin-isotopie spin integrations of the first term of 7. 14 give 

5 x 1( ) 3 1 ( 8 10 9 x 1 + 9 + 8 x b 3 x -3 + 3 x -3) 

= 0 

The 
5
/8 term is multiplied by 9 x 1 + 9 since the value 1 can occur in 

9 ways (3 spin triplets and 3 !-spin triplets). 

The second term on the right-hand side of 7. 14 g ives 

5 1 3 1 
- '8" x 10 (9 x 1 + 9) - 8 x b (3 x -3 + 3 x -3) 

~ = -4 

where the minus sign before the 
3
/8 term results from the fact that 

these terms are antisymmetric in spin-isotopie spin exchange. Equation 

7. 14 therefore becomes 

<. V{3-body)) = 

= 7. 15 

where 7. 16 

1. 52;::;- or the largest momentum of the highest filled level 
? 
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for the free particle states in the nuclear well. Here we use the same 

notation as Drell and Huang. 

From equations 7. 9 and 7.15, the ratio of the expectation 

values of the three-body to two-body potentials becomes 

R = ~ V(3-body) > = _ 2_ A 

< V{2-body)> 8 v 

If we first consider the three-body potential with no bare lines, we get 

from equation 7. 7 and 7. 10 

A 
12v 

The ratio using the three- body potential given by 7. 11 gives 

= 

7.17 

7. 18 
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where we have changed to meson units in 7. 18 and 7.19 and we 

take E = • 386. From equations 4. 25 and 4. 26 in Section N, we 

expect that 1 RBI is larger than RNB" We therefore evaluate R 
B 

and first choose 1 = 1. The numerator of 7. 19 becomes, apart from 

the factor -!f ./.:;' { ~} 
.24 .1 v 

= 

= 

This integral and the denominator of 7. 19 were evaluated numerically. 



Using the relation 

the result gave 
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4 
v = - TTJ 3 

A 
3 

R = -. 0047 
B 

RB was also calculated for 7 = • 8 and 1. 2 • The results are shawn in 

Table 7. 2 

1 R 
B 

. 8 -.0051 

1 -.0047 

1.2 -.0043 

Table 7. 2 

Sin ce RNB, which is given by 7. 18, is of 

opposite sign, it will tend to reduce the 

value of the ratio if included. From the 

calculations in Section IV, however, we 

expect that it would be small. Table 7. 2 

then shows that three-body forces are not 

likely to contribute more than about • 5% to 

the hypernuclear force in heavy hypernuclei if the correlations average 

out to zero. We can obtain a qualitative upper estimate of the size of 

three-body forces in heavy hypernuclei from the above table if correlations 

are present. The radius {in meson units) of a nucleus can be 

represented by the formula 

7.20 

where the parameter 7 is a measure of the nuclear density. If the 

values of 1 , corresponding to a heavy hypernucleus and the hypertriton, 
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are estimated, and the corresponding values of RB taken from Table 7. 2, 

the ratio of the two values of RB gives a measure of the relative 

importance of three-body forces for the two cases. This ratio may then 

be multiplied by 4. 35% to yield a qualitative upper estimate of the 

relative importance of three-body forces in heavy hypernuclei in the 

presence of correlations, since it was shown in Section V that the 

relative importance of three-body forces in the hypertriton could be as 

large as 4. 35% when correlations were included. 

An average taken over the data for heavy nuclei on page 15 of 

Blatt and Weisskopf gives 

7 = 1.342 

1. 42 

= • 94 

The value of 7 corresponding to the hypertriton is more difficult to 

estimate since the meaning of 1 is !ost in this case. This can be 

illustrated as follows: for heavy hypernuclei the ;\-particle and the 

A nucleons are ail contained in the volume v= j u73 A but in the 

hypertriton the question arises as to what volume should be considered 

for the evaluation of the deuteron volume or the total volume of the 

hypertriton. 

