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Take-home messages  

 

 Real-world comparative effectiveness of drugs conducted using computerized healthcare 

databases very common 

 Typical new-user cohort design limited to head-to-head comparisons between two new 

medications, using treatment-naïve patients. 

 We introduce the prevalent new-user cohort design for head-to-head comparisons between a 

new drug and an older drug, using all patients, including the switchers from the old to the new 

drug. 

 We introduce the notion of exposure sets to compute time-conditional propensity scores of 

initiating the newer drug for matching purposes. 

 We used the prevalent new-user cohort design to compare the risk of heart failure with newer 

GLP-1 analogs to treat type 2 diabetes compared with older sulfonylureas, using all patients 

rather than only the treatment-naïve ones.   
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ABSTRACT 

Studies of the real-world comparative effectiveness of drugs conducted using computerized 

healthcare databases typically involve an incident new-user cohort design for head-to-head 

comparisons between two medications, using exclusively treatment-naïve patients.  However, the 

desired contrast often involves one new drug compared with an older drug, of which many users of the 

new drug may have switched from, seriously restricting the scope of incident new-user studies. 

We introduce prevalent new-user cohort designs for head-to-head comparative drug effect 

studies, where incident new users are scarce.  We define time-based and prescription-based exposure 

sets to compute time-conditional propensity scores (TCPS) of initiating the newer drug and to identify 

matched subjects receiving the comparator drug.   

We illustrate this approach using data from the United Kingdom’s Clinical Practice Research 

Datalink (CPRD) to evaluate whether the newer GLP-1 analogs used to treat type 2 diabetes increase 

the risk of heart failure, in comparison with the older similarly indicated sulfonylureas.  Of 170,031 

users of anti-diabetic agents from 2000 onwards, 79,682 used sulfonylureas (first use 2000), while 

6,196 used GLP-1 analogs (first use 2007), 75% of which had previously used a sulfonylurea.  After 

matching each GLP-1 analog user to a sulfonylurea user on the time-conditional propensity scores 

from prescription-based exposure sets, the hazard ratio of heart failure with GLP-1 use was 0.73 (95% 

CI: 0.57-0.93).   

The proposed prevalent new-user cohort design for comparative drug effects studies allows 

the use of all or most patients exposed to the newer drug, thus permitting a more comprehensive 

assessment of a new drug’s safety. 
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INTRODUCTION 

Observational studies of the comparative effects of drugs, including effectiveness and safety, are 

generally based on a cohort design.1  It is recommended that cohorts be defined by new users of the 

drugs under study, also called incident users, to avoid missing their potential early effects and properly 

time the confounders.2, 3 While studies of comparative effects will typically involve the head-to-head 

comparison of two similar drugs, one is often faced with evaluating the effect of a new drug, with no 

contemporaneous comparator and for which the most appropriate comparator is an older drug that 

has been on the market for a long time.  As a result, many of the new users of the drug under study will 

not be treatment-naïve, but will have switched from the older comparator drug.   

Although one of the inherent expectations of real-world data is that all or most users of the new 

drug will be included in observational studies, studies are often based strictly on treatment-naïve users 

who make up only a small part of the real-life user population of the new drug, particularly during the 

early period of its availability.  An example is the study of the real life effectiveness and safety of the 

newer anticoagulant dabigatran used to treat atrial fibrillation (AF), where the natural comparator is 

warfarin, an older anticoagulant.  One of the first observational studies used “anticoagulant-naïve 

patients”, thus excluding many of the new users of dagibatran who had switched from warfarin to 

dabigatran, which may not fully characterize “everyday clinical practice” and the “real-world” patients 

desired by the study.4  It was noted that up to 50% of dabigatran users had previously used warfarin.5  

Another recent example involves a cohort study comparing patients with type 2 diabetes initiating 

treatment with the newer class of dipeptidyl-peptidase-4 (DPP-4) inhibitors with those initiating the 

older sulfonylureas on the risk of pancreatic cancer, which excluded around 50% of patients with a 

history of sulfonylurea use prior to DPP-4 treatment.6   
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In this paper, we present approaches to design cohort studies of head-to-head comparative drug 

effects, particularly focussing on the situation where the comparator drug is not contemporaneous.  

These designs are illustrated using data from the United Kingdom’s Clinical Practice Research Datalink 

(CPRD) to evaluate whether newer incretin-based drugs used to treat type 2 diabetes increase the risk 

of heart failure, in comparison with the older sulfonylureas. 

 

INCIDENT NEW-USER DESIGN 

Some studies of comparative effects will involve the comparison of two drugs of similar 

indication that entered the market at around the same time.  Such studies can be based on new users of 

each of the two drugs that are naïve to the use of the other drug, subjects that we call “incident new-

users”.  The strategy of such incident new-user comparative studies thus identifies the cohort of 

incident new users of the two drugs under study and makes them comparable by design or analysis.  

For example, a study comparing the effectiveness of two different combination inhalers in the 

treatment of asthma formed the cohort of all incident new users of budesonide/formoterol or 

fluticasone/salmeterol after a diagnosis of asthma.7 Different techniques of data analysis can then be 

used, such as regression or propensity scores, to match or adjust for differences in the baseline 

characteristics on the date of the first such prescription between the two groups.  

Challenges in the design of these incident new-user comparative studies involve considerations 

for calendar time and prior medications.  First, while the two drugs are similar in nature, they may 

have entered the market at somewhat different times.  In such a case, it is possible that the first drug 

on the market was given to the more severe patients when it was the only one of the class available.8  

Thus, it may be necessary to restrict the cohort entry time to a contemporaneous period when the two 

drugs were both available to reduce confounding issues.  For the asthma study, the two inhalers 
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entered the UK market in 1999 and 2001, so that cohort entry was defined only on the new users of 

both inhalers as of 2001.  Another challenge with these studies is related to the other drugs the 

patients were using at the time they initiated treatment with the new drugs.  Direct matching on the 

prior drug usage patterns may be preferable to assuming that propensity scores will inherently 

provide the proper balance in disease severity at the time of initiation.  Another consideration that 

could affect confounding is whether the study drugs are initiated as replacement or as addition to the 

current drug regimen, which should be verified in establishing balance in disease severity at the time 

of initiation.   

In all, incident new-user comparative cohort studies are as relatively straightforward as 

observational studies can be.  Besides issues related to timing and co-medication patterns, common 

techniques of analysis to control for confounding, such as matching, propensity scores or statistical 

adjustment, will then provide the balanced treatment groups at cohort entry necessary to estimate 

comparative effects with minimal bias.8   

 

PREVALENT NEW-USER DESIGN 

A more common situation in pharmacoepidemiology involves the study of the effect of a new 

drug entering the market, in the absence of a direct contemporaneous comparator.  For example, 

concerns have recently been raised regarding the safety of the newer DPP-4 inhibitors to treat type 2 

diabetes. Since these drugs are second-line treatment for type 2 diabetes, a natural comparator would 

be sulfonylureas, another second-line treatment, though already in use for a very long time.  The 

particularity of this situation is that many of the new users of the newer DPP-4 inhibitors were 

previously on sulfonylureas, the comparator; they were thus switched from one second-line treatment 

to another.  An incident new-user analysis could be performed by comparing incident new users of 
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incretin-based drugs with incident new users of sulfonylureas, including only patients who were 

treatment-naïve to both drugs.  This, however, would exclude the large number of subjects who 

switched from sulfonylureas to the DPP-4 inhibitors, which could represent a significant number of 

patients and clinically relevant subset.  In such instances, a prevalent new-user comparative cohort 

approach could be used.   

Initially, the base cohort from which the comparative study cohorts will be identified must be 

formed from all users of the comparator drug and of the drug under study. This base cohort will thus 

identify all users of the study drug who had used the comparator and switched, as well as those who 

directly initiated the study drug, also providing the pool from which the comparator drugs users will 

be selected.  Figure 1 depicts a base cohort formed of all subjects who initiated the comparator drug, 

some switching to the study drug, the others continuing on the comparator, as well as the subjects who 

initiated the study drug without ever using the comparator.  The main challenge with the design of 

prevalent new-user comparative cohort studies is the selection of comparator drug users for the 

subjects who switched from the comparator drug to the study drug.  