Gerjuoy and Schwinger ( 19) have performed a variational 

calculation on the deuteron considering S and D state wave functions. 
1 ~ 

The S part of their wave function was of the form e-If'f If 

1 
we put fA= R'J. where R is the effective radius of the deuteron, the 

results of their calculation give 
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R = 2. 8 x[2 
1. 5 x 1. 42 

= 1. 86 meson units 

Taking A equa1 to 2 in this case corresponds to 

ob tain 

7 = 1. 86 

2'13 

= 1. 475 

Interpo1ating and extrapo1ating Table 7. 2 graphically we 

= -. 0048 

RB( ? = 1. 475) = -. 0038 

We therefore conclude that if strong correlations were present 

in a heavy hypernucleus, the relative importance of three-body forces 

could be as important as 5. 5%. 
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S e c t i o n VIII 

CONCLUSIONS 

It must be admitted that there are many weak points in the 

derivation of the /\-nucleon three-body potential. To begin with, the 

interaction Hamiltonian given by equation 1. 7 may not be correct. In 

fact, it would be quite different if the spins of the 1\ and 2: particles 

were not .!.. 
2.. • In addition, if the parities of 1\ and 2. were not the 

same, this would also change the form of the interaction Hamiltonian. 

Another assumption was the fact that K meson exchange 

terms were small. For the two-body potential, the K meson may play 

a very important role, but one might expect that they would not be so 

important in three-body forces. One would in fact expect that if the 

entire /\-nucleon potential were due to the exchange of the K meson, 

then three- body forces would be about as important in hypernuclei as 

they are in ordinary nuclei. 

Another question is the validity of the use of perturbation theory 

for strong interactions, which is still unresolved. Furthermore, 

approximations were made in the perturbation theory, the most important 

of which was the assumption that the baryon wave functions were delta 

functions and the baryon recoil was neglected, which would introduce an 

appreciable error in the exchange of mesons of large momenturn. On 

the other hand, disregarding the mass difference !J = M1 - M~ 

in the energy denominators, introduced an error in the exchange of mesons 

of very small momentum. 
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Finally, after deriving the three-body potentials 2. 11, 

2. 12 and 2. 13, it was assumed that the pair term 2. 13 was damped. 

If we examine all these items we see that the most critical 

factor was probably the assumption of the form of the interaction 

Hamiltonian, because once it is chosen the qualitative form of the three

body potential is fixed. Therefore, if the interaction Hamiltonian given 

by equation 1. 7 is reasonable, we conclude that the three-body potentials 

that were subsequently derived have the correct form, i.e. they depend 

very strongly on correlations and are less important if no correlations 

exist in the hypernucleus. 

The next item subject to criticism is the method of determining 

the wave function for the hypertriton and core E associated with the 

/\-nucleon three-body potential. This was done in Section III by 

performing a calculation on the hypertriton, considering only two-body 

forces. To begin with, the choice of the /\-nucleon two-body potential 

V DF' given by equation 1. 9, may be criticized. Also, the trial wave 

function was not sui table for use with the phenomenological nucleon-nucleon 

potential, since the deuteron part did not vanish at the hard core associated 

with it. These two factors are discussed below. 

{ 1) The /\-Nucleon Two-body Potential 

One of the primary results that was desired from this 

calculation was to determine what core size G should be used for the 

/\-nucleon three-body potential. To achieve this, one must use a 

two-body A- nucleon potential in the hypertriton, which is derived in a 

similar manner to that of the three-body potential. It is essential also 
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that the two-body potential possess the desirable features, i.e. it should 

be more attractive for the /1-nucleon singlet state in order to be consistent 

with the recent evidence (11). The potential V LR given by 1. 10 is 

more attractive for triplet states. These considerations lead to the 

choice of V DF' given by equation 1. 9. 

{2) The Error Involved In Calculating The Deuteron Part Of 

The Energy 

Fig. 3. 3 shows the qualitative effect of incurring errors by 

the use of the trial wave function 3. 1. In the first place, the computed 

kinetic energy is too small because the trial wave function is too smooth, 

and the absolute value of the potential energy is too large since the wave 

function is large at the core radius. The phenomenological potential 

given by equation 3. 5 was taken from the recent work of Gamme! and 

Thaler ( 16.). and this potential was chosen since it was of the same form 

as the !\-nucleon two-body potential V DF inasmuch as they both have 

a core. An earlier paper by Gamme!, Christian and Thaler {20) shows 

other phenomenological potentials. We see that the potential given in 

Table 1, identification number 4 of reference 20, corresponds to the 

potential used in our calculation. If we consider the potential corresponding 

to identification nurnber 15, the central partis given by 

where V c = 28. 28 Mev and J = . 972 inverse meson units, and the 



- 75 -

hard core radius is zero. We do not consider the tensor part. This 

potential may be more appropriate to our wave function (equation 3. 1). 