We present two ways this can be achieved.  We first define the exposure set as the set of 

subjects in the base cohort exposed to the comparator drug at the point that a subject switched to the 

study drug.  The point of switching can be demarcated in two ways, by the time from the first 

prescription of the comparator drug up to the point of switching, or the number of prescriptions of the 

comparator drug received up to the point of switching.  

 

Time-based exposure sets 

 If time from the first prescription of the comparator drug is deemed important in measuring 

the disease course, time-based exposure sets can be used to determine the point at which 
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comparability will be established.  This corresponds to the same time axis used to define the base 

cohort, namely the time since the first comparator prescription, as depicted in Figure 1.  It is obvious 

from this picture that identifying comparator prescriptions given at the same time as the point at 

which the patients switched to the study drug is nearly impossible because of the granularity of the 

time scale.  Thus, time-based exposure sets must be defined with a time interval, such as ±1 month, 

where all patients with a comparator prescription in that time span are said to belong to the exposure 

set and the set is defined by each patient’s prescription date.  Figure 2 shows the time-based exposure 

sets from the base cohort.  They provide equivalent time points in the disease course at which 

confounder patient characteristics can be measured.  While this approach does not provide an elegant 

vertical line on the time axis, it allows for a sufficiently accurate account of time since entry into the 

base cohort.   

 

Prescription-based exposure sets 

 If the number of comparator prescriptions rather than the time since the first comparator 

prescription is deemed important in quantifying the disease progress, prescription-based exposure 

sets can be used to determine the point of comparability.  Figure 3 depicts a base cohort defined by the 

prescription number and shows the corresponding prescription-based exposure sets defined by each 

subject who switched to the study drug.  Prescription-based exposure sets do not consider the time 

between prescriptions.   

 

Time-conditional propensity scores 

To identify the comparator drug user most similar to the patients who switched to the study 

drug, time-conditional propensity scores (TCPS) can be used.  They are named time-conditional 
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because they depend on the time-varying patient characteristics measured at the point of the 

prescription-based or time-based exposure sets and the positivity assumption is verified conditionally 

within each exposure set.  To compute the propensity of switching to the study drug, versus continuing 

on the comparator drug, as a function of the time-varying patient characteristics measured at the point 

of the exposure set, the time-dependent Cox proportional hazards model, or equivalently conditional 

logistic regression, can be used to conserve the matching induced by the exposure set .9  The resulting 

estimated model is used to compute the time-conditional propensity score within each exposure set to 

identify the subject in the exposure set with the closest value to that of the switcher, thus identifying 

their matched comparator.  For the purposes of the positivity assumption, the time-conditional 

propensity score of the switcher should lie within the range of the time-conditional propensity scores 

of the members of the corresponding exposure set. 

To emulate the randomized trial, this process can be initiated with the first chronological index 

study drug subject and repeated sequentially.  Additionally, once a patient has been selected into the 

comparator group, they are not considered any longer in subsequent exposure sets as potential 

comparators.  Thus, each subject who initiated the study drug will have a comparator user, matched on 

the time-conditional propensity score.  Cohort entry is taken as the date of the first prescription of the 

study drug use and the corresponding date for the matched comparator drug user, with follow-up 

depending on the question under study.  Figure 4 depicts a study cohort selected from the 

prescription-based exposure sets of Figure 2.  The Appendix provides a step-by-step description for 

the design of a prevalent new-user cohort using prescription-based exposure sets. 

A potential challenge in computing the time-conditional propensity scores is the size of the 

exposure sets which can make the time-varying Cox modeling technically unmanageable.  For example, 

a study of the safety of incretin-based drugs using the CPRD, versus sulfonylureas as the comparator, 



 

10 
 
 

could very well involve a base cohort of over 100,000 users of older antidiabetic drugs with close to 

4,000 switchers to incretin-based drugs.10  Such an analysis would involve 4,000 exposure sets with 

numbers of subjects in each set as high as 100,000, clearly technically infeasible with the time-

dependent Cox model, particularly if the number of potential confounders is large and involves 

multiple strata. One approach is to select random samples of 10, 20 or 100 prescriptions from each 

exposure set to estimate the time-conditional propensity scores of switching to the study drug as a 

function of the patients characteristics at the point of the exposure set.  These can be computed using 

conditional logistic regression, matched on the exposure set, with the resulting relative odds 

accurately estimating the corresponding relative hazards.  The computed propensity odds score for the 

index switcher is used to identify the corresponding matched patient as the subject with the closest 

value from all members of the exposure set, not only the sampled ones.   

 

AVOIDING SELECTION BIAS 

 Most cohort studies involve exclusion criteria that define a homogenous population. These 

criteria usually represent a history of clinical conditions, including a history of the outcome event of 

interest. For instance, the study of whether incretin-based drugs are associated with pancreatic cancer 

will necessarily involve a cohort free of this cancer at cohort entry.  Applying this exclusion is rather 

straightforward for the incident new-user comparative cohorts, with attention given to a baseline 

period of equal duration for the two drug groups under study, to avoid potential differential exclusions 

that may be associated with the outcome. 

 For the prevalent new-user comparative cohort design, however, the potential for such 

selection bias from exclusion criteria is high.  While the exclusion of subjects who have a history of the 

event under study prior to cohort entry is straightforward for the incident new users in both groups, it 
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is more subtle for the prevalent users. Without a careful systematic approach, one could easily end up 

excluding outcome events, not only history events, or misclassifying history events as outcome events.  

This was observed in a cohort study of the effect of metformin on cancer incidence.11  Using a 

population of diabetics, all 4,085 new users of metformin between 1994 and 2003 were individually 

matched with 4,085 non-users on year of diabetes diagnosis, with each pair assigned the cohort entry 

date as the date of the first metformin prescription of the user.  In choosing comparators, however, a 

potential matched non-user who had a diagnosis of cancer prior to the index date was discarded, but 

“was potentially available for a different metformin user…this process was repeated until suitable 

comparators were identified”.   The net effect of such selection of non-users with replacement is that 

the non-user group will have zero subjects excluded because of cancer prior to the cohort entry and 

what should have been “prior” cancers subject to exclusion were transferred to the follow-up period 

and counted as outcome events, thus artificially increasing the rate of cancer in the non-user 

comparator group.12   

To ensure that such selection bias is avoided, it is essential to perform the identification of 

matched comparator subjects in a systematic and chronological manner.  First, this should be done 

blinded to the occurrence or timing of outcome events in the base cohort.  Second, after propensity 

scores have been computed, identification of matched comparators should be conducted in 

chronological order, with the first new user of the study drug in calendar time matched first to a 

comparator, the second next, and so on.  At this point, if the new user of study drug has a history of the 

exclusion event, they must be excluded outright from any further selection into the comparative cohort 

analysis.  If the new user is eligible, a comparator with the closest propensity score is selected. If this 

comparator has a history of the exclusion event, they must be excluded from any further selection and 

the next closest match without such a history can be used to match to the new user.  The chronological 
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approach to selecting comparators will thus ensure that proper outcome events are not 

inappropriately excluded and exclusion events are not incorrectly counted as outcomes.  It is also 

important not to initially exclude all new users of the study drug with a history of the outcome event, 

since some of these subjects may be eligible as comparator exposures prior to switching.  

A second issue relates to the comparators that, during follow-up, switch from the old 

comparator drug to the new drug. Two choices are possible.  The first is to censor the comparator 

follow-up at the point of switch, then include the subject as a new-user of the new drug from this point 

onwards, while identifying a matched comparator at that point.  The second is to not re-use these 

subjects if they were selected as comparators, while leaving the option open to censor or not the 

follow-up at the point of switch.  

 

ILLUSTRATION 

To illustrate the method, we use data from the United Kingdom’s Clinical Practice Research 

Datalink (CPRD) to study whether the incretin-based glucagon-like peptide-1 receptor agonists (GLP-1 

analogs) used to treat type 2 diabetes increase the risk of heart failure.10  These drugs work in the 

same pathway but are considered more potent than DPP-4 inhibitors that have been reported to be 

associated with an increase in the risk of heart failure.13  These second-line drugs, that entered the UK 

market in 2007, were compared with sulfonylureas, another second-line treatment for type 2 diabetes 

which has been around for decades, thus requiring a prevalent new-user comparative cohort design.  