Calculating the expectation value of this potential with our 

wave function 3. 1 with o( , ~ = 1. 8 and 1. 4, we obtain 

<vD(zerocore)> = -9.75 Mev 

Now if we return to equation 3. 12, we see that there 

<VD(core = 0.283)) = -14.2 Mev 

If we now assume that with zero core in the deuteron potential the trial 

wave function is fairly good in the region of the potential, then we see 

that <VD) and (Ttot) are given by -9.75 and 58 Mev, to a fair 

approximation. However, if we use the potential with a hard core 

(O. 283 meson units) we see that, using the same trial function <V D) 

and ( T > given by -14.2 and 58 Mev are both in error. 
tot 

The error 

involved, therefore, by using the trial wave function is approximately 

given by the difference, that is (58 - 9. 75) -(58 - 14. 2) = 4. 45 Mev. 

If we now examine Fig. 3. 2, we see that B,.. is therefore too small by 

about 4. 45 Mev. This would not affect the parameter ex in the wave 

function very much since the minimum is quite shallow. é , the 

nucleon core radius, will have to be chosen slightly smaller than the 

value O. 386. To estimate this, we note that the minima for E =O. 388 

and O. 332 occur at B" = 1 and -58 Mev. If we interpolate we find that 

8. 1 

8.2 

the core E may be reduced to O. 380, which is a small change from O. 386. 
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It therefore can be seen that this correction would not appreciably effect 

the ratio 

< V{3-body}) 

< V{2-body}) 

The methods of evaluating the expectation values of the three

body potentials in Section IV were also in error. An estimate was made of 

the errors involved and it was found to be about 10%. A further 

approximation was also made when calculating the ratio 

< V{3-body)) 

< V(2-body) ) 

for D state admixtures. This was due to the fact that ~V (2-body)) 

was calculated only using the S state wave function 3. 1, whereas 

( V{3-body)) was calculated using D state admixtures in the wave function. 

We therefore expect that the ratio is not too good for large D state 

admixtures. Fig. 3. 1 therefore only shows qualitatively how three-body 

forces depend on D state admixtures. 

In Section VI, the expectation values of the three-body 

potentials were evaluated showing the sensitivity with respect to the 

quantities a( , (3 and € • We quote again the result for the three-body 

expectation value. 

The variations expected in the parameters are small. For example, a 

better value of ~ may be nearer 1. 52, and perhaps ti should be 
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nearer O. 380. If we retain IX constant, we see that the three-body 

expectation value would go from 2 to 2. 35 Mev, which is a change of 

17%. We expect the two-body expectation value to change slowly 

also, so that the ratio would not be effected greatly. 

ln Section VII, three-body forces were considered in the heavy 

hypernuclei. Obvious assumptions made there were that only one 1\-particle 

was present and that no effects due to the presence of the '2- particle were 

included. As was stated in the introduction, the ~- particle probably 

plays an important role in heavy hypernuclei, because then the binding 

energies involved become comparable to fj. = M,~: - M" • However, 

since a complete calculation of that nature was not within the scope of this 

work, a qualitative estimate was made considering only one /\·particle in 

a large nucleus. 

The main conclusions may then be summarized as follows. 

(1) Since the !\-nucleon potential can be obtained by a consideration of 

a double pion exchange, one would expect that the two and three-body 

A- nucleon potentials, which have the same order of coupling constant, 

would have comparable magnitudes. lt is found, however, that the three 

body potential is much smaller than the two-body potential due to its 

weak singularity. 

(2) The largest terms in the /\-nucleon three-body potential are non

central, whereas the central part is small. 

(3) For the hypertriton, where correlations between spin and directions 

and between directions will be large, the relative importance of the 
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three to two-bodyA-nucleon forces may be as large as 4. 35%, and 

repulsive. The admixture of D state tends to decrease the importance, 

and to make the three-body forces less repulsive. 

(4) In heavy hypernuclei, two factors play an important part in determining 

the magnitude of three-body /\~nucleon forces. The first factor is 

the increased nuclear density which enhances the effect of the three-body 

potential and the second factor is the reduced amount of correlations in 

the nucleus. The latter effect is the more important since the most 

singular parts of the /\-nucleon three-body potential are non-central. 