We used data from a previous study to identify the base cohort of 170,031 users of anti-

diabetic agents between 2000 and 2013, which included 6,196 users of GLP-1 analogs and 79,682 

users of sulfonylureas.14 The first prescription for a GLP-1 analog was in July 2007 while sulfonylureas 

were used since January 2000.  Of the 6,196 users of GLP-1 analogs, close to 75% had previously used a 



 

13 
 
 

sulfonylurea, the comparator drug.  Thus, a purely incident new-user cohort study would only be based 

on 1,633 new users of this newer agent rather than all 6,196 new users.  The prevalent new-user 

comparative cohort approach was thus used with time-based exposure sets defined by the duration of 

treated diabetes and prescription-based exposure sets by the number of prescriptions of sulfonylurea 

prior to initiating the GLP-1 analog.  The time-conditional propensity scores of initiating GLP-1 analog 

use relative to sulfonylurea use were estimated using conditional logistic regression, after either time-

based or prescription-based matching.  We present two analyses, namely re-using the selected 

sulfonylurea comparators who subsequently switched to GLP-1 analogs in the group exposed to GLP-1 

analogs and not re-using them.  In all analyses, follow-up was censored at the point of switch for the 

comparators.  

Figure 5a displays the time-conditional propensity score distribution, highlighting the different 

profiles for the new users of GLP-1 analogs compared with users of sulfonylureas, while Figure 5b 

depicts it after prescription-based time-conditional propensity score matching.  Table 1 describes the 

cohorts formed by pairing the new users of a GLP-1 analog with a corresponding user of sulfonylurea 

within the same exposure set and calendar year, unmatched and matched on the time-conditional 

propensity scores computed using prescription-based and time-based exposure sets. In both matched 

cohorts, the mean difference in propensity score across matched set was below 0.002. The 

prescription-based approach that matched on the number of prior prescriptions of sulfonylurea (mean 

21.7) resulted in balanced duration of treated diabetes (5.2 years).  On the other hand, the time-based 

approach that matched on the duration of treated diabetes (5.2 years) resulted in an imbalance in the 

number of prior prescriptions of sulfonylurea (means 21.8 versus 19.9) and the proportion of 

sulfonylurea users (73.6% versus 94.0%).  



 

14 
 
 

Table 2 shows that the prescription-based and time-based approaches produce similar results.  

For the tighter matched prescription-based approach, the hazard ratio of heart failure associated with 

GLP-1 analog use was 0.73 (95% CI: 0.57-0.93) when all exposed subjects were included and 

somewhat lower at 0.67 (95% CI: 0.52-0.88) when these subjects were not re-used. Among the 

incident new-users, which included 26% of the subjects, the latter hazard ratio was 0.59 (95% CI: 0.33-

1.07), while among the prevalent new-users, it was 0.71 (95% CI: 0.52-0.96).  The recent LEADER 

randomized trial of a GLP-1 analogue did not find an excess risk of heart failure (HR 0.87; 95% CI: 

0.73–1.05).15  

 

DISCUSSION 

We introduced designs for new user cohort studies of comparative drug effects, distinguishing 

between incident new-user and prevalent new-user designs, particularly focussing on the latter where 

most new users of the study drug were previously using the comparator.  In this very common 

situation, where a recently marketed drug is to be compared to an older established alternative, we 

proposed prevalent new-user comparative cohort designs that use time-based and prescription-based 

exposure sets to compute time-conditional propensity scores of initiating the new drug as a tool to 

identify matched subjects using the comparator drug at the same point in the course of disease.  We 

also showed how the time-conditional propensity scores could be estimated using sampling within the 

exposure sets when the cohorts are too large.  

While time-dependent propensity scores have been used in pharmacoepidemiology, these were 

not developed for the specific context of the prevalent new-user design we are addressing.16, 17  In 

particular, these used standard logistic regression, which does not account for the entire history of use 

of the comparator drug in a prevalent cohort. As such, our use of the time-dependent Cox proportional 
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hazards model, or its equivalent conditional logistic regression model, to estimate the time-conditional 

propensity scores over time is distinctive. The label “time-conditional” is added to the term propensity 

score to remind that its computation is done by updating the time-varying covariates at each exposure 

set, and that matching is done within the exposure sets, including the verification of the positivity 

assumption which should be done within each exposure set. 