It is expected that with no correlations, the relative importance of three 

to two-body /\-nucleon forces is only about. S<fo. With correlations as 

strong as in the hypertriton, the relative importance may be as large as 

S. S%. In either case the contribution is repulsive. 

(5) If the three-body potential can only be represented by graphs with no 

bare nucleon lines, then the relative importance of three to two-body 

forces in hypernuclei is less than ~% even with correlations present. 
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APPENDIX A 

Spin Integrations Of The 1\ -Nucleon Two-Body Potential 

( 1) Consider first ( X.~ 16, · ~1\ ) 1'(,) 

where 

From the relations 

Therefore (Y.., Ji,·~"} 'X~) = 4 

3 

= -2 

ô'1 (3 = ex: 

2 

3 

Al 

A2 

A4 
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(2) We next evaluate ( "/.. 5 / 5, .... 1 fl/..s ) 

where s," = 3 (6; . ?,1\)(~·~1\) 
r;,.,l-

-Taking r,A. as our z axis, we have 

5, .... Y. .5 

Therefore ) 
2 2 

+ 
3 3 

= 0 

AS 

A7 
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APPENDIX B 

Spin Integrations Of The /\-Nucleon Three-Body Potential 

The /\-nucleon three-body potential has the form 

5, ' '(5' z. 

= 3 (5, -""i)(~·i) -ô, . cr._ B2 
:c.2-

3 (6; y Js_~,. ·j) 
J')... 

and the vectors x and y are directed from the A-particle to nucleon one 

and two. The spin of the t\-particle does not appear. 

We now compute the spin integrations with the spin part of 

the wave function X where 
:5 

'Xs is given by equation Al. This 

re sults in four integrations which are 

Since X.s is a spin wave function such that particles one and 

two are in a mutual triplet spin state, we have 

( )( ~ 1 6 . tS:. 1 "-/ ) = 1 "' • ~ "s B3 
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(2) We now consider ( ')(s / S,~, y\'Xs ) 
-Choosing our x axis as the axis of quantization, we obtain 

= 

Therefore ( ')(:51 5 12, >< 1 'Xs ) = 
4 

3 

4 

3 

= 0 

( 3) Similarl y ( CX"s / $ 12,y J !J(!> ) = 0 

(4) ( 'X-, l 'S,2,ltj 1 ')( 5 ) 

For S ,2 ,1J , we choose again our x axis as the axis of 

quantization and let the polar angles of y referred to ~ be 8 and p • 

= _ 4 fr"J[o~t,)o<{:J.J{9~c.s~- ~J -t 9«~,J;J(2)s,;,&f!os&e·1J 

B4 

B5 

B6 

+lj ~Il\)[ ;}ofCJ)o({2-) S1Î1& CtJSB e_,·<f - (o<ti)/J f2J +(3t,Jot"C~J j(f)~os 'Z..& -11) 

-!)j3C •)j3 fl.JS,,;&<!oS&~,"'f] B? 
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Therefore 

2 2 1 2 
=3(9cos& -l)-3(9cos&+l) 

BS 
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APPENDIX C 

Evaluation Of The S and D State Normalization Constants 

( 1) The S state wave function ~ is given by 

= 

We therefore have by equation 3 7 

wher:e the factor 8 71''3- has been omitted. (See page 28) 

N 
s 

= 
'2- l.. 

e~ -r ~o(/lr J3 
1 

o<. ?. ( (>( 1-! )~-

Cl 

C2 
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(2) The D state wave function is 

where ?(
5 

is given by equation Al. 

Our normalization constant N is therefore given by (omitting 811'~again} 
D 

N 
D 

We perform the spin integrations first. 

.. 'L~ 

We have XD = ( :x 5,A,1C +-:J -Jl.ll,j ) x~ 

C3 

C4 

-fjf ,_ { [ otf• Jo/ f•!{ 3 ecs};,- •) ~ 3 { d.U) pM +(l' •!«f•1s..;rN .S&e ''f 

+ 3f (,J(jt2-) ~~~'ti' e2~·'fj j3CA) 

cs 

C6 
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We also have 

2 2 2 
cos & = x +y - e C7 

2xy 

From these relations, equation C4 becornes 

cs 

This result when explicitly evaluated is rather long. We 

therefore give the result for ~ = 1. 8 and (} = 1. 4. It is 

N = O. 64766 C9 
D 
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