Several methodological issues need to be considered with these designs.  First, one could 

distinguish between patients who switched from the old (comparator) drug to the newer one from 

those who added the newer drug. The latter could indicate more severe disease so that careful 

assessment of confounding should be entertained, focussing on recent clinical data prior to adding the 

newer drug. Second, there could be effect-modification by history of prior use of the comparator drug, 

which would necessitate distinguishing between the incident and prevalent cohorts.  For instance, 

because the prevalent users could have tolerated or survived the period of early harm, the smaller 

cohort of incident users may be necessary to also assess the impact of the drug at the point of 

initiation. Conversely, in a study of the long-term effects of insulin glargine on the risk of breast cancer, 

a prevalent new-user comparative cohort design was used to match the users of insulin glargine with 

users of other insulins.18  The risk of breast cancer increased after 5 years of insulin glargine use 

among the prevalent new-users who had been on another insulin prior to starting glargine (HR: 2.7; 

95% CI: 1.1-6.5), but not among the incident, insulin-naïve, new users.  Nevertheless, the overall effect 

estimated by the design provides the marginal effect had everyone who could receive the new 

treatment received it - regardless of whether those patients were treatment naïve - relative to the risk 

of the outcome had all patients been prescribed the old treatment, analogous to an average treatment 

effect on the treated. 
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We presented two options in selecting the comparator group, either “re-using” or not as exposed 

the comparators who, during follow-up, switch from the old comparator drug to the newer drug.  A 

third option that should be avoided is to select the comparators among those who never switch to the 

newer drug.  This option, that is based on “looking in the future” can lead to immortal time bias and 

should thus be precluded. However, this bias will be trivial if the number of users of the newer drug is 

small compared to the users of the comparator in the base cohort.   

We presented two types of exposure sets, time-based and prescription-based.  In our illustration, 

the time-based approach led to somewhat unequal matching on the number of prior prescriptions.  

Since it represents the basis for the comparator exposure, one could deem that the prescription-based 

exposure set approach is preferable.  Indeed, to emulate the randomized trial, the principle is to 

identify, at the physician visit that led to the patient being switched from the comparator drug to the 

study drug, a comparable patient who has the same history of comparator drug use and of other 

characteristics, but who on that visit continued on the comparator drug. The prescription-based 

exposure sets thus provide equivalent points in the disease course in terms of comparator drug history 

and equivalent points at which confounder patient characteristics can be measured.  Nevertheless, if 

disease duration is also deemed to be important, a combination of time-based and prescription-based 

exposure sets is certainly feasible.  

It is noteworthy that many pharmacoepidemiologic studies do not have a specific comparator 

drug but rather aim to compare the study drug to “non-use”.  In these studies, while the timing of the 

first prescription of the study drug is directly measurable, selecting the time point for non-use is 

challenging.  Our approach can also be used simply by using a prescription for any drug other than the 

study drug as the comparator.   
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  Further research is needed to understand the limits of prevalent new-user comparative 

cohort designs.  First, we are uncertain about the impact of “re-using” or not the comparators, in 

particular the potential impact of non-independence in the estimation of confidence intervals, which 

could require techniques based on bootstrap sampling. Second, if we select not to re-use the 

comparator subjects who switch to the newer drug, it remains uncertain whether and in which 

situation to censor the follow-up at the point of switch. Third, one must be conscious about adjustment 

for factors in the causal pathway when computing the propensity score,3 although factors that could be 

affected by the old comparator drug, such as the level of HbA1c, would have to be considered 

differently for the prevalent and incident new-users.  In this case, propensity scores that also include 

an interaction term between the incident/prevalent status and this factor could be considered. Fourth, 

bias from prescription-based exposure sets that do and do not require a physician visit for the 

matching prescriptions could be investigated. Some of these issues will certainly also need to be 

considered in the contexts of whether the outcome under study is an acute event, such as an 

exacerbation or a stroke, which occurs during exposure, or a long-term event such as cancer or 

osteoporotic fracture, which can occur long after exposure.  Another issue is that the prescription-

based approach may become computationally cumbersome in chronic conditions where the cohort is 

large and the prior number of prescriptions of the comparator drug is large and highly variable.  In this 

case, simplifications could be made by matching on the number of prescriptions of the comparator 

drug use in the prior year or two, for example, rather than the entire history.  Statistical adjustment for 

the use of this comparator drug previous to this prior year could then be used to supplement the 

design. 

In all, studies of comparative effectiveness of drugs are becoming more widespread, 

particularly with the influx of new computerized healthcare databases.  The traditional incident new-
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user comparative cohort design, exclusively based on treatment-naïve subjects, is a desirable approach 

for head-to-head comparisons between two medications, but often seriously restricts the size of 

studies, with calls for ways to incorporate prevalent users in epidemiologic studies.19 Our proposed 

prevalent new-user comparative cohort designs allow the use of all or most patients exposed to the 

newer drug, thus providing a more complete assessment of a new drug’s safety. 
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Table 1 
Baseline characteristics for prevalent new-user comparative cohorts of type 2 diabetes patients pairing, using prescription-based and 

time-based exposure sets, the new users of a GLP-1 analog with a corresponding user of a sulfonylurea within the same exposure set and 
calendar year, unmatched and matched on the time-conditional propensity score 

 

 
Prescription-based cohort Time-based cohort 

 
GLP-1 analog 

Unmatched 
Sulfonylurea 

Matched 
Sulfonylurea 

GLP-1 analog 
Unmatched 

Sulfonylurea 
Matched 

Sulfonylurea 

       

Number of subjects 6,195 6,195 6,195 6,196 6,196 6,196 

Age at cohort entry, mean±sd 56.0±10.5 65.8±12.9 56.4±11.4 56.0±10.4 66.9±12.4 56.5±11.4 

Female sex, % 45.1 40.2 44.1 45.1 40.1 44.4 

Year of cohort entry, %       

2007 1.1 1.1 1.1  1.1 1.1  1.1 

2008 6.1 6.1 6.1 6.1 6.1 6.1 

2009 13.9 13.9 13.9 13.9 13.9 13.9 

2010 18.7 18.7 18.7 18.8 18.8 18.8 

2011 18.0 18.0 18.0 18.0 18.0 18.0 

2012 19.8 19.8 19.8 19.8 19.8 19.8 

2013 15.9 15.9 15.9 15.9 15.9 15.9 

2014 6.4 6.4 6.4 6.4 6.4 6.4 

Smoker, % 57.5 54.4 58.6 57.5 52.9 57.5 

Obese, % 93.2 52.9 93.7 93.2 51.8 94.0 

Alcohol Abuse, % 6.3 6.2 6.2 6.3 6.2 6.6 

Duration of treated diabetes, years, mean±sd 5.2±3.0 4.0±3.1 5.2±3.1 5.2±3.0 5.2±3.0 5.2±3.0 

Prior sulfonylurea prescription, % 73.6 73.6 73.6 73.6 96.5 94.1 

Prior sulfonylurea prescriptions, mean±sd 21.7±26.5 21.7±26.5 21.7±26.5 21.8±27.6 36±36.3 19.9±21.4 

Prior insulin use, % 14.5 3.7 12.8 14.5 5.0 12.1 
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Prior metformin use, % 91.4 77.6 90.4 91.4 76.0 90.9 

 
Hemoglobin A1c, % 

      

      ≤ 7% [≤ 53 mmol/mol] 6.7 28.9 5.2 6.7  37.0 5.9 

      7.1-8.0% [54-64 mmol/mol] 15.6 29.7 13.9 15.6 30.7 15.2 

      >8% [> 64 mmol/mol] 77.0 38.6 80.2 77.0 31.4 78.0 

      Missing 0.7 2.8 0.7 0.7 0.9 0.9 

Comorbidity in year prior to cohort entry, %      

Heart failure 4.6 6.8 4.8 4.6 6.6 5.0 

Hypertension 63.6 63.5 63.8 63.6 65.6 63.5 

Coronary/ischemic heart arterial  23.2 28.4 23.1 23.2 29.4 23.0 

Atrial fibrillation 4.6 9.4 4.8 4.6 9.5 4.4 

Hypercholesterolemia 28.8 28.0 28.3 28.8 29.9 29.2 

Stroke 3.1 6.3 3.1 3.1 6.2 3.2 

Peripheral arterial/venous disease 3.8 6.1 3.9 3.8 6.2 3.8 

Acute or chronic pancreatitis 0.9 2.1 0.9 0.9 1.7 0.9 

Neuropathy 20.5 17.9 19.4 20.5 20.1 19.7 

Renal disease 13.9 25.1 13.8 13.9 25.6 14.3 

Retinopathy 37.7 34.9 37.5 37.7 42.2 37.4 

Cancer 5.8 11.9 6.6 5.8 11.7 5.9 

Medications in year prior to cohort entry, %      

ACE inhibitors 51.6 48.9 51.3 51.5 50.7 51.0 

Angiotensin receptor blockers 20.8 16.9 20.5 20.8 18.3 20.1 

Beta-blockers 24.4 26.7 24.3 24.5) 27.0 24.1 

Calcium-channel blockers 29.9 31.6 29.8 29.9 33.1 29.7 

Diuretics 35.7 36.5 35.2 35.7 36.9 35.8 

Antiarrhythmic 3.4 4.5 3.5 3.4 4.5 3.3 

Cardiac glycosides 1.9 5.1 1.8 1.9 4.8 1.8 
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Nitrates 5.6 7.2 5.6 5.6 7.2 5.4 

Statins 81.9 77.6 81.6 81.9 80.0 81.1 

Other lipid lowering drugs 6.8 4.4 6.3 6.8 4.7 6.5 
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Table 2 

Crude and adjusted hazard ratios of heart failure associated with GLP-1 analog exposure compared 

with sulfonylurea in patients with type 2 diabetes, using the prevalent new-user comparative 

cohorts identified from prescription-based and time-based matching, that include or do not include 

the censored GLP-1 exposed subjects  

 
 Number of 

patients 

Number 

of events 

Person-

years 

Rate per 

1000 per 

year 

Crude* 

HR 

Adjusted† HR 

(95% CI) 

       

Prescription-based cohort approach     

     Including censored GLP-1 exposed subjects    

         Sulfonylurea  6,195 139 13,018 10.7 1.0 1.0 (Reference) 

         GLP-1 analog  6,195 122 15,786 7.7 0.73 0.73 (0.57-0.93) 

       

    Not Including censored GLP-1 exposed subjects    

         Sulfonylurea  5,296 131 11,788 11.1 1.0 1.0 (Reference) 

         GLP-1 analog  5,296 108 14,009 7.7 0.70 0.67 (0.52-0.88) 

       

Time-based cohort approach      

     Including censored GLP-1 exposed subjects    

         Sulfonylurea  6,196 135 13,088 10.3 1.0 1.0 (Reference) 

         GLP-1 analog  6,196 122 15,790 7.7 0.76 0.74 (0.58-0.95) 

       

    Not Including censored GLP-1 exposed subjects    

         Sulfonylurea  5,333 123 11,859 10.4 1.0 1.0 (Reference) 

         GLP-1 analog  5,333 108 14,087 7.7 0.75 0.72 (0.55-0.95) 

       

 
* Crude, after matching on conditional propensity scores 

† After matching on time-conditional propensity scores, and adjusted further for the decile of 

propensity score and variables in Table 1. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5b 
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Appendix 
 
Step-by-step algorithm for the design of a prevalent new-user cohort using prescription-
based exposure sets 
 
1. Form the base cohort of all users of the drug under study and the comparator drug. 
 
2. Form the prescription-based exposure sets: For every new user of the study drug, identify from 
the base cohort every subject who has at least the same number of prior prescriptions of the 
comparator drug and identify the corresponding matching prescription number 
 
3. Perform a single Cox proportional hazards regression or conditional logistic regression analysis 
using all the exposure sets to derive the time-conditional propensity scores including all variables 
related to the outcome under study 
 
4. For time-varying factors that may have been affected by the comparator drug prior to switching, 
consider using an interaction term of these factors by the incident/prevalent new-user status. 
 
5. For positivity purposes, verify for each exposure set that the time-conditional propensity score of 
the exposed subject lies within the range of the time-conditional propensity scores of the members 
of the corresponding exposure set, else eliminate the exposure set. 
 
6. Starting chronologically with the first subject using the study drug, select the subject (or subjects 
if more than 1:1 matching) from the exposure set with the closest time-conditional propensity 
score. Subjects selected as comparators may or may not be eligible for subsequent exposure sets 
(see Discussion). 
 

 


